1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumArrayLenItCounts, 143 "Number of trip counts computed with array length"); 144 STATISTIC(NumTripCountsComputed, 145 "Number of loops with predictable loop counts"); 146 STATISTIC(NumTripCountsNotComputed, 147 "Number of loops without predictable loop counts"); 148 STATISTIC(NumBruteForceTripCountsComputed, 149 "Number of loops with trip counts computed by force"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 //===----------------------------------------------------------------------===// 237 // SCEV class definitions 238 //===----------------------------------------------------------------------===// 239 240 //===----------------------------------------------------------------------===// 241 // Implementation of the SCEV class. 242 // 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void SCEV::dump() const { 246 print(dbgs()); 247 dbgs() << '\n'; 248 } 249 #endif 250 251 void SCEV::print(raw_ostream &OS) const { 252 switch (getSCEVType()) { 253 case scConstant: 254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 255 return; 256 case scPtrToInt: { 257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 258 const SCEV *Op = PtrToInt->getOperand(); 259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 260 << *PtrToInt->getType() << ")"; 261 return; 262 } 263 case scTruncate: { 264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 265 const SCEV *Op = Trunc->getOperand(); 266 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 267 << *Trunc->getType() << ")"; 268 return; 269 } 270 case scZeroExtend: { 271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 272 const SCEV *Op = ZExt->getOperand(); 273 OS << "(zext " << *Op->getType() << " " << *Op << " to " 274 << *ZExt->getType() << ")"; 275 return; 276 } 277 case scSignExtend: { 278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 279 const SCEV *Op = SExt->getOperand(); 280 OS << "(sext " << *Op->getType() << " " << *Op << " to " 281 << *SExt->getType() << ")"; 282 return; 283 } 284 case scAddRecExpr: { 285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 286 OS << "{" << *AR->getOperand(0); 287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 288 OS << ",+," << *AR->getOperand(i); 289 OS << "}<"; 290 if (AR->hasNoUnsignedWrap()) 291 OS << "nuw><"; 292 if (AR->hasNoSignedWrap()) 293 OS << "nsw><"; 294 if (AR->hasNoSelfWrap() && 295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 296 OS << "nw><"; 297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 298 OS << ">"; 299 return; 300 } 301 case scAddExpr: 302 case scMulExpr: 303 case scUMaxExpr: 304 case scSMaxExpr: 305 case scUMinExpr: 306 case scSMinExpr: { 307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 308 const char *OpStr = nullptr; 309 switch (NAry->getSCEVType()) { 310 case scAddExpr: OpStr = " + "; break; 311 case scMulExpr: OpStr = " * "; break; 312 case scUMaxExpr: OpStr = " umax "; break; 313 case scSMaxExpr: OpStr = " smax "; break; 314 case scUMinExpr: 315 OpStr = " umin "; 316 break; 317 case scSMinExpr: 318 OpStr = " smin "; 319 break; 320 default: 321 llvm_unreachable("There are no other nary expression types."); 322 } 323 OS << "("; 324 ListSeparator LS(OpStr); 325 for (const SCEV *Op : NAry->operands()) 326 OS << LS << *Op; 327 OS << ")"; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: 330 case scMulExpr: 331 if (NAry->hasNoUnsignedWrap()) 332 OS << "<nuw>"; 333 if (NAry->hasNoSignedWrap()) 334 OS << "<nsw>"; 335 break; 336 default: 337 // Nothing to print for other nary expressions. 338 break; 339 } 340 return; 341 } 342 case scUDivExpr: { 343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 345 return; 346 } 347 case scUnknown: { 348 const SCEVUnknown *U = cast<SCEVUnknown>(this); 349 Type *AllocTy; 350 if (U->isSizeOf(AllocTy)) { 351 OS << "sizeof(" << *AllocTy << ")"; 352 return; 353 } 354 if (U->isAlignOf(AllocTy)) { 355 OS << "alignof(" << *AllocTy << ")"; 356 return; 357 } 358 359 Type *CTy; 360 Constant *FieldNo; 361 if (U->isOffsetOf(CTy, FieldNo)) { 362 OS << "offsetof(" << *CTy << ", "; 363 FieldNo->printAsOperand(OS, false); 364 OS << ")"; 365 return; 366 } 367 368 // Otherwise just print it normally. 369 U->getValue()->printAsOperand(OS, false); 370 return; 371 } 372 case scCouldNotCompute: 373 OS << "***COULDNOTCOMPUTE***"; 374 return; 375 } 376 llvm_unreachable("Unknown SCEV kind!"); 377 } 378 379 Type *SCEV::getType() const { 380 switch (getSCEVType()) { 381 case scConstant: 382 return cast<SCEVConstant>(this)->getType(); 383 case scPtrToInt: 384 case scTruncate: 385 case scZeroExtend: 386 case scSignExtend: 387 return cast<SCEVCastExpr>(this)->getType(); 388 case scAddRecExpr: 389 return cast<SCEVAddRecExpr>(this)->getType(); 390 case scMulExpr: 391 return cast<SCEVMulExpr>(this)->getType(); 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVMinMaxExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 537 ->getElementType(); 538 return true; 539 } 540 541 return false; 542 } 543 544 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 546 if (VCE->getOpcode() == Instruction::PtrToInt) 547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 548 if (CE->getOpcode() == Instruction::GetElementPtr && 549 CE->getOperand(0)->isNullValue()) { 550 Type *Ty = 551 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 552 if (StructType *STy = dyn_cast<StructType>(Ty)) 553 if (!STy->isPacked() && 554 CE->getNumOperands() == 3 && 555 CE->getOperand(1)->isNullValue()) { 556 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 557 if (CI->isOne() && 558 STy->getNumElements() == 2 && 559 STy->getElementType(0)->isIntegerTy(1)) { 560 AllocTy = STy->getElementType(1); 561 return true; 562 } 563 } 564 } 565 566 return false; 567 } 568 569 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 570 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 571 if (VCE->getOpcode() == Instruction::PtrToInt) 572 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 573 if (CE->getOpcode() == Instruction::GetElementPtr && 574 CE->getNumOperands() == 3 && 575 CE->getOperand(0)->isNullValue() && 576 CE->getOperand(1)->isNullValue()) { 577 Type *Ty = 578 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 579 // Ignore vector types here so that ScalarEvolutionExpander doesn't 580 // emit getelementptrs that index into vectors. 581 if (Ty->isStructTy() || Ty->isArrayTy()) { 582 CTy = Ty; 583 FieldNo = CE->getOperand(2); 584 return true; 585 } 586 } 587 588 return false; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SCEV Utilities 593 //===----------------------------------------------------------------------===// 594 595 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 596 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 597 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 598 /// have been previously deemed to be "equally complex" by this routine. It is 599 /// intended to avoid exponential time complexity in cases like: 600 /// 601 /// %a = f(%x, %y) 602 /// %b = f(%a, %a) 603 /// %c = f(%b, %b) 604 /// 605 /// %d = f(%x, %y) 606 /// %e = f(%d, %d) 607 /// %f = f(%e, %e) 608 /// 609 /// CompareValueComplexity(%f, %c) 610 /// 611 /// Since we do not continue running this routine on expression trees once we 612 /// have seen unequal values, there is no need to track them in the cache. 613 static int 614 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 615 const LoopInfo *const LI, Value *LV, Value *RV, 616 unsigned Depth) { 617 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 618 return 0; 619 620 // Order pointer values after integer values. This helps SCEVExpander form 621 // GEPs. 622 bool LIsPointer = LV->getType()->isPointerTy(), 623 RIsPointer = RV->getType()->isPointerTy(); 624 if (LIsPointer != RIsPointer) 625 return (int)LIsPointer - (int)RIsPointer; 626 627 // Compare getValueID values. 628 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 629 if (LID != RID) 630 return (int)LID - (int)RID; 631 632 // Sort arguments by their position. 633 if (const auto *LA = dyn_cast<Argument>(LV)) { 634 const auto *RA = cast<Argument>(RV); 635 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 636 return (int)LArgNo - (int)RArgNo; 637 } 638 639 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 640 const auto *RGV = cast<GlobalValue>(RV); 641 642 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 643 auto LT = GV->getLinkage(); 644 return !(GlobalValue::isPrivateLinkage(LT) || 645 GlobalValue::isInternalLinkage(LT)); 646 }; 647 648 // Use the names to distinguish the two values, but only if the 649 // names are semantically important. 650 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 651 return LGV->getName().compare(RGV->getName()); 652 } 653 654 // For instructions, compare their loop depth, and their operand count. This 655 // is pretty loose. 656 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 657 const auto *RInst = cast<Instruction>(RV); 658 659 // Compare loop depths. 660 const BasicBlock *LParent = LInst->getParent(), 661 *RParent = RInst->getParent(); 662 if (LParent != RParent) { 663 unsigned LDepth = LI->getLoopDepth(LParent), 664 RDepth = LI->getLoopDepth(RParent); 665 if (LDepth != RDepth) 666 return (int)LDepth - (int)RDepth; 667 } 668 669 // Compare the number of operands. 670 unsigned LNumOps = LInst->getNumOperands(), 671 RNumOps = RInst->getNumOperands(); 672 if (LNumOps != RNumOps) 673 return (int)LNumOps - (int)RNumOps; 674 675 for (unsigned Idx : seq(0u, LNumOps)) { 676 int Result = 677 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 678 RInst->getOperand(Idx), Depth + 1); 679 if (Result != 0) 680 return Result; 681 } 682 } 683 684 EqCacheValue.unionSets(LV, RV); 685 return 0; 686 } 687 688 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 689 // than RHS, respectively. A three-way result allows recursive comparisons to be 690 // more efficient. 691 // If the max analysis depth was reached, return None, assuming we do not know 692 // if they are equivalent for sure. 693 static Optional<int> 694 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 695 EquivalenceClasses<const Value *> &EqCacheValue, 696 const LoopInfo *const LI, const SCEV *LHS, 697 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 698 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 699 if (LHS == RHS) 700 return 0; 701 702 // Primarily, sort the SCEVs by their getSCEVType(). 703 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 704 if (LType != RType) 705 return (int)LType - (int)RType; 706 707 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 708 return 0; 709 710 if (Depth > MaxSCEVCompareDepth) 711 return None; 712 713 // Aside from the getSCEVType() ordering, the particular ordering 714 // isn't very important except that it's beneficial to be consistent, 715 // so that (a + b) and (b + a) don't end up as different expressions. 716 switch (LType) { 717 case scUnknown: { 718 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 719 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 720 721 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 722 RU->getValue(), Depth + 1); 723 if (X == 0) 724 EqCacheSCEV.unionSets(LHS, RHS); 725 return X; 726 } 727 728 case scConstant: { 729 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 730 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 731 732 // Compare constant values. 733 const APInt &LA = LC->getAPInt(); 734 const APInt &RA = RC->getAPInt(); 735 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 736 if (LBitWidth != RBitWidth) 737 return (int)LBitWidth - (int)RBitWidth; 738 return LA.ult(RA) ? -1 : 1; 739 } 740 741 case scAddRecExpr: { 742 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 743 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 744 745 // There is always a dominance between two recs that are used by one SCEV, 746 // so we can safely sort recs by loop header dominance. We require such 747 // order in getAddExpr. 748 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 749 if (LLoop != RLoop) { 750 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 751 assert(LHead != RHead && "Two loops share the same header?"); 752 if (DT.dominates(LHead, RHead)) 753 return 1; 754 else 755 assert(DT.dominates(RHead, LHead) && 756 "No dominance between recurrences used by one SCEV?"); 757 return -1; 758 } 759 760 // Addrec complexity grows with operand count. 761 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 762 if (LNumOps != RNumOps) 763 return (int)LNumOps - (int)RNumOps; 764 765 // Lexicographically compare. 766 for (unsigned i = 0; i != LNumOps; ++i) { 767 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 768 LA->getOperand(i), RA->getOperand(i), DT, 769 Depth + 1); 770 if (X != 0) 771 return X; 772 } 773 EqCacheSCEV.unionSets(LHS, RHS); 774 return 0; 775 } 776 777 case scAddExpr: 778 case scMulExpr: 779 case scSMaxExpr: 780 case scUMaxExpr: 781 case scSMinExpr: 782 case scUMinExpr: { 783 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 784 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 785 786 // Lexicographically compare n-ary expressions. 787 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 788 if (LNumOps != RNumOps) 789 return (int)LNumOps - (int)RNumOps; 790 791 for (unsigned i = 0; i != LNumOps; ++i) { 792 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 793 LC->getOperand(i), RC->getOperand(i), DT, 794 Depth + 1); 795 if (X != 0) 796 return X; 797 } 798 EqCacheSCEV.unionSets(LHS, RHS); 799 return 0; 800 } 801 802 case scUDivExpr: { 803 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 804 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 805 806 // Lexicographically compare udiv expressions. 807 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 808 RC->getLHS(), DT, Depth + 1); 809 if (X != 0) 810 return X; 811 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 812 RC->getRHS(), DT, Depth + 1); 813 if (X == 0) 814 EqCacheSCEV.unionSets(LHS, RHS); 815 return X; 816 } 817 818 case scPtrToInt: 819 case scTruncate: 820 case scZeroExtend: 821 case scSignExtend: { 822 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 823 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 824 825 // Compare cast expressions by operand. 826 auto X = 827 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 828 RC->getOperand(), DT, Depth + 1); 829 if (X == 0) 830 EqCacheSCEV.unionSets(LHS, RHS); 831 return X; 832 } 833 834 case scCouldNotCompute: 835 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 836 } 837 llvm_unreachable("Unknown SCEV kind!"); 838 } 839 840 /// Given a list of SCEV objects, order them by their complexity, and group 841 /// objects of the same complexity together by value. When this routine is 842 /// finished, we know that any duplicates in the vector are consecutive and that 843 /// complexity is monotonically increasing. 844 /// 845 /// Note that we go take special precautions to ensure that we get deterministic 846 /// results from this routine. In other words, we don't want the results of 847 /// this to depend on where the addresses of various SCEV objects happened to 848 /// land in memory. 849 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 850 LoopInfo *LI, DominatorTree &DT) { 851 if (Ops.size() < 2) return; // Noop 852 853 EquivalenceClasses<const SCEV *> EqCacheSCEV; 854 EquivalenceClasses<const Value *> EqCacheValue; 855 856 // Whether LHS has provably less complexity than RHS. 857 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 858 auto Complexity = 859 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 860 return Complexity && *Complexity < 0; 861 }; 862 if (Ops.size() == 2) { 863 // This is the common case, which also happens to be trivially simple. 864 // Special case it. 865 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 866 if (IsLessComplex(RHS, LHS)) 867 std::swap(LHS, RHS); 868 return; 869 } 870 871 // Do the rough sort by complexity. 872 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 873 return IsLessComplex(LHS, RHS); 874 }); 875 876 // Now that we are sorted by complexity, group elements of the same 877 // complexity. Note that this is, at worst, N^2, but the vector is likely to 878 // be extremely short in practice. Note that we take this approach because we 879 // do not want to depend on the addresses of the objects we are grouping. 880 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 881 const SCEV *S = Ops[i]; 882 unsigned Complexity = S->getSCEVType(); 883 884 // If there are any objects of the same complexity and same value as this 885 // one, group them. 886 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 887 if (Ops[j] == S) { // Found a duplicate. 888 // Move it to immediately after i'th element. 889 std::swap(Ops[i+1], Ops[j]); 890 ++i; // no need to rescan it. 891 if (i == e-2) return; // Done! 892 } 893 } 894 } 895 } 896 897 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 898 /// least HugeExprThreshold nodes). 899 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 900 return any_of(Ops, [](const SCEV *S) { 901 return S->getExpressionSize() >= HugeExprThreshold; 902 }); 903 } 904 905 //===----------------------------------------------------------------------===// 906 // Simple SCEV method implementations 907 //===----------------------------------------------------------------------===// 908 909 /// Compute BC(It, K). The result has width W. Assume, K > 0. 910 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 911 ScalarEvolution &SE, 912 Type *ResultTy) { 913 // Handle the simplest case efficiently. 914 if (K == 1) 915 return SE.getTruncateOrZeroExtend(It, ResultTy); 916 917 // We are using the following formula for BC(It, K): 918 // 919 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 920 // 921 // Suppose, W is the bitwidth of the return value. We must be prepared for 922 // overflow. Hence, we must assure that the result of our computation is 923 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 924 // safe in modular arithmetic. 925 // 926 // However, this code doesn't use exactly that formula; the formula it uses 927 // is something like the following, where T is the number of factors of 2 in 928 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 929 // exponentiation: 930 // 931 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 932 // 933 // This formula is trivially equivalent to the previous formula. However, 934 // this formula can be implemented much more efficiently. The trick is that 935 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 936 // arithmetic. To do exact division in modular arithmetic, all we have 937 // to do is multiply by the inverse. Therefore, this step can be done at 938 // width W. 939 // 940 // The next issue is how to safely do the division by 2^T. The way this 941 // is done is by doing the multiplication step at a width of at least W + T 942 // bits. This way, the bottom W+T bits of the product are accurate. Then, 943 // when we perform the division by 2^T (which is equivalent to a right shift 944 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 945 // truncated out after the division by 2^T. 946 // 947 // In comparison to just directly using the first formula, this technique 948 // is much more efficient; using the first formula requires W * K bits, 949 // but this formula less than W + K bits. Also, the first formula requires 950 // a division step, whereas this formula only requires multiplies and shifts. 951 // 952 // It doesn't matter whether the subtraction step is done in the calculation 953 // width or the input iteration count's width; if the subtraction overflows, 954 // the result must be zero anyway. We prefer here to do it in the width of 955 // the induction variable because it helps a lot for certain cases; CodeGen 956 // isn't smart enough to ignore the overflow, which leads to much less 957 // efficient code if the width of the subtraction is wider than the native 958 // register width. 959 // 960 // (It's possible to not widen at all by pulling out factors of 2 before 961 // the multiplication; for example, K=2 can be calculated as 962 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 963 // extra arithmetic, so it's not an obvious win, and it gets 964 // much more complicated for K > 3.) 965 966 // Protection from insane SCEVs; this bound is conservative, 967 // but it probably doesn't matter. 968 if (K > 1000) 969 return SE.getCouldNotCompute(); 970 971 unsigned W = SE.getTypeSizeInBits(ResultTy); 972 973 // Calculate K! / 2^T and T; we divide out the factors of two before 974 // multiplying for calculating K! / 2^T to avoid overflow. 975 // Other overflow doesn't matter because we only care about the bottom 976 // W bits of the result. 977 APInt OddFactorial(W, 1); 978 unsigned T = 1; 979 for (unsigned i = 3; i <= K; ++i) { 980 APInt Mult(W, i); 981 unsigned TwoFactors = Mult.countTrailingZeros(); 982 T += TwoFactors; 983 Mult.lshrInPlace(TwoFactors); 984 OddFactorial *= Mult; 985 } 986 987 // We need at least W + T bits for the multiplication step 988 unsigned CalculationBits = W + T; 989 990 // Calculate 2^T, at width T+W. 991 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 992 993 // Calculate the multiplicative inverse of K! / 2^T; 994 // this multiplication factor will perform the exact division by 995 // K! / 2^T. 996 APInt Mod = APInt::getSignedMinValue(W+1); 997 APInt MultiplyFactor = OddFactorial.zext(W+1); 998 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 999 MultiplyFactor = MultiplyFactor.trunc(W); 1000 1001 // Calculate the product, at width T+W 1002 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1003 CalculationBits); 1004 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1005 for (unsigned i = 1; i != K; ++i) { 1006 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1007 Dividend = SE.getMulExpr(Dividend, 1008 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1009 } 1010 1011 // Divide by 2^T 1012 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1013 1014 // Truncate the result, and divide by K! / 2^T. 1015 1016 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1017 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1018 } 1019 1020 /// Return the value of this chain of recurrences at the specified iteration 1021 /// number. We can evaluate this recurrence by multiplying each element in the 1022 /// chain by the binomial coefficient corresponding to it. In other words, we 1023 /// can evaluate {A,+,B,+,C,+,D} as: 1024 /// 1025 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1026 /// 1027 /// where BC(It, k) stands for binomial coefficient. 1028 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1029 ScalarEvolution &SE) const { 1030 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1031 } 1032 1033 const SCEV * 1034 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1035 const SCEV *It, ScalarEvolution &SE) { 1036 assert(Operands.size() > 0); 1037 const SCEV *Result = Operands[0]; 1038 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1039 // The computation is correct in the face of overflow provided that the 1040 // multiplication is performed _after_ the evaluation of the binomial 1041 // coefficient. 1042 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1043 if (isa<SCEVCouldNotCompute>(Coeff)) 1044 return Coeff; 1045 1046 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1047 } 1048 return Result; 1049 } 1050 1051 //===----------------------------------------------------------------------===// 1052 // SCEV Expression folder implementations 1053 //===----------------------------------------------------------------------===// 1054 1055 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1056 unsigned Depth) { 1057 assert(Depth <= 1 && 1058 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1059 1060 // We could be called with an integer-typed operands during SCEV rewrites. 1061 // Since the operand is an integer already, just perform zext/trunc/self cast. 1062 if (!Op->getType()->isPointerTy()) 1063 return Op; 1064 1065 // What would be an ID for such a SCEV cast expression? 1066 FoldingSetNodeID ID; 1067 ID.AddInteger(scPtrToInt); 1068 ID.AddPointer(Op); 1069 1070 void *IP = nullptr; 1071 1072 // Is there already an expression for such a cast? 1073 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1074 return S; 1075 1076 // It isn't legal for optimizations to construct new ptrtoint expressions 1077 // for non-integral pointers. 1078 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1079 return getCouldNotCompute(); 1080 1081 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1082 1083 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1084 // is sufficiently wide to represent all possible pointer values. 1085 // We could theoretically teach SCEV to truncate wider pointers, but 1086 // that isn't implemented for now. 1087 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1088 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1089 return getCouldNotCompute(); 1090 1091 // If not, is this expression something we can't reduce any further? 1092 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1093 // Perform some basic constant folding. If the operand of the ptr2int cast 1094 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1095 // left as-is), but produce a zero constant. 1096 // NOTE: We could handle a more general case, but lack motivational cases. 1097 if (isa<ConstantPointerNull>(U->getValue())) 1098 return getZero(IntPtrTy); 1099 1100 // Create an explicit cast node. 1101 // We can reuse the existing insert position since if we get here, 1102 // we won't have made any changes which would invalidate it. 1103 SCEV *S = new (SCEVAllocator) 1104 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1105 UniqueSCEVs.InsertNode(S, IP); 1106 addToLoopUseLists(S); 1107 return S; 1108 } 1109 1110 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1111 "non-SCEVUnknown's."); 1112 1113 // Otherwise, we've got some expression that is more complex than just a 1114 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1115 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1116 // only, and the expressions must otherwise be integer-typed. 1117 // So sink the cast down to the SCEVUnknown's. 1118 1119 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1120 /// which computes a pointer-typed value, and rewrites the whole expression 1121 /// tree so that *all* the computations are done on integers, and the only 1122 /// pointer-typed operands in the expression are SCEVUnknown. 1123 class SCEVPtrToIntSinkingRewriter 1124 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1125 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1126 1127 public: 1128 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1129 1130 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1131 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1132 return Rewriter.visit(Scev); 1133 } 1134 1135 const SCEV *visit(const SCEV *S) { 1136 Type *STy = S->getType(); 1137 // If the expression is not pointer-typed, just keep it as-is. 1138 if (!STy->isPointerTy()) 1139 return S; 1140 // Else, recursively sink the cast down into it. 1141 return Base::visit(S); 1142 } 1143 1144 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1145 SmallVector<const SCEV *, 2> Operands; 1146 bool Changed = false; 1147 for (auto *Op : Expr->operands()) { 1148 Operands.push_back(visit(Op)); 1149 Changed |= Op != Operands.back(); 1150 } 1151 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1152 } 1153 1154 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1155 SmallVector<const SCEV *, 2> Operands; 1156 bool Changed = false; 1157 for (auto *Op : Expr->operands()) { 1158 Operands.push_back(visit(Op)); 1159 Changed |= Op != Operands.back(); 1160 } 1161 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1162 } 1163 1164 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1165 assert(Expr->getType()->isPointerTy() && 1166 "Should only reach pointer-typed SCEVUnknown's."); 1167 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1168 } 1169 }; 1170 1171 // And actually perform the cast sinking. 1172 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1173 assert(IntOp->getType()->isIntegerTy() && 1174 "We must have succeeded in sinking the cast, " 1175 "and ending up with an integer-typed expression!"); 1176 return IntOp; 1177 } 1178 1179 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1180 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1181 1182 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1183 if (isa<SCEVCouldNotCompute>(IntOp)) 1184 return IntOp; 1185 1186 return getTruncateOrZeroExtend(IntOp, Ty); 1187 } 1188 1189 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1190 unsigned Depth) { 1191 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1192 "This is not a truncating conversion!"); 1193 assert(isSCEVable(Ty) && 1194 "This is not a conversion to a SCEVable type!"); 1195 Ty = getEffectiveSCEVType(Ty); 1196 1197 FoldingSetNodeID ID; 1198 ID.AddInteger(scTruncate); 1199 ID.AddPointer(Op); 1200 ID.AddPointer(Ty); 1201 void *IP = nullptr; 1202 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1203 1204 // Fold if the operand is constant. 1205 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1206 return getConstant( 1207 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1208 1209 // trunc(trunc(x)) --> trunc(x) 1210 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1211 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1212 1213 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1214 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1215 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1216 1217 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1218 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1219 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1220 1221 if (Depth > MaxCastDepth) { 1222 SCEV *S = 1223 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1224 UniqueSCEVs.InsertNode(S, IP); 1225 addToLoopUseLists(S); 1226 return S; 1227 } 1228 1229 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1230 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1231 // if after transforming we have at most one truncate, not counting truncates 1232 // that replace other casts. 1233 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1234 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1235 SmallVector<const SCEV *, 4> Operands; 1236 unsigned numTruncs = 0; 1237 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1238 ++i) { 1239 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1240 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1241 isa<SCEVTruncateExpr>(S)) 1242 numTruncs++; 1243 Operands.push_back(S); 1244 } 1245 if (numTruncs < 2) { 1246 if (isa<SCEVAddExpr>(Op)) 1247 return getAddExpr(Operands); 1248 else if (isa<SCEVMulExpr>(Op)) 1249 return getMulExpr(Operands); 1250 else 1251 llvm_unreachable("Unexpected SCEV type for Op."); 1252 } 1253 // Although we checked in the beginning that ID is not in the cache, it is 1254 // possible that during recursion and different modification ID was inserted 1255 // into the cache. So if we find it, just return it. 1256 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1257 return S; 1258 } 1259 1260 // If the input value is a chrec scev, truncate the chrec's operands. 1261 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1262 SmallVector<const SCEV *, 4> Operands; 1263 for (const SCEV *Op : AddRec->operands()) 1264 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1265 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1266 } 1267 1268 // Return zero if truncating to known zeros. 1269 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1270 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1271 return getZero(Ty); 1272 1273 // The cast wasn't folded; create an explicit cast node. We can reuse 1274 // the existing insert position since if we get here, we won't have 1275 // made any changes which would invalidate it. 1276 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1277 Op, Ty); 1278 UniqueSCEVs.InsertNode(S, IP); 1279 addToLoopUseLists(S); 1280 return S; 1281 } 1282 1283 // Get the limit of a recurrence such that incrementing by Step cannot cause 1284 // signed overflow as long as the value of the recurrence within the 1285 // loop does not exceed this limit before incrementing. 1286 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1287 ICmpInst::Predicate *Pred, 1288 ScalarEvolution *SE) { 1289 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1290 if (SE->isKnownPositive(Step)) { 1291 *Pred = ICmpInst::ICMP_SLT; 1292 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1293 SE->getSignedRangeMax(Step)); 1294 } 1295 if (SE->isKnownNegative(Step)) { 1296 *Pred = ICmpInst::ICMP_SGT; 1297 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1298 SE->getSignedRangeMin(Step)); 1299 } 1300 return nullptr; 1301 } 1302 1303 // Get the limit of a recurrence such that incrementing by Step cannot cause 1304 // unsigned overflow as long as the value of the recurrence within the loop does 1305 // not exceed this limit before incrementing. 1306 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1307 ICmpInst::Predicate *Pred, 1308 ScalarEvolution *SE) { 1309 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1310 *Pred = ICmpInst::ICMP_ULT; 1311 1312 return SE->getConstant(APInt::getMinValue(BitWidth) - 1313 SE->getUnsignedRangeMax(Step)); 1314 } 1315 1316 namespace { 1317 1318 struct ExtendOpTraitsBase { 1319 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1320 unsigned); 1321 }; 1322 1323 // Used to make code generic over signed and unsigned overflow. 1324 template <typename ExtendOp> struct ExtendOpTraits { 1325 // Members present: 1326 // 1327 // static const SCEV::NoWrapFlags WrapType; 1328 // 1329 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1330 // 1331 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1332 // ICmpInst::Predicate *Pred, 1333 // ScalarEvolution *SE); 1334 }; 1335 1336 template <> 1337 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1338 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1339 1340 static const GetExtendExprTy GetExtendExpr; 1341 1342 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1343 ICmpInst::Predicate *Pred, 1344 ScalarEvolution *SE) { 1345 return getSignedOverflowLimitForStep(Step, Pred, SE); 1346 } 1347 }; 1348 1349 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1350 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1351 1352 template <> 1353 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1354 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1355 1356 static const GetExtendExprTy GetExtendExpr; 1357 1358 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1359 ICmpInst::Predicate *Pred, 1360 ScalarEvolution *SE) { 1361 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1362 } 1363 }; 1364 1365 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1366 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1367 1368 } // end anonymous namespace 1369 1370 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1371 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1372 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1373 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1374 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1375 // expression "Step + sext/zext(PreIncAR)" is congruent with 1376 // "sext/zext(PostIncAR)" 1377 template <typename ExtendOpTy> 1378 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1379 ScalarEvolution *SE, unsigned Depth) { 1380 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1381 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1382 1383 const Loop *L = AR->getLoop(); 1384 const SCEV *Start = AR->getStart(); 1385 const SCEV *Step = AR->getStepRecurrence(*SE); 1386 1387 // Check for a simple looking step prior to loop entry. 1388 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1389 if (!SA) 1390 return nullptr; 1391 1392 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1393 // subtraction is expensive. For this purpose, perform a quick and dirty 1394 // difference, by checking for Step in the operand list. 1395 SmallVector<const SCEV *, 4> DiffOps; 1396 for (const SCEV *Op : SA->operands()) 1397 if (Op != Step) 1398 DiffOps.push_back(Op); 1399 1400 if (DiffOps.size() == SA->getNumOperands()) 1401 return nullptr; 1402 1403 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1404 // `Step`: 1405 1406 // 1. NSW/NUW flags on the step increment. 1407 auto PreStartFlags = 1408 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1409 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1410 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1411 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1412 1413 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1414 // "S+X does not sign/unsign-overflow". 1415 // 1416 1417 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1418 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1419 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1420 return PreStart; 1421 1422 // 2. Direct overflow check on the step operation's expression. 1423 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1424 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1425 const SCEV *OperandExtendedStart = 1426 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1427 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1428 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1429 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1430 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1431 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1432 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1433 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1434 } 1435 return PreStart; 1436 } 1437 1438 // 3. Loop precondition. 1439 ICmpInst::Predicate Pred; 1440 const SCEV *OverflowLimit = 1441 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1442 1443 if (OverflowLimit && 1444 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1445 return PreStart; 1446 1447 return nullptr; 1448 } 1449 1450 // Get the normalized zero or sign extended expression for this AddRec's Start. 1451 template <typename ExtendOpTy> 1452 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1453 ScalarEvolution *SE, 1454 unsigned Depth) { 1455 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1456 1457 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1458 if (!PreStart) 1459 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1460 1461 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1462 Depth), 1463 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1464 } 1465 1466 // Try to prove away overflow by looking at "nearby" add recurrences. A 1467 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1468 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1469 // 1470 // Formally: 1471 // 1472 // {S,+,X} == {S-T,+,X} + T 1473 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1474 // 1475 // If ({S-T,+,X} + T) does not overflow ... (1) 1476 // 1477 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1478 // 1479 // If {S-T,+,X} does not overflow ... (2) 1480 // 1481 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1482 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1483 // 1484 // If (S-T)+T does not overflow ... (3) 1485 // 1486 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1487 // == {Ext(S),+,Ext(X)} == LHS 1488 // 1489 // Thus, if (1), (2) and (3) are true for some T, then 1490 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1491 // 1492 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1493 // does not overflow" restricted to the 0th iteration. Therefore we only need 1494 // to check for (1) and (2). 1495 // 1496 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1497 // is `Delta` (defined below). 1498 template <typename ExtendOpTy> 1499 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1500 const SCEV *Step, 1501 const Loop *L) { 1502 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1503 1504 // We restrict `Start` to a constant to prevent SCEV from spending too much 1505 // time here. It is correct (but more expensive) to continue with a 1506 // non-constant `Start` and do a general SCEV subtraction to compute 1507 // `PreStart` below. 1508 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1509 if (!StartC) 1510 return false; 1511 1512 APInt StartAI = StartC->getAPInt(); 1513 1514 for (unsigned Delta : {-2, -1, 1, 2}) { 1515 const SCEV *PreStart = getConstant(StartAI - Delta); 1516 1517 FoldingSetNodeID ID; 1518 ID.AddInteger(scAddRecExpr); 1519 ID.AddPointer(PreStart); 1520 ID.AddPointer(Step); 1521 ID.AddPointer(L); 1522 void *IP = nullptr; 1523 const auto *PreAR = 1524 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1525 1526 // Give up if we don't already have the add recurrence we need because 1527 // actually constructing an add recurrence is relatively expensive. 1528 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1529 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1530 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1531 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1532 DeltaS, &Pred, this); 1533 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1534 return true; 1535 } 1536 } 1537 1538 return false; 1539 } 1540 1541 // Finds an integer D for an expression (C + x + y + ...) such that the top 1542 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1543 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1544 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1545 // the (C + x + y + ...) expression is \p WholeAddExpr. 1546 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1547 const SCEVConstant *ConstantTerm, 1548 const SCEVAddExpr *WholeAddExpr) { 1549 const APInt &C = ConstantTerm->getAPInt(); 1550 const unsigned BitWidth = C.getBitWidth(); 1551 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1552 uint32_t TZ = BitWidth; 1553 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1554 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1555 if (TZ) { 1556 // Set D to be as many least significant bits of C as possible while still 1557 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1558 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1559 } 1560 return APInt(BitWidth, 0); 1561 } 1562 1563 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1564 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1565 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1566 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1567 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1568 const APInt &ConstantStart, 1569 const SCEV *Step) { 1570 const unsigned BitWidth = ConstantStart.getBitWidth(); 1571 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1572 if (TZ) 1573 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1574 : ConstantStart; 1575 return APInt(BitWidth, 0); 1576 } 1577 1578 const SCEV * 1579 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1580 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1581 "This is not an extending conversion!"); 1582 assert(isSCEVable(Ty) && 1583 "This is not a conversion to a SCEVable type!"); 1584 Ty = getEffectiveSCEVType(Ty); 1585 1586 // Fold if the operand is constant. 1587 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1588 return getConstant( 1589 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1590 1591 // zext(zext(x)) --> zext(x) 1592 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1593 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1594 1595 // Before doing any expensive analysis, check to see if we've already 1596 // computed a SCEV for this Op and Ty. 1597 FoldingSetNodeID ID; 1598 ID.AddInteger(scZeroExtend); 1599 ID.AddPointer(Op); 1600 ID.AddPointer(Ty); 1601 void *IP = nullptr; 1602 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1603 if (Depth > MaxCastDepth) { 1604 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1605 Op, Ty); 1606 UniqueSCEVs.InsertNode(S, IP); 1607 addToLoopUseLists(S); 1608 return S; 1609 } 1610 1611 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1612 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1613 // It's possible the bits taken off by the truncate were all zero bits. If 1614 // so, we should be able to simplify this further. 1615 const SCEV *X = ST->getOperand(); 1616 ConstantRange CR = getUnsignedRange(X); 1617 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1618 unsigned NewBits = getTypeSizeInBits(Ty); 1619 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1620 CR.zextOrTrunc(NewBits))) 1621 return getTruncateOrZeroExtend(X, Ty, Depth); 1622 } 1623 1624 // If the input value is a chrec scev, and we can prove that the value 1625 // did not overflow the old, smaller, value, we can zero extend all of the 1626 // operands (often constants). This allows analysis of something like 1627 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1628 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1629 if (AR->isAffine()) { 1630 const SCEV *Start = AR->getStart(); 1631 const SCEV *Step = AR->getStepRecurrence(*this); 1632 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1633 const Loop *L = AR->getLoop(); 1634 1635 if (!AR->hasNoUnsignedWrap()) { 1636 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1637 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1638 } 1639 1640 // If we have special knowledge that this addrec won't overflow, 1641 // we don't need to do any further analysis. 1642 if (AR->hasNoUnsignedWrap()) 1643 return getAddRecExpr( 1644 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1645 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1646 1647 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1648 // Note that this serves two purposes: It filters out loops that are 1649 // simply not analyzable, and it covers the case where this code is 1650 // being called from within backedge-taken count analysis, such that 1651 // attempting to ask for the backedge-taken count would likely result 1652 // in infinite recursion. In the later case, the analysis code will 1653 // cope with a conservative value, and it will take care to purge 1654 // that value once it has finished. 1655 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1656 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1657 // Manually compute the final value for AR, checking for overflow. 1658 1659 // Check whether the backedge-taken count can be losslessly casted to 1660 // the addrec's type. The count is always unsigned. 1661 const SCEV *CastedMaxBECount = 1662 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1663 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1664 CastedMaxBECount, MaxBECount->getType(), Depth); 1665 if (MaxBECount == RecastedMaxBECount) { 1666 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1667 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1668 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1669 SCEV::FlagAnyWrap, Depth + 1); 1670 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1671 SCEV::FlagAnyWrap, 1672 Depth + 1), 1673 WideTy, Depth + 1); 1674 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1675 const SCEV *WideMaxBECount = 1676 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1677 const SCEV *OperandExtendedAdd = 1678 getAddExpr(WideStart, 1679 getMulExpr(WideMaxBECount, 1680 getZeroExtendExpr(Step, WideTy, Depth + 1), 1681 SCEV::FlagAnyWrap, Depth + 1), 1682 SCEV::FlagAnyWrap, Depth + 1); 1683 if (ZAdd == OperandExtendedAdd) { 1684 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1685 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1686 // Return the expression with the addrec on the outside. 1687 return getAddRecExpr( 1688 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1689 Depth + 1), 1690 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1691 AR->getNoWrapFlags()); 1692 } 1693 // Similar to above, only this time treat the step value as signed. 1694 // This covers loops that count down. 1695 OperandExtendedAdd = 1696 getAddExpr(WideStart, 1697 getMulExpr(WideMaxBECount, 1698 getSignExtendExpr(Step, WideTy, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1), 1700 SCEV::FlagAnyWrap, Depth + 1); 1701 if (ZAdd == OperandExtendedAdd) { 1702 // Cache knowledge of AR NW, which is propagated to this AddRec. 1703 // Negative step causes unsigned wrap, but it still can't self-wrap. 1704 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1705 // Return the expression with the addrec on the outside. 1706 return getAddRecExpr( 1707 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1708 Depth + 1), 1709 getSignExtendExpr(Step, Ty, Depth + 1), L, 1710 AR->getNoWrapFlags()); 1711 } 1712 } 1713 } 1714 1715 // Normally, in the cases we can prove no-overflow via a 1716 // backedge guarding condition, we can also compute a backedge 1717 // taken count for the loop. The exceptions are assumptions and 1718 // guards present in the loop -- SCEV is not great at exploiting 1719 // these to compute max backedge taken counts, but can still use 1720 // these to prove lack of overflow. Use this fact to avoid 1721 // doing extra work that may not pay off. 1722 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1723 !AC.assumptions().empty()) { 1724 1725 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1726 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1727 if (AR->hasNoUnsignedWrap()) { 1728 // Same as nuw case above - duplicated here to avoid a compile time 1729 // issue. It's not clear that the order of checks does matter, but 1730 // it's one of two issue possible causes for a change which was 1731 // reverted. Be conservative for the moment. 1732 return getAddRecExpr( 1733 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1734 Depth + 1), 1735 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1736 AR->getNoWrapFlags()); 1737 } 1738 1739 // For a negative step, we can extend the operands iff doing so only 1740 // traverses values in the range zext([0,UINT_MAX]). 1741 if (isKnownNegative(Step)) { 1742 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1743 getSignedRangeMin(Step)); 1744 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1745 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1746 // Cache knowledge of AR NW, which is propagated to this 1747 // AddRec. Negative step causes unsigned wrap, but it 1748 // still can't self-wrap. 1749 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1750 // Return the expression with the addrec on the outside. 1751 return getAddRecExpr( 1752 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1753 Depth + 1), 1754 getSignExtendExpr(Step, Ty, Depth + 1), L, 1755 AR->getNoWrapFlags()); 1756 } 1757 } 1758 } 1759 1760 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1761 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1762 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1763 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1764 const APInt &C = SC->getAPInt(); 1765 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1766 if (D != 0) { 1767 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1768 const SCEV *SResidual = 1769 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1770 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1771 return getAddExpr(SZExtD, SZExtR, 1772 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1773 Depth + 1); 1774 } 1775 } 1776 1777 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1778 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1779 return getAddRecExpr( 1780 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1781 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1782 } 1783 } 1784 1785 // zext(A % B) --> zext(A) % zext(B) 1786 { 1787 const SCEV *LHS; 1788 const SCEV *RHS; 1789 if (matchURem(Op, LHS, RHS)) 1790 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1791 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1792 } 1793 1794 // zext(A / B) --> zext(A) / zext(B). 1795 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1796 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1797 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1798 1799 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1800 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1801 if (SA->hasNoUnsignedWrap()) { 1802 // If the addition does not unsign overflow then we can, by definition, 1803 // commute the zero extension with the addition operation. 1804 SmallVector<const SCEV *, 4> Ops; 1805 for (const auto *Op : SA->operands()) 1806 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1807 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1808 } 1809 1810 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1811 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1812 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1813 // 1814 // Often address arithmetics contain expressions like 1815 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1816 // This transformation is useful while proving that such expressions are 1817 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1818 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1819 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1820 if (D != 0) { 1821 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1822 const SCEV *SResidual = 1823 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1824 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1825 return getAddExpr(SZExtD, SZExtR, 1826 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1827 Depth + 1); 1828 } 1829 } 1830 } 1831 1832 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1833 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1834 if (SM->hasNoUnsignedWrap()) { 1835 // If the multiply does not unsign overflow then we can, by definition, 1836 // commute the zero extension with the multiply operation. 1837 SmallVector<const SCEV *, 4> Ops; 1838 for (const auto *Op : SM->operands()) 1839 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1840 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1841 } 1842 1843 // zext(2^K * (trunc X to iN)) to iM -> 1844 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1845 // 1846 // Proof: 1847 // 1848 // zext(2^K * (trunc X to iN)) to iM 1849 // = zext((trunc X to iN) << K) to iM 1850 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1851 // (because shl removes the top K bits) 1852 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1853 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1854 // 1855 if (SM->getNumOperands() == 2) 1856 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1857 if (MulLHS->getAPInt().isPowerOf2()) 1858 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1859 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1860 MulLHS->getAPInt().logBase2(); 1861 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1862 return getMulExpr( 1863 getZeroExtendExpr(MulLHS, Ty), 1864 getZeroExtendExpr( 1865 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1866 SCEV::FlagNUW, Depth + 1); 1867 } 1868 } 1869 1870 // The cast wasn't folded; create an explicit cast node. 1871 // Recompute the insert position, as it may have been invalidated. 1872 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1873 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1874 Op, Ty); 1875 UniqueSCEVs.InsertNode(S, IP); 1876 addToLoopUseLists(S); 1877 return S; 1878 } 1879 1880 const SCEV * 1881 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1882 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1883 "This is not an extending conversion!"); 1884 assert(isSCEVable(Ty) && 1885 "This is not a conversion to a SCEVable type!"); 1886 Ty = getEffectiveSCEVType(Ty); 1887 1888 // Fold if the operand is constant. 1889 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1890 return getConstant( 1891 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1892 1893 // sext(sext(x)) --> sext(x) 1894 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1895 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1896 1897 // sext(zext(x)) --> zext(x) 1898 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1899 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1900 1901 // Before doing any expensive analysis, check to see if we've already 1902 // computed a SCEV for this Op and Ty. 1903 FoldingSetNodeID ID; 1904 ID.AddInteger(scSignExtend); 1905 ID.AddPointer(Op); 1906 ID.AddPointer(Ty); 1907 void *IP = nullptr; 1908 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1909 // Limit recursion depth. 1910 if (Depth > MaxCastDepth) { 1911 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1912 Op, Ty); 1913 UniqueSCEVs.InsertNode(S, IP); 1914 addToLoopUseLists(S); 1915 return S; 1916 } 1917 1918 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1919 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1920 // It's possible the bits taken off by the truncate were all sign bits. If 1921 // so, we should be able to simplify this further. 1922 const SCEV *X = ST->getOperand(); 1923 ConstantRange CR = getSignedRange(X); 1924 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1925 unsigned NewBits = getTypeSizeInBits(Ty); 1926 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1927 CR.sextOrTrunc(NewBits))) 1928 return getTruncateOrSignExtend(X, Ty, Depth); 1929 } 1930 1931 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1932 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1933 if (SA->hasNoSignedWrap()) { 1934 // If the addition does not sign overflow then we can, by definition, 1935 // commute the sign extension with the addition operation. 1936 SmallVector<const SCEV *, 4> Ops; 1937 for (const auto *Op : SA->operands()) 1938 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1939 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1940 } 1941 1942 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1943 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1944 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1945 // 1946 // For instance, this will bring two seemingly different expressions: 1947 // 1 + sext(5 + 20 * %x + 24 * %y) and 1948 // sext(6 + 20 * %x + 24 * %y) 1949 // to the same form: 1950 // 2 + sext(4 + 20 * %x + 24 * %y) 1951 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1952 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1953 if (D != 0) { 1954 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1955 const SCEV *SResidual = 1956 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1957 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1958 return getAddExpr(SSExtD, SSExtR, 1959 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1960 Depth + 1); 1961 } 1962 } 1963 } 1964 // If the input value is a chrec scev, and we can prove that the value 1965 // did not overflow the old, smaller, value, we can sign extend all of the 1966 // operands (often constants). This allows analysis of something like 1967 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1968 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1969 if (AR->isAffine()) { 1970 const SCEV *Start = AR->getStart(); 1971 const SCEV *Step = AR->getStepRecurrence(*this); 1972 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1973 const Loop *L = AR->getLoop(); 1974 1975 if (!AR->hasNoSignedWrap()) { 1976 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1977 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1978 } 1979 1980 // If we have special knowledge that this addrec won't overflow, 1981 // we don't need to do any further analysis. 1982 if (AR->hasNoSignedWrap()) 1983 return getAddRecExpr( 1984 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1985 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1986 1987 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1988 // Note that this serves two purposes: It filters out loops that are 1989 // simply not analyzable, and it covers the case where this code is 1990 // being called from within backedge-taken count analysis, such that 1991 // attempting to ask for the backedge-taken count would likely result 1992 // in infinite recursion. In the later case, the analysis code will 1993 // cope with a conservative value, and it will take care to purge 1994 // that value once it has finished. 1995 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1996 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1997 // Manually compute the final value for AR, checking for 1998 // overflow. 1999 2000 // Check whether the backedge-taken count can be losslessly casted to 2001 // the addrec's type. The count is always unsigned. 2002 const SCEV *CastedMaxBECount = 2003 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2004 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2005 CastedMaxBECount, MaxBECount->getType(), Depth); 2006 if (MaxBECount == RecastedMaxBECount) { 2007 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2008 // Check whether Start+Step*MaxBECount has no signed overflow. 2009 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2010 SCEV::FlagAnyWrap, Depth + 1); 2011 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2012 SCEV::FlagAnyWrap, 2013 Depth + 1), 2014 WideTy, Depth + 1); 2015 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2016 const SCEV *WideMaxBECount = 2017 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2018 const SCEV *OperandExtendedAdd = 2019 getAddExpr(WideStart, 2020 getMulExpr(WideMaxBECount, 2021 getSignExtendExpr(Step, WideTy, Depth + 1), 2022 SCEV::FlagAnyWrap, Depth + 1), 2023 SCEV::FlagAnyWrap, Depth + 1); 2024 if (SAdd == OperandExtendedAdd) { 2025 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2026 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2027 // Return the expression with the addrec on the outside. 2028 return getAddRecExpr( 2029 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2030 Depth + 1), 2031 getSignExtendExpr(Step, Ty, Depth + 1), L, 2032 AR->getNoWrapFlags()); 2033 } 2034 // Similar to above, only this time treat the step value as unsigned. 