1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/Constant.h"
90 #include "llvm/IR/ConstantRange.h"
91 #include "llvm/IR/Constants.h"
92 #include "llvm/IR/DataLayout.h"
93 #include "llvm/IR/DerivedTypes.h"
94 #include "llvm/IR/Dominators.h"
95 #include "llvm/IR/Function.h"
96 #include "llvm/IR/GlobalAlias.h"
97 #include "llvm/IR/GlobalValue.h"
98 #include "llvm/IR/InstIterator.h"
99 #include "llvm/IR/InstrTypes.h"
100 #include "llvm/IR/Instruction.h"
101 #include "llvm/IR/Instructions.h"
102 #include "llvm/IR/IntrinsicInst.h"
103 #include "llvm/IR/Intrinsics.h"
104 #include "llvm/IR/LLVMContext.h"
105 #include "llvm/IR/Operator.h"
106 #include "llvm/IR/PatternMatch.h"
107 #include "llvm/IR/Type.h"
108 #include "llvm/IR/Use.h"
109 #include "llvm/IR/User.h"
110 #include "llvm/IR/Value.h"
111 #include "llvm/IR/Verifier.h"
112 #include "llvm/InitializePasses.h"
113 #include "llvm/Pass.h"
114 #include "llvm/Support/Casting.h"
115 #include "llvm/Support/CommandLine.h"
116 #include "llvm/Support/Compiler.h"
117 #include "llvm/Support/Debug.h"
118 #include "llvm/Support/ErrorHandling.h"
119 #include "llvm/Support/KnownBits.h"
120 #include "llvm/Support/SaveAndRestore.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include <algorithm>
123 #include <cassert>
124 #include <climits>
125 #include <cstdint>
126 #include <cstdlib>
127 #include <map>
128 #include <memory>
129 #include <tuple>
130 #include <utility>
131 #include <vector>
132 
133 using namespace llvm;
134 using namespace PatternMatch;
135 
136 #define DEBUG_TYPE "scalar-evolution"
137 
138 STATISTIC(NumTripCountsComputed,
139           "Number of loops with predictable loop counts");
140 STATISTIC(NumTripCountsNotComputed,
141           "Number of loops without predictable loop counts");
142 STATISTIC(NumBruteForceTripCountsComputed,
143           "Number of loops with trip counts computed by force");
144 
145 #ifdef EXPENSIVE_CHECKS
146 bool llvm::VerifySCEV = true;
147 #else
148 bool llvm::VerifySCEV = false;
149 #endif
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 static cl::opt<bool, true> VerifySCEVOpt(
160     "verify-scev", cl::Hidden, cl::location(VerifySCEV),
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166     VerifySCEVMap("verify-scev-maps", cl::Hidden,
167                   cl::desc("Verify no dangling value in ScalarEvolution's "
168                            "ExprValueMap (slow)"));
169 
170 static cl::opt<bool> VerifyIR(
171     "scev-verify-ir", cl::Hidden,
172     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173     cl::init(false));
174 
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176     "scev-mulops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178     cl::init(32));
179 
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181     "scev-addops-inline-threshold", cl::Hidden,
182     cl::desc("Threshold for inlining addition operands into a SCEV"),
183     cl::init(500));
184 
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188     cl::init(32));
189 
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193     cl::init(2));
194 
195 static cl::opt<unsigned> MaxValueCompareDepth(
196     "scalar-evolution-max-value-compare-depth", cl::Hidden,
197     cl::desc("Maximum depth of recursive value complexity comparisons"),
198     cl::init(2));
199 
200 static cl::opt<unsigned>
201     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202                   cl::desc("Maximum depth of recursive arithmetics"),
203                   cl::init(32));
204 
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208 
209 static cl::opt<unsigned>
210     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212                  cl::init(8));
213 
214 static cl::opt<unsigned>
215     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216                   cl::desc("Max coefficients in AddRec during evolving"),
217                   cl::init(8));
218 
219 static cl::opt<unsigned>
220     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221                   cl::desc("Size of the expression which is considered huge"),
222                   cl::init(4096));
223 
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226     cl::Hidden, cl::init(true),
227     cl::desc("When printing analysis, include information on every instruction"));
228 
229 static cl::opt<bool> UseExpensiveRangeSharpening(
230     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
231     cl::init(false),
232     cl::desc("Use more powerful methods of sharpening expression ranges. May "
233              "be costly in terms of compile time"));
234 
235 static cl::opt<unsigned> MaxPhiSCCAnalysisSize(
236     "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
237     cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
238              "Phi strongly connected components"),
239     cl::init(8));
240 
241 static cl::opt<bool>
242     EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden,
243                             cl::desc("Handle <= and >= in finite loops"),
244                             cl::init(true));
245 
246 //===----------------------------------------------------------------------===//
247 //                           SCEV class definitions
248 //===----------------------------------------------------------------------===//
249 
250 //===----------------------------------------------------------------------===//
251 // Implementation of the SCEV class.
252 //
253 
254 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
255 LLVM_DUMP_METHOD void SCEV::dump() const {
256   print(dbgs());
257   dbgs() << '\n';
258 }
259 #endif
260 
261 void SCEV::print(raw_ostream &OS) const {
262   switch (getSCEVType()) {
263   case scConstant:
264     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
265     return;
266   case scPtrToInt: {
267     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
268     const SCEV *Op = PtrToInt->getOperand();
269     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
270        << *PtrToInt->getType() << ")";
271     return;
272   }
273   case scTruncate: {
274     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
275     const SCEV *Op = Trunc->getOperand();
276     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
277        << *Trunc->getType() << ")";
278     return;
279   }
280   case scZeroExtend: {
281     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
282     const SCEV *Op = ZExt->getOperand();
283     OS << "(zext " << *Op->getType() << " " << *Op << " to "
284        << *ZExt->getType() << ")";
285     return;
286   }
287   case scSignExtend: {
288     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
289     const SCEV *Op = SExt->getOperand();
290     OS << "(sext " << *Op->getType() << " " << *Op << " to "
291        << *SExt->getType() << ")";
292     return;
293   }
294   case scAddRecExpr: {
295     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
296     OS << "{" << *AR->getOperand(0);
297     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
298       OS << ",+," << *AR->getOperand(i);
299     OS << "}<";
300     if (AR->hasNoUnsignedWrap())
301       OS << "nuw><";
302     if (AR->hasNoSignedWrap())
303       OS << "nsw><";
304     if (AR->hasNoSelfWrap() &&
305         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
306       OS << "nw><";
307     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
308     OS << ">";
309     return;
310   }
311   case scAddExpr:
312   case scMulExpr:
313   case scUMaxExpr:
314   case scSMaxExpr:
315   case scUMinExpr:
316   case scSMinExpr:
317   case scSequentialUMinExpr: {
318     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
319     const char *OpStr = nullptr;
320     switch (NAry->getSCEVType()) {
321     case scAddExpr: OpStr = " + "; break;
322     case scMulExpr: OpStr = " * "; break;
323     case scUMaxExpr: OpStr = " umax "; break;
324     case scSMaxExpr: OpStr = " smax "; break;
325     case scUMinExpr:
326       OpStr = " umin ";
327       break;
328     case scSMinExpr:
329       OpStr = " smin ";
330       break;
331     case scSequentialUMinExpr:
332       OpStr = " umin_seq ";
333       break;
334     default:
335       llvm_unreachable("There are no other nary expression types.");
336     }
337     OS << "(";
338     ListSeparator LS(OpStr);
339     for (const SCEV *Op : NAry->operands())
340       OS << LS << *Op;
341     OS << ")";
342     switch (NAry->getSCEVType()) {
343     case scAddExpr:
344     case scMulExpr:
345       if (NAry->hasNoUnsignedWrap())
346         OS << "<nuw>";
347       if (NAry->hasNoSignedWrap())
348         OS << "<nsw>";
349       break;
350     default:
351       // Nothing to print for other nary expressions.
352       break;
353     }
354     return;
355   }
356   case scUDivExpr: {
357     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
358     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
359     return;
360   }
361   case scUnknown: {
362     const SCEVUnknown *U = cast<SCEVUnknown>(this);
363     Type *AllocTy;
364     if (U->isSizeOf(AllocTy)) {
365       OS << "sizeof(" << *AllocTy << ")";
366       return;
367     }
368     if (U->isAlignOf(AllocTy)) {
369       OS << "alignof(" << *AllocTy << ")";
370       return;
371     }
372 
373     Type *CTy;
374     Constant *FieldNo;
375     if (U->isOffsetOf(CTy, FieldNo)) {
376       OS << "offsetof(" << *CTy << ", ";
377       FieldNo->printAsOperand(OS, false);
378       OS << ")";
379       return;
380     }
381 
382     // Otherwise just print it normally.
383     U->getValue()->printAsOperand(OS, false);
384     return;
385   }
386   case scCouldNotCompute:
387     OS << "***COULDNOTCOMPUTE***";
388     return;
389   }
390   llvm_unreachable("Unknown SCEV kind!");
391 }
392 
393 Type *SCEV::getType() const {
394   switch (getSCEVType()) {
395   case scConstant:
396     return cast<SCEVConstant>(this)->getType();
397   case scPtrToInt:
398   case scTruncate:
399   case scZeroExtend:
400   case scSignExtend:
401     return cast<SCEVCastExpr>(this)->getType();
402   case scAddRecExpr:
403     return cast<SCEVAddRecExpr>(this)->getType();
404   case scMulExpr:
405     return cast<SCEVMulExpr>(this)->getType();
406   case scUMaxExpr:
407   case scSMaxExpr:
408   case scUMinExpr:
409   case scSMinExpr:
410     return cast<SCEVMinMaxExpr>(this)->getType();
411   case scSequentialUMinExpr:
412     return cast<SCEVSequentialMinMaxExpr>(this)->getType();
413   case scAddExpr:
414     return cast<SCEVAddExpr>(this)->getType();
415   case scUDivExpr:
416     return cast<SCEVUDivExpr>(this)->getType();
417   case scUnknown:
418     return cast<SCEVUnknown>(this)->getType();
419   case scCouldNotCompute:
420     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
421   }
422   llvm_unreachable("Unknown SCEV kind!");
423 }
424 
425 bool SCEV::isZero() const {
426   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
427     return SC->getValue()->isZero();
428   return false;
429 }
430 
431 bool SCEV::isOne() const {
432   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
433     return SC->getValue()->isOne();
434   return false;
435 }
436 
437 bool SCEV::isAllOnesValue() const {
438   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
439     return SC->getValue()->isMinusOne();
440   return false;
441 }
442 
443 bool SCEV::isNonConstantNegative() const {
444   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
445   if (!Mul) return false;
446 
447   // If there is a constant factor, it will be first.
448   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
449   if (!SC) return false;
450 
451   // Return true if the value is negative, this matches things like (-42 * V).
452   return SC->getAPInt().isNegative();
453 }
454 
455 SCEVCouldNotCompute::SCEVCouldNotCompute() :
456   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
457 
458 bool SCEVCouldNotCompute::classof(const SCEV *S) {
459   return S->getSCEVType() == scCouldNotCompute;
460 }
461 
462 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
463   FoldingSetNodeID ID;
464   ID.AddInteger(scConstant);
465   ID.AddPointer(V);
466   void *IP = nullptr;
467   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
468   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
469   UniqueSCEVs.InsertNode(S, IP);
470   return S;
471 }
472 
473 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
474   return getConstant(ConstantInt::get(getContext(), Val));
475 }
476 
477 const SCEV *
478 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
479   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
480   return getConstant(ConstantInt::get(ITy, V, isSigned));
481 }
482 
483 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
484                            const SCEV *op, Type *ty)
485     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
486   Operands[0] = op;
487 }
488 
489 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
490                                    Type *ITy)
491     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
492   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
493          "Must be a non-bit-width-changing pointer-to-integer cast!");
494 }
495 
496 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
497                                            SCEVTypes SCEVTy, const SCEV *op,
498                                            Type *ty)
499     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
500 
501 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
502                                    Type *ty)
503     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
504   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
505          "Cannot truncate non-integer value!");
506 }
507 
508 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
509                                        const SCEV *op, Type *ty)
510     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
511   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
512          "Cannot zero extend non-integer value!");
513 }
514 
515 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
516                                        const SCEV *op, Type *ty)
517     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
518   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
519          "Cannot sign extend non-integer value!");
520 }
521 
522 void SCEVUnknown::deleted() {
523   // Clear this SCEVUnknown from various maps.
524   SE->forgetMemoizedResults(this);
525 
526   // Remove this SCEVUnknown from the uniquing map.
527   SE->UniqueSCEVs.RemoveNode(this);
528 
529   // Release the value.
530   setValPtr(nullptr);
531 }
532 
533 void SCEVUnknown::allUsesReplacedWith(Value *New) {
534   // Clear this SCEVUnknown from various maps.
535   SE->forgetMemoizedResults(this);
536 
537   // Remove this SCEVUnknown from the uniquing map.
538   SE->UniqueSCEVs.RemoveNode(this);
539 
540   // Replace the value pointer in case someone is still using this SCEVUnknown.
541   setValPtr(New);
542 }
543 
544 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
545   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
546     if (VCE->getOpcode() == Instruction::PtrToInt)
547       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
548         if (CE->getOpcode() == Instruction::GetElementPtr &&
549             CE->getOperand(0)->isNullValue() &&
550             CE->getNumOperands() == 2)
551           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
552             if (CI->isOne()) {
553               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
554               return true;
555             }
556 
557   return false;
558 }
559 
560 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
561   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
562     if (VCE->getOpcode() == Instruction::PtrToInt)
563       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
564         if (CE->getOpcode() == Instruction::GetElementPtr &&
565             CE->getOperand(0)->isNullValue()) {
566           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
567           if (StructType *STy = dyn_cast<StructType>(Ty))
568             if (!STy->isPacked() &&
569                 CE->getNumOperands() == 3 &&
570                 CE->getOperand(1)->isNullValue()) {
571               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
572                 if (CI->isOne() &&
573                     STy->getNumElements() == 2 &&
574                     STy->getElementType(0)->isIntegerTy(1)) {
575                   AllocTy = STy->getElementType(1);
576                   return true;
577                 }
578             }
579         }
580 
581   return false;
582 }
583 
584 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
585   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
586     if (VCE->getOpcode() == Instruction::PtrToInt)
587       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
588         if (CE->getOpcode() == Instruction::GetElementPtr &&
589             CE->getNumOperands() == 3 &&
590             CE->getOperand(0)->isNullValue() &&
591             CE->getOperand(1)->isNullValue()) {
592           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
593           // Ignore vector types here so that ScalarEvolutionExpander doesn't
594           // emit getelementptrs that index into vectors.
595           if (Ty->isStructTy() || Ty->isArrayTy()) {
596             CTy = Ty;
597             FieldNo = CE->getOperand(2);
598             return true;
599           }
600         }
601 
602   return false;
603 }
604 
605 //===----------------------------------------------------------------------===//
606 //                               SCEV Utilities
607 //===----------------------------------------------------------------------===//
608 
609 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
610 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
611 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
612 /// have been previously deemed to be "equally complex" by this routine.  It is
613 /// intended to avoid exponential time complexity in cases like:
614 ///
615 ///   %a = f(%x, %y)
616 ///   %b = f(%a, %a)
617 ///   %c = f(%b, %b)
618 ///
619 ///   %d = f(%x, %y)
620 ///   %e = f(%d, %d)
621 ///   %f = f(%e, %e)
622 ///
623 ///   CompareValueComplexity(%f, %c)
624 ///
625 /// Since we do not continue running this routine on expression trees once we
626 /// have seen unequal values, there is no need to track them in the cache.
627 static int
628 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
629                        const LoopInfo *const LI, Value *LV, Value *RV,
630                        unsigned Depth) {
631   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
632     return 0;
633 
634   // Order pointer values after integer values. This helps SCEVExpander form
635   // GEPs.
636   bool LIsPointer = LV->getType()->isPointerTy(),
637        RIsPointer = RV->getType()->isPointerTy();
638   if (LIsPointer != RIsPointer)
639     return (int)LIsPointer - (int)RIsPointer;
640 
641   // Compare getValueID values.
642   unsigned LID = LV->getValueID(), RID = RV->getValueID();
643   if (LID != RID)
644     return (int)LID - (int)RID;
645 
646   // Sort arguments by their position.
647   if (const auto *LA = dyn_cast<Argument>(LV)) {
648     const auto *RA = cast<Argument>(RV);
649     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
650     return (int)LArgNo - (int)RArgNo;
651   }
652 
653   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
654     const auto *RGV = cast<GlobalValue>(RV);
655 
656     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
657       auto LT = GV->getLinkage();
658       return !(GlobalValue::isPrivateLinkage(LT) ||
659                GlobalValue::isInternalLinkage(LT));
660     };
661 
662     // Use the names to distinguish the two values, but only if the
663     // names are semantically important.
664     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
665       return LGV->getName().compare(RGV->getName());
666   }
667 
668   // For instructions, compare their loop depth, and their operand count.  This
669   // is pretty loose.
670   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
671     const auto *RInst = cast<Instruction>(RV);
672 
673     // Compare loop depths.
674     const BasicBlock *LParent = LInst->getParent(),
675                      *RParent = RInst->getParent();
676     if (LParent != RParent) {
677       unsigned LDepth = LI->getLoopDepth(LParent),
678                RDepth = LI->getLoopDepth(RParent);
679       if (LDepth != RDepth)
680         return (int)LDepth - (int)RDepth;
681     }
682 
683     // Compare the number of operands.
684     unsigned LNumOps = LInst->getNumOperands(),
685              RNumOps = RInst->getNumOperands();
686     if (LNumOps != RNumOps)
687       return (int)LNumOps - (int)RNumOps;
688 
689     for (unsigned Idx : seq(0u, LNumOps)) {
690       int Result =
691           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
692                                  RInst->getOperand(Idx), Depth + 1);
693       if (Result != 0)
694         return Result;
695     }
696   }
697 
698   EqCacheValue.unionSets(LV, RV);
699   return 0;
700 }
701 
702 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
703 // than RHS, respectively. A three-way result allows recursive comparisons to be
704 // more efficient.
705 // If the max analysis depth was reached, return None, assuming we do not know
706 // if they are equivalent for sure.
707 static Optional<int>
708 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
709                       EquivalenceClasses<const Value *> &EqCacheValue,
710                       const LoopInfo *const LI, const SCEV *LHS,
711                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
712   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
713   if (LHS == RHS)
714     return 0;
715 
716   // Primarily, sort the SCEVs by their getSCEVType().
717   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
718   if (LType != RType)
719     return (int)LType - (int)RType;
720 
721   if (EqCacheSCEV.isEquivalent(LHS, RHS))
722     return 0;
723 
724   if (Depth > MaxSCEVCompareDepth)
725     return None;
726 
727   // Aside from the getSCEVType() ordering, the particular ordering
728   // isn't very important except that it's beneficial to be consistent,
729   // so that (a + b) and (b + a) don't end up as different expressions.
730   switch (LType) {
731   case scUnknown: {
732     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
733     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
734 
735     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
736                                    RU->getValue(), Depth + 1);
737     if (X == 0)
738       EqCacheSCEV.unionSets(LHS, RHS);
739     return X;
740   }
741 
742   case scConstant: {
743     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
744     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
745 
746     // Compare constant values.
747     const APInt &LA = LC->getAPInt();
748     const APInt &RA = RC->getAPInt();
749     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
750     if (LBitWidth != RBitWidth)
751       return (int)LBitWidth - (int)RBitWidth;
752     return LA.ult(RA) ? -1 : 1;
753   }
754 
755   case scAddRecExpr: {
756     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
757     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
758 
759     // There is always a dominance between two recs that are used by one SCEV,
760     // so we can safely sort recs by loop header dominance. We require such
761     // order in getAddExpr.
762     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
763     if (LLoop != RLoop) {
764       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
765       assert(LHead != RHead && "Two loops share the same header?");
766       if (DT.dominates(LHead, RHead))
767         return 1;
768       else
769         assert(DT.dominates(RHead, LHead) &&
770                "No dominance between recurrences used by one SCEV?");
771       return -1;
772     }
773 
774     // Addrec complexity grows with operand count.
775     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
776     if (LNumOps != RNumOps)
777       return (int)LNumOps - (int)RNumOps;
778 
779     // Lexicographically compare.
780     for (unsigned i = 0; i != LNumOps; ++i) {
781       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
782                                      LA->getOperand(i), RA->getOperand(i), DT,
783                                      Depth + 1);
784       if (X != 0)
785         return X;
786     }
787     EqCacheSCEV.unionSets(LHS, RHS);
788     return 0;
789   }
790 
791   case scAddExpr:
792   case scMulExpr:
793   case scSMaxExpr:
794   case scUMaxExpr:
795   case scSMinExpr:
796   case scUMinExpr:
797   case scSequentialUMinExpr: {
798     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
799     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
800 
801     // Lexicographically compare n-ary expressions.
802     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
803     if (LNumOps != RNumOps)
804       return (int)LNumOps - (int)RNumOps;
805 
806     for (unsigned i = 0; i != LNumOps; ++i) {
807       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
808                                      LC->getOperand(i), RC->getOperand(i), DT,
809                                      Depth + 1);
810       if (X != 0)
811         return X;
812     }
813     EqCacheSCEV.unionSets(LHS, RHS);
814     return 0;
815   }
816 
817   case scUDivExpr: {
818     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
819     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
820 
821     // Lexicographically compare udiv expressions.
822     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
823                                    RC->getLHS(), DT, Depth + 1);
824     if (X != 0)
825       return X;
826     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
827                               RC->getRHS(), DT, Depth + 1);
828     if (X == 0)
829       EqCacheSCEV.unionSets(LHS, RHS);
830     return X;
831   }
832 
833   case scPtrToInt:
834   case scTruncate:
835   case scZeroExtend:
836   case scSignExtend: {
837     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
838     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
839 
840     // Compare cast expressions by operand.
841     auto X =
842         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
843                               RC->getOperand(), DT, Depth + 1);
844     if (X == 0)
845       EqCacheSCEV.unionSets(LHS, RHS);
846     return X;
847   }
848 
849   case scCouldNotCompute:
850     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
851   }
852   llvm_unreachable("Unknown SCEV kind!");
853 }
854 
855 /// Given a list of SCEV objects, order them by their complexity, and group
856 /// objects of the same complexity together by value.  When this routine is
857 /// finished, we know that any duplicates in the vector are consecutive and that
858 /// complexity is monotonically increasing.
859 ///
860 /// Note that we go take special precautions to ensure that we get deterministic
861 /// results from this routine.  In other words, we don't want the results of
862 /// this to depend on where the addresses of various SCEV objects happened to
863 /// land in memory.
864 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
865                               LoopInfo *LI, DominatorTree &DT) {
866   if (Ops.size() < 2) return;  // Noop
867 
868   EquivalenceClasses<const SCEV *> EqCacheSCEV;
869   EquivalenceClasses<const Value *> EqCacheValue;
870 
871   // Whether LHS has provably less complexity than RHS.
872   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
873     auto Complexity =
874         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
875     return Complexity && *Complexity < 0;
876   };
877   if (Ops.size() == 2) {
878     // This is the common case, which also happens to be trivially simple.
879     // Special case it.
880     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
881     if (IsLessComplex(RHS, LHS))
882       std::swap(LHS, RHS);
883     return;
884   }
885 
886   // Do the rough sort by complexity.
887   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
888     return IsLessComplex(LHS, RHS);
889   });
890 
891   // Now that we are sorted by complexity, group elements of the same
892   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
893   // be extremely short in practice.  Note that we take this approach because we
894   // do not want to depend on the addresses of the objects we are grouping.
895   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
896     const SCEV *S = Ops[i];
897     unsigned Complexity = S->getSCEVType();
898 
899     // If there are any objects of the same complexity and same value as this
900     // one, group them.
901     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
902       if (Ops[j] == S) { // Found a duplicate.
903         // Move it to immediately after i'th element.
904         std::swap(Ops[i+1], Ops[j]);
905         ++i;   // no need to rescan it.
906         if (i == e-2) return;  // Done!
907       }
908     }
909   }
910 }
911 
912 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
913 /// least HugeExprThreshold nodes).
914 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
915   return any_of(Ops, [](const SCEV *S) {
916     return S->getExpressionSize() >= HugeExprThreshold;
917   });
918 }
919 
920 //===----------------------------------------------------------------------===//
921 //                      Simple SCEV method implementations
922 //===----------------------------------------------------------------------===//
923 
924 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
925 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
926                                        ScalarEvolution &SE,
927                                        Type *ResultTy) {
928   // Handle the simplest case efficiently.
929   if (K == 1)
930     return SE.getTruncateOrZeroExtend(It, ResultTy);
931 
932   // We are using the following formula for BC(It, K):
933   //
934   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
935   //
936   // Suppose, W is the bitwidth of the return value.  We must be prepared for
937   // overflow.  Hence, we must assure that the result of our computation is
938   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
939   // safe in modular arithmetic.
940   //
941   // However, this code doesn't use exactly that formula; the formula it uses
942   // is something like the following, where T is the number of factors of 2 in
943   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
944   // exponentiation:
945   //
946   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
947   //
948   // This formula is trivially equivalent to the previous formula.  However,
949   // this formula can be implemented much more efficiently.  The trick is that
950   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
951   // arithmetic.  To do exact division in modular arithmetic, all we have
952   // to do is multiply by the inverse.  Therefore, this step can be done at
953   // width W.
954   //
955   // The next issue is how to safely do the division by 2^T.  The way this
956   // is done is by doing the multiplication step at a width of at least W + T
957   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
958   // when we perform the division by 2^T (which is equivalent to a right shift
959   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
960   // truncated out after the division by 2^T.
961   //
962   // In comparison to just directly using the first formula, this technique
963   // is much more efficient; using the first formula requires W * K bits,
964   // but this formula less than W + K bits. Also, the first formula requires
965   // a division step, whereas this formula only requires multiplies and shifts.
966   //
967   // It doesn't matter whether the subtraction step is done in the calculation
968   // width or the input iteration count's width; if the subtraction overflows,
969   // the result must be zero anyway.  We prefer here to do it in the width of
970   // the induction variable because it helps a lot for certain cases; CodeGen
971   // isn't smart enough to ignore the overflow, which leads to much less
972   // efficient code if the width of the subtraction is wider than the native
973   // register width.
974   //
975   // (It's possible to not widen at all by pulling out factors of 2 before
976   // the multiplication; for example, K=2 can be calculated as
977   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
978   // extra arithmetic, so it's not an obvious win, and it gets
979   // much more complicated for K > 3.)
980 
981   // Protection from insane SCEVs; this bound is conservative,
982   // but it probably doesn't matter.
983   if (K > 1000)
984     return SE.getCouldNotCompute();
985 
986   unsigned W = SE.getTypeSizeInBits(ResultTy);
987 
988   // Calculate K! / 2^T and T; we divide out the factors of two before
989   // multiplying for calculating K! / 2^T to avoid overflow.
990   // Other overflow doesn't matter because we only care about the bottom
991   // W bits of the result.
992   APInt OddFactorial(W, 1);
993   unsigned T = 1;
994   for (unsigned i = 3; i <= K; ++i) {
995     APInt Mult(W, i);
996     unsigned TwoFactors = Mult.countTrailingZeros();
997     T += TwoFactors;
998     Mult.lshrInPlace(TwoFactors);
999     OddFactorial *= Mult;
1000   }
1001 
1002   // We need at least W + T bits for the multiplication step
1003   unsigned CalculationBits = W + T;
1004 
1005   // Calculate 2^T, at width T+W.
1006   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1007 
1008   // Calculate the multiplicative inverse of K! / 2^T;
1009   // this multiplication factor will perform the exact division by
1010   // K! / 2^T.
1011   APInt Mod = APInt::getSignedMinValue(W+1);
1012   APInt MultiplyFactor = OddFactorial.zext(W+1);
1013   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1014   MultiplyFactor = MultiplyFactor.trunc(W);
1015 
1016   // Calculate the product, at width T+W
1017   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1018                                                       CalculationBits);
1019   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1020   for (unsigned i = 1; i != K; ++i) {
1021     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1022     Dividend = SE.getMulExpr(Dividend,
1023                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1024   }
1025 
1026   // Divide by 2^T
1027   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1028 
1029   // Truncate the result, and divide by K! / 2^T.
1030 
1031   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1032                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1033 }
1034 
1035 /// Return the value of this chain of recurrences at the specified iteration
1036 /// number.  We can evaluate this recurrence by multiplying each element in the
1037 /// chain by the binomial coefficient corresponding to it.  In other words, we
1038 /// can evaluate {A,+,B,+,C,+,D} as:
1039 ///
1040 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1041 ///
1042 /// where BC(It, k) stands for binomial coefficient.
1043 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1044                                                 ScalarEvolution &SE) const {
1045   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1046 }
1047 
1048 const SCEV *
1049 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1050                                     const SCEV *It, ScalarEvolution &SE) {
1051   assert(Operands.size() > 0);
1052   const SCEV *Result = Operands[0];
1053   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1054     // The computation is correct in the face of overflow provided that the
1055     // multiplication is performed _after_ the evaluation of the binomial
1056     // coefficient.
1057     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1058     if (isa<SCEVCouldNotCompute>(Coeff))
1059       return Coeff;
1060 
1061     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1062   }
1063   return Result;
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //                    SCEV Expression folder implementations
1068 //===----------------------------------------------------------------------===//
1069 
1070 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1071                                                      unsigned Depth) {
1072   assert(Depth <= 1 &&
1073          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1074 
1075   // We could be called with an integer-typed operands during SCEV rewrites.
1076   // Since the operand is an integer already, just perform zext/trunc/self cast.
1077   if (!Op->getType()->isPointerTy())
1078     return Op;
1079 
1080   // What would be an ID for such a SCEV cast expression?
1081   FoldingSetNodeID ID;
1082   ID.AddInteger(scPtrToInt);
1083   ID.AddPointer(Op);
1084 
1085   void *IP = nullptr;
1086 
1087   // Is there already an expression for such a cast?
1088   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1089     return S;
1090 
1091   // It isn't legal for optimizations to construct new ptrtoint expressions
1092   // for non-integral pointers.
1093   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1094     return getCouldNotCompute();
1095 
1096   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1097 
1098   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1099   // is sufficiently wide to represent all possible pointer values.
1100   // We could theoretically teach SCEV to truncate wider pointers, but
1101   // that isn't implemented for now.
1102   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1103       getDataLayout().getTypeSizeInBits(IntPtrTy))
1104     return getCouldNotCompute();
1105 
1106   // If not, is this expression something we can't reduce any further?
1107   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1108     // Perform some basic constant folding. If the operand of the ptr2int cast
1109     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1110     // left as-is), but produce a zero constant.
1111     // NOTE: We could handle a more general case, but lack motivational cases.
1112     if (isa<ConstantPointerNull>(U->getValue()))
1113       return getZero(IntPtrTy);
1114 
1115     // Create an explicit cast node.
1116     // We can reuse the existing insert position since if we get here,
1117     // we won't have made any changes which would invalidate it.
1118     SCEV *S = new (SCEVAllocator)
1119         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1120     UniqueSCEVs.InsertNode(S, IP);
1121     registerUser(S, Op);
1122     return S;
1123   }
1124 
1125   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1126                        "non-SCEVUnknown's.");
1127 
1128   // Otherwise, we've got some expression that is more complex than just a
1129   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1130   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1131   // only, and the expressions must otherwise be integer-typed.
1132   // So sink the cast down to the SCEVUnknown's.
1133 
1134   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1135   /// which computes a pointer-typed value, and rewrites the whole expression
1136   /// tree so that *all* the computations are done on integers, and the only
1137   /// pointer-typed operands in the expression are SCEVUnknown.
1138   class SCEVPtrToIntSinkingRewriter
1139       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1140     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1141 
1142   public:
1143     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1144 
1145     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1146       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1147       return Rewriter.visit(Scev);
1148     }
1149 
1150     const SCEV *visit(const SCEV *S) {
1151       Type *STy = S->getType();
1152       // If the expression is not pointer-typed, just keep it as-is.
1153       if (!STy->isPointerTy())
1154         return S;
1155       // Else, recursively sink the cast down into it.
1156       return Base::visit(S);
1157     }
1158 
1159     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1160       SmallVector<const SCEV *, 2> Operands;
1161       bool Changed = false;
1162       for (auto *Op : Expr->operands()) {
1163         Operands.push_back(visit(Op));
1164         Changed |= Op != Operands.back();
1165       }
1166       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1167     }
1168 
1169     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1170       SmallVector<const SCEV *, 2> Operands;
1171       bool Changed = false;
1172       for (auto *Op : Expr->operands()) {
1173         Operands.push_back(visit(Op));
1174         Changed |= Op != Operands.back();
1175       }
1176       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1177     }
1178 
1179     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1180       assert(Expr->getType()->isPointerTy() &&
1181              "Should only reach pointer-typed SCEVUnknown's.");
1182       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1183     }
1184   };
1185 
1186   // And actually perform the cast sinking.
1187   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1188   assert(IntOp->getType()->isIntegerTy() &&
1189          "We must have succeeded in sinking the cast, "
1190          "and ending up with an integer-typed expression!");
1191   return IntOp;
1192 }
1193 
1194 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1195   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1196 
1197   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1198   if (isa<SCEVCouldNotCompute>(IntOp))
1199     return IntOp;
1200 
1201   return getTruncateOrZeroExtend(IntOp, Ty);
1202 }
1203 
1204 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1205                                              unsigned Depth) {
1206   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1207          "This is not a truncating conversion!");
1208   assert(isSCEVable(Ty) &&
1209          "This is not a conversion to a SCEVable type!");
1210   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1211   Ty = getEffectiveSCEVType(Ty);
1212 
1213   FoldingSetNodeID ID;
1214   ID.AddInteger(scTruncate);
1215   ID.AddPointer(Op);
1216   ID.AddPointer(Ty);
1217   void *IP = nullptr;
1218   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1219 
1220   // Fold if the operand is constant.