2035 // This covers loops that count up with an unsigned step. 2036 OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getZeroExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // If AR wraps around then 2044 // 2045 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2046 // => SAdd != OperandExtendedAdd 2047 // 2048 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2049 // (SAdd == OperandExtendedAdd => AR is NW) 2050 2051 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2052 2053 // Return the expression with the addrec on the outside. 2054 return getAddRecExpr( 2055 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2056 Depth + 1), 2057 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2058 AR->getNoWrapFlags()); 2059 } 2060 } 2061 } 2062 2063 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2064 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2065 if (AR->hasNoSignedWrap()) { 2066 // Same as nsw case above - duplicated here to avoid a compile time 2067 // issue. It's not clear that the order of checks does matter, but 2068 // it's one of two issue possible causes for a change which was 2069 // reverted. Be conservative for the moment. 2070 return getAddRecExpr( 2071 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2072 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2073 } 2074 2075 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2076 // if D + (C - D + Step * n) could be proven to not signed wrap 2077 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2078 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2079 const APInt &C = SC->getAPInt(); 2080 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2081 if (D != 0) { 2082 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2083 const SCEV *SResidual = 2084 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2085 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2086 return getAddExpr(SSExtD, SSExtR, 2087 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2088 Depth + 1); 2089 } 2090 } 2091 2092 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2093 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2094 return getAddRecExpr( 2095 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2096 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2097 } 2098 } 2099 2100 // If the input value is provably positive and we could not simplify 2101 // away the sext build a zext instead. 2102 if (isKnownNonNegative(Op)) 2103 return getZeroExtendExpr(Op, Ty, Depth + 1); 2104 2105 // The cast wasn't folded; create an explicit cast node. 2106 // Recompute the insert position, as it may have been invalidated. 2107 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2108 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2109 Op, Ty); 2110 UniqueSCEVs.InsertNode(S, IP); 2111 addToLoopUseLists(S); 2112 return S; 2113 } 2114 2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2116 /// unspecified bits out to the given type. 2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2118 Type *Ty) { 2119 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2120 "This is not an extending conversion!"); 2121 assert(isSCEVable(Ty) && 2122 "This is not a conversion to a SCEVable type!"); 2123 Ty = getEffectiveSCEVType(Ty); 2124 2125 // Sign-extend negative constants. 2126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2127 if (SC->getAPInt().isNegative()) 2128 return getSignExtendExpr(Op, Ty); 2129 2130 // Peel off a truncate cast. 2131 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2132 const SCEV *NewOp = T->getOperand(); 2133 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2134 return getAnyExtendExpr(NewOp, Ty); 2135 return getTruncateOrNoop(NewOp, Ty); 2136 } 2137 2138 // Next try a zext cast. If the cast is folded, use it. 2139 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2140 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2141 return ZExt; 2142 2143 // Next try a sext cast. If the cast is folded, use it. 2144 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2145 if (!isa<SCEVSignExtendExpr>(SExt)) 2146 return SExt; 2147 2148 // Force the cast to be folded into the operands of an addrec. 2149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2150 SmallVector<const SCEV *, 4> Ops; 2151 for (const SCEV *Op : AR->operands()) 2152 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2153 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2154 } 2155 2156 // If the expression is obviously signed, use the sext cast value. 2157 if (isa<SCEVSMaxExpr>(Op)) 2158 return SExt; 2159 2160 // Absent any other information, use the zext cast value. 2161 return ZExt; 2162 } 2163 2164 /// Process the given Ops list, which is a list of operands to be added under 2165 /// the given scale, update the given map. This is a helper function for 2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2167 /// that would form an add expression like this: 2168 /// 2169 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2170 /// 2171 /// where A and B are constants, update the map with these values: 2172 /// 2173 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2174 /// 2175 /// and add 13 + A*B*29 to AccumulatedConstant. 2176 /// This will allow getAddRecExpr to produce this: 2177 /// 2178 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2179 /// 2180 /// This form often exposes folding opportunities that are hidden in 2181 /// the original operand list. 2182 /// 2183 /// Return true iff it appears that any interesting folding opportunities 2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2185 /// the common case where no interesting opportunities are present, and 2186 /// is also used as a check to avoid infinite recursion. 2187 static bool 2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2189 SmallVectorImpl<const SCEV *> &NewOps, 2190 APInt &AccumulatedConstant, 2191 const SCEV *const *Ops, size_t NumOperands, 2192 const APInt &Scale, 2193 ScalarEvolution &SE) { 2194 bool Interesting = false; 2195 2196 // Iterate over the add operands. They are sorted, with constants first. 2197 unsigned i = 0; 2198 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2199 ++i; 2200 // Pull a buried constant out to the outside. 2201 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2202 Interesting = true; 2203 AccumulatedConstant += Scale * C->getAPInt(); 2204 } 2205 2206 // Next comes everything else. We're especially interested in multiplies 2207 // here, but they're in the middle, so just visit the rest with one loop. 2208 for (; i != NumOperands; ++i) { 2209 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2210 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2211 APInt NewScale = 2212 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2213 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2214 // A multiplication of a constant with another add; recurse. 2215 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2216 Interesting |= 2217 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2218 Add->op_begin(), Add->getNumOperands(), 2219 NewScale, SE); 2220 } else { 2221 // A multiplication of a constant with some other value. Update 2222 // the map. 2223 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2224 const SCEV *Key = SE.getMulExpr(MulOps); 2225 auto Pair = M.insert({Key, NewScale}); 2226 if (Pair.second) { 2227 NewOps.push_back(Pair.first->first); 2228 } else { 2229 Pair.first->second += NewScale; 2230 // The map already had an entry for this value, which may indicate 2231 // a folding opportunity. 2232 Interesting = true; 2233 } 2234 } 2235 } else { 2236 // An ordinary operand. Update the map. 2237 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2238 M.insert({Ops[i], Scale}); 2239 if (Pair.second) { 2240 NewOps.push_back(Pair.first->first); 2241 } else { 2242 Pair.first->second += Scale; 2243 // The map already had an entry for this value, which may indicate 2244 // a folding opportunity. 2245 Interesting = true; 2246 } 2247 } 2248 } 2249 2250 return Interesting; 2251 } 2252 2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2254 const SCEV *LHS, const SCEV *RHS) { 2255 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2256 SCEV::NoWrapFlags, unsigned); 2257 switch (BinOp) { 2258 default: 2259 llvm_unreachable("Unsupported binary op"); 2260 case Instruction::Add: 2261 Operation = &ScalarEvolution::getAddExpr; 2262 break; 2263 case Instruction::Sub: 2264 Operation = &ScalarEvolution::getMinusSCEV; 2265 break; 2266 case Instruction::Mul: 2267 Operation = &ScalarEvolution::getMulExpr; 2268 break; 2269 } 2270 2271 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2272 Signed ? &ScalarEvolution::getSignExtendExpr 2273 : &ScalarEvolution::getZeroExtendExpr; 2274 2275 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2276 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2277 auto *WideTy = 2278 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2279 2280 const SCEV *A = (this->*Extension)( 2281 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2282 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2283 (this->*Extension)(RHS, WideTy, 0), 2284 SCEV::FlagAnyWrap, 0); 2285 return A == B; 2286 } 2287 2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2290 const OverflowingBinaryOperator *OBO) { 2291 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2292 2293 if (OBO->hasNoUnsignedWrap()) 2294 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2295 if (OBO->hasNoSignedWrap()) 2296 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2297 2298 bool Deduced = false; 2299 2300 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2301 return {Flags, Deduced}; 2302 2303 if (OBO->getOpcode() != Instruction::Add && 2304 OBO->getOpcode() != Instruction::Sub && 2305 OBO->getOpcode() != Instruction::Mul) 2306 return {Flags, Deduced}; 2307 2308 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2309 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2310 2311 if (!OBO->hasNoUnsignedWrap() && 2312 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2313 /* Signed */ false, LHS, RHS)) { 2314 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2315 Deduced = true; 2316 } 2317 2318 if (!OBO->hasNoSignedWrap() && 2319 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2320 /* Signed */ true, LHS, RHS)) { 2321 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2322 Deduced = true; 2323 } 2324 2325 return {Flags, Deduced}; 2326 } 2327 2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2329 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2330 // can't-overflow flags for the operation if possible. 2331 static SCEV::NoWrapFlags 2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2333 const ArrayRef<const SCEV *> Ops, 2334 SCEV::NoWrapFlags Flags) { 2335 using namespace std::placeholders; 2336 2337 using OBO = OverflowingBinaryOperator; 2338 2339 bool CanAnalyze = 2340 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2341 (void)CanAnalyze; 2342 assert(CanAnalyze && "don't call from other places!"); 2343 2344 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2345 SCEV::NoWrapFlags SignOrUnsignWrap = 2346 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2347 2348 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2349 auto IsKnownNonNegative = [&](const SCEV *S) { 2350 return SE->isKnownNonNegative(S); 2351 }; 2352 2353 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2354 Flags = 2355 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2356 2357 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2358 2359 if (SignOrUnsignWrap != SignOrUnsignMask && 2360 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2361 isa<SCEVConstant>(Ops[0])) { 2362 2363 auto Opcode = [&] { 2364 switch (Type) { 2365 case scAddExpr: 2366 return Instruction::Add; 2367 case scMulExpr: 2368 return Instruction::Mul; 2369 default: 2370 llvm_unreachable("Unexpected SCEV op."); 2371 } 2372 }(); 2373 2374 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2375 2376 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2377 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2378 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2379 Opcode, C, OBO::NoSignedWrap); 2380 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2381 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2382 } 2383 2384 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2385 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2386 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2387 Opcode, C, OBO::NoUnsignedWrap); 2388 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2389 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2390 } 2391 } 2392 2393 return Flags; 2394 } 2395 2396 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2397 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2398 } 2399 2400 /// Get a canonical add expression, or something simpler if possible. 2401 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2402 SCEV::NoWrapFlags OrigFlags, 2403 unsigned Depth) { 2404 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2405 "only nuw or nsw allowed"); 2406 assert(!Ops.empty() && "Cannot get empty add!"); 2407 if (Ops.size() == 1) return Ops[0]; 2408 #ifndef NDEBUG 2409 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2410 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2411 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2412 "SCEVAddExpr operand types don't match!"); 2413 #endif 2414 2415 // Sort by complexity, this groups all similar expression types together. 2416 GroupByComplexity(Ops, &LI, DT); 2417 2418 // If there are any constants, fold them together. 2419 unsigned Idx = 0; 2420 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2421 ++Idx; 2422 assert(Idx < Ops.size()); 2423 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2424 // We found two constants, fold them together! 2425 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2426 if (Ops.size() == 2) return Ops[0]; 2427 Ops.erase(Ops.begin()+1); // Erase the folded element 2428 LHSC = cast<SCEVConstant>(Ops[0]); 2429 } 2430 2431 // If we are left with a constant zero being added, strip it off. 2432 if (LHSC->getValue()->isZero()) { 2433 Ops.erase(Ops.begin()); 2434 --Idx; 2435 } 2436 2437 if (Ops.size() == 1) return Ops[0]; 2438 } 2439 2440 // Delay expensive flag strengthening until necessary. 2441 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2442 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2443 }; 2444 2445 // Limit recursion calls depth. 2446 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2447 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2448 2449 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2450 // Don't strengthen flags if we have no new information. 2451 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2452 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2453 Add->setNoWrapFlags(ComputeFlags(Ops)); 2454 return S; 2455 } 2456 2457 // Okay, check to see if the same value occurs in the operand list more than 2458 // once. If so, merge them together into an multiply expression. Since we 2459 // sorted the list, these values are required to be adjacent. 2460 Type *Ty = Ops[0]->getType(); 2461 bool FoundMatch = false; 2462 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2463 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2464 // Scan ahead to count how many equal operands there are. 2465 unsigned Count = 2; 2466 while (i+Count != e && Ops[i+Count] == Ops[i]) 2467 ++Count; 2468 // Merge the values into a multiply. 2469 const SCEV *Scale = getConstant(Ty, Count); 2470 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2471 if (Ops.size() == Count) 2472 return Mul; 2473 Ops[i] = Mul; 2474 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2475 --i; e -= Count - 1; 2476 FoundMatch = true; 2477 } 2478 if (FoundMatch) 2479 return getAddExpr(Ops, OrigFlags, Depth + 1); 2480 2481 // Check for truncates. If all the operands are truncated from the same 2482 // type, see if factoring out the truncate would permit the result to be 2483 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2484 // if the contents of the resulting outer trunc fold to something simple. 2485 auto FindTruncSrcType = [&]() -> Type * { 2486 // We're ultimately looking to fold an addrec of truncs and muls of only 2487 // constants and truncs, so if we find any other types of SCEV 2488 // as operands of the addrec then we bail and return nullptr here. 2489 // Otherwise, we return the type of the operand of a trunc that we find. 2490 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2491 return T->getOperand()->getType(); 2492 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2493 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2494 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2495 return T->getOperand()->getType(); 2496 } 2497 return nullptr; 2498 }; 2499 if (auto *SrcType = FindTruncSrcType()) { 2500 SmallVector<const SCEV *, 8> LargeOps; 2501 bool Ok = true; 2502 // Check all the operands to see if they can be represented in the 2503 // source type of the truncate. 2504 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2505 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2506 if (T->getOperand()->getType() != SrcType) { 2507 Ok = false; 2508 break; 2509 } 2510 LargeOps.push_back(T->getOperand()); 2511 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2512 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2513 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2514 SmallVector<const SCEV *, 8> LargeMulOps; 2515 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2516 if (const SCEVTruncateExpr *T = 2517 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2518 if (T->getOperand()->getType() != SrcType) { 2519 Ok = false; 2520 break; 2521 } 2522 LargeMulOps.push_back(T->getOperand()); 2523 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2524 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2525 } else { 2526 Ok = false; 2527 break; 2528 } 2529 } 2530 if (Ok) 2531 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2532 } else { 2533 Ok = false; 2534 break; 2535 } 2536 } 2537 if (Ok) { 2538 // Evaluate the expression in the larger type. 2539 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2540 // If it folds to something simple, use it. Otherwise, don't. 2541 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2542 return getTruncateExpr(Fold, Ty); 2543 } 2544 } 2545 2546 if (Ops.size() == 2) { 2547 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2548 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2549 // C1). 2550 const SCEV *A = Ops[0]; 2551 const SCEV *B = Ops[1]; 2552 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2553 auto *C = dyn_cast<SCEVConstant>(A); 2554 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2555 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2556 auto C2 = C->getAPInt(); 2557 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2558 2559 APInt ConstAdd = C1 + C2; 2560 auto AddFlags = AddExpr->getNoWrapFlags(); 2561 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2562 if (ScalarEvolution::maskFlags(AddFlags, SCEV::FlagNUW) == 2563 SCEV::FlagNUW && 2564 ConstAdd.ule(C1)) { 2565 PreservedFlags = 2566 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2567 } 2568 2569 // Adding a constant with the same sign and small magnitude is NSW, if the 2570 // original AddExpr was NSW. 2571 if (ScalarEvolution::maskFlags(AddFlags, SCEV::FlagNSW) == 2572 SCEV::FlagNSW && 2573 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2574 ConstAdd.abs().ule(C1.abs())) { 2575 PreservedFlags = 2576 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2577 } 2578 2579 if (PreservedFlags != SCEV::FlagAnyWrap) { 2580 SmallVector<const SCEV *, 4> NewOps(AddExpr->op_begin(), 2581 AddExpr->op_end()); 2582 NewOps[0] = getConstant(ConstAdd); 2583 return getAddExpr(NewOps, PreservedFlags); 2584 } 2585 } 2586 } 2587 2588 // Skip past any other cast SCEVs. 2589 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2590 ++Idx; 2591 2592 // If there are add operands they would be next. 2593 if (Idx < Ops.size()) { 2594 bool DeletedAdd = false; 2595 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2596 // common NUW flag for expression after inlining. Other flags cannot be 2597 // preserved, because they may depend on the original order of operations. 2598 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2599 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2600 if (Ops.size() > AddOpsInlineThreshold || 2601 Add->getNumOperands() > AddOpsInlineThreshold) 2602 break; 2603 // If we have an add, expand the add operands onto the end of the operands 2604 // list. 2605 Ops.erase(Ops.begin()+Idx); 2606 Ops.append(Add->op_begin(), Add->op_end()); 2607 DeletedAdd = true; 2608 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2609 } 2610 2611 // If we deleted at least one add, we added operands to the end of the list, 2612 // and they are not necessarily sorted. Recurse to resort and resimplify 2613 // any operands we just acquired. 2614 if (DeletedAdd) 2615 return getAddExpr(Ops, CommonFlags, Depth + 1); 2616 } 2617 2618 // Skip over the add expression until we get to a multiply. 2619 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2620 ++Idx; 2621 2622 // Check to see if there are any folding opportunities present with 2623 // operands multiplied by constant values. 2624 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2625 uint64_t BitWidth = getTypeSizeInBits(Ty); 2626 DenseMap<const SCEV *, APInt> M; 2627 SmallVector<const SCEV *, 8> NewOps; 2628 APInt AccumulatedConstant(BitWidth, 0); 2629 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2630 Ops.data(), Ops.size(), 2631 APInt(BitWidth, 1), *this)) { 2632 struct APIntCompare { 2633 bool operator()(const APInt &LHS, const APInt &RHS) const { 2634 return LHS.ult(RHS); 2635 } 2636 }; 2637 2638 // Some interesting folding opportunity is present, so its worthwhile to 2639 // re-generate the operands list. Group the operands by constant scale, 2640 // to avoid multiplying by the same constant scale multiple times. 2641 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2642 for (const SCEV *NewOp : NewOps) 2643 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2644 // Re-generate the operands list. 2645 Ops.clear(); 2646 if (AccumulatedConstant != 0) 2647 Ops.push_back(getConstant(AccumulatedConstant)); 2648 for (auto &MulOp : MulOpLists) 2649 if (MulOp.first != 0) 2650 Ops.push_back(getMulExpr( 2651 getConstant(MulOp.first), 2652 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2653 SCEV::FlagAnyWrap, Depth + 1)); 2654 if (Ops.empty()) 2655 return getZero(Ty); 2656 if (Ops.size() == 1) 2657 return Ops[0]; 2658 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2659 } 2660 } 2661 2662 // If we are adding something to a multiply expression, make sure the 2663 // something is not already an operand of the multiply. If so, merge it into 2664 // the multiply. 2665 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2666 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2667 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2668 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2669 if (isa<SCEVConstant>(MulOpSCEV)) 2670 continue; 2671 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2672 if (MulOpSCEV == Ops[AddOp]) { 2673 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2674 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2675 if (Mul->getNumOperands() != 2) { 2676 // If the multiply has more than two operands, we must get the 2677 // Y*Z term. 2678 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2679 Mul->op_begin()+MulOp); 2680 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2681 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2682 } 2683 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2684 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2685 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2686 SCEV::FlagAnyWrap, Depth + 1); 2687 if (Ops.size() == 2) return OuterMul; 2688 if (AddOp < Idx) { 2689 Ops.erase(Ops.begin()+AddOp); 2690 Ops.erase(Ops.begin()+Idx-1); 2691 } else { 2692 Ops.erase(Ops.begin()+Idx); 2693 Ops.erase(Ops.begin()+AddOp-1); 2694 } 2695 Ops.push_back(OuterMul); 2696 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2697 } 2698 2699 // Check this multiply against other multiplies being added together. 2700 for (unsigned OtherMulIdx = Idx+1; 2701 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2702 ++OtherMulIdx) { 2703 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2704 // If MulOp occurs in OtherMul, we can fold the two multiplies 2705 // together. 2706 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2707 OMulOp != e; ++OMulOp) 2708 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2709 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2710 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2711 if (Mul->getNumOperands() != 2) { 2712 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2713 Mul->op_begin()+MulOp); 2714 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2715 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2716 } 2717 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2718 if (OtherMul->getNumOperands() != 2) { 2719 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2720 OtherMul->op_begin()+OMulOp); 2721 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2722 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2723 } 2724 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2725 const SCEV *InnerMulSum = 2726 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2727 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2728 SCEV::FlagAnyWrap, Depth + 1); 2729 if (Ops.size() == 2) return OuterMul; 2730 Ops.erase(Ops.begin()+Idx); 2731 Ops.erase(Ops.begin()+OtherMulIdx-1); 2732 Ops.push_back(OuterMul); 2733 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2734 } 2735 } 2736 } 2737 } 2738 2739 // If there are any add recurrences in the operands list, see if any other 2740 // added values are loop invariant. If so, we can fold them into the 2741 // recurrence. 2742 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2743 ++Idx; 2744 2745 // Scan over all recurrences, trying to fold loop invariants into them. 2746 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2747 // Scan all of the other operands to this add and add them to the vector if 2748 // they are loop invariant w.r.t. the recurrence. 2749 SmallVector<const SCEV *, 8> LIOps; 2750 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2751 const Loop *AddRecLoop = AddRec->getLoop(); 2752 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2753 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2754 LIOps.push_back(Ops[i]); 2755 Ops.erase(Ops.begin()+i); 2756 --i; --e; 2757 } 2758 2759 // If we found some loop invariants, fold them into the recurrence. 2760 if (!LIOps.empty()) { 2761 // Compute nowrap flags for the addition of the loop-invariant ops and 2762 // the addrec. Temporarily push it as an operand for that purpose. 2763 LIOps.push_back(AddRec); 2764 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2765 LIOps.pop_back(); 2766 2767 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2768 LIOps.push_back(AddRec->getStart()); 2769 2770 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2771 // This follows from the fact that the no-wrap flags on the outer add 2772 // expression are applicable on the 0th iteration, when the add recurrence 2773 // will be equal to its start value. 2774 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2775 2776 // Build the new addrec. Propagate the NUW and NSW flags if both the 2777 // outer add and the inner addrec are guaranteed to have no overflow. 2778 // Always propagate NW. 2779 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2780 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2781 2782 // If all of the other operands were loop invariant, we are done. 2783 if (Ops.size() == 1) return NewRec; 2784 2785 // Otherwise, add the folded AddRec by the non-invariant parts. 2786 for (unsigned i = 0;; ++i) 2787 if (Ops[i] == AddRec) { 2788 Ops[i] = NewRec; 2789 break; 2790 } 2791 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2792 } 2793 2794 // Okay, if there weren't any loop invariants to be folded, check to see if 2795 // there are multiple AddRec's with the same loop induction variable being 2796 // added together. If so, we can fold them. 2797 for (unsigned OtherIdx = Idx+1; 2798 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2799 ++OtherIdx) { 2800 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2801 // so that the 1st found AddRecExpr is dominated by all others. 2802 assert(DT.dominates( 2803 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2804 AddRec->getLoop()->getHeader()) && 2805 "AddRecExprs are not sorted in reverse dominance order?"); 2806 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2807 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2808 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2809 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2810 ++OtherIdx) { 2811 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2812 if (OtherAddRec->getLoop() == AddRecLoop) { 2813 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2814 i != e; ++i) { 2815 if (i >= AddRecOps.size()) { 2816 AddRecOps.append(OtherAddRec->op_begin()+i, 2817 OtherAddRec->op_end()); 2818 break; 2819 } 2820 SmallVector<const SCEV *, 2> TwoOps = { 2821 AddRecOps[i], OtherAddRec->getOperand(i)}; 2822 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2823 } 2824 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2825 } 2826 } 2827 // Step size has changed, so we cannot guarantee no self-wraparound. 2828 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2829 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2830 } 2831 } 2832 2833 // Otherwise couldn't fold anything into this recurrence. Move onto the 2834 // next one. 2835 } 2836 2837 // Okay, it looks like we really DO need an add expr. Check to see if we 2838 // already have one, otherwise create a new one. 2839 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2840 } 2841 2842 const SCEV * 2843 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2844 SCEV::NoWrapFlags Flags) { 2845 FoldingSetNodeID ID; 2846 ID.AddInteger(scAddExpr); 2847 for (const SCEV *Op : Ops) 2848 ID.AddPointer(Op); 2849 void *IP = nullptr; 2850 SCEVAddExpr *S = 2851 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2852 if (!S) { 2853 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2854 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2855 S = new (SCEVAllocator) 2856 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2857 UniqueSCEVs.InsertNode(S, IP); 2858 addToLoopUseLists(S); 2859 } 2860 S->setNoWrapFlags(Flags); 2861 return S; 2862 } 2863 2864 const SCEV * 2865 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2866 const Loop *L, SCEV::NoWrapFlags Flags) { 2867 FoldingSetNodeID ID; 2868 ID.AddInteger(scAddRecExpr); 2869 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2870 ID.AddPointer(Ops[i]); 2871 ID.AddPointer(L); 2872 void *IP = nullptr; 2873 SCEVAddRecExpr *S = 2874 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2875 if (!S) { 2876 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2877 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2878 S = new (SCEVAllocator) 2879 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2880 UniqueSCEVs.InsertNode(S, IP); 2881 addToLoopUseLists(S); 2882 } 2883 setNoWrapFlags(S, Flags); 2884 return S; 2885 } 2886 2887 const SCEV * 2888 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2889 SCEV::NoWrapFlags Flags) { 2890 FoldingSetNodeID ID; 2891 ID.AddInteger(scMulExpr); 2892 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2893 ID.AddPointer(Ops[i]); 2894 void *IP = nullptr; 2895 SCEVMulExpr *S = 2896 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2897 if (!S) { 2898 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2899 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2900 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2901 O, Ops.size()); 2902 UniqueSCEVs.InsertNode(S, IP); 2903 addToLoopUseLists(S); 2904 } 2905 S->setNoWrapFlags(Flags); 2906 return S; 2907 } 2908 2909 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2910 uint64_t k = i*j; 2911 if (j > 1 && k / j != i) Overflow = true; 2912 return k; 2913 } 2914 2915 /// Compute the result of "n choose k", the binomial coefficient. If an 2916 /// intermediate computation overflows, Overflow will be set and the return will 2917 /// be garbage. Overflow is not cleared on absence of overflow. 2918 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2919 // We use the multiplicative formula: 2920 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2921 // At each iteration, we take the n-th term of the numeral and divide by the 2922 // (k-n)th term of the denominator. This division will always produce an 2923 // integral result, and helps reduce the chance of overflow in the 2924 // intermediate computations. However, we can still overflow even when the 2925 // final result would fit. 2926 2927 if (n == 0 || n == k) return 1; 2928 if (k > n) return 0; 2929 2930 if (k > n/2) 2931 k = n-k; 2932 2933 uint64_t r = 1; 2934 for (uint64_t i = 1; i <= k; ++i) { 2935 r = umul_ov(r, n-(i-1), Overflow); 2936 r /= i; 2937 } 2938 return r; 2939 } 2940 2941 /// Determine if any of the operands in this SCEV are a constant or if 2942 /// any of the add or multiply expressions in this SCEV contain a constant. 2943 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2944 struct FindConstantInAddMulChain { 2945 bool FoundConstant = false; 2946 2947 bool follow(const SCEV *S) { 2948 FoundConstant |= isa<SCEVConstant>(S); 2949 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2950 } 2951 2952 bool isDone() const { 2953 return FoundConstant; 2954 } 2955 }; 2956 2957 FindConstantInAddMulChain F; 2958 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2959 ST.visitAll(StartExpr); 2960 return F.FoundConstant; 2961 } 2962 2963 /// Get a canonical multiply expression, or something simpler if possible. 2964 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2965 SCEV::NoWrapFlags OrigFlags, 2966 unsigned Depth) { 2967 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2968 "only nuw or nsw allowed"); 2969 assert(!Ops.empty() && "Cannot get empty mul!"); 2970 if (Ops.size() == 1) return Ops[0]; 2971 #ifndef NDEBUG 2972 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2973 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2974 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2975 "SCEVMulExpr operand types don't match!"); 2976 #endif 2977 2978 // Sort by complexity, this groups all similar expression types together. 2979 GroupByComplexity(Ops, &LI, DT); 2980 2981 // If there are any constants, fold them together. 2982 unsigned Idx = 0; 2983 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2984 ++Idx; 2985 assert(Idx < Ops.size()); 2986 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2987 // We found two constants, fold them together! 2988 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 2989 if (Ops.size() == 2) return Ops[0]; 2990 Ops.erase(Ops.begin()+1); // Erase the folded element 2991 LHSC = cast<SCEVConstant>(Ops[0]); 2992 } 2993 2994 // If we have a multiply of zero, it will always be zero. 2995 if (LHSC->getValue()->isZero()) 2996 return LHSC; 2997 2998 // If we are left with a constant one being multiplied, strip it off. 2999 if (LHSC->getValue()->isOne()) { 3000 Ops.erase(Ops.begin()); 3001 --Idx; 3002 } 3003 3004 if (Ops.size() == 1) 3005 return Ops[0]; 3006 } 3007 3008 // Delay expensive flag strengthening until necessary. 3009 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3010 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3011 }; 3012 3013 // Limit recursion calls depth. 3014 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3015 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3016 3017 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 3018 // Don't strengthen flags if we have no new information. 3019 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3020 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3021 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3022 return S; 3023 } 3024 3025 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3026 if (Ops.size() == 2) { 3027 // C1*(C2+V) -> C1*C2 + C1*V 3028 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3029 // If any of Add's ops are Adds or Muls with a constant, apply this 3030 // transformation as well. 3031 // 3032 // TODO: There are some cases where this transformation is not 3033 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3034 // this transformation should be narrowed down. 3035 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3036 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3037 SCEV::FlagAnyWrap, Depth + 1), 3038 getMulExpr(LHSC, Add->getOperand(1), 3039 SCEV::FlagAnyWrap, Depth + 1), 3040 SCEV::FlagAnyWrap, Depth + 1); 3041 3042 if (Ops[0]->isAllOnesValue()) { 3043 // If we have a mul by -1 of an add, try distributing the -1 among the 3044 // add operands. 3045 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3046 SmallVector<const SCEV *, 4> NewOps; 3047 bool AnyFolded = false; 3048 for (const SCEV *AddOp : Add->operands()) { 3049 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3050 Depth + 1); 3051 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3052 NewOps.push_back(Mul); 3053 } 3054 if (AnyFolded) 3055 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3056 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3057 // Negation preserves a recurrence's no self-wrap property. 3058 SmallVector<const SCEV *, 4> Operands; 3059 for (const SCEV *AddRecOp : AddRec->operands()) 3060 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3061 Depth + 1)); 3062 3063 return getAddRecExpr(Operands, AddRec->getLoop(), 3064 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3065 } 3066 } 3067 } 3068 } 3069 3070 // Skip over the add expression until we get to a multiply. 3071 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3072 ++Idx; 3073 3074 // If there are mul operands inline them all into this expression. 3075 if (Idx < Ops.size()) { 3076 bool DeletedMul = false; 3077 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3078 if (Ops.size() > MulOpsInlineThreshold) 3079 break; 3080 // If we have an mul, expand the mul operands onto the end of the 3081 // operands list. 3082 Ops.erase(Ops.begin()+Idx); 3083 Ops.append(Mul->op_begin(), Mul->op_end()); 3084 DeletedMul = true; 3085 } 3086 3087 // If we deleted at least one mul, we added operands to the end of the 3088 // list, and they are not necessarily sorted. Recurse to resort and 3089 // resimplify any operands we just acquired. 3090 if (DeletedMul) 3091 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3092 } 3093 3094 // If there are any add recurrences in the operands list, see if any other 3095 // added values are loop invariant. If so, we can fold them into the 3096 // recurrence. 3097 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3098 ++Idx; 3099 3100 // Scan over all recurrences, trying to fold loop invariants into them. 3101 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3102 // Scan all of the other operands to this mul and add them to the vector 3103 // if they are loop invariant w.r.t. the recurrence. 3104 SmallVector<const SCEV *, 8> LIOps; 3105 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3106 const Loop *AddRecLoop = AddRec->getLoop(); 3107 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3108 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3109 LIOps.push_back(Ops[i]); 3110 Ops.erase(Ops.begin()+i); 3111 --i; --e; 3112 } 3113 3114 // If we found some loop invariants, fold them into the recurrence. 3115 if (!LIOps.empty()) { 3116 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3117 SmallVector<const SCEV *, 4> NewOps; 3118 NewOps.reserve(AddRec->getNumOperands()); 3119 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3120 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3121 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3122 SCEV::FlagAnyWrap, Depth + 1)); 3123 3124 // Build the new addrec. Propagate the NUW and NSW flags if both the 3125 // outer mul and the inner addrec are guaranteed to have no overflow. 3126 // 3127 // No self-wrap cannot be guaranteed after changing the step size, but 3128 // will be inferred if either NUW or NSW is true. 3129 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3130 const SCEV *NewRec = getAddRecExpr( 3131 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3132 3133 // If all of the other operands were loop invariant, we are done. 3134 if (Ops.size() == 1) return NewRec; 3135 3136 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3137 for (unsigned i = 0;; ++i) 3138 if (Ops[i] == AddRec) { 3139 Ops[i] = NewRec; 3140 break; 3141 } 3142 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3143 } 3144 3145 // Okay, if there weren't any loop invariants to be folded, check to see 3146 // if there are multiple AddRec's with the same loop induction variable 3147 // being multiplied together. If so, we can fold them. 3148 3149 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3150 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3151 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3152 // ]]],+,...up to x=2n}. 3153 // Note that the arguments to choose() are always integers with values 3154 // known at compile time, never SCEV objects. 3155 // 3156 // The implementation avoids pointless extra computations when the two 3157 // addrec's are of different length (mathematically, it's equivalent to 3158 // an infinite stream of zeros on the right). 3159 bool OpsModified = false; 3160 for (unsigned OtherIdx = Idx+1; 3161 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3162 ++OtherIdx) { 3163 const SCEVAddRecExpr *OtherAddRec = 3164 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3165 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3166 continue; 3167 3168 // Limit max number of arguments to avoid creation of unreasonably big 3169 // SCEVAddRecs with very complex operands. 3170 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3171 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3172 continue; 3173 3174 bool Overflow = false; 3175 Type *Ty = AddRec->getType(); 3176 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3177 SmallVector<const SCEV*, 7> AddRecOps; 3178 for (int x = 0, xe = AddRec->getNumOperands() + 3179 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3180 SmallVector <const SCEV *, 7> SumOps; 3181 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3182 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3183 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3184 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3185 z < ze && !Overflow; ++z) { 3186 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3187 uint64_t Coeff; 3188 if (LargerThan64Bits) 3189 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3190 else 3191 Coeff = Coeff1*Coeff2; 3192 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3193 const SCEV *Term1 = AddRec->getOperand(y-z); 3194 const SCEV *Term2 = OtherAddRec->getOperand(z); 3195 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3196 SCEV::FlagAnyWrap, Depth + 1)); 3197 } 3198 } 3199 if (SumOps.empty()) 3200 SumOps.push_back(getZero(Ty)); 3201 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3202 } 3203 if (!Overflow) { 3204 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3205 SCEV::FlagAnyWrap); 3206 if (Ops.size() == 2) return NewAddRec; 3207 Ops[Idx] = NewAddRec; 3208 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3209 OpsModified = true; 3210 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3211 if (!AddRec) 3212 break; 3213 } 3214 } 3215 if (OpsModified) 3216 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3217 3218 // Otherwise couldn't fold anything into this recurrence. Move onto the 3219 // next one. 3220 } 3221 3222 // Okay, it looks like we really DO need an mul expr. Check to see if we 3223 // already have one, otherwise create a new one. 3224 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3225 } 3226 3227 /// Represents an unsigned remainder expression based on unsigned division. 3228 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3229 const SCEV *RHS) { 3230 assert(getEffectiveSCEVType(LHS->getType()) == 3231 getEffectiveSCEVType(RHS->getType()) && 3232 "SCEVURemExpr operand types don't match!"); 3233 3234 // Short-circuit easy cases 3235 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3236 // If constant is one, the result is trivial 3237 if (RHSC->getValue()->isOne()) 3238 return getZero(LHS->getType()); // X urem 1 --> 0 3239 3240 // If constant is a power of two, fold into a zext(trunc(LHS)). 3241 if (RHSC->getAPInt().isPowerOf2()) { 3242 Type *FullTy = LHS->getType(); 3243 Type *TruncTy = 3244 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3245 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3246 } 3247 } 3248 3249 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3250 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3251 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3252 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3253 } 3254 3255 /// Get a canonical unsigned division expression, or something simpler if 3256 /// possible. 3257 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3258 const SCEV *RHS) { 3259 assert(getEffectiveSCEVType(LHS->getType()) == 3260 getEffectiveSCEVType(RHS->getType()) && 3261 "SCEVUDivExpr operand types don't match!"); 3262 3263 FoldingSetNodeID ID; 3264 ID.AddInteger(scUDivExpr); 3265 ID.AddPointer(LHS); 3266 ID.AddPointer(RHS); 3267 void *IP = nullptr; 3268 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3269 return S; 3270 3271 // 0 udiv Y == 0 3272 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3273 if (LHSC->getValue()->isZero()) 3274 return LHS; 3275 3276 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3277 if (RHSC->getValue()->isOne()) 3278 return LHS; // X udiv 1 --> x 3279 // If the denominator is zero, the result of the udiv is undefined. Don't 3280 // try to analyze it, because the resolution chosen here may differ from 3281 // the resolution chosen in other parts of the compiler. 3282 if (!RHSC->getValue()->isZero()) { 3283 // Determine if the division can be folded into the operands of 3284 // its operands. 3285 // TODO: Generalize this to non-constants by using known-bits information. 3286 Type *Ty = LHS->getType(); 3287 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3288 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3289 // For non-power-of-two values, effectively round the value up to the 3290 // nearest power of two. 3291 if (!RHSC->getAPInt().isPowerOf2()) 3292 ++MaxShiftAmt; 3293 IntegerType *ExtTy = 3294 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3295 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3296 if (const SCEVConstant *Step = 3297 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3298 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3299 const APInt &StepInt = Step->getAPInt(); 3300 const APInt &DivInt = RHSC->getAPInt(); 3301 if (!StepInt.urem(DivInt) && 3302 getZeroExtendExpr(AR, ExtTy) == 3303 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3304 getZeroExtendExpr(Step, ExtTy), 3305 AR->getLoop(), SCEV::FlagAnyWrap)) { 3306 SmallVector<const SCEV *, 4> Operands; 3307 for (const SCEV *Op : AR->operands()) 3308 Operands.push_back(getUDivExpr(Op, RHS)); 3309 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3310 } 3311 /// Get a canonical UDivExpr for a recurrence. 3312 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3313 // We can currently only fold X%N if X is constant. 3314 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3315 if (StartC && !DivInt.urem(StepInt) && 3316 getZeroExtendExpr(AR, ExtTy) == 3317 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3318 getZeroExtendExpr(Step, ExtTy), 3319 AR->getLoop(), SCEV::FlagAnyWrap)) { 3320 const APInt &StartInt = StartC->getAPInt(); 3321 const APInt &StartRem = StartInt.urem(StepInt); 3322 if (StartRem != 0) { 3323 const SCEV *NewLHS = 3324 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3325 AR->getLoop(), SCEV::FlagNW); 3326 if (LHS != NewLHS) { 3327 LHS = NewLHS; 3328 3329 // Reset the ID to include the new LHS, and check if it is 3330 // already cached. 3331 ID.clear(); 3332 ID.AddInteger(scUDivExpr); 3333 ID.AddPointer(LHS); 3334 ID.AddPointer(RHS); 3335 IP = nullptr; 3336 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3337 return S; 3338 } 3339 } 3340 } 3341 } 3342 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3343 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3344 SmallVector<const SCEV *, 4> Operands; 3345 for (const SCEV *Op : M->operands()) 3346 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3347 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3348 // Find an operand that's safely divisible. 3349 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3350 const SCEV *Op = M->getOperand(i); 3351 const SCEV *Div = getUDivExpr(Op, RHSC); 3352 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3353 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3354 Operands[i] = Div; 3355 return getMulExpr(Operands); 3356 } 3357 } 3358 } 3359 3360 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3361 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3362 if (auto *DivisorConstant = 3363 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3364 bool Overflow = false; 3365 APInt NewRHS = 3366 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3367 if (Overflow) { 3368 return getConstant(RHSC->getType(), 0, false); 3369 } 3370 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3371 } 3372 } 3373 3374 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3375 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3376 SmallVector<const SCEV *, 4> Operands; 3377 for (const SCEV *Op : A->operands()) 3378 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3379 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3380 Operands.clear(); 3381 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3382 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3383 if (isa<SCEVUDivExpr>(Op) || 3384 getMulExpr(Op, RHS) != A->getOperand(i)) 3385 break; 3386 Operands.push_back(Op); 3387 } 3388 if (Operands.size() == A->getNumOperands()) 3389 return getAddExpr(Operands); 3390 } 3391 } 3392 3393 // Fold if both operands are constant. 3394 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3395 Constant *LHSCV = LHSC->getValue(); 3396 Constant *RHSCV = RHSC->getValue(); 3397 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3398 RHSCV))); 3399 } 3400 } 3401 } 3402 3403 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3404 // changes). Make sure we get a new one. 3405 IP = nullptr; 3406 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3407 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3408 LHS, RHS); 3409 UniqueSCEVs.InsertNode(S, IP); 3410 addToLoopUseLists(S); 3411 return S; 3412 } 3413 3414 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3415 APInt A = C1->getAPInt().abs(); 3416 APInt B = C2->getAPInt().abs(); 3417 uint32_t ABW = A.getBitWidth(); 3418 uint32_t BBW = B.getBitWidth(); 3419 3420 if (ABW > BBW) 3421 B = B.zext(ABW); 3422 else if (ABW < BBW) 3423 A = A.zext(BBW); 3424 3425 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3426 } 3427 3428 /// Get a canonical unsigned division expression, or something simpler if 3429 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3430 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3431 /// it's not exact because the udiv may be clearing bits. 3432 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3433 const SCEV *RHS) { 3434 // TODO: we could try to find factors in all sorts of things, but for now we 3435 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3436 // end of this file for inspiration. 3437 3438 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3439 if (!Mul || !Mul->hasNoUnsignedWrap()) 3440 return getUDivExpr(LHS, RHS); 3441 3442 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3443 // If the mulexpr multiplies by a constant, then that constant must be the 3444 // first element of the mulexpr. 3445 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3446 if (LHSCst == RHSCst) { 3447 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3448 return getMulExpr(Operands); 3449 } 3450 3451 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3452 // that there's a factor provided by one of the other terms. We need to 3453 // check. 3454 APInt Factor = gcd(LHSCst, RHSCst); 3455 if (!Factor.isIntN(1)) { 3456 LHSCst = 3457 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3458 RHSCst = 3459 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3460 SmallVector<const SCEV *, 2> Operands; 3461 Operands.push_back(LHSCst); 3462 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3463 LHS = getMulExpr(Operands); 3464 RHS = RHSCst; 3465 Mul = dyn_cast<SCEVMulExpr>(LHS); 3466 if (!Mul) 3467 return getUDivExactExpr(LHS, RHS); 3468 } 3469 } 3470 } 3471 3472 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3473 if (Mul->getOperand(i) == RHS) { 3474 SmallVector<const SCEV *, 2> Operands; 3475 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3476 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3477 return getMulExpr(Operands); 3478 } 3479 } 3480 3481 return getUDivExpr(LHS, RHS); 3482 } 3483 3484 /// Get an add recurrence expression for the specified loop. Simplify the 3485 /// expression as much as possible. 3486 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3487 const Loop *L, 3488 SCEV::NoWrapFlags Flags) { 3489 SmallVector<const SCEV *, 4> Operands; 3490 Operands.push_back(Start); 3491 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3492 if (StepChrec->getLoop() == L) { 3493 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3494 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3495 } 3496 3497 Operands.push_back(Step); 3498 return getAddRecExpr(Operands, L, Flags); 3499 } 3500 3501 /// Get an add recurrence expression for the specified loop. Simplify the 3502 /// expression as much as possible. 3503 const SCEV * 3504 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3505 const Loop *L, SCEV::NoWrapFlags Flags) { 3506 if (Operands.size() == 1) return Operands[0]; 3507 #ifndef NDEBUG 3508 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3509 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3510 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3511 "SCEVAddRecExpr operand types don't match!"); 3512 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3513 assert(isLoopInvariant(Operands[i], L) && 3514 "SCEVAddRecExpr operand is not loop-invariant!"); 3515 #endif 3516 3517 if (Operands.back()->isZero()) { 3518 Operands.pop_back(); 3519 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3520 } 3521 3522 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3523 // use that information to infer NUW and NSW flags. However, computing a 3524 // BE count requires calling getAddRecExpr, so we may not yet have a 3525 // meaningful BE count at this point (and if we don't, we'd be stuck 3526 // with a SCEVCouldNotCompute as the cached BE count). 3527 3528 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3529 3530 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3531 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3532 const Loop *NestedLoop = NestedAR->getLoop(); 3533 if (L->contains(NestedLoop) 3534 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3535 : (!NestedLoop->contains(L) && 3536 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3537 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3538 Operands[0] = NestedAR->getStart(); 3539 // AddRecs require their operands be loop-invariant with respect to their 3540 // loops. Don't perform this transformation if it would break this 3541 // requirement. 3542 bool AllInvariant = all_of( 3543 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3544 3545 if (AllInvariant) { 3546 // Create a recurrence for the outer loop with the same step size. 3547 // 3548 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3549 // inner recurrence has the same property. 3550 SCEV::NoWrapFlags OuterFlags = 3551 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3552 3553 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3554 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3555 return isLoopInvariant(Op, NestedLoop); 3556 }); 3557 3558 if (AllInvariant) { 3559 // Ok, both add recurrences are valid after the transformation. 3560 // 3561 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3562 // the outer recurrence has the same property. 3563 SCEV::NoWrapFlags InnerFlags = 3564 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3565 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3566 } 3567 } 3568 // Reset Operands to its original state. 3569 Operands[0] = NestedAR; 3570 } 3571 } 3572 3573 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3574 // already have one, otherwise create a new one. 3575 return getOrCreateAddRecExpr(Operands, L, Flags); 3576 } 3577 3578 const SCEV * 3579 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3580 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3581 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3582 // getSCEV(Base)->getType() has the same address space as Base->getType() 3583 // because SCEV::getType() preserves the address space. 3584 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3585 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3586 // instruction to its SCEV, because the Instruction may be guarded by control 3587 // flow and the no-overflow bits may not be valid for the expression in any 3588 // context. This can be fixed similarly to how these flags are handled for 3589 // adds. 3590 SCEV::NoWrapFlags OffsetWrap = 3591 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3592 3593 Type *CurTy = GEP->getType(); 3594 bool FirstIter = true; 3595 SmallVector<const SCEV *, 4> Offsets; 3596 for (const SCEV *IndexExpr : IndexExprs) { 3597 // Compute the (potentially symbolic) offset in bytes for this index. 3598 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3599 // For a struct, add the member offset. 3600 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3601 unsigned FieldNo = Index->getZExtValue(); 3602 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3603 Offsets.push_back(FieldOffset); 3604 3605 // Update CurTy to the type of the field at Index. 3606 CurTy = STy->getTypeAtIndex(Index); 3607 } else { 3608 // Update CurTy to its element type. 3609 if (FirstIter) { 3610 assert(isa<PointerType>(CurTy) && 3611 "The first index of a GEP indexes a pointer"); 3612 CurTy = GEP->getSourceElementType(); 3613 FirstIter = false; 3614 } else { 3615 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3616 } 3617 // For an array, add the element offset, explicitly scaled. 3618 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3619 // Getelementptr indices are signed. 3620 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3621 3622 // Multiply the index by the element size to compute the element offset. 3623 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3624 Offsets.push_back(LocalOffset); 3625 } 3626 } 3627 3628 // Handle degenerate case of GEP without offsets. 3629 if (Offsets.empty()) 3630 return BaseExpr; 3631 3632 // Add the offsets together, assuming nsw if inbounds. 3633 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3634 // Add the base address and the offset. We cannot use the nsw flag, as the 3635 // base address is unsigned. However, if we know that the offset is 3636 // non-negative, we can use nuw. 3637 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3638 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3639 return getAddExpr(BaseExpr, Offset, BaseWrap); 3640 } 3641 3642 std::tuple<SCEV *, FoldingSetNodeID, void *> 3643 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3644 ArrayRef<const SCEV *> Ops) { 3645 FoldingSetNodeID ID; 3646 void *IP = nullptr; 3647 ID.AddInteger(SCEVType); 3648 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3649 ID.AddPointer(Ops[i]); 3650 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3651 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3652 } 3653 3654 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3655 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3656 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3657 } 3658 3659 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3660 SmallVectorImpl<const SCEV *> &Ops) { 3661 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3662 if (Ops.size() == 1) return Ops[0]; 3663 #ifndef NDEBUG 3664 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3665 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3666 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3667 "Operand types don't match!"); 3668 #endif 3669 3670 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3671 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3672 3673 // Sort by complexity, this groups all similar expression types together. 3674 GroupByComplexity(Ops, &LI, DT); 3675 3676 // Check if we have created the same expression before. 3677 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3678 return S; 3679 } 3680 3681 // If there are any constants, fold them together. 3682 unsigned Idx = 0; 3683 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3684 ++Idx; 3685 assert(Idx < Ops.size()); 3686 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3687 if (Kind == scSMaxExpr) 3688 return APIntOps::smax(LHS, RHS); 3689 else if (Kind == scSMinExpr) 3690 return APIntOps::smin(LHS, RHS); 3691 else if (Kind == scUMaxExpr) 3692 return APIntOps::umax(LHS, RHS); 3693 else if (Kind == scUMinExpr) 3694 return APIntOps::umin(LHS, RHS); 3695 llvm_unreachable("Unknown SCEV min/max opcode"); 3696 }; 3697 3698 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3699 // We found two constants, fold them together! 3700 ConstantInt *Fold = ConstantInt::get( 3701 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3702 Ops[0] = getConstant(Fold); 3703 Ops.erase(Ops.begin()+1); // Erase the folded element 3704 if (Ops.size() == 1) return Ops[0]; 3705 LHSC = cast<SCEVConstant>(Ops[0]); 3706 } 3707 3708 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3709 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3710 3711 if (IsMax ? IsMinV : IsMaxV) { 3712 // If we are left with a constant minimum(/maximum)-int, strip it off. 3713 Ops.erase(Ops.begin()); 3714 --Idx; 3715 } else if (IsMax ? IsMaxV : IsMinV) { 3716 // If we have a max(/min) with a constant maximum(/minimum)-int, 3717 // it will always be the extremum. 3718 return LHSC; 3719 } 3720 3721 if (Ops.size() == 1) return Ops[0]; 3722 } 3723 3724 // Find the first operation of the same kind 3725 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3726 ++Idx; 3727 3728 // Check to see if one of the operands is of the same kind. If so, expand its 3729 // operands onto our operand list, and recurse to simplify. 3730 if (Idx < Ops.size()) { 3731 bool DeletedAny = false; 3732 while (Ops[Idx]->getSCEVType() == Kind) { 3733 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3734 Ops.erase(Ops.begin()+Idx); 3735 Ops.append(SMME->op_begin(), SMME->op_end()); 3736 DeletedAny = true; 3737 } 3738 3739 if (DeletedAny) 3740 return getMinMaxExpr(Kind, Ops); 3741 } 3742 3743 // Okay, check to see if the same value occurs in the operand list twice. If 3744 // so, delete one. Since we sorted the list, these values are required to 3745 // be adjacent. 3746 llvm::CmpInst::Predicate GEPred = 3747 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3748 llvm::CmpInst::Predicate LEPred = 3749 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3750 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3751 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3752 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3753 if (Ops[i] == Ops[i + 1] || 3754 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3755 // X op Y op Y --> X op Y 3756 // X op Y --> X, if we know X, Y are ordered appropriately 3757 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3758 --i; 3759 --e; 3760 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3761 Ops[i + 1])) { 3762 // X op Y --> Y, if we know X, Y are ordered appropriately 3763 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3764 --i; 3765 --e; 3766 } 3767 } 3768 3769 if (Ops.size() == 1) return Ops[0]; 3770 3771 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3772 3773 // Okay, it looks like we really DO need an expr. Check to see if we 3774 // already have one, otherwise create a new one. 3775 const SCEV *ExistingSCEV; 3776 FoldingSetNodeID ID; 3777 void *IP; 3778 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3779 if (ExistingSCEV) 3780 return ExistingSCEV; 3781 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3782 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3783 SCEV *S = new (SCEVAllocator) 3784 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3785 3786 UniqueSCEVs.InsertNode(S, IP); 3787 addToLoopUseLists(S); 3788 return S; 3789 } 3790 3791 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3792 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3793 return getSMaxExpr(Ops); 3794 } 3795 3796 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3797 return getMinMaxExpr(scSMaxExpr, Ops); 3798 } 3799 3800 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3801 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3802 return getUMaxExpr(Ops); 3803 } 3804 3805 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3806 return getMinMaxExpr(scUMaxExpr, Ops); 3807 } 3808 3809 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3810 const SCEV *RHS) { 3811 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3812 return getSMinExpr(Ops); 3813 } 3814 3815 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3816 return getMinMaxExpr(scSMinExpr, Ops); 3817 } 3818 3819 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3820 const SCEV *RHS) { 3821 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3822 return getUMinExpr(Ops); 3823 } 3824 3825 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3826 return getMinMaxExpr(scUMinExpr, Ops); 3827 } 3828 3829 const SCEV * 3830 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3831 ScalableVectorType *ScalableTy) { 3832 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3833 Constant *One = ConstantInt::get(IntTy, 1); 3834 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3835 // Note that the expression we created is the final expression, we don't 3836 // want to simplify it any further Also, if we call a normal getSCEV(), 3837 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3838 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3839 } 3840 3841 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3842 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3843 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3844 // We can bypass creating a target-independent constant expression and then 3845 // folding it back into a ConstantInt. This is just a compile-time 3846 // optimization. 3847 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3848 } 3849 3850 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3851 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3852 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3853 // We can bypass creating a target-independent constant expression and then 3854 // folding it back into a ConstantInt. This is just a compile-time 3855 // optimization. 3856 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3857 } 3858 3859 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3860 StructType *STy, 3861 unsigned FieldNo) { 3862 // We can bypass creating a target-independent constant expression and then 3863 // folding it back into a ConstantInt. This is just a compile-time 3864 // optimization. 3865 return getConstant( 3866 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3867 } 3868 3869 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3870 // Don't attempt to do anything other than create a SCEVUnknown object 3871 // here. createSCEV only calls getUnknown after checking for all other 3872 // interesting possibilities, and any other code that calls getUnknown 3873 // is doing so in order to hide a value from SCEV canonicalization. 3874 3875 FoldingSetNodeID ID; 3876 ID.AddInteger(scUnknown); 3877 ID.AddPointer(V); 3878 void *IP = nullptr; 3879 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3880 assert(cast<SCEVUnknown>(S)->getValue() == V && 3881 "Stale SCEVUnknown in uniquing map!"); 3882 return S; 3883 } 3884 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3885 FirstUnknown); 3886 FirstUnknown = cast<SCEVUnknown>(S); 3887 UniqueSCEVs.InsertNode(S, IP); 3888 return S; 3889 } 3890 3891 //===----------------------------------------------------------------------===// 3892 // Basic SCEV Analysis and PHI Idiom Recognition Code 3893 // 3894 3895 /// Test if values of the given type are analyzable within the SCEV 3896 /// framework. This primarily includes integer types, and it can optionally 3897 /// include pointer types if the ScalarEvolution class has access to 3898 /// target-specific information. 3899 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3900 // Integers and pointers are always SCEVable. 3901 return Ty->isIntOrPtrTy(); 3902 } 3903 3904 /// Return the size in bits of the specified type, for which isSCEVable must 3905 /// return true. 3906 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3907 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3908 if (Ty->isPointerTy()) 3909 return getDataLayout().getIndexTypeSizeInBits(Ty); 3910 return getDataLayout().getTypeSizeInBits(Ty); 3911 } 3912 3913 /// Return a type with the same bitwidth as the given type and which represents 3914 /// how SCEV will treat the given type, for which isSCEVable must return 3915 /// true. For pointer types, this is the pointer index sized integer type. 3916 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3917 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3918 3919 if (Ty->isIntegerTy()) 3920 return Ty; 3921 3922 // The only other support type is pointer. 3923 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3924 return getDataLayout().getIndexType(Ty); 3925 } 3926 3927 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3928 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3929 } 3930 3931 const SCEV *ScalarEvolution::getCouldNotCompute() { 3932 return CouldNotCompute.get(); 3933 } 3934 3935 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3936 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3937 auto *SU = dyn_cast<SCEVUnknown>(S); 3938 return SU && SU->getValue() == nullptr; 3939 }); 3940 3941 return !ContainsNulls; 3942 } 3943 3944 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3945 HasRecMapType::iterator I = HasRecMap.find(S); 3946 if (I != HasRecMap.end()) 3947 return I->second; 3948 3949 bool FoundAddRec = 3950 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3951 HasRecMap.insert({S, FoundAddRec}); 3952 return FoundAddRec; 3953 } 3954 3955 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3956 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3957 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3958 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3959 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3960 if (!Add) 3961 return {S, nullptr}; 3962 3963 if (Add->getNumOperands() != 2) 3964 return {S, nullptr}; 3965 3966 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3967 if (!ConstOp) 3968 return {S, nullptr}; 3969 3970 return {Add->getOperand(1), ConstOp->getValue()}; 3971 } 3972 3973 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3974 /// by the value and offset from any ValueOffsetPair in the set. 3975 ScalarEvolution::ValueOffsetPairSetVector * 3976 ScalarEvolution::getSCEVValues(const SCEV *S) { 3977 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3978 if (SI == ExprValueMap.end()) 3979 return nullptr; 3980 #ifndef NDEBUG 3981 if (VerifySCEVMap) { 3982 // Check there is no dangling Value in the set returned. 3983 for (const auto &VE : SI->second) 3984 assert(ValueExprMap.count(VE.first)); 3985 } 3986 #endif 3987 return &SI->second; 3988 } 3989 3990 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3991 /// cannot be used separately. eraseValueFromMap should be used to remove 3992 /// V from ValueExprMap and ExprValueMap at the same time. 3993 void ScalarEvolution::eraseValueFromMap(Value *V) { 3994 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3995 if (I != ValueExprMap.end()) { 3996 const SCEV *S = I->second; 3997 // Remove {V, 0} from the set of ExprValueMap[S] 3998 if (auto *SV = getSCEVValues(S)) 3999 SV->remove({V, nullptr}); 4000 4001 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4002 const SCEV *Stripped; 4003 ConstantInt *Offset; 4004 std::tie(Stripped, Offset) = splitAddExpr(S); 4005 if (Offset != nullptr) { 4006 if (auto *SV = getSCEVValues(Stripped)) 4007 SV->remove({V, Offset}); 4008 } 4009 ValueExprMap.erase(V); 4010 } 4011 } 4012 4013 /// Check whether value has nuw/nsw/exact set but SCEV does not. 4014 /// TODO: In reality it is better to check the poison recursively 4015 /// but this is better than nothing. 4016 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 4017 if (auto *I = dyn_cast<Instruction>(V)) { 4018 if (isa<OverflowingBinaryOperator>(I)) { 4019 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 4020 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 4021 return true; 4022 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 4023 return true; 4024 } 4025 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 4026 return true; 4027 } 4028 return false; 4029 } 4030 4031 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4032 /// create a new one. 4033 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4034 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4035 4036 const SCEV *S = getExistingSCEV(V); 4037 if (S == nullptr) { 4038 S = createSCEV(V); 4039 // During PHI resolution, it is possible to create two SCEVs for the same 4040 // V, so it is needed to double check whether V->S is inserted into 4041 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4042 std::pair<ValueExprMapType::iterator, bool> Pair = 4043 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4044 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 4045 ExprValueMap[S].insert({V, nullptr}); 4046 4047 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4048 // ExprValueMap. 4049 const SCEV *Stripped = S; 4050 ConstantInt *Offset = nullptr; 4051 std::tie(Stripped, Offset) = splitAddExpr(S); 4052 // If stripped is SCEVUnknown, don't bother to save 4053 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4054 // increase the complexity of the expansion code. 4055 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4056 // because it may generate add/sub instead of GEP in SCEV expansion. 4057 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4058 !isa<GetElementPtrInst>(V)) 4059 ExprValueMap[Stripped].insert({V, Offset}); 4060 } 4061 } 4062 return S; 4063 } 4064 4065 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4066 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4067 4068 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4069 if (I != ValueExprMap.end()) { 4070 const SCEV *S = I->second; 4071 if (checkValidity(S)) 4072 return S; 4073 eraseValueFromMap(V); 4074 forgetMemoizedResults(S); 4075 } 4076 return nullptr; 4077 } 4078 4079 /// Return a SCEV corresponding to -V = -1*V 4080 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4081 SCEV::NoWrapFlags Flags) { 4082 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4083 return getConstant( 4084 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4085 4086 Type *Ty = V->getType(); 4087 Ty = getEffectiveSCEVType(Ty); 4088 return getMulExpr(V, getMinusOne(Ty), Flags); 4089 } 4090 4091 /// If Expr computes ~A, return A else return nullptr 4092 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4093 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4094 if (!Add || Add->getNumOperands() != 2 || 4095 !Add->getOperand(0)->isAllOnesValue()) 4096 return nullptr; 4097 4098 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4099 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4100 !AddRHS->getOperand(0)->isAllOnesValue()) 4101 return nullptr; 4102 4103 return AddRHS->getOperand(1); 4104 } 4105 4106 /// Return a SCEV corresponding to ~V = -1-V 4107 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4108 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4109 return getConstant( 4110 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4111 4112 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4113 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4114 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4115 SmallVector<const SCEV *, 2> MatchedOperands; 4116 for (const SCEV *Operand : MME->operands()) { 4117 const SCEV *Matched = MatchNotExpr(Operand); 4118 if (!Matched) 4119 return (const SCEV *)nullptr; 4120 MatchedOperands.push_back(Matched); 4121 } 4122 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4123 MatchedOperands); 4124 }; 4125 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4126 return Replaced; 4127 } 4128 4129 Type *Ty = V->getType(); 4130 Ty = getEffectiveSCEVType(Ty); 4131 return getMinusSCEV(getMinusOne(Ty), V); 4132 } 4133 4134 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4135 SCEV::NoWrapFlags Flags, 4136 unsigned Depth) { 4137 // Fast path: X - X --> 0. 4138 if (LHS == RHS) 4139 return getZero(LHS->getType()); 4140 4141 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4142 // makes it so that we cannot make much use of NUW. 4143 auto AddFlags = SCEV::FlagAnyWrap; 4144 const bool RHSIsNotMinSigned = 4145 !getSignedRangeMin(RHS).isMinSignedValue(); 4146 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 4147 // Let M be the minimum representable signed value. Then (-1)*RHS 4148 // signed-wraps if and only if RHS is M. That can happen even for 4149 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4150 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4151 // (-1)*RHS, we need to prove that RHS != M. 4152 // 4153 // If LHS is non-negative and we know that LHS - RHS does not 4154 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4155 // either by proving that RHS > M or that LHS >= 0. 4156 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4157 AddFlags = SCEV::FlagNSW; 4158 } 4159 } 4160 4161 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4162 // RHS is NSW and LHS >= 0. 4163 // 4164 // The difficulty here is that the NSW flag may have been proven 4165 // relative to a loop that is to be found in a recurrence in LHS and 4166 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4167 // larger scope than intended. 4168 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4169 4170 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4171 } 4172 4173 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4174 unsigned Depth) { 4175 Type *SrcTy = V->getType(); 4176 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4177 "Cannot truncate or zero extend with non-integer arguments!"); 4178 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4179 return V; // No conversion 4180 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4181 return getTruncateExpr(V, Ty, Depth); 4182 return getZeroExtendExpr(V, Ty, Depth); 4183 } 4184 4185 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4186 unsigned Depth) { 4187 Type *SrcTy = V->getType(); 4188 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4189 "Cannot truncate or zero extend with non-integer arguments!"); 4190 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4191 return V; // No conversion 4192 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4193 return getTruncateExpr(V, Ty, Depth); 4194 return getSignExtendExpr(V, Ty, Depth); 4195 } 4196 4197 const SCEV * 4198 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4199 Type *SrcTy = V->getType(); 4200 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4201 "Cannot noop or zero extend with non-integer arguments!"); 4202 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4203 "getNoopOrZeroExtend cannot truncate!"); 4204 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4205 return V; // No conversion 4206 return getZeroExtendExpr(V, Ty); 4207 } 4208 4209 const SCEV * 4210 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4211 Type *SrcTy = V->getType(); 4212 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4213 "Cannot noop or sign extend with non-integer arguments!"); 4214 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4215 "getNoopOrSignExtend cannot truncate!"); 4216 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4217 return V; // No conversion 4218 return getSignExtendExpr(V, Ty); 4219 } 4220 4221 const SCEV * 4222 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4223 Type *SrcTy = V->getType(); 4224 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4225 "Cannot noop or any extend with non-integer arguments!"); 4226 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4227 "getNoopOrAnyExtend cannot truncate!"); 4228 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4229 return V; // No conversion 4230 return getAnyExtendExpr(V, Ty); 4231 } 4232 4233 const SCEV * 4234 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4235 Type *SrcTy = V->getType(); 4236 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4237 "Cannot truncate or noop with non-integer arguments!"); 4238 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4239 "getTruncateOrNoop cannot extend!"); 4240 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4241 return V; // No conversion 4242 return getTruncateExpr(V, Ty); 4243 } 4244 4245 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4246 const SCEV *RHS) { 4247 const SCEV *PromotedLHS = LHS; 4248 const SCEV *PromotedRHS = RHS; 4249 4250 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4251 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4252 else 4253 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4254 4255 return getUMaxExpr(PromotedLHS, PromotedRHS); 4256 } 4257 4258 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4259 const SCEV *RHS) { 4260 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4261 return getUMinFromMismatchedTypes(Ops); 4262 } 4263 4264 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4265 SmallVectorImpl<const SCEV *> &Ops) { 4266 assert(!Ops.empty() && "At least one operand must be!"); 4267 // Trivial case. 4268 if (Ops.size() == 1) 4269 return Ops[0]; 4270 4271 // Find the max type first. 4272 Type *MaxType = nullptr; 4273 for (auto *S : Ops) 4274 if (MaxType) 4275 MaxType = getWiderType(MaxType, S->getType()); 4276 else 4277 MaxType = S->getType(); 4278 assert(MaxType && "Failed to find maximum type!"); 4279 4280 // Extend all ops to max type. 4281 SmallVector<const SCEV *, 2> PromotedOps; 4282 for (auto *S : Ops) 4283 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4284 4285 // Generate umin. 4286 return getUMinExpr(PromotedOps); 4287 } 4288 4289 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4290 // A pointer operand may evaluate to a nonpointer expression, such as null. 4291 if (!V->getType()->isPointerTy()) 4292 return V; 4293 4294 while (true) { 4295 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4296 V = AddRec->getStart(); 4297 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4298 const SCEV *PtrOp = nullptr; 4299 for (const SCEV *AddOp : Add->operands()) { 4300 if (AddOp->getType()->isPointerTy()) { 4301 // Cannot find the base of an expression with multiple pointer ops. 4302 if (PtrOp) 4303 return V; 4304 PtrOp = AddOp; 4305 } 4306 } 4307 if (!PtrOp) // All operands were non-pointer. 4308 return V; 4309 V = PtrOp; 4310 } else // Not something we can look further into. 4311 return V; 4312 } 4313 } 4314 4315 /// Push users of the given Instruction onto the given Worklist. 4316 static void 4317 PushDefUseChildren(Instruction *I, 4318 SmallVectorImpl<Instruction *> &Worklist) { 4319 // Push the def-use children onto the Worklist stack. 4320 for (User *U : I->users()) 4321 Worklist.push_back(cast<Instruction>(U)); 4322 } 4323 4324 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4325 SmallVector<Instruction *, 16> Worklist; 4326 PushDefUseChildren(PN, Worklist); 4327 4328 SmallPtrSet<Instruction *, 8> Visited; 4329 Visited.insert(PN); 4330 while (!Worklist.empty()) { 4331 Instruction *I = Worklist.pop_back_val(); 4332 if (!Visited.insert(I).second) 4333 continue; 4334 4335 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4336 if (It != ValueExprMap.end()) { 4337 const SCEV *Old = It->second; 4338 4339 // Short-circuit the def-use traversal if the symbolic name 4340 // ceases to appear in expressions. 4341 if (Old != SymName && !hasOperand(Old, SymName)) 4342 continue; 4343 4344 // SCEVUnknown for a PHI either means that it has an unrecognized 4345 // structure, it's a PHI that's in the progress of being computed 4346 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4347 // additional loop trip count information isn't going to change anything. 4348 // In the second case, createNodeForPHI will perform the necessary 4349 // updates on its own when it gets to that point. In the third, we do 4350 // want to forget the SCEVUnknown. 4351 if (!isa<PHINode>(I) || 4352 !isa<SCEVUnknown>(Old) || 4353 (I != PN && Old == SymName)) { 4354 eraseValueFromMap(It->first); 4355 forgetMemoizedResults(Old); 4356 } 4357 } 4358 4359 PushDefUseChildren(I, Worklist); 4360 } 4361 } 4362 4363 namespace { 4364 4365 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4366 /// expression in case its Loop is L. If it is not L then 4367 /// if IgnoreOtherLoops is true then use AddRec itself 4368 /// otherwise rewrite cannot be done. 4369 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4370 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4371 public: 4372 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4373 bool IgnoreOtherLoops = true) { 4374 SCEVInitRewriter Rewriter(L, SE); 4375 const SCEV *Result = Rewriter.visit(S); 4376 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4377 return SE.getCouldNotCompute(); 4378 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4379 ? SE.getCouldNotCompute() 4380 : Result; 4381 } 4382 4383 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4384 if (!SE.isLoopInvariant(Expr, L)) 4385 SeenLoopVariantSCEVUnknown = true; 4386 return Expr; 4387 } 4388 4389 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4390 // Only re-write AddRecExprs for this loop. 4391 if (Expr->getLoop() == L) 4392 return Expr->getStart(); 4393 SeenOtherLoops = true; 4394 return Expr; 4395 } 4396 4397 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4398 4399 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4400 4401 private: 4402 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4403 : SCEVRewriteVisitor(SE), L(L) {} 4404 4405 const Loop *L; 4406 bool SeenLoopVariantSCEVUnknown = false; 4407 bool SeenOtherLoops = false; 4408 }; 4409 4410 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4411 /// increment expression in case its Loop is L. If it is not L then 4412 /// use AddRec itself. 4413 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4414 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4415 public: 4416 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4417 SCEVPostIncRewriter Rewriter(L, SE); 4418 const SCEV *Result = Rewriter.visit(S); 4419 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4420 ? SE.getCouldNotCompute() 4421 : Result; 4422 } 4423 4424 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4425 if (!SE.isLoopInvariant(Expr, L)) 4426 SeenLoopVariantSCEVUnknown = true; 4427 return Expr; 4428 } 4429 4430 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4431 // Only re-write AddRecExprs for this loop. 4432 if (Expr->getLoop() == L) 4433 return Expr->getPostIncExpr(SE); 4434 SeenOtherLoops = true; 4435 return Expr; 4436 } 4437 4438 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4439 4440 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4441 4442 private: 4443 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4444 : SCEVRewriteVisitor(SE), L(L) {} 4445 4446 const Loop *L; 4447 bool SeenLoopVariantSCEVUnknown = false; 4448 bool SeenOtherLoops = false; 4449 }; 4450 4451 /// This class evaluates the compare condition by matching it against the 4452 /// condition of loop latch. If there is a match we assume a true value 4453 /// for the condition while building SCEV nodes. 4454 class SCEVBackedgeConditionFolder 4455 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4456 public: 4457 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4458 ScalarEvolution &SE) { 4459 bool IsPosBECond = false; 4460 Value *BECond = nullptr; 4461 if (BasicBlock *Latch = L->getLoopLatch()) { 4462 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4463 if (BI && BI->isConditional()) { 4464 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4465 "Both outgoing branches should not target same header!"); 4466 BECond = BI->getCondition(); 4467 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4468 } else { 4469 return S; 4470 } 4471 } 4472 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4473 return Rewriter.visit(S); 4474 } 4475 4476 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4477 const SCEV *Result = Expr; 4478 bool InvariantF = SE.isLoopInvariant(Expr, L); 4479 4480 if (!InvariantF) { 4481 Instruction *I = cast<Instruction>(Expr->getValue()); 4482 switch (I->getOpcode()) { 4483 case Instruction::Select: { 4484 SelectInst *SI = cast<SelectInst>(I); 4485 Optional<const SCEV *> Res = 4486 compareWithBackedgeCondition(SI->getCondition()); 4487 if (Res.hasValue()) { 4488 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4489 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4490 } 4491 break; 4492 } 4493 default: { 4494 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4495 if (Res.hasValue()) 4496 Result = Res.getValue(); 4497 break; 4498 } 4499 } 4500 } 4501 return Result; 4502 } 4503 4504 private: 4505 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4506 bool IsPosBECond, ScalarEvolution &SE) 4507 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4508 IsPositiveBECond(IsPosBECond) {} 4509 4510 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4511 4512 const Loop *L; 4513 /// Loop back condition. 4514 Value *BackedgeCond = nullptr; 4515 /// Set to true if loop back is on positive branch condition. 4516 bool IsPositiveBECond; 4517 }; 4518 4519 Optional<const SCEV *> 4520 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4521 4522 // If value matches the backedge condition for loop latch, 4523 // then return a constant evolution node based on loopback 4524 // branch taken. 4525 if (BackedgeCond == IC) 4526 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4527 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4528 return None; 4529 } 4530 4531 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4532 public: 4533 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4534 ScalarEvolution &SE) { 4535 SCEVShiftRewriter Rewriter(L, SE); 4536 const SCEV *Result = Rewriter.visit(S); 4537 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4538 } 4539 4540 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4541 // Only allow AddRecExprs for this loop. 4542 if (!SE.isLoopInvariant(Expr, L)) 4543 Valid = false; 4544 return Expr; 4545 } 4546 4547 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4548 if (Expr->getLoop() == L && Expr->isAffine()) 4549 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4550 Valid = false; 4551 return Expr; 4552 } 4553 4554 bool isValid() { return Valid; } 4555 4556 private: 4557 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4558 : SCEVRewriteVisitor(SE), L(L) {} 4559 4560 const Loop *L; 4561 bool Valid = true; 4562 }; 4563 4564 } // end anonymous namespace 4565 4566 SCEV::NoWrapFlags 4567 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4568 if (!AR->isAffine()) 4569 return SCEV::FlagAnyWrap; 4570 4571 using OBO = OverflowingBinaryOperator; 4572 4573 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4574 4575 if (!AR->hasNoSignedWrap()) { 4576 ConstantRange AddRecRange = getSignedRange(AR); 4577 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4578 4579 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4580 Instruction::Add, IncRange, OBO::NoSignedWrap); 4581 if (NSWRegion.contains(AddRecRange)) 4582 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4583 } 4584 4585 if (!AR->hasNoUnsignedWrap()) { 4586 ConstantRange AddRecRange = getUnsignedRange(AR); 4587 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4588 4589 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4590 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4591 if (NUWRegion.contains(AddRecRange)) 4592 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4593 } 4594 4595 return Result; 4596 } 4597 4598 SCEV::NoWrapFlags 4599 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4600 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4601 4602 if (AR->hasNoSignedWrap()) 4603 return Result; 4604 4605 if (!AR->isAffine()) 4606 return Result; 4607 4608 const SCEV *Step = AR->getStepRecurrence(*this); 4609 const Loop *L = AR->getLoop(); 4610 4611 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4612 // Note that this serves two purposes: It filters out loops that are 4613 // simply not analyzable, and it covers the case where this code is 4614 // being called from within backedge-taken count analysis, such that 4615 // attempting to ask for the backedge-taken count would likely result 4616 // in infinite recursion. In the later case, the analysis code will 4617 // cope with a conservative value, and it will take care to purge 4618 // that value once it has finished. 4619 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4620 4621 // Normally, in the cases we can prove no-overflow via a 4622 // backedge guarding condition, we can also compute a backedge 4623 // taken count for the loop. The exceptions are assumptions and 4624 // guards present in the loop -- SCEV is not great at exploiting 4625 // these to compute max backedge taken counts, but can still use 4626 // these to prove lack of overflow. Use this fact to avoid 4627 // doing extra work that may not pay off. 4628 4629 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4630 AC.assumptions().empty()) 4631 return Result; 4632 4633 // If the backedge is guarded by a comparison with the pre-inc value the 4634 // addrec is safe. Also, if the entry is guarded by a comparison with the 4635 // start value and the backedge is guarded by a comparison with the post-inc 4636 // value, the addrec is safe. 4637 ICmpInst::Predicate Pred; 4638 const SCEV *OverflowLimit = 4639 getSignedOverflowLimitForStep(Step, &Pred, this); 4640 if (OverflowLimit && 4641 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4642 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4643 Result = setFlags(Result, SCEV::FlagNSW); 4644 } 4645 return Result; 4646 } 4647 SCEV::NoWrapFlags 4648 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4649 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4650 4651 if (AR->hasNoUnsignedWrap()) 4652 return Result; 4653 4654 if (!AR->isAffine()) 4655 return Result; 4656 4657 const SCEV *Step = AR->getStepRecurrence(*this); 4658 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4659 const Loop *L = AR->getLoop(); 4660 4661 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4662 // Note that this serves two purposes: It filters out loops that are 4663 // simply not analyzable, and it covers the case where this code is 4664 // being called from within backedge-taken count analysis, such that 4665 // attempting to ask for the backedge-taken count would likely result 4666 // in infinite recursion. In the later case, the analysis code will 4667 // cope with a conservative value, and it will take care to purge 4668 // that value once it has finished. 4669 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4670 4671 // Normally, in the cases we can prove no-overflow via a 4672 // backedge guarding condition, we can also compute a backedge 4673 // taken count for the loop. The exceptions are assumptions and 4674 // guards present in the loop -- SCEV is not great at exploiting 4675 // these to compute max backedge taken counts, but can still use 4676 // these to prove lack of overflow. Use this fact to avoid 4677 // doing extra work that may not pay off. 4678 4679 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4680 AC.assumptions().empty()) 4681 return Result; 4682 4683 // If the backedge is guarded by a comparison with the pre-inc value the 4684 // addrec is safe. Also, if the entry is guarded by a comparison with the 4685 // start value and the backedge is guarded by a comparison with the post-inc 4686 // value, the addrec is safe. 4687 if (isKnownPositive(Step)) { 4688 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4689 getUnsignedRangeMax(Step)); 4690 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4691 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4692 Result = setFlags(Result, SCEV::FlagNUW); 4693 } 4694 } 4695 4696 return Result; 4697 } 4698 4699 namespace { 4700 4701 /// Represents an abstract binary operation. This may exist as a 4702 /// normal instruction or constant expression, or may have been 4703 /// derived from an expression tree. 4704 struct BinaryOp { 4705 unsigned Opcode; 4706 Value *LHS; 4707 Value *RHS; 4708 bool IsNSW = false; 4709 bool IsNUW = false; 4710 4711 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4712 /// constant expression. 4713 Operator *Op = nullptr; 4714 4715 explicit BinaryOp(Operator *Op) 4716 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4717 Op(Op) { 4718 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4719 IsNSW = OBO->hasNoSignedWrap(); 4720 IsNUW = OBO->hasNoUnsignedWrap(); 4721 } 4722 } 4723 4724 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4725 bool IsNUW = false) 4726 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4727 }; 4728 4729 } // end anonymous namespace 4730 4731 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4732 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4733 auto *Op = dyn_cast<Operator>(V); 4734 if (!Op) 4735 return None; 4736 4737 // Implementation detail: all the cleverness here should happen without 4738 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4739 // SCEV expressions when possible, and we should not break that. 4740 4741 switch (Op->getOpcode()) { 4742 case Instruction::Add: 4743 case Instruction::Sub: 4744 case Instruction::Mul: 4745 case Instruction::UDiv: 4746 case Instruction::URem: 4747 case Instruction::And: 4748 case Instruction::Or: 4749 case Instruction::AShr: 4750 case Instruction::Shl: 4751 return BinaryOp(Op); 4752 4753 case Instruction::Xor: 4754 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4755 // If the RHS of the xor is a signmask, then this is just an add. 4756 // Instcombine turns add of signmask into xor as a strength reduction step. 4757 if (RHSC->getValue().isSignMask()) 4758 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4759 return BinaryOp(Op); 4760 4761 case Instruction::LShr: 4762 // Turn logical shift right of a constant into a unsigned divide. 4763 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4764 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4765 4766 // If the shift count is not less than the bitwidth, the result of 4767 // the shift is undefined. Don't try to analyze it, because the 4768 // resolution chosen here may differ from the resolution chosen in 4769 // other parts of the compiler. 4770 if (SA->getValue().ult(BitWidth)) { 4771 Constant *X = 4772 ConstantInt::get(SA->getContext(), 4773 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4774 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4775 } 4776 } 4777 return BinaryOp(Op); 4778 4779 case Instruction::ExtractValue: { 4780 auto *EVI = cast<ExtractValueInst>(Op); 4781 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4782 break; 4783 4784 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4785 if (!WO) 4786 break; 4787 4788 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4789 bool Signed = WO->isSigned(); 4790 // TODO: Should add nuw/nsw flags for mul as well. 4791 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4792 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4793 4794 // Now that we know that all uses of the arithmetic-result component of 4795 // CI are guarded by the overflow check, we can go ahead and pretend 4796 // that the arithmetic is non-overflowing. 4797 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4798 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4799 } 4800 4801 default: 4802 break; 4803 } 4804 4805 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4806 // semantics as a Sub, return a binary sub expression. 4807 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4808 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4809 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4810 4811 return None; 4812 } 4813 4814 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4815 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4816 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4817 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4818 /// follows one of the following patterns: 4819 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4820 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4821 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4822 /// we return the type of the truncation operation, and indicate whether the 4823 /// truncated type should be treated as signed/unsigned by setting 4824 /// \p Signed to true/false, respectively. 4825 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4826 bool &Signed, ScalarEvolution &SE) { 4827 // The case where Op == SymbolicPHI (that is, with no type conversions on 4828 // the way) is handled by the regular add recurrence creating logic and 4829 // would have already been triggered in createAddRecForPHI. Reaching it here 4830 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4831 // because one of the other operands of the SCEVAddExpr updating this PHI is 4832 // not invariant). 4833 // 4834 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4835 // this case predicates that allow us to prove that Op == SymbolicPHI will 4836 // be added. 4837 if (Op == SymbolicPHI) 4838 return nullptr; 4839 4840 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4841 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4842 if (SourceBits != NewBits) 4843 return nullptr; 4844 4845 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4846 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4847 if (!SExt && !ZExt) 4848 return nullptr; 4849 const SCEVTruncateExpr *Trunc = 4850 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4851 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4852 if (!Trunc) 4853 return nullptr; 4854 const SCEV *X = Trunc->getOperand(); 4855 if (X != SymbolicPHI) 4856 return nullptr; 4857 Signed = SExt != nullptr; 4858 return Trunc->getType(); 4859 } 4860 4861 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4862 if (!PN->getType()->isIntegerTy()) 4863 return nullptr; 4864 const Loop *L = LI.getLoopFor(PN->getParent()); 4865 if (!L || L->getHeader() != PN->getParent()) 4866 return nullptr; 4867 return L; 4868 } 4869 4870 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4871 // computation that updates the phi follows the following pattern: 4872 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4873 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4874 // If so, try to see if it can be rewritten as an AddRecExpr under some 4875 // Predicates. If successful, return them as a pair. Also cache the results 4876 // of the analysis. 4877 // 4878 // Example usage scenario: 4879 // Say the Rewriter is called for the following SCEV: 4880 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4881 // where: 4882 // %X = phi i64 (%Start, %BEValue) 4883 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4884 // and call this function with %SymbolicPHI = %X. 4885 // 4886 // The analysis will find that the value coming around the backedge has 4887 // the following SCEV: 4888 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4889 // Upon concluding that this matches the desired pattern, the function 4890 // will return the pair {NewAddRec, SmallPredsVec} where: 4891 // NewAddRec = {%Start,+,%Step} 4892 // SmallPredsVec = {P1, P2, P3} as follows: 4893 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4894 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4895 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4896 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4897 // under the predicates {P1,P2,P3}. 4898 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4899 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4900 // 4901 // TODO's: 4902 // 4903 // 1) Extend the Induction descriptor to also support inductions that involve 4904 // casts: When needed (namely, when we are called in the context of the 4905 // vectorizer induction analysis), a Set of cast instructions will be 4906 // populated by this method, and provided back to isInductionPHI. This is 4907 // needed to allow the vectorizer to properly record them to be ignored by 4908 // the cost model and to avoid vectorizing them (otherwise these casts, 4909 // which are redundant under the runtime overflow checks, will be 4910 // vectorized, which can be costly). 4911 // 4912 // 2) Support additional induction/PHISCEV patterns: We also want to support 4913 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4914 // after the induction update operation (the induction increment): 4915 // 4916 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4917 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4918 // 4919 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4920 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4921 // 4922 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4923 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4924 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4925 SmallVector<const SCEVPredicate *, 3> Predicates; 4926 4927 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4928 // return an AddRec expression under some predicate. 4929 4930 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4931 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4932 assert(L && "Expecting an integer loop header phi"); 4933 4934 // The loop may have multiple entrances or multiple exits; we can analyze 4935 // this phi as an addrec if it has a unique entry value and a unique 4936 // backedge value. 4937 Value *BEValueV = nullptr, *StartValueV = nullptr; 4938 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4939 Value *V = PN->getIncomingValue(i); 4940 if (L->contains(PN->getIncomingBlock(i))) { 4941 if (!BEValueV) { 4942 BEValueV = V; 4943 } else if (BEValueV != V) { 4944 BEValueV = nullptr; 4945 break; 4946 } 4947 } else if (!StartValueV) { 4948 StartValueV = V; 4949 } else if (StartValueV != V) { 4950 StartValueV = nullptr; 4951 break; 4952 } 4953 } 4954 if (!BEValueV || !StartValueV) 4955 return None; 4956 4957 const SCEV *BEValue = getSCEV(BEValueV); 4958 4959 // If the value coming around the backedge is an add with the symbolic 4960 // value we just inserted, possibly with casts that we can ignore under 4961 // an appropriate runtime guard, then we found a simple induction variable! 4962 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4963 if (!Add) 4964 return None; 4965 4966 // If there is a single occurrence of the symbolic value, possibly 4967 // casted, replace it with a recurrence. 4968 unsigned FoundIndex = Add->getNumOperands(); 4969 Type *TruncTy = nullptr; 4970 bool Signed; 4971 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4972 if ((TruncTy = 4973 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4974 if (FoundIndex == e) { 4975 FoundIndex = i; 4976 break; 4977 } 4978 4979 if (FoundIndex == Add->getNumOperands()) 4980 return None; 4981 4982 // Create an add with everything but the specified operand. 4983 SmallVector<const SCEV *, 8> Ops; 4984 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4985 if (i != FoundIndex) 4986 Ops.push_back(Add->getOperand(i)); 4987 const SCEV *Accum = getAddExpr(Ops); 4988 4989 // The runtime checks will not be valid if the step amount is 4990 // varying inside the loop. 4991 if (!isLoopInvariant(Accum, L)) 4992 return None; 4993 4994 // *** Part2: Create the predicates 4995 4996 // Analysis was successful: we have a phi-with-cast pattern for which we 4997 // can return an AddRec expression under the following predicates: 4998 // 4999 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5000 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5001 // P2: An Equal predicate that guarantees that 5002 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5003 // P3: An Equal predicate that guarantees that 5004 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5005 // 5006 // As we next prove, the above predicates guarantee that: 5007 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5008 // 5009 // 5010 // More formally, we want to prove that: 5011 // Expr(i+1) = Start + (i+1) * Accum 5012 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5013 // 5014 // Given that: 5015 // 1) Expr(0) = Start 5016 // 2) Expr(1) = Start + Accum 5017 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5018 // 3) Induction hypothesis (step i): 5019 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5020 // 5021 // Proof: 5022 // Expr(i+1) = 5023 // = Start + (i+1)*Accum 5024 // = (Start + i*Accum) + Accum 5025 // = Expr(i) + Accum 5026 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5027 // :: from step i 5028 // 5029 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5030 // 5031 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5032 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5033 // + Accum :: from P3 5034 // 5035 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5036 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5037 // 5038 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5039 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5040 // 5041 // By induction, the same applies to all iterations 1<=i<n: 5042 // 5043 5044 // Create a truncated addrec for which we will add a no overflow check (P1). 5045 const SCEV *StartVal = getSCEV(StartValueV); 5046 const SCEV *PHISCEV = 5047 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5048 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5049 5050 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5051 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5052 // will be constant. 5053 // 5054 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5055 // add P1. 5056 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5057 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5058 Signed ? SCEVWrapPredicate::IncrementNSSW 5059 : SCEVWrapPredicate::IncrementNUSW; 5060 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5061 Predicates.push_back(AddRecPred); 5062 } 5063 5064 // Create the Equal Predicates P2,P3: 5065 5066 // It is possible that the predicates P2 and/or P3 are computable at 5067 // compile time due to StartVal and/or Accum being constants. 5068 // If either one is, then we can check that now and escape if either P2 5069 // or P3 is false. 5070 5071 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5072 // for each of StartVal and Accum 5073 auto getExtendedExpr = [&](const SCEV *Expr, 5074 bool CreateSignExtend) -> const SCEV * { 5075 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5076 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5077 const SCEV *ExtendedExpr = 5078 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5079 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5080 return ExtendedExpr; 5081 }; 5082 5083 // Given: 5084 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5085 // = getExtendedExpr(Expr) 5086 // Determine whether the predicate P: Expr == ExtendedExpr 5087 // is known to be false at compile time 5088 auto PredIsKnownFalse = [&](const SCEV *Expr, 5089 const SCEV *ExtendedExpr) -> bool { 5090 return Expr != ExtendedExpr && 5091 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5092 }; 5093 5094 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5095 if (PredIsKnownFalse(StartVal, StartExtended)) { 5096 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5097 return None; 5098 } 5099 5100 // The Step is always Signed (because the overflow checks are either 5101 // NSSW or NUSW) 5102 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5103 if (PredIsKnownFalse(Accum, AccumExtended)) { 5104 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5105 return None; 5106 } 5107 5108 auto AppendPredicate = [&](const SCEV *Expr, 5109 const SCEV *ExtendedExpr) -> void { 5110 if (Expr != ExtendedExpr && 5111 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5112 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5113 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5114 Predicates.push_back(Pred); 5115 } 5116 }; 5117 5118 AppendPredicate(StartVal, StartExtended); 5119 AppendPredicate(Accum, AccumExtended); 5120 5121 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5122 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5123 // into NewAR if it will also add the runtime overflow checks specified in 5124 // Predicates. 5125 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5126 5127 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5128 std::make_pair(NewAR, Predicates); 5129 // Remember the result of the analysis for this SCEV at this locayyytion. 5130 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5131 return PredRewrite; 5132 } 5133 5134 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5135 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5136 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5137 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5138 if (!L) 5139 return None; 5140 5141 // Check to see if we already analyzed this PHI. 5142 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5143 if (I != PredicatedSCEVRewrites.end()) { 5144 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5145 I->second; 5146 // Analysis was done before and failed to create an AddRec: 5147 if (Rewrite.first == SymbolicPHI) 5148 return None; 5149 // Analysis was done before and succeeded to create an AddRec under 5150 // a predicate: 5151 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5152 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5153 return Rewrite; 5154 } 5155 5156 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5157 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5158 5159 // Record in the cache that the analysis failed 5160 if (!Rewrite) { 5161 SmallVector<const SCEVPredicate *, 3> Predicates; 5162 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5163 return None; 5164 } 5165 5166 return Rewrite; 5167 } 5168 5169 // FIXME: This utility is currently required because the Rewriter currently 5170 // does not rewrite this expression: 5171 // {0, +, (sext ix (trunc iy to ix) to iy)} 5172 // into {0, +, %step}, 5173 // even when the following Equal predicate exists: 5174 // "%step == (sext ix (trunc iy to ix) to iy)". 5175 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5176 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5177 if (AR1 == AR2) 5178 return true; 5179 5180 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5181 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5182 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5183 return false; 5184 return true; 5185 }; 5186 5187 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5188 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5189 return false; 5190 return true; 5191 } 5192 5193 /// A helper function for createAddRecFromPHI to handle simple cases. 5194 /// 5195 /// This function tries to find an AddRec expression for the simplest (yet most 5196 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5197 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5198 /// technique for finding the AddRec expression. 5199 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5200 Value *BEValueV, 5201 Value *StartValueV) { 5202 const Loop *L = LI.getLoopFor(PN->getParent()); 5203 assert(L && L->getHeader() == PN->getParent()); 5204 assert(BEValueV && StartValueV); 5205 5206 auto BO = MatchBinaryOp(BEValueV, DT); 5207 if (!BO) 5208 return nullptr; 5209 5210 if (BO->Opcode != Instruction::Add) 5211 return nullptr; 5212 5213 const SCEV *Accum = nullptr; 5214 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5215 Accum = getSCEV(BO->RHS); 5216 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5217 Accum = getSCEV(BO->LHS); 5218 5219 if (!Accum) 5220 return nullptr; 5221 5222 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5223 if (BO->IsNUW) 5224 Flags = setFlags(Flags, SCEV::FlagNUW); 5225 if (BO->IsNSW) 5226 Flags = setFlags(Flags, SCEV::FlagNSW); 5227 5228 const SCEV *StartVal = getSCEV(StartValueV); 5229 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5230 5231 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5232 5233 // We can add Flags to the post-inc expression only if we 5234 // know that it is *undefined behavior* for BEValueV to 5235 // overflow. 5236 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5237 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5238 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5239 5240 return PHISCEV; 5241 } 5242 5243 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5244 const Loop *L = LI.getLoopFor(PN->getParent()); 5245 if (!L || L->getHeader() != PN->getParent()) 5246 return nullptr; 5247 5248 // The loop may have multiple entrances or multiple exits; we can analyze 5249 // this phi as an addrec if it has a unique entry value and a unique 5250 // backedge value. 5251 Value *BEValueV = nullptr, *StartValueV = nullptr; 5252 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5253 Value *V = PN->getIncomingValue(i); 5254 if (L->contains(PN->getIncomingBlock(i))) { 5255 if (!BEValueV) { 5256 BEValueV = V; 5257 } else if (BEValueV != V) { 5258 BEValueV = nullptr; 5259 break; 5260 } 5261 } else if (!StartValueV) { 5262 StartValueV = V; 5263 } else if (StartValueV != V) { 5264 StartValueV = nullptr; 5265 break; 5266 } 5267 } 5268 if (!BEValueV || !StartValueV) 5269 return nullptr; 5270 5271 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5272 "PHI node already processed?"); 5273 5274 // First, try to find AddRec expression without creating a fictituos symbolic 5275 // value for PN. 5276 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5277 return S; 5278 5279 // Handle PHI node value symbolically. 5280 const SCEV *SymbolicName = getUnknown(PN); 5281 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5282 5283 // Using this symbolic name for the PHI, analyze the value coming around 5284 // the back-edge. 5285 const SCEV *BEValue = getSCEV(BEValueV); 5286 5287 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5288 // has a special value for the first iteration of the loop. 5289 5290 // If the value coming around the backedge is an add with the symbolic 5291 // value we just inserted, then we found a simple induction variable! 5292 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5293 // If there is a single occurrence of the symbolic value, replace it 5294 // with a recurrence. 5295 unsigned FoundIndex = Add->getNumOperands(); 5296 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5297 if (Add->getOperand(i) == SymbolicName) 5298 if (FoundIndex == e) { 5299 FoundIndex = i; 5300 break; 5301 } 5302 5303 if (FoundIndex != Add->getNumOperands()) { 5304 // Create an add with everything but the specified operand. 5305 SmallVector<const SCEV *, 8> Ops; 5306 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5307 if (i != FoundIndex) 5308 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5309 L, *this)); 5310 const SCEV *Accum = getAddExpr(Ops); 5311 5312 // This is not a valid addrec if the step amount is varying each 5313 // loop iteration, but is not itself an addrec in this loop. 5314 if (isLoopInvariant(Accum, L) || 5315 (isa<SCEVAddRecExpr>(Accum) && 5316 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5317 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5318 5319 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5320 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5321 if (BO->IsNUW) 5322 Flags = setFlags(Flags, SCEV::FlagNUW); 5323 if (BO->IsNSW) 5324 Flags = setFlags(Flags, SCEV::FlagNSW); 5325 } 5326 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5327 // If the increment is an inbounds GEP, then we know the address 5328 // space cannot be wrapped around. We cannot make any guarantee 5329 // about signed or unsigned overflow because pointers are 5330 // unsigned but we may have a negative index from the base 5331 // pointer. We can guarantee that no unsigned wrap occurs if the 5332 // indices form a positive value. 5333 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5334 Flags = setFlags(Flags, SCEV::FlagNW); 5335 5336 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5337 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5338 Flags = setFlags(Flags, SCEV::FlagNUW); 5339 } 5340 5341 // We cannot transfer nuw and nsw flags from subtraction 5342 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5343 // for instance. 5344 } 5345 5346 const SCEV *StartVal = getSCEV(StartValueV); 5347 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5348 5349 // Okay, for the entire analysis of this edge we assumed the PHI 5350 // to be symbolic. We now need to go back and purge all of the 5351 // entries for the scalars that use the symbolic expression. 5352 forgetSymbolicName(PN, SymbolicName); 5353 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5354 5355 // We can add Flags to the post-inc expression only if we 5356 // know that it is *undefined behavior* for BEValueV to 5357 // overflow. 5358 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5359 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5360 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5361 5362 return PHISCEV; 5363 } 5364 } 5365 } else { 5366 // Otherwise, this could be a loop like this: 5367 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5368 // In this case, j = {1,+,1} and BEValue is j. 5369 // Because the other in-value of i (0) fits the evolution of BEValue 5370 // i really is an addrec evolution. 5371 // 5372 // We can generalize this saying that i is the shifted value of BEValue 5373 // by one iteration: 5374 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5375 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5376 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5377 if (Shifted != getCouldNotCompute() && 5378 Start != getCouldNotCompute()) { 5379 const SCEV *StartVal = getSCEV(StartValueV); 5380 if (Start == StartVal) { 5381 // Okay, for the entire analysis of this edge we assumed the PHI 5382 // to be symbolic. We now need to go back and purge all of the 5383 // entries for the scalars that use the symbolic expression. 5384 forgetSymbolicName(PN, SymbolicName); 5385 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5386 return Shifted; 5387 } 5388 } 5389 } 5390 5391 // Remove the temporary PHI node SCEV that has been inserted while intending 5392 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5393 // as it will prevent later (possibly simpler) SCEV expressions to be added 5394 // to the ValueExprMap. 5395 eraseValueFromMap(PN); 5396 5397 return nullptr; 5398 } 5399 5400 // Checks if the SCEV S is available at BB. S is considered available at BB 5401 // if S can be materialized at BB without introducing a fault. 