1221   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1222     return getConstant(
1223       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1224 
1225   // trunc(trunc(x)) --> trunc(x)
1226   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1227     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1228 
1229   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1230   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1231     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1232 
1233   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1234   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1235     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1236 
1237   if (Depth > MaxCastDepth) {
1238     SCEV *S =
1239         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1240     UniqueSCEVs.InsertNode(S, IP);
1241     registerUser(S, Op);
1242     return S;
1243   }
1244 
1245   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1246   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1247   // if after transforming we have at most one truncate, not counting truncates
1248   // that replace other casts.
1249   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1250     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1251     SmallVector<const SCEV *, 4> Operands;
1252     unsigned numTruncs = 0;
1253     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1254          ++i) {
1255       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1256       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1257           isa<SCEVTruncateExpr>(S))
1258         numTruncs++;
1259       Operands.push_back(S);
1260     }
1261     if (numTruncs < 2) {
1262       if (isa<SCEVAddExpr>(Op))
1263         return getAddExpr(Operands);
1264       else if (isa<SCEVMulExpr>(Op))
1265         return getMulExpr(Operands);
1266       else
1267         llvm_unreachable("Unexpected SCEV type for Op.");
1268     }
1269     // Although we checked in the beginning that ID is not in the cache, it is
1270     // possible that during recursion and different modification ID was inserted
1271     // into the cache. So if we find it, just return it.
1272     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1273       return S;
1274   }
1275 
1276   // If the input value is a chrec scev, truncate the chrec's operands.
1277   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1278     SmallVector<const SCEV *, 4> Operands;
1279     for (const SCEV *Op : AddRec->operands())
1280       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1281     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1282   }
1283 
1284   // Return zero if truncating to known zeros.
1285   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1286   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1287     return getZero(Ty);
1288 
1289   // The cast wasn't folded; create an explicit cast node. We can reuse
1290   // the existing insert position since if we get here, we won't have
1291   // made any changes which would invalidate it.
1292   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1293                                                  Op, Ty);
1294   UniqueSCEVs.InsertNode(S, IP);
1295   registerUser(S, Op);
1296   return S;
1297 }
1298 
1299 // Get the limit of a recurrence such that incrementing by Step cannot cause
1300 // signed overflow as long as the value of the recurrence within the
1301 // loop does not exceed this limit before incrementing.
1302 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1303                                                  ICmpInst::Predicate *Pred,
1304                                                  ScalarEvolution *SE) {
1305   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1306   if (SE->isKnownPositive(Step)) {
1307     *Pred = ICmpInst::ICMP_SLT;
1308     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1309                            SE->getSignedRangeMax(Step));
1310   }
1311   if (SE->isKnownNegative(Step)) {
1312     *Pred = ICmpInst::ICMP_SGT;
1313     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1314                            SE->getSignedRangeMin(Step));
1315   }
1316   return nullptr;
1317 }
1318 
1319 // Get the limit of a recurrence such that incrementing by Step cannot cause
1320 // unsigned overflow as long as the value of the recurrence within the loop does
1321 // not exceed this limit before incrementing.
1322 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1323                                                    ICmpInst::Predicate *Pred,
1324                                                    ScalarEvolution *SE) {
1325   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1326   *Pred = ICmpInst::ICMP_ULT;
1327 
1328   return SE->getConstant(APInt::getMinValue(BitWidth) -
1329                          SE->getUnsignedRangeMax(Step));
1330 }
1331 
1332 namespace {
1333 
1334 struct ExtendOpTraitsBase {
1335   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1336                                                           unsigned);
1337 };
1338 
1339 // Used to make code generic over signed and unsigned overflow.
1340 template <typename ExtendOp> struct ExtendOpTraits {
1341   // Members present:
1342   //
1343   // static const SCEV::NoWrapFlags WrapType;
1344   //
1345   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1346   //
1347   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1348   //                                           ICmpInst::Predicate *Pred,
1349   //                                           ScalarEvolution *SE);
1350 };
1351 
1352 template <>
1353 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1354   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1355 
1356   static const GetExtendExprTy GetExtendExpr;
1357 
1358   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1359                                              ICmpInst::Predicate *Pred,
1360                                              ScalarEvolution *SE) {
1361     return getSignedOverflowLimitForStep(Step, Pred, SE);
1362   }
1363 };
1364 
1365 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1366     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1367 
1368 template <>
1369 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1370   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1371 
1372   static const GetExtendExprTy GetExtendExpr;
1373 
1374   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1375                                              ICmpInst::Predicate *Pred,
1376                                              ScalarEvolution *SE) {
1377     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1378   }
1379 };
1380 
1381 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1382     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1383 
1384 } // end anonymous namespace
1385 
1386 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1387 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1388 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1389 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1390 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1391 // expression "Step + sext/zext(PreIncAR)" is congruent with
1392 // "sext/zext(PostIncAR)"
1393 template <typename ExtendOpTy>
1394 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1395                                         ScalarEvolution *SE, unsigned Depth) {
1396   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1397   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1398 
1399   const Loop *L = AR->getLoop();
1400   const SCEV *Start = AR->getStart();
1401   const SCEV *Step = AR->getStepRecurrence(*SE);
1402 
1403   // Check for a simple looking step prior to loop entry.
1404   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1405   if (!SA)
1406     return nullptr;
1407 
1408   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1409   // subtraction is expensive. For this purpose, perform a quick and dirty
1410   // difference, by checking for Step in the operand list.
1411   SmallVector<const SCEV *, 4> DiffOps;
1412   for (const SCEV *Op : SA->operands())
1413     if (Op != Step)
1414       DiffOps.push_back(Op);
1415 
1416   if (DiffOps.size() == SA->getNumOperands())
1417     return nullptr;
1418 
1419   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1420   // `Step`:
1421 
1422   // 1. NSW/NUW flags on the step increment.
1423   auto PreStartFlags =
1424     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1425   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1426   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1427       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1428 
1429   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1430   // "S+X does not sign/unsign-overflow".
1431   //
1432 
1433   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1434   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1435       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1436     return PreStart;
1437 
1438   // 2. Direct overflow check on the step operation's expression.
1439   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1440   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1441   const SCEV *OperandExtendedStart =
1442       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1443                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1444   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1445     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1446       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1447       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1448       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1449       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1450     }
1451     return PreStart;
1452   }
1453 
1454   // 3. Loop precondition.
1455   ICmpInst::Predicate Pred;
1456   const SCEV *OverflowLimit =
1457       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1458 
1459   if (OverflowLimit &&
1460       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1461     return PreStart;
1462 
1463   return nullptr;
1464 }
1465 
1466 // Get the normalized zero or sign extended expression for this AddRec's Start.
1467 template <typename ExtendOpTy>
1468 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1469                                         ScalarEvolution *SE,
1470                                         unsigned Depth) {
1471   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1472 
1473   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1474   if (!PreStart)
1475     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1476 
1477   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1478                                              Depth),
1479                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1480 }
1481 
1482 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1483 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1484 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1485 //
1486 // Formally:
1487 //
1488 //     {S,+,X} == {S-T,+,X} + T
1489 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1490 //
1491 // If ({S-T,+,X} + T) does not overflow  ... (1)
1492 //
1493 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1494 //
1495 // If {S-T,+,X} does not overflow  ... (2)
1496 //
1497 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1498 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1499 //
1500 // If (S-T)+T does not overflow  ... (3)
1501 //
1502 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1503 //      == {Ext(S),+,Ext(X)} == LHS
1504 //
1505 // Thus, if (1), (2) and (3) are true for some T, then
1506 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1507 //
1508 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1509 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1510 // to check for (1) and (2).
1511 //
1512 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1513 // is `Delta` (defined below).
1514 template <typename ExtendOpTy>
1515 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1516                                                 const SCEV *Step,
1517                                                 const Loop *L) {
1518   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1519 
1520   // We restrict `Start` to a constant to prevent SCEV from spending too much
1521   // time here.  It is correct (but more expensive) to continue with a
1522   // non-constant `Start` and do a general SCEV subtraction to compute
1523   // `PreStart` below.
1524   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1525   if (!StartC)
1526     return false;
1527 
1528   APInt StartAI = StartC->getAPInt();
1529 
1530   for (unsigned Delta : {-2, -1, 1, 2}) {
1531     const SCEV *PreStart = getConstant(StartAI - Delta);
1532 
1533     FoldingSetNodeID ID;
1534     ID.AddInteger(scAddRecExpr);
1535     ID.AddPointer(PreStart);
1536     ID.AddPointer(Step);
1537     ID.AddPointer(L);
1538     void *IP = nullptr;
1539     const auto *PreAR =
1540       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1541 
1542     // Give up if we don't already have the add recurrence we need because
1543     // actually constructing an add recurrence is relatively expensive.
1544     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1545       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1546       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1547       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1548           DeltaS, &Pred, this);
1549       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1550         return true;
1551     }
1552   }
1553 
1554   return false;
1555 }
1556 
1557 // Finds an integer D for an expression (C + x + y + ...) such that the top
1558 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1559 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1560 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1561 // the (C + x + y + ...) expression is \p WholeAddExpr.
1562 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1563                                             const SCEVConstant *ConstantTerm,
1564                                             const SCEVAddExpr *WholeAddExpr) {
1565   const APInt &C = ConstantTerm->getAPInt();
1566   const unsigned BitWidth = C.getBitWidth();
1567   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1568   uint32_t TZ = BitWidth;
1569   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1570     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1571   if (TZ) {
1572     // Set D to be as many least significant bits of C as possible while still
1573     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1574     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1575   }
1576   return APInt(BitWidth, 0);
1577 }
1578 
1579 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1580 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1581 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1582 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1583 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1584                                             const APInt &ConstantStart,
1585                                             const SCEV *Step) {
1586   const unsigned BitWidth = ConstantStart.getBitWidth();
1587   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1588   if (TZ)
1589     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1590                          : ConstantStart;
1591   return APInt(BitWidth, 0);
1592 }
1593 
1594 const SCEV *
1595 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1596   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1597          "This is not an extending conversion!");
1598   assert(isSCEVable(Ty) &&
1599          "This is not a conversion to a SCEVable type!");
1600   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1601   Ty = getEffectiveSCEVType(Ty);
1602 
1603   // Fold if the operand is constant.
1604   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1605     return getConstant(
1606       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1607 
1608   // zext(zext(x)) --> zext(x)
1609   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1610     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1611 
1612   // Before doing any expensive analysis, check to see if we've already
1613   // computed a SCEV for this Op and Ty.
1614   FoldingSetNodeID ID;
1615   ID.AddInteger(scZeroExtend);
1616   ID.AddPointer(Op);
1617   ID.AddPointer(Ty);
1618   void *IP = nullptr;
1619   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1620   if (Depth > MaxCastDepth) {
1621     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1622                                                      Op, Ty);
1623     UniqueSCEVs.InsertNode(S, IP);
1624     registerUser(S, Op);
1625     return S;
1626   }
1627 
1628   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1629   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1630     // It's possible the bits taken off by the truncate were all zero bits. If
1631     // so, we should be able to simplify this further.
1632     const SCEV *X = ST->getOperand();
1633     ConstantRange CR = getUnsignedRange(X);
1634     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1635     unsigned NewBits = getTypeSizeInBits(Ty);
1636     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1637             CR.zextOrTrunc(NewBits)))
1638       return getTruncateOrZeroExtend(X, Ty, Depth);
1639   }
1640 
1641   // If the input value is a chrec scev, and we can prove that the value
1642   // did not overflow the old, smaller, value, we can zero extend all of the
1643   // operands (often constants).  This allows analysis of something like
1644   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1645   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1646     if (AR->isAffine()) {
1647       const SCEV *Start = AR->getStart();
1648       const SCEV *Step = AR->getStepRecurrence(*this);
1649       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1650       const Loop *L = AR->getLoop();
1651 
1652       if (!AR->hasNoUnsignedWrap()) {
1653         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1654         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1655       }
1656 
1657       // If we have special knowledge that this addrec won't overflow,
1658       // we don't need to do any further analysis.
1659       if (AR->hasNoUnsignedWrap())
1660         return getAddRecExpr(
1661             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1662             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1663 
1664       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1665       // Note that this serves two purposes: It filters out loops that are
1666       // simply not analyzable, and it covers the case where this code is
1667       // being called from within backedge-taken count analysis, such that
1668       // attempting to ask for the backedge-taken count would likely result
1669       // in infinite recursion. In the later case, the analysis code will
1670       // cope with a conservative value, and it will take care to purge
1671       // that value once it has finished.
1672       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1673       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1674         // Manually compute the final value for AR, checking for overflow.
1675 
1676         // Check whether the backedge-taken count can be losslessly casted to
1677         // the addrec's type. The count is always unsigned.
1678         const SCEV *CastedMaxBECount =
1679             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1680         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1681             CastedMaxBECount, MaxBECount->getType(), Depth);
1682         if (MaxBECount == RecastedMaxBECount) {
1683           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1684           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1685           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1686                                         SCEV::FlagAnyWrap, Depth + 1);
1687           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1688                                                           SCEV::FlagAnyWrap,
1689                                                           Depth + 1),
1690                                                WideTy, Depth + 1);
1691           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1692           const SCEV *WideMaxBECount =
1693             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1694           const SCEV *OperandExtendedAdd =
1695             getAddExpr(WideStart,
1696                        getMulExpr(WideMaxBECount,
1697                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1698                                   SCEV::FlagAnyWrap, Depth + 1),
1699                        SCEV::FlagAnyWrap, Depth + 1);
1700           if (ZAdd == OperandExtendedAdd) {
1701             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1702             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1703             // Return the expression with the addrec on the outside.
1704             return getAddRecExpr(
1705                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1706                                                          Depth + 1),
1707                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1708                 AR->getNoWrapFlags());
1709           }
1710           // Similar to above, only this time treat the step value as signed.
1711           // This covers loops that count down.
1712           OperandExtendedAdd =
1713             getAddExpr(WideStart,
1714                        getMulExpr(WideMaxBECount,
1715                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1716                                   SCEV::FlagAnyWrap, Depth + 1),
1717                        SCEV::FlagAnyWrap, Depth + 1);
1718           if (ZAdd == OperandExtendedAdd) {
1719             // Cache knowledge of AR NW, which is propagated to this AddRec.
1720             // Negative step causes unsigned wrap, but it still can't self-wrap.
1721             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1722             // Return the expression with the addrec on the outside.
1723             return getAddRecExpr(
1724                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1725                                                          Depth + 1),
1726                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1727                 AR->getNoWrapFlags());
1728           }
1729         }
1730       }
1731 
1732       // Normally, in the cases we can prove no-overflow via a
1733       // backedge guarding condition, we can also compute a backedge
1734       // taken count for the loop.  The exceptions are assumptions and
1735       // guards present in the loop -- SCEV is not great at exploiting
1736       // these to compute max backedge taken counts, but can still use
1737       // these to prove lack of overflow.  Use this fact to avoid
1738       // doing extra work that may not pay off.
1739       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1740           !AC.assumptions().empty()) {
1741 
1742         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1743         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1744         if (AR->hasNoUnsignedWrap()) {
1745           // Same as nuw case above - duplicated here to avoid a compile time
1746           // issue.  It's not clear that the order of checks does matter, but
1747           // it's one of two issue possible causes for a change which was
1748           // reverted.  Be conservative for the moment.
1749           return getAddRecExpr(
1750                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1751                                                          Depth + 1),
1752                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1753                 AR->getNoWrapFlags());
1754         }
1755 
1756         // For a negative step, we can extend the operands iff doing so only
1757         // traverses values in the range zext([0,UINT_MAX]).
1758         if (isKnownNegative(Step)) {
1759           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1760                                       getSignedRangeMin(Step));
1761           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1762               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1763             // Cache knowledge of AR NW, which is propagated to this
1764             // AddRec.  Negative step causes unsigned wrap, but it
1765             // still can't self-wrap.
1766             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1767             // Return the expression with the addrec on the outside.
1768             return getAddRecExpr(
1769                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1770                                                          Depth + 1),
1771                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1772                 AR->getNoWrapFlags());
1773           }
1774         }
1775       }
1776 
1777       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1778       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1779       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1780       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1781         const APInt &C = SC->getAPInt();
1782         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1783         if (D != 0) {
1784           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1785           const SCEV *SResidual =
1786               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1787           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1788           return getAddExpr(SZExtD, SZExtR,
1789                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1790                             Depth + 1);
1791         }
1792       }
1793 
1794       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1795         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1796         return getAddRecExpr(
1797             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1798             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1799       }
1800     }
1801 
1802   // zext(A % B) --> zext(A) % zext(B)
1803   {
1804     const SCEV *LHS;
1805     const SCEV *RHS;
1806     if (matchURem(Op, LHS, RHS))
1807       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1808                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1809   }
1810 
1811   // zext(A / B) --> zext(A) / zext(B).
1812   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1813     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1814                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1815 
1816   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1817     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1818     if (SA->hasNoUnsignedWrap()) {
1819       // If the addition does not unsign overflow then we can, by definition,
1820       // commute the zero extension with the addition operation.
1821       SmallVector<const SCEV *, 4> Ops;
1822       for (const auto *Op : SA->operands())
1823         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1824       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1825     }
1826 
1827     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1828     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1829     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1830     //
1831     // Often address arithmetics contain expressions like
1832     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1833     // This transformation is useful while proving that such expressions are
1834     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1835     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1836       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1837       if (D != 0) {
1838         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1839         const SCEV *SResidual =
1840             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1841         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1842         return getAddExpr(SZExtD, SZExtR,
1843                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1844                           Depth + 1);
1845       }
1846     }
1847   }
1848 
1849   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1850     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1851     if (SM->hasNoUnsignedWrap()) {
1852       // If the multiply does not unsign overflow then we can, by definition,
1853       // commute the zero extension with the multiply operation.
1854       SmallVector<const SCEV *, 4> Ops;
1855       for (const auto *Op : SM->operands())
1856         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1857       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1858     }
1859 
1860     // zext(2^K * (trunc X to iN)) to iM ->
1861     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1862     //
1863     // Proof:
1864     //
1865     //     zext(2^K * (trunc X to iN)) to iM
1866     //   = zext((trunc X to iN) << K) to iM
1867     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1868     //     (because shl removes the top K bits)
1869     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1870     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1871     //
1872     if (SM->getNumOperands() == 2)
1873       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1874         if (MulLHS->getAPInt().isPowerOf2())
1875           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1876             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1877                                MulLHS->getAPInt().logBase2();
1878             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1879             return getMulExpr(
1880                 getZeroExtendExpr(MulLHS, Ty),
1881                 getZeroExtendExpr(
1882                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1883                 SCEV::FlagNUW, Depth + 1);
1884           }
1885   }
1886 
1887   // The cast wasn't folded; create an explicit cast node.
1888   // Recompute the insert position, as it may have been invalidated.
1889   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1890   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1891                                                    Op, Ty);
1892   UniqueSCEVs.InsertNode(S, IP);
1893   registerUser(S, Op);
1894   return S;
1895 }
1896 
1897 const SCEV *
1898 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1899   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1900          "This is not an extending conversion!");
1901   assert(isSCEVable(Ty) &&
1902          "This is not a conversion to a SCEVable type!");
1903   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1904   Ty = getEffectiveSCEVType(Ty);
1905 
1906   // Fold if the operand is constant.
1907   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1908     return getConstant(
1909       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1910 
1911   // sext(sext(x)) --> sext(x)
1912   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1913     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1914 
1915   // sext(zext(x)) --> zext(x)
1916   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1917     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1918 
1919   // Before doing any expensive analysis, check to see if we've already
1920   // computed a SCEV for this Op and Ty.
1921   FoldingSetNodeID ID;
1922   ID.AddInteger(scSignExtend);
1923   ID.AddPointer(Op);
1924   ID.AddPointer(Ty);
1925   void *IP = nullptr;
1926   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1927   // Limit recursion depth.
1928   if (Depth > MaxCastDepth) {
1929     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1930                                                      Op, Ty);
1931     UniqueSCEVs.InsertNode(S, IP);
1932     registerUser(S, Op);
1933     return S;
1934   }
1935 
1936   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1937   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1938     // It's possible the bits taken off by the truncate were all sign bits. If
1939     // so, we should be able to simplify this further.
1940     const SCEV *X = ST->getOperand();
1941     ConstantRange CR = getSignedRange(X);
1942     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1943     unsigned NewBits = getTypeSizeInBits(Ty);
1944     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1945             CR.sextOrTrunc(NewBits)))
1946       return getTruncateOrSignExtend(X, Ty, Depth);
1947   }
1948 
1949   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1950     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1951     if (SA->hasNoSignedWrap()) {
1952       // If the addition does not sign overflow then we can, by definition,
1953       // commute the sign extension with the addition operation.
1954       SmallVector<const SCEV *, 4> Ops;
1955       for (const auto *Op : SA->operands())
1956         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1957       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1958     }
1959 
1960     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1961     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1962     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1963     //
1964     // For instance, this will bring two seemingly different expressions:
1965     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1966     //         sext(6 + 20 * %x + 24 * %y)
1967     // to the same form:
1968     //     2 + sext(4 + 20 * %x + 24 * %y)
1969     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1970       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1971       if (D != 0) {
1972         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1973         const SCEV *SResidual =
1974             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1975         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1976         return getAddExpr(SSExtD, SSExtR,
1977                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1978                           Depth + 1);
1979       }
1980     }
1981   }
1982   // If the input value is a chrec scev, and we can prove that the value
1983   // did not overflow the old, smaller, value, we can sign extend all of the
1984   // operands (often constants).  This allows analysis of something like
1985   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1986   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1987     if (AR->isAffine()) {
1988       const SCEV *Start = AR->getStart();
1989       const SCEV *Step = AR->getStepRecurrence(*this);
1990       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1991       const Loop *L = AR->getLoop();
1992 
1993       if (!AR->hasNoSignedWrap()) {
1994         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1995         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1996       }
1997 
1998       // If we have special knowledge that this addrec won't overflow,
1999       // we don't need to do any further analysis.
2000       if (AR->hasNoSignedWrap())
2001         return getAddRecExpr(
2002             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2003             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2004 
2005       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2006       // Note that this serves two purposes: It filters out loops that are
2007       // simply not analyzable, and it covers the case where this code is
2008       // being called from within backedge-taken count analysis, such that
2009       // attempting to ask for the backedge-taken count would likely result
2010       // in infinite recursion. In the later case, the analysis code will
2011       // cope with a conservative value, and it will take care to purge
2012       // that value once it has finished.
2013       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2014       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2015         // Manually compute the final value for AR, checking for
2016         // overflow.
2017 
2018         // Check whether the backedge-taken count can be losslessly casted to
2019         // the addrec's type. The count is always unsigned.
2020         const SCEV *CastedMaxBECount =
2021             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2022         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2023             CastedMaxBECount, MaxBECount->getType(), Depth);
2024         if (MaxBECount == RecastedMaxBECount) {
2025           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2026           // Check whether Start+Step*MaxBECount has no signed overflow.
2027           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2028                                         SCEV::FlagAnyWrap, Depth + 1);
2029           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2030                                                           SCEV::FlagAnyWrap,
2031                                                           Depth + 1),
2032                                                WideTy, Depth + 1);
2033           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2034           const SCEV *WideMaxBECount =
2035             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2036           const SCEV *OperandExtendedAdd =
2037             getAddExpr(WideStart,
2038                        getMulExpr(WideMaxBECount,
2039                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2040                                   SCEV::FlagAnyWrap, Depth + 1),
2041                        SCEV::FlagAnyWrap, Depth + 1);
2042           if (SAdd == OperandExtendedAdd) {
2043             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2044             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2045             // Return the expression with the addrec on the outside.
2046             return getAddRecExpr(
2047                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2048                                                          Depth + 1),
2049                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2050                 AR->getNoWrapFlags());
2051           }
2052           // Similar to above, only this time treat the step value as unsigned.
2053           // This covers loops that count up with an unsigned step.
2054           OperandExtendedAdd =
2055             getAddExpr(WideStart,
2056                        getMulExpr(WideMaxBECount,
2057                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2058                                   SCEV::FlagAnyWrap, Depth + 1),
2059                        SCEV::FlagAnyWrap, Depth + 1);
2060           if (SAdd == OperandExtendedAdd) {
2061             // If AR wraps around then
2062             //
2063             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2064             // => SAdd != OperandExtendedAdd
2065             //
2066             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2067             // (SAdd == OperandExtendedAdd => AR is NW)
2068 
2069             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2070 
2071             // Return the expression with the addrec on the outside.
2072             return getAddRecExpr(
2073                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2074                                                          Depth + 1),
2075                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2076                 AR->getNoWrapFlags());
2077           }
2078         }
2079       }
2080 
2081       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2082       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2083       if (AR->hasNoSignedWrap()) {
2084         // Same as nsw case above - duplicated here to avoid a compile time
2085         // issue.  It's not clear that the order of checks does matter, but
2086         // it's one of two issue possible causes for a change which was
2087         // reverted.  Be conservative for the moment.
2088         return getAddRecExpr(
2089             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2090             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2091       }
2092 
2093       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2094       // if D + (C - D + Step * n) could be proven to not signed wrap
2095       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2096       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2097         const APInt &C = SC->getAPInt();
2098         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2099         if (D != 0) {
2100           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2101           const SCEV *SResidual =
2102               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2103           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2104           return getAddExpr(SSExtD, SSExtR,
2105                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2106                             Depth + 1);
2107         }
2108       }
2109 
2110       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2111         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2112         return getAddRecExpr(
2113             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2114             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2115       }
2116     }
2117 
2118   // If the input value is provably positive and we could not simplify
2119   // away the sext build a zext instead.
2120   if (isKnownNonNegative(Op))
2121     return getZeroExtendExpr(Op, Ty, Depth + 1);
2122 
2123   // The cast wasn't folded; create an explicit cast node.
2124   // Recompute the insert position, as it may have been invalidated.
2125   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2126   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2127                                                    Op, Ty);
2128   UniqueSCEVs.InsertNode(S, IP);
2129   registerUser(S, { Op });
2130   return S;
2131 }
2132 
2133 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2134                                          Type *Ty) {
2135   switch (Kind) {
2136   case scTruncate:
2137     return getTruncateExpr(Op, Ty);
2138   case scZeroExtend:
2139     return getZeroExtendExpr(Op, Ty);
2140   case scSignExtend:
2141     return getSignExtendExpr(Op, Ty);
2142   case scPtrToInt:
2143     return getPtrToIntExpr(Op, Ty);
2144   default:
2145     llvm_unreachable("Not a SCEV cast expression!");
2146   }
2147 }
2148 
2149 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2150 /// unspecified bits out to the given type.
2151 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2152                                               Type *Ty) {
2153   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2154          "This is not an extending conversion!");
2155   assert(isSCEVable(Ty) &&
2156          "This is not a conversion to a SCEVable type!");
2157   Ty = getEffectiveSCEVType(Ty);
2158 
2159   // Sign-extend negative constants.
2160   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2161     if (SC->getAPInt().isNegative())
2162       return getSignExtendExpr(Op, Ty);
2163 
2164   // Peel off a truncate cast.
2165   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2166     const SCEV *NewOp = T->getOperand();
2167     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2168       return getAnyExtendExpr(NewOp, Ty);
2169     return getTruncateOrNoop(NewOp, Ty);
2170   }
2171 
2172   // Next try a zext cast. If the cast is folded, use it.
2173   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2174   if (!isa<SCEVZeroExtendExpr>(ZExt))
2175     return ZExt;
2176 
2177   // Next try a sext cast. If the cast is folded, use it.
2178   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2179   if (!isa<SCEVSignExtendExpr>(SExt))
2180     return SExt;
2181 
2182   // Force the cast to be folded into the operands of an addrec.
2183   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2184     SmallVector<const SCEV *, 4> Ops;
2185     for (const SCEV *Op : AR->operands())
2186       Ops.push_back(getAnyExtendExpr(Op, Ty));
2187     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2188   }
2189 
2190   // If the expression is obviously signed, use the sext cast value.
2191   if (isa<SCEVSMaxExpr>(Op))
2192     return SExt;
2193 
2194   // Absent any other information, use the zext cast value.
2195   return ZExt;
2196 }
2197 
2198 /// Process the given Ops list, which is a list of operands to be added under
2199 /// the given scale, update the given map. This is a helper function for
2200 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2201 /// that would form an add expression like this:
2202 ///
2203 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2204 ///
2205 /// where A and B are constants, update the map with these values:
2206 ///
2207 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2208 ///
2209 /// and add 13 + A*B*29 to AccumulatedConstant.
2210 /// This will allow getAddRecExpr to produce this:
2211 ///
2212 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2213 ///
2214 /// This form often exposes folding opportunities that are hidden in
2215 /// the original operand list.
2216 ///
2217 /// Return true iff it appears that any interesting folding opportunities
2218 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2219 /// the common case where no interesting opportunities are present, and
2220 /// is also used as a check to avoid infinite recursion.
2221 static bool
2222 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2223                              SmallVectorImpl<const SCEV *> &NewOps,
2224                              APInt &AccumulatedConstant,
2225                              const SCEV *const *Ops, size_t NumOperands,
2226                              const APInt &Scale,
2227                              ScalarEvolution &SE) {
2228   bool Interesting = false;
2229 
2230   // Iterate over the add operands. They are sorted, with constants first.
2231   unsigned i = 0;
2232   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2233     ++i;
2234     // Pull a buried constant out to the outside.
2235     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2236       Interesting = true;
2237     AccumulatedConstant += Scale * C->getAPInt();
2238   }
2239 
2240   // Next comes everything else. We're especially interested in multiplies
2241   // here, but they're in the middle, so just visit the rest with one loop.
2242   for (; i != NumOperands; ++i) {
2243     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2244     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2245       APInt NewScale =
2246           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2247       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2248         // A multiplication of a constant with another add; recurse.
2249         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2250         Interesting |=
2251           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2252                                        Add->op_begin(), Add->getNumOperands(),
2253                                        NewScale, SE);
2254       } else {
2255         // A multiplication of a constant with some other value. Update
2256         // the map.
2257         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2258         const SCEV *Key = SE.getMulExpr(MulOps);
2259         auto Pair = M.insert({Key, NewScale});
2260         if (Pair.second) {
2261           NewOps.push_back(Pair.first->first);
2262         } else {
2263           Pair.first->second += NewScale;
2264           // The map already had an entry for this value, which may indicate
2265           // a folding opportunity.
2266           Interesting = true;
2267         }
2268       }
2269     } else {
2270       // An ordinary operand. Update the map.
2271       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2272           M.insert({Ops[i], Scale});
2273       if (Pair.second) {
2274         NewOps.push_back(Pair.first->first);
2275       } else {
2276         Pair.first->second += Scale;
2277         // The map already had an entry for this value, which may indicate
2278         // a folding opportunity.
2279         Interesting = true;
2280       }
2281     }
2282   }
2283 
2284   return Interesting;
2285 }
2286 
2287 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2288                                       const SCEV *LHS, const SCEV *RHS) {
2289   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2290                                             SCEV::NoWrapFlags, unsigned);
2291   switch (BinOp) {
2292   default:
2293     llvm_unreachable("Unsupported binary op");
2294   case Instruction::Add:
2295     Operation = &ScalarEvolution::getAddExpr;
2296     break;
2297   case Instruction::Sub:
2298     Operation = &ScalarEvolution::getMinusSCEV;
2299     break;
2300   case Instruction::Mul:
2301     Operation = &ScalarEvolution::getMulExpr;
2302     break;
2303   }
2304 
2305   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2306       Signed ? &ScalarEvolution::getSignExtendExpr
2307              : &ScalarEvolution::getZeroExtendExpr;
2308 
2309   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2310   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2311   auto *WideTy =
2312       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2313 
2314   const SCEV *A = (this->*Extension)(
2315       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2316   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2317                                      (this->*Extension)(RHS, WideTy, 0),
2318                                      SCEV::FlagAnyWrap, 0);
2319   return A == B;
2320 }
2321 
2322 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2323 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2324     const OverflowingBinaryOperator *OBO) {
2325   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2326 
2327   if (OBO->hasNoUnsignedWrap())
2328     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2329   if (OBO->hasNoSignedWrap())
2330     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2331 
2332   bool Deduced = false;
2333 
2334   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2335     return {Flags, Deduced};
2336 
2337   if (OBO->getOpcode() != Instruction::Add &&
2338       OBO->getOpcode() != Instruction::Sub &&
2339       OBO->getOpcode() != Instruction::Mul)
2340     return {Flags, Deduced};
2341 
2342   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2343   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2344 
2345   if (!OBO->hasNoUnsignedWrap() &&
2346       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2347                       /* Signed */ false, LHS, RHS)) {
2348     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2349     Deduced = true;
2350   }
2351 
2352   if (!OBO->hasNoSignedWrap() &&
2353       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2354                       /* Signed */ true, LHS, RHS)) {
2355     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2356     Deduced = true;
2357   }
2358 
2359   return {Flags, Deduced};
2360 }
2361 
2362 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2363 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2364 // can't-overflow flags for the operation if possible.