5402 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5403 BasicBlock *BB) { 5404 struct CheckAvailable { 5405 bool TraversalDone = false; 5406 bool Available = true; 5407 5408 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5409 BasicBlock *BB = nullptr; 5410 DominatorTree &DT; 5411 5412 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5413 : L(L), BB(BB), DT(DT) {} 5414 5415 bool setUnavailable() { 5416 TraversalDone = true; 5417 Available = false; 5418 return false; 5419 } 5420 5421 bool follow(const SCEV *S) { 5422 switch (S->getSCEVType()) { 5423 case scConstant: 5424 case scPtrToInt: 5425 case scTruncate: 5426 case scZeroExtend: 5427 case scSignExtend: 5428 case scAddExpr: 5429 case scMulExpr: 5430 case scUMaxExpr: 5431 case scSMaxExpr: 5432 case scUMinExpr: 5433 case scSMinExpr: 5434 // These expressions are available if their operand(s) is/are. 5435 return true; 5436 5437 case scAddRecExpr: { 5438 // We allow add recurrences that are on the loop BB is in, or some 5439 // outer loop. This guarantees availability because the value of the 5440 // add recurrence at BB is simply the "current" value of the induction 5441 // variable. We can relax this in the future; for instance an add 5442 // recurrence on a sibling dominating loop is also available at BB. 5443 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5444 if (L && (ARLoop == L || ARLoop->contains(L))) 5445 return true; 5446 5447 return setUnavailable(); 5448 } 5449 5450 case scUnknown: { 5451 // For SCEVUnknown, we check for simple dominance. 5452 const auto *SU = cast<SCEVUnknown>(S); 5453 Value *V = SU->getValue(); 5454 5455 if (isa<Argument>(V)) 5456 return false; 5457 5458 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5459 return false; 5460 5461 return setUnavailable(); 5462 } 5463 5464 case scUDivExpr: 5465 case scCouldNotCompute: 5466 // We do not try to smart about these at all. 5467 return setUnavailable(); 5468 } 5469 llvm_unreachable("Unknown SCEV kind!"); 5470 } 5471 5472 bool isDone() { return TraversalDone; } 5473 }; 5474 5475 CheckAvailable CA(L, BB, DT); 5476 SCEVTraversal<CheckAvailable> ST(CA); 5477 5478 ST.visitAll(S); 5479 return CA.Available; 5480 } 5481 5482 // Try to match a control flow sequence that branches out at BI and merges back 5483 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5484 // match. 5485 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5486 Value *&C, Value *&LHS, Value *&RHS) { 5487 C = BI->getCondition(); 5488 5489 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5490 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5491 5492 if (!LeftEdge.isSingleEdge()) 5493 return false; 5494 5495 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5496 5497 Use &LeftUse = Merge->getOperandUse(0); 5498 Use &RightUse = Merge->getOperandUse(1); 5499 5500 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5501 LHS = LeftUse; 5502 RHS = RightUse; 5503 return true; 5504 } 5505 5506 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5507 LHS = RightUse; 5508 RHS = LeftUse; 5509 return true; 5510 } 5511 5512 return false; 5513 } 5514 5515 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5516 auto IsReachable = 5517 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5518 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5519 const Loop *L = LI.getLoopFor(PN->getParent()); 5520 5521 // We don't want to break LCSSA, even in a SCEV expression tree. 5522 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5523 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5524 return nullptr; 5525 5526 // Try to match 5527 // 5528 // br %cond, label %left, label %right 5529 // left: 5530 // br label %merge 5531 // right: 5532 // br label %merge 5533 // merge: 5534 // V = phi [ %x, %left ], [ %y, %right ] 5535 // 5536 // as "select %cond, %x, %y" 5537 5538 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5539 assert(IDom && "At least the entry block should dominate PN"); 5540 5541 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5542 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5543 5544 if (BI && BI->isConditional() && 5545 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5546 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5547 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5548 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5549 } 5550 5551 return nullptr; 5552 } 5553 5554 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5555 if (const SCEV *S = createAddRecFromPHI(PN)) 5556 return S; 5557 5558 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5559 return S; 5560 5561 // If the PHI has a single incoming value, follow that value, unless the 5562 // PHI's incoming blocks are in a different loop, in which case doing so 5563 // risks breaking LCSSA form. Instcombine would normally zap these, but 5564 // it doesn't have DominatorTree information, so it may miss cases. 5565 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5566 if (LI.replacementPreservesLCSSAForm(PN, V)) 5567 return getSCEV(V); 5568 5569 // If it's not a loop phi, we can't handle it yet. 5570 return getUnknown(PN); 5571 } 5572 5573 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5574 Value *Cond, 5575 Value *TrueVal, 5576 Value *FalseVal) { 5577 // Handle "constant" branch or select. This can occur for instance when a 5578 // loop pass transforms an inner loop and moves on to process the outer loop. 5579 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5580 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5581 5582 // Try to match some simple smax or umax patterns. 5583 auto *ICI = dyn_cast<ICmpInst>(Cond); 5584 if (!ICI) 5585 return getUnknown(I); 5586 5587 Value *LHS = ICI->getOperand(0); 5588 Value *RHS = ICI->getOperand(1); 5589 5590 switch (ICI->getPredicate()) { 5591 case ICmpInst::ICMP_SLT: 5592 case ICmpInst::ICMP_SLE: 5593 case ICmpInst::ICMP_ULT: 5594 case ICmpInst::ICMP_ULE: 5595 std::swap(LHS, RHS); 5596 LLVM_FALLTHROUGH; 5597 case ICmpInst::ICMP_SGT: 5598 case ICmpInst::ICMP_SGE: 5599 case ICmpInst::ICMP_UGT: 5600 case ICmpInst::ICMP_UGE: 5601 // a > b ? a+x : b+x -> max(a, b)+x 5602 // a > b ? b+x : a+x -> min(a, b)+x 5603 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5604 bool Signed = ICI->isSigned(); 5605 const SCEV *LA = getSCEV(TrueVal); 5606 const SCEV *RA = getSCEV(FalseVal); 5607 const SCEV *LS = getSCEV(LHS); 5608 const SCEV *RS = getSCEV(RHS); 5609 if (LA->getType()->isPointerTy()) { 5610 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5611 // Need to make sure we can't produce weird expressions involving 5612 // negated pointers. 5613 if (LA == LS && RA == RS) 5614 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5615 if (LA == RS && RA == LS) 5616 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5617 } 5618 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5619 if (Op->getType()->isPointerTy()) { 5620 Op = getLosslessPtrToIntExpr(Op); 5621 if (isa<SCEVCouldNotCompute>(Op)) 5622 return Op; 5623 } 5624 if (Signed) 5625 Op = getNoopOrSignExtend(Op, I->getType()); 5626 else 5627 Op = getNoopOrZeroExtend(Op, I->getType()); 5628 return Op; 5629 }; 5630 LS = CoerceOperand(LS); 5631 RS = CoerceOperand(RS); 5632 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5633 break; 5634 const SCEV *LDiff = getMinusSCEV(LA, LS); 5635 const SCEV *RDiff = getMinusSCEV(RA, RS); 5636 if (LDiff == RDiff) 5637 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5638 LDiff); 5639 LDiff = getMinusSCEV(LA, RS); 5640 RDiff = getMinusSCEV(RA, LS); 5641 if (LDiff == RDiff) 5642 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5643 LDiff); 5644 } 5645 break; 5646 case ICmpInst::ICMP_NE: 5647 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5648 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5649 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5650 const SCEV *One = getOne(I->getType()); 5651 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5652 const SCEV *LA = getSCEV(TrueVal); 5653 const SCEV *RA = getSCEV(FalseVal); 5654 const SCEV *LDiff = getMinusSCEV(LA, LS); 5655 const SCEV *RDiff = getMinusSCEV(RA, One); 5656 if (LDiff == RDiff) 5657 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5658 } 5659 break; 5660 case ICmpInst::ICMP_EQ: 5661 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5662 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5663 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5664 const SCEV *One = getOne(I->getType()); 5665 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5666 const SCEV *LA = getSCEV(TrueVal); 5667 const SCEV *RA = getSCEV(FalseVal); 5668 const SCEV *LDiff = getMinusSCEV(LA, One); 5669 const SCEV *RDiff = getMinusSCEV(RA, LS); 5670 if (LDiff == RDiff) 5671 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5672 } 5673 break; 5674 default: 5675 break; 5676 } 5677 5678 return getUnknown(I); 5679 } 5680 5681 /// Expand GEP instructions into add and multiply operations. This allows them 5682 /// to be analyzed by regular SCEV code. 5683 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5684 // Don't attempt to analyze GEPs over unsized objects. 5685 if (!GEP->getSourceElementType()->isSized()) 5686 return getUnknown(GEP); 5687 5688 SmallVector<const SCEV *, 4> IndexExprs; 5689 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5690 IndexExprs.push_back(getSCEV(*Index)); 5691 return getGEPExpr(GEP, IndexExprs); 5692 } 5693 5694 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5695 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5696 return C->getAPInt().countTrailingZeros(); 5697 5698 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5699 return GetMinTrailingZeros(I->getOperand()); 5700 5701 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5702 return std::min(GetMinTrailingZeros(T->getOperand()), 5703 (uint32_t)getTypeSizeInBits(T->getType())); 5704 5705 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5706 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5707 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5708 ? getTypeSizeInBits(E->getType()) 5709 : OpRes; 5710 } 5711 5712 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5713 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5714 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5715 ? getTypeSizeInBits(E->getType()) 5716 : OpRes; 5717 } 5718 5719 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5720 // The result is the min of all operands results. 5721 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5722 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5723 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5724 return MinOpRes; 5725 } 5726 5727 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5728 // The result is the sum of all operands results. 5729 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5730 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5731 for (unsigned i = 1, e = M->getNumOperands(); 5732 SumOpRes != BitWidth && i != e; ++i) 5733 SumOpRes = 5734 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5735 return SumOpRes; 5736 } 5737 5738 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5739 // The result is the min of all operands results. 5740 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5741 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5742 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5743 return MinOpRes; 5744 } 5745 5746 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5747 // The result is the min of all operands results. 5748 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5749 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5750 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5751 return MinOpRes; 5752 } 5753 5754 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5755 // The result is the min of all operands results. 5756 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5757 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5758 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5759 return MinOpRes; 5760 } 5761 5762 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5763 // For a SCEVUnknown, ask ValueTracking. 5764 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5765 return Known.countMinTrailingZeros(); 5766 } 5767 5768 // SCEVUDivExpr 5769 return 0; 5770 } 5771 5772 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5773 auto I = MinTrailingZerosCache.find(S); 5774 if (I != MinTrailingZerosCache.end()) 5775 return I->second; 5776 5777 uint32_t Result = GetMinTrailingZerosImpl(S); 5778 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5779 assert(InsertPair.second && "Should insert a new key"); 5780 return InsertPair.first->second; 5781 } 5782 5783 /// Helper method to assign a range to V from metadata present in the IR. 5784 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5785 if (Instruction *I = dyn_cast<Instruction>(V)) 5786 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5787 return getConstantRangeFromMetadata(*MD); 5788 5789 return None; 5790 } 5791 5792 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5793 SCEV::NoWrapFlags Flags) { 5794 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5795 AddRec->setNoWrapFlags(Flags); 5796 UnsignedRanges.erase(AddRec); 5797 SignedRanges.erase(AddRec); 5798 } 5799 } 5800 5801 ConstantRange ScalarEvolution:: 5802 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5803 const DataLayout &DL = getDataLayout(); 5804 5805 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5806 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5807 5808 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5809 // use information about the trip count to improve our available range. Note 5810 // that the trip count independent cases are already handled by known bits. 5811 // WARNING: The definition of recurrence used here is subtly different than 5812 // the one used by AddRec (and thus most of this file). Step is allowed to 5813 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5814 // and other addrecs in the same loop (for non-affine addrecs). The code 5815 // below intentionally handles the case where step is not loop invariant. 5816 auto *P = dyn_cast<PHINode>(U->getValue()); 5817 if (!P) 5818 return FullSet; 5819 5820 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5821 // even the values that are not available in these blocks may come from them, 5822 // and this leads to false-positive recurrence test. 5823 for (auto *Pred : predecessors(P->getParent())) 5824 if (!DT.isReachableFromEntry(Pred)) 5825 return FullSet; 5826 5827 BinaryOperator *BO; 5828 Value *Start, *Step; 5829 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5830 return FullSet; 5831 5832 // If we found a recurrence in reachable code, we must be in a loop. Note 5833 // that BO might be in some subloop of L, and that's completely okay. 5834 auto *L = LI.getLoopFor(P->getParent()); 5835 assert(L && L->getHeader() == P->getParent()); 5836 if (!L->contains(BO->getParent())) 5837 // NOTE: This bailout should be an assert instead. However, asserting 5838 // the condition here exposes a case where LoopFusion is querying SCEV 5839 // with malformed loop information during the midst of the transform. 5840 // There doesn't appear to be an obvious fix, so for the moment bailout 5841 // until the caller issue can be fixed. PR49566 tracks the bug. 5842 return FullSet; 5843 5844 // TODO: Extend to other opcodes such as mul, and div 5845 switch (BO->getOpcode()) { 5846 default: 5847 return FullSet; 5848 case Instruction::AShr: 5849 case Instruction::LShr: 5850 case Instruction::Shl: 5851 break; 5852 }; 5853 5854 if (BO->getOperand(0) != P) 5855 // TODO: Handle the power function forms some day. 5856 return FullSet; 5857 5858 unsigned TC = getSmallConstantMaxTripCount(L); 5859 if (!TC || TC >= BitWidth) 5860 return FullSet; 5861 5862 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5863 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5864 assert(KnownStart.getBitWidth() == BitWidth && 5865 KnownStep.getBitWidth() == BitWidth); 5866 5867 // Compute total shift amount, being careful of overflow and bitwidths. 5868 auto MaxShiftAmt = KnownStep.getMaxValue(); 5869 APInt TCAP(BitWidth, TC-1); 5870 bool Overflow = false; 5871 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5872 if (Overflow) 5873 return FullSet; 5874 5875 switch (BO->getOpcode()) { 5876 default: 5877 llvm_unreachable("filtered out above"); 5878 case Instruction::AShr: { 5879 // For each ashr, three cases: 5880 // shift = 0 => unchanged value 5881 // saturation => 0 or -1 5882 // other => a value closer to zero (of the same sign) 5883 // Thus, the end value is closer to zero than the start. 5884 auto KnownEnd = KnownBits::ashr(KnownStart, 5885 KnownBits::makeConstant(TotalShift)); 5886 if (KnownStart.isNonNegative()) 5887 // Analogous to lshr (simply not yet canonicalized) 5888 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5889 KnownStart.getMaxValue() + 1); 5890 if (KnownStart.isNegative()) 5891 // End >=u Start && End <=s Start 5892 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 5893 KnownEnd.getMaxValue() + 1); 5894 break; 5895 } 5896 case Instruction::LShr: { 5897 // For each lshr, three cases: 5898 // shift = 0 => unchanged value 5899 // saturation => 0 5900 // other => a smaller positive number 5901 // Thus, the low end of the unsigned range is the last value produced. 5902 auto KnownEnd = KnownBits::lshr(KnownStart, 5903 KnownBits::makeConstant(TotalShift)); 5904 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5905 KnownStart.getMaxValue() + 1); 5906 } 5907 case Instruction::Shl: { 5908 // Iff no bits are shifted out, value increases on every shift. 5909 auto KnownEnd = KnownBits::shl(KnownStart, 5910 KnownBits::makeConstant(TotalShift)); 5911 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 5912 return ConstantRange(KnownStart.getMinValue(), 5913 KnownEnd.getMaxValue() + 1); 5914 break; 5915 } 5916 }; 5917 return FullSet; 5918 } 5919 5920 /// Determine the range for a particular SCEV. If SignHint is 5921 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5922 /// with a "cleaner" unsigned (resp. signed) representation. 5923 const ConstantRange & 5924 ScalarEvolution::getRangeRef(const SCEV *S, 5925 ScalarEvolution::RangeSignHint SignHint) { 5926 DenseMap<const SCEV *, ConstantRange> &Cache = 5927 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5928 : SignedRanges; 5929 ConstantRange::PreferredRangeType RangeType = 5930 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5931 ? ConstantRange::Unsigned : ConstantRange::Signed; 5932 5933 // See if we've computed this range already. 5934 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5935 if (I != Cache.end()) 5936 return I->second; 5937 5938 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5939 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5940 5941 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5942 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5943 using OBO = OverflowingBinaryOperator; 5944 5945 // If the value has known zeros, the maximum value will have those known zeros 5946 // as well. 5947 uint32_t TZ = GetMinTrailingZeros(S); 5948 if (TZ != 0) { 5949 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5950 ConservativeResult = 5951 ConstantRange(APInt::getMinValue(BitWidth), 5952 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5953 else 5954 ConservativeResult = ConstantRange( 5955 APInt::getSignedMinValue(BitWidth), 5956 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5957 } 5958 5959 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5960 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5961 unsigned WrapType = OBO::AnyWrap; 5962 if (Add->hasNoSignedWrap()) 5963 WrapType |= OBO::NoSignedWrap; 5964 if (Add->hasNoUnsignedWrap()) 5965 WrapType |= OBO::NoUnsignedWrap; 5966 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5967 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5968 WrapType, RangeType); 5969 return setRange(Add, SignHint, 5970 ConservativeResult.intersectWith(X, RangeType)); 5971 } 5972 5973 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5974 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5975 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5976 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5977 return setRange(Mul, SignHint, 5978 ConservativeResult.intersectWith(X, RangeType)); 5979 } 5980 5981 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5982 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5983 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5984 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5985 return setRange(SMax, SignHint, 5986 ConservativeResult.intersectWith(X, RangeType)); 5987 } 5988 5989 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5990 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5991 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5992 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5993 return setRange(UMax, SignHint, 5994 ConservativeResult.intersectWith(X, RangeType)); 5995 } 5996 5997 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5998 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5999 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 6000 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 6001 return setRange(SMin, SignHint, 6002 ConservativeResult.intersectWith(X, RangeType)); 6003 } 6004 6005 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 6006 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 6007 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 6008 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 6009 return setRange(UMin, SignHint, 6010 ConservativeResult.intersectWith(X, RangeType)); 6011 } 6012 6013 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6014 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6015 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6016 return setRange(UDiv, SignHint, 6017 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6018 } 6019 6020 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6021 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6022 return setRange(ZExt, SignHint, 6023 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6024 RangeType)); 6025 } 6026 6027 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6028 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6029 return setRange(SExt, SignHint, 6030 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6031 RangeType)); 6032 } 6033 6034 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6035 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6036 return setRange(PtrToInt, SignHint, X); 6037 } 6038 6039 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6040 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6041 return setRange(Trunc, SignHint, 6042 ConservativeResult.intersectWith(X.truncate(BitWidth), 6043 RangeType)); 6044 } 6045 6046 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6047 // If there's no unsigned wrap, the value will never be less than its 6048 // initial value. 6049 if (AddRec->hasNoUnsignedWrap()) { 6050 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6051 if (!UnsignedMinValue.isNullValue()) 6052 ConservativeResult = ConservativeResult.intersectWith( 6053 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6054 } 6055 6056 // If there's no signed wrap, and all the operands except initial value have 6057 // the same sign or zero, the value won't ever be: 6058 // 1: smaller than initial value if operands are non negative, 6059 // 2: bigger than initial value if operands are non positive. 6060 // For both cases, value can not cross signed min/max boundary. 6061 if (AddRec->hasNoSignedWrap()) { 6062 bool AllNonNeg = true; 6063 bool AllNonPos = true; 6064 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6065 if (!isKnownNonNegative(AddRec->getOperand(i))) 6066 AllNonNeg = false; 6067 if (!isKnownNonPositive(AddRec->getOperand(i))) 6068 AllNonPos = false; 6069 } 6070 if (AllNonNeg) 6071 ConservativeResult = ConservativeResult.intersectWith( 6072 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6073 APInt::getSignedMinValue(BitWidth)), 6074 RangeType); 6075 else if (AllNonPos) 6076 ConservativeResult = ConservativeResult.intersectWith( 6077 ConstantRange::getNonEmpty( 6078 APInt::getSignedMinValue(BitWidth), 6079 getSignedRangeMax(AddRec->getStart()) + 1), 6080 RangeType); 6081 } 6082 6083 // TODO: non-affine addrec 6084 if (AddRec->isAffine()) { 6085 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6086 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6087 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6088 auto RangeFromAffine = getRangeForAffineAR( 6089 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6090 BitWidth); 6091 ConservativeResult = 6092 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6093 6094 auto RangeFromFactoring = getRangeViaFactoring( 6095 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6096 BitWidth); 6097 ConservativeResult = 6098 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6099 } 6100 6101 // Now try symbolic BE count and more powerful methods. 6102 if (UseExpensiveRangeSharpening) { 6103 const SCEV *SymbolicMaxBECount = 6104 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6105 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6106 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6107 AddRec->hasNoSelfWrap()) { 6108 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6109 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6110 ConservativeResult = 6111 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6112 } 6113 } 6114 } 6115 6116 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6117 } 6118 6119 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6120 6121 // Check if the IR explicitly contains !range metadata. 6122 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6123 if (MDRange.hasValue()) 6124 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6125 RangeType); 6126 6127 // Use facts about recurrences in the underlying IR. Note that add 6128 // recurrences are AddRecExprs and thus don't hit this path. This 6129 // primarily handles shift recurrences. 6130 auto CR = getRangeForUnknownRecurrence(U); 6131 ConservativeResult = ConservativeResult.intersectWith(CR); 6132 6133 // See if ValueTracking can give us a useful range. 6134 const DataLayout &DL = getDataLayout(); 6135 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6136 if (Known.getBitWidth() != BitWidth) 6137 Known = Known.zextOrTrunc(BitWidth); 6138 6139 // ValueTracking may be able to compute a tighter result for the number of 6140 // sign bits than for the value of those sign bits. 6141 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6142 if (U->getType()->isPointerTy()) { 6143 // If the pointer size is larger than the index size type, this can cause 6144 // NS to be larger than BitWidth. So compensate for this. 6145 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6146 int ptrIdxDiff = ptrSize - BitWidth; 6147 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6148 NS -= ptrIdxDiff; 6149 } 6150 6151 if (NS > 1) { 6152 // If we know any of the sign bits, we know all of the sign bits. 6153 if (!Known.Zero.getHiBits(NS).isNullValue()) 6154 Known.Zero.setHighBits(NS); 6155 if (!Known.One.getHiBits(NS).isNullValue()) 6156 Known.One.setHighBits(NS); 6157 } 6158 6159 if (Known.getMinValue() != Known.getMaxValue() + 1) 6160 ConservativeResult = ConservativeResult.intersectWith( 6161 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6162 RangeType); 6163 if (NS > 1) 6164 ConservativeResult = ConservativeResult.intersectWith( 6165 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6166 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6167 RangeType); 6168 6169 // A range of Phi is a subset of union of all ranges of its input. 6170 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6171 // Make sure that we do not run over cycled Phis. 6172 if (PendingPhiRanges.insert(Phi).second) { 6173 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6174 for (auto &Op : Phi->operands()) { 6175 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6176 RangeFromOps = RangeFromOps.unionWith(OpRange); 6177 // No point to continue if we already have a full set. 6178 if (RangeFromOps.isFullSet()) 6179 break; 6180 } 6181 ConservativeResult = 6182 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6183 bool Erased = PendingPhiRanges.erase(Phi); 6184 assert(Erased && "Failed to erase Phi properly?"); 6185 (void) Erased; 6186 } 6187 } 6188 6189 return setRange(U, SignHint, std::move(ConservativeResult)); 6190 } 6191 6192 return setRange(S, SignHint, std::move(ConservativeResult)); 6193 } 6194 6195 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6196 // values that the expression can take. Initially, the expression has a value 6197 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6198 // argument defines if we treat Step as signed or unsigned. 6199 static ConstantRange getRangeForAffineARHelper(APInt Step, 6200 const ConstantRange &StartRange, 6201 const APInt &MaxBECount, 6202 unsigned BitWidth, bool Signed) { 6203 // If either Step or MaxBECount is 0, then the expression won't change, and we 6204 // just need to return the initial range. 6205 if (Step == 0 || MaxBECount == 0) 6206 return StartRange; 6207 6208 // If we don't know anything about the initial value (i.e. StartRange is 6209 // FullRange), then we don't know anything about the final range either. 6210 // Return FullRange. 6211 if (StartRange.isFullSet()) 6212 return ConstantRange::getFull(BitWidth); 6213 6214 // If Step is signed and negative, then we use its absolute value, but we also 6215 // note that we're moving in the opposite direction. 6216 bool Descending = Signed && Step.isNegative(); 6217 6218 if (Signed) 6219 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6220 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6221 // This equations hold true due to the well-defined wrap-around behavior of 6222 // APInt. 6223 Step = Step.abs(); 6224 6225 // Check if Offset is more than full span of BitWidth. If it is, the 6226 // expression is guaranteed to overflow. 6227 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6228 return ConstantRange::getFull(BitWidth); 6229 6230 // Offset is by how much the expression can change. Checks above guarantee no 6231 // overflow here. 6232 APInt Offset = Step * MaxBECount; 6233 6234 // Minimum value of the final range will match the minimal value of StartRange 6235 // if the expression is increasing and will be decreased by Offset otherwise. 6236 // Maximum value of the final range will match the maximal value of StartRange 6237 // if the expression is decreasing and will be increased by Offset otherwise. 6238 APInt StartLower = StartRange.getLower(); 6239 APInt StartUpper = StartRange.getUpper() - 1; 6240 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6241 : (StartUpper + std::move(Offset)); 6242 6243 // It's possible that the new minimum/maximum value will fall into the initial 6244 // range (due to wrap around). This means that the expression can take any 6245 // value in this bitwidth, and we have to return full range. 6246 if (StartRange.contains(MovedBoundary)) 6247 return ConstantRange::getFull(BitWidth); 6248 6249 APInt NewLower = 6250 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6251 APInt NewUpper = 6252 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6253 NewUpper += 1; 6254 6255 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6256 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6257 } 6258 6259 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6260 const SCEV *Step, 6261 const SCEV *MaxBECount, 6262 unsigned BitWidth) { 6263 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6264 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6265 "Precondition!"); 6266 6267 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6268 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6269 6270 // First, consider step signed. 6271 ConstantRange StartSRange = getSignedRange(Start); 6272 ConstantRange StepSRange = getSignedRange(Step); 6273 6274 // If Step can be both positive and negative, we need to find ranges for the 6275 // maximum absolute step values in both directions and union them. 6276 ConstantRange SR = 6277 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6278 MaxBECountValue, BitWidth, /* Signed = */ true); 6279 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6280 StartSRange, MaxBECountValue, 6281 BitWidth, /* Signed = */ true)); 6282 6283 // Next, consider step unsigned. 6284 ConstantRange UR = getRangeForAffineARHelper( 6285 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6286 MaxBECountValue, BitWidth, /* Signed = */ false); 6287 6288 // Finally, intersect signed and unsigned ranges. 6289 return SR.intersectWith(UR, ConstantRange::Smallest); 6290 } 6291 6292 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6293 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6294 ScalarEvolution::RangeSignHint SignHint) { 6295 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6296 assert(AddRec->hasNoSelfWrap() && 6297 "This only works for non-self-wrapping AddRecs!"); 6298 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6299 const SCEV *Step = AddRec->getStepRecurrence(*this); 6300 // Only deal with constant step to save compile time. 6301 if (!isa<SCEVConstant>(Step)) 6302 return ConstantRange::getFull(BitWidth); 6303 // Let's make sure that we can prove that we do not self-wrap during 6304 // MaxBECount iterations. We need this because MaxBECount is a maximum 6305 // iteration count estimate, and we might infer nw from some exit for which we 6306 // do not know max exit count (or any other side reasoning). 6307 // TODO: Turn into assert at some point. 6308 if (getTypeSizeInBits(MaxBECount->getType()) > 6309 getTypeSizeInBits(AddRec->getType())) 6310 return ConstantRange::getFull(BitWidth); 6311 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6312 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6313 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6314 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6315 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6316 MaxItersWithoutWrap)) 6317 return ConstantRange::getFull(BitWidth); 6318 6319 ICmpInst::Predicate LEPred = 6320 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6321 ICmpInst::Predicate GEPred = 6322 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6323 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6324 6325 // We know that there is no self-wrap. Let's take Start and End values and 6326 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6327 // the iteration. They either lie inside the range [Min(Start, End), 6328 // Max(Start, End)] or outside it: 6329 // 6330 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6331 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6332 // 6333 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6334 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6335 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6336 // Start <= End and step is positive, or Start >= End and step is negative. 6337 const SCEV *Start = AddRec->getStart(); 6338 ConstantRange StartRange = getRangeRef(Start, SignHint); 6339 ConstantRange EndRange = getRangeRef(End, SignHint); 6340 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6341 // If they already cover full iteration space, we will know nothing useful 6342 // even if we prove what we want to prove. 6343 if (RangeBetween.isFullSet()) 6344 return RangeBetween; 6345 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6346 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6347 : RangeBetween.isWrappedSet(); 6348 if (IsWrappedSet) 6349 return ConstantRange::getFull(BitWidth); 6350 6351 if (isKnownPositive(Step) && 6352 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6353 return RangeBetween; 6354 else if (isKnownNegative(Step) && 6355 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6356 return RangeBetween; 6357 return ConstantRange::getFull(BitWidth); 6358 } 6359 6360 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6361 const SCEV *Step, 6362 const SCEV *MaxBECount, 6363 unsigned BitWidth) { 6364 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6365 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6366 6367 struct SelectPattern { 6368 Value *Condition = nullptr; 6369 APInt TrueValue; 6370 APInt FalseValue; 6371 6372 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6373 const SCEV *S) { 6374 Optional<unsigned> CastOp; 6375 APInt Offset(BitWidth, 0); 6376 6377 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6378 "Should be!"); 6379 6380 // Peel off a constant offset: 6381 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6382 // In the future we could consider being smarter here and handle 6383 // {Start+Step,+,Step} too. 6384 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6385 return; 6386 6387 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6388 S = SA->getOperand(1); 6389 } 6390 6391 // Peel off a cast operation 6392 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6393 CastOp = SCast->getSCEVType(); 6394 S = SCast->getOperand(); 6395 } 6396 6397 using namespace llvm::PatternMatch; 6398 6399 auto *SU = dyn_cast<SCEVUnknown>(S); 6400 const APInt *TrueVal, *FalseVal; 6401 if (!SU || 6402 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6403 m_APInt(FalseVal)))) { 6404 Condition = nullptr; 6405 return; 6406 } 6407 6408 TrueValue = *TrueVal; 6409 FalseValue = *FalseVal; 6410 6411 // Re-apply the cast we peeled off earlier 6412 if (CastOp.hasValue()) 6413 switch (*CastOp) { 6414 default: 6415 llvm_unreachable("Unknown SCEV cast type!"); 6416 6417 case scTruncate: 6418 TrueValue = TrueValue.trunc(BitWidth); 6419 FalseValue = FalseValue.trunc(BitWidth); 6420 break; 6421 case scZeroExtend: 6422 TrueValue = TrueValue.zext(BitWidth); 6423 FalseValue = FalseValue.zext(BitWidth); 6424 break; 6425 case scSignExtend: 6426 TrueValue = TrueValue.sext(BitWidth); 6427 FalseValue = FalseValue.sext(BitWidth); 6428 break; 6429 } 6430 6431 // Re-apply the constant offset we peeled off earlier 6432 TrueValue += Offset; 6433 FalseValue += Offset; 6434 } 6435 6436 bool isRecognized() { return Condition != nullptr; } 6437 }; 6438 6439 SelectPattern StartPattern(*this, BitWidth, Start); 6440 if (!StartPattern.isRecognized()) 6441 return ConstantRange::getFull(BitWidth); 6442 6443 SelectPattern StepPattern(*this, BitWidth, Step); 6444 if (!StepPattern.isRecognized()) 6445 return ConstantRange::getFull(BitWidth); 6446 6447 if (StartPattern.Condition != StepPattern.Condition) { 6448 // We don't handle this case today; but we could, by considering four 6449 // possibilities below instead of two. I'm not sure if there are cases where 6450 // that will help over what getRange already does, though. 6451 return ConstantRange::getFull(BitWidth); 6452 } 6453 6454 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6455 // construct arbitrary general SCEV expressions here. This function is called 6456 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6457 // say) can end up caching a suboptimal value. 6458 6459 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6460 // C2352 and C2512 (otherwise it isn't needed). 6461 6462 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6463 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6464 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6465 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6466 6467 ConstantRange TrueRange = 6468 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6469 ConstantRange FalseRange = 6470 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6471 6472 return TrueRange.unionWith(FalseRange); 6473 } 6474 6475 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6476 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6477 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6478 6479 // Return early if there are no flags to propagate to the SCEV. 6480 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6481 if (BinOp->hasNoUnsignedWrap()) 6482 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6483 if (BinOp->hasNoSignedWrap()) 6484 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6485 if (Flags == SCEV::FlagAnyWrap) 6486 return SCEV::FlagAnyWrap; 6487 6488 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6489 } 6490 6491 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6492 // Here we check that I is in the header of the innermost loop containing I, 6493 // since we only deal with instructions in the loop header. The actual loop we 6494 // need to check later will come from an add recurrence, but getting that 6495 // requires computing the SCEV of the operands, which can be expensive. This 6496 // check we can do cheaply to rule out some cases early. 6497 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6498 if (InnermostContainingLoop == nullptr || 6499 InnermostContainingLoop->getHeader() != I->getParent()) 6500 return false; 6501 6502 // Only proceed if we can prove that I does not yield poison. 6503 if (!programUndefinedIfPoison(I)) 6504 return false; 6505 6506 // At this point we know that if I is executed, then it does not wrap 6507 // according to at least one of NSW or NUW. If I is not executed, then we do 6508 // not know if the calculation that I represents would wrap. Multiple 6509 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6510 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6511 // derived from other instructions that map to the same SCEV. We cannot make 6512 // that guarantee for cases where I is not executed. So we need to find the 6513 // loop that I is considered in relation to and prove that I is executed for 6514 // every iteration of that loop. That implies that the value that I 6515 // calculates does not wrap anywhere in the loop, so then we can apply the 6516 // flags to the SCEV. 6517 // 6518 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6519 // from different loops, so that we know which loop to prove that I is 6520 // executed in. 6521 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6522 // I could be an extractvalue from a call to an overflow intrinsic. 6523 // TODO: We can do better here in some cases. 6524 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6525 return false; 6526 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6527 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6528 bool AllOtherOpsLoopInvariant = true; 6529 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6530 ++OtherOpIndex) { 6531 if (OtherOpIndex != OpIndex) { 6532 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6533 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6534 AllOtherOpsLoopInvariant = false; 6535 break; 6536 } 6537 } 6538 } 6539 if (AllOtherOpsLoopInvariant && 6540 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6541 return true; 6542 } 6543 } 6544 return false; 6545 } 6546 6547 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6548 // If we know that \c I can never be poison period, then that's enough. 6549 if (isSCEVExprNeverPoison(I)) 6550 return true; 6551 6552 // For an add recurrence specifically, we assume that infinite loops without 6553 // side effects are undefined behavior, and then reason as follows: 6554 // 6555 // If the add recurrence is poison in any iteration, it is poison on all 6556 // future iterations (since incrementing poison yields poison). If the result 6557 // of the add recurrence is fed into the loop latch condition and the loop 6558 // does not contain any throws or exiting blocks other than the latch, we now 6559 // have the ability to "choose" whether the backedge is taken or not (by 6560 // choosing a sufficiently evil value for the poison feeding into the branch) 6561 // for every iteration including and after the one in which \p I first became 6562 // poison. There are two possibilities (let's call the iteration in which \p 6563 // I first became poison as K): 6564 // 6565 // 1. In the set of iterations including and after K, the loop body executes 6566 // no side effects. In this case executing the backege an infinte number 6567 // of times will yield undefined behavior. 6568 // 6569 // 2. In the set of iterations including and after K, the loop body executes 6570 // at least one side effect. In this case, that specific instance of side 6571 // effect is control dependent on poison, which also yields undefined 6572 // behavior. 6573 6574 auto *ExitingBB = L->getExitingBlock(); 6575 auto *LatchBB = L->getLoopLatch(); 6576 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6577 return false; 6578 6579 SmallPtrSet<const Instruction *, 16> Pushed; 6580 SmallVector<const Instruction *, 8> PoisonStack; 6581 6582 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6583 // things that are known to be poison under that assumption go on the 6584 // PoisonStack. 6585 Pushed.insert(I); 6586 PoisonStack.push_back(I); 6587 6588 bool LatchControlDependentOnPoison = false; 6589 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6590 const Instruction *Poison = PoisonStack.pop_back_val(); 6591 6592 for (auto *PoisonUser : Poison->users()) { 6593 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6594 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6595 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6596 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6597 assert(BI->isConditional() && "Only possibility!"); 6598 if (BI->getParent() == LatchBB) { 6599 LatchControlDependentOnPoison = true; 6600 break; 6601 } 6602 } 6603 } 6604 } 6605 6606 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6607 } 6608 6609 ScalarEvolution::LoopProperties 6610 ScalarEvolution::getLoopProperties(const Loop *L) { 6611 using LoopProperties = ScalarEvolution::LoopProperties; 6612 6613 auto Itr = LoopPropertiesCache.find(L); 6614 if (Itr == LoopPropertiesCache.end()) { 6615 auto HasSideEffects = [](Instruction *I) { 6616 if (auto *SI = dyn_cast<StoreInst>(I)) 6617 return !SI->isSimple(); 6618 6619 return I->mayHaveSideEffects(); 6620 }; 6621 6622 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6623 /*HasNoSideEffects*/ true}; 6624 6625 for (auto *BB : L->getBlocks()) 6626 for (auto &I : *BB) { 6627 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6628 LP.HasNoAbnormalExits = false; 6629 if (HasSideEffects(&I)) 6630 LP.HasNoSideEffects = false; 6631 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6632 break; // We're already as pessimistic as we can get. 6633 } 6634 6635 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6636 assert(InsertPair.second && "We just checked!"); 6637 Itr = InsertPair.first; 6638 } 6639 6640 return Itr->second; 6641 } 6642 6643 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6644 // A mustprogress loop without side effects must be finite. 6645 // TODO: The check used here is very conservative. It's only *specific* 6646 // side effects which are well defined in infinite loops. 6647 return isMustProgress(L) && loopHasNoSideEffects(L); 6648 } 6649 6650 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6651 if (!isSCEVable(V->getType())) 6652 return getUnknown(V); 6653 6654 if (Instruction *I = dyn_cast<Instruction>(V)) { 6655 // Don't attempt to analyze instructions in blocks that aren't 6656 // reachable. Such instructions don't matter, and they aren't required 6657 // to obey basic rules for definitions dominating uses which this 6658 // analysis depends on. 6659 if (!DT.isReachableFromEntry(I->getParent())) 6660 return getUnknown(UndefValue::get(V->getType())); 6661 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6662 return getConstant(CI); 6663 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6664 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6665 else if (!isa<ConstantExpr>(V)) 6666 return getUnknown(V); 6667 6668 Operator *U = cast<Operator>(V); 6669 if (auto BO = MatchBinaryOp(U, DT)) { 6670 switch (BO->Opcode) { 6671 case Instruction::Add: { 6672 // The simple thing to do would be to just call getSCEV on both operands 6673 // and call getAddExpr with the result. However if we're looking at a 6674 // bunch of things all added together, this can be quite inefficient, 6675 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6676 // Instead, gather up all the operands and make a single getAddExpr call. 6677 // LLVM IR canonical form means we need only traverse the left operands. 6678 SmallVector<const SCEV *, 4> AddOps; 6679 do { 6680 if (BO->Op) { 6681 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6682 AddOps.push_back(OpSCEV); 6683 break; 6684 } 6685 6686 // If a NUW or NSW flag can be applied to the SCEV for this 6687 // addition, then compute the SCEV for this addition by itself 6688 // with a separate call to getAddExpr. We need to do that 6689 // instead of pushing the operands of the addition onto AddOps, 6690 // since the flags are only known to apply to this particular 6691 // addition - they may not apply to other additions that can be 6692 // formed with operands from AddOps. 6693 const SCEV *RHS = getSCEV(BO->RHS); 6694 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6695 if (Flags != SCEV::FlagAnyWrap) { 6696 const SCEV *LHS = getSCEV(BO->LHS); 6697 if (BO->Opcode == Instruction::Sub) 6698 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6699 else 6700 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6701 break; 6702 } 6703 } 6704 6705 if (BO->Opcode == Instruction::Sub) 6706 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6707 else 6708 AddOps.push_back(getSCEV(BO->RHS)); 6709 6710 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6711 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6712 NewBO->Opcode != Instruction::Sub)) { 6713 AddOps.push_back(getSCEV(BO->LHS)); 6714 break; 6715 } 6716 BO = NewBO; 6717 } while (true); 6718 6719 return getAddExpr(AddOps); 6720 } 6721 6722 case Instruction::Mul: { 6723 SmallVector<const SCEV *, 4> MulOps; 6724 do { 6725 if (BO->Op) { 6726 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6727 MulOps.push_back(OpSCEV); 6728 break; 6729 } 6730 6731 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6732 if (Flags != SCEV::FlagAnyWrap) { 6733 MulOps.push_back( 6734 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6735 break; 6736 } 6737 } 6738 6739 MulOps.push_back(getSCEV(BO->RHS)); 6740 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6741 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6742 MulOps.push_back(getSCEV(BO->LHS)); 6743 break; 6744 } 6745 BO = NewBO; 6746 } while (true); 6747 6748 return getMulExpr(MulOps); 6749 } 6750 case Instruction::UDiv: 6751 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6752 case Instruction::URem: 6753 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6754 case Instruction::Sub: { 6755 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6756 if (BO->Op) 6757 Flags = getNoWrapFlagsFromUB(BO->Op); 6758 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6759 } 6760 case Instruction::And: 6761 // For an expression like x&255 that merely masks off the high bits, 6762 // use zext(trunc(x)) as the SCEV expression. 6763 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6764 if (CI->isZero()) 6765 return getSCEV(BO->RHS); 6766 if (CI->isMinusOne()) 6767 return getSCEV(BO->LHS); 6768 const APInt &A = CI->getValue(); 6769 6770 // Instcombine's ShrinkDemandedConstant may strip bits out of 6771 // constants, obscuring what would otherwise be a low-bits mask. 6772 // Use computeKnownBits to compute what ShrinkDemandedConstant 6773 // knew about to reconstruct a low-bits mask value. 6774 unsigned LZ = A.countLeadingZeros(); 6775 unsigned TZ = A.countTrailingZeros(); 6776 unsigned BitWidth = A.getBitWidth(); 6777 KnownBits Known(BitWidth); 6778 computeKnownBits(BO->LHS, Known, getDataLayout(), 6779 0, &AC, nullptr, &DT); 6780 6781 APInt EffectiveMask = 6782 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6783 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6784 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6785 const SCEV *LHS = getSCEV(BO->LHS); 6786 const SCEV *ShiftedLHS = nullptr; 6787 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6788 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6789 // For an expression like (x * 8) & 8, simplify the multiply. 6790 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6791 unsigned GCD = std::min(MulZeros, TZ); 6792 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6793 SmallVector<const SCEV*, 4> MulOps; 6794 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6795 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6796 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6797 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6798 } 6799 } 6800 if (!ShiftedLHS) 6801 ShiftedLHS = getUDivExpr(LHS, MulCount); 6802 return getMulExpr( 6803 getZeroExtendExpr( 6804 getTruncateExpr(ShiftedLHS, 6805 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6806 BO->LHS->getType()), 6807 MulCount); 6808 } 6809 } 6810 break; 6811 6812 case Instruction::Or: 6813 // If the RHS of the Or is a constant, we may have something like: 6814 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6815 // optimizations will transparently handle this case. 6816 // 6817 // In order for this transformation to be safe, the LHS must be of the 6818 // form X*(2^n) and the Or constant must be less than 2^n. 6819 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6820 const SCEV *LHS = getSCEV(BO->LHS); 6821 const APInt &CIVal = CI->getValue(); 6822 if (GetMinTrailingZeros(LHS) >= 6823 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6824 // Build a plain add SCEV. 6825 return getAddExpr(LHS, getSCEV(CI), 6826 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6827 } 6828 } 6829 break; 6830 6831 case Instruction::Xor: 6832 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6833 // If the RHS of xor is -1, then this is a not operation. 6834 if (CI->isMinusOne()) 6835 return getNotSCEV(getSCEV(BO->LHS)); 6836 6837 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6838 // This is a variant of the check for xor with -1, and it handles 6839 // the case where instcombine has trimmed non-demanded bits out 6840 // of an xor with -1. 6841 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6842 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6843 if (LBO->getOpcode() == Instruction::And && 6844 LCI->getValue() == CI->getValue()) 6845 if (const SCEVZeroExtendExpr *Z = 6846 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6847 Type *UTy = BO->LHS->getType(); 6848 const SCEV *Z0 = Z->getOperand(); 6849 Type *Z0Ty = Z0->getType(); 6850 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6851 6852 // If C is a low-bits mask, the zero extend is serving to 6853 // mask off the high bits. Complement the operand and 6854 // re-apply the zext. 6855 if (CI->getValue().isMask(Z0TySize)) 6856 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6857 6858 // If C is a single bit, it may be in the sign-bit position 6859 // before the zero-extend. In this case, represent the xor 6860 // using an add, which is equivalent, and re-apply the zext. 6861 APInt Trunc = CI->getValue().trunc(Z0TySize); 6862 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6863 Trunc.isSignMask()) 6864 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6865 UTy); 6866 } 6867 } 6868 break; 6869 6870 case Instruction::Shl: 6871 // Turn shift left of a constant amount into a multiply. 6872 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6873 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6874 6875 // If the shift count is not less than the bitwidth, the result of 6876 // the shift is undefined. Don't try to analyze it, because the 6877 // resolution chosen here may differ from the resolution chosen in 6878 // other parts of the compiler. 6879 if (SA->getValue().uge(BitWidth)) 6880 break; 6881 6882 // We can safely preserve the nuw flag in all cases. It's also safe to 6883 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6884 // requires special handling. It can be preserved as long as we're not 6885 // left shifting by bitwidth - 1. 6886 auto Flags = SCEV::FlagAnyWrap; 6887 if (BO->Op) { 6888 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6889 if ((MulFlags & SCEV::FlagNSW) && 6890 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6891 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6892 if (MulFlags & SCEV::FlagNUW) 6893 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6894 } 6895 6896 Constant *X = ConstantInt::get( 6897 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6898 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6899 } 6900 break; 6901 6902 case Instruction::AShr: { 6903 // AShr X, C, where C is a constant. 6904 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6905 if (!CI) 6906 break; 6907 6908 Type *OuterTy = BO->LHS->getType(); 6909 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6910 // If the shift count is not less than the bitwidth, the result of 6911 // the shift is undefined. Don't try to analyze it, because the 6912 // resolution chosen here may differ from the resolution chosen in 6913 // other parts of the compiler. 6914 if (CI->getValue().uge(BitWidth)) 6915 break; 6916 6917 if (CI->isZero()) 6918 return getSCEV(BO->LHS); // shift by zero --> noop 6919 6920 uint64_t AShrAmt = CI->getZExtValue(); 6921 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6922 6923 Operator *L = dyn_cast<Operator>(BO->LHS); 6924 if (L && L->getOpcode() == Instruction::Shl) { 6925 // X = Shl A, n 6926 // Y = AShr X, m 6927 // Both n and m are constant. 6928 6929 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6930 if (L->getOperand(1) == BO->RHS) 6931 // For a two-shift sext-inreg, i.e. n = m, 6932 // use sext(trunc(x)) as the SCEV expression. 6933 return getSignExtendExpr( 6934 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6935 6936 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6937 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6938 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6939 if (ShlAmt > AShrAmt) { 6940 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6941 // expression. We already checked that ShlAmt < BitWidth, so 6942 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6943 // ShlAmt - AShrAmt < Amt. 6944 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6945 ShlAmt - AShrAmt); 6946 return getSignExtendExpr( 6947 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6948 getConstant(Mul)), OuterTy); 6949 } 6950 } 6951 } 6952 break; 6953 } 6954 } 6955 } 6956 6957 switch (U->getOpcode()) { 6958 case Instruction::Trunc: 6959 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6960 6961 case Instruction::ZExt: 6962 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6963 6964 case Instruction::SExt: 6965 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6966 // The NSW flag of a subtract does not always survive the conversion to 6967 // A + (-1)*B. By pushing sign extension onto its operands we are much 6968 // more likely to preserve NSW and allow later AddRec optimisations. 6969 // 6970 // NOTE: This is effectively duplicating this logic from getSignExtend: 6971 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6972 // but by that point the NSW information has potentially been lost. 6973 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6974 Type *Ty = U->getType(); 6975 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6976 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6977 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6978 } 6979 } 6980 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6981 6982 case Instruction::BitCast: 6983 // BitCasts are no-op casts so we just eliminate the cast. 6984 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6985 return getSCEV(U->getOperand(0)); 6986 break; 6987 6988 case Instruction::PtrToInt: { 6989 // Pointer to integer cast is straight-forward, so do model it. 6990 const SCEV *Op = getSCEV(U->getOperand(0)); 6991 Type *DstIntTy = U->getType(); 6992 // But only if effective SCEV (integer) type is wide enough to represent 6993 // all possible pointer values. 6994 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 6995 if (isa<SCEVCouldNotCompute>(IntOp)) 6996 return getUnknown(V); 6997 return IntOp; 6998 } 6999 case Instruction::IntToPtr: 7000 // Just don't deal with inttoptr casts. 7001 return getUnknown(V); 7002 7003 case Instruction::SDiv: 7004 // If both operands are non-negative, this is just an udiv. 7005 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7006 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7007 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7008 break; 7009 7010 case Instruction::SRem: 7011 // If both operands are non-negative, this is just an urem. 7012 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7013 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7014 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7015 break; 7016 7017 case Instruction::GetElementPtr: 7018 return createNodeForGEP(cast<GEPOperator>(U)); 7019 7020 case Instruction::PHI: 7021 return createNodeForPHI(cast<PHINode>(U)); 7022 7023 case Instruction::Select: 7024 // U can also be a select constant expr, which let fall through. Since 7025 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7026 // constant expressions cannot have instructions as operands, we'd have 7027 // returned getUnknown for a select constant expressions anyway. 7028 if (isa<Instruction>(U)) 7029 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7030 U->getOperand(1), U->getOperand(2)); 7031 break; 7032 7033 case Instruction::Call: 7034 case Instruction::Invoke: 7035 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7036 return getSCEV(RV); 7037 7038 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7039 switch (II->getIntrinsicID()) { 7040 case Intrinsic::abs: 7041 return getAbsExpr( 7042 getSCEV(II->getArgOperand(0)), 7043 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7044 case Intrinsic::umax: 7045 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7046 getSCEV(II->getArgOperand(1))); 7047 case Intrinsic::umin: 7048 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7049 getSCEV(II->getArgOperand(1))); 7050 case Intrinsic::smax: 7051 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7052 getSCEV(II->getArgOperand(1))); 7053 case Intrinsic::smin: 7054 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7055 getSCEV(II->getArgOperand(1))); 7056 case Intrinsic::usub_sat: { 7057 const SCEV *X = getSCEV(II->getArgOperand(0)); 7058 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7059 const SCEV *ClampedY = getUMinExpr(X, Y); 7060 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7061 } 7062 case Intrinsic::uadd_sat: { 7063 const SCEV *X = getSCEV(II->getArgOperand(0)); 7064 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7065 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7066 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7067 } 7068 case Intrinsic::start_loop_iterations: 7069 // A start_loop_iterations is just equivalent to the first operand for 7070 // SCEV purposes. 7071 return getSCEV(II->getArgOperand(0)); 7072 default: 7073 break; 7074 } 7075 } 7076 break; 7077 } 7078 7079 return getUnknown(V); 7080 } 7081 7082 //===----------------------------------------------------------------------===// 7083 // Iteration Count Computation Code 7084 // 7085 7086 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { 7087 // Get the trip count from the BE count by adding 1. Overflow, results 7088 // in zero which means "unknown". 7089 return getAddExpr(ExitCount, getOne(ExitCount->getType())); 7090 } 7091 7092 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7093 if (!ExitCount) 7094 return 0; 7095 7096 ConstantInt *ExitConst = ExitCount->getValue(); 7097 7098 // Guard against huge trip counts. 7099 if (ExitConst->getValue().getActiveBits() > 32) 7100 return 0; 7101 7102 // In case of integer overflow, this returns 0, which is correct. 7103 return ((unsigned)ExitConst->getZExtValue()) + 1; 7104 } 7105 7106 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7107 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7108 return getConstantTripCount(ExitCount); 7109 } 7110 7111 unsigned 7112 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7113 const BasicBlock *ExitingBlock) { 7114 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7115 assert(L->isLoopExiting(ExitingBlock) && 7116 "Exiting block must actually branch out of the loop!"); 7117 const SCEVConstant *ExitCount = 7118 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7119 return getConstantTripCount(ExitCount); 7120 } 7121 7122 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7123 const auto *MaxExitCount = 7124 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7125 return getConstantTripCount(MaxExitCount); 7126 } 7127 7128 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7129 SmallVector<BasicBlock *, 8> ExitingBlocks; 7130 L->getExitingBlocks(ExitingBlocks); 7131 7132 Optional<unsigned> Res = None; 7133 for (auto *ExitingBB : ExitingBlocks) { 7134 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7135 if (!Res) 7136 Res = Multiple; 7137 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7138 } 7139 return Res.getValueOr(1); 7140 } 7141 7142 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7143 const SCEV *ExitCount) { 7144 if (ExitCount == getCouldNotCompute()) 7145 return 1; 7146 7147 // Get the trip count 7148 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7149 7150 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7151 if (!TC) 7152 // Attempt to factor more general cases. Returns the greatest power of 7153 // two divisor. If overflow happens, the trip count expression is still 7154 // divisible by the greatest power of 2 divisor returned. 7155 return 1U << std::min((uint32_t)31, 7156 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7157 7158 ConstantInt *Result = TC->getValue(); 7159 7160 // Guard against huge trip counts (this requires checking 7161 // for zero to handle the case where the trip count == -1 and the 7162 // addition wraps). 7163 if (!Result || Result->getValue().getActiveBits() > 32 || 7164 Result->getValue().getActiveBits() == 0) 7165 return 1; 7166 7167 return (unsigned)Result->getZExtValue(); 7168 } 7169 7170 /// Returns the largest constant divisor of the trip count of this loop as a 7171 /// normal unsigned value, if possible. This means that the actual trip count is 7172 /// always a multiple of the returned value (don't forget the trip count could 7173 /// very well be zero as well!). 7174 /// 7175 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7176 /// multiple of a constant (which is also the case if the trip count is simply 7177 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7178 /// if the trip count is very large (>= 2^32). 7179 /// 7180 /// As explained in the comments for getSmallConstantTripCount, this assumes 7181 /// that control exits the loop via ExitingBlock. 7182 unsigned 7183 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7184 const BasicBlock *ExitingBlock) { 7185 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7186 assert(L->isLoopExiting(ExitingBlock) && 7187 "Exiting block must actually branch out of the loop!"); 7188 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7189 return getSmallConstantTripMultiple(L, ExitCount); 7190 } 7191 7192 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7193 const BasicBlock *ExitingBlock, 7194 ExitCountKind Kind) { 7195 switch (Kind) { 7196 case Exact: 7197 case SymbolicMaximum: 7198 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7199 case ConstantMaximum: 7200 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7201 }; 7202 llvm_unreachable("Invalid ExitCountKind!"); 7203 } 7204 7205 const SCEV * 7206 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7207 SCEVUnionPredicate &Preds) { 7208 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7209 } 7210 7211 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7212 ExitCountKind Kind) { 7213 switch (Kind) { 7214 case Exact: 7215 return getBackedgeTakenInfo(L).getExact(L, this); 7216 case ConstantMaximum: 7217 return getBackedgeTakenInfo(L).getConstantMax(this); 7218 case SymbolicMaximum: 7219 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7220 }; 7221 llvm_unreachable("Invalid ExitCountKind!"); 7222 } 7223 7224 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7225 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7226 } 7227 7228 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7229 static void 7230 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 7231 BasicBlock *Header = L->getHeader(); 7232 7233 // Push all Loop-header PHIs onto the Worklist stack. 7234 for (PHINode &PN : Header->phis()) 7235 Worklist.push_back(&PN); 7236 } 7237 7238 const ScalarEvolution::BackedgeTakenInfo & 7239 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7240 auto &BTI = getBackedgeTakenInfo(L); 7241 if (BTI.hasFullInfo()) 7242 return BTI; 7243 7244 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7245 7246 if (!Pair.second) 7247 return Pair.first->second; 7248 7249 BackedgeTakenInfo Result = 7250 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7251 7252 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7253 } 7254 7255 ScalarEvolution::BackedgeTakenInfo & 7256 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7257 // Initially insert an invalid entry for this loop. If the insertion 7258 // succeeds, proceed to actually compute a backedge-taken count and 7259 // update the value. The temporary CouldNotCompute value tells SCEV 7260 // code elsewhere that it shouldn't attempt to request a new 7261 // backedge-taken count, which could result in infinite recursion. 7262 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7263 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7264 if (!Pair.second) 7265 return Pair.first->second; 7266 7267 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7268 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7269 // must be cleared in this scope. 7270 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7271 7272 // In product build, there are no usage of statistic. 7273 (void)NumTripCountsComputed; 7274 (void)NumTripCountsNotComputed; 7275 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7276 const SCEV *BEExact = Result.getExact(L, this); 7277 if (BEExact != getCouldNotCompute()) { 7278 assert(isLoopInvariant(BEExact, L) && 7279 isLoopInvariant(Result.getConstantMax(this), L) && 7280 "Computed backedge-taken count isn't loop invariant for loop!"); 7281 ++NumTripCountsComputed; 7282 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7283 isa<PHINode>(L->getHeader()->begin())) { 7284 // Only count loops that have phi nodes as not being computable. 7285 ++NumTripCountsNotComputed; 7286 } 7287 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7288 7289 // Now that we know more about the trip count for this loop, forget any 7290 // existing SCEV values for PHI nodes in this loop since they are only 7291 // conservative estimates made without the benefit of trip count 7292 // information. This is similar to the code in forgetLoop, except that 7293 // it handles SCEVUnknown PHI nodes specially. 7294 if (Result.hasAnyInfo()) { 7295 SmallVector<Instruction *, 16> Worklist; 7296 PushLoopPHIs(L, Worklist); 7297 7298 SmallPtrSet<Instruction *, 8> Discovered; 7299 while (!Worklist.empty()) { 7300 Instruction *I = Worklist.pop_back_val(); 7301 7302 ValueExprMapType::iterator It = 7303 ValueExprMap.find_as(static_cast<Value *>(I)); 7304 if (It != ValueExprMap.end()) { 7305 const SCEV *Old = It->second; 7306 7307 // SCEVUnknown for a PHI either means that it has an unrecognized 7308 // structure, or it's a PHI that's in the progress of being computed 7309 // by createNodeForPHI. In the former case, additional loop trip 7310 // count information isn't going to change anything. In the later 7311 // case, createNodeForPHI will perform the necessary updates on its 7312 // own when it gets to that point. 7313 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7314 eraseValueFromMap(It->first); 7315 forgetMemoizedResults(Old); 7316 } 7317 if (PHINode *PN = dyn_cast<PHINode>(I)) 7318 ConstantEvolutionLoopExitValue.erase(PN); 7319 } 7320 7321 // Since we don't need to invalidate anything for correctness and we're 7322 // only invalidating to make SCEV's results more precise, we get to stop 7323 // early to avoid invalidating too much. This is especially important in 7324 // cases like: 7325 // 7326 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7327 // loop0: 7328 // %pn0 = phi 7329 // ... 7330 // loop1: 7331 // %pn1 = phi 7332 // ... 7333 // 7334 // where both loop0 and loop1's backedge taken count uses the SCEV 7335 // expression for %v. If we don't have the early stop below then in cases 7336 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7337 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7338 // count for loop1, effectively nullifying SCEV's trip count cache. 7339 for (auto *U : I->users()) 7340 if (auto *I = dyn_cast<Instruction>(U)) { 7341 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7342 if (LoopForUser && L->contains(LoopForUser) && 7343 Discovered.insert(I).second) 7344 Worklist.push_back(I); 7345 } 7346 } 7347 } 7348 7349 // Re-lookup the insert position, since the call to 7350 // computeBackedgeTakenCount above could result in a 7351 // recusive call to getBackedgeTakenInfo (on a different 7352 // loop), which would invalidate the iterator computed 7353 // earlier. 7354 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7355 } 7356 7357 void ScalarEvolution::forgetAllLoops() { 7358 // This method is intended to forget all info about loops. It should 7359 // invalidate caches as if the following happened: 7360 // - The trip counts of all loops have changed arbitrarily 7361 // - Every llvm::Value has been updated in place to produce a different 7362 // result. 7363 BackedgeTakenCounts.clear(); 7364 PredicatedBackedgeTakenCounts.clear(); 7365 LoopPropertiesCache.clear(); 7366 ConstantEvolutionLoopExitValue.clear(); 7367 ValueExprMap.clear(); 7368 ValuesAtScopes.clear(); 7369 LoopDispositions.clear(); 7370 BlockDispositions.clear(); 7371 UnsignedRanges.clear(); 7372 SignedRanges.clear(); 7373 ExprValueMap.clear(); 7374 HasRecMap.clear(); 7375 MinTrailingZerosCache.clear(); 7376 PredicatedSCEVRewrites.clear(); 7377 } 7378 7379 void ScalarEvolution::forgetLoop(const Loop *L) { 7380 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7381 SmallVector<Instruction *, 32> Worklist; 7382 SmallPtrSet<Instruction *, 16> Visited; 7383 7384 // Iterate over all the loops and sub-loops to drop SCEV information. 7385 while (!LoopWorklist.empty()) { 7386 auto *CurrL = LoopWorklist.pop_back_val(); 7387 7388 // Drop any stored trip count value. 7389 BackedgeTakenCounts.erase(CurrL); 7390 PredicatedBackedgeTakenCounts.erase(CurrL); 7391 7392 // Drop information about predicated SCEV rewrites for this loop. 7393 for (auto I = PredicatedSCEVRewrites.begin(); 7394 I != PredicatedSCEVRewrites.end();) { 7395 std::pair<const SCEV *, const Loop *> Entry = I->first; 7396 if (Entry.second == CurrL) 7397 PredicatedSCEVRewrites.erase(I++); 7398 else 7399 ++I; 7400 } 7401 7402 auto LoopUsersItr = LoopUsers.find(CurrL); 7403 if (LoopUsersItr != LoopUsers.end()) { 7404 for (auto *S : LoopUsersItr->second) 7405 forgetMemoizedResults(S); 7406 LoopUsers.erase(LoopUsersItr); 7407 } 7408 7409 // Drop information about expressions based on loop-header PHIs. 7410 PushLoopPHIs(CurrL, Worklist); 7411 7412 while (!Worklist.empty()) { 7413 Instruction *I = Worklist.pop_back_val(); 7414 if (!Visited.insert(I).second) 7415 continue; 7416 7417 ValueExprMapType::iterator It = 7418 ValueExprMap.find_as(static_cast<Value *>(I)); 7419 if (It != ValueExprMap.end()) { 7420 eraseValueFromMap(It->first); 7421 forgetMemoizedResults(It->second); 7422 if (PHINode *PN = dyn_cast<PHINode>(I)) 7423 ConstantEvolutionLoopExitValue.erase(PN); 7424 } 7425 7426 PushDefUseChildren(I, Worklist); 7427 } 7428 7429 LoopPropertiesCache.erase(CurrL); 7430 // Forget all contained loops too, to avoid dangling entries in the 7431 // ValuesAtScopes map. 7432 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7433 } 7434 } 7435 7436 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7437 while (Loop *Parent = L->getParentLoop()) 7438 L = Parent; 7439 forgetLoop(L); 7440 } 7441 7442 void ScalarEvolution::forgetValue(Value *V) { 7443 Instruction *I = dyn_cast<Instruction>(V); 7444 if (!I) return; 7445 7446 // Drop information about expressions based on loop-header PHIs. 7447 SmallVector<Instruction *, 16> Worklist; 7448 Worklist.push_back(I); 7449 7450 SmallPtrSet<Instruction *, 8> Visited; 7451 while (!Worklist.empty()) { 7452 I = Worklist.pop_back_val(); 7453 if (!Visited.insert(I).second) 7454 continue; 7455 7456 ValueExprMapType::iterator It = 7457 ValueExprMap.find_as(static_cast<Value *>(I)); 7458 if (It != ValueExprMap.end()) { 7459 eraseValueFromMap(It->first); 7460 forgetMemoizedResults(It->second); 7461 if (PHINode *PN = dyn_cast<PHINode>(I)) 7462 ConstantEvolutionLoopExitValue.erase(PN); 7463 } 7464 7465 PushDefUseChildren(I, Worklist); 7466 } 7467 } 7468 7469 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7470 LoopDispositions.clear(); 7471 } 7472 7473 /// Get the exact loop backedge taken count considering all loop exits. A 7474 /// computable result can only be returned for loops with all exiting blocks 7475 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7476 /// is never skipped. This is a valid assumption as long as the loop exits via 7477 /// that test. For precise results, it is the caller's responsibility to specify 7478 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7479 const SCEV * 7480 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7481 SCEVUnionPredicate *Preds) const { 7482 // If any exits were not computable, the loop is not computable. 7483 if (!isComplete() || ExitNotTaken.empty()) 7484 return SE->getCouldNotCompute(); 7485 7486 const BasicBlock *Latch = L->getLoopLatch(); 7487 // All exiting blocks we have collected must dominate the only backedge. 7488 if (!Latch) 7489 return SE->getCouldNotCompute(); 7490 7491 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7492 // count is simply a minimum out of all these calculated exit counts. 7493 SmallVector<const SCEV *, 2> Ops; 7494 for (auto &ENT : ExitNotTaken) { 7495 const SCEV *BECount = ENT.ExactNotTaken; 7496 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7497 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7498 "We should only have known counts for exiting blocks that dominate " 7499 "latch!"); 7500 7501 Ops.push_back(BECount); 7502 7503 if (Preds && !ENT.hasAlwaysTruePredicate()) 7504 Preds->add(ENT.Predicate.get()); 7505 7506 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7507 "Predicate should be always true!"); 7508 } 7509 7510 return SE->getUMinFromMismatchedTypes(Ops); 7511 } 7512 7513 /// Get the exact not taken count for this loop exit. 7514 const SCEV * 7515 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7516 ScalarEvolution *SE) const { 7517 for (auto &ENT : ExitNotTaken) 7518 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7519 return ENT.ExactNotTaken; 7520 7521 return SE->getCouldNotCompute(); 7522 } 7523 7524 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7525 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7526 for (auto &ENT : ExitNotTaken) 7527 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7528 return ENT.MaxNotTaken; 7529 7530 return SE->getCouldNotCompute(); 7531 } 7532 7533 /// getConstantMax - Get the constant max backedge taken count for the loop. 7534 const SCEV * 7535 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7536 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7537 return !ENT.hasAlwaysTruePredicate(); 7538 }; 7539 7540 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7541 return SE->getCouldNotCompute(); 7542 7543 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7544 isa<SCEVConstant>(getConstantMax())) && 7545 "No point in having a non-constant max backedge taken count!"); 7546 return getConstantMax(); 7547 } 7548 7549 const SCEV * 7550 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7551 ScalarEvolution *SE) { 7552 if (!SymbolicMax) 7553 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7554 return SymbolicMax; 7555 } 7556 7557 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7558 ScalarEvolution *SE) const { 7559 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7560 return !ENT.hasAlwaysTruePredicate(); 7561 }; 7562 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7563 } 7564 7565 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const { 7566 return Operands.contains(S); 7567 } 7568 7569 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7570 : ExitLimit(E, E, false, None) { 7571 } 7572 7573 ScalarEvolution::ExitLimit::ExitLimit( 7574 const SCEV *E, const SCEV *M, bool MaxOrZero, 7575 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7576 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7577 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7578 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7579 "Exact is not allowed to be less precise than Max"); 7580 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7581 isa<SCEVConstant>(MaxNotTaken)) && 7582 "No point in having a non-constant max backedge taken count!"); 7583 for (auto *PredSet : PredSetList) 7584 for (auto *P : *PredSet) 7585 addPredicate(P); 7586 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7587 "Backedge count should be int"); 7588 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7589 "Max backedge count should be int"); 7590 } 7591 7592 ScalarEvolution::ExitLimit::ExitLimit( 7593 const SCEV *E, const SCEV *M, bool MaxOrZero, 7594 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7595 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7596 } 7597 7598 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7599 bool MaxOrZero) 7600 : ExitLimit(E, M, MaxOrZero, None) { 7601 } 7602 7603 class SCEVRecordOperands { 7604 SmallPtrSetImpl<const SCEV *> &Operands; 7605 7606 public: 7607 SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands) 7608 : Operands(Operands) {} 7609 bool follow(const SCEV *S) { 7610 Operands.insert(S); 7611 return true; 7612 } 7613 bool isDone() { return false; } 7614 }; 7615 7616 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7617 /// computable exit into a persistent ExitNotTakenInfo array. 7618 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7619 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7620 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7621 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7622 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7623 7624 ExitNotTaken.reserve(ExitCounts.size()); 7625 std::transform( 7626 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7627 [&](const EdgeExitInfo &EEI) { 7628 BasicBlock *ExitBB = EEI.first; 7629 const ExitLimit &EL = EEI.second; 7630 if (EL.Predicates.empty()) 7631 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7632 nullptr); 7633 7634 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7635 for (auto *Pred : EL.Predicates) 7636 Predicate->add(Pred); 7637 7638 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7639 std::move(Predicate)); 7640 }); 7641 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7642 isa<SCEVConstant>(ConstantMax)) && 7643 "No point in having a non-constant max backedge taken count!"); 7644 7645 SCEVRecordOperands RecordOperands(Operands); 7646 SCEVTraversal<SCEVRecordOperands> ST(RecordOperands); 7647 if (!isa<SCEVCouldNotCompute>(ConstantMax)) 7648 ST.visitAll(ConstantMax); 7649 for (auto &ENT : ExitNotTaken) 7650 if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken)) 7651 ST.visitAll(ENT.ExactNotTaken); 7652 } 7653 7654 /// Compute the number of times the backedge of the specified loop will execute. 7655 ScalarEvolution::BackedgeTakenInfo 7656 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7657 bool AllowPredicates) { 7658 SmallVector<BasicBlock *, 8> ExitingBlocks; 7659 L->getExitingBlocks(ExitingBlocks); 7660 7661 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7662 7663 SmallVector<EdgeExitInfo, 4> ExitCounts; 7664 bool CouldComputeBECount = true; 7665 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7666 const SCEV *MustExitMaxBECount = nullptr; 7667 const SCEV *MayExitMaxBECount = nullptr; 7668 bool MustExitMaxOrZero = false; 7669 7670 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7671 // and compute maxBECount. 7672 // Do a union of all the predicates here. 7673 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7674 BasicBlock *ExitBB = ExitingBlocks[i]; 7675 7676 // We canonicalize untaken exits to br (constant), ignore them so that 7677 // proving an exit untaken doesn't negatively impact our ability to reason 7678 // about the loop as whole. 7679 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7680 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7681 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7682 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7683 continue; 7684 } 7685 7686 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7687 7688 assert((AllowPredicates || EL.Predicates.empty()) && 7689 "Predicated exit limit when predicates are not allowed!"); 7690 7691 // 1. For each exit that can be computed, add an entry to ExitCounts. 7692 // CouldComputeBECount is true only if all exits can be computed. 7693 if (EL.ExactNotTaken == getCouldNotCompute()) 7694 // We couldn't compute an exact value for this exit, so 7695 // we won't be able to compute an exact value for the loop. 7696 CouldComputeBECount = false; 7697 else 7698 ExitCounts.emplace_back(ExitBB, EL); 7699 7700 // 2. Derive the loop's MaxBECount from each exit's max number of 7701 // non-exiting iterations. Partition the loop exits into two kinds: 7702 // LoopMustExits and LoopMayExits. 7703 // 7704 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7705 // is a LoopMayExit. If any computable LoopMustExit is found, then 7706 // MaxBECount is the minimum EL.MaxNotTaken of computable 7707 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7708 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7709 // computable EL.MaxNotTaken. 7710 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7711 DT.dominates(ExitBB, Latch)) { 7712 if (!MustExitMaxBECount) { 7713 MustExitMaxBECount = EL.MaxNotTaken; 7714 MustExitMaxOrZero = EL.MaxOrZero; 7715 } else { 7716 MustExitMaxBECount = 7717 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7718 } 7719 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7720 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7721 MayExitMaxBECount = EL.MaxNotTaken; 7722 else { 7723 MayExitMaxBECount = 7724 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7725 } 7726 } 7727 } 7728 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7729 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7730 // The loop backedge will be taken the maximum or zero times if there's 7731 // a single exit that must be taken the maximum or zero times. 7732 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7733 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7734 MaxBECount, MaxOrZero); 7735 } 7736 7737 ScalarEvolution::ExitLimit 7738 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7739 bool AllowPredicates) { 7740 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7741 // If our exiting block does not dominate the latch, then its connection with 7742 // loop's exit limit may be far from trivial. 7743 const BasicBlock *Latch = L->getLoopLatch(); 7744 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7745 return getCouldNotCompute(); 7746 7747 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7748 Instruction *Term = ExitingBlock->getTerminator(); 7749 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7750 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7751 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7752 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7753 "It should have one successor in loop and one exit block!"); 7754 // Proceed to the next level to examine the exit condition expression. 7755 return computeExitLimitFromCond( 7756 L, BI->getCondition(), ExitIfTrue, 7757 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7758 } 7759 7760 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7761 // For switch, make sure that there is a single exit from the loop. 7762 BasicBlock *Exit = nullptr; 7763 for (auto *SBB : successors(ExitingBlock)) 7764 if (!L->contains(SBB)) { 7765 if (Exit) // Multiple exit successors. 7766 return getCouldNotCompute(); 7767 Exit = SBB; 7768 } 7769 assert(Exit && "Exiting block must have at least one exit"); 7770 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7771 /*ControlsExit=*/IsOnlyExit); 7772 } 7773 7774 return getCouldNotCompute(); 7775 } 7776 7777 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7778 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7779 bool ControlsExit, bool AllowPredicates) { 7780 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7781 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7782 ControlsExit, AllowPredicates); 7783 } 7784 7785 Optional<ScalarEvolution::ExitLimit> 7786 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7787 bool ExitIfTrue, bool ControlsExit, 7788 bool AllowPredicates) { 7789 (void)this->L; 7790 (void)this->ExitIfTrue; 7791 (void)this->AllowPredicates; 7792 7793 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7794 this->AllowPredicates == AllowPredicates && 7795 "Variance in assumed invariant key components!"); 7796 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7797 if (Itr == TripCountMap.end()) 7798 return None; 7799 return Itr->second; 7800 } 7801 7802 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7803 bool ExitIfTrue, 7804 bool ControlsExit, 7805 bool AllowPredicates, 7806 const ExitLimit &EL) { 7807 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7808 this->AllowPredicates == AllowPredicates && 7809 "Variance in assumed invariant key components!"); 7810 7811 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7812 assert(InsertResult.second && "Expected successful insertion!"); 7813 (void)InsertResult; 7814 (void)ExitIfTrue; 7815 } 7816 7817 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7818 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7819 bool ControlsExit, bool AllowPredicates) { 7820 7821 if (auto MaybeEL = 7822 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7823 return *MaybeEL; 7824 7825 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7826 ControlsExit, AllowPredicates); 7827 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7828 return EL; 7829 } 7830 7831 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7832 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7833 bool ControlsExit, bool AllowPredicates) { 7834 // Handle BinOp conditions (And, Or). 7835 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7836 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7837 return *LimitFromBinOp; 7838 7839 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7840 // Proceed to the next level to examine the icmp. 7841 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7842 ExitLimit EL = 7843 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7844 if (EL.hasFullInfo() || !AllowPredicates) 7845 return EL; 7846 7847 // Try again, but use SCEV predicates this time. 7848 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7849 /*AllowPredicates=*/true); 7850 } 7851 7852 // Check for a constant condition. These are normally stripped out by 7853 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7854 // preserve the CFG and is temporarily leaving constant conditions 7855 // in place. 7856 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7857 if (ExitIfTrue == !CI->getZExtValue()) 7858 // The backedge is always taken. 7859 return getCouldNotCompute(); 7860 else 7861 // The backedge is never taken. 7862 return getZero(CI->getType()); 7863 } 7864 7865 // If it's not an integer or pointer comparison then compute it the hard way. 7866 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7867 } 7868 7869 Optional<ScalarEvolution::ExitLimit> 7870 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7871 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7872 bool ControlsExit, bool AllowPredicates) { 7873 // Check if the controlling expression for this loop is an And or Or. 7874 Value *Op0, *Op1; 7875 bool IsAnd = false; 7876 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 7877 IsAnd = true; 7878 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 7879 IsAnd = false; 7880 else 7881 return None; 7882 7883 // EitherMayExit is true in these two cases: 7884 // br (and Op0 Op1), loop, exit 7885 // br (or Op0 Op1), exit, loop 7886 bool EitherMayExit = IsAnd ^ ExitIfTrue; 7887 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 7888 ControlsExit && !EitherMayExit, 7889 AllowPredicates); 7890 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 7891 ControlsExit && !EitherMayExit, 7892 AllowPredicates); 7893 7894 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 7895 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 7896 if (isa<ConstantInt>(Op1)) 7897 return Op1 == NeutralElement ? EL0 : EL1; 7898 if (isa<ConstantInt>(Op0)) 7899 return Op0 == NeutralElement ? EL1 : EL0; 7900 7901 const SCEV *BECount = getCouldNotCompute(); 7902 const SCEV *MaxBECount = getCouldNotCompute(); 7903 if (EitherMayExit) { 7904 // Both conditions must be same for the loop to continue executing. 7905 // Choose the less conservative count. 7906 // If ExitCond is a short-circuit form (select), using 7907 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 7908 // To see the detailed examples, please see 7909 // test/Analysis/ScalarEvolution/exit-count-select.ll 7910 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 7911 if (!PoisonSafe) 7912 // Even if ExitCond is select, we can safely derive BECount using both 7913 // EL0 and EL1 in these cases: 7914 // (1) EL0.ExactNotTaken is non-zero 7915 // (2) EL1.ExactNotTaken is non-poison 7916 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 7917 // it cannot be umin(0, ..)) 7918 // The PoisonSafe assignment below is simplified and the assertion after 7919 // BECount calculation fully guarantees the condition (3). 7920 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 7921 isa<SCEVConstant>(EL1.ExactNotTaken); 7922 if (EL0.ExactNotTaken != getCouldNotCompute() && 7923 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 7924 BECount = 7925 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7926 7927 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 7928 // it should have been simplified to zero (see the condition (3) above) 7929 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 7930 BECount->isZero()); 7931 } 7932 if (EL0.MaxNotTaken == getCouldNotCompute()) 7933 MaxBECount = EL1.MaxNotTaken; 7934 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7935 MaxBECount = EL0.MaxNotTaken; 7936 else 7937 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7938 } else { 7939 // Both conditions must be same at the same time for the loop to exit. 7940 // For now, be conservative. 7941 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7942 BECount = EL0.ExactNotTaken; 7943 } 7944 7945 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7946 // to be more aggressive when computing BECount than when computing 7947 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7948 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7949 // to not. 7950 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7951 !isa<SCEVCouldNotCompute>(BECount)) 7952 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7953 7954 return ExitLimit(BECount, MaxBECount, false, 7955 { &EL0.Predicates, &EL1.Predicates }); 7956 } 7957 7958 ScalarEvolution::ExitLimit 7959 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7960 ICmpInst *ExitCond, 7961 bool ExitIfTrue, 7962 bool ControlsExit, 7963 bool AllowPredicates) { 7964 // If the condition was exit on true, convert the condition to exit on false 7965 ICmpInst::Predicate Pred; 7966 if (!ExitIfTrue) 7967 Pred = ExitCond->getPredicate(); 7968 else 7969 Pred = ExitCond->getInversePredicate(); 7970 const ICmpInst::Predicate OriginalPred = Pred; 7971 7972 // Handle common loops like: for (X = "string"; *X; ++X) 7973 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7974 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7975 ExitLimit ItCnt = 7976 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7977 if (ItCnt.hasAnyInfo()) 7978 return ItCnt; 7979 } 7980 7981 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7982 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7983 7984 // Try to evaluate any dependencies out of the loop. 7985 LHS = getSCEVAtScope(LHS, L); 7986 RHS = getSCEVAtScope(RHS, L); 7987 7988 // At this point, we would like to compute how many iterations of the 7989 // loop the predicate will return true for these inputs. 7990 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7991 // If there is a loop-invariant, force it into the RHS. 7992 std::swap(LHS, RHS); 7993 Pred = ICmpInst::getSwappedPredicate(Pred); 7994 } 7995 7996 // Simplify the operands before analyzing them. 7997 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7998 7999 // If we have a comparison of a chrec against a constant, try to use value 8000 // ranges to answer this query. 8001 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8002 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8003 if (AddRec->getLoop() == L) { 8004 // Form the constant range. 8005 ConstantRange CompRange = 8006 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8007 8008 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8009 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8010 } 8011 8012 switch (Pred) { 8013 case ICmpInst::ICMP_NE: { // while (X != Y) 8014 // Convert to: while (X-Y != 0) 8015 if (LHS->getType()->isPointerTy()) { 8016 LHS = getLosslessPtrToIntExpr(LHS); 8017 if (isa<SCEVCouldNotCompute>(LHS)) 8018 return LHS; 8019 } 8020 if (RHS->getType()->isPointerTy()) { 8021 RHS = getLosslessPtrToIntExpr(RHS); 8022 if (isa<SCEVCouldNotCompute>(RHS)) 8023 return RHS; 8024 } 8025 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8026 AllowPredicates); 8027 if (EL.hasAnyInfo()) return EL; 8028 break; 8029 } 8030 case ICmpInst::ICMP_EQ: { // while (X == Y) 8031 // Convert to: while (X-Y == 0) 8032 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8033 if (EL.hasAnyInfo()) return EL; 8034 break; 8035 } 8036 case ICmpInst::ICMP_SLT: 8037 case ICmpInst::ICMP_ULT: { // while (X < Y) 8038 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8039 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8040 AllowPredicates); 8041 if (EL.hasAnyInfo()) return EL; 8042 break; 8043 } 8044 case ICmpInst::ICMP_SGT: 8045 case ICmpInst::ICMP_UGT: { // while (X > Y) 8046 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8047 ExitLimit EL = 8048 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8049 AllowPredicates); 8050 if (EL.hasAnyInfo()) return EL; 8051 break; 8052 } 8053 default: 8054 break; 8055 } 8056 8057 auto *ExhaustiveCount = 8058 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8059 8060 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8061 return ExhaustiveCount; 8062 8063 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8064 ExitCond->getOperand(1), L, OriginalPred); 8065 } 8066 8067 ScalarEvolution::ExitLimit 8068 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8069 SwitchInst *Switch, 8070 BasicBlock *ExitingBlock, 8071 bool ControlsExit) { 8072 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8073 8074 // Give up if the exit is the default dest of a switch. 8075 if (Switch->getDefaultDest() == ExitingBlock) 8076 return getCouldNotCompute(); 8077 8078 assert(L->contains(Switch->getDefaultDest()) && 8079 "Default case must not exit the loop!"); 8080 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8081 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8082 8083 // while (X != Y) --> while (X-Y != 0) 8084 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8085 if (EL.hasAnyInfo()) 8086 return EL; 8087 8088 return getCouldNotCompute(); 8089 } 8090 8091 static ConstantInt * 8092 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8093 ScalarEvolution &SE) { 8094 const SCEV *InVal = SE.getConstant(C); 8095 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8096 assert(isa<SCEVConstant>(Val) && 8097 "Evaluation of SCEV at constant didn't fold correctly?"); 8098 return cast<SCEVConstant>(Val)->getValue(); 8099 } 8100 8101 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 8102 /// compute the backedge execution count. 8103 ScalarEvolution::ExitLimit 8104 ScalarEvolution::computeLoadConstantCompareExitLimit( 8105 LoadInst *LI, 8106 Constant *RHS, 8107 const Loop *L, 8108 ICmpInst::Predicate predicate) { 8109 if (LI->isVolatile()) return getCouldNotCompute(); 8110 8111 // Check to see if the loaded pointer is a getelementptr of a global. 8112 // TODO: Use SCEV instead of manually grubbing with GEPs. 8113 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 8114 if (!GEP) return getCouldNotCompute(); 8115 8116 // Make sure that it is really a constant global we are gepping, with an 8117 // initializer, and make sure the first IDX is really 0. 8118 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 8119 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 8120 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 8121 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 8122 return getCouldNotCompute(); 8123 8124 // Okay, we allow one non-constant index into the GEP instruction. 8125 Value *VarIdx = nullptr; 8126 std::vector<Constant*> Indexes; 8127 unsigned VarIdxNum = 0; 8128 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 8129 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 8130 Indexes.push_back(CI); 8131 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 8132 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 8133 VarIdx = GEP->getOperand(i); 8134 VarIdxNum = i-2; 8135 Indexes.push_back(nullptr); 8136 } 8137 8138 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 8139 if (!VarIdx) 8140 return getCouldNotCompute(); 8141 8142 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 8143 // Check to see if X is a loop variant variable value now. 8144 const SCEV *Idx = getSCEV(VarIdx); 8145 Idx = getSCEVAtScope(Idx, L); 8146 8147 // We can only recognize very limited forms of loop index expressions, in 8148 // particular, only affine AddRec's like {C1,+,C2}<L>. 8149 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 8150 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() || 8151 isLoopInvariant(IdxExpr, L) || 8152 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 8153 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 8154 return getCouldNotCompute(); 8155 8156 unsigned MaxSteps = MaxBruteForceIterations; 8157 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 8158 ConstantInt *ItCst = ConstantInt::get( 8159 cast<IntegerType>(IdxExpr->getType()), IterationNum); 8160 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 8161 8162 // Form the GEP offset. 8163 Indexes[VarIdxNum] = Val; 8164 8165 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 8166 Indexes); 8167 if (!Result) break; // Cannot compute! 8168 8169 // Evaluate the condition for this iteration. 8170 Result = ConstantExpr::getICmp(predicate, Result, RHS); 8171 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 8172 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 8173 ++NumArrayLenItCounts; 8174 return getConstant(ItCst); // Found terminating iteration! 8175 } 8176 } 8177 return getCouldNotCompute(); 8178 } 8179 8180 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8181 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8182 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8183 if (!RHS) 8184 return getCouldNotCompute(); 8185 8186 const BasicBlock *Latch = L->getLoopLatch(); 8187 if (!Latch) 8188 return getCouldNotCompute(); 8189 8190 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8191 if (!Predecessor) 8192 return getCouldNotCompute(); 8193 8194 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8195 // Return LHS in OutLHS and shift_opt in OutOpCode. 8196 auto MatchPositiveShift = 8197 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8198 8199 using namespace PatternMatch; 8200 8201 ConstantInt *ShiftAmt; 8202 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8203 OutOpCode = Instruction::LShr; 8204 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8205 OutOpCode = Instruction::AShr; 8206 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8207 OutOpCode = Instruction::Shl; 8208 else 8209 return false; 8210 8211 return ShiftAmt->getValue().isStrictlyPositive(); 8212 }; 8213 8214 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8215 // 8216 // loop: 8217 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8218 // %iv.shifted = lshr i32 %iv, <positive constant> 8219 // 8220 // Return true on a successful match. Return the corresponding PHI node (%iv 8221 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8222 auto MatchShiftRecurrence = 8223 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8224 Optional<Instruction::BinaryOps> PostShiftOpCode; 8225 8226 { 8227 Instruction::BinaryOps OpC; 8228 Value *V; 8229 8230 // If we encounter a shift instruction, "peel off" the shift operation, 8231 // and remember that we did so. Later when we inspect %iv's backedge 8232 // value, we will make sure that the backedge value uses the same 8233 // operation. 8234 // 8235 // Note: the peeled shift operation does not have to be the same 8236 // instruction as the one feeding into the PHI's backedge value. We only 8237 // really care about it being the same *kind* of shift instruction -- 8238 // that's all that is required for our later inferences to hold. 8239 if (MatchPositiveShift(LHS, V, OpC)) { 8240 PostShiftOpCode = OpC; 8241 LHS = V; 8242 } 8243 } 8244 8245 PNOut = dyn_cast<PHINode>(LHS); 8246 if (!PNOut || PNOut->getParent() != L->getHeader()) 8247 return false; 8248 8249 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8250 Value *OpLHS; 8251 8252 return 8253 // The backedge value for the PHI node must be a shift by a positive 8254 // amount 8255 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8256 8257 // of the PHI node itself 8258 OpLHS == PNOut && 8259 8260 // and the kind of shift should be match the kind of shift we peeled 8261 // off, if any. 8262 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8263 }; 8264 8265 PHINode *PN; 8266 Instruction::BinaryOps OpCode; 8267 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8268 return getCouldNotCompute(); 8269 8270 const DataLayout &DL = getDataLayout(); 8271 8272 // The key rationale for this optimization is that for some kinds of shift 8273 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8274 // within a finite number of iterations. If the condition guarding the 8275 // backedge (in the sense that the backedge is taken if the condition is true) 8276 // is false for the value the shift recurrence stabilizes to, then we know 8277 // that the backedge is taken only a finite number of times. 8278 8279 ConstantInt *StableValue = nullptr; 8280 switch (OpCode) { 8281 default: 8282 llvm_unreachable("Impossible case!"); 8283 8284 case Instruction::AShr: { 8285 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8286 // bitwidth(K) iterations. 8287 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8288 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8289 Predecessor->getTerminator(), &DT); 8290 auto *Ty = cast<IntegerType>(RHS->getType()); 8291 if (Known.isNonNegative()) 8292 StableValue = ConstantInt::get(Ty, 0); 8293 else if (Known.isNegative()) 8294 StableValue = ConstantInt::get(Ty, -1, true); 8295 else 8296 return getCouldNotCompute(); 8297 8298 break; 8299 } 8300 case Instruction::LShr: 8301 case Instruction::Shl: 8302 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8303 // stabilize to 0 in at most bitwidth(K) iterations. 8304 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8305 break; 8306 } 8307 8308 auto *Result = 8309 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8310 assert(Result->getType()->isIntegerTy(1) && 8311 "Otherwise cannot be an operand to a branch instruction"); 8312 8313 if (Result->isZeroValue()) { 8314 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8315 const SCEV *UpperBound = 8316 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8317 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8318 } 8319 8320 return getCouldNotCompute(); 8321 } 8322 8323 /// Return true if we can constant fold an instruction of the specified type, 8324 /// assuming that all operands were constants. 8325 static bool CanConstantFold(const Instruction *I) { 8326 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8327 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8328 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8329 return true; 8330 8331 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8332 if (const Function *F = CI->getCalledFunction()) 8333 return canConstantFoldCallTo(CI, F); 8334 return false; 8335 } 8336 8337 /// Determine whether this instruction can constant evolve within this loop 8338 /// assuming its operands can all constant evolve. 8339 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8340 // An instruction outside of the loop can't be derived from a loop PHI. 8341 if (!L->contains(I)) return false; 8342 8343 if (isa<PHINode>(I)) { 8344 // We don't currently keep track of the control flow needed to evaluate 8345 // PHIs, so we cannot handle PHIs inside of loops. 8346 return L->getHeader() == I->getParent(); 8347 } 8348 8349 // If we won't be able to constant fold this expression even if the operands 8350 // are constants, bail early. 8351 return CanConstantFold(I); 8352 } 8353 8354 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8355 /// recursing through each instruction operand until reaching a loop header phi. 8356 static PHINode * 8357 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8358 DenseMap<Instruction *, PHINode *> &PHIMap, 8359 unsigned Depth) { 8360 if (Depth > MaxConstantEvolvingDepth) 8361 return nullptr; 8362 8363 // Otherwise, we can evaluate this instruction if all of its operands are 8364 // constant or derived from a PHI node themselves. 8365 PHINode *PHI = nullptr; 8366 for (Value *Op : UseInst->operands()) { 8367 if (isa<Constant>(Op)) continue; 8368 8369 Instruction *OpInst = dyn_cast<Instruction>(Op); 8370 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8371 8372 PHINode *P = dyn_cast<PHINode>(OpInst); 8373 if (!P) 8374 // If this operand is already visited, reuse the prior result. 8375 // We may have P != PHI if this is the deepest point at which the 8376 // inconsistent paths meet. 8377 P = PHIMap.lookup(OpInst); 8378 if (!P) { 8379 // Recurse and memoize the results, whether a phi is found or not. 8380 // This recursive call invalidates pointers into PHIMap. 8381 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8382 PHIMap[OpInst] = P; 8383 } 8384 if (!P) 8385 return nullptr; // Not evolving from PHI 8386 if (PHI && PHI != P) 8387 return nullptr; // Evolving from multiple different PHIs. 8388 PHI = P; 8389 } 8390 // This is a expression evolving from a constant PHI! 8391 return PHI; 8392 } 8393 8394 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8395 /// in the loop that V is derived from. We allow arbitrary operations along the 8396 /// way, but the operands of an operation must either be constants or a value 8397 /// derived from a constant PHI. If this expression does not fit with these 8398 /// constraints, return null. 8399 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8400 Instruction *I = dyn_cast<Instruction>(V); 8401 if (!I || !canConstantEvolve(I, L)) return nullptr; 8402 8403 if (PHINode *PN = dyn_cast<PHINode>(I)) 8404 return PN; 8405 8406 // Record non-constant instructions contained by the loop. 8407 DenseMap<Instruction *, PHINode *> PHIMap; 8408 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8409 } 8410 8411 /// EvaluateExpression - Given an expression that passes the 8412 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8413 /// in the loop has the value PHIVal. If we can't fold this expression for some 8414 /// reason, return null. 8415 static Constant *EvaluateExpression(Value *V, const Loop *L, 8416 DenseMap<Instruction *, Constant *> &Vals, 8417 const DataLayout &DL, 8418 const TargetLibraryInfo *TLI) { 8419 // Convenient constant check, but redundant for recursive calls. 8420 if (Constant *C = dyn_cast<Constant>(V)) return C; 8421 Instruction *I = dyn_cast<Instruction>(V); 8422 if (!I) return nullptr; 8423 8424 if (Constant *C = Vals.lookup(I)) return C; 8425 8426 // An instruction inside the loop depends on a value outside the loop that we 8427 // weren't given a mapping for, or a value such as a call inside the loop. 8428 if (!canConstantEvolve(I, L)) return nullptr; 8429 8430 // An unmapped PHI can be due to a branch or another loop inside this loop, 8431 // or due to this not being the initial iteration through a loop where we 8432 // couldn't compute the evolution of this particular PHI last time. 8433 if (isa<PHINode>(I)) return nullptr; 8434 8435 std::vector<Constant*> Operands(I->getNumOperands()); 8436 8437 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8438 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8439 if (!Operand) { 8440 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8441 if (!Operands[i]) return nullptr; 8442 continue; 8443 } 8444 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8445 Vals[Operand] = C; 8446 if (!C) return nullptr; 8447 Operands[i] = C; 8448 } 8449 8450 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8451 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8452 Operands[1], DL, TLI); 8453 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8454 if (!LI->isVolatile()) 8455 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8456 } 8457 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8458 } 8459 8460 8461 // If every incoming value to PN except the one for BB is a specific Constant, 8462 // return that, else return nullptr. 8463 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8464 Constant *IncomingVal = nullptr; 8465 8466 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8467 if (PN->getIncomingBlock(i) == BB) 8468 continue; 8469 8470 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8471 if (!CurrentVal) 8472 return nullptr; 8473 8474 if (IncomingVal != CurrentVal) { 8475 if (IncomingVal) 8476 return nullptr; 8477 IncomingVal = CurrentVal; 8478 } 8479 } 8480 8481 return IncomingVal; 8482 } 8483 8484 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8485 /// in the header of its containing loop, we know the loop executes a 8486 /// constant number of times, and the PHI node is just a recurrence 8487 /// involving constants, fold it. 8488 Constant * 8489 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8490 const APInt &BEs, 8491 const Loop *L) { 8492 auto I = ConstantEvolutionLoopExitValue.find(PN); 8493 if (I != ConstantEvolutionLoopExitValue.end()) 8494 return I->second; 8495 8496 if (BEs.ugt(MaxBruteForceIterations)) 8497 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8498 8499 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8500 8501 DenseMap<Instruction *, Constant *> CurrentIterVals; 8502 BasicBlock *Header = L->getHeader(); 8503 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8504 8505 BasicBlock *Latch = L->getLoopLatch(); 8506 if (!Latch) 8507 return nullptr; 8508 8509 for (PHINode &PHI : Header->phis()) { 8510 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8511 CurrentIterVals[&PHI] = StartCST; 8512 } 8513 if (!CurrentIterVals.count(PN)) 8514 return RetVal = nullptr; 8515 8516 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8517 8518 // Execute the loop symbolically to determine the exit value. 8519 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8520 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8521 8522 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8523 unsigned IterationNum = 0; 8524 const DataLayout &DL = getDataLayout(); 8525 for (; ; ++IterationNum) { 8526 if (IterationNum == NumIterations) 8527 return RetVal = CurrentIterVals[PN]; // Got exit value! 8528 8529 // Compute the value of the PHIs for the next iteration. 8530 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8531 DenseMap<Instruction *, Constant *> NextIterVals; 8532 Constant *NextPHI = 8533 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8534 if (!NextPHI) 8535 return nullptr; // Couldn't evaluate! 8536 NextIterVals[PN] = NextPHI; 8537 8538 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8539 8540 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8541 // cease to be able to evaluate one of them or if they stop evolving, 8542 // because that doesn't necessarily prevent us from computing PN. 8543 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8544 for (const auto &I : CurrentIterVals) { 8545 PHINode *PHI = dyn_cast<PHINode>(I.first); 8546 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8547 PHIsToCompute.emplace_back(PHI, I.second); 8548 } 8549 // We use two distinct loops because EvaluateExpression may invalidate any 8550 // iterators into CurrentIterVals. 8551 for (const auto &I : PHIsToCompute) { 8552 PHINode *PHI = I.first; 8553 Constant *&NextPHI = NextIterVals[PHI]; 8554 if (!NextPHI) { // Not already computed. 8555 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8556 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8557 } 8558 if (NextPHI != I.second) 8559 StoppedEvolving = false; 8560 } 8561 8562 // If all entries in CurrentIterVals == NextIterVals then we can stop 8563 // iterating, the loop can't continue to change. 8564 if (StoppedEvolving) 8565 return RetVal = CurrentIterVals[PN]; 8566 8567 CurrentIterVals.swap(NextIterVals); 8568 } 8569 } 8570 8571 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8572 Value *Cond, 8573 bool ExitWhen) { 8574 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8575 if (!PN) return getCouldNotCompute(); 8576 8577 // If the loop is canonicalized, the PHI will have exactly two entries. 8578 // That's the only form we support here. 8579 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8580 8581 DenseMap<Instruction *, Constant *> CurrentIterVals; 8582 BasicBlock *Header = L->getHeader(); 8583 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8584 8585 BasicBlock *Latch = L->getLoopLatch(); 8586 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8587 8588 for (PHINode &PHI : Header->phis()) { 8589 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8590 CurrentIterVals[&PHI] = StartCST; 8591 } 8592 if (!CurrentIterVals.count(PN)) 8593 return getCouldNotCompute(); 8594 8595 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8596 // the loop symbolically to determine when the condition gets a value of 8597 // "ExitWhen". 8598 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8599 const DataLayout &DL = getDataLayout(); 8600 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8601 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8602 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8603 8604 // Couldn't symbolically evaluate. 8605 if (!CondVal) return getCouldNotCompute(); 8606 8607 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8608 ++NumBruteForceTripCountsComputed; 8609 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8610 } 8611 8612 // Update all the PHI nodes for the next iteration. 8613 DenseMap<Instruction *, Constant *> NextIterVals; 8614 8615 // Create a list of which PHIs we need to compute. We want to do this before 8616 // calling EvaluateExpression on them because that may invalidate iterators 8617 // into CurrentIterVals. 8618 SmallVector<PHINode *, 8> PHIsToCompute; 8619 for (const auto &I : CurrentIterVals) { 8620 PHINode *PHI = dyn_cast<PHINode>(I.first); 8621 if (!PHI || PHI->getParent() != Header) continue; 8622 PHIsToCompute.push_back(PHI); 8623 } 8624 for (PHINode *PHI : PHIsToCompute) { 8625 Constant *&NextPHI = NextIterVals[PHI]; 8626 if (NextPHI) continue; // Already computed! 8627 8628 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8629 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8630 } 8631 CurrentIterVals.swap(NextIterVals); 8632 } 8633 8634 // Too many iterations were needed to evaluate. 8635 return getCouldNotCompute(); 8636 } 8637 8638 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8639 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8640 ValuesAtScopes[V]; 8641 // Check to see if we've folded this expression at this loop before. 8642 for (auto &LS : Values) 8643 if (LS.first == L) 8644 return LS.second ? LS.second : V; 8645 8646 Values.emplace_back(L, nullptr); 8647 8648 // Otherwise compute it. 8649 const SCEV *C = computeSCEVAtScope(V, L); 8650 for (auto &LS : reverse(ValuesAtScopes[V])) 8651 if (LS.first == L) { 8652 LS.second = C; 8653 break; 8654 } 8655 return C; 8656 } 8657 8658 /// This builds up a Constant using the ConstantExpr interface. That way, we 8659 /// will return Constants for objects which aren't represented by a 8660 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8661 /// Returns NULL if the SCEV isn't representable as a Constant. 8662 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8663 switch (V->getSCEVType()) { 8664 case scCouldNotCompute: 8665 case scAddRecExpr: 8666 return nullptr; 8667 case scConstant: 8668 return cast<SCEVConstant>(V)->getValue(); 8669 case scUnknown: 8670 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8671 case scSignExtend: { 8672 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8673 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8674 return ConstantExpr::getSExt(CastOp, SS->getType()); 8675 return nullptr; 8676 } 8677 case scZeroExtend: { 8678 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8679 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8680 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8681 return nullptr; 8682 } 8683 case scPtrToInt: { 8684 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8685 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8686 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8687 8688 return nullptr; 8689 } 8690 case scTruncate: { 8691 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8692 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8693 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8694 return nullptr; 8695 } 8696 case scAddExpr: { 8697 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8698 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8699 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8700 unsigned AS = PTy->getAddressSpace(); 8701 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8702 C = ConstantExpr::getBitCast(C, DestPtrTy); 8703 } 8704 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8705 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8706 if (!C2) 8707 return nullptr; 8708 8709 // First pointer! 8710 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8711 unsigned AS = C2->getType()->getPointerAddressSpace(); 8712 std::swap(C, C2); 8713 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8714 // The offsets have been converted to bytes. We can add bytes to an 8715 // i8* by GEP with the byte count in the first index. 8716 C = ConstantExpr::getBitCast(C, DestPtrTy); 8717 } 8718 8719 // Don't bother trying to sum two pointers. We probably can't 8720 // statically compute a load that results from it anyway. 