2365 static SCEV::NoWrapFlags
2366 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2367                       const ArrayRef<const SCEV *> Ops,
2368                       SCEV::NoWrapFlags Flags) {
2369   using namespace std::placeholders;
2370 
2371   using OBO = OverflowingBinaryOperator;
2372 
2373   bool CanAnalyze =
2374       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2375   (void)CanAnalyze;
2376   assert(CanAnalyze && "don't call from other places!");
2377 
2378   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2379   SCEV::NoWrapFlags SignOrUnsignWrap =
2380       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2381 
2382   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2383   auto IsKnownNonNegative = [&](const SCEV *S) {
2384     return SE->isKnownNonNegative(S);
2385   };
2386 
2387   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2388     Flags =
2389         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2390 
2391   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2392 
2393   if (SignOrUnsignWrap != SignOrUnsignMask &&
2394       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2395       isa<SCEVConstant>(Ops[0])) {
2396 
2397     auto Opcode = [&] {
2398       switch (Type) {
2399       case scAddExpr:
2400         return Instruction::Add;
2401       case scMulExpr:
2402         return Instruction::Mul;
2403       default:
2404         llvm_unreachable("Unexpected SCEV op.");
2405       }
2406     }();
2407 
2408     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2409 
2410     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2411     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2412       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2413           Opcode, C, OBO::NoSignedWrap);
2414       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2415         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2416     }
2417 
2418     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2419     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2420       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2421           Opcode, C, OBO::NoUnsignedWrap);
2422       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2423         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2424     }
2425   }
2426 
2427   // <0,+,nonnegative><nw> is also nuw
2428   // TODO: Add corresponding nsw case
2429   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2430       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2431       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2432     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2433 
2434   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2435   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2436       Ops.size() == 2) {
2437     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2438       if (UDiv->getOperand(1) == Ops[1])
2439         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2440     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2441       if (UDiv->getOperand(1) == Ops[0])
2442         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2443   }
2444 
2445   return Flags;
2446 }
2447 
2448 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2449   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2450 }
2451 
2452 /// Get a canonical add expression, or something simpler if possible.
2453 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2454                                         SCEV::NoWrapFlags OrigFlags,
2455                                         unsigned Depth) {
2456   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2457          "only nuw or nsw allowed");
2458   assert(!Ops.empty() && "Cannot get empty add!");
2459   if (Ops.size() == 1) return Ops[0];
2460 #ifndef NDEBUG
2461   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2462   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2463     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2464            "SCEVAddExpr operand types don't match!");
2465   unsigned NumPtrs = count_if(
2466       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2467   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2468 #endif
2469 
2470   // Sort by complexity, this groups all similar expression types together.
2471   GroupByComplexity(Ops, &LI, DT);
2472 
2473   // If there are any constants, fold them together.
2474   unsigned Idx = 0;
2475   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2476     ++Idx;
2477     assert(Idx < Ops.size());
2478     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2479       // We found two constants, fold them together!
2480       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2481       if (Ops.size() == 2) return Ops[0];
2482       Ops.erase(Ops.begin()+1);  // Erase the folded element
2483       LHSC = cast<SCEVConstant>(Ops[0]);
2484     }
2485 
2486     // If we are left with a constant zero being added, strip it off.
2487     if (LHSC->getValue()->isZero()) {
2488       Ops.erase(Ops.begin());
2489       --Idx;
2490     }
2491 
2492     if (Ops.size() == 1) return Ops[0];
2493   }
2494 
2495   // Delay expensive flag strengthening until necessary.
2496   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2497     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2498   };
2499 
2500   // Limit recursion calls depth.
2501   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2502     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2503 
2504   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2505     // Don't strengthen flags if we have no new information.
2506     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2507     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2508       Add->setNoWrapFlags(ComputeFlags(Ops));
2509     return S;
2510   }
2511 
2512   // Okay, check to see if the same value occurs in the operand list more than
2513   // once.  If so, merge them together into an multiply expression.  Since we
2514   // sorted the list, these values are required to be adjacent.
2515   Type *Ty = Ops[0]->getType();
2516   bool FoundMatch = false;
2517   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2518     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2519       // Scan ahead to count how many equal operands there are.
2520       unsigned Count = 2;
2521       while (i+Count != e && Ops[i+Count] == Ops[i])
2522         ++Count;
2523       // Merge the values into a multiply.
2524       const SCEV *Scale = getConstant(Ty, Count);
2525       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2526       if (Ops.size() == Count)
2527         return Mul;
2528       Ops[i] = Mul;
2529       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2530       --i; e -= Count - 1;
2531       FoundMatch = true;
2532     }
2533   if (FoundMatch)
2534     return getAddExpr(Ops, OrigFlags, Depth + 1);
2535 
2536   // Check for truncates. If all the operands are truncated from the same
2537   // type, see if factoring out the truncate would permit the result to be
2538   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2539   // if the contents of the resulting outer trunc fold to something simple.
2540   auto FindTruncSrcType = [&]() -> Type * {
2541     // We're ultimately looking to fold an addrec of truncs and muls of only
2542     // constants and truncs, so if we find any other types of SCEV
2543     // as operands of the addrec then we bail and return nullptr here.
2544     // Otherwise, we return the type of the operand of a trunc that we find.
2545     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2546       return T->getOperand()->getType();
2547     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2548       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2549       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2550         return T->getOperand()->getType();
2551     }
2552     return nullptr;
2553   };
2554   if (auto *SrcType = FindTruncSrcType()) {
2555     SmallVector<const SCEV *, 8> LargeOps;
2556     bool Ok = true;
2557     // Check all the operands to see if they can be represented in the
2558     // source type of the truncate.
2559     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2560       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2561         if (T->getOperand()->getType() != SrcType) {
2562           Ok = false;
2563           break;
2564         }
2565         LargeOps.push_back(T->getOperand());
2566       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2567         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2568       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2569         SmallVector<const SCEV *, 8> LargeMulOps;
2570         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2571           if (const SCEVTruncateExpr *T =
2572                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2573             if (T->getOperand()->getType() != SrcType) {
2574               Ok = false;
2575               break;
2576             }
2577             LargeMulOps.push_back(T->getOperand());
2578           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2579             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2580           } else {
2581             Ok = false;
2582             break;
2583           }
2584         }
2585         if (Ok)
2586           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2587       } else {
2588         Ok = false;
2589         break;
2590       }
2591     }
2592     if (Ok) {
2593       // Evaluate the expression in the larger type.
2594       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2595       // If it folds to something simple, use it. Otherwise, don't.
2596       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2597         return getTruncateExpr(Fold, Ty);
2598     }
2599   }
2600 
2601   if (Ops.size() == 2) {
2602     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2603     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2604     // C1).
2605     const SCEV *A = Ops[0];
2606     const SCEV *B = Ops[1];
2607     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2608     auto *C = dyn_cast<SCEVConstant>(A);
2609     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2610       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2611       auto C2 = C->getAPInt();
2612       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2613 
2614       APInt ConstAdd = C1 + C2;
2615       auto AddFlags = AddExpr->getNoWrapFlags();
2616       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2617       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2618           ConstAdd.ule(C1)) {
2619         PreservedFlags =
2620             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2621       }
2622 
2623       // Adding a constant with the same sign and small magnitude is NSW, if the
2624       // original AddExpr was NSW.
2625       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2626           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2627           ConstAdd.abs().ule(C1.abs())) {
2628         PreservedFlags =
2629             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2630       }
2631 
2632       if (PreservedFlags != SCEV::FlagAnyWrap) {
2633         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2634         NewOps[0] = getConstant(ConstAdd);
2635         return getAddExpr(NewOps, PreservedFlags);
2636       }
2637     }
2638   }
2639 
2640   // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2641   if (Ops.size() == 2) {
2642     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2643     if (Mul && Mul->getNumOperands() == 2 &&
2644         Mul->getOperand(0)->isAllOnesValue()) {
2645       const SCEV *X;
2646       const SCEV *Y;
2647       if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2648         return getMulExpr(Y, getUDivExpr(X, Y));
2649       }
2650     }
2651   }
2652 
2653   // Skip past any other cast SCEVs.
2654   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2655     ++Idx;
2656 
2657   // If there are add operands they would be next.
2658   if (Idx < Ops.size()) {
2659     bool DeletedAdd = false;
2660     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2661     // common NUW flag for expression after inlining. Other flags cannot be
2662     // preserved, because they may depend on the original order of operations.
2663     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2664     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2665       if (Ops.size() > AddOpsInlineThreshold ||
2666           Add->getNumOperands() > AddOpsInlineThreshold)
2667         break;
2668       // If we have an add, expand the add operands onto the end of the operands
2669       // list.
2670       Ops.erase(Ops.begin()+Idx);
2671       Ops.append(Add->op_begin(), Add->op_end());
2672       DeletedAdd = true;
2673       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2674     }
2675 
2676     // If we deleted at least one add, we added operands to the end of the list,
2677     // and they are not necessarily sorted.  Recurse to resort and resimplify
2678     // any operands we just acquired.
2679     if (DeletedAdd)
2680       return getAddExpr(Ops, CommonFlags, Depth + 1);
2681   }
2682 
2683   // Skip over the add expression until we get to a multiply.
2684   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2685     ++Idx;
2686 
2687   // Check to see if there are any folding opportunities present with
2688   // operands multiplied by constant values.
2689   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2690     uint64_t BitWidth = getTypeSizeInBits(Ty);
2691     DenseMap<const SCEV *, APInt> M;
2692     SmallVector<const SCEV *, 8> NewOps;
2693     APInt AccumulatedConstant(BitWidth, 0);
2694     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2695                                      Ops.data(), Ops.size(),
2696                                      APInt(BitWidth, 1), *this)) {
2697       struct APIntCompare {
2698         bool operator()(const APInt &LHS, const APInt &RHS) const {
2699           return LHS.ult(RHS);
2700         }
2701       };
2702 
2703       // Some interesting folding opportunity is present, so its worthwhile to
2704       // re-generate the operands list. Group the operands by constant scale,
2705       // to avoid multiplying by the same constant scale multiple times.
2706       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2707       for (const SCEV *NewOp : NewOps)
2708         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2709       // Re-generate the operands list.
2710       Ops.clear();
2711       if (AccumulatedConstant != 0)
2712         Ops.push_back(getConstant(AccumulatedConstant));
2713       for (auto &MulOp : MulOpLists) {
2714         if (MulOp.first == 1) {
2715           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2716         } else if (MulOp.first != 0) {
2717           Ops.push_back(getMulExpr(
2718               getConstant(MulOp.first),
2719               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2720               SCEV::FlagAnyWrap, Depth + 1));
2721         }
2722       }
2723       if (Ops.empty())
2724         return getZero(Ty);
2725       if (Ops.size() == 1)
2726         return Ops[0];
2727       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2728     }
2729   }
2730 
2731   // If we are adding something to a multiply expression, make sure the
2732   // something is not already an operand of the multiply.  If so, merge it into
2733   // the multiply.
2734   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2735     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2736     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2737       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2738       if (isa<SCEVConstant>(MulOpSCEV))
2739         continue;
2740       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2741         if (MulOpSCEV == Ops[AddOp]) {
2742           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2743           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2744           if (Mul->getNumOperands() != 2) {
2745             // If the multiply has more than two operands, we must get the
2746             // Y*Z term.
2747             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2748                                                 Mul->op_begin()+MulOp);
2749             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2750             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2751           }
2752           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2753           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2754           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2755                                             SCEV::FlagAnyWrap, Depth + 1);
2756           if (Ops.size() == 2) return OuterMul;
2757           if (AddOp < Idx) {
2758             Ops.erase(Ops.begin()+AddOp);
2759             Ops.erase(Ops.begin()+Idx-1);
2760           } else {
2761             Ops.erase(Ops.begin()+Idx);
2762             Ops.erase(Ops.begin()+AddOp-1);
2763           }
2764           Ops.push_back(OuterMul);
2765           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2766         }
2767 
2768       // Check this multiply against other multiplies being added together.
2769       for (unsigned OtherMulIdx = Idx+1;
2770            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2771            ++OtherMulIdx) {
2772         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2773         // If MulOp occurs in OtherMul, we can fold the two multiplies
2774         // together.
2775         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2776              OMulOp != e; ++OMulOp)
2777           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2778             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2779             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2780             if (Mul->getNumOperands() != 2) {
2781               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2782                                                   Mul->op_begin()+MulOp);
2783               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2784               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2785             }
2786             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2787             if (OtherMul->getNumOperands() != 2) {
2788               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2789                                                   OtherMul->op_begin()+OMulOp);
2790               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2791               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2792             }
2793             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2794             const SCEV *InnerMulSum =
2795                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2796             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2797                                               SCEV::FlagAnyWrap, Depth + 1);
2798             if (Ops.size() == 2) return OuterMul;
2799             Ops.erase(Ops.begin()+Idx);
2800             Ops.erase(Ops.begin()+OtherMulIdx-1);
2801             Ops.push_back(OuterMul);
2802             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2803           }
2804       }
2805     }
2806   }
2807 
2808   // If there are any add recurrences in the operands list, see if any other
2809   // added values are loop invariant.  If so, we can fold them into the
2810   // recurrence.
2811   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2812     ++Idx;
2813 
2814   // Scan over all recurrences, trying to fold loop invariants into them.
2815   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2816     // Scan all of the other operands to this add and add them to the vector if
2817     // they are loop invariant w.r.t. the recurrence.
2818     SmallVector<const SCEV *, 8> LIOps;
2819     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2820     const Loop *AddRecLoop = AddRec->getLoop();
2821     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2822       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2823         LIOps.push_back(Ops[i]);
2824         Ops.erase(Ops.begin()+i);
2825         --i; --e;
2826       }
2827 
2828     // If we found some loop invariants, fold them into the recurrence.
2829     if (!LIOps.empty()) {
2830       // Compute nowrap flags for the addition of the loop-invariant ops and
2831       // the addrec. Temporarily push it as an operand for that purpose. These
2832       // flags are valid in the scope of the addrec only.
2833       LIOps.push_back(AddRec);
2834       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2835       LIOps.pop_back();
2836 
2837       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2838       LIOps.push_back(AddRec->getStart());
2839 
2840       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2841 
2842       // It is not in general safe to propagate flags valid on an add within
2843       // the addrec scope to one outside it.  We must prove that the inner
2844       // scope is guaranteed to execute if the outer one does to be able to
2845       // safely propagate.  We know the program is undefined if poison is
2846       // produced on the inner scoped addrec.  We also know that *for this use*
2847       // the outer scoped add can't overflow (because of the flags we just
2848       // computed for the inner scoped add) without the program being undefined.
2849       // Proving that entry to the outer scope neccesitates entry to the inner
2850       // scope, thus proves the program undefined if the flags would be violated
2851       // in the outer scope.
2852       SCEV::NoWrapFlags AddFlags = Flags;
2853       if (AddFlags != SCEV::FlagAnyWrap) {
2854         auto *DefI = getDefiningScopeBound(LIOps);
2855         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2856         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2857           AddFlags = SCEV::FlagAnyWrap;
2858       }
2859       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2860 
2861       // Build the new addrec. Propagate the NUW and NSW flags if both the
2862       // outer add and the inner addrec are guaranteed to have no overflow.
2863       // Always propagate NW.
2864       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2865       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2866 
2867       // If all of the other operands were loop invariant, we are done.
2868       if (Ops.size() == 1) return NewRec;
2869 
2870       // Otherwise, add the folded AddRec by the non-invariant parts.
2871       for (unsigned i = 0;; ++i)
2872         if (Ops[i] == AddRec) {
2873           Ops[i] = NewRec;
2874           break;
2875         }
2876       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2877     }
2878 
2879     // Okay, if there weren't any loop invariants to be folded, check to see if
2880     // there are multiple AddRec's with the same loop induction variable being
2881     // added together.  If so, we can fold them.
2882     for (unsigned OtherIdx = Idx+1;
2883          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2884          ++OtherIdx) {
2885       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2886       // so that the 1st found AddRecExpr is dominated by all others.
2887       assert(DT.dominates(
2888            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2889            AddRec->getLoop()->getHeader()) &&
2890         "AddRecExprs are not sorted in reverse dominance order?");
2891       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2892         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2893         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2894         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2895              ++OtherIdx) {
2896           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2897           if (OtherAddRec->getLoop() == AddRecLoop) {
2898             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2899                  i != e; ++i) {
2900               if (i >= AddRecOps.size()) {
2901                 AddRecOps.append(OtherAddRec->op_begin()+i,
2902                                  OtherAddRec->op_end());
2903                 break;
2904               }
2905               SmallVector<const SCEV *, 2> TwoOps = {
2906                   AddRecOps[i], OtherAddRec->getOperand(i)};
2907               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2908             }
2909             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2910           }
2911         }
2912         // Step size has changed, so we cannot guarantee no self-wraparound.
2913         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2914         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2915       }
2916     }
2917 
2918     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2919     // next one.
2920   }
2921 
2922   // Okay, it looks like we really DO need an add expr.  Check to see if we
2923   // already have one, otherwise create a new one.
2924   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2925 }
2926 
2927 const SCEV *
2928 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2929                                     SCEV::NoWrapFlags Flags) {
2930   FoldingSetNodeID ID;
2931   ID.AddInteger(scAddExpr);
2932   for (const SCEV *Op : Ops)
2933     ID.AddPointer(Op);
2934   void *IP = nullptr;
2935   SCEVAddExpr *S =
2936       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2937   if (!S) {
2938     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2939     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2940     S = new (SCEVAllocator)
2941         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2942     UniqueSCEVs.InsertNode(S, IP);
2943     registerUser(S, Ops);
2944   }
2945   S->setNoWrapFlags(Flags);
2946   return S;
2947 }
2948 
2949 const SCEV *
2950 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2951                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2952   FoldingSetNodeID ID;
2953   ID.AddInteger(scAddRecExpr);
2954   for (const SCEV *Op : Ops)
2955     ID.AddPointer(Op);
2956   ID.AddPointer(L);
2957   void *IP = nullptr;
2958   SCEVAddRecExpr *S =
2959       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2960   if (!S) {
2961     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2962     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2963     S = new (SCEVAllocator)
2964         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2965     UniqueSCEVs.InsertNode(S, IP);
2966     LoopUsers[L].push_back(S);
2967     registerUser(S, Ops);
2968   }
2969   setNoWrapFlags(S, Flags);
2970   return S;
2971 }
2972 
2973 const SCEV *
2974 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2975                                     SCEV::NoWrapFlags Flags) {
2976   FoldingSetNodeID ID;
2977   ID.AddInteger(scMulExpr);
2978   for (const SCEV *Op : Ops)
2979     ID.AddPointer(Op);
2980   void *IP = nullptr;
2981   SCEVMulExpr *S =
2982     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2983   if (!S) {
2984     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2985     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2986     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2987                                         O, Ops.size());
2988     UniqueSCEVs.InsertNode(S, IP);
2989     registerUser(S, Ops);
2990   }
2991   S->setNoWrapFlags(Flags);
2992   return S;
2993 }
2994 
2995 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2996   uint64_t k = i*j;
2997   if (j > 1 && k / j != i) Overflow = true;
2998   return k;
2999 }
3000 
3001 /// Compute the result of "n choose k", the binomial coefficient.  If an
3002 /// intermediate computation overflows, Overflow will be set and the return will
3003 /// be garbage. Overflow is not cleared on absence of overflow.
3004 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
3005   // We use the multiplicative formula:
3006   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3007   // At each iteration, we take the n-th term of the numeral and divide by the
3008   // (k-n)th term of the denominator.  This division will always produce an
3009   // integral result, and helps reduce the chance of overflow in the
3010   // intermediate computations. However, we can still overflow even when the
3011   // final result would fit.
3012 
3013   if (n == 0 || n == k) return 1;
3014   if (k > n) return 0;
3015 
3016   if (k > n/2)
3017     k = n-k;
3018 
3019   uint64_t r = 1;
3020   for (uint64_t i = 1; i <= k; ++i) {
3021     r = umul_ov(r, n-(i-1), Overflow);
3022     r /= i;
3023   }
3024   return r;
3025 }
3026 
3027 /// Determine if any of the operands in this SCEV are a constant or if
3028 /// any of the add or multiply expressions in this SCEV contain a constant.
3029 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3030   struct FindConstantInAddMulChain {
3031     bool FoundConstant = false;
3032 
3033     bool follow(const SCEV *S) {
3034       FoundConstant |= isa<SCEVConstant>(S);
3035       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3036     }
3037 
3038     bool isDone() const {
3039       return FoundConstant;
3040     }
3041   };
3042 
3043   FindConstantInAddMulChain F;
3044   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3045   ST.visitAll(StartExpr);
3046   return F.FoundConstant;
3047 }
3048 
3049 /// Get a canonical multiply expression, or something simpler if possible.
3050 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3051                                         SCEV::NoWrapFlags OrigFlags,
3052                                         unsigned Depth) {
3053   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3054          "only nuw or nsw allowed");
3055   assert(!Ops.empty() && "Cannot get empty mul!");
3056   if (Ops.size() == 1) return Ops[0];
3057 #ifndef NDEBUG
3058   Type *ETy = Ops[0]->getType();
3059   assert(!ETy->isPointerTy());
3060   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3061     assert(Ops[i]->getType() == ETy &&
3062            "SCEVMulExpr operand types don't match!");
3063 #endif
3064 
3065   // Sort by complexity, this groups all similar expression types together.
3066   GroupByComplexity(Ops, &LI, DT);
3067 
3068   // If there are any constants, fold them together.
3069   unsigned Idx = 0;
3070   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3071     ++Idx;
3072     assert(Idx < Ops.size());
3073     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3074       // We found two constants, fold them together!
3075       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3076       if (Ops.size() == 2) return Ops[0];
3077       Ops.erase(Ops.begin()+1);  // Erase the folded element
3078       LHSC = cast<SCEVConstant>(Ops[0]);
3079     }
3080 
3081     // If we have a multiply of zero, it will always be zero.
3082     if (LHSC->getValue()->isZero())
3083       return LHSC;
3084 
3085     // If we are left with a constant one being multiplied, strip it off.
3086     if (LHSC->getValue()->isOne()) {
3087       Ops.erase(Ops.begin());
3088       --Idx;
3089     }
3090 
3091     if (Ops.size() == 1)
3092       return Ops[0];
3093   }
3094 
3095   // Delay expensive flag strengthening until necessary.
3096   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3097     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3098   };
3099 
3100   // Limit recursion calls depth.
3101   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3102     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3103 
3104   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3105     // Don't strengthen flags if we have no new information.
3106     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3107     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3108       Mul->setNoWrapFlags(ComputeFlags(Ops));
3109     return S;
3110   }
3111 
3112   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3113     if (Ops.size() == 2) {
3114       // C1*(C2+V) -> C1*C2 + C1*V
3115       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3116         // If any of Add's ops are Adds or Muls with a constant, apply this
3117         // transformation as well.
3118         //
3119         // TODO: There are some cases where this transformation is not
3120         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3121         // this transformation should be narrowed down.
3122         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3123           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3124                                        SCEV::FlagAnyWrap, Depth + 1),
3125                             getMulExpr(LHSC, Add->getOperand(1),
3126                                        SCEV::FlagAnyWrap, Depth + 1),
3127                             SCEV::FlagAnyWrap, Depth + 1);
3128 
3129       if (Ops[0]->isAllOnesValue()) {
3130         // If we have a mul by -1 of an add, try distributing the -1 among the
3131         // add operands.
3132         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3133           SmallVector<const SCEV *, 4> NewOps;
3134           bool AnyFolded = false;
3135           for (const SCEV *AddOp : Add->operands()) {
3136             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3137                                          Depth + 1);
3138             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3139             NewOps.push_back(Mul);
3140           }
3141           if (AnyFolded)
3142             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3143         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3144           // Negation preserves a recurrence's no self-wrap property.
3145           SmallVector<const SCEV *, 4> Operands;
3146           for (const SCEV *AddRecOp : AddRec->operands())
3147             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3148                                           Depth + 1));
3149 
3150           return getAddRecExpr(Operands, AddRec->getLoop(),
3151                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3152         }
3153       }
3154     }
3155   }
3156 
3157   // Skip over the add expression until we get to a multiply.
3158   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3159     ++Idx;
3160 
3161   // If there are mul operands inline them all into this expression.
3162   if (Idx < Ops.size()) {
3163     bool DeletedMul = false;
3164     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3165       if (Ops.size() > MulOpsInlineThreshold)
3166         break;
3167       // If we have an mul, expand the mul operands onto the end of the
3168       // operands list.
3169       Ops.erase(Ops.begin()+Idx);
3170       Ops.append(Mul->op_begin(), Mul->op_end());
3171       DeletedMul = true;
3172     }
3173 
3174     // If we deleted at least one mul, we added operands to the end of the
3175     // list, and they are not necessarily sorted.  Recurse to resort and
3176     // resimplify any operands we just acquired.
3177     if (DeletedMul)
3178       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3179   }
3180 
3181   // If there are any add recurrences in the operands list, see if any other
3182   // added values are loop invariant.  If so, we can fold them into the
3183   // recurrence.
3184   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3185     ++Idx;
3186 
3187   // Scan over all recurrences, trying to fold loop invariants into them.
3188   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3189     // Scan all of the other operands to this mul and add them to the vector
3190     // if they are loop invariant w.r.t. the recurrence.
3191     SmallVector<const SCEV *, 8> LIOps;
3192     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3193     const Loop *AddRecLoop = AddRec->getLoop();
3194     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3195       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3196         LIOps.push_back(Ops[i]);
3197         Ops.erase(Ops.begin()+i);
3198         --i; --e;
3199       }
3200 
3201     // If we found some loop invariants, fold them into the recurrence.
3202     if (!LIOps.empty()) {
3203       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3204       SmallVector<const SCEV *, 4> NewOps;
3205       NewOps.reserve(AddRec->getNumOperands());
3206       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3207       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3208         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3209                                     SCEV::FlagAnyWrap, Depth + 1));
3210 
3211       // Build the new addrec. Propagate the NUW and NSW flags if both the
3212       // outer mul and the inner addrec are guaranteed to have no overflow.
3213       //
3214       // No self-wrap cannot be guaranteed after changing the step size, but
3215       // will be inferred if either NUW or NSW is true.
3216       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3217       const SCEV *NewRec = getAddRecExpr(
3218           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3219 
3220       // If all of the other operands were loop invariant, we are done.
3221       if (Ops.size() == 1) return NewRec;
3222 
3223       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3224       for (unsigned i = 0;; ++i)
3225         if (Ops[i] == AddRec) {
3226           Ops[i] = NewRec;
3227           break;
3228         }
3229       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3230     }
3231 
3232     // Okay, if there weren't any loop invariants to be folded, check to see
3233     // if there are multiple AddRec's with the same loop induction variable
3234     // being multiplied together.  If so, we can fold them.
3235 
3236     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3237     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3238     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3239     //   ]]],+,...up to x=2n}.
3240     // Note that the arguments to choose() are always integers with values
3241     // known at compile time, never SCEV objects.
3242     //
3243     // The implementation avoids pointless extra computations when the two
3244     // addrec's are of different length (mathematically, it's equivalent to
3245     // an infinite stream of zeros on the right).
3246     bool OpsModified = false;
3247     for (unsigned OtherIdx = Idx+1;
3248          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3249          ++OtherIdx) {
3250       const SCEVAddRecExpr *OtherAddRec =
3251         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3252       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3253         continue;
3254 
3255       // Limit max number of arguments to avoid creation of unreasonably big
3256       // SCEVAddRecs with very complex operands.
3257       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3258           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3259         continue;
3260 
3261       bool Overflow = false;
3262       Type *Ty = AddRec->getType();
3263       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3264       SmallVector<const SCEV*, 7> AddRecOps;
3265       for (int x = 0, xe = AddRec->getNumOperands() +
3266              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3267         SmallVector <const SCEV *, 7> SumOps;
3268         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3269           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3270           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3271                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3272                z < ze && !Overflow; ++z) {
3273             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3274             uint64_t Coeff;
3275             if (LargerThan64Bits)
3276               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3277             else
3278               Coeff = Coeff1*Coeff2;
3279             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3280             const SCEV *Term1 = AddRec->getOperand(y-z);
3281             const SCEV *Term2 = OtherAddRec->getOperand(z);
3282             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3283                                         SCEV::FlagAnyWrap, Depth + 1));
3284           }
3285         }
3286         if (SumOps.empty())
3287           SumOps.push_back(getZero(Ty));
3288         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3289       }
3290       if (!Overflow) {
3291         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3292                                               SCEV::FlagAnyWrap);
3293         if (Ops.size() == 2) return NewAddRec;
3294         Ops[Idx] = NewAddRec;
3295         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3296         OpsModified = true;
3297         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3298         if (!AddRec)
3299           break;
3300       }
3301     }
3302     if (OpsModified)
3303       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3304 
3305     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3306     // next one.
3307   }
3308 
3309   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3310   // already have one, otherwise create a new one.
3311   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3312 }
3313 
3314 /// Represents an unsigned remainder expression based on unsigned division.
3315 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3316                                          const SCEV *RHS) {
3317   assert(getEffectiveSCEVType(LHS->getType()) ==
3318          getEffectiveSCEVType(RHS->getType()) &&
3319          "SCEVURemExpr operand types don't match!");
3320 
3321   // Short-circuit easy cases
3322   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3323     // If constant is one, the result is trivial
3324     if (RHSC->getValue()->isOne())
3325       return getZero(LHS->getType()); // X urem 1 --> 0
3326 
3327     // If constant is a power of two, fold into a zext(trunc(LHS)).
3328     if (RHSC->getAPInt().isPowerOf2()) {
3329       Type *FullTy = LHS->getType();
3330       Type *TruncTy =
3331           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3332       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3333     }
3334   }
3335 
3336   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3337   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3338   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3339   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3340 }
3341 
3342 /// Get a canonical unsigned division expression, or something simpler if
3343 /// possible.
3344 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3345                                          const SCEV *RHS) {
3346   assert(!LHS->getType()->isPointerTy() &&
3347          "SCEVUDivExpr operand can't be pointer!");
3348   assert(LHS->getType() == RHS->getType() &&
3349          "SCEVUDivExpr operand types don't match!");
3350 
3351   FoldingSetNodeID ID;
3352   ID.AddInteger(scUDivExpr);
3353   ID.AddPointer(LHS);
3354   ID.AddPointer(RHS);
3355   void *IP = nullptr;
3356   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3357     return S;
3358 
3359   // 0 udiv Y == 0
3360   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3361     if (LHSC->getValue()->isZero())
3362       return LHS;
3363 
3364   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3365     if (RHSC->getValue()->isOne())
3366       return LHS;                               // X udiv 1 --> x
3367     // If the denominator is zero, the result of the udiv is undefined. Don't
3368     // try to analyze it, because the resolution chosen here may differ from
3369     // the resolution chosen in other parts of the compiler.
3370     if (!RHSC->getValue()->isZero()) {
3371       // Determine if the division can be folded into the operands of
3372       // its operands.
3373       // TODO: Generalize this to non-constants by using known-bits information.
3374       Type *Ty = LHS->getType();
3375       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3376       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3377       // For non-power-of-two values, effectively round the value up to the
3378       // nearest power of two.
3379       if (!RHSC->getAPInt().isPowerOf2())
3380         ++MaxShiftAmt;
3381       IntegerType *ExtTy =
3382         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3383       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3384         if (const SCEVConstant *Step =
3385             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3386           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3387           const APInt &StepInt = Step->getAPInt();
3388           const APInt &DivInt = RHSC->getAPInt();
3389           if (!StepInt.urem(DivInt) &&
3390               getZeroExtendExpr(AR, ExtTy) ==
3391               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3392                             getZeroExtendExpr(Step, ExtTy),
3393                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3394             SmallVector<const SCEV *, 4> Operands;
3395             for (const SCEV *Op : AR->operands())
3396               Operands.push_back(getUDivExpr(Op, RHS));
3397             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3398           }
3399           /// Get a canonical UDivExpr for a recurrence.
3400           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3401           // We can currently only fold X%N if X is constant.
3402           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3403           if (StartC && !DivInt.urem(StepInt) &&
3404               getZeroExtendExpr(AR, ExtTy) ==
3405               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3406                             getZeroExtendExpr(Step, ExtTy),
3407                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3408             const APInt &StartInt = StartC->getAPInt();
3409             const APInt &StartRem = StartInt.urem(StepInt);
3410             if (StartRem != 0) {
3411               const SCEV *NewLHS =
3412                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3413                                 AR->getLoop(), SCEV::FlagNW);
3414               if (LHS != NewLHS) {
3415                 LHS = NewLHS;
3416 
3417                 // Reset the ID to include the new LHS, and check if it is
3418                 // already cached.
3419                 ID.clear();
3420                 ID.AddInteger(scUDivExpr);
3421                 ID.AddPointer(LHS);
3422                 ID.AddPointer(RHS);
3423                 IP = nullptr;
3424                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3425                   return S;
3426               }
3427             }
3428           }
3429         }
3430       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3431       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3432         SmallVector<const SCEV *, 4> Operands;
3433         for (const SCEV *Op : M->operands())
3434           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3435         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3436           // Find an operand that's safely divisible.
3437           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3438             const SCEV *Op = M->getOperand(i);
3439             const SCEV *Div = getUDivExpr(Op, RHSC);
3440             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3441               Operands = SmallVector<const SCEV *, 4>(M->operands());
3442               Operands[i] = Div;
3443               return getMulExpr(Operands);
3444             }
3445           }
3446       }
3447 
3448       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3449       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3450         if (auto *DivisorConstant =
3451                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3452           bool Overflow = false;
3453           APInt NewRHS =
3454               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3455           if (Overflow) {
3456             return getConstant(RHSC->getType(), 0, false);
3457           }
3458           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3459         }
3460       }
3461 
3462       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3463       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3464         SmallVector<const SCEV *, 4> Operands;
3465         for (const SCEV *Op : A->operands())
3466           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3467         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3468           Operands.clear();
3469           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3470             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3471             if (isa<SCEVUDivExpr>(Op) ||
3472                 getMulExpr(Op, RHS) != A->getOperand(i))
3473               break;
3474             Operands.push_back(Op);
3475           }
3476           if (Operands.size() == A->getNumOperands())
3477             return getAddExpr(Operands);
3478         }
3479       }
3480 
3481       // Fold if both operands are constant.
3482       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3483         Constant *LHSCV = LHSC->getValue();
3484         Constant *RHSCV = RHSC->getValue();
3485         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3486                                                                    RHSCV)));
3487       }
3488     }
3489   }
3490 
3491   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3492   // changes). Make sure we get a new one.
3493   IP = nullptr;
3494   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3495   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3496                                              LHS, RHS);
3497   UniqueSCEVs.InsertNode(S, IP);
3498   registerUser(S, {LHS, RHS});
3499   return S;
3500 }
3501 
3502 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3503   APInt A = C1->getAPInt().abs();
3504   APInt B = C2->getAPInt().abs();
3505   uint32_t ABW = A.getBitWidth();
3506   uint32_t BBW = B.getBitWidth();
3507 
3508   if (ABW > BBW)
3509     B = B.zext(ABW);
3510   else if (ABW < BBW)
3511     A = A.zext(BBW);
3512 
3513   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3514 }
3515 
3516 /// Get a canonical unsigned division expression, or something simpler if
3517 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3518 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3519 /// it's not exact because the udiv may be clearing bits.
3520 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3521                                               const SCEV *RHS) {
3522   // TODO: we could try to find factors in all sorts of things, but for now we
3523   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3524   // end of this file for inspiration.
3525 
3526   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3527   if (!Mul || !Mul->hasNoUnsignedWrap())
3528     return getUDivExpr(LHS, RHS);
3529 
3530   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3531     // If the mulexpr multiplies by a constant, then that constant must be the
3532     // first element of the mulexpr.
3533     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3534       if (LHSCst == RHSCst) {
3535         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3536         return getMulExpr(Operands);
3537       }
3538 
3539       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3540       // that there's a factor provided by one of the other terms. We need to
3541       // check.
3542       APInt Factor = gcd(LHSCst, RHSCst);
3543       if (!Factor.isIntN(1)) {
3544         LHSCst =
3545             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3546         RHSCst =
3547             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3548         SmallVector<const SCEV *, 2> Operands;
3549         Operands.push_back(LHSCst);
3550         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3551         LHS = getMulExpr(Operands);
3552         RHS = RHSCst;
3553         Mul = dyn_cast<SCEVMulExpr>(LHS);
3554         if (!Mul)
3555           return getUDivExactExpr(LHS, RHS);
3556       }
3557     }
3558   }
3559 
3560   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3561     if (Mul->getOperand(i) == RHS) {
3562       SmallVector<const SCEV *, 2> Operands;
3563       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3564       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3565       return getMulExpr(Operands);
3566     }
3567   }
3568 
3569   return getUDivExpr(LHS, RHS);
3570 }
3571 
3572 /// Get an add recurrence expression for the specified loop.  Simplify the
3573 /// expression as much as possible.
3574 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3575                                            const Loop *L,
3576                                            SCEV::NoWrapFlags Flags) {
3577   SmallVector<const SCEV *, 4> Operands;
3578   Operands.push_back(Start);
3579   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3580     if (StepChrec->getLoop() == L) {
3581       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3582       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3583     }
3584 
3585   Operands.push_back(Step);
3586   return getAddRecExpr(Operands, L, Flags);
3587 }
3588 
3589 /// Get an add recurrence expression for the specified loop.  Simplify the
3590 /// expression as much as possible.
3591 const SCEV *
3592 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3593                                const Loop *L, SCEV::NoWrapFlags Flags) {
3594   if (Operands.size() == 1) return Operands[0];
3595 #ifndef NDEBUG
3596   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3597   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3598     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3599            "SCEVAddRecExpr operand types don't match!");
3600     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3601   }
3602   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3603     assert(isLoopInvariant(Operands[i], L) &&
3604            "SCEVAddRecExpr operand is not loop-invariant!");
3605 #endif
3606 
3607   if (Operands.back()->isZero()) {
3608     Operands.pop_back();
3609     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3610   }
3611 
3612   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3613   // use that information to infer NUW and NSW flags. However, computing a
3614   // BE count requires calling getAddRecExpr, so we may not yet have a
3615   // meaningful BE count at this point (and if we don't, we'd be stuck
3616   // with a SCEVCouldNotCompute as the cached BE count).
3617 
3618   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3619 
3620   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3621   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3622     const Loop *NestedLoop = NestedAR->getLoop();
3623     if (L->contains(NestedLoop)
3624             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3625             : (!NestedLoop->contains(L) &&
3626                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3627       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3628       Operands[0] = NestedAR->getStart();
3629       // AddRecs require their operands be loop-invariant with respect to their
3630       // loops. Don't perform this transformation if it would break this
3631       // requirement.
3632       bool AllInvariant = all_of(
3633           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3634 
3635       if (AllInvariant) {
3636         // Create a recurrence for the outer loop with the same step size.
3637         //
3638         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3639         // inner recurrence has the same property.
3640         SCEV::NoWrapFlags OuterFlags =
3641           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3642 
3643         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3644         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3645           return isLoopInvariant(Op, NestedLoop);
3646         });
3647 
3648         if (AllInvariant) {
3649           // Ok, both add recurrences are valid after the transformation.
3650           //
3651           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3652           // the outer recurrence has the same property.
3653           SCEV::NoWrapFlags InnerFlags =
3654             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3655           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3656         }
3657       }
3658       // Reset Operands to its original state.
3659       Operands[0] = NestedAR;
3660     }
3661   }
3662 
3663   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3664   // already have one, otherwise create a new one.
3665   return getOrCreateAddRecExpr(Operands, L, Flags);
3666 }
3667 
3668 const SCEV *
3669 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3670                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3671   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3672   // getSCEV(Base)->getType() has the same address space as Base->getType()
3673   // because SCEV::getType() preserves the address space.
3674   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3675   const bool AssumeInBoundsFlags = [&]() {
3676     if (!GEP->isInBounds())
3677       return false;
3678 
3679     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3680     // but to do that, we have to ensure that said flag is valid in the entire
3681     // defined scope of the SCEV.
3682     auto *GEPI = dyn_cast<Instruction>(GEP);
3683     // TODO: non-instructions have global scope.  We might be able to prove
3684     // some global scope cases
3685     return GEPI && isSCEVExprNeverPoison(GEPI);
3686   }();
3687 
3688   SCEV::NoWrapFlags OffsetWrap =
3689     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3690 
3691   Type *CurTy = GEP->getType();
3692   bool FirstIter = true;
3693   SmallVector<const SCEV *, 4> Offsets;
3694   for (const SCEV *IndexExpr : IndexExprs) {
3695     // Compute the (potentially symbolic) offset in bytes for this index.
3696     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3697       // For a struct, add the member offset.
3698       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3699       unsigned FieldNo = Index->getZExtValue();
3700       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3701       Offsets.push_back(FieldOffset);
3702 
3703       // Update CurTy to the type of the field at Index.
3704       CurTy = STy->getTypeAtIndex(Index);
3705     } else {
3706       // Update CurTy to its element type.
3707       if (FirstIter) {
3708         assert(isa<PointerType>(CurTy) &&
3709                "The first index of a GEP indexes a pointer");
3710         CurTy = GEP->getSourceElementType();
3711         FirstIter = false;
3712       } else {
3713         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3714       }
3715       // For an array, add the element offset, explicitly scaled.
3716       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3717       // Getelementptr indices are signed.
3718       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3719 
3720       // Multiply the index by the element size to compute the element offset.
3721       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3722       Offsets.push_back(LocalOffset);
3723     }
3724   }
3725 
3726   // Handle degenerate case of GEP without offsets.
3727   if (Offsets.empty())
3728     return BaseExpr;
3729 
3730   // Add the offsets together, assuming nsw if inbounds.
3731   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3732   // Add the base address and the offset. We cannot use the nsw flag, as the
3733   // base address is unsigned. However, if we know that the offset is
3734   // non-negative, we can use nuw.
3735   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3736                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3737   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3738   assert(BaseExpr->getType() == GEPExpr->getType() &&
3739          "GEP should not change type mid-flight.");
3740   return GEPExpr;
3741 }
3742 
3743 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3744                                                ArrayRef<const SCEV *> Ops) {
3745   FoldingSetNodeID ID;
3746   ID.AddInteger(SCEVType);
3747   for (const SCEV *Op : Ops)
3748     ID.AddPointer(Op);
3749   void *IP = nullptr;
3750   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3751 }
3752 
3753 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3754   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3755   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3756 }
3757 
3758 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3759                                            SmallVectorImpl<const SCEV *> &Ops) {
3760   assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3761   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3762   if (Ops.size() == 1) return Ops[0];
3763 #ifndef NDEBUG
3764   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3765   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3766     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3767            "Operand types don't match!");
3768     assert(Ops[0]->getType()->isPointerTy() ==
3769                Ops[i]->getType()->isPointerTy() &&
3770            "min/max should be consistently pointerish");
3771   }
3772 #endif
3773 
3774   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3775   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3776 
3777   // Sort by complexity, this groups all similar expression types together.
3778   GroupByComplexity(Ops, &LI, DT);
3779 
3780   // Check if we have created the same expression before.
3781   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3782     return S;
3783   }
3784 
3785   // If there are any constants, fold them together.
3786   unsigned Idx = 0;
3787   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3788     ++Idx;
3789     assert(Idx < Ops.size());
3790     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3791       if (Kind == scSMaxExpr)
3792         return APIntOps::smax(LHS, RHS);
3793       else if (Kind == scSMinExpr)
3794         return APIntOps::smin(LHS, RHS);
3795       else if (Kind == scUMaxExpr)
3796         return APIntOps::umax(LHS, RHS);
3797       else if (Kind == scUMinExpr)
3798         return APIntOps::umin(LHS, RHS);
3799       llvm_unreachable("Unknown SCEV min/max opcode");
3800     };
3801 
3802     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3803       // We found two constants, fold them together!
3804       ConstantInt *Fold = ConstantInt::get(
3805           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3806       Ops[0] = getConstant(Fold);
3807       Ops.erase(Ops.begin()+1);  // Erase the folded element
3808       if (Ops.size() == 1) return Ops[0];
3809       LHSC = cast<SCEVConstant>(Ops[0]);
3810     }
3811 
3812     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3813     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3814 
3815     if (IsMax ? IsMinV : IsMaxV) {
3816       // If we are left with a constant minimum(/maximum)-int, strip it off.
3817       Ops.erase(Ops.begin());
3818       --Idx;
3819     } else if (IsMax ? IsMaxV : IsMinV) {
3820       // If we have a max(/min) with a constant maximum(/minimum)-int,
3821       // it will always be the extremum.
3822       return LHSC;
3823     }
3824 
3825     if (Ops.size() == 1) return Ops[0];
3826   }
3827 
3828   // Find the first operation of the same kind
3829   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3830     ++Idx;
3831 
3832   // Check to see if one of the operands is of the same kind. If so, expand its
3833   // operands onto our operand list, and recurse to simplify.
3834   if (Idx < Ops.size()) {
3835     bool DeletedAny = false;
3836     while (Ops[Idx]->getSCEVType() == Kind) {
3837       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3838       Ops.erase(Ops.begin()+Idx);
3839       Ops.append(SMME->op_begin(), SMME->op_end());
3840       DeletedAny = true;
3841     }
3842 
3843     if (DeletedAny)
3844       return getMinMaxExpr(Kind, Ops);
3845   }
3846 
3847   // Okay, check to see if the same value occurs in the operand list twice.  If
3848   // so, delete one.  Since we sorted the list, these values are required to
3849   // be adjacent.
3850   llvm::CmpInst::Predicate GEPred =
3851       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3852   llvm::CmpInst::Predicate LEPred =
3853       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3854   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3855   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3856   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3857     if (Ops[i] == Ops[i + 1] ||
3858         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3859       //  X op Y op Y  -->  X op Y
3860       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3861       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3862       --i;
3863       --e;
3864     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3865                                                Ops[i + 1])) {
3866       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3867       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3868       --i;
3869       --e;
3870     }
3871   }
3872 
3873   if (Ops.size() == 1) return Ops[0];
3874 
3875   assert(!Ops.empty() && "Reduced smax down to nothing!");
3876 
3877   // Okay, it looks like we really DO need an expr.  Check to see if we
3878   // already have one, otherwise create a new one.
3879   FoldingSetNodeID ID;
3880   ID.AddInteger(Kind);
3881   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3882     ID.AddPointer(Ops[i]);
3883   void *IP = nullptr;
3884   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3885   if (ExistingSCEV)
3886     return ExistingSCEV;
3887   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3888   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3889   SCEV *S = new (SCEVAllocator)
3890       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3891 
3892   UniqueSCEVs.InsertNode(S, IP);
3893   registerUser(S, Ops);
3894   return S;
3895 }
3896 
3897 namespace {
3898 
3899 class SCEVSequentialMinMaxDeduplicatingVisitor final
3900     : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3901                          Optional<const SCEV *>> {
3902   using RetVal = Optional<const SCEV *>;
3903   using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3904 
3905   ScalarEvolution &SE;
3906   const SCEVTypes RootKind; // Must be a sequential min/max expression.
3907   const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3908   SmallPtrSet<const SCEV *, 16> SeenOps;
3909 
3910   bool canRecurseInto(SCEVTypes Kind) const {
3911     // We can only recurse into the SCEV expression of the same effective type
3912     // as the type of our root SCEV expression.
3913     return RootKind == Kind || NonSequentialRootKind == Kind;
3914   };
3915 
3916   RetVal visitAnyMinMaxExpr(const SCEV *S) {
3917     assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3918            "Only for min/max expressions.");
3919     SCEVTypes Kind = S->getSCEVType();
3920 
3921     if (!canRecurseInto(Kind))
3922       return S;
3923 
3924     auto *NAry = cast<SCEVNAryExpr>(S);
3925     SmallVector<const SCEV *> NewOps;
3926     bool Changed =
3927         visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps);
3928 
3929     if (!Changed)
3930       return S;
3931     if (NewOps.empty())
3932       return None;
3933 
3934     return isa<SCEVSequentialMinMaxExpr>(S)
3935                ? SE.getSequentialMinMaxExpr(Kind, NewOps)
3936                : SE.getMinMaxExpr(Kind, NewOps);
3937   }
3938 
3939   RetVal visit(const SCEV *S) {
3940     // Has the whole operand been seen already?
3941     if (!SeenOps.insert(S).second)
3942       return None;
3943     return Base::visit(S);
3944   }
3945 
3946 public:
3947   SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
3948                                            SCEVTypes RootKind)
3949       : SE(SE), RootKind(RootKind),
3950         NonSequentialRootKind(
3951             SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
3952                 RootKind)) {}
3953 
3954   bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
3955                          SmallVectorImpl<const SCEV *> &NewOps) {
3956     bool Changed = false;
3957     SmallVector<const SCEV *> Ops;
3958     Ops.reserve(OrigOps.size());
3959 
3960     for (const SCEV *Op : OrigOps) {
3961       RetVal NewOp = visit(Op);
3962       if (NewOp != Op)
3963         Changed = true;
3964       if (NewOp)
3965         Ops.emplace_back(*NewOp);
3966     }
3967 
3968     if (Changed)
3969       NewOps = std::move(Ops);
3970     return Changed;
3971   }
3972 
3973   RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
3974 
3975   RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
3976 
3977   RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
3978 
3979   RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
3980 
3981   RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
3982 
3983   RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
3984 
3985   RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
3986 
3987   RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
3988 
3989   RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
3990 
3991   RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
3992     return visitAnyMinMaxExpr(Expr);
3993   }
3994 
3995   RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
3996     return visitAnyMinMaxExpr(Expr);
3997   }
3998 
3999   RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
4000     return visitAnyMinMaxExpr(Expr);
4001   }
4002 
4003   RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
4004     return visitAnyMinMaxExpr(Expr);
4005   }
4006 
4007   RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
4008     return visitAnyMinMaxExpr(Expr);
4009   }
4010 
4011   RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
4012 
4013   RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4014 };
4015 
4016 } // namespace
4017 
4018 /// Return true if V is poison given that AssumedPoison is already poison.
4019 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) {
4020   // The only way poison may be introduced in a SCEV expression is from a
4021   // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4022   // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4023   // introduce poison -- they encode guaranteed, non-speculated knowledge.
4024   //
4025   // Additionally, all SCEV nodes propagate poison from inputs to outputs,
4026   // with the notable exception of umin_seq, where only poison from the first
4027   // operand is (unconditionally) propagated.
4028   struct SCEVPoisonCollector {
4029     bool LookThroughSeq;
4030     SmallPtrSet<const SCEV *, 4> MaybePoison;
4031     SCEVPoisonCollector(bool LookThroughSeq) : LookThroughSeq(LookThroughSeq) {}
4032 
4033     bool follow(const SCEV *S) {
4034       // TODO: We can always follow the first operand, but the SCEVTraversal
4035       // API doesn't support this.
4036       if (!LookThroughSeq && isa<SCEVSequentialMinMaxExpr>(S))
4037         return false;
4038 
4039       if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
4040         if (!isGuaranteedNotToBePoison(SU->getValue()))
4041           MaybePoison.insert(S);
4042       }
4043       return true;
4044     }
4045     bool isDone() const { return false; }
4046   };
4047 
4048   // First collect all SCEVs that might result in AssumedPoison to be poison.
4049   // We need to look through umin_seq here, because we want to find all SCEVs
4050   // that *might* result in poison, not only those that are *required* to.
4051   SCEVPoisonCollector PC1(/* LookThroughSeq */ true);
4052   visitAll(AssumedPoison, PC1);
4053 
4054   // AssumedPoison is never poison. As the assumption is false, the implication
4055   // is true. Don't bother walking the other SCEV in this case.
4056   if (PC1.MaybePoison.empty())
4057     return true;
4058 
4059   // Collect all SCEVs in S that, if poison, *will* result in S being poison
4060   // as well. We cannot look through umin_seq here, as its argument only *may*
4061   // make the result poison.
4062   SCEVPoisonCollector PC2(/* LookThroughSeq */ false);
4063   visitAll(S, PC2);
4064 
4065   // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4066   // it will also make S poison by being part of PC2.MaybePoison.
4067   return all_of(PC1.MaybePoison,
4068                 [&](const SCEV *S) { return PC2.MaybePoison.contains(S); });
4069 }
4070 
4071 const SCEV *
4072 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4073                                          SmallVectorImpl<const SCEV *> &Ops) {
4074   assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4075          "Not a SCEVSequentialMinMaxExpr!");
4076   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4077   if (Ops.size() == 1)
4078     return Ops[0];
4079 #ifndef NDEBUG
4080   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4081   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4082     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4083            "Operand types don't match!");
4084     assert(Ops[0]->getType()->isPointerTy() ==
4085                Ops[i]->getType()->isPointerTy() &&
4086            "min/max should be consistently pointerish");
4087   }
4088 #endif
4089 
4090   // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4091   // so we can *NOT* do any kind of sorting of the expressions!
4092 
4093   // Check if we have created the same expression before.
4094   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4095     return S;
4096 
4097   // FIXME: there are *some* simplifications that we can do here.
4098 
4099   // Keep only the first instance of an operand.
4100   {
4101     SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4102     bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4103     if (Changed)
4104       return getSequentialMinMaxExpr(Kind, Ops);
4105   }
4106 
4107   // Check to see if one of the operands is of the same kind. If so, expand its
4108   // operands onto our operand list, and recurse to simplify.
4109   {
4110     unsigned Idx = 0;
4111     bool DeletedAny = false;
4112     while (Idx < Ops.size()) {
4113       if (Ops[Idx]->getSCEVType() != Kind) {
4114         ++Idx;
4115         continue;
4116       }
4117       const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4118       Ops.erase(Ops.begin() + Idx);
4119       Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end());
4120       DeletedAny = true;
4121     }
4122 
4123     if (DeletedAny)
4124       return getSequentialMinMaxExpr(Kind, Ops);
4125   }
4126 
4127   const SCEV *SaturationPoint;
4128   ICmpInst::Predicate Pred;
4129   switch (Kind) {
4130   case scSequentialUMinExpr:
4131     SaturationPoint = getZero(Ops[0]->getType());
4132     Pred = ICmpInst::ICMP_ULE;
4133     break;
4134   default:
4135     llvm_unreachable("Not a sequential min/max type.");
4136   }
4137 
4138   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4139     // We can replace %x umin_seq %y with %x umin %y if either:
4140     //  * %y being poison implies %x is also poison.
4141     //  * %x cannot be the saturating value (e.g. zero for umin).
4142     if (::impliesPoison(Ops[i], Ops[i - 1]) ||
4143         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1],
4144                                         SaturationPoint)) {
4145       SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]};
4146       Ops[i - 1] = getMinMaxExpr(
4147           SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4148           SeqOps);
4149       Ops.erase(Ops.begin() + i);
4150       return getSequentialMinMaxExpr(Kind, Ops);
4151     }
4152     // Fold %x umin_seq %y to %x if %x ule %y.
4153     // TODO: We might be able to prove the predicate for a later operand.
4154     if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) {
4155       Ops.erase(Ops.begin() + i);
4156       return getSequentialMinMaxExpr(Kind, Ops);
4157     }
4158   }
4159 
4160   // Okay, it looks like we really DO need an expr.  Check to see if we
4161   // already have one, otherwise create a new one.
4162   FoldingSetNodeID ID;
4163   ID.AddInteger(Kind);
4164   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4165     ID.AddPointer(Ops[i]);
4166   void *IP = nullptr;
4167   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4168   if (ExistingSCEV)
4169     return ExistingSCEV;
4170 
4171   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4172   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4173   SCEV *S = new (SCEVAllocator)
4174       SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4175 
4176   UniqueSCEVs.InsertNode(S, IP);
4177   registerUser(S, Ops);
4178   return S;
4179 }
4180 
4181 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4182   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4183   return getSMaxExpr(Ops);
4184 }
4185 
4186 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4187   return getMinMaxExpr(scSMaxExpr, Ops);
4188 }
4189 
4190 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4191   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4192   return getUMaxExpr(Ops);
4193 }
4194 
4195 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4196   return getMinMaxExpr(scUMaxExpr, Ops);
4197 }
4198 
4199 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4200                                          const SCEV *RHS) {
4201   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4202   return getSMinExpr(Ops);
4203 }
4204 
4205 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4206   return getMinMaxExpr(scSMinExpr, Ops);
4207 }
4208 
4209 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4210                                          bool Sequential) {
4211   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4212   return getUMinExpr(Ops, Sequential);
4213 }
4214 
4215 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4216                                          bool Sequential) {
4217   return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4218                     : getMinMaxExpr(scUMinExpr, Ops);
4219 }
4220 
4221 const SCEV *
4222 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
4223                                              ScalableVectorType *ScalableTy) {
4224   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
4225   Constant *One = ConstantInt::get(IntTy, 1);
4226   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
4227   // Note that the expression we created is the final expression, we don't
4228   // want to simplify it any further Also, if we call a normal getSCEV(),
4229   // we'll end up in an endless recursion. So just create an SCEVUnknown.
4230   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
4231 }
4232 
4233 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4234   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
4235     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
4236   // We can bypass creating a target-independent constant expression and then
4237   // folding it back into a ConstantInt. This is just a compile-time
4238   // optimization.
4239   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4240 }
4241 
4242 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4243   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
4244     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
4245   // We can bypass creating a target-independent constant expression and then
4246   // folding it back into a ConstantInt. This is just a compile-time
4247   // optimization.
4248   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4249 }
4250 
4251 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4252                                              StructType *STy,
4253                                              unsigned FieldNo) {
4254   // We can bypass creating a target-independent constant expression and then
4255   // folding it back into a ConstantInt. This is just a compile-time
4256   // optimization.
4257   return getConstant(
4258       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
4259 }
4260 
4261 const SCEV *ScalarEvolution::getUnknown(Value *V) {
4262   // Don't attempt to do anything other than create a SCEVUnknown object
4263   // here.  createSCEV only calls getUnknown after checking for all other
4264   // interesting possibilities, and any other code that calls getUnknown
4265   // is doing so in order to hide a value from SCEV canonicalization.
4266 
4267   FoldingSetNodeID ID;
4268   ID.AddInteger(scUnknown);
4269   ID.AddPointer(V);
4270   void *IP = nullptr;
4271   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4272     assert(cast<SCEVUnknown>(S)->getValue() == V &&
4273            "Stale SCEVUnknown in uniquing map!");
4274     return S;
4275   }
4276   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4277                                             FirstUnknown);
4278   FirstUnknown = cast<SCEVUnknown>(S);
4279   UniqueSCEVs.InsertNode(S, IP);
4280   return S;
4281 }
4282 
4283 //===----------------------------------------------------------------------===//
4284 //            Basic SCEV Analysis and PHI Idiom Recognition Code
4285 //
4286 
4287 /// Test if values of the given type are analyzable within the SCEV
4288 /// framework. This primarily includes integer types, and it can optionally
4289 /// include pointer types if the ScalarEvolution class has access to
4290 /// target-specific information.
4291 bool ScalarEvolution::isSCEVable(Type *Ty) const {
4292   // Integers and pointers are always SCEVable.
4293   return Ty->isIntOrPtrTy();
4294 }
4295 
4296 /// Return the size in bits of the specified type, for which isSCEVable must
4297 /// return true.
4298 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4299   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4300   if (Ty->isPointerTy())
4301     return getDataLayout().getIndexTypeSizeInBits(Ty);
4302   return getDataLayout().getTypeSizeInBits(Ty);
4303 }
4304 
4305 /// Return a type with the same bitwidth as the given type and which represents
4306 /// how SCEV will treat the given type, for which isSCEVable must return
4307 /// true. For pointer types, this is the pointer index sized integer type.
4308 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4309   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4310 
4311   if (Ty->isIntegerTy())
4312     return Ty;
4313 
4314   // The only other support type is pointer.
4315   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4316   return getDataLayout().getIndexType(Ty);
4317 }
4318 
4319 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4320   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4321 }
4322 
4323 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A,
4324                                                          const SCEV *B) {
4325   /// For a valid use point to exist, the defining scope of one operand
4326   /// must dominate the other.
4327   bool PreciseA, PreciseB;
4328   auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4329   auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4330   if (!PreciseA || !PreciseB)
4331     // Can't tell.
4332     return false;
4333   return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4334     DT.dominates(ScopeB, ScopeA);
4335 }
4336 
4337 
4338 const SCEV *ScalarEvolution::getCouldNotCompute() {
4339   return CouldNotCompute.get();
4340 }
4341 
4342 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4343   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4344     auto *SU = dyn_cast<SCEVUnknown>(S);
4345     return SU && SU->getValue() == nullptr;
4346   });
4347 
4348   return !ContainsNulls;
4349 }
4350 
4351 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4352   HasRecMapType::iterator I = HasRecMap.find(S);
4353   if (I != HasRecMap.end())
4354     return I->second;
4355 
4356   bool FoundAddRec =
4357       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4358   HasRecMap.insert({S, FoundAddRec});
4359   return FoundAddRec;
4360 }
4361 
4362 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4363 /// by the value and offset from any ValueOffsetPair in the set.
4364 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) {
4365   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4366   if (SI == ExprValueMap.end())
4367     return None;
4368 #ifndef NDEBUG
4369   if (VerifySCEVMap) {
4370     // Check there is no dangling Value in the set returned.
4371     for (Value *V : SI->second)
4372       assert(ValueExprMap.count(V));
4373   }
4374 #endif
4375   return SI->second.getArrayRef();
4376 }
4377 
4378 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4379 /// cannot be used separately. eraseValueFromMap should be used to remove
4380 /// V from ValueExprMap and ExprValueMap at the same time.
4381 void ScalarEvolution::eraseValueFromMap(Value *V) {
4382   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4383   if (I != ValueExprMap.end()) {
4384     auto EVIt = ExprValueMap.find(I->second);
4385     bool Removed = EVIt->second.remove(V);
4386     (void) Removed;
4387     assert(Removed && "Value not in ExprValueMap?");
4388     ValueExprMap.erase(I);
4389   }
4390 }
4391 
4392 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4393   // A recursive query may have already computed the SCEV. It should be
4394   // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4395   // inferred nowrap flags.
4396   auto It = ValueExprMap.find_as(V);
4397   if (It == ValueExprMap.end()) {
4398     ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4399     ExprValueMap[S].insert(V);
4400   }
4401 }
4402 
4403 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4404 /// create a new one.
4405 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4406   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4407 
4408   const SCEV *S = getExistingSCEV(V);
4409   if (S == nullptr) {
4410     S = createSCEV(V);
4411     // During PHI resolution, it is possible to create two SCEVs for the same
4412     // V, so it is needed to double check whether V->S is inserted into
4413     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4414     std::pair<ValueExprMapType::iterator, bool> Pair =
4415         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4416     if (Pair.second)
4417       ExprValueMap[S].insert(V);
4418   }
4419   return S;
4420 }
4421 
4422 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4423   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4424 
4425   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4426   if (I != ValueExprMap.end()) {
4427     const SCEV *S = I->second;
4428     assert(checkValidity(S) &&
4429            "existing SCEV has not been properly invalidated");
4430     return S;
4431   }
4432   return nullptr;
4433 }
4434 
4435 /// Return a SCEV corresponding to -V = -1*V
4436 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4437                                              SCEV::NoWrapFlags Flags) {
4438   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4439     return getConstant(
4440                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4441 
4442   Type *Ty = V->getType();
4443   Ty = getEffectiveSCEVType(Ty);
4444   return getMulExpr(V, getMinusOne(Ty), Flags);
4445 }
4446 
4447 /// If Expr computes ~A, return A else return nullptr
4448 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4449   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4450   if (!Add || Add->getNumOperands() != 2 ||
4451       !Add->getOperand(0)->isAllOnesValue())
4452     return nullptr;
4453 
4454   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4455   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4456       !AddRHS->getOperand(0)->isAllOnesValue())
4457     return nullptr;
4458 
4459   return AddRHS->getOperand(1);
4460 }
4461 
4462 /// Return a SCEV corresponding to ~V = -1-V
4463 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4464   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4465 
4466   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4467     return getConstant(
4468                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4469 
4470   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4471   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4472     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4473       SmallVector<const SCEV *, 2> MatchedOperands;
4474       for (const SCEV *Operand : MME->operands()) {
4475         const SCEV *Matched = MatchNotExpr(Operand);
4476         if (!Matched)
4477           return (const SCEV *)nullptr;
4478         MatchedOperands.push_back(Matched);
4479       }
4480       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4481                            MatchedOperands);
4482     };
4483     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4484       return Replaced;
4485   }
4486 
4487   Type *Ty = V->getType();
4488   Ty = getEffectiveSCEVType(Ty);
4489   return getMinusSCEV(getMinusOne(Ty), V);
4490 }
4491 
4492 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4493   assert(P->getType()->isPointerTy());
4494 
4495   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4496     // The base of an AddRec is the first operand.
4497     SmallVector<const SCEV *> Ops{AddRec->operands()};
4498     Ops[0] = removePointerBase(Ops[0]);
4499     // Don't try to transfer nowrap flags for now. We could in some cases
4500     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4501     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4502   }
4503   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4504     // The base of an Add is the pointer operand.
4505     SmallVector<const SCEV *> Ops{Add->operands()};
4506     const SCEV **PtrOp = nullptr;
4507     for (const SCEV *&AddOp : Ops) {
4508       if (AddOp->getType()->isPointerTy()) {
4509         assert(!PtrOp && "Cannot have multiple pointer ops");
4510         PtrOp = &AddOp;
4511       }
4512     }
4513     *PtrOp = removePointerBase(*PtrOp);
4514     // Don't try to transfer nowrap flags for now. We could in some cases
4515     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4516     return getAddExpr(Ops);
4517   }
4518   // Any other expression must be a pointer base.
4519   return getZero(P->getType());
4520 }
4521 
4522 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4523                                           SCEV::NoWrapFlags Flags,
4524                                           unsigned Depth) {
4525   // Fast path: X - X --> 0.
4526   if (LHS == RHS)
4527     return getZero(LHS->getType());
4528 
4529   // If we subtract two pointers with different pointer bases, bail.
4530   // Eventually, we're going to add an assertion to getMulExpr that we
4531   // can't multiply by a pointer.
4532   if (RHS->getType()->isPointerTy()) {
4533     if (!LHS->getType()->isPointerTy() ||
4534         getPointerBase(LHS) != getPointerBase(RHS))
4535       return getCouldNotCompute();
4536     LHS = removePointerBase(LHS);
4537     RHS = removePointerBase(RHS);
4538   }
4539 
4540   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4541   // makes it so that we cannot make much use of NUW.
4542   auto AddFlags = SCEV::FlagAnyWrap;
4543   const bool RHSIsNotMinSigned =
4544       !getSignedRangeMin(RHS).isMinSignedValue();
4545   if (hasFlags(Flags, SCEV::FlagNSW)) {
4546     // Let M be the minimum representable signed value. Then (-1)*RHS
4547     // signed-wraps if and only if RHS is M. That can happen even for
4548     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4549     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4550     // (-1)*RHS, we need to prove that RHS != M.
4551     //
4552     // If LHS is non-negative and we know that LHS - RHS does not
4553     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4554     // either by proving that RHS > M or that LHS >= 0.
4555     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4556       AddFlags = SCEV::FlagNSW;
4557     }
4558   }
4559 
4560   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4561   // RHS is NSW and LHS >= 0.