8721 if (C2->getType()->isPointerTy()) 8722 return nullptr; 8723 8724 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8725 if (PTy->getElementType()->isStructTy()) 8726 C2 = ConstantExpr::getIntegerCast( 8727 C2, Type::getInt32Ty(C->getContext()), true); 8728 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8729 } else 8730 C = ConstantExpr::getAdd(C, C2); 8731 } 8732 return C; 8733 } 8734 return nullptr; 8735 } 8736 case scMulExpr: { 8737 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8738 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8739 // Don't bother with pointers at all. 8740 if (C->getType()->isPointerTy()) 8741 return nullptr; 8742 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8743 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8744 if (!C2 || C2->getType()->isPointerTy()) 8745 return nullptr; 8746 C = ConstantExpr::getMul(C, C2); 8747 } 8748 return C; 8749 } 8750 return nullptr; 8751 } 8752 case scUDivExpr: { 8753 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8754 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8755 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8756 if (LHS->getType() == RHS->getType()) 8757 return ConstantExpr::getUDiv(LHS, RHS); 8758 return nullptr; 8759 } 8760 case scSMaxExpr: 8761 case scUMaxExpr: 8762 case scSMinExpr: 8763 case scUMinExpr: 8764 return nullptr; // TODO: smax, umax, smin, umax. 8765 } 8766 llvm_unreachable("Unknown SCEV kind!"); 8767 } 8768 8769 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8770 if (isa<SCEVConstant>(V)) return V; 8771 8772 // If this instruction is evolved from a constant-evolving PHI, compute the 8773 // exit value from the loop without using SCEVs. 8774 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8775 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8776 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8777 const Loop *CurrLoop = this->LI[I->getParent()]; 8778 // Looking for loop exit value. 8779 if (CurrLoop && CurrLoop->getParentLoop() == L && 8780 PN->getParent() == CurrLoop->getHeader()) { 8781 // Okay, there is no closed form solution for the PHI node. Check 8782 // to see if the loop that contains it has a known backedge-taken 8783 // count. If so, we may be able to force computation of the exit 8784 // value. 8785 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8786 // This trivial case can show up in some degenerate cases where 8787 // the incoming IR has not yet been fully simplified. 8788 if (BackedgeTakenCount->isZero()) { 8789 Value *InitValue = nullptr; 8790 bool MultipleInitValues = false; 8791 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8792 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8793 if (!InitValue) 8794 InitValue = PN->getIncomingValue(i); 8795 else if (InitValue != PN->getIncomingValue(i)) { 8796 MultipleInitValues = true; 8797 break; 8798 } 8799 } 8800 } 8801 if (!MultipleInitValues && InitValue) 8802 return getSCEV(InitValue); 8803 } 8804 // Do we have a loop invariant value flowing around the backedge 8805 // for a loop which must execute the backedge? 8806 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8807 isKnownPositive(BackedgeTakenCount) && 8808 PN->getNumIncomingValues() == 2) { 8809 8810 unsigned InLoopPred = 8811 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8812 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8813 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8814 return getSCEV(BackedgeVal); 8815 } 8816 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8817 // Okay, we know how many times the containing loop executes. If 8818 // this is a constant evolving PHI node, get the final value at 8819 // the specified iteration number. 8820 Constant *RV = getConstantEvolutionLoopExitValue( 8821 PN, BTCC->getAPInt(), CurrLoop); 8822 if (RV) return getSCEV(RV); 8823 } 8824 } 8825 8826 // If there is a single-input Phi, evaluate it at our scope. If we can 8827 // prove that this replacement does not break LCSSA form, use new value. 8828 if (PN->getNumOperands() == 1) { 8829 const SCEV *Input = getSCEV(PN->getOperand(0)); 8830 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8831 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8832 // for the simplest case just support constants. 8833 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8834 } 8835 } 8836 8837 // Okay, this is an expression that we cannot symbolically evaluate 8838 // into a SCEV. Check to see if it's possible to symbolically evaluate 8839 // the arguments into constants, and if so, try to constant propagate the 8840 // result. This is particularly useful for computing loop exit values. 8841 if (CanConstantFold(I)) { 8842 SmallVector<Constant *, 4> Operands; 8843 bool MadeImprovement = false; 8844 for (Value *Op : I->operands()) { 8845 if (Constant *C = dyn_cast<Constant>(Op)) { 8846 Operands.push_back(C); 8847 continue; 8848 } 8849 8850 // If any of the operands is non-constant and if they are 8851 // non-integer and non-pointer, don't even try to analyze them 8852 // with scev techniques. 8853 if (!isSCEVable(Op->getType())) 8854 return V; 8855 8856 const SCEV *OrigV = getSCEV(Op); 8857 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8858 MadeImprovement |= OrigV != OpV; 8859 8860 Constant *C = BuildConstantFromSCEV(OpV); 8861 if (!C) return V; 8862 if (C->getType() != Op->getType()) 8863 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8864 Op->getType(), 8865 false), 8866 C, Op->getType()); 8867 Operands.push_back(C); 8868 } 8869 8870 // Check to see if getSCEVAtScope actually made an improvement. 8871 if (MadeImprovement) { 8872 Constant *C = nullptr; 8873 const DataLayout &DL = getDataLayout(); 8874 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8875 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8876 Operands[1], DL, &TLI); 8877 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8878 if (!Load->isVolatile()) 8879 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8880 DL); 8881 } else 8882 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8883 if (!C) return V; 8884 return getSCEV(C); 8885 } 8886 } 8887 } 8888 8889 // This is some other type of SCEVUnknown, just return it. 8890 return V; 8891 } 8892 8893 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8894 // Avoid performing the look-up in the common case where the specified 8895 // expression has no loop-variant portions. 8896 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8897 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8898 if (OpAtScope != Comm->getOperand(i)) { 8899 // Okay, at least one of these operands is loop variant but might be 8900 // foldable. Build a new instance of the folded commutative expression. 8901 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8902 Comm->op_begin()+i); 8903 NewOps.push_back(OpAtScope); 8904 8905 for (++i; i != e; ++i) { 8906 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8907 NewOps.push_back(OpAtScope); 8908 } 8909 if (isa<SCEVAddExpr>(Comm)) 8910 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8911 if (isa<SCEVMulExpr>(Comm)) 8912 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8913 if (isa<SCEVMinMaxExpr>(Comm)) 8914 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8915 llvm_unreachable("Unknown commutative SCEV type!"); 8916 } 8917 } 8918 // If we got here, all operands are loop invariant. 8919 return Comm; 8920 } 8921 8922 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8923 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8924 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8925 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8926 return Div; // must be loop invariant 8927 return getUDivExpr(LHS, RHS); 8928 } 8929 8930 // If this is a loop recurrence for a loop that does not contain L, then we 8931 // are dealing with the final value computed by the loop. 8932 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8933 // First, attempt to evaluate each operand. 8934 // Avoid performing the look-up in the common case where the specified 8935 // expression has no loop-variant portions. 8936 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8937 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8938 if (OpAtScope == AddRec->getOperand(i)) 8939 continue; 8940 8941 // Okay, at least one of these operands is loop variant but might be 8942 // foldable. Build a new instance of the folded commutative expression. 8943 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8944 AddRec->op_begin()+i); 8945 NewOps.push_back(OpAtScope); 8946 for (++i; i != e; ++i) 8947 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8948 8949 const SCEV *FoldedRec = 8950 getAddRecExpr(NewOps, AddRec->getLoop(), 8951 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8952 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8953 // The addrec may be folded to a nonrecurrence, for example, if the 8954 // induction variable is multiplied by zero after constant folding. Go 8955 // ahead and return the folded value. 8956 if (!AddRec) 8957 return FoldedRec; 8958 break; 8959 } 8960 8961 // If the scope is outside the addrec's loop, evaluate it by using the 8962 // loop exit value of the addrec. 8963 if (!AddRec->getLoop()->contains(L)) { 8964 // To evaluate this recurrence, we need to know how many times the AddRec 8965 // loop iterates. Compute this now. 8966 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8967 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8968 8969 // Then, evaluate the AddRec. 8970 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8971 } 8972 8973 return AddRec; 8974 } 8975 8976 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8977 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8978 if (Op == Cast->getOperand()) 8979 return Cast; // must be loop invariant 8980 return getZeroExtendExpr(Op, Cast->getType()); 8981 } 8982 8983 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8984 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8985 if (Op == Cast->getOperand()) 8986 return Cast; // must be loop invariant 8987 return getSignExtendExpr(Op, Cast->getType()); 8988 } 8989 8990 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8991 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8992 if (Op == Cast->getOperand()) 8993 return Cast; // must be loop invariant 8994 return getTruncateExpr(Op, Cast->getType()); 8995 } 8996 8997 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 8998 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8999 if (Op == Cast->getOperand()) 9000 return Cast; // must be loop invariant 9001 return getPtrToIntExpr(Op, Cast->getType()); 9002 } 9003 9004 llvm_unreachable("Unknown SCEV type!"); 9005 } 9006 9007 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9008 return getSCEVAtScope(getSCEV(V), L); 9009 } 9010 9011 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9012 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9013 return stripInjectiveFunctions(ZExt->getOperand()); 9014 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9015 return stripInjectiveFunctions(SExt->getOperand()); 9016 return S; 9017 } 9018 9019 /// Finds the minimum unsigned root of the following equation: 9020 /// 9021 /// A * X = B (mod N) 9022 /// 9023 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9024 /// A and B isn't important. 9025 /// 9026 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9027 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9028 ScalarEvolution &SE) { 9029 uint32_t BW = A.getBitWidth(); 9030 assert(BW == SE.getTypeSizeInBits(B->getType())); 9031 assert(A != 0 && "A must be non-zero."); 9032 9033 // 1. D = gcd(A, N) 9034 // 9035 // The gcd of A and N may have only one prime factor: 2. The number of 9036 // trailing zeros in A is its multiplicity 9037 uint32_t Mult2 = A.countTrailingZeros(); 9038 // D = 2^Mult2 9039 9040 // 2. Check if B is divisible by D. 9041 // 9042 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9043 // is not less than multiplicity of this prime factor for D. 9044 if (SE.GetMinTrailingZeros(B) < Mult2) 9045 return SE.getCouldNotCompute(); 9046 9047 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9048 // modulo (N / D). 9049 // 9050 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9051 // (N / D) in general. The inverse itself always fits into BW bits, though, 9052 // so we immediately truncate it. 9053 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9054 APInt Mod(BW + 1, 0); 9055 Mod.setBit(BW - Mult2); // Mod = N / D 9056 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9057 9058 // 4. Compute the minimum unsigned root of the equation: 9059 // I * (B / D) mod (N / D) 9060 // To simplify the computation, we factor out the divide by D: 9061 // (I * B mod N) / D 9062 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9063 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9064 } 9065 9066 /// For a given quadratic addrec, generate coefficients of the corresponding 9067 /// quadratic equation, multiplied by a common value to ensure that they are 9068 /// integers. 9069 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9070 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9071 /// were multiplied by, and BitWidth is the bit width of the original addrec 9072 /// coefficients. 9073 /// This function returns None if the addrec coefficients are not compile- 9074 /// time constants. 9075 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9076 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9077 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9078 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9079 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9080 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9081 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9082 << *AddRec << '\n'); 9083 9084 // We currently can only solve this if the coefficients are constants. 9085 if (!LC || !MC || !NC) { 9086 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9087 return None; 9088 } 9089 9090 APInt L = LC->getAPInt(); 9091 APInt M = MC->getAPInt(); 9092 APInt N = NC->getAPInt(); 9093 assert(!N.isNullValue() && "This is not a quadratic addrec"); 9094 9095 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9096 unsigned NewWidth = BitWidth + 1; 9097 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9098 << BitWidth << '\n'); 9099 // The sign-extension (as opposed to a zero-extension) here matches the 9100 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9101 N = N.sext(NewWidth); 9102 M = M.sext(NewWidth); 9103 L = L.sext(NewWidth); 9104 9105 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9106 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9107 // L+M, L+2M+N, L+3M+3N, ... 9108 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9109 // 9110 // The equation Acc = 0 is then 9111 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9112 // In a quadratic form it becomes: 9113 // N n^2 + (2M-N) n + 2L = 0. 9114 9115 APInt A = N; 9116 APInt B = 2 * M - A; 9117 APInt C = 2 * L; 9118 APInt T = APInt(NewWidth, 2); 9119 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9120 << "x + " << C << ", coeff bw: " << NewWidth 9121 << ", multiplied by " << T << '\n'); 9122 return std::make_tuple(A, B, C, T, BitWidth); 9123 } 9124 9125 /// Helper function to compare optional APInts: 9126 /// (a) if X and Y both exist, return min(X, Y), 9127 /// (b) if neither X nor Y exist, return None, 9128 /// (c) if exactly one of X and Y exists, return that value. 9129 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9130 if (X.hasValue() && Y.hasValue()) { 9131 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9132 APInt XW = X->sextOrSelf(W); 9133 APInt YW = Y->sextOrSelf(W); 9134 return XW.slt(YW) ? *X : *Y; 9135 } 9136 if (!X.hasValue() && !Y.hasValue()) 9137 return None; 9138 return X.hasValue() ? *X : *Y; 9139 } 9140 9141 /// Helper function to truncate an optional APInt to a given BitWidth. 9142 /// When solving addrec-related equations, it is preferable to return a value 9143 /// that has the same bit width as the original addrec's coefficients. If the 9144 /// solution fits in the original bit width, truncate it (except for i1). 9145 /// Returning a value of a different bit width may inhibit some optimizations. 9146 /// 9147 /// In general, a solution to a quadratic equation generated from an addrec 9148 /// may require BW+1 bits, where BW is the bit width of the addrec's 9149 /// coefficients. The reason is that the coefficients of the quadratic 9150 /// equation are BW+1 bits wide (to avoid truncation when converting from 9151 /// the addrec to the equation). 9152 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9153 if (!X.hasValue()) 9154 return None; 9155 unsigned W = X->getBitWidth(); 9156 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9157 return X->trunc(BitWidth); 9158 return X; 9159 } 9160 9161 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9162 /// iterations. The values L, M, N are assumed to be signed, and they 9163 /// should all have the same bit widths. 9164 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9165 /// where BW is the bit width of the addrec's coefficients. 9166 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9167 /// returned as such, otherwise the bit width of the returned value may 9168 /// be greater than BW. 9169 /// 9170 /// This function returns None if 9171 /// (a) the addrec coefficients are not constant, or 9172 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9173 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9174 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9175 static Optional<APInt> 9176 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9177 APInt A, B, C, M; 9178 unsigned BitWidth; 9179 auto T = GetQuadraticEquation(AddRec); 9180 if (!T.hasValue()) 9181 return None; 9182 9183 std::tie(A, B, C, M, BitWidth) = *T; 9184 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9185 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9186 if (!X.hasValue()) 9187 return None; 9188 9189 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9190 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9191 if (!V->isZero()) 9192 return None; 9193 9194 return TruncIfPossible(X, BitWidth); 9195 } 9196 9197 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9198 /// iterations. The values M, N are assumed to be signed, and they 9199 /// should all have the same bit widths. 9200 /// Find the least n such that c(n) does not belong to the given range, 9201 /// while c(n-1) does. 9202 /// 9203 /// This function returns None if 9204 /// (a) the addrec coefficients are not constant, or 9205 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9206 /// bounds of the range. 9207 static Optional<APInt> 9208 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9209 const ConstantRange &Range, ScalarEvolution &SE) { 9210 assert(AddRec->getOperand(0)->isZero() && 9211 "Starting value of addrec should be 0"); 9212 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9213 << Range << ", addrec " << *AddRec << '\n'); 9214 // This case is handled in getNumIterationsInRange. Here we can assume that 9215 // we start in the range. 9216 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9217 "Addrec's initial value should be in range"); 9218 9219 APInt A, B, C, M; 9220 unsigned BitWidth; 9221 auto T = GetQuadraticEquation(AddRec); 9222 if (!T.hasValue()) 9223 return None; 9224 9225 // Be careful about the return value: there can be two reasons for not 9226 // returning an actual number. First, if no solutions to the equations 9227 // were found, and second, if the solutions don't leave the given range. 9228 // The first case means that the actual solution is "unknown", the second 9229 // means that it's known, but not valid. If the solution is unknown, we 9230 // cannot make any conclusions. 9231 // Return a pair: the optional solution and a flag indicating if the 9232 // solution was found. 9233 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9234 // Solve for signed overflow and unsigned overflow, pick the lower 9235 // solution. 9236 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9237 << Bound << " (before multiplying by " << M << ")\n"); 9238 Bound *= M; // The quadratic equation multiplier. 9239 9240 Optional<APInt> SO = None; 9241 if (BitWidth > 1) { 9242 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9243 "signed overflow\n"); 9244 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9245 } 9246 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9247 "unsigned overflow\n"); 9248 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9249 BitWidth+1); 9250 9251 auto LeavesRange = [&] (const APInt &X) { 9252 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9253 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9254 if (Range.contains(V0->getValue())) 9255 return false; 9256 // X should be at least 1, so X-1 is non-negative. 9257 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9258 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9259 if (Range.contains(V1->getValue())) 9260 return true; 9261 return false; 9262 }; 9263 9264 // If SolveQuadraticEquationWrap returns None, it means that there can 9265 // be a solution, but the function failed to find it. We cannot treat it 9266 // as "no solution". 9267 if (!SO.hasValue() || !UO.hasValue()) 9268 return { None, false }; 9269 9270 // Check the smaller value first to see if it leaves the range. 9271 // At this point, both SO and UO must have values. 9272 Optional<APInt> Min = MinOptional(SO, UO); 9273 if (LeavesRange(*Min)) 9274 return { Min, true }; 9275 Optional<APInt> Max = Min == SO ? UO : SO; 9276 if (LeavesRange(*Max)) 9277 return { Max, true }; 9278 9279 // Solutions were found, but were eliminated, hence the "true". 9280 return { None, true }; 9281 }; 9282 9283 std::tie(A, B, C, M, BitWidth) = *T; 9284 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9285 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9286 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9287 auto SL = SolveForBoundary(Lower); 9288 auto SU = SolveForBoundary(Upper); 9289 // If any of the solutions was unknown, no meaninigful conclusions can 9290 // be made. 9291 if (!SL.second || !SU.second) 9292 return None; 9293 9294 // Claim: The correct solution is not some value between Min and Max. 9295 // 9296 // Justification: Assuming that Min and Max are different values, one of 9297 // them is when the first signed overflow happens, the other is when the 9298 // first unsigned overflow happens. Crossing the range boundary is only 9299 // possible via an overflow (treating 0 as a special case of it, modeling 9300 // an overflow as crossing k*2^W for some k). 9301 // 9302 // The interesting case here is when Min was eliminated as an invalid 9303 // solution, but Max was not. The argument is that if there was another 9304 // overflow between Min and Max, it would also have been eliminated if 9305 // it was considered. 9306 // 9307 // For a given boundary, it is possible to have two overflows of the same 9308 // type (signed/unsigned) without having the other type in between: this 9309 // can happen when the vertex of the parabola is between the iterations 9310 // corresponding to the overflows. This is only possible when the two 9311 // overflows cross k*2^W for the same k. In such case, if the second one 9312 // left the range (and was the first one to do so), the first overflow 9313 // would have to enter the range, which would mean that either we had left 9314 // the range before or that we started outside of it. Both of these cases 9315 // are contradictions. 9316 // 9317 // Claim: In the case where SolveForBoundary returns None, the correct 9318 // solution is not some value between the Max for this boundary and the 9319 // Min of the other boundary. 9320 // 9321 // Justification: Assume that we had such Max_A and Min_B corresponding 9322 // to range boundaries A and B and such that Max_A < Min_B. If there was 9323 // a solution between Max_A and Min_B, it would have to be caused by an 9324 // overflow corresponding to either A or B. It cannot correspond to B, 9325 // since Min_B is the first occurrence of such an overflow. If it 9326 // corresponded to A, it would have to be either a signed or an unsigned 9327 // overflow that is larger than both eliminated overflows for A. But 9328 // between the eliminated overflows and this overflow, the values would 9329 // cover the entire value space, thus crossing the other boundary, which 9330 // is a contradiction. 9331 9332 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9333 } 9334 9335 ScalarEvolution::ExitLimit 9336 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9337 bool AllowPredicates) { 9338 9339 // This is only used for loops with a "x != y" exit test. The exit condition 9340 // is now expressed as a single expression, V = x-y. So the exit test is 9341 // effectively V != 0. We know and take advantage of the fact that this 9342 // expression only being used in a comparison by zero context. 9343 9344 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9345 // If the value is a constant 9346 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9347 // If the value is already zero, the branch will execute zero times. 9348 if (C->getValue()->isZero()) return C; 9349 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9350 } 9351 9352 const SCEVAddRecExpr *AddRec = 9353 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9354 9355 if (!AddRec && AllowPredicates) 9356 // Try to make this an AddRec using runtime tests, in the first X 9357 // iterations of this loop, where X is the SCEV expression found by the 9358 // algorithm below. 9359 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9360 9361 if (!AddRec || AddRec->getLoop() != L) 9362 return getCouldNotCompute(); 9363 9364 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9365 // the quadratic equation to solve it. 9366 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9367 // We can only use this value if the chrec ends up with an exact zero 9368 // value at this index. When solving for "X*X != 5", for example, we 9369 // should not accept a root of 2. 9370 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9371 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9372 return ExitLimit(R, R, false, Predicates); 9373 } 9374 return getCouldNotCompute(); 9375 } 9376 9377 // Otherwise we can only handle this if it is affine. 9378 if (!AddRec->isAffine()) 9379 return getCouldNotCompute(); 9380 9381 // If this is an affine expression, the execution count of this branch is 9382 // the minimum unsigned root of the following equation: 9383 // 9384 // Start + Step*N = 0 (mod 2^BW) 9385 // 9386 // equivalent to: 9387 // 9388 // Step*N = -Start (mod 2^BW) 9389 // 9390 // where BW is the common bit width of Start and Step. 9391 9392 // Get the initial value for the loop. 9393 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9394 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9395 9396 // For now we handle only constant steps. 9397 // 9398 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9399 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9400 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9401 // We have not yet seen any such cases. 9402 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9403 if (!StepC || StepC->getValue()->isZero()) 9404 return getCouldNotCompute(); 9405 9406 // For positive steps (counting up until unsigned overflow): 9407 // N = -Start/Step (as unsigned) 9408 // For negative steps (counting down to zero): 9409 // N = Start/-Step 9410 // First compute the unsigned distance from zero in the direction of Step. 9411 bool CountDown = StepC->getAPInt().isNegative(); 9412 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9413 9414 // Handle unitary steps, which cannot wraparound. 9415 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9416 // N = Distance (as unsigned) 9417 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9418 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9419 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9420 if (MaxBECountBase.ult(MaxBECount)) 9421 MaxBECount = MaxBECountBase; 9422 9423 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9424 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9425 // case, and see if we can improve the bound. 9426 // 9427 // Explicitly handling this here is necessary because getUnsignedRange 9428 // isn't context-sensitive; it doesn't know that we only care about the 9429 // range inside the loop. 9430 const SCEV *Zero = getZero(Distance->getType()); 9431 const SCEV *One = getOne(Distance->getType()); 9432 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9433 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9434 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9435 // as "unsigned_max(Distance + 1) - 1". 9436 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9437 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9438 } 9439 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9440 } 9441 9442 // If the condition controls loop exit (the loop exits only if the expression 9443 // is true) and the addition is no-wrap we can use unsigned divide to 9444 // compute the backedge count. In this case, the step may not divide the 9445 // distance, but we don't care because if the condition is "missed" the loop 9446 // will have undefined behavior due to wrapping. 9447 if (ControlsExit && AddRec->hasNoSelfWrap() && 9448 loopHasNoAbnormalExits(AddRec->getLoop())) { 9449 const SCEV *Exact = 9450 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9451 const SCEV *Max = getCouldNotCompute(); 9452 if (Exact != getCouldNotCompute()) { 9453 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9454 APInt BaseMaxInt = getUnsignedRangeMax(Exact); 9455 if (BaseMaxInt.ult(MaxInt)) 9456 Max = getConstant(BaseMaxInt); 9457 else 9458 Max = getConstant(MaxInt); 9459 } 9460 return ExitLimit(Exact, Max, false, Predicates); 9461 } 9462 9463 // Solve the general equation. 9464 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9465 getNegativeSCEV(Start), *this); 9466 const SCEV *M = E == getCouldNotCompute() 9467 ? E 9468 : getConstant(getUnsignedRangeMax(E)); 9469 return ExitLimit(E, M, false, Predicates); 9470 } 9471 9472 ScalarEvolution::ExitLimit 9473 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9474 // Loops that look like: while (X == 0) are very strange indeed. We don't 9475 // handle them yet except for the trivial case. This could be expanded in the 9476 // future as needed. 9477 9478 // If the value is a constant, check to see if it is known to be non-zero 9479 // already. If so, the backedge will execute zero times. 9480 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9481 if (!C->getValue()->isZero()) 9482 return getZero(C->getType()); 9483 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9484 } 9485 9486 // We could implement others, but I really doubt anyone writes loops like 9487 // this, and if they did, they would already be constant folded. 9488 return getCouldNotCompute(); 9489 } 9490 9491 std::pair<const BasicBlock *, const BasicBlock *> 9492 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9493 const { 9494 // If the block has a unique predecessor, then there is no path from the 9495 // predecessor to the block that does not go through the direct edge 9496 // from the predecessor to the block. 9497 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9498 return {Pred, BB}; 9499 9500 // A loop's header is defined to be a block that dominates the loop. 9501 // If the header has a unique predecessor outside the loop, it must be 9502 // a block that has exactly one successor that can reach the loop. 9503 if (const Loop *L = LI.getLoopFor(BB)) 9504 return {L->getLoopPredecessor(), L->getHeader()}; 9505 9506 return {nullptr, nullptr}; 9507 } 9508 9509 /// SCEV structural equivalence is usually sufficient for testing whether two 9510 /// expressions are equal, however for the purposes of looking for a condition 9511 /// guarding a loop, it can be useful to be a little more general, since a 9512 /// front-end may have replicated the controlling expression. 9513 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9514 // Quick check to see if they are the same SCEV. 9515 if (A == B) return true; 9516 9517 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9518 // Not all instructions that are "identical" compute the same value. For 9519 // instance, two distinct alloca instructions allocating the same type are 9520 // identical and do not read memory; but compute distinct values. 9521 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9522 }; 9523 9524 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9525 // two different instructions with the same value. Check for this case. 9526 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9527 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9528 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9529 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9530 if (ComputesEqualValues(AI, BI)) 9531 return true; 9532 9533 // Otherwise assume they may have a different value. 9534 return false; 9535 } 9536 9537 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9538 const SCEV *&LHS, const SCEV *&RHS, 9539 unsigned Depth) { 9540 bool Changed = false; 9541 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9542 // '0 != 0'. 9543 auto TrivialCase = [&](bool TriviallyTrue) { 9544 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9545 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9546 return true; 9547 }; 9548 // If we hit the max recursion limit bail out. 9549 if (Depth >= 3) 9550 return false; 9551 9552 // Canonicalize a constant to the right side. 9553 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9554 // Check for both operands constant. 9555 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9556 if (ConstantExpr::getICmp(Pred, 9557 LHSC->getValue(), 9558 RHSC->getValue())->isNullValue()) 9559 return TrivialCase(false); 9560 else 9561 return TrivialCase(true); 9562 } 9563 // Otherwise swap the operands to put the constant on the right. 9564 std::swap(LHS, RHS); 9565 Pred = ICmpInst::getSwappedPredicate(Pred); 9566 Changed = true; 9567 } 9568 9569 // If we're comparing an addrec with a value which is loop-invariant in the 9570 // addrec's loop, put the addrec on the left. Also make a dominance check, 9571 // as both operands could be addrecs loop-invariant in each other's loop. 9572 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9573 const Loop *L = AR->getLoop(); 9574 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9575 std::swap(LHS, RHS); 9576 Pred = ICmpInst::getSwappedPredicate(Pred); 9577 Changed = true; 9578 } 9579 } 9580 9581 // If there's a constant operand, canonicalize comparisons with boundary 9582 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9583 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9584 const APInt &RA = RC->getAPInt(); 9585 9586 bool SimplifiedByConstantRange = false; 9587 9588 if (!ICmpInst::isEquality(Pred)) { 9589 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9590 if (ExactCR.isFullSet()) 9591 return TrivialCase(true); 9592 else if (ExactCR.isEmptySet()) 9593 return TrivialCase(false); 9594 9595 APInt NewRHS; 9596 CmpInst::Predicate NewPred; 9597 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9598 ICmpInst::isEquality(NewPred)) { 9599 // We were able to convert an inequality to an equality. 9600 Pred = NewPred; 9601 RHS = getConstant(NewRHS); 9602 Changed = SimplifiedByConstantRange = true; 9603 } 9604 } 9605 9606 if (!SimplifiedByConstantRange) { 9607 switch (Pred) { 9608 default: 9609 break; 9610 case ICmpInst::ICMP_EQ: 9611 case ICmpInst::ICMP_NE: 9612 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9613 if (!RA) 9614 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9615 if (const SCEVMulExpr *ME = 9616 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9617 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9618 ME->getOperand(0)->isAllOnesValue()) { 9619 RHS = AE->getOperand(1); 9620 LHS = ME->getOperand(1); 9621 Changed = true; 9622 } 9623 break; 9624 9625 9626 // The "Should have been caught earlier!" messages refer to the fact 9627 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9628 // should have fired on the corresponding cases, and canonicalized the 9629 // check to trivial case. 9630 9631 case ICmpInst::ICMP_UGE: 9632 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9633 Pred = ICmpInst::ICMP_UGT; 9634 RHS = getConstant(RA - 1); 9635 Changed = true; 9636 break; 9637 case ICmpInst::ICMP_ULE: 9638 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9639 Pred = ICmpInst::ICMP_ULT; 9640 RHS = getConstant(RA + 1); 9641 Changed = true; 9642 break; 9643 case ICmpInst::ICMP_SGE: 9644 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9645 Pred = ICmpInst::ICMP_SGT; 9646 RHS = getConstant(RA - 1); 9647 Changed = true; 9648 break; 9649 case ICmpInst::ICMP_SLE: 9650 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9651 Pred = ICmpInst::ICMP_SLT; 9652 RHS = getConstant(RA + 1); 9653 Changed = true; 9654 break; 9655 } 9656 } 9657 } 9658 9659 // Check for obvious equality. 9660 if (HasSameValue(LHS, RHS)) { 9661 if (ICmpInst::isTrueWhenEqual(Pred)) 9662 return TrivialCase(true); 9663 if (ICmpInst::isFalseWhenEqual(Pred)) 9664 return TrivialCase(false); 9665 } 9666 9667 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9668 // adding or subtracting 1 from one of the operands. 9669 switch (Pred) { 9670 case ICmpInst::ICMP_SLE: 9671 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9672 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9673 SCEV::FlagNSW); 9674 Pred = ICmpInst::ICMP_SLT; 9675 Changed = true; 9676 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9677 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9678 SCEV::FlagNSW); 9679 Pred = ICmpInst::ICMP_SLT; 9680 Changed = true; 9681 } 9682 break; 9683 case ICmpInst::ICMP_SGE: 9684 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9685 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9686 SCEV::FlagNSW); 9687 Pred = ICmpInst::ICMP_SGT; 9688 Changed = true; 9689 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9690 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9691 SCEV::FlagNSW); 9692 Pred = ICmpInst::ICMP_SGT; 9693 Changed = true; 9694 } 9695 break; 9696 case ICmpInst::ICMP_ULE: 9697 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9698 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9699 SCEV::FlagNUW); 9700 Pred = ICmpInst::ICMP_ULT; 9701 Changed = true; 9702 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9703 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9704 Pred = ICmpInst::ICMP_ULT; 9705 Changed = true; 9706 } 9707 break; 9708 case ICmpInst::ICMP_UGE: 9709 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9710 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9711 Pred = ICmpInst::ICMP_UGT; 9712 Changed = true; 9713 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9714 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9715 SCEV::FlagNUW); 9716 Pred = ICmpInst::ICMP_UGT; 9717 Changed = true; 9718 } 9719 break; 9720 default: 9721 break; 9722 } 9723 9724 // TODO: More simplifications are possible here. 9725 9726 // Recursively simplify until we either hit a recursion limit or nothing 9727 // changes. 9728 if (Changed) 9729 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9730 9731 return Changed; 9732 } 9733 9734 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9735 return getSignedRangeMax(S).isNegative(); 9736 } 9737 9738 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9739 return getSignedRangeMin(S).isStrictlyPositive(); 9740 } 9741 9742 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9743 return !getSignedRangeMin(S).isNegative(); 9744 } 9745 9746 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9747 return !getSignedRangeMax(S).isStrictlyPositive(); 9748 } 9749 9750 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9751 return isKnownNegative(S) || isKnownPositive(S); 9752 } 9753 9754 std::pair<const SCEV *, const SCEV *> 9755 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9756 // Compute SCEV on entry of loop L. 9757 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9758 if (Start == getCouldNotCompute()) 9759 return { Start, Start }; 9760 // Compute post increment SCEV for loop L. 9761 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9762 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9763 return { Start, PostInc }; 9764 } 9765 9766 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9767 const SCEV *LHS, const SCEV *RHS) { 9768 // First collect all loops. 9769 SmallPtrSet<const Loop *, 8> LoopsUsed; 9770 getUsedLoops(LHS, LoopsUsed); 9771 getUsedLoops(RHS, LoopsUsed); 9772 9773 if (LoopsUsed.empty()) 9774 return false; 9775 9776 // Domination relationship must be a linear order on collected loops. 9777 #ifndef NDEBUG 9778 for (auto *L1 : LoopsUsed) 9779 for (auto *L2 : LoopsUsed) 9780 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9781 DT.dominates(L2->getHeader(), L1->getHeader())) && 9782 "Domination relationship is not a linear order"); 9783 #endif 9784 9785 const Loop *MDL = 9786 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9787 [&](const Loop *L1, const Loop *L2) { 9788 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9789 }); 9790 9791 // Get init and post increment value for LHS. 9792 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9793 // if LHS contains unknown non-invariant SCEV then bail out. 9794 if (SplitLHS.first == getCouldNotCompute()) 9795 return false; 9796 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9797 // Get init and post increment value for RHS. 9798 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9799 // if RHS contains unknown non-invariant SCEV then bail out. 9800 if (SplitRHS.first == getCouldNotCompute()) 9801 return false; 9802 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9803 // It is possible that init SCEV contains an invariant load but it does 9804 // not dominate MDL and is not available at MDL loop entry, so we should 9805 // check it here. 9806 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9807 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9808 return false; 9809 9810 // It seems backedge guard check is faster than entry one so in some cases 9811 // it can speed up whole estimation by short circuit 9812 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9813 SplitRHS.second) && 9814 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9815 } 9816 9817 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9818 const SCEV *LHS, const SCEV *RHS) { 9819 // Canonicalize the inputs first. 9820 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9821 9822 if (isKnownViaInduction(Pred, LHS, RHS)) 9823 return true; 9824 9825 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9826 return true; 9827 9828 // Otherwise see what can be done with some simple reasoning. 9829 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9830 } 9831 9832 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 9833 const SCEV *LHS, 9834 const SCEV *RHS) { 9835 if (isKnownPredicate(Pred, LHS, RHS)) 9836 return true; 9837 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 9838 return false; 9839 return None; 9840 } 9841 9842 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9843 const SCEV *LHS, const SCEV *RHS, 9844 const Instruction *Context) { 9845 // TODO: Analyze guards and assumes from Context's block. 9846 return isKnownPredicate(Pred, LHS, RHS) || 9847 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9848 } 9849 9850 Optional<bool> 9851 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 9852 const SCEV *RHS, 9853 const Instruction *Context) { 9854 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 9855 if (KnownWithoutContext) 9856 return KnownWithoutContext; 9857 9858 if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS)) 9859 return true; 9860 else if (isBasicBlockEntryGuardedByCond(Context->getParent(), 9861 ICmpInst::getInversePredicate(Pred), 9862 LHS, RHS)) 9863 return false; 9864 return None; 9865 } 9866 9867 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9868 const SCEVAddRecExpr *LHS, 9869 const SCEV *RHS) { 9870 const Loop *L = LHS->getLoop(); 9871 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9872 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9873 } 9874 9875 Optional<ScalarEvolution::MonotonicPredicateType> 9876 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9877 ICmpInst::Predicate Pred) { 9878 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9879 9880 #ifndef NDEBUG 9881 // Verify an invariant: inverting the predicate should turn a monotonically 9882 // increasing change to a monotonically decreasing one, and vice versa. 9883 if (Result) { 9884 auto ResultSwapped = 9885 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9886 9887 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9888 assert(ResultSwapped.getValue() != Result.getValue() && 9889 "monotonicity should flip as we flip the predicate"); 9890 } 9891 #endif 9892 9893 return Result; 9894 } 9895 9896 Optional<ScalarEvolution::MonotonicPredicateType> 9897 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9898 ICmpInst::Predicate Pred) { 9899 // A zero step value for LHS means the induction variable is essentially a 9900 // loop invariant value. We don't really depend on the predicate actually 9901 // flipping from false to true (for increasing predicates, and the other way 9902 // around for decreasing predicates), all we care about is that *if* the 9903 // predicate changes then it only changes from false to true. 9904 // 9905 // A zero step value in itself is not very useful, but there may be places 9906 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9907 // as general as possible. 9908 9909 // Only handle LE/LT/GE/GT predicates. 9910 if (!ICmpInst::isRelational(Pred)) 9911 return None; 9912 9913 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9914 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9915 "Should be greater or less!"); 9916 9917 // Check that AR does not wrap. 9918 if (ICmpInst::isUnsigned(Pred)) { 9919 if (!LHS->hasNoUnsignedWrap()) 9920 return None; 9921 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9922 } else { 9923 assert(ICmpInst::isSigned(Pred) && 9924 "Relational predicate is either signed or unsigned!"); 9925 if (!LHS->hasNoSignedWrap()) 9926 return None; 9927 9928 const SCEV *Step = LHS->getStepRecurrence(*this); 9929 9930 if (isKnownNonNegative(Step)) 9931 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9932 9933 if (isKnownNonPositive(Step)) 9934 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9935 9936 return None; 9937 } 9938 } 9939 9940 Optional<ScalarEvolution::LoopInvariantPredicate> 9941 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 9942 const SCEV *LHS, const SCEV *RHS, 9943 const Loop *L) { 9944 9945 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9946 if (!isLoopInvariant(RHS, L)) { 9947 if (!isLoopInvariant(LHS, L)) 9948 return None; 9949 9950 std::swap(LHS, RHS); 9951 Pred = ICmpInst::getSwappedPredicate(Pred); 9952 } 9953 9954 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9955 if (!ArLHS || ArLHS->getLoop() != L) 9956 return None; 9957 9958 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 9959 if (!MonotonicType) 9960 return None; 9961 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9962 // true as the loop iterates, and the backedge is control dependent on 9963 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9964 // 9965 // * if the predicate was false in the first iteration then the predicate 9966 // is never evaluated again, since the loop exits without taking the 9967 // backedge. 9968 // * if the predicate was true in the first iteration then it will 9969 // continue to be true for all future iterations since it is 9970 // monotonically increasing. 9971 // 9972 // For both the above possibilities, we can replace the loop varying 9973 // predicate with its value on the first iteration of the loop (which is 9974 // loop invariant). 9975 // 9976 // A similar reasoning applies for a monotonically decreasing predicate, by 9977 // replacing true with false and false with true in the above two bullets. 9978 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 9979 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9980 9981 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9982 return None; 9983 9984 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 9985 } 9986 9987 Optional<ScalarEvolution::LoopInvariantPredicate> 9988 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 9989 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9990 const Instruction *Context, const SCEV *MaxIter) { 9991 // Try to prove the following set of facts: 9992 // - The predicate is monotonic in the iteration space. 9993 // - If the check does not fail on the 1st iteration: 9994 // - No overflow will happen during first MaxIter iterations; 9995 // - It will not fail on the MaxIter'th iteration. 9996 // If the check does fail on the 1st iteration, we leave the loop and no 9997 // other checks matter. 9998 9999 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10000 if (!isLoopInvariant(RHS, L)) { 10001 if (!isLoopInvariant(LHS, L)) 10002 return None; 10003 10004 std::swap(LHS, RHS); 10005 Pred = ICmpInst::getSwappedPredicate(Pred); 10006 } 10007 10008 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10009 if (!AR || AR->getLoop() != L) 10010 return None; 10011 10012 // The predicate must be relational (i.e. <, <=, >=, >). 10013 if (!ICmpInst::isRelational(Pred)) 10014 return None; 10015 10016 // TODO: Support steps other than +/- 1. 10017 const SCEV *Step = AR->getStepRecurrence(*this); 10018 auto *One = getOne(Step->getType()); 10019 auto *MinusOne = getNegativeSCEV(One); 10020 if (Step != One && Step != MinusOne) 10021 return None; 10022 10023 // Type mismatch here means that MaxIter is potentially larger than max 10024 // unsigned value in start type, which mean we cannot prove no wrap for the 10025 // indvar. 10026 if (AR->getType() != MaxIter->getType()) 10027 return None; 10028 10029 // Value of IV on suggested last iteration. 10030 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10031 // Does it still meet the requirement? 10032 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10033 return None; 10034 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10035 // not exceed max unsigned value of this type), this effectively proves 10036 // that there is no wrap during the iteration. To prove that there is no 10037 // signed/unsigned wrap, we need to check that 10038 // Start <= Last for step = 1 or Start >= Last for step = -1. 10039 ICmpInst::Predicate NoOverflowPred = 10040 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10041 if (Step == MinusOne) 10042 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10043 const SCEV *Start = AR->getStart(); 10044 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 10045 return None; 10046 10047 // Everything is fine. 10048 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10049 } 10050 10051 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10052 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10053 if (HasSameValue(LHS, RHS)) 10054 return ICmpInst::isTrueWhenEqual(Pred); 10055 10056 // This code is split out from isKnownPredicate because it is called from 10057 // within isLoopEntryGuardedByCond. 10058 10059 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10060 const ConstantRange &RangeRHS) { 10061 return RangeLHS.icmp(Pred, RangeRHS); 10062 }; 10063 10064 // The check at the top of the function catches the case where the values are 10065 // known to be equal. 10066 if (Pred == CmpInst::ICMP_EQ) 10067 return false; 10068 10069 if (Pred == CmpInst::ICMP_NE) 10070 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10071 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 10072 isKnownNonZero(getMinusSCEV(LHS, RHS)); 10073 10074 if (CmpInst::isSigned(Pred)) 10075 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10076 10077 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10078 } 10079 10080 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10081 const SCEV *LHS, 10082 const SCEV *RHS) { 10083 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10084 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10085 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10086 // OutC1 and OutC2. 10087 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10088 APInt &OutC1, APInt &OutC2, 10089 SCEV::NoWrapFlags ExpectedFlags) { 10090 const SCEV *XNonConstOp, *XConstOp; 10091 const SCEV *YNonConstOp, *YConstOp; 10092 SCEV::NoWrapFlags XFlagsPresent; 10093 SCEV::NoWrapFlags YFlagsPresent; 10094 10095 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10096 XConstOp = getZero(X->getType()); 10097 XNonConstOp = X; 10098 XFlagsPresent = ExpectedFlags; 10099 } 10100 if (!isa<SCEVConstant>(XConstOp) || 10101 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10102 return false; 10103 10104 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10105 YConstOp = getZero(Y->getType()); 10106 YNonConstOp = Y; 10107 YFlagsPresent = ExpectedFlags; 10108 } 10109 10110 if (!isa<SCEVConstant>(YConstOp) || 10111 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10112 return false; 10113 10114 if (YNonConstOp != XNonConstOp) 10115 return false; 10116 10117 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10118 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10119 10120 return true; 10121 }; 10122 10123 APInt C1; 10124 APInt C2; 10125 10126 switch (Pred) { 10127 default: 10128 break; 10129 10130 case ICmpInst::ICMP_SGE: 10131 std::swap(LHS, RHS); 10132 LLVM_FALLTHROUGH; 10133 case ICmpInst::ICMP_SLE: 10134 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10135 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10136 return true; 10137 10138 break; 10139 10140 case ICmpInst::ICMP_SGT: 10141 std::swap(LHS, RHS); 10142 LLVM_FALLTHROUGH; 10143 case ICmpInst::ICMP_SLT: 10144 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10145 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10146 return true; 10147 10148 break; 10149 10150 case ICmpInst::ICMP_UGE: 10151 std::swap(LHS, RHS); 10152 LLVM_FALLTHROUGH; 10153 case ICmpInst::ICMP_ULE: 10154 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10155 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10156 return true; 10157 10158 break; 10159 10160 case ICmpInst::ICMP_UGT: 10161 std::swap(LHS, RHS); 10162 LLVM_FALLTHROUGH; 10163 case ICmpInst::ICMP_ULT: 10164 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10165 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10166 return true; 10167 break; 10168 } 10169 10170 return false; 10171 } 10172 10173 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10174 const SCEV *LHS, 10175 const SCEV *RHS) { 10176 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10177 return false; 10178 10179 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10180 // the stack can result in exponential time complexity. 10181 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10182 10183 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10184 // 10185 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10186 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10187 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10188 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10189 // use isKnownPredicate later if needed. 10190 return isKnownNonNegative(RHS) && 10191 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10192 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10193 } 10194 10195 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10196 ICmpInst::Predicate Pred, 10197 const SCEV *LHS, const SCEV *RHS) { 10198 // No need to even try if we know the module has no guards. 10199 if (!HasGuards) 10200 return false; 10201 10202 return any_of(*BB, [&](const Instruction &I) { 10203 using namespace llvm::PatternMatch; 10204 10205 Value *Condition; 10206 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10207 m_Value(Condition))) && 10208 isImpliedCond(Pred, LHS, RHS, Condition, false); 10209 }); 10210 } 10211 10212 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10213 /// protected by a conditional between LHS and RHS. This is used to 10214 /// to eliminate casts. 10215 bool 10216 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10217 ICmpInst::Predicate Pred, 10218 const SCEV *LHS, const SCEV *RHS) { 10219 // Interpret a null as meaning no loop, where there is obviously no guard 10220 // (interprocedural conditions notwithstanding). 10221 if (!L) return true; 10222 10223 if (VerifyIR) 10224 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10225 "This cannot be done on broken IR!"); 10226 10227 10228 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10229 return true; 10230 10231 BasicBlock *Latch = L->getLoopLatch(); 10232 if (!Latch) 10233 return false; 10234 10235 BranchInst *LoopContinuePredicate = 10236 dyn_cast<BranchInst>(Latch->getTerminator()); 10237 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10238 isImpliedCond(Pred, LHS, RHS, 10239 LoopContinuePredicate->getCondition(), 10240 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10241 return true; 10242 10243 // We don't want more than one activation of the following loops on the stack 10244 // -- that can lead to O(n!) time complexity. 10245 if (WalkingBEDominatingConds) 10246 return false; 10247 10248 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10249 10250 // See if we can exploit a trip count to prove the predicate. 10251 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10252 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10253 if (LatchBECount != getCouldNotCompute()) { 10254 // We know that Latch branches back to the loop header exactly 10255 // LatchBECount times. This means the backdege condition at Latch is 10256 // equivalent to "{0,+,1} u< LatchBECount". 10257 Type *Ty = LatchBECount->getType(); 10258 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10259 const SCEV *LoopCounter = 10260 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10261 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10262 LatchBECount)) 10263 return true; 10264 } 10265 10266 // Check conditions due to any @llvm.assume intrinsics. 10267 for (auto &AssumeVH : AC.assumptions()) { 10268 if (!AssumeVH) 10269 continue; 10270 auto *CI = cast<CallInst>(AssumeVH); 10271 if (!DT.dominates(CI, Latch->getTerminator())) 10272 continue; 10273 10274 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10275 return true; 10276 } 10277 10278 // If the loop is not reachable from the entry block, we risk running into an 10279 // infinite loop as we walk up into the dom tree. These loops do not matter 10280 // anyway, so we just return a conservative answer when we see them. 10281 if (!DT.isReachableFromEntry(L->getHeader())) 10282 return false; 10283 10284 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10285 return true; 10286 10287 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10288 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10289 assert(DTN && "should reach the loop header before reaching the root!"); 10290 10291 BasicBlock *BB = DTN->getBlock(); 10292 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10293 return true; 10294 10295 BasicBlock *PBB = BB->getSinglePredecessor(); 10296 if (!PBB) 10297 continue; 10298 10299 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10300 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10301 continue; 10302 10303 Value *Condition = ContinuePredicate->getCondition(); 10304 10305 // If we have an edge `E` within the loop body that dominates the only 10306 // latch, the condition guarding `E` also guards the backedge. This 10307 // reasoning works only for loops with a single latch. 10308 10309 BasicBlockEdge DominatingEdge(PBB, BB); 10310 if (DominatingEdge.isSingleEdge()) { 10311 // We're constructively (and conservatively) enumerating edges within the 10312 // loop body that dominate the latch. The dominator tree better agree 10313 // with us on this: 10314 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10315 10316 if (isImpliedCond(Pred, LHS, RHS, Condition, 10317 BB != ContinuePredicate->getSuccessor(0))) 10318 return true; 10319 } 10320 } 10321 10322 return false; 10323 } 10324 10325 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10326 ICmpInst::Predicate Pred, 10327 const SCEV *LHS, 10328 const SCEV *RHS) { 10329 if (VerifyIR) 10330 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10331 "This cannot be done on broken IR!"); 10332 10333 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10334 // the facts (a >= b && a != b) separately. A typical situation is when the 10335 // non-strict comparison is known from ranges and non-equality is known from 10336 // dominating predicates. If we are proving strict comparison, we always try 10337 // to prove non-equality and non-strict comparison separately. 10338 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10339 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10340 bool ProvedNonStrictComparison = false; 10341 bool ProvedNonEquality = false; 10342 10343 auto SplitAndProve = 10344 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10345 if (!ProvedNonStrictComparison) 10346 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10347 if (!ProvedNonEquality) 10348 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10349 if (ProvedNonStrictComparison && ProvedNonEquality) 10350 return true; 10351 return false; 10352 }; 10353 10354 if (ProvingStrictComparison) { 10355 auto ProofFn = [&](ICmpInst::Predicate P) { 10356 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10357 }; 10358 if (SplitAndProve(ProofFn)) 10359 return true; 10360 } 10361 10362 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10363 auto ProveViaGuard = [&](const BasicBlock *Block) { 10364 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10365 return true; 10366 if (ProvingStrictComparison) { 10367 auto ProofFn = [&](ICmpInst::Predicate P) { 10368 return isImpliedViaGuard(Block, P, LHS, RHS); 10369 }; 10370 if (SplitAndProve(ProofFn)) 10371 return true; 10372 } 10373 return false; 10374 }; 10375 10376 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10377 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10378 const Instruction *Context = &BB->front(); 10379 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 10380 return true; 10381 if (ProvingStrictComparison) { 10382 auto ProofFn = [&](ICmpInst::Predicate P) { 10383 return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context); 10384 }; 10385 if (SplitAndProve(ProofFn)) 10386 return true; 10387 } 10388 return false; 10389 }; 10390 10391 // Starting at the block's predecessor, climb up the predecessor chain, as long 10392 // as there are predecessors that can be found that have unique successors 10393 // leading to the original block. 