4562   //
4563   // The difficulty here is that the NSW flag may have been proven
4564   // relative to a loop that is to be found in a recurrence in LHS and
4565   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4566   // larger scope than intended.
4567   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4568 
4569   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4570 }
4571 
4572 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4573                                                      unsigned Depth) {
4574   Type *SrcTy = V->getType();
4575   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4576          "Cannot truncate or zero extend with non-integer arguments!");
4577   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4578     return V;  // No conversion
4579   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4580     return getTruncateExpr(V, Ty, Depth);
4581   return getZeroExtendExpr(V, Ty, Depth);
4582 }
4583 
4584 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4585                                                      unsigned Depth) {
4586   Type *SrcTy = V->getType();
4587   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4588          "Cannot truncate or zero extend with non-integer arguments!");
4589   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4590     return V;  // No conversion
4591   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4592     return getTruncateExpr(V, Ty, Depth);
4593   return getSignExtendExpr(V, Ty, Depth);
4594 }
4595 
4596 const SCEV *
4597 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4598   Type *SrcTy = V->getType();
4599   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4600          "Cannot noop or zero extend with non-integer arguments!");
4601   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4602          "getNoopOrZeroExtend cannot truncate!");
4603   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4604     return V;  // No conversion
4605   return getZeroExtendExpr(V, Ty);
4606 }
4607 
4608 const SCEV *
4609 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4610   Type *SrcTy = V->getType();
4611   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4612          "Cannot noop or sign extend with non-integer arguments!");
4613   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4614          "getNoopOrSignExtend cannot truncate!");
4615   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4616     return V;  // No conversion
4617   return getSignExtendExpr(V, Ty);
4618 }
4619 
4620 const SCEV *
4621 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4622   Type *SrcTy = V->getType();
4623   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4624          "Cannot noop or any extend with non-integer arguments!");
4625   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4626          "getNoopOrAnyExtend cannot truncate!");
4627   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4628     return V;  // No conversion
4629   return getAnyExtendExpr(V, Ty);
4630 }
4631 
4632 const SCEV *
4633 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4634   Type *SrcTy = V->getType();
4635   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4636          "Cannot truncate or noop with non-integer arguments!");
4637   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4638          "getTruncateOrNoop cannot extend!");
4639   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4640     return V;  // No conversion
4641   return getTruncateExpr(V, Ty);
4642 }
4643 
4644 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4645                                                         const SCEV *RHS) {
4646   const SCEV *PromotedLHS = LHS;
4647   const SCEV *PromotedRHS = RHS;
4648 
4649   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4650     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4651   else
4652     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4653 
4654   return getUMaxExpr(PromotedLHS, PromotedRHS);
4655 }
4656 
4657 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4658                                                         const SCEV *RHS,
4659                                                         bool Sequential) {
4660   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4661   return getUMinFromMismatchedTypes(Ops, Sequential);
4662 }
4663 
4664 const SCEV *
4665 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4666                                             bool Sequential) {
4667   assert(!Ops.empty() && "At least one operand must be!");
4668   // Trivial case.
4669   if (Ops.size() == 1)
4670     return Ops[0];
4671 
4672   // Find the max type first.
4673   Type *MaxType = nullptr;
4674   for (auto *S : Ops)
4675     if (MaxType)
4676       MaxType = getWiderType(MaxType, S->getType());
4677     else
4678       MaxType = S->getType();
4679   assert(MaxType && "Failed to find maximum type!");
4680 
4681   // Extend all ops to max type.
4682   SmallVector<const SCEV *, 2> PromotedOps;
4683   for (auto *S : Ops)
4684     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4685 
4686   // Generate umin.
4687   return getUMinExpr(PromotedOps, Sequential);
4688 }
4689 
4690 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4691   // A pointer operand may evaluate to a nonpointer expression, such as null.
4692   if (!V->getType()->isPointerTy())
4693     return V;
4694 
4695   while (true) {
4696     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4697       V = AddRec->getStart();
4698     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4699       const SCEV *PtrOp = nullptr;
4700       for (const SCEV *AddOp : Add->operands()) {
4701         if (AddOp->getType()->isPointerTy()) {
4702           assert(!PtrOp && "Cannot have multiple pointer ops");
4703           PtrOp = AddOp;
4704         }
4705       }
4706       assert(PtrOp && "Must have pointer op");
4707       V = PtrOp;
4708     } else // Not something we can look further into.
4709       return V;
4710   }
4711 }
4712 
4713 /// Push users of the given Instruction onto the given Worklist.
4714 static void PushDefUseChildren(Instruction *I,
4715                                SmallVectorImpl<Instruction *> &Worklist,
4716                                SmallPtrSetImpl<Instruction *> &Visited) {
4717   // Push the def-use children onto the Worklist stack.
4718   for (User *U : I->users()) {
4719     auto *UserInsn = cast<Instruction>(U);
4720     if (Visited.insert(UserInsn).second)
4721       Worklist.push_back(UserInsn);
4722   }
4723 }
4724 
4725 namespace {
4726 
4727 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4728 /// expression in case its Loop is L. If it is not L then
4729 /// if IgnoreOtherLoops is true then use AddRec itself
4730 /// otherwise rewrite cannot be done.
4731 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4732 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4733 public:
4734   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4735                              bool IgnoreOtherLoops = true) {
4736     SCEVInitRewriter Rewriter(L, SE);
4737     const SCEV *Result = Rewriter.visit(S);
4738     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4739       return SE.getCouldNotCompute();
4740     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4741                ? SE.getCouldNotCompute()
4742                : Result;
4743   }
4744 
4745   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4746     if (!SE.isLoopInvariant(Expr, L))
4747       SeenLoopVariantSCEVUnknown = true;
4748     return Expr;
4749   }
4750 
4751   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4752     // Only re-write AddRecExprs for this loop.
4753     if (Expr->getLoop() == L)
4754       return Expr->getStart();
4755     SeenOtherLoops = true;
4756     return Expr;
4757   }
4758 
4759   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4760 
4761   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4762 
4763 private:
4764   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4765       : SCEVRewriteVisitor(SE), L(L) {}
4766 
4767   const Loop *L;
4768   bool SeenLoopVariantSCEVUnknown = false;
4769   bool SeenOtherLoops = false;
4770 };
4771 
4772 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4773 /// increment expression in case its Loop is L. If it is not L then
4774 /// use AddRec itself.
4775 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4776 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4777 public:
4778   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4779     SCEVPostIncRewriter Rewriter(L, SE);
4780     const SCEV *Result = Rewriter.visit(S);
4781     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4782         ? SE.getCouldNotCompute()
4783         : Result;
4784   }
4785 
4786   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4787     if (!SE.isLoopInvariant(Expr, L))
4788       SeenLoopVariantSCEVUnknown = true;
4789     return Expr;
4790   }
4791 
4792   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4793     // Only re-write AddRecExprs for this loop.
4794     if (Expr->getLoop() == L)
4795       return Expr->getPostIncExpr(SE);
4796     SeenOtherLoops = true;
4797     return Expr;
4798   }
4799 
4800   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4801 
4802   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4803 
4804 private:
4805   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4806       : SCEVRewriteVisitor(SE), L(L) {}
4807 
4808   const Loop *L;
4809   bool SeenLoopVariantSCEVUnknown = false;
4810   bool SeenOtherLoops = false;
4811 };
4812 
4813 /// This class evaluates the compare condition by matching it against the
4814 /// condition of loop latch. If there is a match we assume a true value
4815 /// for the condition while building SCEV nodes.
4816 class SCEVBackedgeConditionFolder
4817     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4818 public:
4819   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4820                              ScalarEvolution &SE) {
4821     bool IsPosBECond = false;
4822     Value *BECond = nullptr;
4823     if (BasicBlock *Latch = L->getLoopLatch()) {
4824       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4825       if (BI && BI->isConditional()) {
4826         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4827                "Both outgoing branches should not target same header!");
4828         BECond = BI->getCondition();
4829         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4830       } else {
4831         return S;
4832       }
4833     }
4834     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4835     return Rewriter.visit(S);
4836   }
4837 
4838   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4839     const SCEV *Result = Expr;
4840     bool InvariantF = SE.isLoopInvariant(Expr, L);
4841 
4842     if (!InvariantF) {
4843       Instruction *I = cast<Instruction>(Expr->getValue());
4844       switch (I->getOpcode()) {
4845       case Instruction::Select: {
4846         SelectInst *SI = cast<SelectInst>(I);
4847         Optional<const SCEV *> Res =
4848             compareWithBackedgeCondition(SI->getCondition());
4849         if (Res.hasValue()) {
4850           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4851           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4852         }
4853         break;
4854       }
4855       default: {
4856         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4857         if (Res.hasValue())
4858           Result = Res.getValue();
4859         break;
4860       }
4861       }
4862     }
4863     return Result;
4864   }
4865 
4866 private:
4867   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4868                                        bool IsPosBECond, ScalarEvolution &SE)
4869       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4870         IsPositiveBECond(IsPosBECond) {}
4871 
4872   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4873 
4874   const Loop *L;
4875   /// Loop back condition.
4876   Value *BackedgeCond = nullptr;
4877   /// Set to true if loop back is on positive branch condition.
4878   bool IsPositiveBECond;
4879 };
4880 
4881 Optional<const SCEV *>
4882 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4883 
4884   // If value matches the backedge condition for loop latch,
4885   // then return a constant evolution node based on loopback
4886   // branch taken.
4887   if (BackedgeCond == IC)
4888     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4889                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4890   return None;
4891 }
4892 
4893 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4894 public:
4895   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4896                              ScalarEvolution &SE) {
4897     SCEVShiftRewriter Rewriter(L, SE);
4898     const SCEV *Result = Rewriter.visit(S);
4899     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4900   }
4901 
4902   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4903     // Only allow AddRecExprs for this loop.
4904     if (!SE.isLoopInvariant(Expr, L))
4905       Valid = false;
4906     return Expr;
4907   }
4908 
4909   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4910     if (Expr->getLoop() == L && Expr->isAffine())
4911       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4912     Valid = false;
4913     return Expr;
4914   }
4915 
4916   bool isValid() { return Valid; }
4917 
4918 private:
4919   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4920       : SCEVRewriteVisitor(SE), L(L) {}
4921 
4922   const Loop *L;
4923   bool Valid = true;
4924 };
4925 
4926 } // end anonymous namespace
4927 
4928 SCEV::NoWrapFlags
4929 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4930   if (!AR->isAffine())
4931     return SCEV::FlagAnyWrap;
4932 
4933   using OBO = OverflowingBinaryOperator;
4934 
4935   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4936 
4937   if (!AR->hasNoSignedWrap()) {
4938     ConstantRange AddRecRange = getSignedRange(AR);
4939     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4940 
4941     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4942         Instruction::Add, IncRange, OBO::NoSignedWrap);
4943     if (NSWRegion.contains(AddRecRange))
4944       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4945   }
4946 
4947   if (!AR->hasNoUnsignedWrap()) {
4948     ConstantRange AddRecRange = getUnsignedRange(AR);
4949     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4950 
4951     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4952         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4953     if (NUWRegion.contains(AddRecRange))
4954       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4955   }
4956 
4957   return Result;
4958 }
4959 
4960 SCEV::NoWrapFlags
4961 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4962   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4963 
4964   if (AR->hasNoSignedWrap())
4965     return Result;
4966 
4967   if (!AR->isAffine())
4968     return Result;
4969 
4970   const SCEV *Step = AR->getStepRecurrence(*this);
4971   const Loop *L = AR->getLoop();
4972 
4973   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4974   // Note that this serves two purposes: It filters out loops that are
4975   // simply not analyzable, and it covers the case where this code is
4976   // being called from within backedge-taken count analysis, such that
4977   // attempting to ask for the backedge-taken count would likely result
4978   // in infinite recursion. In the later case, the analysis code will
4979   // cope with a conservative value, and it will take care to purge
4980   // that value once it has finished.
4981   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4982 
4983   // Normally, in the cases we can prove no-overflow via a
4984   // backedge guarding condition, we can also compute a backedge
4985   // taken count for the loop.  The exceptions are assumptions and
4986   // guards present in the loop -- SCEV is not great at exploiting
4987   // these to compute max backedge taken counts, but can still use
4988   // these to prove lack of overflow.  Use this fact to avoid
4989   // doing extra work that may not pay off.
4990 
4991   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4992       AC.assumptions().empty())
4993     return Result;
4994 
4995   // If the backedge is guarded by a comparison with the pre-inc  value the
4996   // addrec is safe. Also, if the entry is guarded by a comparison with the
4997   // start value and the backedge is guarded by a comparison with the post-inc
4998   // value, the addrec is safe.
4999   ICmpInst::Predicate Pred;
5000   const SCEV *OverflowLimit =
5001     getSignedOverflowLimitForStep(Step, &Pred, this);
5002   if (OverflowLimit &&
5003       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
5004        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
5005     Result = setFlags(Result, SCEV::FlagNSW);
5006   }
5007   return Result;
5008 }
5009 SCEV::NoWrapFlags
5010 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5011   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5012 
5013   if (AR->hasNoUnsignedWrap())
5014     return Result;
5015 
5016   if (!AR->isAffine())
5017     return Result;
5018 
5019   const SCEV *Step = AR->getStepRecurrence(*this);
5020   unsigned BitWidth = getTypeSizeInBits(AR->getType());
5021   const Loop *L = AR->getLoop();
5022 
5023   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5024   // Note that this serves two purposes: It filters out loops that are
5025   // simply not analyzable, and it covers the case where this code is
5026   // being called from within backedge-taken count analysis, such that
5027   // attempting to ask for the backedge-taken count would likely result
5028   // in infinite recursion. In the later case, the analysis code will
5029   // cope with a conservative value, and it will take care to purge
5030   // that value once it has finished.
5031   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5032 
5033   // Normally, in the cases we can prove no-overflow via a
5034   // backedge guarding condition, we can also compute a backedge
5035   // taken count for the loop.  The exceptions are assumptions and
5036   // guards present in the loop -- SCEV is not great at exploiting
5037   // these to compute max backedge taken counts, but can still use
5038   // these to prove lack of overflow.  Use this fact to avoid
5039   // doing extra work that may not pay off.
5040 
5041   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5042       AC.assumptions().empty())
5043     return Result;
5044 
5045   // If the backedge is guarded by a comparison with the pre-inc  value the
5046   // addrec is safe. Also, if the entry is guarded by a comparison with the
5047   // start value and the backedge is guarded by a comparison with the post-inc
5048   // value, the addrec is safe.
5049   if (isKnownPositive(Step)) {
5050     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5051                                 getUnsignedRangeMax(Step));
5052     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
5053         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
5054       Result = setFlags(Result, SCEV::FlagNUW);
5055     }
5056   }
5057 
5058   return Result;
5059 }
5060 
5061 namespace {
5062 
5063 /// Represents an abstract binary operation.  This may exist as a
5064 /// normal instruction or constant expression, or may have been
5065 /// derived from an expression tree.
5066 struct BinaryOp {
5067   unsigned Opcode;
5068   Value *LHS;
5069   Value *RHS;
5070   bool IsNSW = false;
5071   bool IsNUW = false;
5072 
5073   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5074   /// constant expression.
5075   Operator *Op = nullptr;
5076 
5077   explicit BinaryOp(Operator *Op)
5078       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5079         Op(Op) {
5080     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5081       IsNSW = OBO->hasNoSignedWrap();
5082       IsNUW = OBO->hasNoUnsignedWrap();
5083     }
5084   }
5085 
5086   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5087                     bool IsNUW = false)
5088       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5089 };
5090 
5091 } // end anonymous namespace
5092 
5093 /// Try to map \p V into a BinaryOp, and return \c None on failure.
5094 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
5095   auto *Op = dyn_cast<Operator>(V);
5096   if (!Op)
5097     return None;
5098 
5099   // Implementation detail: all the cleverness here should happen without
5100   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5101   // SCEV expressions when possible, and we should not break that.
5102 
5103   switch (Op->getOpcode()) {
5104   case Instruction::Add:
5105   case Instruction::Sub:
5106   case Instruction::Mul:
5107   case Instruction::UDiv:
5108   case Instruction::URem:
5109   case Instruction::And:
5110   case Instruction::Or:
5111   case Instruction::AShr:
5112   case Instruction::Shl:
5113     return BinaryOp(Op);
5114 
5115   case Instruction::Xor:
5116     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5117       // If the RHS of the xor is a signmask, then this is just an add.
5118       // Instcombine turns add of signmask into xor as a strength reduction step.
5119       if (RHSC->getValue().isSignMask())
5120         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5121     // Binary `xor` is a bit-wise `add`.
5122     if (V->getType()->isIntegerTy(1))
5123       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5124     return BinaryOp(Op);
5125 
5126   case Instruction::LShr:
5127     // Turn logical shift right of a constant into a unsigned divide.
5128     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5129       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5130 
5131       // If the shift count is not less than the bitwidth, the result of
5132       // the shift is undefined. Don't try to analyze it, because the
5133       // resolution chosen here may differ from the resolution chosen in
5134       // other parts of the compiler.
5135       if (SA->getValue().ult(BitWidth)) {
5136         Constant *X =
5137             ConstantInt::get(SA->getContext(),
5138                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5139         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5140       }
5141     }
5142     return BinaryOp(Op);
5143 
5144   case Instruction::ExtractValue: {
5145     auto *EVI = cast<ExtractValueInst>(Op);
5146     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5147       break;
5148 
5149     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5150     if (!WO)
5151       break;
5152 
5153     Instruction::BinaryOps BinOp = WO->getBinaryOp();
5154     bool Signed = WO->isSigned();
5155     // TODO: Should add nuw/nsw flags for mul as well.
5156     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5157       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5158 
5159     // Now that we know that all uses of the arithmetic-result component of
5160     // CI are guarded by the overflow check, we can go ahead and pretend
5161     // that the arithmetic is non-overflowing.
5162     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5163                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5164   }
5165 
5166   default:
5167     break;
5168   }
5169 
5170   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5171   // semantics as a Sub, return a binary sub expression.
5172   if (auto *II = dyn_cast<IntrinsicInst>(V))
5173     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5174       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5175 
5176   return None;
5177 }
5178 
5179 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5180 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5181 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5182 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5183 /// follows one of the following patterns:
5184 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5185 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5186 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5187 /// we return the type of the truncation operation, and indicate whether the
5188 /// truncated type should be treated as signed/unsigned by setting
5189 /// \p Signed to true/false, respectively.
5190 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5191                                bool &Signed, ScalarEvolution &SE) {
5192   // The case where Op == SymbolicPHI (that is, with no type conversions on
5193   // the way) is handled by the regular add recurrence creating logic and
5194   // would have already been triggered in createAddRecForPHI. Reaching it here
5195   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5196   // because one of the other operands of the SCEVAddExpr updating this PHI is
5197   // not invariant).
5198   //
5199   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5200   // this case predicates that allow us to prove that Op == SymbolicPHI will
5201   // be added.
5202   if (Op == SymbolicPHI)
5203     return nullptr;
5204 
5205   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5206   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5207   if (SourceBits != NewBits)
5208     return nullptr;
5209 
5210   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5211   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5212   if (!SExt && !ZExt)
5213     return nullptr;
5214   const SCEVTruncateExpr *Trunc =
5215       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5216            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5217   if (!Trunc)
5218     return nullptr;
5219   const SCEV *X = Trunc->getOperand();
5220   if (X != SymbolicPHI)
5221     return nullptr;
5222   Signed = SExt != nullptr;
5223   return Trunc->getType();
5224 }
5225 
5226 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5227   if (!PN->getType()->isIntegerTy())
5228     return nullptr;
5229   const Loop *L = LI.getLoopFor(PN->getParent());
5230   if (!L || L->getHeader() != PN->getParent())
5231     return nullptr;
5232   return L;
5233 }
5234 
5235 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5236 // computation that updates the phi follows the following pattern:
5237 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5238 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5239 // If so, try to see if it can be rewritten as an AddRecExpr under some
5240 // Predicates. If successful, return them as a pair. Also cache the results
5241 // of the analysis.
5242 //
5243 // Example usage scenario:
5244 //    Say the Rewriter is called for the following SCEV:
5245 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5246 //    where:
5247 //         %X = phi i64 (%Start, %BEValue)
5248 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5249 //    and call this function with %SymbolicPHI = %X.
5250 //
5251 //    The analysis will find that the value coming around the backedge has
5252 //    the following SCEV:
5253 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5254 //    Upon concluding that this matches the desired pattern, the function
5255 //    will return the pair {NewAddRec, SmallPredsVec} where:
5256 //         NewAddRec = {%Start,+,%Step}
5257 //         SmallPredsVec = {P1, P2, P3} as follows:
5258 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5259 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5260 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5261 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5262 //    under the predicates {P1,P2,P3}.
5263 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
5264 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5265 //
5266 // TODO's:
5267 //
5268 // 1) Extend the Induction descriptor to also support inductions that involve
5269 //    casts: When needed (namely, when we are called in the context of the
5270 //    vectorizer induction analysis), a Set of cast instructions will be
5271 //    populated by this method, and provided back to isInductionPHI. This is
5272 //    needed to allow the vectorizer to properly record them to be ignored by
5273 //    the cost model and to avoid vectorizing them (otherwise these casts,
5274 //    which are redundant under the runtime overflow checks, will be
5275 //    vectorized, which can be costly).
5276 //
5277 // 2) Support additional induction/PHISCEV patterns: We also want to support
5278 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5279 //    after the induction update operation (the induction increment):
5280 //
5281 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5282 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5283 //
5284 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5285 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5286 //
5287 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5288 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5289 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5290   SmallVector<const SCEVPredicate *, 3> Predicates;
5291 
5292   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5293   // return an AddRec expression under some predicate.
5294 
5295   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5296   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5297   assert(L && "Expecting an integer loop header phi");
5298 
5299   // The loop may have multiple entrances or multiple exits; we can analyze
5300   // this phi as an addrec if it has a unique entry value and a unique
5301   // backedge value.
5302   Value *BEValueV = nullptr, *StartValueV = nullptr;
5303   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5304     Value *V = PN->getIncomingValue(i);
5305     if (L->contains(PN->getIncomingBlock(i))) {
5306       if (!BEValueV) {
5307         BEValueV = V;
5308       } else if (BEValueV != V) {
5309         BEValueV = nullptr;
5310         break;
5311       }
5312     } else if (!StartValueV) {
5313       StartValueV = V;
5314     } else if (StartValueV != V) {
5315       StartValueV = nullptr;
5316       break;
5317     }
5318   }
5319   if (!BEValueV || !StartValueV)
5320     return None;
5321 
5322   const SCEV *BEValue = getSCEV(BEValueV);
5323 
5324   // If the value coming around the backedge is an add with the symbolic
5325   // value we just inserted, possibly with casts that we can ignore under
5326   // an appropriate runtime guard, then we found a simple induction variable!
5327   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5328   if (!Add)
5329     return None;
5330 
5331   // If there is a single occurrence of the symbolic value, possibly
5332   // casted, replace it with a recurrence.
5333   unsigned FoundIndex = Add->getNumOperands();
5334   Type *TruncTy = nullptr;
5335   bool Signed;
5336   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5337     if ((TruncTy =
5338              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5339       if (FoundIndex == e) {
5340         FoundIndex = i;
5341         break;
5342       }
5343 
5344   if (FoundIndex == Add->getNumOperands())
5345     return None;
5346 
5347   // Create an add with everything but the specified operand.
5348   SmallVector<const SCEV *, 8> Ops;
5349   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5350     if (i != FoundIndex)
5351       Ops.push_back(Add->getOperand(i));
5352   const SCEV *Accum = getAddExpr(Ops);
5353 
5354   // The runtime checks will not be valid if the step amount is
5355   // varying inside the loop.
5356   if (!isLoopInvariant(Accum, L))
5357     return None;
5358 
5359   // *** Part2: Create the predicates
5360 
5361   // Analysis was successful: we have a phi-with-cast pattern for which we
5362   // can return an AddRec expression under the following predicates:
5363   //
5364   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5365   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5366   // P2: An Equal predicate that guarantees that
5367   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5368   // P3: An Equal predicate that guarantees that
5369   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5370   //
5371   // As we next prove, the above predicates guarantee that:
5372   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5373   //
5374   //
5375   // More formally, we want to prove that:
5376   //     Expr(i+1) = Start + (i+1) * Accum
5377   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5378   //
5379   // Given that:
5380   // 1) Expr(0) = Start
5381   // 2) Expr(1) = Start + Accum
5382   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5383   // 3) Induction hypothesis (step i):
5384   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5385   //
5386   // Proof:
5387   //  Expr(i+1) =
5388   //   = Start + (i+1)*Accum
5389   //   = (Start + i*Accum) + Accum
5390   //   = Expr(i) + Accum
5391   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5392   //                                                             :: from step i
5393   //
5394   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5395   //
5396   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5397   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5398   //     + Accum                                                     :: from P3
5399   //
5400   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5401   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5402   //
5403   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5404   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5405   //
5406   // By induction, the same applies to all iterations 1<=i<n:
5407   //
5408 
5409   // Create a truncated addrec for which we will add a no overflow check (P1).
5410   const SCEV *StartVal = getSCEV(StartValueV);
5411   const SCEV *PHISCEV =
5412       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5413                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5414 
5415   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5416   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5417   // will be constant.
5418   //
5419   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5420   // add P1.
5421   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5422     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5423         Signed ? SCEVWrapPredicate::IncrementNSSW
5424                : SCEVWrapPredicate::IncrementNUSW;
5425     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5426     Predicates.push_back(AddRecPred);
5427   }
5428 
5429   // Create the Equal Predicates P2,P3:
5430 
5431   // It is possible that the predicates P2 and/or P3 are computable at
5432   // compile time due to StartVal and/or Accum being constants.
5433   // If either one is, then we can check that now and escape if either P2
5434   // or P3 is false.
5435 
5436   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5437   // for each of StartVal and Accum
5438   auto getExtendedExpr = [&](const SCEV *Expr,
5439                              bool CreateSignExtend) -> const SCEV * {
5440     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5441     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5442     const SCEV *ExtendedExpr =
5443         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5444                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5445     return ExtendedExpr;
5446   };
5447 
5448   // Given:
5449   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5450   //               = getExtendedExpr(Expr)
5451   // Determine whether the predicate P: Expr == ExtendedExpr
5452   // is known to be false at compile time
5453   auto PredIsKnownFalse = [&](const SCEV *Expr,
5454                               const SCEV *ExtendedExpr) -> bool {
5455     return Expr != ExtendedExpr &&
5456            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5457   };
5458 
5459   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5460   if (PredIsKnownFalse(StartVal, StartExtended)) {
5461     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5462     return None;
5463   }
5464 
5465   // The Step is always Signed (because the overflow checks are either
5466   // NSSW or NUSW)
5467   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5468   if (PredIsKnownFalse(Accum, AccumExtended)) {
5469     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5470     return None;
5471   }
5472 
5473   auto AppendPredicate = [&](const SCEV *Expr,
5474                              const SCEV *ExtendedExpr) -> void {
5475     if (Expr != ExtendedExpr &&
5476         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5477       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5478       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5479       Predicates.push_back(Pred);
5480     }
5481   };
5482 
5483   AppendPredicate(StartVal, StartExtended);
5484   AppendPredicate(Accum, AccumExtended);
5485 
5486   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5487   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5488   // into NewAR if it will also add the runtime overflow checks specified in
5489   // Predicates.
5490   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5491 
5492   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5493       std::make_pair(NewAR, Predicates);
5494   // Remember the result of the analysis for this SCEV at this locayyytion.
5495   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5496   return PredRewrite;
5497 }
5498 
5499 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5500 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5501   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5502   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5503   if (!L)
5504     return None;
5505 
5506   // Check to see if we already analyzed this PHI.
5507   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5508   if (I != PredicatedSCEVRewrites.end()) {
5509     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5510         I->second;
5511     // Analysis was done before and failed to create an AddRec:
5512     if (Rewrite.first == SymbolicPHI)
5513       return None;
5514     // Analysis was done before and succeeded to create an AddRec under
5515     // a predicate:
5516     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5517     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5518     return Rewrite;
5519   }
5520 
5521   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5522     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5523 
5524   // Record in the cache that the analysis failed
5525   if (!Rewrite) {
5526     SmallVector<const SCEVPredicate *, 3> Predicates;
5527     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5528     return None;
5529   }
5530 
5531   return Rewrite;
5532 }
5533 
5534 // FIXME: This utility is currently required because the Rewriter currently
5535 // does not rewrite this expression:
5536 // {0, +, (sext ix (trunc iy to ix) to iy)}
5537 // into {0, +, %step},
5538 // even when the following Equal predicate exists:
5539 // "%step == (sext ix (trunc iy to ix) to iy)".
5540 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5541     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5542   if (AR1 == AR2)
5543     return true;
5544 
5545   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5546     if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5547         !Preds->implies(SE.getEqualPredicate(Expr2, Expr1)))
5548       return false;
5549     return true;
5550   };
5551 
5552   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5553       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5554     return false;
5555   return true;
5556 }
5557 
5558 /// A helper function for createAddRecFromPHI to handle simple cases.
5559 ///
5560 /// This function tries to find an AddRec expression for the simplest (yet most
5561 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5562 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5563 /// technique for finding the AddRec expression.
5564 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5565                                                       Value *BEValueV,
5566                                                       Value *StartValueV) {
5567   const Loop *L = LI.getLoopFor(PN->getParent());
5568   assert(L && L->getHeader() == PN->getParent());
5569   assert(BEValueV && StartValueV);
5570 
5571   auto BO = MatchBinaryOp(BEValueV, DT);
5572   if (!BO)
5573     return nullptr;
5574 
5575   if (BO->Opcode != Instruction::Add)
5576     return nullptr;
5577 
5578   const SCEV *Accum = nullptr;
5579   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5580     Accum = getSCEV(BO->RHS);
5581   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5582     Accum = getSCEV(BO->LHS);
5583 
5584   if (!Accum)
5585     return nullptr;
5586 
5587   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5588   if (BO->IsNUW)
5589     Flags = setFlags(Flags, SCEV::FlagNUW);
5590   if (BO->IsNSW)
5591     Flags = setFlags(Flags, SCEV::FlagNSW);
5592 
5593   const SCEV *StartVal = getSCEV(StartValueV);
5594   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5595   insertValueToMap(PN, PHISCEV);
5596 
5597   // We can add Flags to the post-inc expression only if we
5598   // know that it is *undefined behavior* for BEValueV to
5599   // overflow.
5600   if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5601     assert(isLoopInvariant(Accum, L) &&
5602            "Accum is defined outside L, but is not invariant?");
5603     if (isAddRecNeverPoison(BEInst, L))
5604       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5605   }
5606 
5607   return PHISCEV;
5608 }
5609 
5610 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5611   const Loop *L = LI.getLoopFor(PN->getParent());
5612   if (!L || L->getHeader() != PN->getParent())
5613     return nullptr;
5614 
5615   // The loop may have multiple entrances or multiple exits; we can analyze
5616   // this phi as an addrec if it has a unique entry value and a unique
5617   // backedge value.
5618   Value *BEValueV = nullptr, *StartValueV = nullptr;
5619   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5620     Value *V = PN->getIncomingValue(i);
5621     if (L->contains(PN->getIncomingBlock(i))) {
5622       if (!BEValueV) {
5623         BEValueV = V;
5624       } else if (BEValueV != V) {
5625         BEValueV = nullptr;
5626         break;
5627       }
5628     } else if (!StartValueV) {
5629       StartValueV = V;
5630     } else if (StartValueV != V) {
5631       StartValueV = nullptr;
5632       break;
5633     }
5634   }
5635   if (!BEValueV || !StartValueV)
5636     return nullptr;
5637 
5638   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5639          "PHI node already processed?");
5640 
5641   // First, try to find AddRec expression without creating a fictituos symbolic
5642   // value for PN.
5643   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5644     return S;
5645 
5646   // Handle PHI node value symbolically.
5647   const SCEV *SymbolicName = getUnknown(PN);
5648   insertValueToMap(PN, SymbolicName);
5649 
5650   // Using this symbolic name for the PHI, analyze the value coming around
5651   // the back-edge.
5652   const SCEV *BEValue = getSCEV(BEValueV);
5653 
5654   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5655   // has a special value for the first iteration of the loop.
5656 
5657   // If the value coming around the backedge is an add with the symbolic
5658   // value we just inserted, then we found a simple induction variable!
5659   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5660     // If there is a single occurrence of the symbolic value, replace it
5661     // with a recurrence.
5662     unsigned FoundIndex = Add->getNumOperands();
5663     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5664       if (Add->getOperand(i) == SymbolicName)
5665         if (FoundIndex == e) {
5666           FoundIndex = i;
5667           break;
5668         }
5669 
5670     if (FoundIndex != Add->getNumOperands()) {
5671       // Create an add with everything but the specified operand.
5672       SmallVector<const SCEV *, 8> Ops;
5673       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5674         if (i != FoundIndex)
5675           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5676                                                              L, *this));
5677       const SCEV *Accum = getAddExpr(Ops);
5678 
5679       // This is not a valid addrec if the step amount is varying each
5680       // loop iteration, but is not itself an addrec in this loop.
5681       if (isLoopInvariant(Accum, L) ||
5682           (isa<SCEVAddRecExpr>(Accum) &&
5683            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5684         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5685 
5686         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5687           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5688             if (BO->IsNUW)
5689               Flags = setFlags(Flags, SCEV::FlagNUW);
5690             if (BO->IsNSW)
5691               Flags = setFlags(Flags, SCEV::FlagNSW);
5692           }
5693         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5694           // If the increment is an inbounds GEP, then we know the address
5695           // space cannot be wrapped around. We cannot make any guarantee
5696           // about signed or unsigned overflow because pointers are
5697           // unsigned but we may have a negative index from the base
5698           // pointer. We can guarantee that no unsigned wrap occurs if the
5699           // indices form a positive value.
5700           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5701             Flags = setFlags(Flags, SCEV::FlagNW);
5702 
5703             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5704             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5705               Flags = setFlags(Flags, SCEV::FlagNUW);
5706           }
5707 
5708           // We cannot transfer nuw and nsw flags from subtraction
5709           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5710           // for instance.
5711         }
5712 
5713         const SCEV *StartVal = getSCEV(StartValueV);
5714         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5715 
5716         // Okay, for the entire analysis of this edge we assumed the PHI
5717         // to be symbolic.  We now need to go back and purge all of the
5718         // entries for the scalars that use the symbolic expression.
5719         forgetMemoizedResults(SymbolicName);
5720         insertValueToMap(PN, PHISCEV);
5721 
5722         // We can add Flags to the post-inc expression only if we
5723         // know that it is *undefined behavior* for BEValueV to
5724         // overflow.
5725         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5726           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5727             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5728 
5729         return PHISCEV;
5730       }
5731     }
5732   } else {
5733     // Otherwise, this could be a loop like this:
5734     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5735     // In this case, j = {1,+,1}  and BEValue is j.
5736     // Because the other in-value of i (0) fits the evolution of BEValue
5737     // i really is an addrec evolution.
5738     //
5739     // We can generalize this saying that i is the shifted value of BEValue
5740     // by one iteration:
5741     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5742     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5743     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5744     if (Shifted != getCouldNotCompute() &&
5745         Start != getCouldNotCompute()) {
5746       const SCEV *StartVal = getSCEV(StartValueV);
5747       if (Start == StartVal) {
5748         // Okay, for the entire analysis of this edge we assumed the PHI
5749         // to be symbolic.  We now need to go back and purge all of the
5750         // entries for the scalars that use the symbolic expression.
5751         forgetMemoizedResults(SymbolicName);
5752         insertValueToMap(PN, Shifted);
5753         return Shifted;
5754       }
5755     }
5756   }
5757 
5758   // Remove the temporary PHI node SCEV that has been inserted while intending
5759   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5760   // as it will prevent later (possibly simpler) SCEV expressions to be added
5761   // to the ValueExprMap.
5762   eraseValueFromMap(PN);
5763 
5764   return nullptr;
5765 }
5766 
5767 // Checks if the SCEV S is available at BB.  S is considered available at BB
5768 // if S can be materialized at BB without introducing a fault.
5769 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5770                                BasicBlock *BB) {
5771   struct CheckAvailable {
5772     bool TraversalDone = false;
5773     bool Available = true;
5774 
5775     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5776     BasicBlock *BB = nullptr;
5777     DominatorTree &DT;
5778 
5779     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5780       : L(L), BB(BB), DT(DT) {}
5781 
5782     bool setUnavailable() {
5783       TraversalDone = true;
5784       Available = false;
5785       return false;
5786     }
5787 
5788     bool follow(const SCEV *S) {
5789       switch (S->getSCEVType()) {
5790       case scConstant:
5791       case scPtrToInt:
5792       case scTruncate:
5793       case scZeroExtend:
5794       case scSignExtend:
5795       case scAddExpr:
5796       case scMulExpr:
5797       case scUMaxExpr:
5798       case scSMaxExpr:
5799       case scUMinExpr:
5800       case scSMinExpr:
5801       case scSequentialUMinExpr:
5802         // These expressions are available if their operand(s) is/are.
5803         return true;
5804 
5805       case scAddRecExpr: {
5806         // We allow add recurrences that are on the loop BB is in, or some
5807         // outer loop.  This guarantees availability because the value of the
5808         // add recurrence at BB is simply the "current" value of the induction
5809         // variable.  We can relax this in the future; for instance an add
5810         // recurrence on a sibling dominating loop is also available at BB.
5811         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5812         if (L && (ARLoop == L || ARLoop->contains(L)))
5813           return true;
5814 
5815         return setUnavailable();
5816       }
5817 
5818       case scUnknown: {
5819         // For SCEVUnknown, we check for simple dominance.
5820         const auto *SU = cast<SCEVUnknown>(S);
5821         Value *V = SU->getValue();
5822 
5823         if (isa<Argument>(V))
5824           return false;
5825 
5826         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5827           return false;
5828 
5829         return setUnavailable();
5830       }
5831 
5832       case scUDivExpr:
5833       case scCouldNotCompute:
5834         // We do not try to smart about these at all.
5835         return setUnavailable();
5836       }
5837       llvm_unreachable("Unknown SCEV kind!");
5838     }
5839 
5840     bool isDone() { return TraversalDone; }
5841   };
5842 
5843   CheckAvailable CA(L, BB, DT);
5844   SCEVTraversal<CheckAvailable> ST(CA);
5845 
5846   ST.visitAll(S);
5847   return CA.Available;
5848 }
5849 
5850 // Try to match a control flow sequence that branches out at BI and merges back
5851 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5852 // match.
5853 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5854                           Value *&C, Value *&LHS, Value *&RHS) {
5855   C = BI->getCondition();
5856 
5857   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5858   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5859 
5860   if (!LeftEdge.isSingleEdge())
5861     return false;
5862 
5863   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5864 
5865   Use &LeftUse = Merge->getOperandUse(0);
5866   Use &RightUse = Merge->getOperandUse(1);
5867 
5868   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5869     LHS = LeftUse;
5870     RHS = RightUse;
5871     return true;
5872   }
5873 
5874   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5875     LHS = RightUse;
5876     RHS = LeftUse;
5877     return true;
5878   }
5879 
5880   return false;
5881 }
5882 
5883 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5884   auto IsReachable =
5885       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5886   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5887     const Loop *L = LI.getLoopFor(PN->getParent());
5888 
5889     // We don't want to break LCSSA, even in a SCEV expression tree.
5890     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5891       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5892         return nullptr;
5893 
5894     // Try to match
5895     //
5896     //  br %cond, label %left, label %right
5897     // left:
5898     //  br label %merge
5899     // right:
5900     //  br label %merge
5901     // merge:
5902     //  V = phi [ %x, %left ], [ %y, %right ]
5903     //
5904     // as "select %cond, %x, %y"
5905 
5906     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5907     assert(IDom && "At least the entry block should dominate PN");
5908 
5909     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5910     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5911 
5912     if (BI && BI->isConditional() &&
5913         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5914         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5915         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5916       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5917   }
5918 
5919   return nullptr;
5920 }
5921 
5922 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5923   if (const SCEV *S = createAddRecFromPHI(PN))
5924     return S;
5925 
5926   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5927     return S;
5928 
5929   // If the PHI has a single incoming value, follow that value, unless the
5930   // PHI's incoming blocks are in a different loop, in which case doing so
5931   // risks breaking LCSSA form. Instcombine would normally zap these, but
5932   // it doesn't have DominatorTree information, so it may miss cases.
5933   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5934     if (LI.replacementPreservesLCSSAForm(PN, V))
5935       return getSCEV(V);
5936 
5937   // If it's not a loop phi, we can't handle it yet.
5938   return getUnknown(PN);
5939 }
5940 
5941 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,
5942                             SCEVTypes RootKind) {
5943   struct FindClosure {
5944     const SCEV *OperandToFind;
5945     const SCEVTypes RootKind; // Must be a sequential min/max expression.
5946     const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
5947 
5948     bool Found = false;
5949 
5950     bool canRecurseInto(SCEVTypes Kind) const {
5951       // We can only recurse into the SCEV expression of the same effective type
5952       // as the type of our root SCEV expression, and into zero-extensions.
5953       return RootKind == Kind || NonSequentialRootKind == Kind ||
5954              scZeroExtend == Kind;
5955     };
5956 
5957     FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
5958         : OperandToFind(OperandToFind), RootKind(RootKind),
5959           NonSequentialRootKind(
5960               SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
5961                   RootKind)) {}
5962 
5963     bool follow(const SCEV *S) {
5964       Found = S == OperandToFind;
5965 
5966       return !isDone() && canRecurseInto(S->getSCEVType());
5967     }
5968 
5969     bool isDone() const { return Found; }
5970   };
5971 
5972   FindClosure FC(OperandToFind, RootKind);
5973   visitAll(Root, FC);
5974   return FC.Found;
5975 }
5976 
5977 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(
5978     Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) {
5979   // Try to match some simple smax or umax patterns.
5980   auto *ICI = Cond;
5981 
5982   Value *LHS = ICI->getOperand(0);
5983   Value *RHS = ICI->getOperand(1);
5984 
5985   switch (ICI->getPredicate()) {
5986   case ICmpInst::ICMP_SLT:
5987   case ICmpInst::ICMP_SLE:
5988   case ICmpInst::ICMP_ULT:
5989   case ICmpInst::ICMP_ULE:
5990     std::swap(LHS, RHS);
5991     LLVM_FALLTHROUGH;
5992   case ICmpInst::ICMP_SGT:
5993   case ICmpInst::ICMP_SGE:
5994   case ICmpInst::ICMP_UGT:
5995   case ICmpInst::ICMP_UGE:
5996     // a > b ? a+x : b+x  ->  max(a, b)+x
5997     // a > b ? b+x : a+x  ->  min(a, b)+x
5998     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5999       bool Signed = ICI->isSigned();
6000       const SCEV *LA = getSCEV(TrueVal);
6001       const SCEV *RA = getSCEV(FalseVal);
6002       const SCEV *LS = getSCEV(LHS);
6003       const SCEV *RS = getSCEV(RHS);
6004       if (LA->getType()->isPointerTy()) {
6005         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
6006         // Need to make sure we can't produce weird expressions involving
6007         // negated pointers.
6008         if (LA == LS && RA == RS)
6009           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
6010         if (LA == RS && RA == LS)
6011           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
6012       }
6013       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
6014         if (Op->getType()->isPointerTy()) {
6015           Op = getLosslessPtrToIntExpr(Op);
6016           if (isa<SCEVCouldNotCompute>(Op))
6017             return Op;
6018         }
6019         if (Signed)
6020           Op = getNoopOrSignExtend(Op, I->getType());
6021         else
6022           Op = getNoopOrZeroExtend(Op, I->getType());
6023         return Op;
6024       };
6025       LS = CoerceOperand(LS);
6026       RS = CoerceOperand(RS);
6027       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
6028         break;
6029       const SCEV *LDiff = getMinusSCEV(LA, LS);
6030       const SCEV *RDiff = getMinusSCEV(RA, RS);
6031       if (LDiff == RDiff)
6032         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
6033                           LDiff);
6034       LDiff = getMinusSCEV(LA, RS);
6035       RDiff = getMinusSCEV(RA, LS);
6036       if (LDiff == RDiff)
6037         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
6038                           LDiff);
6039     }
6040     break;
6041   case ICmpInst::ICMP_NE:
6042     // x != 0 ? x+y : C+y  ->  x == 0 ? C+y : x+y
6043     std::swap(TrueVal, FalseVal);
6044     LLVM_FALLTHROUGH;
6045   case ICmpInst::ICMP_EQ:
6046     // x == 0 ? C+y : x+y  ->  umax(x, C)+y   iff C u<= 1
6047     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
6048         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
6049       const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
6050       const SCEV *TrueValExpr = getSCEV(TrueVal);    // C+y
6051       const SCEV *FalseValExpr = getSCEV(FalseVal);  // x+y
6052       const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x
6053       const SCEV *C = getMinusSCEV(TrueValExpr, Y);  // C = (C+y)-y
6054       if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1))
6055         return getAddExpr(getUMaxExpr(X, C), Y);
6056     }
6057     // x == 0 ? 0 : umin    (..., x, ...)  ->  umin_seq(x, umin    (...))
6058     // x == 0 ? 0 : umin_seq(..., x, ...)  ->  umin_seq(x, umin_seq(...))
6059     // x == 0 ? 0 : umin    (..., umin_seq(..., x, ...), ...)
6060     //                    ->  umin_seq(x, umin (..., umin_seq(...), ...))
6061     if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() &&
6062         isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) {
6063       const SCEV *X = getSCEV(LHS);
6064       while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X))
6065         X = ZExt->getOperand();
6066       if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) {
6067         const SCEV *FalseValExpr = getSCEV(FalseVal);
6068         if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr))
6069           return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr,
6070                              /*Sequential=*/true);
6071       }
6072     }
6073     break;
6074   default:
6075     break;
6076   }
6077 
6078   return getUnknown(I);
6079 }
6080 
6081 static Optional<const SCEV *>
6082 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr,
6083                               const SCEV *TrueExpr, const SCEV *FalseExpr) {
6084   assert(CondExpr->getType()->isIntegerTy(1) &&
6085          TrueExpr->getType() == FalseExpr->getType() &&
6086          TrueExpr->getType()->isIntegerTy(1) &&
6087          "Unexpected operands of a select.");
6088 
6089   // i1 cond ? i1 x : i1 C  -->  C + (i1  cond ? (i1 x - i1 C) : i1 0)
6090   //                        -->  C + (umin_seq  cond, x - C)
6091   //
6092   // i1 cond ? i1 C : i1 x  -->  C + (i1  cond ? i1 0 : (i1 x - i1 C))
6093   //                        -->  C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6094   //                        -->  C + (umin_seq ~cond, x - C)
6095 
6096   // FIXME: while we can't legally model the case where both of the hands
6097   // are fully variable, we only require that the *difference* is constant.
6098   if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr))
6099     return None;
6100 
6101   const SCEV *X, *C;
6102   if (isa<SCEVConstant>(TrueExpr)) {
6103     CondExpr = SE->getNotSCEV(CondExpr);
6104     X = FalseExpr;
6105     C = TrueExpr;
6106   } else {
6107     X = TrueExpr;
6108     C = FalseExpr;
6109   }
6110   return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C),
6111                                            /*Sequential=*/true));
6112 }
6113 
6114 static Optional<const SCEV *> createNodeForSelectViaUMinSeq(ScalarEvolution *SE,
6115                                                             Value *Cond,
6116                                                             Value *TrueVal,
6117                                                             Value *FalseVal) {
6118   if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal))
6119     return None;
6120 
6121   return createNodeForSelectViaUMinSeq(
6122       SE, SE->getSCEV(Cond), SE->getSCEV(TrueVal), SE->getSCEV(FalseVal));
6123 }
6124 
6125 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6126     Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
6127   assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6128   assert(TrueVal->getType() == FalseVal->getType() &&
6129          V->getType() == TrueVal->getType() &&
6130          "Types of select hands and of the result must match.");
6131 
6132   // For now, only deal with i1-typed `select`s.
6133   if (!V->getType()->isIntegerTy(1))
6134     return getUnknown(V);
6135 
6136   if (Optional<const SCEV *> S =
6137           createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal))
6138     return *S;
6139 
6140   return getUnknown(V);
6141 }
6142 
6143 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6144                                                       Value *TrueVal,
6145                                                       Value *FalseVal) {
6146   // Handle "constant" branch or select. This can occur for instance when a
6147   // loop pass transforms an inner loop and moves on to process the outer loop.
6148   if (auto *CI = dyn_cast<ConstantInt>(Cond))
6149     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6150 
6151   if (auto *I = dyn_cast<Instruction>(V)) {
6152     if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
6153       const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond(
6154           I, ICI, TrueVal, FalseVal);
6155       if (!isa<SCEVUnknown>(S))
6156         return S;
6157     }
6158   }
6159 
6160   return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6161 }
6162 
6163 /// Expand GEP instructions into add and multiply operations. This allows them
6164 /// to be analyzed by regular SCEV code.
6165 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6166   // Don't attempt to analyze GEPs over unsized objects.
6167   if (!GEP->getSourceElementType()->isSized())
6168     return getUnknown(GEP);
6169 
6170   SmallVector<const SCEV *, 4> IndexExprs;
6171   for (Value *Index : GEP->indices())
6172     IndexExprs.push_back(getSCEV(Index));
6173   return getGEPExpr(GEP, IndexExprs);
6174 }
6175 
6176 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
6177   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6178     return C->getAPInt().countTrailingZeros();
6179 
6180   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
6181     return GetMinTrailingZeros(I->getOperand());
6182 
6183   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
6184     return std::min(GetMinTrailingZeros(T->getOperand()),
6185                     (uint32_t)getTypeSizeInBits(T->getType()));
6186 
6187   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
6188     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6189     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6190                ? getTypeSizeInBits(E->getType())
6191                : OpRes;
6192   }
6193 
6194   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
6195     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6196     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6197                ? getTypeSizeInBits(E->getType())
6198                : OpRes;
6199   }
6200 
6201   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
6202     // The result is the min of all operands results.
6203     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
6204     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
6205       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
6206     return MinOpRes;
6207   }
6208 
6209   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
6210     // The result is the sum of all operands results.
6211     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
6212     uint32_t BitWidth = getTypeSizeInBits(M->getType());
6213     for (unsigned i = 1, e = M->getNumOperands();
6214          SumOpRes != BitWidth && i != e; ++i)
6215       SumOpRes =
6216           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
6217     return SumOpRes;
6218   }
6219 
6220   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
6221     // The result is the min of all operands results.
6222     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
6223     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
6224       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
6225     return MinOpRes;
6226   }
6227 
6228   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
6229     // The result is the min of all operands results.
6230     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
6231     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
6232       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
6233     return MinOpRes;
6234   }
6235 
6236   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
6237     // The result is the min of all operands results.
6238     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
6239     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
6240       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
6241     return MinOpRes;
6242   }
6243 
6244   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6245     // For a SCEVUnknown, ask ValueTracking.
6246     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
6247     return Known.countMinTrailingZeros();
6248   }
6249 
6250   // SCEVUDivExpr
6251   return 0;
6252 }
6253 
6254 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
6255   auto I = MinTrailingZerosCache.find(S);
6256   if (I != MinTrailingZerosCache.end())
6257     return I->second;
6258 
6259   uint32_t Result = GetMinTrailingZerosImpl(S);
6260   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
6261   assert(InsertPair.second && "Should insert a new key");
6262   return InsertPair.first->second;
6263 }
6264 
6265 /// Helper method to assign a range to V from metadata present in the IR.
6266 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6267   if (Instruction *I = dyn_cast<Instruction>(V))
6268     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6269       return getConstantRangeFromMetadata(*MD);
6270 
6271   return None;
6272 }
6273 
6274 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6275                                      SCEV::NoWrapFlags Flags) {
6276   if (AddRec->getNoWrapFlags(Flags) != Flags) {
6277     AddRec->setNoWrapFlags(Flags);
6278     UnsignedRanges.erase(AddRec);
6279     SignedRanges.erase(AddRec);
6280   }
6281 }
6282 
6283 ConstantRange ScalarEvolution::
6284 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6285   const DataLayout &DL = getDataLayout();
6286 
6287   unsigned BitWidth = getTypeSizeInBits(U->getType());
6288   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6289 
6290   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6291   // use information about the trip count to improve our available range.  Note
6292   // that the trip count independent cases are already handled by known bits.
6293   // WARNING: The definition of recurrence used here is subtly different than
6294   // the one used by AddRec (and thus most of this file).  Step is allowed to
6295   // be arbitrarily loop varying here, where AddRec allows only loop invariant
6296   // and other addrecs in the same loop (for non-affine addrecs).  The code
6297   // below intentionally handles the case where step is not loop invariant.
6298   auto *P = dyn_cast<PHINode>(U->getValue());
6299   if (!P)
6300     return FullSet;
6301 
6302   // Make sure that no Phi input comes from an unreachable block. Otherwise,
6303   // even the values that are not available in these blocks may come from them,
6304   // and this leads to false-positive recurrence test.
6305   for (auto *Pred : predecessors(P->getParent()))
6306     if (!DT.isReachableFromEntry(Pred))
6307       return FullSet;
6308 
6309   BinaryOperator *BO;
6310   Value *Start, *Step;
6311   if (!matchSimpleRecurrence(P, BO, Start, Step))
6312     return FullSet;
6313 
6314   // If we found a recurrence in reachable code, we must be in a loop. Note
6315   // that BO might be in some subloop of L, and that's completely okay.
6316   auto *L = LI.getLoopFor(P->getParent());
6317   assert(L && L->getHeader() == P->getParent());
6318   if (!L->contains(BO->getParent()))
6319     // NOTE: This bailout should be an assert instead.  However, asserting
6320     // the condition here exposes a case where LoopFusion is querying SCEV
6321     // with malformed loop information during the midst of the transform.
6322     // There doesn't appear to be an obvious fix, so for the moment bailout
6323     // until the caller issue can be fixed.  PR49566 tracks the bug.
6324     return FullSet;
6325 
6326   // TODO: Extend to other opcodes such as mul, and div
6327   switch (BO->getOpcode()) {
6328   default:
6329     return FullSet;
6330   case Instruction::AShr:
6331   case Instruction::LShr:
6332   case Instruction::Shl:
6333     break;
6334   };
6335 
6336   if (BO->getOperand(0) != P)
6337     // TODO: Handle the power function forms some day.
6338     return FullSet;
6339 
6340   unsigned TC = getSmallConstantMaxTripCount(L);
6341   if (!TC || TC >= BitWidth)
6342     return FullSet;
6343 
6344   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6345   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6346   assert(KnownStart.getBitWidth() == BitWidth &&
6347          KnownStep.getBitWidth() == BitWidth);
6348 
6349   // Compute total shift amount, being careful of overflow and bitwidths.
6350   auto MaxShiftAmt = KnownStep.getMaxValue();
6351   APInt TCAP(BitWidth, TC-1);
6352   bool Overflow = false;
6353   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6354   if (Overflow)
6355     return FullSet;
6356 
6357   switch (BO->getOpcode()) {
6358   default:
6359     llvm_unreachable("filtered out above");
6360   case Instruction::AShr: {
6361     // For each ashr, three cases:
6362     //   shift = 0 => unchanged value
6363     //   saturation => 0 or -1
6364     //   other => a value closer to zero (of the same sign)
6365     // Thus, the end value is closer to zero than the start.
6366     auto KnownEnd = KnownBits::ashr(KnownStart,
6367                                     KnownBits::makeConstant(TotalShift));
6368     if (KnownStart.isNonNegative())
6369       // Analogous to lshr (simply not yet canonicalized)
6370       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6371                                         KnownStart.getMaxValue() + 1);
6372     if (KnownStart.isNegative())
6373       // End >=u Start && End <=s Start
6374       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6375                                         KnownEnd.getMaxValue() + 1);
6376     break;
6377   }
6378   case Instruction::LShr: {
6379     // For each lshr, three cases:
6380     //   shift = 0 => unchanged value
6381     //   saturation => 0
6382     //   other => a smaller positive number
6383     // Thus, the low end of the unsigned range is the last value produced.
6384     auto KnownEnd = KnownBits::lshr(KnownStart,
6385                                     KnownBits::makeConstant(TotalShift));
6386     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6387                                       KnownStart.getMaxValue() + 1);
6388   }
6389   case Instruction::Shl: {
6390     // Iff no bits are shifted out, value increases on every shift.
6391     auto KnownEnd = KnownBits::shl(KnownStart,
6392                                    KnownBits::makeConstant(TotalShift));
6393     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6394       return ConstantRange(KnownStart.getMinValue(),
6395                            KnownEnd.getMaxValue() + 1);
6396     break;
6397   }
6398   };
6399   return FullSet;
6400 }
6401 
6402 /// Determine the range for a particular SCEV.  If SignHint is
6403 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6404 /// with a "cleaner" unsigned (resp. signed) representation.
6405 const ConstantRange &
6406 ScalarEvolution::getRangeRef(const SCEV *S,
6407                              ScalarEvolution::RangeSignHint SignHint) {
6408   DenseMap<const SCEV *, ConstantRange> &Cache =
6409       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6410                                                        : SignedRanges;
6411   ConstantRange::PreferredRangeType RangeType =
6412       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6413           ? ConstantRange::Unsigned : ConstantRange::Signed;
6414 
6415   // See if we've computed this range already.
6416   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6417   if (I != Cache.end())
6418     return I->second;
6419 
6420   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6421     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6422 
6423   unsigned BitWidth = getTypeSizeInBits(S->getType());
6424   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6425   using OBO = OverflowingBinaryOperator;
6426 
6427   // If the value has known zeros, the maximum value will have those known zeros
6428   // as well.
6429   uint32_t TZ = GetMinTrailingZeros(S);
6430   if (TZ != 0) {
6431     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6432       ConservativeResult =
6433           ConstantRange(APInt::getMinValue(BitWidth),
6434                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6435     else
6436       ConservativeResult = ConstantRange(
6437           APInt::getSignedMinValue(BitWidth),
6438           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6439   }
6440 
6441   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6442     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6443     unsigned WrapType = OBO::AnyWrap;
6444     if (Add->hasNoSignedWrap())
6445       WrapType |= OBO::NoSignedWrap;
6446     if (Add->hasNoUnsignedWrap())
6447       WrapType |= OBO::NoUnsignedWrap;
6448     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6449       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6450                           WrapType, RangeType);
6451     return setRange(Add, SignHint,
6452                     ConservativeResult.intersectWith(X, RangeType));
6453   }
6454 
6455   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6456     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6457     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6458       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6459     return setRange(Mul, SignHint,
6460                     ConservativeResult.intersectWith(X, RangeType));
6461   }
6462 
6463   if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) {
6464     Intrinsic::ID ID;
6465     switch (S->getSCEVType()) {
6466     case scUMaxExpr:
6467       ID = Intrinsic::umax;
6468       break;
6469     case scSMaxExpr:
6470       ID = Intrinsic::smax;
6471       break;
6472     case scUMinExpr:
6473     case scSequentialUMinExpr:
6474       ID = Intrinsic::umin;
6475       break;
6476     case scSMinExpr:
6477       ID = Intrinsic::smin;
6478       break;
6479     default:
6480       llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6481     }
6482 
6483     const auto *NAry = cast<SCEVNAryExpr>(S);
6484     ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint);
6485     for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6486       X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)});
6487     return setRange(S, SignHint,
6488                     ConservativeResult.intersectWith(X, RangeType));
6489   }
6490 
6491   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6492     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6493     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6494     return setRange(UDiv, SignHint,
6495                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6496   }
6497 
6498   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6499     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6500     return setRange(ZExt, SignHint,
6501                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6502                                                      RangeType));
6503   }
6504 
6505   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6506     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6507     return setRange(SExt, SignHint,
6508                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6509                                                      RangeType));
6510   }
6511 
6512   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6513     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6514     return setRange(PtrToInt, SignHint, X);
6515   }
6516 
6517   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6518     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6519     return setRange(Trunc, SignHint,
6520                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6521                                                      RangeType));
6522   }
6523 
6524   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6525     // If there's no unsigned wrap, the value will never be less than its
6526     // initial value.
6527     if (AddRec->hasNoUnsignedWrap()) {
6528       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6529       if (!UnsignedMinValue.isZero())
6530         ConservativeResult = ConservativeResult.intersectWith(
6531             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6532     }
6533 
6534     // If there's no signed wrap, and all the operands except initial value have
6535     // the same sign or zero, the value won't ever be:
6536     // 1: smaller than initial value if operands are non negative,
6537     // 2: bigger than initial value if operands are non positive.
6538     // For both cases, value can not cross signed min/max boundary.
6539     if (AddRec->hasNoSignedWrap()) {
6540       bool AllNonNeg = true;
6541       bool AllNonPos = true;
6542       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6543         if (!isKnownNonNegative(AddRec->getOperand(i)))
6544           AllNonNeg = false;
6545         if (!isKnownNonPositive(AddRec->getOperand(i)))
6546           AllNonPos = false;
6547       }
6548       if (AllNonNeg)
6549         ConservativeResult = ConservativeResult.intersectWith(
6550             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6551                                        APInt::getSignedMinValue(BitWidth)),
6552             RangeType);
6553       else if (AllNonPos)
6554         ConservativeResult = ConservativeResult.intersectWith(
6555             ConstantRange::getNonEmpty(
6556                 APInt::getSignedMinValue(BitWidth),
6557                 getSignedRangeMax(AddRec->getStart()) + 1),
6558             RangeType);
6559     }
6560 
6561     // TODO: non-affine addrec
6562     if (AddRec->isAffine()) {
6563       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6564       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6565           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6566         auto RangeFromAffine = getRangeForAffineAR(
6567             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6568             BitWidth);
6569         ConservativeResult =
6570             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6571 
6572         auto RangeFromFactoring = getRangeViaFactoring(
6573             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6574             BitWidth);
6575         ConservativeResult =
6576             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6577       }
6578 
6579       // Now try symbolic BE count and more powerful methods.
6580       if (UseExpensiveRangeSharpening) {
6581         const SCEV *SymbolicMaxBECount =
6582             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6583         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6584             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6585             AddRec->hasNoSelfWrap()) {
6586           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6587               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6588           ConservativeResult =
6589               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6590         }
6591       }
6592     }
6593 
6594     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6595   }
6596 
6597   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6598 
6599     // Check if the IR explicitly contains !range metadata.
6600     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6601     if (MDRange.hasValue())
6602       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6603                                                             RangeType);
6604 
6605     // Use facts about recurrences in the underlying IR.  Note that add
6606     // recurrences are AddRecExprs and thus don't hit this path.  This
6607     // primarily handles shift recurrences.
6608     auto CR = getRangeForUnknownRecurrence(U);
6609     ConservativeResult = ConservativeResult.intersectWith(CR);
6610 
6611     // See if ValueTracking can give us a useful range.
6612     const DataLayout &DL = getDataLayout();
6613     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6614     if (Known.getBitWidth() != BitWidth)
6615       Known = Known.zextOrTrunc(BitWidth);
6616 
6617     // ValueTracking may be able to compute a tighter result for the number of
6618     // sign bits than for the value of those sign bits.
6619     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6620     if (U->getType()->isPointerTy()) {
6621       // If the pointer size is larger than the index size type, this can cause
6622       // NS to be larger than BitWidth. So compensate for this.
6623       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6624       int ptrIdxDiff = ptrSize - BitWidth;
6625       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6626         NS -= ptrIdxDiff;
6627     }
6628 
6629     if (NS > 1) {
6630       // If we know any of the sign bits, we know all of the sign bits.
6631       if (!Known.Zero.getHiBits(NS).isZero())
6632         Known.Zero.setHighBits(NS);
6633       if (!Known.One.getHiBits(NS).isZero())
6634         Known.One.setHighBits(NS);
6635     }
6636 
6637     if (Known.getMinValue() != Known.getMaxValue() + 1)
6638       ConservativeResult = ConservativeResult.intersectWith(
6639           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6640           RangeType);
6641     if (NS > 1)
6642       ConservativeResult = ConservativeResult.intersectWith(
6643           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6644                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6645           RangeType);
6646 
6647     // A range of Phi is a subset of union of all ranges of its input.
6648     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6649       // Make sure that we do not run over cycled Phis.
6650       if (PendingPhiRanges.insert(Phi).second) {
6651         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6652         for (auto &Op : Phi->operands()) {
6653           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6654           RangeFromOps = RangeFromOps.unionWith(OpRange);
6655           // No point to continue if we already have a full set.
6656           if (RangeFromOps.isFullSet())
6657             break;
6658         }
6659         ConservativeResult =
6660             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6661         bool Erased = PendingPhiRanges.erase(Phi);
6662         assert(Erased && "Failed to erase Phi properly?");
6663         (void) Erased;
6664       }
6665     }
6666 
6667     return setRange(U, SignHint, std::move(ConservativeResult));
6668   }
6669 
6670   return setRange(S, SignHint, std::move(ConservativeResult));
6671 }
6672 
6673 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6674 // values that the expression can take. Initially, the expression has a value
6675 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6676 // argument defines if we treat Step as signed or unsigned.
6677 static ConstantRange getRangeForAffineARHelper(APInt Step,
6678                                                const ConstantRange &StartRange,
6679                                                const APInt &MaxBECount,
6680                                                unsigned BitWidth, bool Signed) {
6681   // If either Step or MaxBECount is 0, then the expression won't change, and we
6682   // just need to return the initial range.
6683   if (Step == 0 || MaxBECount == 0)
6684     return StartRange;
6685 
6686   // If we don't know anything about the initial value (i.e. StartRange is
6687   // FullRange), then we don't know anything about the final range either.
6688   // Return FullRange.
6689   if (StartRange.isFullSet())
6690     return ConstantRange::getFull(BitWidth);
6691 
6692   // If Step is signed and negative, then we use its absolute value, but we also
6693   // note that we're moving in the opposite direction.
6694   bool Descending = Signed && Step.isNegative();
6695 
6696   if (Signed)
6697     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6698     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6699     // This equations hold true due to the well-defined wrap-around behavior of
6700     // APInt.
6701     Step = Step.abs();
6702 
6703   // Check if Offset is more than full span of BitWidth. If it is, the
6704   // expression is guaranteed to overflow.
6705   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6706     return ConstantRange::getFull(BitWidth);
6707 
6708   // Offset is by how much the expression can change. Checks above guarantee no
6709   // overflow here.
6710   APInt Offset = Step * MaxBECount;
6711 
6712   // Minimum value of the final range will match the minimal value of StartRange
6713   // if the expression is increasing and will be decreased by Offset otherwise.
6714   // Maximum value of the final range will match the maximal value of StartRange
6715   // if the expression is decreasing and will be increased by Offset otherwise.
6716   APInt StartLower = StartRange.getLower();
6717   APInt StartUpper = StartRange.getUpper() - 1;
6718   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6719                                    : (StartUpper + std::move(Offset));
6720 
6721   // It's possible that the new minimum/maximum value will fall into the initial
6722   // range (due to wrap around). This means that the expression can take any
6723   // value in this bitwidth, and we have to return full range.