10394 const Loop *ContainingLoop = LI.getLoopFor(BB); 10395 const BasicBlock *PredBB; 10396 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10397 PredBB = ContainingLoop->getLoopPredecessor(); 10398 else 10399 PredBB = BB->getSinglePredecessor(); 10400 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10401 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10402 if (ProveViaGuard(Pair.first)) 10403 return true; 10404 10405 const BranchInst *LoopEntryPredicate = 10406 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10407 if (!LoopEntryPredicate || 10408 LoopEntryPredicate->isUnconditional()) 10409 continue; 10410 10411 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10412 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10413 return true; 10414 } 10415 10416 // Check conditions due to any @llvm.assume intrinsics. 10417 for (auto &AssumeVH : AC.assumptions()) { 10418 if (!AssumeVH) 10419 continue; 10420 auto *CI = cast<CallInst>(AssumeVH); 10421 if (!DT.dominates(CI, BB)) 10422 continue; 10423 10424 if (ProveViaCond(CI->getArgOperand(0), false)) 10425 return true; 10426 } 10427 10428 return false; 10429 } 10430 10431 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10432 ICmpInst::Predicate Pred, 10433 const SCEV *LHS, 10434 const SCEV *RHS) { 10435 // Interpret a null as meaning no loop, where there is obviously no guard 10436 // (interprocedural conditions notwithstanding). 10437 if (!L) 10438 return false; 10439 10440 // Both LHS and RHS must be available at loop entry. 10441 assert(isAvailableAtLoopEntry(LHS, L) && 10442 "LHS is not available at Loop Entry"); 10443 assert(isAvailableAtLoopEntry(RHS, L) && 10444 "RHS is not available at Loop Entry"); 10445 10446 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10447 return true; 10448 10449 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10450 } 10451 10452 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10453 const SCEV *RHS, 10454 const Value *FoundCondValue, bool Inverse, 10455 const Instruction *Context) { 10456 // False conditions implies anything. Do not bother analyzing it further. 10457 if (FoundCondValue == 10458 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10459 return true; 10460 10461 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10462 return false; 10463 10464 auto ClearOnExit = 10465 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10466 10467 // Recursively handle And and Or conditions. 10468 const Value *Op0, *Op1; 10469 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10470 if (!Inverse) 10471 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10472 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10473 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10474 if (Inverse) 10475 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10476 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10477 } 10478 10479 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10480 if (!ICI) return false; 10481 10482 // Now that we found a conditional branch that dominates the loop or controls 10483 // the loop latch. Check to see if it is the comparison we are looking for. 10484 ICmpInst::Predicate FoundPred; 10485 if (Inverse) 10486 FoundPred = ICI->getInversePredicate(); 10487 else 10488 FoundPred = ICI->getPredicate(); 10489 10490 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10491 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10492 10493 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 10494 } 10495 10496 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10497 const SCEV *RHS, 10498 ICmpInst::Predicate FoundPred, 10499 const SCEV *FoundLHS, const SCEV *FoundRHS, 10500 const Instruction *Context) { 10501 // Balance the types. 10502 if (getTypeSizeInBits(LHS->getType()) < 10503 getTypeSizeInBits(FoundLHS->getType())) { 10504 // For unsigned and equality predicates, try to prove that both found 10505 // operands fit into narrow unsigned range. If so, try to prove facts in 10506 // narrow types. 10507 if (!CmpInst::isSigned(FoundPred)) { 10508 auto *NarrowType = LHS->getType(); 10509 auto *WideType = FoundLHS->getType(); 10510 auto BitWidth = getTypeSizeInBits(NarrowType); 10511 const SCEV *MaxValue = getZeroExtendExpr( 10512 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10513 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10514 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10515 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10516 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10517 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10518 TruncFoundRHS, Context)) 10519 return true; 10520 } 10521 } 10522 10523 if (CmpInst::isSigned(Pred)) { 10524 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10525 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10526 } else { 10527 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10528 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10529 } 10530 } else if (getTypeSizeInBits(LHS->getType()) > 10531 getTypeSizeInBits(FoundLHS->getType())) { 10532 if (CmpInst::isSigned(FoundPred)) { 10533 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10534 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10535 } else { 10536 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10537 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10538 } 10539 } 10540 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10541 FoundRHS, Context); 10542 } 10543 10544 bool ScalarEvolution::isImpliedCondBalancedTypes( 10545 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10546 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10547 const Instruction *Context) { 10548 assert(getTypeSizeInBits(LHS->getType()) == 10549 getTypeSizeInBits(FoundLHS->getType()) && 10550 "Types should be balanced!"); 10551 // Canonicalize the query to match the way instcombine will have 10552 // canonicalized the comparison. 10553 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10554 if (LHS == RHS) 10555 return CmpInst::isTrueWhenEqual(Pred); 10556 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10557 if (FoundLHS == FoundRHS) 10558 return CmpInst::isFalseWhenEqual(FoundPred); 10559 10560 // Check to see if we can make the LHS or RHS match. 10561 if (LHS == FoundRHS || RHS == FoundLHS) { 10562 if (isa<SCEVConstant>(RHS)) { 10563 std::swap(FoundLHS, FoundRHS); 10564 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10565 } else { 10566 std::swap(LHS, RHS); 10567 Pred = ICmpInst::getSwappedPredicate(Pred); 10568 } 10569 } 10570 10571 // Check whether the found predicate is the same as the desired predicate. 10572 if (FoundPred == Pred) 10573 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10574 10575 // Check whether swapping the found predicate makes it the same as the 10576 // desired predicate. 10577 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10578 // We can write the implication 10579 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10580 // using one of the following ways: 10581 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10582 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10583 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10584 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10585 // Forms 1. and 2. require swapping the operands of one condition. Don't 10586 // do this if it would break canonical constant/addrec ordering. 10587 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10588 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10589 Context); 10590 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10591 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10592 10593 // There's no clear preference between forms 3. and 4., try both. 10594 return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10595 FoundLHS, FoundRHS, Context) || 10596 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10597 getNotSCEV(FoundRHS), Context); 10598 } 10599 10600 // Unsigned comparison is the same as signed comparison when both the operands 10601 // are non-negative. 10602 if (CmpInst::isUnsigned(FoundPred) && 10603 CmpInst::getSignedPredicate(FoundPred) == Pred && 10604 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10605 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10606 10607 // Check if we can make progress by sharpening ranges. 10608 if (FoundPred == ICmpInst::ICMP_NE && 10609 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10610 10611 const SCEVConstant *C = nullptr; 10612 const SCEV *V = nullptr; 10613 10614 if (isa<SCEVConstant>(FoundLHS)) { 10615 C = cast<SCEVConstant>(FoundLHS); 10616 V = FoundRHS; 10617 } else { 10618 C = cast<SCEVConstant>(FoundRHS); 10619 V = FoundLHS; 10620 } 10621 10622 // The guarding predicate tells us that C != V. If the known range 10623 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10624 // range we consider has to correspond to same signedness as the 10625 // predicate we're interested in folding. 10626 10627 APInt Min = ICmpInst::isSigned(Pred) ? 10628 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10629 10630 if (Min == C->getAPInt()) { 10631 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10632 // This is true even if (Min + 1) wraps around -- in case of 10633 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10634 10635 APInt SharperMin = Min + 1; 10636 10637 switch (Pred) { 10638 case ICmpInst::ICMP_SGE: 10639 case ICmpInst::ICMP_UGE: 10640 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10641 // RHS, we're done. 10642 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10643 Context)) 10644 return true; 10645 LLVM_FALLTHROUGH; 10646 10647 case ICmpInst::ICMP_SGT: 10648 case ICmpInst::ICMP_UGT: 10649 // We know from the range information that (V `Pred` Min || 10650 // V == Min). We know from the guarding condition that !(V 10651 // == Min). This gives us 10652 // 10653 // V `Pred` Min || V == Min && !(V == Min) 10654 // => V `Pred` Min 10655 // 10656 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10657 10658 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10659 Context)) 10660 return true; 10661 break; 10662 10663 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10664 case ICmpInst::ICMP_SLE: 10665 case ICmpInst::ICMP_ULE: 10666 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10667 LHS, V, getConstant(SharperMin), Context)) 10668 return true; 10669 LLVM_FALLTHROUGH; 10670 10671 case ICmpInst::ICMP_SLT: 10672 case ICmpInst::ICMP_ULT: 10673 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10674 LHS, V, getConstant(Min), Context)) 10675 return true; 10676 break; 10677 10678 default: 10679 // No change 10680 break; 10681 } 10682 } 10683 } 10684 10685 // Check whether the actual condition is beyond sufficient. 10686 if (FoundPred == ICmpInst::ICMP_EQ) 10687 if (ICmpInst::isTrueWhenEqual(Pred)) 10688 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10689 return true; 10690 if (Pred == ICmpInst::ICMP_NE) 10691 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10692 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10693 Context)) 10694 return true; 10695 10696 // Otherwise assume the worst. 10697 return false; 10698 } 10699 10700 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10701 const SCEV *&L, const SCEV *&R, 10702 SCEV::NoWrapFlags &Flags) { 10703 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10704 if (!AE || AE->getNumOperands() != 2) 10705 return false; 10706 10707 L = AE->getOperand(0); 10708 R = AE->getOperand(1); 10709 Flags = AE->getNoWrapFlags(); 10710 return true; 10711 } 10712 10713 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10714 const SCEV *Less) { 10715 // We avoid subtracting expressions here because this function is usually 10716 // fairly deep in the call stack (i.e. is called many times). 10717 10718 // X - X = 0. 10719 if (More == Less) 10720 return APInt(getTypeSizeInBits(More->getType()), 0); 10721 10722 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10723 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10724 const auto *MAR = cast<SCEVAddRecExpr>(More); 10725 10726 if (LAR->getLoop() != MAR->getLoop()) 10727 return None; 10728 10729 // We look at affine expressions only; not for correctness but to keep 10730 // getStepRecurrence cheap. 10731 if (!LAR->isAffine() || !MAR->isAffine()) 10732 return None; 10733 10734 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10735 return None; 10736 10737 Less = LAR->getStart(); 10738 More = MAR->getStart(); 10739 10740 // fall through 10741 } 10742 10743 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10744 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10745 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10746 return M - L; 10747 } 10748 10749 SCEV::NoWrapFlags Flags; 10750 const SCEV *LLess = nullptr, *RLess = nullptr; 10751 const SCEV *LMore = nullptr, *RMore = nullptr; 10752 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10753 // Compare (X + C1) vs X. 10754 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10755 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10756 if (RLess == More) 10757 return -(C1->getAPInt()); 10758 10759 // Compare X vs (X + C2). 10760 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10761 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10762 if (RMore == Less) 10763 return C2->getAPInt(); 10764 10765 // Compare (X + C1) vs (X + C2). 10766 if (C1 && C2 && RLess == RMore) 10767 return C2->getAPInt() - C1->getAPInt(); 10768 10769 return None; 10770 } 10771 10772 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10773 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10774 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10775 // Try to recognize the following pattern: 10776 // 10777 // FoundRHS = ... 10778 // ... 10779 // loop: 10780 // FoundLHS = {Start,+,W} 10781 // context_bb: // Basic block from the same loop 10782 // known(Pred, FoundLHS, FoundRHS) 10783 // 10784 // If some predicate is known in the context of a loop, it is also known on 10785 // each iteration of this loop, including the first iteration. Therefore, in 10786 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10787 // prove the original pred using this fact. 10788 if (!Context) 10789 return false; 10790 const BasicBlock *ContextBB = Context->getParent(); 10791 // Make sure AR varies in the context block. 10792 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10793 const Loop *L = AR->getLoop(); 10794 // Make sure that context belongs to the loop and executes on 1st iteration 10795 // (if it ever executes at all). 10796 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10797 return false; 10798 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10799 return false; 10800 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10801 } 10802 10803 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10804 const Loop *L = AR->getLoop(); 10805 // Make sure that context belongs to the loop and executes on 1st iteration 10806 // (if it ever executes at all). 10807 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10808 return false; 10809 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10810 return false; 10811 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10812 } 10813 10814 return false; 10815 } 10816 10817 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10818 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10819 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10820 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10821 return false; 10822 10823 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10824 if (!AddRecLHS) 10825 return false; 10826 10827 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10828 if (!AddRecFoundLHS) 10829 return false; 10830 10831 // We'd like to let SCEV reason about control dependencies, so we constrain 10832 // both the inequalities to be about add recurrences on the same loop. This 10833 // way we can use isLoopEntryGuardedByCond later. 10834 10835 const Loop *L = AddRecFoundLHS->getLoop(); 10836 if (L != AddRecLHS->getLoop()) 10837 return false; 10838 10839 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10840 // 10841 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10842 // ... (2) 10843 // 10844 // Informal proof for (2), assuming (1) [*]: 10845 // 10846 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10847 // 10848 // Then 10849 // 10850 // FoundLHS s< FoundRHS s< INT_MIN - C 10851 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10852 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10853 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10854 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10855 // <=> FoundLHS + C s< FoundRHS + C 10856 // 10857 // [*]: (1) can be proved by ruling out overflow. 10858 // 10859 // [**]: This can be proved by analyzing all the four possibilities: 10860 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10861 // (A s>= 0, B s>= 0). 10862 // 10863 // Note: 10864 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10865 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10866 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10867 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10868 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10869 // C)". 10870 10871 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10872 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10873 if (!LDiff || !RDiff || *LDiff != *RDiff) 10874 return false; 10875 10876 if (LDiff->isMinValue()) 10877 return true; 10878 10879 APInt FoundRHSLimit; 10880 10881 if (Pred == CmpInst::ICMP_ULT) { 10882 FoundRHSLimit = -(*RDiff); 10883 } else { 10884 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10885 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10886 } 10887 10888 // Try to prove (1) or (2), as needed. 10889 return isAvailableAtLoopEntry(FoundRHS, L) && 10890 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10891 getConstant(FoundRHSLimit)); 10892 } 10893 10894 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10895 const SCEV *LHS, const SCEV *RHS, 10896 const SCEV *FoundLHS, 10897 const SCEV *FoundRHS, unsigned Depth) { 10898 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10899 10900 auto ClearOnExit = make_scope_exit([&]() { 10901 if (LPhi) { 10902 bool Erased = PendingMerges.erase(LPhi); 10903 assert(Erased && "Failed to erase LPhi!"); 10904 (void)Erased; 10905 } 10906 if (RPhi) { 10907 bool Erased = PendingMerges.erase(RPhi); 10908 assert(Erased && "Failed to erase RPhi!"); 10909 (void)Erased; 10910 } 10911 }); 10912 10913 // Find respective Phis and check that they are not being pending. 10914 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10915 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10916 if (!PendingMerges.insert(Phi).second) 10917 return false; 10918 LPhi = Phi; 10919 } 10920 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10921 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10922 // If we detect a loop of Phi nodes being processed by this method, for 10923 // example: 10924 // 10925 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10926 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10927 // 10928 // we don't want to deal with a case that complex, so return conservative 10929 // answer false. 10930 if (!PendingMerges.insert(Phi).second) 10931 return false; 10932 RPhi = Phi; 10933 } 10934 10935 // If none of LHS, RHS is a Phi, nothing to do here. 10936 if (!LPhi && !RPhi) 10937 return false; 10938 10939 // If there is a SCEVUnknown Phi we are interested in, make it left. 10940 if (!LPhi) { 10941 std::swap(LHS, RHS); 10942 std::swap(FoundLHS, FoundRHS); 10943 std::swap(LPhi, RPhi); 10944 Pred = ICmpInst::getSwappedPredicate(Pred); 10945 } 10946 10947 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10948 const BasicBlock *LBB = LPhi->getParent(); 10949 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10950 10951 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10952 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10953 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10954 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10955 }; 10956 10957 if (RPhi && RPhi->getParent() == LBB) { 10958 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10959 // If we compare two Phis from the same block, and for each entry block 10960 // the predicate is true for incoming values from this block, then the 10961 // predicate is also true for the Phis. 10962 for (const BasicBlock *IncBB : predecessors(LBB)) { 10963 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10964 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10965 if (!ProvedEasily(L, R)) 10966 return false; 10967 } 10968 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10969 // Case two: RHS is also a Phi from the same basic block, and it is an 10970 // AddRec. It means that there is a loop which has both AddRec and Unknown 10971 // PHIs, for it we can compare incoming values of AddRec from above the loop 10972 // and latch with their respective incoming values of LPhi. 10973 // TODO: Generalize to handle loops with many inputs in a header. 10974 if (LPhi->getNumIncomingValues() != 2) return false; 10975 10976 auto *RLoop = RAR->getLoop(); 10977 auto *Predecessor = RLoop->getLoopPredecessor(); 10978 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10979 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10980 if (!ProvedEasily(L1, RAR->getStart())) 10981 return false; 10982 auto *Latch = RLoop->getLoopLatch(); 10983 assert(Latch && "Loop with AddRec with no latch?"); 10984 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10985 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10986 return false; 10987 } else { 10988 // In all other cases go over inputs of LHS and compare each of them to RHS, 10989 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10990 // At this point RHS is either a non-Phi, or it is a Phi from some block 10991 // different from LBB. 10992 for (const BasicBlock *IncBB : predecessors(LBB)) { 10993 // Check that RHS is available in this block. 10994 if (!dominates(RHS, IncBB)) 10995 return false; 10996 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10997 // Make sure L does not refer to a value from a potentially previous 10998 // iteration of a loop. 10999 if (!properlyDominates(L, IncBB)) 11000 return false; 11001 if (!ProvedEasily(L, RHS)) 11002 return false; 11003 } 11004 } 11005 return true; 11006 } 11007 11008 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11009 const SCEV *LHS, const SCEV *RHS, 11010 const SCEV *FoundLHS, 11011 const SCEV *FoundRHS, 11012 const Instruction *Context) { 11013 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11014 return true; 11015 11016 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11017 return true; 11018 11019 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11020 Context)) 11021 return true; 11022 11023 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11024 FoundLHS, FoundRHS); 11025 } 11026 11027 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11028 template <typename MinMaxExprType> 11029 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11030 const SCEV *Candidate) { 11031 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11032 if (!MinMaxExpr) 11033 return false; 11034 11035 return is_contained(MinMaxExpr->operands(), Candidate); 11036 } 11037 11038 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11039 ICmpInst::Predicate Pred, 11040 const SCEV *LHS, const SCEV *RHS) { 11041 // If both sides are affine addrecs for the same loop, with equal 11042 // steps, and we know the recurrences don't wrap, then we only 11043 // need to check the predicate on the starting values. 11044 11045 if (!ICmpInst::isRelational(Pred)) 11046 return false; 11047 11048 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11049 if (!LAR) 11050 return false; 11051 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11052 if (!RAR) 11053 return false; 11054 if (LAR->getLoop() != RAR->getLoop()) 11055 return false; 11056 if (!LAR->isAffine() || !RAR->isAffine()) 11057 return false; 11058 11059 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11060 return false; 11061 11062 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11063 SCEV::FlagNSW : SCEV::FlagNUW; 11064 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11065 return false; 11066 11067 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11068 } 11069 11070 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11071 /// expression? 11072 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11073 ICmpInst::Predicate Pred, 11074 const SCEV *LHS, const SCEV *RHS) { 11075 switch (Pred) { 11076 default: 11077 return false; 11078 11079 case ICmpInst::ICMP_SGE: 11080 std::swap(LHS, RHS); 11081 LLVM_FALLTHROUGH; 11082 case ICmpInst::ICMP_SLE: 11083 return 11084 // min(A, ...) <= A 11085 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11086 // A <= max(A, ...) 11087 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11088 11089 case ICmpInst::ICMP_UGE: 11090 std::swap(LHS, RHS); 11091 LLVM_FALLTHROUGH; 11092 case ICmpInst::ICMP_ULE: 11093 return 11094 // min(A, ...) <= A 11095 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11096 // A <= max(A, ...) 11097 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11098 } 11099 11100 llvm_unreachable("covered switch fell through?!"); 11101 } 11102 11103 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11104 const SCEV *LHS, const SCEV *RHS, 11105 const SCEV *FoundLHS, 11106 const SCEV *FoundRHS, 11107 unsigned Depth) { 11108 assert(getTypeSizeInBits(LHS->getType()) == 11109 getTypeSizeInBits(RHS->getType()) && 11110 "LHS and RHS have different sizes?"); 11111 assert(getTypeSizeInBits(FoundLHS->getType()) == 11112 getTypeSizeInBits(FoundRHS->getType()) && 11113 "FoundLHS and FoundRHS have different sizes?"); 11114 // We want to avoid hurting the compile time with analysis of too big trees. 11115 if (Depth > MaxSCEVOperationsImplicationDepth) 11116 return false; 11117 11118 // We only want to work with GT comparison so far. 11119 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11120 Pred = CmpInst::getSwappedPredicate(Pred); 11121 std::swap(LHS, RHS); 11122 std::swap(FoundLHS, FoundRHS); 11123 } 11124 11125 // For unsigned, try to reduce it to corresponding signed comparison. 11126 if (Pred == ICmpInst::ICMP_UGT) 11127 // We can replace unsigned predicate with its signed counterpart if all 11128 // involved values are non-negative. 11129 // TODO: We could have better support for unsigned. 11130 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11131 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11132 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11133 // use this fact to prove that LHS and RHS are non-negative. 11134 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11135 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11136 FoundRHS) && 11137 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11138 FoundRHS)) 11139 Pred = ICmpInst::ICMP_SGT; 11140 } 11141 11142 if (Pred != ICmpInst::ICMP_SGT) 11143 return false; 11144 11145 auto GetOpFromSExt = [&](const SCEV *S) { 11146 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11147 return Ext->getOperand(); 11148 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11149 // the constant in some cases. 11150 return S; 11151 }; 11152 11153 // Acquire values from extensions. 11154 auto *OrigLHS = LHS; 11155 auto *OrigFoundLHS = FoundLHS; 11156 LHS = GetOpFromSExt(LHS); 11157 FoundLHS = GetOpFromSExt(FoundLHS); 11158 11159 // Is the SGT predicate can be proved trivially or using the found context. 11160 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11161 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11162 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11163 FoundRHS, Depth + 1); 11164 }; 11165 11166 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11167 // We want to avoid creation of any new non-constant SCEV. Since we are 11168 // going to compare the operands to RHS, we should be certain that we don't 11169 // need any size extensions for this. So let's decline all cases when the 11170 // sizes of types of LHS and RHS do not match. 11171 // TODO: Maybe try to get RHS from sext to catch more cases? 11172 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11173 return false; 11174 11175 // Should not overflow. 11176 if (!LHSAddExpr->hasNoSignedWrap()) 11177 return false; 11178 11179 auto *LL = LHSAddExpr->getOperand(0); 11180 auto *LR = LHSAddExpr->getOperand(1); 11181 auto *MinusOne = getMinusOne(RHS->getType()); 11182 11183 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11184 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11185 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11186 }; 11187 // Try to prove the following rule: 11188 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11189 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11190 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11191 return true; 11192 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11193 Value *LL, *LR; 11194 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11195 11196 using namespace llvm::PatternMatch; 11197 11198 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11199 // Rules for division. 11200 // We are going to perform some comparisons with Denominator and its 11201 // derivative expressions. In general case, creating a SCEV for it may 11202 // lead to a complex analysis of the entire graph, and in particular it 11203 // can request trip count recalculation for the same loop. This would 11204 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11205 // this, we only want to create SCEVs that are constants in this section. 11206 // So we bail if Denominator is not a constant. 11207 if (!isa<ConstantInt>(LR)) 11208 return false; 11209 11210 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11211 11212 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11213 // then a SCEV for the numerator already exists and matches with FoundLHS. 11214 auto *Numerator = getExistingSCEV(LL); 11215 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11216 return false; 11217 11218 // Make sure that the numerator matches with FoundLHS and the denominator 11219 // is positive. 11220 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11221 return false; 11222 11223 auto *DTy = Denominator->getType(); 11224 auto *FRHSTy = FoundRHS->getType(); 11225 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11226 // One of types is a pointer and another one is not. We cannot extend 11227 // them properly to a wider type, so let us just reject this case. 11228 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11229 // to avoid this check. 11230 return false; 11231 11232 // Given that: 11233 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11234 auto *WTy = getWiderType(DTy, FRHSTy); 11235 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11236 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11237 11238 // Try to prove the following rule: 11239 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11240 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11241 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11242 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11243 if (isKnownNonPositive(RHS) && 11244 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11245 return true; 11246 11247 // Try to prove the following rule: 11248 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11249 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11250 // If we divide it by Denominator > 2, then: 11251 // 1. If FoundLHS is negative, then the result is 0. 11252 // 2. If FoundLHS is non-negative, then the result is non-negative. 11253 // Anyways, the result is non-negative. 11254 auto *MinusOne = getMinusOne(WTy); 11255 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11256 if (isKnownNegative(RHS) && 11257 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11258 return true; 11259 } 11260 } 11261 11262 // If our expression contained SCEVUnknown Phis, and we split it down and now 11263 // need to prove something for them, try to prove the predicate for every 11264 // possible incoming values of those Phis. 11265 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11266 return true; 11267 11268 return false; 11269 } 11270 11271 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11272 const SCEV *LHS, const SCEV *RHS) { 11273 // zext x u<= sext x, sext x s<= zext x 11274 switch (Pred) { 11275 case ICmpInst::ICMP_SGE: 11276 std::swap(LHS, RHS); 11277 LLVM_FALLTHROUGH; 11278 case ICmpInst::ICMP_SLE: { 11279 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11280 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11281 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11282 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11283 return true; 11284 break; 11285 } 11286 case ICmpInst::ICMP_UGE: 11287 std::swap(LHS, RHS); 11288 LLVM_FALLTHROUGH; 11289 case ICmpInst::ICMP_ULE: { 11290 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11291 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11292 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11293 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11294 return true; 11295 break; 11296 } 11297 default: 11298 break; 11299 }; 11300 return false; 11301 } 11302 11303 bool 11304 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11305 const SCEV *LHS, const SCEV *RHS) { 11306 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11307 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11308 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11309 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11310 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11311 } 11312 11313 bool 11314 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11315 const SCEV *LHS, const SCEV *RHS, 11316 const SCEV *FoundLHS, 11317 const SCEV *FoundRHS) { 11318 switch (Pred) { 11319 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11320 case ICmpInst::ICMP_EQ: 11321 case ICmpInst::ICMP_NE: 11322 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11323 return true; 11324 break; 11325 case ICmpInst::ICMP_SLT: 11326 case ICmpInst::ICMP_SLE: 11327 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11328 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11329 return true; 11330 break; 11331 case ICmpInst::ICMP_SGT: 11332 case ICmpInst::ICMP_SGE: 11333 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11334 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11335 return true; 11336 break; 11337 case ICmpInst::ICMP_ULT: 11338 case ICmpInst::ICMP_ULE: 11339 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11340 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11341 return true; 11342 break; 11343 case ICmpInst::ICMP_UGT: 11344 case ICmpInst::ICMP_UGE: 11345 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11346 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11347 return true; 11348 break; 11349 } 11350 11351 // Maybe it can be proved via operations? 11352 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11353 return true; 11354 11355 return false; 11356 } 11357 11358 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11359 const SCEV *LHS, 11360 const SCEV *RHS, 11361 const SCEV *FoundLHS, 11362 const SCEV *FoundRHS) { 11363 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11364 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11365 // reduce the compile time impact of this optimization. 11366 return false; 11367 11368 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11369 if (!Addend) 11370 return false; 11371 11372 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11373 11374 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11375 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11376 ConstantRange FoundLHSRange = 11377 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11378 11379 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11380 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11381 11382 // We can also compute the range of values for `LHS` that satisfy the 11383 // consequent, "`LHS` `Pred` `RHS`": 11384 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11385 // The antecedent implies the consequent if every value of `LHS` that 11386 // satisfies the antecedent also satisfies the consequent. 11387 return LHSRange.icmp(Pred, ConstRHS); 11388 } 11389 11390 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11391 bool IsSigned) { 11392 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11393 11394 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11395 const SCEV *One = getOne(Stride->getType()); 11396 11397 if (IsSigned) { 11398 APInt MaxRHS = getSignedRangeMax(RHS); 11399 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11400 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11401 11402 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11403 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11404 } 11405 11406 APInt MaxRHS = getUnsignedRangeMax(RHS); 11407 APInt MaxValue = APInt::getMaxValue(BitWidth); 11408 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11409 11410 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11411 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11412 } 11413 11414 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11415 bool IsSigned) { 11416 11417 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11418 const SCEV *One = getOne(Stride->getType()); 11419 11420 if (IsSigned) { 11421 APInt MinRHS = getSignedRangeMin(RHS); 11422 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11423 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11424 11425 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11426 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11427 } 11428 11429 APInt MinRHS = getUnsignedRangeMin(RHS); 11430 APInt MinValue = APInt::getMinValue(BitWidth); 11431 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11432 11433 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11434 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11435 } 11436 11437 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, 11438 const SCEV *Step) { 11439 const SCEV *One = getOne(Step->getType()); 11440 Delta = getAddExpr(Delta, getMinusSCEV(Step, One)); 11441 return getUDivExpr(Delta, Step); 11442 } 11443 11444 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11445 const SCEV *Stride, 11446 const SCEV *End, 11447 unsigned BitWidth, 11448 bool IsSigned) { 11449 11450 assert(!isKnownNonPositive(Stride) && 11451 "Stride is expected strictly positive!"); 11452 // Calculate the maximum backedge count based on the range of values 11453 // permitted by Start, End, and Stride. 11454 const SCEV *MaxBECount; 11455 APInt MinStart = 11456 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11457 11458 APInt StrideForMaxBECount = 11459 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11460 11461 // We already know that the stride is positive, so we paper over conservatism 11462 // in our range computation by forcing StrideForMaxBECount to be at least one. 11463 // In theory this is unnecessary, but we expect MaxBECount to be a 11464 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 11465 // is nothing to constant fold it to). 11466 APInt One(BitWidth, 1, IsSigned); 11467 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 11468 11469 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11470 : APInt::getMaxValue(BitWidth); 11471 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11472 11473 // Although End can be a MAX expression we estimate MaxEnd considering only 11474 // the case End = RHS of the loop termination condition. This is safe because 11475 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11476 // taken count. 11477 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11478 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11479 11480 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 11481 getConstant(StrideForMaxBECount) /* Step */); 11482 11483 return MaxBECount; 11484 } 11485 11486 ScalarEvolution::ExitLimit 11487 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11488 const Loop *L, bool IsSigned, 11489 bool ControlsExit, bool AllowPredicates) { 11490 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11491 11492 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11493 bool PredicatedIV = false; 11494 11495 if (!IV && AllowPredicates) { 11496 // Try to make this an AddRec using runtime tests, in the first X 11497 // iterations of this loop, where X is the SCEV expression found by the 11498 // algorithm below. 11499 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11500 PredicatedIV = true; 11501 } 11502 11503 // Avoid weird loops 11504 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11505 return getCouldNotCompute(); 11506 11507 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11508 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11509 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11510 11511 const SCEV *Stride = IV->getStepRecurrence(*this); 11512 11513 bool PositiveStride = isKnownPositive(Stride); 11514 11515 // Avoid negative or zero stride values. 11516 if (!PositiveStride) { 11517 // We can compute the correct backedge taken count for loops with unknown 11518 // strides if we can prove that the loop is not an infinite loop with side 11519 // effects. Here's the loop structure we are trying to handle - 11520 // 11521 // i = start 11522 // do { 11523 // A[i] = i; 11524 // i += s; 11525 // } while (i < end); 11526 // 11527 // The backedge taken count for such loops is evaluated as - 11528 // (max(end, start + stride) - start - 1) /u stride 11529 // 11530 // The additional preconditions that we need to check to prove correctness 11531 // of the above formula is as follows - 11532 // 11533 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11534 // NoWrap flag). 11535 // b) loop is single exit with no side effects. 11536 // 11537 // 11538 // Precondition a) implies that if the stride is negative, this is a single 11539 // trip loop. The backedge taken count formula reduces to zero in this case. 11540 // 11541 // Precondition b) implies that the unknown stride cannot be zero otherwise 11542 // we have UB. 11543 // 11544 // The positive stride case is the same as isKnownPositive(Stride) returning 11545 // true (original behavior of the function). 11546 // 11547 // We want to make sure that the stride is truly unknown as there are edge 11548 // cases where ScalarEvolution propagates no wrap flags to the 11549 // post-increment/decrement IV even though the increment/decrement operation 11550 // itself is wrapping. The computed backedge taken count may be wrong in 11551 // such cases. This is prevented by checking that the stride is not known to 11552 // be either positive or non-positive. For example, no wrap flags are 11553 // propagated to the post-increment IV of this loop with a trip count of 2 - 11554 // 11555 // unsigned char i; 11556 // for(i=127; i<128; i+=129) 11557 // A[i] = i; 11558 // 11559 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11560 !loopIsFiniteByAssumption(L)) 11561 return getCouldNotCompute(); 11562 } else if (!Stride->isOne() && !NoWrap) { 11563 auto isUBOnWrap = [&]() { 11564 // Can we prove this loop *must* be UB if overflow of IV occurs? 11565 // Reasoning goes as follows: 11566 // * Suppose the IV did self wrap. 11567 // * If Stride evenly divides the iteration space, then once wrap 11568 // occurs, the loop must revisit the same values. 11569 // * We know that RHS is invariant, and that none of those values 11570 // caused this exit to be taken previously. Thus, this exit is 11571 // dynamically dead. 11572 // * If this is the sole exit, then a dead exit implies the loop 11573 // must be infinite if there are no abnormal exits. 11574 // * If the loop were infinite, then it must either not be mustprogress 11575 // or have side effects. Otherwise, it must be UB. 11576 // * It can't (by assumption), be UB so we have contradicted our 11577 // premise and can conclude the IV did not in fact self-wrap. 11578 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 11579 // follows trivially from the fact that every (un)signed-wrapped, but 11580 // not self-wrapped value must be LT than the last value before 11581 // (un)signed wrap. Since we know that last value didn't exit, nor 11582 // will any smaller one. 11583 11584 if (!isLoopInvariant(RHS, L)) 11585 return false; 11586 11587 auto *StrideC = dyn_cast<SCEVConstant>(Stride); 11588 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11589 return false; 11590 11591 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11592 return false; 11593 11594 return loopIsFiniteByAssumption(L); 11595 }; 11596 11597 // Avoid proven overflow cases: this will ensure that the backedge taken 11598 // count will not generate any unsigned overflow. Relaxed no-overflow 11599 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11600 // undefined behaviors like the case of C language. 11601 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 11602 return getCouldNotCompute(); 11603 } 11604 11605 const SCEV *Start = IV->getStart(); 11606 11607 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 11608 // Use integer-typed versions for actual computation. 11609 const SCEV *OrigStart = Start; 11610 const SCEV *OrigRHS = RHS; 11611 if (Start->getType()->isPointerTy()) { 11612 Start = getLosslessPtrToIntExpr(Start); 11613 if (isa<SCEVCouldNotCompute>(Start)) 11614 return Start; 11615 } 11616 if (RHS->getType()->isPointerTy()) { 11617 RHS = getLosslessPtrToIntExpr(RHS); 11618 if (isa<SCEVCouldNotCompute>(RHS)) 11619 return RHS; 11620 } 11621 11622 const SCEV *End = RHS; 11623 // When the RHS is not invariant, we do not know the end bound of the loop and 11624 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11625 // calculate the MaxBECount, given the start, stride and max value for the end 11626 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11627 // checked above). 11628 if (!isLoopInvariant(RHS, L)) { 11629 const SCEV *MaxBECount = computeMaxBECountForLT( 11630 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11631 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11632 false /*MaxOrZero*/, Predicates); 11633 } 11634 // If the backedge is taken at least once, then it will be taken 11635 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 11636 // is the LHS value of the less-than comparison the first time it is evaluated 11637 // and End is the RHS. 11638 const SCEV *BECountIfBackedgeTaken = 11639 computeBECount(getMinusSCEV(End, Start), Stride); 11640 // If the loop entry is guarded by the result of the backedge test of the 11641 // first loop iteration, then we know the backedge will be taken at least 11642 // once and so the backedge taken count is as above. If not then we use the 11643 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 11644 // as if the backedge is taken at least once max(End,Start) is End and so the 11645 // result is as above, and if not max(End,Start) is Start so we get a backedge 11646 // count of zero. 11647 const SCEV *BECount; 11648 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(OrigStart, Stride), OrigRHS)) 11649 BECount = BECountIfBackedgeTaken; 11650 else { 11651 // If we know that RHS >= Start in the context of loop, then we know that 11652 // max(RHS, Start) = RHS at this point. 11653 if (isLoopEntryGuardedByCond( 11654 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, OrigRHS, OrigStart)) 11655 End = RHS; 11656 else 11657 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11658 BECount = computeBECount(getMinusSCEV(End, Start), Stride); 11659 } 11660 11661 const SCEV *MaxBECount; 11662 bool MaxOrZero = false; 11663 if (isa<SCEVConstant>(BECount)) 11664 MaxBECount = BECount; 11665 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11666 // If we know exactly how many times the backedge will be taken if it's 11667 // taken at least once, then the backedge count will either be that or 11668 // zero. 11669 MaxBECount = BECountIfBackedgeTaken; 11670 MaxOrZero = true; 11671 } else { 11672 MaxBECount = computeMaxBECountForLT( 11673 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11674 } 11675 11676 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11677 !isa<SCEVCouldNotCompute>(BECount)) 11678 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11679 11680 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11681 } 11682 11683 ScalarEvolution::ExitLimit 11684 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11685 const Loop *L, bool IsSigned, 11686 bool ControlsExit, bool AllowPredicates) { 11687 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11688 // We handle only IV > Invariant 11689 if (!isLoopInvariant(RHS, L)) 11690 return getCouldNotCompute(); 11691 11692 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11693 if (!IV && AllowPredicates) 11694 // Try to make this an AddRec using runtime tests, in the first X 11695 // iterations of this loop, where X is the SCEV expression found by the 11696 // algorithm below. 11697 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11698 11699 // Avoid weird loops 11700 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11701 return getCouldNotCompute(); 11702 11703 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11704 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11705 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11706 11707 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11708 11709 // Avoid negative or zero stride values 11710 if (!isKnownPositive(Stride)) 11711 return getCouldNotCompute(); 11712 11713 // Avoid proven overflow cases: this will ensure that the backedge taken count 11714 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11715 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11716 // behaviors like the case of C language. 11717 if (!Stride->isOne() && !NoWrap) 11718 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 11719 return getCouldNotCompute(); 11720 11721 const SCEV *Start = IV->getStart(); 11722 const SCEV *End = RHS; 11723 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 11724 // If we know that Start >= RHS in the context of loop, then we know that 11725 // min(RHS, Start) = RHS at this point. 11726 if (isLoopEntryGuardedByCond( 11727 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 11728 End = RHS; 11729 else 11730 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 11731 } 11732 11733 if (Start->getType()->isPointerTy()) { 11734 Start = getLosslessPtrToIntExpr(Start); 11735 if (isa<SCEVCouldNotCompute>(Start)) 11736 return Start; 11737 } 11738 if (End->getType()->isPointerTy()) { 11739 End = getLosslessPtrToIntExpr(End); 11740 if (isa<SCEVCouldNotCompute>(End)) 11741 return End; 11742 } 11743 11744 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride); 11745 11746 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 11747 : getUnsignedRangeMax(Start); 11748 11749 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 11750 : getUnsignedRangeMin(Stride); 11751 11752 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 11753 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 11754 : APInt::getMinValue(BitWidth) + (MinStride - 1); 11755 11756 // Although End can be a MIN expression we estimate MinEnd considering only 11757 // the case End = RHS. This is safe because in the other case (Start - End) 11758 // is zero, leading to a zero maximum backedge taken count. 11759 APInt MinEnd = 11760 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 11761 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 11762 11763 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 11764 ? BECount 11765 : computeBECount(getConstant(MaxStart - MinEnd), 11766 getConstant(MinStride)); 11767 11768 if (isa<SCEVCouldNotCompute>(MaxBECount)) 11769 MaxBECount = BECount; 11770 11771 return ExitLimit(BECount, MaxBECount, false, Predicates); 11772 } 11773 11774 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 11775 ScalarEvolution &SE) const { 11776 if (Range.isFullSet()) // Infinite loop. 11777 return SE.getCouldNotCompute(); 11778 11779 // If the start is a non-zero constant, shift the range to simplify things. 11780 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 11781 if (!SC->getValue()->isZero()) { 11782 SmallVector<const SCEV *, 4> Operands(operands()); 11783 Operands[0] = SE.getZero(SC->getType()); 11784 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 11785 getNoWrapFlags(FlagNW)); 11786 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 11787 return ShiftedAddRec->getNumIterationsInRange( 11788 Range.subtract(SC->getAPInt()), SE); 11789 // This is strange and shouldn't happen. 11790 return SE.getCouldNotCompute(); 11791 } 11792 11793 // The only time we can solve this is when we have all constant indices. 11794 // Otherwise, we cannot determine the overflow conditions. 11795 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 11796 return SE.getCouldNotCompute(); 11797 11798 // Okay at this point we know that all elements of the chrec are constants and 11799 // that the start element is zero. 11800 11801 // First check to see if the range contains zero. If not, the first 11802 // iteration exits. 11803 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 11804 if (!Range.contains(APInt(BitWidth, 0))) 11805 return SE.getZero(getType()); 11806 11807 if (isAffine()) { 11808 // If this is an affine expression then we have this situation: 11809 // Solve {0,+,A} in Range === Ax in Range 11810 11811 // We know that zero is in the range. If A is positive then we know that 11812 // the upper value of the range must be the first possible exit value. 11813 // If A is negative then the lower of the range is the last possible loop 11814 // value. Also note that we already checked for a full range. 11815 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 11816 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 11817 11818 // The exit value should be (End+A)/A. 11819 APInt ExitVal = (End + A).udiv(A); 11820 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 11821 11822 // Evaluate at the exit value. If we really did fall out of the valid 11823 // range, then we computed our trip count, otherwise wrap around or other 11824 // things must have happened. 11825 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 11826 if (Range.contains(Val->getValue())) 11827 return SE.getCouldNotCompute(); // Something strange happened 11828 11829 // Ensure that the previous value is in the range. This is a sanity check. 11830 assert(Range.contains( 11831 EvaluateConstantChrecAtConstant(this, 11832 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 11833 "Linear scev computation is off in a bad way!"); 11834 return SE.getConstant(ExitValue); 11835 } 11836 11837 if (isQuadratic()) { 11838 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 11839 return SE.getConstant(S.getValue()); 11840 } 11841 11842 return SE.getCouldNotCompute(); 11843 } 11844 11845 const SCEVAddRecExpr * 11846 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 11847 assert(getNumOperands() > 1 && "AddRec with zero step?"); 11848 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 11849 // but in this case we cannot guarantee that the value returned will be an 11850 // AddRec because SCEV does not have a fixed point where it stops 11851 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 11852 // may happen if we reach arithmetic depth limit while simplifying. So we 11853 // construct the returned value explicitly. 11854 SmallVector<const SCEV *, 3> Ops; 11855 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 11856 // (this + Step) is {A+B,+,B+C,+...,+,N}. 11857 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 11858 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 11859 // We know that the last operand is not a constant zero (otherwise it would 11860 // have been popped out earlier). This guarantees us that if the result has 11861 // the same last operand, then it will also not be popped out, meaning that 11862 // the returned value will be an AddRec. 11863 const SCEV *Last = getOperand(getNumOperands() - 1); 11864 assert(!Last->isZero() && "Recurrency with zero step?"); 11865 Ops.push_back(Last); 11866 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 11867 SCEV::FlagAnyWrap)); 11868 } 11869 11870 // Return true when S contains at least an undef value. 11871 static inline bool containsUndefs(const SCEV *S) { 11872 return SCEVExprContains(S, [](const SCEV *S) { 11873 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 11874 return isa<UndefValue>(SU->getValue()); 11875 return false; 11876 }); 11877 } 11878 11879 namespace { 11880 11881 // Collect all steps of SCEV expressions. 11882 struct SCEVCollectStrides { 11883 ScalarEvolution &SE; 11884 SmallVectorImpl<const SCEV *> &Strides; 11885 11886 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 11887 : SE(SE), Strides(S) {} 11888 11889 bool follow(const SCEV *S) { 11890 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 11891 Strides.push_back(AR->getStepRecurrence(SE)); 11892 return true; 11893 } 11894 11895 bool isDone() const { return false; } 11896 }; 11897 11898 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11899 struct SCEVCollectTerms { 11900 SmallVectorImpl<const SCEV *> &Terms; 11901 11902 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11903 11904 bool follow(const SCEV *S) { 11905 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11906 isa<SCEVSignExtendExpr>(S)) { 11907 if (!containsUndefs(S)) 11908 Terms.push_back(S); 11909 11910 // Stop recursion: once we collected a term, do not walk its operands. 11911 return false; 11912 } 11913 11914 // Keep looking. 11915 return true; 11916 } 11917 11918 bool isDone() const { return false; } 11919 }; 11920 11921 // Check if a SCEV contains an AddRecExpr. 11922 struct SCEVHasAddRec { 11923 bool &ContainsAddRec; 11924 11925 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11926 ContainsAddRec = false; 11927 } 11928 11929 bool follow(const SCEV *S) { 11930 if (isa<SCEVAddRecExpr>(S)) { 11931 ContainsAddRec = true; 11932 11933 // Stop recursion: once we collected a term, do not walk its operands. 11934 return false; 11935 } 11936 11937 // Keep looking. 11938 return true; 11939 } 11940 11941 bool isDone() const { return false; } 11942 }; 11943 11944 // Find factors that are multiplied with an expression that (possibly as a 11945 // subexpression) contains an AddRecExpr. In the expression: 11946 // 11947 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 11948 // 11949 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 11950 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 11951 // parameters as they form a product with an induction variable. 11952 // 11953 // This collector expects all array size parameters to be in the same MulExpr. 11954 // It might be necessary to later add support for collecting parameters that are 11955 // spread over different nested MulExpr. 11956 struct SCEVCollectAddRecMultiplies { 11957 SmallVectorImpl<const SCEV *> &Terms; 11958 ScalarEvolution &SE; 11959 11960 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 11961 : Terms(T), SE(SE) {} 11962 11963 bool follow(const SCEV *S) { 11964 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 11965 bool HasAddRec = false; 11966 SmallVector<const SCEV *, 0> Operands; 11967 for (auto Op : Mul->operands()) { 11968 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11969 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11970 Operands.push_back(Op); 11971 } else if (Unknown) { 11972 HasAddRec = true; 11973 } else { 11974 bool ContainsAddRec = false; 11975 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11976 visitAll(Op, ContiansAddRec); 11977 HasAddRec |= ContainsAddRec; 11978 } 11979 } 11980 if (Operands.size() == 0) 11981 return true; 11982 11983 if (!HasAddRec) 11984 return false; 11985 11986 Terms.push_back(SE.getMulExpr(Operands)); 11987 // Stop recursion: once we collected a term, do not walk its operands. 11988 return false; 11989 } 11990 11991 // Keep looking. 11992 return true; 11993 } 11994 11995 bool isDone() const { return false; } 11996 }; 11997 11998 } // end anonymous namespace 11999 12000 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 12001 /// two places: 12002 /// 1) The strides of AddRec expressions. 12003 /// 2) Unknowns that are multiplied with AddRec expressions. 12004 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 12005 SmallVectorImpl<const SCEV *> &Terms) { 12006 SmallVector<const SCEV *, 4> Strides; 12007 SCEVCollectStrides StrideCollector(*this, Strides); 12008 visitAll(Expr, StrideCollector); 12009 12010 LLVM_DEBUG({ 12011 dbgs() << "Strides:\n"; 12012 for (const SCEV *S : Strides) 12013 dbgs() << *S << "\n"; 12014 }); 12015 12016 for (const SCEV *S : Strides) { 12017 SCEVCollectTerms TermCollector(Terms); 12018 visitAll(S, TermCollector); 12019 } 12020 12021 LLVM_DEBUG({ 12022 dbgs() << "Terms:\n"; 12023 for (const SCEV *T : Terms) 12024 dbgs() << *T << "\n"; 12025 }); 12026 12027 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 12028 visitAll(Expr, MulCollector); 12029 } 12030 12031 static bool findArrayDimensionsRec(ScalarEvolution &SE, 12032 SmallVectorImpl<const SCEV *> &Terms, 12033 SmallVectorImpl<const SCEV *> &Sizes) { 12034 int Last = Terms.size() - 1; 12035 const SCEV *Step = Terms[Last]; 12036 12037 // End of recursion. 12038 if (Last == 0) { 12039 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 12040 SmallVector<const SCEV *, 2> Qs; 12041 for (const SCEV *Op : M->operands()) 12042 if (!isa<SCEVConstant>(Op)) 12043 Qs.push_back(Op); 12044 12045 Step = SE.getMulExpr(Qs); 12046 } 12047 12048 Sizes.push_back(Step); 12049 return true; 12050 } 12051 12052 for (const SCEV *&Term : Terms) { 12053 // Normalize the terms before the next call to findArrayDimensionsRec. 12054 const SCEV *Q, *R; 12055 SCEVDivision::divide(SE, Term, Step, &Q, &R); 12056 12057 // Bail out when GCD does not evenly divide one of the terms. 12058 if (!R->isZero()) 12059 return false; 12060 12061 Term = Q; 12062 } 12063 12064 // Remove all SCEVConstants. 12065 erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }); 12066 12067 if (Terms.size() > 0) 12068 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 12069 return false; 12070 12071 Sizes.push_back(Step); 12072 return true; 12073 } 12074 12075 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 12076 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 12077 for (const SCEV *T : Terms) 12078 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 12079 return true; 12080 12081 return false; 12082 } 12083 12084 // Return the number of product terms in S. 12085 static inline int numberOfTerms(const SCEV *S) { 12086 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 12087 return Expr->getNumOperands(); 12088 return 1; 12089 } 12090 12091 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 12092 if (isa<SCEVConstant>(T)) 12093 return nullptr; 12094 12095 if (isa<SCEVUnknown>(T)) 12096 return T; 12097 12098 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 12099 SmallVector<const SCEV *, 2> Factors; 12100 for (const SCEV *Op : M->operands()) 12101 if (!isa<SCEVConstant>(Op)) 12102 Factors.push_back(Op); 12103 12104 return SE.getMulExpr(Factors); 12105 } 12106 12107 return T; 12108 } 12109 12110 /// Return the size of an element read or written by Inst. 12111 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12112 Type *Ty; 12113 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12114 Ty = Store->getValueOperand()->getType(); 12115 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12116 Ty = Load->getType(); 12117 else 12118 return nullptr; 12119 12120 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12121 return getSizeOfExpr(ETy, Ty); 12122 } 12123 12124 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 12125 SmallVectorImpl<const SCEV *> &Sizes, 12126 const SCEV *ElementSize) { 12127 if (Terms.size() < 1 || !ElementSize) 12128 return; 12129 12130 // Early return when Terms do not contain parameters: we do not delinearize 12131 // non parametric SCEVs. 12132 if (!containsParameters(Terms)) 12133 return; 12134 12135 LLVM_DEBUG({ 12136 dbgs() << "Terms:\n"; 12137 for (const SCEV *T : Terms) 12138 dbgs() << *T << "\n"; 12139 }); 12140 12141 // Remove duplicates. 12142 array_pod_sort(Terms.begin(), Terms.end()); 12143 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 12144 12145 // Put larger terms first. 12146 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 12147 return numberOfTerms(LHS) > numberOfTerms(RHS); 12148 }); 12149 12150 // Try to divide all terms by the element size. If term is not divisible by 12151 // element size, proceed with the original term. 12152 for (const SCEV *&Term : Terms) { 12153 const SCEV *Q, *R; 12154 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 12155 if (!Q->isZero()) 12156 Term = Q; 12157 } 12158 12159 SmallVector<const SCEV *, 4> NewTerms; 12160 12161 // Remove constant factors. 12162 for (const SCEV *T : Terms) 12163 if (const SCEV *NewT = removeConstantFactors(*this, T)) 12164 NewTerms.push_back(NewT); 12165 12166 LLVM_DEBUG({ 12167 dbgs() << "Terms after sorting:\n"; 12168 for (const SCEV *T : NewTerms) 12169 dbgs() << *T << "\n"; 12170 }); 12171 12172 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 12173 Sizes.clear(); 12174 return; 12175 } 12176 12177 // The last element to be pushed into Sizes is the size of an element. 12178 Sizes.push_back(ElementSize); 12179 12180 LLVM_DEBUG({ 12181 dbgs() << "Sizes:\n"; 12182 for (const SCEV *S : Sizes) 12183 dbgs() << *S << "\n"; 12184 }); 12185 } 12186 12187 void ScalarEvolution::computeAccessFunctions( 12188 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 12189 SmallVectorImpl<const SCEV *> &Sizes) { 12190 // Early exit in case this SCEV is not an affine multivariate function. 12191 if (Sizes.empty()) 12192 return; 12193 12194 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 12195 if (!AR->isAffine()) 12196 return; 12197 12198 const SCEV *Res = Expr; 12199 int Last = Sizes.size() - 1; 12200 for (int i = Last; i >= 0; i--) { 12201 const SCEV *Q, *R; 12202 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 12203 12204 LLVM_DEBUG({ 12205 dbgs() << "Res: " << *Res << "\n"; 12206 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 12207 dbgs() << "Res divided by Sizes[i]:\n"; 12208 dbgs() << "Quotient: " << *Q << "\n"; 12209 dbgs() << "Remainder: " << *R << "\n"; 12210 }); 12211 12212 Res = Q; 12213 12214 // Do not record the last subscript corresponding to the size of elements in 12215 // the array. 12216 if (i == Last) { 12217 12218 // Bail out if the remainder is too complex. 12219 if (isa<SCEVAddRecExpr>(R)) { 12220 Subscripts.clear(); 12221 Sizes.clear(); 12222 return; 12223 } 12224 12225 continue; 12226 } 12227 12228 // Record the access function for the current subscript. 12229 Subscripts.push_back(R); 12230 } 12231 12232 // Also push in last position the remainder of the last division: it will be 12233 // the access function of the innermost dimension. 12234 Subscripts.push_back(Res); 12235 12236 std::reverse(Subscripts.begin(), Subscripts.end()); 12237 12238 LLVM_DEBUG({ 12239 dbgs() << "Subscripts:\n"; 12240 for (const SCEV *S : Subscripts) 12241 dbgs() << *S << "\n"; 12242 }); 12243 } 12244 12245 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 12246 /// sizes of an array access. Returns the remainder of the delinearization that 12247 /// is the offset start of the array. The SCEV->delinearize algorithm computes 12248 /// the multiples of SCEV coefficients: that is a pattern matching of sub 12249 /// expressions in the stride and base of a SCEV corresponding to the 12250 /// computation of a GCD (greatest common divisor) of base and stride. When 12251 /// SCEV->delinearize fails, it returns the SCEV unchanged. 12252 /// 12253 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 12254 /// 12255 /// void foo(long n, long m, long o, double A[n][m][o]) { 12256 /// 12257 /// for (long i = 0; i < n; i++) 12258 /// for (long j = 0; j < m; j++) 12259 /// for (long k = 0; k < o; k++) 12260 /// A[i][j][k] = 1.0; 12261 /// } 12262 /// 12263 /// the delinearization input is the following AddRec SCEV: 12264 /// 12265 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 12266 /// 12267 /// From this SCEV, we are able to say that the base offset of the access is %A 12268 /// because it appears as an offset that does not divide any of the strides in 12269 /// the loops: 12270 /// 12271 /// CHECK: Base offset: %A 12272 /// 12273 /// and then SCEV->delinearize determines the size of some of the dimensions of 12274 /// the array as these are the multiples by which the strides are happening: 12275 /// 12276 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 12277 /// 12278 /// Note that the outermost dimension remains of UnknownSize because there are 12279 /// no strides that would help identifying the size of the last dimension: when 12280 /// the array has been statically allocated, one could compute the size of that 12281 /// dimension by dividing the overall size of the array by the size of the known 12282 /// dimensions: %m * %o * 8. 12283 /// 12284 /// Finally delinearize provides the access functions for the array reference 12285 /// that does correspond to A[i][j][k] of the above C testcase: 12286 /// 12287 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 12288 /// 12289 /// The testcases are checking the output of a function pass: 12290 /// DelinearizationPass that walks through all loads and stores of a function 12291 /// asking for the SCEV of the memory access with respect to all enclosing 12292 /// loops, calling SCEV->delinearize on that and printing the results. 12293 void ScalarEvolution::delinearize(const SCEV *Expr, 12294 SmallVectorImpl<const SCEV *> &Subscripts, 12295 SmallVectorImpl<const SCEV *> &Sizes, 12296 const SCEV *ElementSize) { 12297 // First step: collect parametric terms. 12298 SmallVector<const SCEV *, 4> Terms; 12299 collectParametricTerms(Expr, Terms); 12300 12301 if (Terms.empty()) 12302 return; 12303 12304 // Second step: find subscript sizes. 12305 findArrayDimensions(Terms, Sizes, ElementSize); 12306 12307 if (Sizes.empty()) 12308 return; 12309 12310 // Third step: compute the access functions for each subscript. 12311 computeAccessFunctions(Expr, Subscripts, Sizes); 12312 12313 if (Subscripts.empty()) 12314 return; 12315 12316 LLVM_DEBUG({ 12317 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 12318 dbgs() << "ArrayDecl[UnknownSize]"; 12319 for (const SCEV *S : Sizes) 12320 dbgs() << "[" << *S << "]"; 12321 12322 dbgs() << "\nArrayRef"; 12323 for (const SCEV *S : Subscripts) 12324 dbgs() << "[" << *S << "]"; 12325 dbgs() << "\n"; 12326 }); 12327 } 12328 12329 bool ScalarEvolution::getIndexExpressionsFromGEP( 12330 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 12331 SmallVectorImpl<int> &Sizes) { 12332 assert(Subscripts.empty() && Sizes.empty() && 12333 "Expected output lists to be empty on entry to this function."); 12334 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 12335 Type *Ty = GEP->getPointerOperandType(); 12336 bool DroppedFirstDim = false; 12337 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 12338 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 12339 if (i == 1) { 12340 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 12341 Ty = PtrTy->getElementType(); 12342 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 12343 Ty = ArrayTy->getElementType(); 12344 } else { 12345 Subscripts.clear(); 12346 Sizes.clear(); 12347 return false; 12348 } 12349 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 12350 if (Const->getValue()->isZero()) { 12351 DroppedFirstDim = true; 12352 continue; 12353 } 12354 Subscripts.push_back(Expr); 12355 continue; 12356 } 12357 12358 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 12359 if (!ArrayTy) { 12360 Subscripts.clear(); 12361 Sizes.clear(); 12362 return false; 12363 } 12364 12365 Subscripts.push_back(Expr); 12366 if (!(DroppedFirstDim && i == 2)) 12367 Sizes.push_back(ArrayTy->getNumElements()); 12368 12369 Ty = ArrayTy->getElementType(); 12370 } 12371 return !Subscripts.empty(); 12372 } 12373 12374 //===----------------------------------------------------------------------===// 12375 // SCEVCallbackVH Class Implementation 12376 //===----------------------------------------------------------------------===// 12377 12378 void ScalarEvolution::SCEVCallbackVH::deleted() { 12379 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12380 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12381 SE->ConstantEvolutionLoopExitValue.erase(PN); 12382 SE->eraseValueFromMap(getValPtr()); 12383 // this now dangles! 12384 } 12385 12386 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12387 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12388 12389 // Forget all the expressions associated with users of the old value, 12390 // so that future queries will recompute the expressions using the new 12391 // value. 12392 Value *Old = getValPtr(); 12393 SmallVector<User *, 16> Worklist(Old->users()); 12394 SmallPtrSet<User *, 8> Visited; 12395 while (!Worklist.empty()) { 12396 User *U = Worklist.pop_back_val(); 12397 // Deleting the Old value will cause this to dangle. Postpone 12398 // that until everything else is done. 12399 if (U == Old) 12400 continue; 12401 if (!Visited.insert(U).second) 12402 continue; 12403 if (PHINode *PN = dyn_cast<PHINode>(U)) 12404 SE->ConstantEvolutionLoopExitValue.erase(PN); 12405 SE->eraseValueFromMap(U); 12406 llvm::append_range(Worklist, U->users()); 12407 } 12408 // Delete the Old value. 12409 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12410 SE->ConstantEvolutionLoopExitValue.erase(PN); 12411 SE->eraseValueFromMap(Old); 12412 // this now dangles! 12413 } 12414 12415 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12416 : CallbackVH(V), SE(se) {} 12417 12418 //===----------------------------------------------------------------------===// 12419 // ScalarEvolution Class Implementation 12420 //===----------------------------------------------------------------------===// 12421 12422 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12423 AssumptionCache &AC, DominatorTree &DT, 12424 LoopInfo &LI) 12425 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12426 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12427 LoopDispositions(64), BlockDispositions(64) { 12428 // To use guards for proving predicates, we need to scan every instruction in 12429 // relevant basic blocks, and not just terminators. Doing this is a waste of 12430 // time if the IR does not actually contain any calls to 12431 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12432 // 12433 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12434 // to _add_ guards to the module when there weren't any before, and wants 12435 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12436 // efficient in lieu of being smart in that rather obscure case. 12437 12438 auto *GuardDecl = F.getParent()->getFunction( 12439 Intrinsic::getName(Intrinsic::experimental_guard)); 12440 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12441 } 12442 12443 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12444 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12445 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12446 ValueExprMap(std::move(Arg.ValueExprMap)), 12447 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12448 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12449 PendingMerges(std::move(Arg.PendingMerges)), 12450 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12451 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12452 PredicatedBackedgeTakenCounts( 12453 std::move(Arg.PredicatedBackedgeTakenCounts)), 12454 ConstantEvolutionLoopExitValue( 12455 std::move(Arg.ConstantEvolutionLoopExitValue)), 12456 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12457 LoopDispositions(std::move(Arg.LoopDispositions)), 12458 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12459 BlockDispositions(std::move(Arg.BlockDispositions)), 12460 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12461 SignedRanges(std::move(Arg.SignedRanges)), 12462 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12463 UniquePreds(std::move(Arg.UniquePreds)), 12464 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12465 LoopUsers(std::move(Arg.LoopUsers)), 12466 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12467 FirstUnknown(Arg.FirstUnknown) { 12468 Arg.FirstUnknown = nullptr; 12469 } 12470 12471 ScalarEvolution::~ScalarEvolution() { 12472 // Iterate through all the SCEVUnknown instances and call their 12473 // destructors, so that they release their references to their values. 12474 for (SCEVUnknown *U = FirstUnknown; U;) { 12475 SCEVUnknown *Tmp = U; 12476 U = U->Next; 12477 Tmp->~SCEVUnknown(); 12478 } 12479 FirstUnknown = nullptr; 12480 12481 ExprValueMap.clear(); 12482 ValueExprMap.clear(); 12483 HasRecMap.clear(); 12484 BackedgeTakenCounts.clear(); 12485 PredicatedBackedgeTakenCounts.clear(); 12486 12487 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12488 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12489 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12490 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12491 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12492 } 12493 12494 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12495 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12496 } 12497 12498 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12499 const Loop *L) { 12500 // Print all inner loops first 12501 for (Loop *I : *L) 12502 PrintLoopInfo(OS, SE, I); 12503 12504 OS << "Loop "; 12505 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12506 OS << ": "; 12507 12508 SmallVector<BasicBlock *, 8> ExitingBlocks; 12509 L->getExitingBlocks(ExitingBlocks); 12510 if (ExitingBlocks.size() != 1) 12511 OS << "<multiple exits> "; 12512 12513 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12514 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12515 else 12516 OS << "Unpredictable backedge-taken count.\n"; 12517 12518 if (ExitingBlocks.size() > 1) 12519 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12520 OS << " exit count for " << ExitingBlock->getName() << ": " 12521 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12522 } 12523 12524 OS << "Loop "; 12525 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12526 OS << ": "; 12527 12528 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12529 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12530 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12531 OS << ", actual taken count either this or zero."; 12532 } else { 12533 OS << "Unpredictable max backedge-taken count. "; 12534 } 12535 12536 OS << "\n" 12537 "Loop "; 12538 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12539 OS << ": "; 12540 12541 SCEVUnionPredicate Pred; 12542 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12543 if (!isa<SCEVCouldNotCompute>(PBT)) { 12544 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12545 OS << " Predicates:\n"; 12546 Pred.print(OS, 4); 12547 } else { 12548 OS << "Unpredictable predicated backedge-taken count. "; 12549 } 12550 OS << "\n"; 12551 12552 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12553 OS << "Loop "; 12554 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12555 OS << ": "; 12556 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12557 } 12558 } 12559 12560 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12561 switch (LD) { 12562 case ScalarEvolution::LoopVariant: 12563 return "Variant"; 12564 case ScalarEvolution::LoopInvariant: 12565 return "Invariant"; 12566 case ScalarEvolution::LoopComputable: 12567 return "Computable"; 12568 } 12569 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12570 } 12571 12572 void ScalarEvolution::print(raw_ostream &OS) const { 12573 // ScalarEvolution's implementation of the print method is to print 12574 // out SCEV values of all instructions that are interesting. Doing 12575 // this potentially causes it to create new SCEV objects though, 12576 // which technically conflicts with the const qualifier. This isn't 12577 // observable from outside the class though, so casting away the 12578 // const isn't dangerous. 12579 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12580 12581 if (ClassifyExpressions) { 12582 OS << "Classifying expressions for: "; 12583 F.printAsOperand(OS, /*PrintType=*/false); 12584 OS << "\n"; 12585 for (Instruction &I : instructions(F)) 12586 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12587 OS << I << '\n'; 12588 OS << " --> "; 12589 const SCEV *SV = SE.getSCEV(&I); 12590 SV->print(OS); 12591 if (!isa<SCEVCouldNotCompute>(SV)) { 12592 OS << " U: "; 12593 SE.getUnsignedRange(SV).print(OS); 12594 OS << " S: "; 12595 SE.getSignedRange(SV).print(OS); 12596 } 12597 12598 const Loop *L = LI.getLoopFor(I.getParent()); 12599 12600 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12601 if (AtUse != SV) { 12602 OS << " --> "; 12603 AtUse->print(OS); 12604 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12605 OS << " U: "; 12606 SE.getUnsignedRange(AtUse).print(OS); 12607 OS << " S: "; 12608 SE.getSignedRange(AtUse).print(OS); 12609 } 12610 } 12611 12612 if (L) { 12613 OS << "\t\t" "Exits: "; 12614 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12615 if (!SE.isLoopInvariant(ExitValue, L)) { 12616 OS << "<<Unknown>>"; 12617 } else { 12618 OS << *ExitValue; 12619 } 12620 12621 bool First = true; 12622 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12623 if (First) { 12624 OS << "\t\t" "LoopDispositions: { "; 12625 First = false; 12626 } else { 12627 OS << ", "; 12628 } 12629 12630 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12631 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12632 } 12633 12634 for (auto *InnerL : depth_first(L)) { 12635 if (InnerL == L) 12636 continue; 12637 if (First) { 12638 OS << "\t\t" "LoopDispositions: { "; 12639 First = false; 12640 } else { 12641 OS << ", "; 12642 } 12643 12644 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12645 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12646 } 12647 12648 OS << " }"; 12649 } 12650 12651 OS << "\n"; 12652 } 12653 } 12654 12655 OS << "Determining loop execution counts for: "; 12656 F.printAsOperand(OS, /*PrintType=*/false); 12657 OS << "\n"; 12658 for (Loop *I : LI) 12659 PrintLoopInfo(OS, &SE, I); 12660 } 12661 12662 ScalarEvolution::LoopDisposition 12663 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12664 auto &Values = LoopDispositions[S]; 12665 for (auto &V : Values) { 12666 if (V.getPointer() == L) 12667 return V.getInt(); 12668 } 12669 Values.emplace_back(L, LoopVariant); 12670 LoopDisposition D = computeLoopDisposition(S, L); 12671 auto &Values2 = LoopDispositions[S]; 12672 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12673 if (V.getPointer() == L) { 12674 V.setInt(D); 12675 break; 12676 } 12677 } 12678 return D; 12679 } 12680 12681 ScalarEvolution::LoopDisposition 12682 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12683 switch (S->getSCEVType()) { 12684 case scConstant: 12685 return LoopInvariant; 12686 case scPtrToInt: 12687 case scTruncate: 12688 case scZeroExtend: 12689 case scSignExtend: 12690 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12691 case scAddRecExpr: { 12692 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12693 12694 // If L is the addrec's loop, it's computable. 12695 if (AR->getLoop() == L) 12696 return LoopComputable; 12697 12698 // Add recurrences are never invariant in the function-body (null loop). 12699 if (!L) 12700 return LoopVariant; 12701 12702 // Everything that is not defined at loop entry is variant. 12703 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12704 return LoopVariant; 12705 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12706 " dominate the contained loop's header?"); 12707 12708 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12709 if (AR->getLoop()->contains(L)) 12710 return LoopInvariant; 12711 12712 // This recurrence is variant w.r.t. L if any of its operands 12713 // are variant. 12714 for (auto *Op : AR->operands()) 12715 if (!isLoopInvariant(Op, L)) 12716 return LoopVariant; 12717 12718 // Otherwise it's loop-invariant. 12719 return LoopInvariant; 12720 } 12721 case scAddExpr: 12722 case scMulExpr: 12723 case scUMaxExpr: 12724 case scSMaxExpr: 12725 case scUMinExpr: 12726 case scSMinExpr: { 12727 bool HasVarying = false; 12728 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12729 LoopDisposition D = getLoopDisposition(Op, L); 12730 if (D == LoopVariant) 12731 return LoopVariant; 12732 if (D == LoopComputable) 12733 HasVarying = true; 12734 } 12735 return HasVarying ? LoopComputable : LoopInvariant; 12736 } 12737 case scUDivExpr: { 12738 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12739 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12740 if (LD == LoopVariant) 12741 return LoopVariant; 12742 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12743 if (RD == LoopVariant) 12744 return LoopVariant; 12745 return (LD == LoopInvariant && RD == LoopInvariant) ? 12746 LoopInvariant : LoopComputable; 12747 } 12748 case scUnknown: 12749 // All non-instruction values are loop invariant. All instructions are loop 12750 // invariant if they are not contained in the specified loop. 12751 // Instructions are never considered invariant in the function body 12752 // (null loop) because they are defined within the "loop". 12753 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12754 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12755 return LoopInvariant; 12756 case scCouldNotCompute: 12757 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12758 } 12759 llvm_unreachable("Unknown SCEV kind!"); 12760 } 12761 12762 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12763 return getLoopDisposition(S, L) == LoopInvariant; 12764 } 12765 12766 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12767 return getLoopDisposition(S, L) == LoopComputable; 12768 } 12769 12770 ScalarEvolution::BlockDisposition 12771 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12772 auto &Values = BlockDispositions[S]; 12773 for (auto &V : Values) { 12774 if (V.getPointer() == BB) 12775 return V.getInt(); 12776 } 12777 Values.emplace_back(BB, DoesNotDominateBlock); 12778 BlockDisposition D = computeBlockDisposition(S, BB); 12779 auto &Values2 = BlockDispositions[S]; 12780 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12781 if (V.getPointer() == BB) { 12782 V.setInt(D); 12783 break; 12784 } 12785 } 12786 return D; 12787 } 12788 12789 ScalarEvolution::BlockDisposition 12790 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12791 switch (S->getSCEVType()) { 12792 case scConstant: 12793 return ProperlyDominatesBlock; 12794 case scPtrToInt: 12795 case scTruncate: 12796 case scZeroExtend: 12797 case scSignExtend: 12798 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12799 case scAddRecExpr: { 12800 // This uses a "dominates" query instead of "properly dominates" query 12801 // to test for proper dominance too, because the instruction which 12802 // produces the addrec's value is a PHI, and a PHI effectively properly 12803 // dominates its entire containing block. 12804 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12805 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12806 return DoesNotDominateBlock; 12807 12808 // Fall through into SCEVNAryExpr handling. 12809 LLVM_FALLTHROUGH; 12810 } 12811 case scAddExpr: 12812 case scMulExpr: 12813 case scUMaxExpr: 12814 case scSMaxExpr: 12815 case scUMinExpr: 12816 case scSMinExpr: { 12817 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12818 bool Proper = true; 12819 for (const SCEV *NAryOp : NAry->operands()) { 12820 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12821 if (D == DoesNotDominateBlock) 12822 return DoesNotDominateBlock; 12823 if (D == DominatesBlock) 12824 Proper = false; 12825 } 12826 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12827 } 12828 case scUDivExpr: { 12829 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12830 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12831 BlockDisposition LD = getBlockDisposition(LHS, BB); 12832 if (LD == DoesNotDominateBlock) 12833 return DoesNotDominateBlock; 12834 BlockDisposition RD = getBlockDisposition(RHS, BB); 12835 if (RD == DoesNotDominateBlock) 12836 return DoesNotDominateBlock; 12837 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12838 ProperlyDominatesBlock : DominatesBlock; 12839 } 12840 case scUnknown: 12841 if (Instruction *I = 12842 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12843 if (I->getParent() == BB) 12844 return DominatesBlock; 12845 if (DT.properlyDominates(I->getParent(), BB)) 12846 return ProperlyDominatesBlock; 12847 return DoesNotDominateBlock; 12848 } 12849 return ProperlyDominatesBlock; 12850 case scCouldNotCompute: 12851 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12852 } 12853 llvm_unreachable("Unknown SCEV kind!"); 12854 } 12855 12856 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12857 return getBlockDisposition(S, BB) >= DominatesBlock; 12858 } 12859 12860 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12861 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12862 } 12863 12864 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12865 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12866 } 12867 12868 void 12869 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12870 ValuesAtScopes.erase(S); 12871 LoopDispositions.erase(S); 12872 BlockDispositions.erase(S); 12873 UnsignedRanges.erase(S); 12874 SignedRanges.erase(S); 12875 ExprValueMap.erase(S); 12876 HasRecMap.erase(S); 12877 MinTrailingZerosCache.erase(S); 12878 12879 for (auto I = PredicatedSCEVRewrites.begin(); 12880 I != PredicatedSCEVRewrites.end();) { 12881 std::pair<const SCEV *, const Loop *> Entry = I->first; 12882 if (Entry.first == S) 12883 PredicatedSCEVRewrites.erase(I++); 12884 else 12885 ++I; 12886 } 12887 12888 auto RemoveSCEVFromBackedgeMap = 12889 [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12890 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12891 BackedgeTakenInfo &BEInfo = I->second; 12892 if (BEInfo.hasOperand(S)) 12893 Map.erase(I++); 12894 else 12895 ++I; 12896 } 12897 }; 12898 12899 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12900 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12901 } 12902 12903 void 12904 ScalarEvolution::getUsedLoops(const SCEV *S, 12905 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12906 struct FindUsedLoops { 12907 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12908 : LoopsUsed(LoopsUsed) {} 12909 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12910 bool follow(const SCEV *S) { 12911 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12912 LoopsUsed.insert(AR->getLoop()); 12913 return true; 12914 } 12915 12916 bool isDone() const { return false; } 12917 }; 12918 12919 FindUsedLoops F(LoopsUsed); 12920 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12921 } 12922 12923 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12924 SmallPtrSet<const Loop *, 8> LoopsUsed; 12925 getUsedLoops(S, LoopsUsed); 12926 for (auto *L : LoopsUsed) 12927 LoopUsers[L].push_back(S); 12928 } 12929 12930 void ScalarEvolution::verify() const { 12931 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12932 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12933 12934 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12935 12936 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12937 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12938 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12939 12940 const SCEV *visitConstant(const SCEVConstant *Constant) { 12941 return SE.getConstant(Constant->getAPInt()); 12942 } 12943 12944 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12945 return SE.getUnknown(Expr->getValue()); 12946 } 12947 12948 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12949 return SE.getCouldNotCompute(); 12950 } 12951 }; 12952 12953 SCEVMapper SCM(SE2); 12954 12955 while (!LoopStack.empty()) { 12956 auto *L = LoopStack.pop_back_val(); 12957 llvm::append_range(LoopStack, *L); 12958 12959 auto *CurBECount = SCM.visit( 12960 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12961 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12962 12963 if (CurBECount == SE2.getCouldNotCompute() || 12964 NewBECount == SE2.getCouldNotCompute()) { 12965 // NB! This situation is legal, but is very suspicious -- whatever pass 12966 // change the loop to make a trip count go from could not compute to 12967 // computable or vice-versa *should have* invalidated SCEV. However, we 12968 // choose not to assert here (for now) since we don't want false 12969 // positives. 12970 continue; 12971 } 12972 12973 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12974 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12975 // not propagate undef aggressively). This means we can (and do) fail 12976 // verification in cases where a transform makes the trip count of a loop 12977 // go from "undef" to "undef+1" (say). The transform is fine, since in 12978 // both cases the loop iterates "undef" times, but SCEV thinks we 12979 // increased the trip count of the loop by 1 incorrectly. 12980 continue; 12981 } 12982 12983 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12984 SE.getTypeSizeInBits(NewBECount->getType())) 12985 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12986 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12987 SE.getTypeSizeInBits(NewBECount->getType())) 12988 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12989 12990 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12991 12992 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12993 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12994 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12995 dbgs() << "Old: " << *CurBECount << "\n"; 12996 dbgs() << "New: " << *NewBECount << "\n"; 12997 dbgs() << "Delta: " << *Delta << "\n"; 12998 std::abort(); 12999 } 13000 } 13001 13002 // Collect all valid loops currently in LoopInfo. 13003 SmallPtrSet<Loop *, 32> ValidLoops; 13004 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13005 while (!Worklist.empty()) { 13006 Loop *L = Worklist.pop_back_val(); 13007 if (ValidLoops.contains(L)) 13008 continue; 13009 ValidLoops.insert(L); 13010 Worklist.append(L->begin(), L->end()); 13011 } 13012 // Check for SCEV expressions referencing invalid/deleted loops. 13013 for (auto &KV : ValueExprMap) { 13014 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 13015 if (!AR) 13016 continue; 13017 assert(ValidLoops.contains(AR->getLoop()) && 13018 "AddRec references invalid loop"); 13019 } 13020 } 13021 13022 bool ScalarEvolution::invalidate( 13023 Function &F, const PreservedAnalyses &PA, 13024 FunctionAnalysisManager::Invalidator &Inv) { 13025 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13026 // of its dependencies is invalidated. 13027 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13028 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13029 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13030 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13031 Inv.invalidate<LoopAnalysis>(F, PA); 13032 } 13033 13034 AnalysisKey ScalarEvolutionAnalysis::Key; 13035 13036 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13037 FunctionAnalysisManager &AM) { 13038 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13039 AM.getResult<AssumptionAnalysis>(F), 13040 AM.getResult<DominatorTreeAnalysis>(F), 13041 AM.getResult<LoopAnalysis>(F)); 13042 } 13043 13044 PreservedAnalyses 13045 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13046 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13047 return PreservedAnalyses::all(); 13048 } 13049 13050 PreservedAnalyses 13051 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13052 // For compatibility with opt's -analyze feature under legacy pass manager 13053 // which was not ported to NPM. This keeps tests using 13054 // update_analyze_test_checks.py working. 13055 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13056 << F.getName() << "':\n"; 13057 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13058 return PreservedAnalyses::all(); 13059 } 13060 13061 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13062 "Scalar Evolution Analysis", false, true) 13063 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13064 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13065 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13066 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13067 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13068 "Scalar Evolution Analysis", false, true) 13069 13070 char ScalarEvolutionWrapperPass::ID = 0; 13071 13072 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13073 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13074 } 13075 13076 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13077 SE.reset(new ScalarEvolution( 13078 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13079 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13080 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13081 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13082 return false; 13083 } 13084 13085 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13086 13087 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13088 SE->print(OS); 13089 } 13090 13091 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13092 if (!VerifySCEV) 13093 return; 13094 13095 SE->verify(); 13096 } 13097 13098 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13099 AU.setPreservesAll(); 13100 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13101 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13102 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13103 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13104 } 13105 13106 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13107 const SCEV *RHS) { 13108 FoldingSetNodeID ID; 13109 assert(LHS->getType() == RHS->getType() && 13110 "Type mismatch between LHS and RHS"); 13111 // Unique this node based on the arguments 13112 ID.AddInteger(SCEVPredicate::P_Equal); 13113 ID.AddPointer(LHS); 13114 ID.AddPointer(RHS); 13115 void *IP = nullptr; 13116 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13117 return S; 13118 SCEVEqualPredicate *Eq = new (SCEVAllocator) 13119 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 13120 UniquePreds.InsertNode(Eq, IP); 13121 return Eq; 13122 } 13123 13124 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13125 const SCEVAddRecExpr *AR, 13126 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13127 FoldingSetNodeID ID; 13128 // Unique this node based on the arguments 13129 ID.AddInteger(SCEVPredicate::P_Wrap); 13130 ID.AddPointer(AR); 13131 ID.AddInteger(AddedFlags); 13132 void *IP = nullptr; 13133 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13134 return S; 13135 auto *OF = new (SCEVAllocator) 13136 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13137 UniquePreds.InsertNode(OF, IP); 13138 return OF; 13139 } 13140 13141 namespace { 13142 13143 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13144 public: 13145 13146 /// Rewrites \p S in the context of a loop L and the SCEV predication 13147 /// infrastructure. 13148 /// 13149 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13150 /// equivalences present in \p Pred. 13151 /// 13152 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13153 /// \p NewPreds such that the result will be an AddRecExpr. 13154 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13155 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13156 SCEVUnionPredicate *Pred) { 13157 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13158 return Rewriter.visit(S); 13159 } 13160 13161 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13162 if (Pred) { 13163 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13164 for (auto *Pred : ExprPreds) 13165 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13166 if (IPred->getLHS() == Expr) 13167 return IPred->getRHS(); 13168 } 13169 return convertToAddRecWithPreds(Expr); 13170 } 13171 13172 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13173 const SCEV *Operand = visit(Expr->getOperand()); 13174 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13175 if (AR && AR->getLoop() == L && AR->isAffine()) { 13176 // This couldn't be folded because the operand didn't have the nuw 13177 // flag. Add the nusw flag as an assumption that we could make. 13178 const SCEV *Step = AR->getStepRecurrence(SE); 13179 Type *Ty = Expr->getType(); 13180 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13181 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13182 SE.getSignExtendExpr(Step, Ty), L, 13183 AR->getNoWrapFlags()); 13184 } 13185 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13186 } 13187 13188 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13189 const SCEV *Operand = visit(Expr->getOperand()); 13190 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13191 if (AR && AR->getLoop() == L && AR->isAffine()) { 13192 // This couldn't be folded because the operand didn't have the nsw 13193 // flag. Add the nssw flag as an assumption that we could make. 13194 const SCEV *Step = AR->getStepRecurrence(SE); 13195 Type *Ty = Expr->getType(); 13196 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13197 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13198 SE.getSignExtendExpr(Step, Ty), L, 13199 AR->getNoWrapFlags()); 13200 } 13201 return SE.getSignExtendExpr(Operand, Expr->getType()); 13202 } 13203 13204 private: 13205 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13206 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13207 SCEVUnionPredicate *Pred) 13208 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13209 13210 bool addOverflowAssumption(const SCEVPredicate *P) { 13211 if (!NewPreds) { 13212 // Check if we've already made this assumption. 13213 return Pred && Pred->implies(P); 13214 } 13215 NewPreds->insert(P); 13216 return true; 13217 } 13218 13219 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13220 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13221 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13222 return addOverflowAssumption(A); 13223 } 13224 13225 // If \p Expr represents a PHINode, we try to see if it can be represented 13226 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13227 // to add this predicate as a runtime overflow check, we return the AddRec. 13228 // If \p Expr does not meet these conditions (is not a PHI node, or we 13229 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13230 // return \p Expr. 13231 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13232 if (!isa<PHINode>(Expr->getValue())) 13233 return Expr; 13234 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13235 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13236 if (!PredicatedRewrite) 13237 return Expr; 13238 for (auto *P : PredicatedRewrite->second){ 13239 // Wrap predicates from outer loops are not supported. 13240 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13241 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13242 if (L != AR->getLoop()) 13243 return Expr; 13244 } 13245 if (!addOverflowAssumption(P)) 13246 return Expr; 13247 } 13248 return PredicatedRewrite->first; 13249 } 13250 13251 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13252 SCEVUnionPredicate *Pred; 13253 const Loop *L; 13254 }; 13255 13256 } // end anonymous namespace 13257 13258 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13259 SCEVUnionPredicate &Preds) { 13260 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13261 } 13262 13263 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13264 const SCEV *S, const Loop *L, 13265 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13266 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13267 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13268 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13269 13270 if (!AddRec) 13271 return nullptr; 13272 13273 // Since the transformation was successful, we can now transfer the SCEV 13274 // predicates. 13275 for (auto *P : TransformPreds) 13276 Preds.insert(P); 13277 13278 return AddRec; 13279 } 13280 13281 /// SCEV predicates 13282 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13283 SCEVPredicateKind Kind) 13284 : FastID(ID), Kind(Kind) {} 13285 13286 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13287 const SCEV *LHS, const SCEV *RHS) 13288 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13289 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13290 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13291 } 13292 13293 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13294 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13295 13296 if (!Op) 13297 return false; 13298 13299 return Op->LHS == LHS && Op->RHS == RHS; 13300 } 13301 13302 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13303 13304 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13305 13306 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13307 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13308 } 13309 13310 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13311 const SCEVAddRecExpr *AR, 13312 IncrementWrapFlags Flags) 13313 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13314 13315 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13316 13317 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13318 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13319 13320 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13321 } 13322 13323 bool SCEVWrapPredicate::isAlwaysTrue() const { 13324 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13325 IncrementWrapFlags IFlags = Flags; 13326 13327 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13328 IFlags = clearFlags(IFlags, IncrementNSSW); 13329 13330 return IFlags == IncrementAnyWrap; 13331 } 13332 13333 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13334 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13335 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13336 OS << "<nusw>"; 13337 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13338 OS << "<nssw>"; 13339 OS << "\n"; 13340 } 13341 13342 SCEVWrapPredicate::IncrementWrapFlags 13343 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13344 ScalarEvolution &SE) { 13345 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13346 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13347 13348 // We can safely transfer the NSW flag as NSSW. 13349 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13350 ImpliedFlags = IncrementNSSW; 13351 13352 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13353 // If the increment is positive, the SCEV NUW flag will also imply the 13354 // WrapPredicate NUSW flag. 13355 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13356 if (Step->getValue()->getValue().isNonNegative()) 13357 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13358 } 13359 13360 return ImpliedFlags; 13361 } 13362 13363 /// Union predicates don't get cached so create a dummy set ID for it. 13364 SCEVUnionPredicate::SCEVUnionPredicate() 13365 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13366 13367 bool SCEVUnionPredicate::isAlwaysTrue() const { 13368 return all_of(Preds, 13369 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13370 } 13371 13372 ArrayRef<const SCEVPredicate *> 13373 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13374 auto I = SCEVToPreds.find(Expr); 13375 if (I == SCEVToPreds.end()) 13376 return ArrayRef<const SCEVPredicate *>(); 13377 return I->second; 13378 } 13379 13380 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13381 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13382 return all_of(Set->Preds, 13383 [this](const SCEVPredicate *I) { return this->implies(I); }); 13384 13385 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13386 if (ScevPredsIt == SCEVToPreds.end()) 13387 return false; 13388 auto &SCEVPreds = ScevPredsIt->second; 13389 13390 return any_of(SCEVPreds, 13391 [N](const SCEVPredicate *I) { return I->implies(N); }); 13392 } 13393 13394 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13395 13396 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13397 for (auto Pred : Preds) 13398 Pred->print(OS, Depth); 13399 } 13400 13401 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13402 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13403 for (auto Pred : Set->Preds) 13404 add(Pred); 13405 return; 13406 } 13407 13408 if (implies(N)) 13409 return; 13410 13411 const SCEV *Key = N->getExpr(); 13412 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13413 " associated expression!"); 13414 13415 SCEVToPreds[Key].push_back(N); 13416 Preds.push_back(N); 13417 } 13418 13419 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13420 Loop &L) 13421 : SE(SE), L(L) {} 13422 13423 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13424 const SCEV *Expr = SE.getSCEV(V); 13425 RewriteEntry &Entry = RewriteMap[Expr]; 13426 13427 // If we already have an entry and the version matches, return it. 13428 if (Entry.second && Generation == Entry.first) 13429 return Entry.second; 13430 13431 // We found an entry but it's stale. Rewrite the stale entry 13432 // according to the current predicate. 13433 if (Entry.second) 13434 Expr = Entry.second; 13435 13436 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13437 Entry = {Generation, NewSCEV}; 13438 13439 return NewSCEV; 13440 } 13441 13442 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13443 if (!BackedgeCount) { 13444 SCEVUnionPredicate BackedgePred; 13445 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13446 addPredicate(BackedgePred); 13447 } 13448 return BackedgeCount; 13449 } 13450 13451 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13452 if (Preds.implies(&Pred)) 13453 return; 13454 Preds.add(&Pred); 13455 updateGeneration(); 13456 } 13457 13458 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13459 return Preds; 13460 } 13461 13462 void PredicatedScalarEvolution::updateGeneration() { 13463 // If the generation number wrapped recompute everything. 13464 if (++Generation == 0) { 13465 for (auto &II : RewriteMap) { 13466 const SCEV *Rewritten = II.second.second; 13467 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13468 } 13469 } 13470 } 13471 13472 void PredicatedScalarEvolution::setNoOverflow( 13473 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13474 const SCEV *Expr = getSCEV(V); 13475 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13476 13477 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13478 13479 // Clear the statically implied flags. 13480 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13481 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13482 13483 auto II = FlagsMap.insert({V, Flags}); 13484 if (!II.second) 13485 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13486 } 13487 13488 bool PredicatedScalarEvolution::hasNoOverflow( 13489 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13490 const SCEV *Expr = getSCEV(V); 13491 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13492 13493 Flags = SCEVWrapPredicate::clearFlags( 13494 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13495 13496 auto II = FlagsMap.find(V); 13497 13498 if (II != FlagsMap.end()) 13499 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13500 13501 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13502 } 13503 13504 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13505 const SCEV *Expr = this->getSCEV(V); 13506 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13507 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13508 13509 if (!New) 13510 return nullptr; 13511 13512 for (auto *P : NewPreds) 13513 Preds.add(P); 13514 13515 updateGeneration(); 13516 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13517 return New; 13518 } 13519 13520 PredicatedScalarEvolution::PredicatedScalarEvolution( 13521 const PredicatedScalarEvolution &Init) 13522 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13523 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13524 for (auto I : Init.FlagsMap) 13525 FlagsMap.insert(I); 13526 } 13527 13528 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13529 // For each block. 13530 for (auto *BB : L.getBlocks()) 13531 for (auto &I : *BB) { 13532 if (!SE.isSCEVable(I.getType())) 13533 continue; 13534 13535 auto *Expr = SE.getSCEV(&I); 13536 auto II = RewriteMap.find(Expr); 13537 13538 if (II == RewriteMap.end()) 13539 continue; 13540 13541 // Don't print things that are not interesting. 13542 if (II->second.second == Expr) 13543 continue; 13544 13545 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13546 OS.indent(Depth + 2) << *Expr << "\n"; 13547 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13548 } 13549 } 13550 13551 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13552 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13553 // for URem with constant power-of-2 second operands. 13554 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13555 // 4, A / B becomes X / 8). 13556 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13557 const SCEV *&RHS) { 13558 // Try to match 'zext (trunc A to iB) to iY', which is used 13559 // for URem with constant power-of-2 second operands. Make sure the size of 13560 // the operand A matches the size of the whole expressions. 13561 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13562 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13563 LHS = Trunc->getOperand(); 13564 // Bail out if the type of the LHS is larger than the type of the 13565 // expression for now. 13566 if (getTypeSizeInBits(LHS->getType()) > 13567 getTypeSizeInBits(Expr->getType())) 13568 return false; 13569 if (LHS->getType() != Expr->getType()) 13570 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13571 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13572 << getTypeSizeInBits(Trunc->getType())); 13573 return true; 13574 } 13575 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13576 if (Add == nullptr || Add->getNumOperands() != 2) 13577 return false; 13578 13579 const SCEV *A = Add->getOperand(1); 13580 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13581 13582 if (Mul == nullptr) 13583 return false; 13584 13585 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13586 // (SomeExpr + (-(SomeExpr / B) * B)). 13587 if (Expr == getURemExpr(A, B)) { 13588 LHS = A; 13589 RHS = B; 13590 return true; 13591 } 13592 return false; 13593 }; 13594 13595 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13596 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13597 return MatchURemWithDivisor(Mul->getOperand(1)) || 13598 MatchURemWithDivisor(Mul->getOperand(2)); 13599 13600 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13601 if (Mul->getNumOperands() == 2) 13602 return MatchURemWithDivisor(Mul->getOperand(1)) || 13603 MatchURemWithDivisor(Mul->getOperand(0)) || 13604 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13605 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13606 return false; 13607 } 13608 13609 const SCEV * 13610 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13611 SmallVector<BasicBlock*, 16> ExitingBlocks; 13612 L->getExitingBlocks(ExitingBlocks); 13613 13614 // Form an expression for the maximum exit count possible for this loop. We 13615 // merge the max and exact information to approximate a version of 13616 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13617 SmallVector<const SCEV*, 4> ExitCounts; 13618 for (BasicBlock *ExitingBB : ExitingBlocks) { 13619 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13620 if (isa<SCEVCouldNotCompute>(ExitCount)) 13621 ExitCount = getExitCount(L, ExitingBB, 13622 ScalarEvolution::ConstantMaximum); 13623 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13624 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13625 "We should only have known counts for exiting blocks that " 13626 "dominate latch!"); 13627 ExitCounts.push_back(ExitCount); 13628 } 13629 } 13630 if (ExitCounts.empty()) 13631 return getCouldNotCompute(); 13632 return getUMinFromMismatchedTypes(ExitCounts); 13633 } 13634 13635 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13636 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13637 /// we cannot guarantee that the replacement is loop invariant in the loop of 13638 /// the AddRec. 13639 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13640 ValueToSCEVMapTy ⤅ 13641 13642 public: 13643 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13644 : SCEVRewriteVisitor(SE), Map(M) {} 13645 13646 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13647 13648 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13649 auto I = Map.find(Expr->getValue()); 13650 if (I == Map.end()) 13651 return Expr; 13652 return I->second; 13653 } 13654 }; 13655 13656 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13657 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13658 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13659 // If we have LHS == 0, check if LHS is computing a property of some unknown 13660 // SCEV %v which we can rewrite %v to express explicitly. 13661 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13662 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13663 RHSC->getValue()->isNullValue()) { 13664 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13665 // explicitly express that. 13666 const SCEV *URemLHS = nullptr; 13667 const SCEV *URemRHS = nullptr; 13668 if (matchURem(LHS, URemLHS, URemRHS)) { 13669 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13670 Value *V = LHSUnknown->getValue(); 13671 auto Multiple = 13672 getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS, 13673 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 13674 RewriteMap[V] = Multiple; 13675 return; 13676 } 13677 } 13678 } 13679 13680 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 13681 std::swap(LHS, RHS); 13682 Predicate = CmpInst::getSwappedPredicate(Predicate); 13683 } 13684 13685 // Check for a condition of the form (-C1 + X < C2). InstCombine will 13686 // create this form when combining two checks of the form (X u< C2 + C1) and 13687 // (X >=u C1). 13688 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() { 13689 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 13690 if (!AddExpr || AddExpr->getNumOperands() != 2) 13691 return false; 13692 13693 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 13694 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 13695 auto *C2 = dyn_cast<SCEVConstant>(RHS); 13696 if (!C1 || !C2 || !LHSUnknown) 13697 return false; 13698 13699 auto ExactRegion = 13700 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 13701 .sub(C1->getAPInt()); 13702 13703 // Bail out, unless we have a non-wrapping, monotonic range. 13704 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 13705 return false; 13706 auto I = RewriteMap.find(LHSUnknown->getValue()); 13707 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13708 RewriteMap[LHSUnknown->getValue()] = getUMaxExpr( 13709 getConstant(ExactRegion.getUnsignedMin()), 13710 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 13711 return true; 13712 }; 13713 if (MatchRangeCheckIdiom()) 13714 return; 13715 13716 // For now, limit to conditions that provide information about unknown 13717 // expressions. RHS also cannot contain add recurrences. 13718 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13719 if (!LHSUnknown || containsAddRecurrence(RHS)) 13720 return; 13721 13722 // Check whether LHS has already been rewritten. In that case we want to 13723 // chain further rewrites onto the already rewritten value. 13724 auto I = RewriteMap.find(LHSUnknown->getValue()); 13725 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13726 const SCEV *RewrittenRHS = nullptr; 13727 switch (Predicate) { 13728 case CmpInst::ICMP_ULT: 13729 RewrittenRHS = 13730 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13731 break; 13732 case CmpInst::ICMP_SLT: 13733 RewrittenRHS = 13734 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13735 break; 13736 case CmpInst::ICMP_ULE: 13737 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 13738 break; 13739 case CmpInst::ICMP_SLE: 13740 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 13741 break; 13742 case CmpInst::ICMP_UGT: 13743 RewrittenRHS = 13744 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13745 break; 13746 case CmpInst::ICMP_SGT: 13747 RewrittenRHS = 13748 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13749 break; 13750 case CmpInst::ICMP_UGE: 13751 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 13752 break; 13753 case CmpInst::ICMP_SGE: 13754 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 13755 break; 13756 case CmpInst::ICMP_EQ: 13757 if (isa<SCEVConstant>(RHS)) 13758 RewrittenRHS = RHS; 13759 break; 13760 case CmpInst::ICMP_NE: 13761 if (isa<SCEVConstant>(RHS) && 13762 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13763 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 13764 break; 13765 default: 13766 break; 13767 } 13768 13769 if (RewrittenRHS) 13770 RewriteMap[LHSUnknown->getValue()] = RewrittenRHS; 13771 }; 13772 // Starting at the loop predecessor, climb up the predecessor chain, as long 13773 // as there are predecessors that can be found that have unique successors 13774 // leading to the original header. 13775 // TODO: share this logic with isLoopEntryGuardedByCond. 13776 ValueToSCEVMapTy RewriteMap; 13777 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13778 L->getLoopPredecessor(), L->getHeader()); 13779 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13780 13781 const BranchInst *LoopEntryPredicate = 13782 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13783 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13784 continue; 13785 13786 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 13787 SmallVector<Value *, 8> Worklist; 13788 SmallPtrSet<Value *, 8> Visited; 13789 Worklist.push_back(LoopEntryPredicate->getCondition()); 13790 while (!Worklist.empty()) { 13791 Value *Cond = Worklist.pop_back_val(); 13792 if (!Visited.insert(Cond).second) 13793 continue; 13794 13795 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13796 auto Predicate = 13797 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 13798 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13799 getSCEV(Cmp->getOperand(1)), RewriteMap); 13800 continue; 13801 } 13802 13803 Value *L, *R; 13804 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 13805 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 13806 Worklist.push_back(L); 13807 Worklist.push_back(R); 13808 } 13809 } 13810 } 13811 13812 // Also collect information from assumptions dominating the loop. 13813 for (auto &AssumeVH : AC.assumptions()) { 13814 if (!AssumeVH) 13815 continue; 13816 auto *AssumeI = cast<CallInst>(AssumeVH); 13817 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13818 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13819 continue; 13820 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13821 getSCEV(Cmp->getOperand(1)), RewriteMap); 13822 } 13823 13824 if (RewriteMap.empty()) 13825 return Expr; 13826 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13827 return Rewriter.visit(Expr); 13828 } 13829