6724   if (StartRange.contains(MovedBoundary))
6725     return ConstantRange::getFull(BitWidth);
6726 
6727   APInt NewLower =
6728       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6729   APInt NewUpper =
6730       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6731   NewUpper += 1;
6732 
6733   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6734   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6735 }
6736 
6737 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6738                                                    const SCEV *Step,
6739                                                    const SCEV *MaxBECount,
6740                                                    unsigned BitWidth) {
6741   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6742          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6743          "Precondition!");
6744 
6745   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6746   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6747 
6748   // First, consider step signed.
6749   ConstantRange StartSRange = getSignedRange(Start);
6750   ConstantRange StepSRange = getSignedRange(Step);
6751 
6752   // If Step can be both positive and negative, we need to find ranges for the
6753   // maximum absolute step values in both directions and union them.
6754   ConstantRange SR =
6755       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6756                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6757   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6758                                               StartSRange, MaxBECountValue,
6759                                               BitWidth, /* Signed = */ true));
6760 
6761   // Next, consider step unsigned.
6762   ConstantRange UR = getRangeForAffineARHelper(
6763       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6764       MaxBECountValue, BitWidth, /* Signed = */ false);
6765 
6766   // Finally, intersect signed and unsigned ranges.
6767   return SR.intersectWith(UR, ConstantRange::Smallest);
6768 }
6769 
6770 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6771     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6772     ScalarEvolution::RangeSignHint SignHint) {
6773   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6774   assert(AddRec->hasNoSelfWrap() &&
6775          "This only works for non-self-wrapping AddRecs!");
6776   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6777   const SCEV *Step = AddRec->getStepRecurrence(*this);
6778   // Only deal with constant step to save compile time.
6779   if (!isa<SCEVConstant>(Step))
6780     return ConstantRange::getFull(BitWidth);
6781   // Let's make sure that we can prove that we do not self-wrap during
6782   // MaxBECount iterations. We need this because MaxBECount is a maximum
6783   // iteration count estimate, and we might infer nw from some exit for which we
6784   // do not know max exit count (or any other side reasoning).
6785   // TODO: Turn into assert at some point.
6786   if (getTypeSizeInBits(MaxBECount->getType()) >
6787       getTypeSizeInBits(AddRec->getType()))
6788     return ConstantRange::getFull(BitWidth);
6789   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6790   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6791   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6792   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6793   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6794                                          MaxItersWithoutWrap))
6795     return ConstantRange::getFull(BitWidth);
6796 
6797   ICmpInst::Predicate LEPred =
6798       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6799   ICmpInst::Predicate GEPred =
6800       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6801   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6802 
6803   // We know that there is no self-wrap. Let's take Start and End values and
6804   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6805   // the iteration. They either lie inside the range [Min(Start, End),
6806   // Max(Start, End)] or outside it:
6807   //
6808   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6809   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6810   //
6811   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6812   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6813   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6814   // Start <= End and step is positive, or Start >= End and step is negative.
6815   const SCEV *Start = AddRec->getStart();
6816   ConstantRange StartRange = getRangeRef(Start, SignHint);
6817   ConstantRange EndRange = getRangeRef(End, SignHint);
6818   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6819   // If they already cover full iteration space, we will know nothing useful
6820   // even if we prove what we want to prove.
6821   if (RangeBetween.isFullSet())
6822     return RangeBetween;
6823   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6824   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6825                                : RangeBetween.isWrappedSet();
6826   if (IsWrappedSet)
6827     return ConstantRange::getFull(BitWidth);
6828 
6829   if (isKnownPositive(Step) &&
6830       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6831     return RangeBetween;
6832   else if (isKnownNegative(Step) &&
6833            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6834     return RangeBetween;
6835   return ConstantRange::getFull(BitWidth);
6836 }
6837 
6838 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6839                                                     const SCEV *Step,
6840                                                     const SCEV *MaxBECount,
6841                                                     unsigned BitWidth) {
6842   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6843   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6844 
6845   struct SelectPattern {
6846     Value *Condition = nullptr;
6847     APInt TrueValue;
6848     APInt FalseValue;
6849 
6850     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6851                            const SCEV *S) {
6852       Optional<unsigned> CastOp;
6853       APInt Offset(BitWidth, 0);
6854 
6855       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6856              "Should be!");
6857 
6858       // Peel off a constant offset:
6859       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6860         // In the future we could consider being smarter here and handle
6861         // {Start+Step,+,Step} too.
6862         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6863           return;
6864 
6865         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6866         S = SA->getOperand(1);
6867       }
6868 
6869       // Peel off a cast operation
6870       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6871         CastOp = SCast->getSCEVType();
6872         S = SCast->getOperand();
6873       }
6874 
6875       using namespace llvm::PatternMatch;
6876 
6877       auto *SU = dyn_cast<SCEVUnknown>(S);
6878       const APInt *TrueVal, *FalseVal;
6879       if (!SU ||
6880           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6881                                           m_APInt(FalseVal)))) {
6882         Condition = nullptr;
6883         return;
6884       }
6885 
6886       TrueValue = *TrueVal;
6887       FalseValue = *FalseVal;
6888 
6889       // Re-apply the cast we peeled off earlier
6890       if (CastOp.hasValue())
6891         switch (*CastOp) {
6892         default:
6893           llvm_unreachable("Unknown SCEV cast type!");
6894 
6895         case scTruncate:
6896           TrueValue = TrueValue.trunc(BitWidth);
6897           FalseValue = FalseValue.trunc(BitWidth);
6898           break;
6899         case scZeroExtend:
6900           TrueValue = TrueValue.zext(BitWidth);
6901           FalseValue = FalseValue.zext(BitWidth);
6902           break;
6903         case scSignExtend:
6904           TrueValue = TrueValue.sext(BitWidth);
6905           FalseValue = FalseValue.sext(BitWidth);
6906           break;
6907         }
6908 
6909       // Re-apply the constant offset we peeled off earlier
6910       TrueValue += Offset;
6911       FalseValue += Offset;
6912     }
6913 
6914     bool isRecognized() { return Condition != nullptr; }
6915   };
6916 
6917   SelectPattern StartPattern(*this, BitWidth, Start);
6918   if (!StartPattern.isRecognized())
6919     return ConstantRange::getFull(BitWidth);
6920 
6921   SelectPattern StepPattern(*this, BitWidth, Step);
6922   if (!StepPattern.isRecognized())
6923     return ConstantRange::getFull(BitWidth);
6924 
6925   if (StartPattern.Condition != StepPattern.Condition) {
6926     // We don't handle this case today; but we could, by considering four
6927     // possibilities below instead of two. I'm not sure if there are cases where
6928     // that will help over what getRange already does, though.
6929     return ConstantRange::getFull(BitWidth);
6930   }
6931 
6932   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6933   // construct arbitrary general SCEV expressions here.  This function is called
6934   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6935   // say) can end up caching a suboptimal value.
6936 
6937   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6938   // C2352 and C2512 (otherwise it isn't needed).
6939 
6940   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6941   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6942   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6943   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6944 
6945   ConstantRange TrueRange =
6946       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6947   ConstantRange FalseRange =
6948       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6949 
6950   return TrueRange.unionWith(FalseRange);
6951 }
6952 
6953 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6954   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6955   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6956 
6957   // Return early if there are no flags to propagate to the SCEV.
6958   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6959   if (BinOp->hasNoUnsignedWrap())
6960     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6961   if (BinOp->hasNoSignedWrap())
6962     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6963   if (Flags == SCEV::FlagAnyWrap)
6964     return SCEV::FlagAnyWrap;
6965 
6966   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6967 }
6968 
6969 const Instruction *
6970 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
6971   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
6972     return &*AddRec->getLoop()->getHeader()->begin();
6973   if (auto *U = dyn_cast<SCEVUnknown>(S))
6974     if (auto *I = dyn_cast<Instruction>(U->getValue()))
6975       return I;
6976   return nullptr;
6977 }
6978 
6979 /// Fills \p Ops with unique operands of \p S, if it has operands. If not,
6980 /// \p Ops remains unmodified.
6981 static void collectUniqueOps(const SCEV *S,
6982                              SmallVectorImpl<const SCEV *> &Ops) {
6983   SmallPtrSet<const SCEV *, 4> Unique;
6984   auto InsertUnique = [&](const SCEV *S) {
6985     if (Unique.insert(S).second)
6986       Ops.push_back(S);
6987   };
6988   if (auto *S2 = dyn_cast<SCEVCastExpr>(S))
6989     for (auto *Op : S2->operands())
6990       InsertUnique(Op);
6991   else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S))
6992     for (auto *Op : S2->operands())
6993       InsertUnique(Op);
6994   else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S))
6995     for (auto *Op : S2->operands())
6996       InsertUnique(Op);
6997 }
6998 
6999 const Instruction *
7000 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
7001                                        bool &Precise) {
7002   Precise = true;
7003   // Do a bounded search of the def relation of the requested SCEVs.
7004   SmallSet<const SCEV *, 16> Visited;
7005   SmallVector<const SCEV *> Worklist;
7006   auto pushOp = [&](const SCEV *S) {
7007     if (!Visited.insert(S).second)
7008       return;
7009     // Threshold of 30 here is arbitrary.
7010     if (Visited.size() > 30) {
7011       Precise = false;
7012       return;
7013     }
7014     Worklist.push_back(S);
7015   };
7016 
7017   for (auto *S : Ops)
7018     pushOp(S);
7019 
7020   const Instruction *Bound = nullptr;
7021   while (!Worklist.empty()) {
7022     auto *S = Worklist.pop_back_val();
7023     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7024       if (!Bound || DT.dominates(Bound, DefI))
7025         Bound = DefI;
7026     } else {
7027       SmallVector<const SCEV *, 4> Ops;
7028       collectUniqueOps(S, Ops);
7029       for (auto *Op : Ops)
7030         pushOp(Op);
7031     }
7032   }
7033   return Bound ? Bound : &*F.getEntryBlock().begin();
7034 }
7035 
7036 const Instruction *
7037 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
7038   bool Discard;
7039   return getDefiningScopeBound(Ops, Discard);
7040 }
7041 
7042 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
7043                                                         const Instruction *B) {
7044   if (A->getParent() == B->getParent() &&
7045       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7046                                                  B->getIterator()))
7047     return true;
7048 
7049   auto *BLoop = LI.getLoopFor(B->getParent());
7050   if (BLoop && BLoop->getHeader() == B->getParent() &&
7051       BLoop->getLoopPreheader() == A->getParent() &&
7052       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7053                                                  A->getParent()->end()) &&
7054       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
7055                                                  B->getIterator()))
7056     return true;
7057   return false;
7058 }
7059 
7060 
7061 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
7062   // Only proceed if we can prove that I does not yield poison.
7063   if (!programUndefinedIfPoison(I))
7064     return false;
7065 
7066   // At this point we know that if I is executed, then it does not wrap
7067   // according to at least one of NSW or NUW. If I is not executed, then we do
7068   // not know if the calculation that I represents would wrap. Multiple
7069   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7070   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7071   // derived from other instructions that map to the same SCEV. We cannot make
7072   // that guarantee for cases where I is not executed. So we need to find a
7073   // upper bound on the defining scope for the SCEV, and prove that I is
7074   // executed every time we enter that scope.  When the bounding scope is a
7075   // loop (the common case), this is equivalent to proving I executes on every
7076   // iteration of that loop.
7077   SmallVector<const SCEV *> SCEVOps;
7078   for (const Use &Op : I->operands()) {
7079     // I could be an extractvalue from a call to an overflow intrinsic.
7080     // TODO: We can do better here in some cases.
7081     if (isSCEVable(Op->getType()))
7082       SCEVOps.push_back(getSCEV(Op));
7083   }
7084   auto *DefI = getDefiningScopeBound(SCEVOps);
7085   return isGuaranteedToTransferExecutionTo(DefI, I);
7086 }
7087 
7088 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
7089   // If we know that \c I can never be poison period, then that's enough.
7090   if (isSCEVExprNeverPoison(I))
7091     return true;
7092 
7093   // For an add recurrence specifically, we assume that infinite loops without
7094   // side effects are undefined behavior, and then reason as follows:
7095   //
7096   // If the add recurrence is poison in any iteration, it is poison on all
7097   // future iterations (since incrementing poison yields poison). If the result
7098   // of the add recurrence is fed into the loop latch condition and the loop
7099   // does not contain any throws or exiting blocks other than the latch, we now
7100   // have the ability to "choose" whether the backedge is taken or not (by
7101   // choosing a sufficiently evil value for the poison feeding into the branch)
7102   // for every iteration including and after the one in which \p I first became
7103   // poison.  There are two possibilities (let's call the iteration in which \p
7104   // I first became poison as K):
7105   //
7106   //  1. In the set of iterations including and after K, the loop body executes
7107   //     no side effects.  In this case executing the backege an infinte number
7108   //     of times will yield undefined behavior.
7109   //
7110   //  2. In the set of iterations including and after K, the loop body executes
7111   //     at least one side effect.  In this case, that specific instance of side
7112   //     effect is control dependent on poison, which also yields undefined
7113   //     behavior.
7114 
7115   auto *ExitingBB = L->getExitingBlock();
7116   auto *LatchBB = L->getLoopLatch();
7117   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
7118     return false;
7119 
7120   SmallPtrSet<const Instruction *, 16> Pushed;
7121   SmallVector<const Instruction *, 8> PoisonStack;
7122 
7123   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
7124   // things that are known to be poison under that assumption go on the
7125   // PoisonStack.
7126   Pushed.insert(I);
7127   PoisonStack.push_back(I);
7128 
7129   bool LatchControlDependentOnPoison = false;
7130   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
7131     const Instruction *Poison = PoisonStack.pop_back_val();
7132 
7133     for (auto *PoisonUser : Poison->users()) {
7134       if (propagatesPoison(cast<Operator>(PoisonUser))) {
7135         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
7136           PoisonStack.push_back(cast<Instruction>(PoisonUser));
7137       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
7138         assert(BI->isConditional() && "Only possibility!");
7139         if (BI->getParent() == LatchBB) {
7140           LatchControlDependentOnPoison = true;
7141           break;
7142         }
7143       }
7144     }
7145   }
7146 
7147   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
7148 }
7149 
7150 ScalarEvolution::LoopProperties
7151 ScalarEvolution::getLoopProperties(const Loop *L) {
7152   using LoopProperties = ScalarEvolution::LoopProperties;
7153 
7154   auto Itr = LoopPropertiesCache.find(L);
7155   if (Itr == LoopPropertiesCache.end()) {
7156     auto HasSideEffects = [](Instruction *I) {
7157       if (auto *SI = dyn_cast<StoreInst>(I))
7158         return !SI->isSimple();
7159 
7160       return I->mayThrow() || I->mayWriteToMemory();
7161     };
7162 
7163     LoopProperties LP = {/* HasNoAbnormalExits */ true,
7164                          /*HasNoSideEffects*/ true};
7165 
7166     for (auto *BB : L->getBlocks())
7167       for (auto &I : *BB) {
7168         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7169           LP.HasNoAbnormalExits = false;
7170         if (HasSideEffects(&I))
7171           LP.HasNoSideEffects = false;
7172         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7173           break; // We're already as pessimistic as we can get.
7174       }
7175 
7176     auto InsertPair = LoopPropertiesCache.insert({L, LP});
7177     assert(InsertPair.second && "We just checked!");
7178     Itr = InsertPair.first;
7179   }
7180 
7181   return Itr->second;
7182 }
7183 
7184 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7185   // A mustprogress loop without side effects must be finite.
7186   // TODO: The check used here is very conservative.  It's only *specific*
7187   // side effects which are well defined in infinite loops.
7188   return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7189 }
7190 
7191 const SCEV *ScalarEvolution::createSCEV(Value *V) {
7192   if (!isSCEVable(V->getType()))
7193     return getUnknown(V);
7194 
7195   if (Instruction *I = dyn_cast<Instruction>(V)) {
7196     // Don't attempt to analyze instructions in blocks that aren't
7197     // reachable. Such instructions don't matter, and they aren't required
7198     // to obey basic rules for definitions dominating uses which this
7199     // analysis depends on.
7200     if (!DT.isReachableFromEntry(I->getParent()))
7201       return getUnknown(UndefValue::get(V->getType()));
7202   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7203     return getConstant(CI);
7204   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
7205     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
7206   else if (!isa<ConstantExpr>(V))
7207     return getUnknown(V);
7208 
7209   Operator *U = cast<Operator>(V);
7210   if (auto BO = MatchBinaryOp(U, DT)) {
7211     switch (BO->Opcode) {
7212     case Instruction::Add: {
7213       // The simple thing to do would be to just call getSCEV on both operands
7214       // and call getAddExpr with the result. However if we're looking at a
7215       // bunch of things all added together, this can be quite inefficient,
7216       // because it leads to N-1 getAddExpr calls for N ultimate operands.
7217       // Instead, gather up all the operands and make a single getAddExpr call.
7218       // LLVM IR canonical form means we need only traverse the left operands.
7219       SmallVector<const SCEV *, 4> AddOps;
7220       do {
7221         if (BO->Op) {
7222           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7223             AddOps.push_back(OpSCEV);
7224             break;
7225           }
7226 
7227           // If a NUW or NSW flag can be applied to the SCEV for this
7228           // addition, then compute the SCEV for this addition by itself
7229           // with a separate call to getAddExpr. We need to do that
7230           // instead of pushing the operands of the addition onto AddOps,
7231           // since the flags are only known to apply to this particular
7232           // addition - they may not apply to other additions that can be
7233           // formed with operands from AddOps.
7234           const SCEV *RHS = getSCEV(BO->RHS);
7235           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7236           if (Flags != SCEV::FlagAnyWrap) {
7237             const SCEV *LHS = getSCEV(BO->LHS);
7238             if (BO->Opcode == Instruction::Sub)
7239               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7240             else
7241               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7242             break;
7243           }
7244         }
7245 
7246         if (BO->Opcode == Instruction::Sub)
7247           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7248         else
7249           AddOps.push_back(getSCEV(BO->RHS));
7250 
7251         auto NewBO = MatchBinaryOp(BO->LHS, DT);
7252         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7253                        NewBO->Opcode != Instruction::Sub)) {
7254           AddOps.push_back(getSCEV(BO->LHS));
7255           break;
7256         }
7257         BO = NewBO;
7258       } while (true);
7259 
7260       return getAddExpr(AddOps);
7261     }
7262 
7263     case Instruction::Mul: {
7264       SmallVector<const SCEV *, 4> MulOps;
7265       do {
7266         if (BO->Op) {
7267           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7268             MulOps.push_back(OpSCEV);
7269             break;
7270           }
7271 
7272           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7273           if (Flags != SCEV::FlagAnyWrap) {
7274             MulOps.push_back(
7275                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
7276             break;
7277           }
7278         }
7279 
7280         MulOps.push_back(getSCEV(BO->RHS));
7281         auto NewBO = MatchBinaryOp(BO->LHS, DT);
7282         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7283           MulOps.push_back(getSCEV(BO->LHS));
7284           break;
7285         }
7286         BO = NewBO;
7287       } while (true);
7288 
7289       return getMulExpr(MulOps);
7290     }
7291     case Instruction::UDiv:
7292       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7293     case Instruction::URem:
7294       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7295     case Instruction::Sub: {
7296       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7297       if (BO->Op)
7298         Flags = getNoWrapFlagsFromUB(BO->Op);
7299       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
7300     }
7301     case Instruction::And:
7302       // For an expression like x&255 that merely masks off the high bits,
7303       // use zext(trunc(x)) as the SCEV expression.
7304       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7305         if (CI->isZero())
7306           return getSCEV(BO->RHS);
7307         if (CI->isMinusOne())
7308           return getSCEV(BO->LHS);
7309         const APInt &A = CI->getValue();
7310 
7311         // Instcombine's ShrinkDemandedConstant may strip bits out of
7312         // constants, obscuring what would otherwise be a low-bits mask.
7313         // Use computeKnownBits to compute what ShrinkDemandedConstant
7314         // knew about to reconstruct a low-bits mask value.
7315         unsigned LZ = A.countLeadingZeros();
7316         unsigned TZ = A.countTrailingZeros();
7317         unsigned BitWidth = A.getBitWidth();
7318         KnownBits Known(BitWidth);
7319         computeKnownBits(BO->LHS, Known, getDataLayout(),
7320                          0, &AC, nullptr, &DT);
7321 
7322         APInt EffectiveMask =
7323             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7324         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7325           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7326           const SCEV *LHS = getSCEV(BO->LHS);
7327           const SCEV *ShiftedLHS = nullptr;
7328           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7329             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7330               // For an expression like (x * 8) & 8, simplify the multiply.
7331               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
7332               unsigned GCD = std::min(MulZeros, TZ);
7333               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7334               SmallVector<const SCEV*, 4> MulOps;
7335               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7336               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
7337               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7338               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7339             }
7340           }
7341           if (!ShiftedLHS)
7342             ShiftedLHS = getUDivExpr(LHS, MulCount);
7343           return getMulExpr(
7344               getZeroExtendExpr(
7345                   getTruncateExpr(ShiftedLHS,
7346                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7347                   BO->LHS->getType()),
7348               MulCount);
7349         }
7350       }
7351       // Binary `and` is a bit-wise `umin`.
7352       if (BO->LHS->getType()->isIntegerTy(1))
7353         return getUMinExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7354       break;
7355 
7356     case Instruction::Or:
7357       // If the RHS of the Or is a constant, we may have something like:
7358       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
7359       // optimizations will transparently handle this case.
7360       //
7361       // In order for this transformation to be safe, the LHS must be of the
7362       // form X*(2^n) and the Or constant must be less than 2^n.
7363       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7364         const SCEV *LHS = getSCEV(BO->LHS);
7365         const APInt &CIVal = CI->getValue();
7366         if (GetMinTrailingZeros(LHS) >=
7367             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
7368           // Build a plain add SCEV.
7369           return getAddExpr(LHS, getSCEV(CI),
7370                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
7371         }
7372       }
7373       // Binary `or` is a bit-wise `umax`.
7374       if (BO->LHS->getType()->isIntegerTy(1))
7375         return getUMaxExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7376       break;
7377 
7378     case Instruction::Xor:
7379       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7380         // If the RHS of xor is -1, then this is a not operation.
7381         if (CI->isMinusOne())
7382           return getNotSCEV(getSCEV(BO->LHS));
7383 
7384         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7385         // This is a variant of the check for xor with -1, and it handles
7386         // the case where instcombine has trimmed non-demanded bits out
7387         // of an xor with -1.
7388         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7389           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7390             if (LBO->getOpcode() == Instruction::And &&
7391                 LCI->getValue() == CI->getValue())
7392               if (const SCEVZeroExtendExpr *Z =
7393                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7394                 Type *UTy = BO->LHS->getType();
7395                 const SCEV *Z0 = Z->getOperand();
7396                 Type *Z0Ty = Z0->getType();
7397                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7398 
7399                 // If C is a low-bits mask, the zero extend is serving to
7400                 // mask off the high bits. Complement the operand and
7401                 // re-apply the zext.
7402                 if (CI->getValue().isMask(Z0TySize))
7403                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7404 
7405                 // If C is a single bit, it may be in the sign-bit position
7406                 // before the zero-extend. In this case, represent the xor
7407                 // using an add, which is equivalent, and re-apply the zext.
7408                 APInt Trunc = CI->getValue().trunc(Z0TySize);
7409                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7410                     Trunc.isSignMask())
7411                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7412                                            UTy);
7413               }
7414       }
7415       break;
7416 
7417     case Instruction::Shl:
7418       // Turn shift left of a constant amount into a multiply.
7419       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7420         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7421 
7422         // If the shift count is not less than the bitwidth, the result of
7423         // the shift is undefined. Don't try to analyze it, because the
7424         // resolution chosen here may differ from the resolution chosen in
7425         // other parts of the compiler.
7426         if (SA->getValue().uge(BitWidth))
7427           break;
7428 
7429         // We can safely preserve the nuw flag in all cases. It's also safe to
7430         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7431         // requires special handling. It can be preserved as long as we're not
7432         // left shifting by bitwidth - 1.
7433         auto Flags = SCEV::FlagAnyWrap;
7434         if (BO->Op) {
7435           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7436           if ((MulFlags & SCEV::FlagNSW) &&
7437               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7438             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7439           if (MulFlags & SCEV::FlagNUW)
7440             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7441         }
7442 
7443         ConstantInt *X = ConstantInt::get(
7444             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7445         return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags);
7446       }
7447       break;
7448 
7449     case Instruction::AShr: {
7450       // AShr X, C, where C is a constant.
7451       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7452       if (!CI)
7453         break;
7454 
7455       Type *OuterTy = BO->LHS->getType();
7456       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7457       // If the shift count is not less than the bitwidth, the result of
7458       // the shift is undefined. Don't try to analyze it, because the
7459       // resolution chosen here may differ from the resolution chosen in
7460       // other parts of the compiler.
7461       if (CI->getValue().uge(BitWidth))
7462         break;
7463 
7464       if (CI->isZero())
7465         return getSCEV(BO->LHS); // shift by zero --> noop
7466 
7467       uint64_t AShrAmt = CI->getZExtValue();
7468       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7469 
7470       Operator *L = dyn_cast<Operator>(BO->LHS);
7471       if (L && L->getOpcode() == Instruction::Shl) {
7472         // X = Shl A, n
7473         // Y = AShr X, m
7474         // Both n and m are constant.
7475 
7476         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7477         if (L->getOperand(1) == BO->RHS)
7478           // For a two-shift sext-inreg, i.e. n = m,
7479           // use sext(trunc(x)) as the SCEV expression.
7480           return getSignExtendExpr(
7481               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7482 
7483         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7484         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7485           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7486           if (ShlAmt > AShrAmt) {
7487             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7488             // expression. We already checked that ShlAmt < BitWidth, so
7489             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7490             // ShlAmt - AShrAmt < Amt.
7491             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7492                                             ShlAmt - AShrAmt);
7493             return getSignExtendExpr(
7494                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7495                 getConstant(Mul)), OuterTy);
7496           }
7497         }
7498       }
7499       break;
7500     }
7501     }
7502   }
7503 
7504   switch (U->getOpcode()) {
7505   case Instruction::Trunc:
7506     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7507 
7508   case Instruction::ZExt:
7509     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7510 
7511   case Instruction::SExt:
7512     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7513       // The NSW flag of a subtract does not always survive the conversion to
7514       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7515       // more likely to preserve NSW and allow later AddRec optimisations.
7516       //
7517       // NOTE: This is effectively duplicating this logic from getSignExtend:
7518       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7519       // but by that point the NSW information has potentially been lost.
7520       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7521         Type *Ty = U->getType();
7522         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7523         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7524         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7525       }
7526     }
7527     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7528 
7529   case Instruction::BitCast:
7530     // BitCasts are no-op casts so we just eliminate the cast.
7531     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7532       return getSCEV(U->getOperand(0));
7533     break;
7534 
7535   case Instruction::PtrToInt: {
7536     // Pointer to integer cast is straight-forward, so do model it.
7537     const SCEV *Op = getSCEV(U->getOperand(0));
7538     Type *DstIntTy = U->getType();
7539     // But only if effective SCEV (integer) type is wide enough to represent
7540     // all possible pointer values.
7541     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7542     if (isa<SCEVCouldNotCompute>(IntOp))
7543       return getUnknown(V);
7544     return IntOp;
7545   }
7546   case Instruction::IntToPtr:
7547     // Just don't deal with inttoptr casts.
7548     return getUnknown(V);
7549 
7550   case Instruction::SDiv:
7551     // If both operands are non-negative, this is just an udiv.
7552     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7553         isKnownNonNegative(getSCEV(U->getOperand(1))))
7554       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7555     break;
7556 
7557   case Instruction::SRem:
7558     // If both operands are non-negative, this is just an urem.
7559     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7560         isKnownNonNegative(getSCEV(U->getOperand(1))))
7561       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7562     break;
7563 
7564   case Instruction::GetElementPtr:
7565     return createNodeForGEP(cast<GEPOperator>(U));
7566 
7567   case Instruction::PHI:
7568     return createNodeForPHI(cast<PHINode>(U));
7569 
7570   case Instruction::Select:
7571     return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
7572                                     U->getOperand(2));
7573 
7574   case Instruction::Call:
7575   case Instruction::Invoke:
7576     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7577       return getSCEV(RV);
7578 
7579     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7580       switch (II->getIntrinsicID()) {
7581       case Intrinsic::abs:
7582         return getAbsExpr(
7583             getSCEV(II->getArgOperand(0)),
7584             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7585       case Intrinsic::umax:
7586         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7587                            getSCEV(II->getArgOperand(1)));
7588       case Intrinsic::umin:
7589         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7590                            getSCEV(II->getArgOperand(1)));
7591       case Intrinsic::smax:
7592         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7593                            getSCEV(II->getArgOperand(1)));
7594       case Intrinsic::smin:
7595         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7596                            getSCEV(II->getArgOperand(1)));
7597       case Intrinsic::usub_sat: {
7598         const SCEV *X = getSCEV(II->getArgOperand(0));
7599         const SCEV *Y = getSCEV(II->getArgOperand(1));
7600         const SCEV *ClampedY = getUMinExpr(X, Y);
7601         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7602       }
7603       case Intrinsic::uadd_sat: {
7604         const SCEV *X = getSCEV(II->getArgOperand(0));
7605         const SCEV *Y = getSCEV(II->getArgOperand(1));
7606         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7607         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7608       }
7609       case Intrinsic::start_loop_iterations:
7610         // A start_loop_iterations is just equivalent to the first operand for
7611         // SCEV purposes.
7612         return getSCEV(II->getArgOperand(0));
7613       default:
7614         break;
7615       }
7616     }
7617     break;
7618   }
7619 
7620   return getUnknown(V);
7621 }
7622 
7623 //===----------------------------------------------------------------------===//
7624 //                   Iteration Count Computation Code
7625 //
7626 
7627 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
7628                                                        bool Extend) {
7629   if (isa<SCEVCouldNotCompute>(ExitCount))
7630     return getCouldNotCompute();
7631 
7632   auto *ExitCountType = ExitCount->getType();
7633   assert(ExitCountType->isIntegerTy());
7634 
7635   if (!Extend)
7636     return getAddExpr(ExitCount, getOne(ExitCountType));
7637 
7638   auto *WiderType = Type::getIntNTy(ExitCountType->getContext(),
7639                                     1 + ExitCountType->getScalarSizeInBits());
7640   return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType),
7641                     getOne(WiderType));
7642 }
7643 
7644 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7645   if (!ExitCount)
7646     return 0;
7647 
7648   ConstantInt *ExitConst = ExitCount->getValue();
7649 
7650   // Guard against huge trip counts.
7651   if (ExitConst->getValue().getActiveBits() > 32)
7652     return 0;
7653 
7654   // In case of integer overflow, this returns 0, which is correct.
7655   return ((unsigned)ExitConst->getZExtValue()) + 1;
7656 }
7657 
7658 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7659   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7660   return getConstantTripCount(ExitCount);
7661 }
7662 
7663 unsigned
7664 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7665                                            const BasicBlock *ExitingBlock) {
7666   assert(ExitingBlock && "Must pass a non-null exiting block!");
7667   assert(L->isLoopExiting(ExitingBlock) &&
7668          "Exiting block must actually branch out of the loop!");
7669   const SCEVConstant *ExitCount =
7670       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7671   return getConstantTripCount(ExitCount);
7672 }
7673 
7674 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7675   const auto *MaxExitCount =
7676       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7677   return getConstantTripCount(MaxExitCount);
7678 }
7679 
7680 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) {
7681   // We can't infer from Array in Irregular Loop.
7682   // FIXME: It's hard to infer loop bound from array operated in Nested Loop.
7683   if (!L->isLoopSimplifyForm() || !L->isInnermost())
7684     return getCouldNotCompute();
7685 
7686   // FIXME: To make the scene more typical, we only analysis loops that have
7687   // one exiting block and that block must be the latch. To make it easier to
7688   // capture loops that have memory access and memory access will be executed
7689   // in each iteration.
7690   const BasicBlock *LoopLatch = L->getLoopLatch();
7691   assert(LoopLatch && "See defination of simplify form loop.");
7692   if (L->getExitingBlock() != LoopLatch)
7693     return getCouldNotCompute();
7694 
7695   const DataLayout &DL = getDataLayout();
7696   SmallVector<const SCEV *> InferCountColl;
7697   for (auto *BB : L->getBlocks()) {
7698     // Go here, we can know that Loop is a single exiting and simplified form
7699     // loop. Make sure that infer from Memory Operation in those BBs must be
7700     // executed in loop. First step, we can make sure that max execution time
7701     // of MemAccessBB in loop represents latch max excution time.
7702     // If MemAccessBB does not dom Latch, skip.
7703     //            Entry
7704     //              │
7705     //        ┌─────▼─────┐
7706     //        │Loop Header◄─────┐
7707     //        └──┬──────┬─┘     │
7708     //           │      │       │
7709     //  ┌────────▼──┐ ┌─▼─────┐ │
7710     //  │MemAccessBB│ │OtherBB│ │
7711     //  └────────┬──┘ └─┬─────┘ │
7712     //           │      │       │
7713     //         ┌─▼──────▼─┐     │
7714     //         │Loop Latch├─────┘
7715     //         └────┬─────┘
7716     //              ▼
7717     //             Exit
7718     if (!DT.dominates(BB, LoopLatch))
7719       continue;
7720 
7721     for (Instruction &Inst : *BB) {
7722       // Find Memory Operation Instruction.
7723       auto *GEP = getLoadStorePointerOperand(&Inst);
7724       if (!GEP)
7725         continue;
7726 
7727       auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst));
7728       // Do not infer from scalar type, eg."ElemSize = sizeof()".
7729       if (!ElemSize)
7730         continue;
7731 
7732       // Use a existing polynomial recurrence on the trip count.
7733       auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP));
7734       if (!AddRec)
7735         continue;
7736       auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec));
7737       auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this));
7738       if (!ArrBase || !Step)
7739         continue;
7740       assert(isLoopInvariant(ArrBase, L) && "See addrec definition");
7741 
7742       // Only handle { %array + step },
7743       // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here.
7744       if (AddRec->getStart() != ArrBase)
7745         continue;
7746 
7747       // Memory operation pattern which have gaps.
7748       // Or repeat memory opreation.
7749       // And index of GEP wraps arround.
7750       if (Step->getAPInt().getActiveBits() > 32 ||
7751           Step->getAPInt().getZExtValue() !=
7752               ElemSize->getAPInt().getZExtValue() ||
7753           Step->isZero() || Step->getAPInt().isNegative())
7754         continue;
7755 
7756       // Only infer from stack array which has certain size.
7757       // Make sure alloca instruction is not excuted in loop.
7758       AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue());
7759       if (!AllocateInst || L->contains(AllocateInst->getParent()))
7760         continue;
7761 
7762       // Make sure only handle normal array.
7763       auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType());
7764       auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize());
7765       if (!Ty || !ArrSize || !ArrSize->isOne())
7766         continue;
7767 
7768       // FIXME: Since gep indices are silently zext to the indexing type,
7769       // we will have a narrow gep index which wraps around rather than
7770       // increasing strictly, we shoule ensure that step is increasing
7771       // strictly by the loop iteration.
7772       // Now we can infer a max execution time by MemLength/StepLength.
7773       const SCEV *MemSize =
7774           getConstant(Step->getType(), DL.getTypeAllocSize(Ty));
7775       auto *MaxExeCount =
7776           dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step));
7777       if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32)
7778         continue;
7779 
7780       // If the loop reaches the maximum number of executions, we can not
7781       // access bytes starting outside the statically allocated size without
7782       // being immediate UB. But it is allowed to enter loop header one more
7783       // time.
7784       auto *InferCount = dyn_cast<SCEVConstant>(
7785           getAddExpr(MaxExeCount, getOne(MaxExeCount->getType())));
7786       // Discard the maximum number of execution times under 32bits.
7787       if (!InferCount || InferCount->getAPInt().getActiveBits() > 32)
7788         continue;
7789 
7790       InferCountColl.push_back(InferCount);
7791     }
7792   }
7793 
7794   if (InferCountColl.size() == 0)
7795     return getCouldNotCompute();
7796 
7797   return getUMinFromMismatchedTypes(InferCountColl);
7798 }
7799 
7800 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7801   SmallVector<BasicBlock *, 8> ExitingBlocks;
7802   L->getExitingBlocks(ExitingBlocks);
7803 
7804   Optional<unsigned> Res = None;
7805   for (auto *ExitingBB : ExitingBlocks) {
7806     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7807     if (!Res)
7808       Res = Multiple;
7809     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7810   }
7811   return Res.getValueOr(1);
7812 }
7813 
7814 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7815                                                        const SCEV *ExitCount) {
7816   if (ExitCount == getCouldNotCompute())
7817     return 1;
7818 
7819   // Get the trip count
7820   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7821 
7822   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7823   if (!TC)
7824     // Attempt to factor more general cases. Returns the greatest power of
7825     // two divisor. If overflow happens, the trip count expression is still
7826     // divisible by the greatest power of 2 divisor returned.
7827     return 1U << std::min((uint32_t)31,
7828                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7829 
7830   ConstantInt *Result = TC->getValue();
7831 
7832   // Guard against huge trip counts (this requires checking
7833   // for zero to handle the case where the trip count == -1 and the
7834   // addition wraps).
7835   if (!Result || Result->getValue().getActiveBits() > 32 ||
7836       Result->getValue().getActiveBits() == 0)
7837     return 1;
7838 
7839   return (unsigned)Result->getZExtValue();
7840 }
7841 
7842 /// Returns the largest constant divisor of the trip count of this loop as a
7843 /// normal unsigned value, if possible. This means that the actual trip count is
7844 /// always a multiple of the returned value (don't forget the trip count could
7845 /// very well be zero as well!).
7846 ///
7847 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7848 /// multiple of a constant (which is also the case if the trip count is simply
7849 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7850 /// if the trip count is very large (>= 2^32).
7851 ///
7852 /// As explained in the comments for getSmallConstantTripCount, this assumes
7853 /// that control exits the loop via ExitingBlock.
7854 unsigned
7855 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7856                                               const BasicBlock *ExitingBlock) {
7857   assert(ExitingBlock && "Must pass a non-null exiting block!");
7858   assert(L->isLoopExiting(ExitingBlock) &&
7859          "Exiting block must actually branch out of the loop!");
7860   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7861   return getSmallConstantTripMultiple(L, ExitCount);
7862 }
7863 
7864 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7865                                           const BasicBlock *ExitingBlock,
7866                                           ExitCountKind Kind) {
7867   switch (Kind) {
7868   case Exact:
7869   case SymbolicMaximum:
7870     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7871   case ConstantMaximum:
7872     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7873   };
7874   llvm_unreachable("Invalid ExitCountKind!");
7875 }
7876 
7877 const SCEV *
7878 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7879                                                  SmallVector<const SCEVPredicate *, 4> &Preds) {
7880   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7881 }
7882 
7883 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7884                                                    ExitCountKind Kind) {
7885   switch (Kind) {
7886   case Exact:
7887     return getBackedgeTakenInfo(L).getExact(L, this);
7888   case ConstantMaximum:
7889     return getBackedgeTakenInfo(L).getConstantMax(this);
7890   case SymbolicMaximum:
7891     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7892   };
7893   llvm_unreachable("Invalid ExitCountKind!");
7894 }
7895 
7896 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7897   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7898 }
7899 
7900 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7901 static void PushLoopPHIs(const Loop *L,
7902                          SmallVectorImpl<Instruction *> &Worklist,
7903                          SmallPtrSetImpl<Instruction *> &Visited) {
7904   BasicBlock *Header = L->getHeader();
7905 
7906   // Push all Loop-header PHIs onto the Worklist stack.
7907   for (PHINode &PN : Header->phis())
7908     if (Visited.insert(&PN).second)
7909       Worklist.push_back(&PN);
7910 }
7911 
7912 const ScalarEvolution::BackedgeTakenInfo &
7913 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7914   auto &BTI = getBackedgeTakenInfo(L);
7915   if (BTI.hasFullInfo())
7916     return BTI;
7917 
7918   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7919 
7920   if (!Pair.second)
7921     return Pair.first->second;
7922 
7923   BackedgeTakenInfo Result =
7924       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7925 
7926   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7927 }
7928 
7929 ScalarEvolution::BackedgeTakenInfo &
7930 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7931   // Initially insert an invalid entry for this loop. If the insertion
7932   // succeeds, proceed to actually compute a backedge-taken count and
7933   // update the value. The temporary CouldNotCompute value tells SCEV
7934   // code elsewhere that it shouldn't attempt to request a new
7935   // backedge-taken count, which could result in infinite recursion.
7936   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7937       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7938   if (!Pair.second)
7939     return Pair.first->second;
7940 
7941   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7942   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7943   // must be cleared in this scope.
7944   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7945 
7946   // In product build, there are no usage of statistic.
7947   (void)NumTripCountsComputed;
7948   (void)NumTripCountsNotComputed;
7949 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7950   const SCEV *BEExact = Result.getExact(L, this);
7951   if (BEExact != getCouldNotCompute()) {
7952     assert(isLoopInvariant(BEExact, L) &&
7953            isLoopInvariant(Result.getConstantMax(this), L) &&
7954            "Computed backedge-taken count isn't loop invariant for loop!");
7955     ++NumTripCountsComputed;
7956   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7957              isa<PHINode>(L->getHeader()->begin())) {
7958     // Only count loops that have phi nodes as not being computable.
7959     ++NumTripCountsNotComputed;
7960   }
7961 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7962 
7963   // Now that we know more about the trip count for this loop, forget any
7964   // existing SCEV values for PHI nodes in this loop since they are only
7965   // conservative estimates made without the benefit of trip count
7966   // information. This invalidation is not necessary for correctness, and is
7967   // only done to produce more precise results.
7968   if (Result.hasAnyInfo()) {
7969     // Invalidate any expression using an addrec in this loop.
7970     SmallVector<const SCEV *, 8> ToForget;
7971     auto LoopUsersIt = LoopUsers.find(L);
7972     if (LoopUsersIt != LoopUsers.end())
7973       append_range(ToForget, LoopUsersIt->second);
7974     forgetMemoizedResults(ToForget);
7975 
7976     // Invalidate constant-evolved loop header phis.
7977     for (PHINode &PN : L->getHeader()->phis())
7978       ConstantEvolutionLoopExitValue.erase(&PN);
7979   }
7980 
7981   // Re-lookup the insert position, since the call to
7982   // computeBackedgeTakenCount above could result in a
7983   // recusive call to getBackedgeTakenInfo (on a different
7984   // loop), which would invalidate the iterator computed
7985   // earlier.
7986   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7987 }
7988 
7989 void ScalarEvolution::forgetAllLoops() {
7990   // This method is intended to forget all info about loops. It should
7991   // invalidate caches as if the following happened:
7992   // - The trip counts of all loops have changed arbitrarily
7993   // - Every llvm::Value has been updated in place to produce a different
7994   // result.
7995   BackedgeTakenCounts.clear();
7996   PredicatedBackedgeTakenCounts.clear();
7997   BECountUsers.clear();
7998   LoopPropertiesCache.clear();
7999   ConstantEvolutionLoopExitValue.clear();
8000   ValueExprMap.clear();
8001   ValuesAtScopes.clear();
8002   ValuesAtScopesUsers.clear();
8003   LoopDispositions.clear();
8004   BlockDispositions.clear();
8005   UnsignedRanges.clear();
8006   SignedRanges.clear();
8007   ExprValueMap.clear();
8008   HasRecMap.clear();
8009   MinTrailingZerosCache.clear();
8010   PredicatedSCEVRewrites.clear();
8011 }
8012 
8013 void ScalarEvolution::forgetLoop(const Loop *L) {
8014   SmallVector<const Loop *, 16> LoopWorklist(1, L);
8015   SmallVector<Instruction *, 32> Worklist;
8016   SmallPtrSet<Instruction *, 16> Visited;
8017   SmallVector<const SCEV *, 16> ToForget;
8018 
8019   // Iterate over all the loops and sub-loops to drop SCEV information.
8020   while (!LoopWorklist.empty()) {
8021     auto *CurrL = LoopWorklist.pop_back_val();
8022 
8023     // Drop any stored trip count value.
8024     forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
8025     forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
8026 
8027     // Drop information about predicated SCEV rewrites for this loop.
8028     for (auto I = PredicatedSCEVRewrites.begin();
8029          I != PredicatedSCEVRewrites.end();) {
8030       std::pair<const SCEV *, const Loop *> Entry = I->first;
8031       if (Entry.second == CurrL)
8032         PredicatedSCEVRewrites.erase(I++);
8033       else
8034         ++I;
8035     }
8036 
8037     auto LoopUsersItr = LoopUsers.find(CurrL);
8038     if (LoopUsersItr != LoopUsers.end()) {
8039       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
8040                 LoopUsersItr->second.end());
8041     }
8042 
8043     // Drop information about expressions based on loop-header PHIs.
8044     PushLoopPHIs(CurrL, Worklist, Visited);
8045 
8046     while (!Worklist.empty()) {
8047       Instruction *I = Worklist.pop_back_val();
8048 
8049       ValueExprMapType::iterator It =
8050           ValueExprMap.find_as(static_cast<Value *>(I));
8051       if (It != ValueExprMap.end()) {
8052         eraseValueFromMap(It->first);
8053         ToForget.push_back(It->second);
8054         if (PHINode *PN = dyn_cast<PHINode>(I))
8055           ConstantEvolutionLoopExitValue.erase(PN);
8056       }
8057 
8058       PushDefUseChildren(I, Worklist, Visited);
8059     }
8060 
8061     LoopPropertiesCache.erase(CurrL);
8062     // Forget all contained loops too, to avoid dangling entries in the
8063     // ValuesAtScopes map.
8064     LoopWorklist.append(CurrL->begin(), CurrL->end());
8065   }
8066   forgetMemoizedResults(ToForget);
8067 }
8068 
8069 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
8070   while (Loop *Parent = L->getParentLoop())
8071     L = Parent;
8072   forgetLoop(L);
8073 }
8074 
8075 void ScalarEvolution::forgetValue(Value *V) {
8076   Instruction *I = dyn_cast<Instruction>(V);
8077   if (!I) return;
8078 
8079   // Drop information about expressions based on loop-header PHIs.
8080   SmallVector<Instruction *, 16> Worklist;
8081   SmallPtrSet<Instruction *, 8> Visited;
8082   SmallVector<const SCEV *, 8> ToForget;
8083   Worklist.push_back(I);
8084   Visited.insert(I);
8085 
8086   while (!Worklist.empty()) {
8087     I = Worklist.pop_back_val();
8088     ValueExprMapType::iterator It =
8089       ValueExprMap.find_as(static_cast<Value *>(I));
8090     if (It != ValueExprMap.end()) {
8091       eraseValueFromMap(It->first);
8092       ToForget.push_back(It->second);
8093       if (PHINode *PN = dyn_cast<PHINode>(I))
8094         ConstantEvolutionLoopExitValue.erase(PN);
8095     }
8096 
8097     PushDefUseChildren(I, Worklist, Visited);
8098   }
8099   forgetMemoizedResults(ToForget);
8100 }
8101 
8102 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
8103   LoopDispositions.clear();
8104 }
8105 
8106 /// Get the exact loop backedge taken count considering all loop exits. A
8107 /// computable result can only be returned for loops with all exiting blocks
8108 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8109 /// is never skipped. This is a valid assumption as long as the loop exits via
8110 /// that test. For precise results, it is the caller's responsibility to specify
8111 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8112 const SCEV *
8113 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
8114                                              SmallVector<const SCEVPredicate *, 4> *Preds) const {
8115   // If any exits were not computable, the loop is not computable.
8116   if (!isComplete() || ExitNotTaken.empty())
8117     return SE->getCouldNotCompute();
8118 
8119   const BasicBlock *Latch = L->getLoopLatch();
8120   // All exiting blocks we have collected must dominate the only backedge.
8121   if (!Latch)
8122     return SE->getCouldNotCompute();
8123 
8124   // All exiting blocks we have gathered dominate loop's latch, so exact trip
8125   // count is simply a minimum out of all these calculated exit counts.
8126   SmallVector<const SCEV *, 2> Ops;
8127   for (auto &ENT : ExitNotTaken) {
8128     const SCEV *BECount = ENT.ExactNotTaken;
8129     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
8130     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
8131            "We should only have known counts for exiting blocks that dominate "
8132            "latch!");
8133 
8134     Ops.push_back(BECount);
8135 
8136     if (Preds)
8137       for (auto *P : ENT.Predicates)
8138         Preds->push_back(P);
8139 
8140     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8141            "Predicate should be always true!");
8142   }
8143 
8144   return SE->getUMinFromMismatchedTypes(Ops);
8145 }
8146 
8147 /// Get the exact not taken count for this loop exit.
8148 const SCEV *
8149 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
8150                                              ScalarEvolution *SE) const {
8151   for (auto &ENT : ExitNotTaken)
8152     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8153       return ENT.ExactNotTaken;
8154 
8155   return SE->getCouldNotCompute();
8156 }
8157 
8158 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8159     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8160   for (auto &ENT : ExitNotTaken)
8161     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8162       return ENT.MaxNotTaken;
8163 
8164   return SE->getCouldNotCompute();
8165 }
8166 
8167 /// getConstantMax - Get the constant max backedge taken count for the loop.
8168 const SCEV *
8169 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8170   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8171     return !ENT.hasAlwaysTruePredicate();
8172   };
8173 
8174   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
8175     return SE->getCouldNotCompute();
8176 
8177   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8178           isa<SCEVConstant>(getConstantMax())) &&
8179          "No point in having a non-constant max backedge taken count!");
8180   return getConstantMax();
8181 }
8182 
8183 const SCEV *
8184 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
8185                                                    ScalarEvolution *SE) {
8186   if (!SymbolicMax)
8187     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
8188   return SymbolicMax;
8189 }
8190 
8191 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8192     ScalarEvolution *SE) const {
8193   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8194     return !ENT.hasAlwaysTruePredicate();
8195   };
8196   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8197 }
8198 
8199 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8200     : ExitLimit(E, E, false, None) {
8201 }
8202 
8203 ScalarEvolution::ExitLimit::ExitLimit(
8204     const SCEV *E, const SCEV *M, bool MaxOrZero,
8205     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8206     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
8207   // If we prove the max count is zero, so is the symbolic bound.  This happens
8208   // in practice due to differences in a) how context sensitive we've chosen
8209   // to be and b) how we reason about bounds impied by UB.
8210   if (MaxNotTaken->isZero())
8211     ExactNotTaken = MaxNotTaken;
8212 
8213   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8214           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
8215          "Exact is not allowed to be less precise than Max");
8216   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
8217           isa<SCEVConstant>(MaxNotTaken)) &&
8218          "No point in having a non-constant max backedge taken count!");
8219   for (auto *PredSet : PredSetList)
8220     for (auto *P : *PredSet)
8221       addPredicate(P);
8222   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8223          "Backedge count should be int");
8224   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
8225          "Max backedge count should be int");
8226 }
8227 
8228 ScalarEvolution::ExitLimit::ExitLimit(
8229     const SCEV *E, const SCEV *M, bool MaxOrZero,
8230     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8231     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
8232 }
8233 
8234 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
8235                                       bool MaxOrZero)
8236     : ExitLimit(E, M, MaxOrZero, None) {
8237 }
8238 
8239 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8240 /// computable exit into a persistent ExitNotTakenInfo array.
8241 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8242     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8243     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8244     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8245   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8246 
8247   ExitNotTaken.reserve(ExitCounts.size());
8248   std::transform(
8249       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
8250       [&](const EdgeExitInfo &EEI) {
8251         BasicBlock *ExitBB = EEI.first;
8252         const ExitLimit &EL = EEI.second;
8253         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
8254                                 EL.Predicates);
8255       });
8256   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8257           isa<SCEVConstant>(ConstantMax)) &&
8258          "No point in having a non-constant max backedge taken count!");
8259 }
8260 
8261 /// Compute the number of times the backedge of the specified loop will execute.
8262 ScalarEvolution::BackedgeTakenInfo
8263 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8264                                            bool AllowPredicates) {
8265   SmallVector<BasicBlock *, 8> ExitingBlocks;
8266   L->getExitingBlocks(ExitingBlocks);
8267 
8268   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8269 
8270   SmallVector<EdgeExitInfo, 4> ExitCounts;
8271   bool CouldComputeBECount = true;
8272   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8273   const SCEV *MustExitMaxBECount = nullptr;
8274   const SCEV *MayExitMaxBECount = nullptr;
8275   bool MustExitMaxOrZero = false;
8276 
8277   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8278   // and compute maxBECount.
8279   // Do a union of all the predicates here.
8280   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
8281     BasicBlock *ExitBB = ExitingBlocks[i];
8282 
8283     // We canonicalize untaken exits to br (constant), ignore them so that
8284     // proving an exit untaken doesn't negatively impact our ability to reason
8285     // about the loop as whole.
8286     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8287       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8288         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8289         if (ExitIfTrue == CI->isZero())
8290           continue;
8291       }
8292 
8293     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
8294 
8295     assert((AllowPredicates || EL.Predicates.empty()) &&
8296            "Predicated exit limit when predicates are not allowed!");
8297 
8298     // 1. For each exit that can be computed, add an entry to ExitCounts.
8299     // CouldComputeBECount is true only if all exits can be computed.
8300     if (EL.ExactNotTaken == getCouldNotCompute())
8301       // We couldn't compute an exact value for this exit, so
8302       // we won't be able to compute an exact value for the loop.
8303       CouldComputeBECount = false;
8304     else
8305       ExitCounts.emplace_back(ExitBB, EL);
8306 
8307     // 2. Derive the loop's MaxBECount from each exit's max number of
8308     // non-exiting iterations. Partition the loop exits into two kinds:
8309     // LoopMustExits and LoopMayExits.
8310     //
8311     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8312     // is a LoopMayExit.  If any computable LoopMustExit is found, then
8313     // MaxBECount is the minimum EL.MaxNotTaken of computable
8314     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8315     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
8316     // computable EL.MaxNotTaken.
8317     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
8318         DT.dominates(ExitBB, Latch)) {
8319       if (!MustExitMaxBECount) {
8320         MustExitMaxBECount = EL.MaxNotTaken;
8321         MustExitMaxOrZero = EL.MaxOrZero;
8322       } else {
8323         MustExitMaxBECount =
8324             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
8325       }
8326     } else if (MayExitMaxBECount != getCouldNotCompute()) {
8327       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
8328         MayExitMaxBECount = EL.MaxNotTaken;
8329       else {
8330         MayExitMaxBECount =
8331             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
8332       }
8333     }
8334   }
8335   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8336     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8337   // The loop backedge will be taken the maximum or zero times if there's
8338   // a single exit that must be taken the maximum or zero times.
8339   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8340 
8341   // Remember which SCEVs are used in exit limits for invalidation purposes.
8342   // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken
8343   // and MaxBECount, which must be SCEVConstant.
8344   for (const auto &Pair : ExitCounts)
8345     if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8346       BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8347   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8348                            MaxBECount, MaxOrZero);
8349 }
8350 
8351 ScalarEvolution::ExitLimit
8352 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8353                                       bool AllowPredicates) {
8354   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8355   // If our exiting block does not dominate the latch, then its connection with
8356   // loop's exit limit may be far from trivial.
8357   const BasicBlock *Latch = L->getLoopLatch();
8358   if (!Latch || !DT.dominates(ExitingBlock, Latch))
8359     return getCouldNotCompute();
8360 
8361   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
8362   Instruction *Term = ExitingBlock->getTerminator();
8363   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8364     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8365     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8366     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8367            "It should have one successor in loop and one exit block!");
8368     // Proceed to the next level to examine the exit condition expression.
8369     return computeExitLimitFromCond(
8370         L, BI->getCondition(), ExitIfTrue,
8371         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
8372   }
8373 
8374   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8375     // For switch, make sure that there is a single exit from the loop.
8376     BasicBlock *Exit = nullptr;
8377     for (auto *SBB : successors(ExitingBlock))
8378       if (!L->contains(SBB)) {
8379         if (Exit) // Multiple exit successors.
8380           return getCouldNotCompute();
8381         Exit = SBB;
8382       }
8383     assert(Exit && "Exiting block must have at least one exit");
8384     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
8385                                                 /*ControlsExit=*/IsOnlyExit);
8386   }
8387 
8388   return getCouldNotCompute();
8389 }
8390 
8391 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8392     const Loop *L, Value *ExitCond, bool ExitIfTrue,
8393     bool ControlsExit, bool AllowPredicates) {
8394   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8395   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8396                                         ControlsExit, AllowPredicates);
8397 }
8398 
8399 Optional<ScalarEvolution::ExitLimit>
8400 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8401                                       bool ExitIfTrue, bool ControlsExit,
8402                                       bool AllowPredicates) {
8403   (void)this->L;
8404   (void)this->ExitIfTrue;
8405   (void)this->AllowPredicates;
8406 
8407   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8408          this->AllowPredicates == AllowPredicates &&
8409          "Variance in assumed invariant key components!");
8410   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
8411   if (Itr == TripCountMap.end())
8412     return None;
8413   return Itr->second;
8414 }
8415 
8416 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8417                                              bool ExitIfTrue,
8418                                              bool ControlsExit,
8419                                              bool AllowPredicates,
8420                                              const ExitLimit &EL) {
8421   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8422          this->AllowPredicates == AllowPredicates &&
8423          "Variance in assumed invariant key components!");
8424 
8425   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
8426   assert(InsertResult.second && "Expected successful insertion!");
8427   (void)InsertResult;
8428   (void)ExitIfTrue;
8429 }
8430 
8431 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8432     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8433     bool ControlsExit, bool AllowPredicates) {
8434 
8435   if (auto MaybeEL =
8436           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8437     return *MaybeEL;
8438 
8439   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
8440                                               ControlsExit, AllowPredicates);
8441   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
8442   return EL;
8443 }
8444 
8445 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8446     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8447     bool ControlsExit, bool AllowPredicates) {
8448   // Handle BinOp conditions (And, Or).
8449   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8450           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8451     return *LimitFromBinOp;
8452 
8453   // With an icmp, it may be feasible to compute an exact backedge-taken count.
8454   // Proceed to the next level to examine the icmp.
8455   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8456     ExitLimit EL =
8457         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
8458     if (EL.hasFullInfo() || !AllowPredicates)
8459       return EL;
8460 
8461     // Try again, but use SCEV predicates this time.
8462     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
8463                                     /*AllowPredicates=*/true);
8464   }
8465 
8466   // Check for a constant condition. These are normally stripped out by
8467   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8468   // preserve the CFG and is temporarily leaving constant conditions
8469   // in place.
8470   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8471     if (ExitIfTrue == !CI->getZExtValue())
8472       // The backedge is always taken.
8473       return getCouldNotCompute();
8474     else
8475       // The backedge is never taken.
8476       return getZero(CI->getType());
8477   }
8478 
8479   // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
8480   // with a constant step, we can form an equivalent icmp predicate and figure
8481   // out how many iterations will be taken before we exit.
8482   const WithOverflowInst *WO;
8483   const APInt *C;
8484   if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
8485       match(WO->getRHS(), m_APInt(C))) {
8486     ConstantRange NWR =
8487       ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
8488                                            WO->getNoWrapKind());
8489     CmpInst::Predicate Pred;
8490     APInt NewRHSC, Offset;
8491     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
8492     if (!ExitIfTrue)
8493       Pred = ICmpInst::getInversePredicate(Pred);
8494     auto *LHS = getSCEV(WO->getLHS());
8495     if (Offset != 0)
8496       LHS = getAddExpr(LHS, getConstant(Offset));
8497     auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
8498                                        ControlsExit, AllowPredicates);
8499     if (EL.hasAnyInfo()) return EL;
8500   }
8501 
8502   // If it's not an integer or pointer comparison then compute it the hard way.
8503   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8504 }
8505 
8506 Optional<ScalarEvolution::ExitLimit>
8507 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8508     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8509     bool ControlsExit, bool AllowPredicates) {
8510   // Check if the controlling expression for this loop is an And or Or.
8511   Value *Op0, *Op1;
8512   bool IsAnd = false;
8513   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8514     IsAnd = true;
8515   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8516     IsAnd = false;
8517   else
8518     return None;
8519 
8520   // EitherMayExit is true in these two cases:
8521   //   br (and Op0 Op1), loop, exit
8522   //   br (or  Op0 Op1), exit, loop
8523   bool EitherMayExit = IsAnd ^ ExitIfTrue;
8524   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
8525                                                  ControlsExit && !EitherMayExit,
8526                                                  AllowPredicates);
8527   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
8528                                                  ControlsExit && !EitherMayExit,
8529                                                  AllowPredicates);
8530 
8531   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8532   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
8533   if (isa<ConstantInt>(Op1))
8534     return Op1 == NeutralElement ? EL0 : EL1;
8535   if (isa<ConstantInt>(Op0))
8536     return Op0 == NeutralElement ? EL1 : EL0;
8537 
8538   const SCEV *BECount = getCouldNotCompute();
8539   const SCEV *MaxBECount = getCouldNotCompute();
8540   if (EitherMayExit) {
8541     // Both conditions must be same for the loop to continue executing.
8542     // Choose the less conservative count.
8543     if (EL0.ExactNotTaken != getCouldNotCompute() &&
8544         EL1.ExactNotTaken != getCouldNotCompute()) {
8545       BECount = getUMinFromMismatchedTypes(
8546           EL0.ExactNotTaken, EL1.ExactNotTaken,
8547           /*Sequential=*/!isa<BinaryOperator>(ExitCond));
8548     }
8549     if (EL0.MaxNotTaken == getCouldNotCompute())
8550       MaxBECount = EL1.MaxNotTaken;
8551     else if (EL1.MaxNotTaken == getCouldNotCompute())
8552       MaxBECount = EL0.MaxNotTaken;
8553     else
8554       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8555   } else {
8556     // Both conditions must be same at the same time for the loop to exit.
8557     // For now, be conservative.
8558     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8559       BECount = EL0.ExactNotTaken;
8560   }
8561 
8562   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8563   // to be more aggressive when computing BECount than when computing
8564   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8565   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8566   // to not.
8567   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8568       !isa<SCEVCouldNotCompute>(BECount))
8569     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8570 
8571   return ExitLimit(BECount, MaxBECount, false,
8572                    { &EL0.Predicates, &EL1.Predicates });
8573 }
8574 
8575 ScalarEvolution::ExitLimit
8576 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8577                                           ICmpInst *ExitCond,
8578                                           bool ExitIfTrue,
8579                                           bool ControlsExit,
8580                                           bool AllowPredicates) {
8581   // If the condition was exit on true, convert the condition to exit on false
8582   ICmpInst::Predicate Pred;
8583   if (!ExitIfTrue)
8584     Pred = ExitCond->getPredicate();
8585   else
8586     Pred = ExitCond->getInversePredicate();
8587   const ICmpInst::Predicate OriginalPred = Pred;
8588 
8589   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8590   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8591 
8592   ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit,
8593                                           AllowPredicates);
8594   if (EL.hasAnyInfo()) return EL;
8595 
8596   auto *ExhaustiveCount =
8597       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8598 
8599   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8600     return ExhaustiveCount;
8601 
8602   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8603                                       ExitCond->getOperand(1), L, OriginalPred);
8604 }
8605 ScalarEvolution::ExitLimit
8606 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8607                                           ICmpInst::Predicate Pred,
8608                                           const SCEV *LHS, const SCEV *RHS,
8609                                           bool ControlsExit,
8610                                           bool AllowPredicates) {
8611 
8612   // Try to evaluate any dependencies out of the loop.
8613   LHS = getSCEVAtScope(LHS, L);
8614   RHS = getSCEVAtScope(RHS, L);
8615 
8616   // At this point, we would like to compute how many iterations of the
8617   // loop the predicate will return true for these inputs.
8618   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8619     // If there is a loop-invariant, force it into the RHS.
8620     std::swap(LHS, RHS);
8621     Pred = ICmpInst::getSwappedPredicate(Pred);
8622   }
8623 
8624   bool ControllingFiniteLoop =
8625       ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L);
8626   // Simplify the operands before analyzing them.
8627   (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0,
8628                              (EnableFiniteLoopControl ? ControllingFiniteLoop
8629                                                      : false));
8630 
8631   // If we have a comparison of a chrec against a constant, try to use value
8632   // ranges to answer this query.
8633   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8634     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8635       if (AddRec->getLoop() == L) {
8636         // Form the constant range.
8637         ConstantRange CompRange =
8638             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8639 
8640         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8641         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8642       }
8643 
8644   // If this loop must exit based on this condition (or execute undefined
8645   // behaviour), and we can prove the test sequence produced must repeat
8646   // the same values on self-wrap of the IV, then we can infer that IV
8647   // doesn't self wrap because if it did, we'd have an infinite (undefined)
8648   // loop.
8649   if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
8650     // TODO: We can peel off any functions which are invertible *in L*.  Loop
8651     // invariant terms are effectively constants for our purposes here.
8652     auto *InnerLHS = LHS;
8653     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
8654       InnerLHS = ZExt->getOperand();
8655     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
8656       auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
8657       if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
8658           StrideC && StrideC->getAPInt().isPowerOf2()) {
8659         auto Flags = AR->getNoWrapFlags();
8660         Flags = setFlags(Flags, SCEV::FlagNW);
8661         SmallVector<const SCEV*> Operands{AR->operands()};
8662         Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
8663         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
8664       }
8665     }
8666   }
8667 
8668   switch (Pred) {
8669   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8670     // Convert to: while (X-Y != 0)
8671     if (LHS->getType()->isPointerTy()) {
8672       LHS = getLosslessPtrToIntExpr(LHS);
8673       if (isa<SCEVCouldNotCompute>(LHS))
8674         return LHS;
8675     }
8676     if (RHS->getType()->isPointerTy()) {
8677       RHS = getLosslessPtrToIntExpr(RHS);
8678       if (isa<SCEVCouldNotCompute>(RHS))
8679         return RHS;
8680     }
8681     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8682                                 AllowPredicates);
8683     if (EL.hasAnyInfo()) return EL;
8684     break;
8685   }
8686   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8687     // Convert to: while (X-Y == 0)
8688     if (LHS->getType()->isPointerTy()) {
8689       LHS = getLosslessPtrToIntExpr(LHS);
8690       if (isa<SCEVCouldNotCompute>(LHS))
8691         return LHS;
8692     }
8693     if (RHS->getType()->isPointerTy()) {
8694       RHS = getLosslessPtrToIntExpr(RHS);
8695       if (isa<SCEVCouldNotCompute>(RHS))
8696         return RHS;
8697     }
8698     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8699     if (EL.hasAnyInfo()) return EL;
8700     break;
8701   }
8702   case ICmpInst::ICMP_SLT:
8703   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8704     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8705     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8706                                     AllowPredicates);
8707     if (EL.hasAnyInfo()) return EL;
8708     break;
8709   }
8710   case ICmpInst::ICMP_SGT:
8711   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8712     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8713     ExitLimit EL =
8714         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8715                             AllowPredicates);
8716     if (EL.hasAnyInfo()) return EL;
8717     break;
8718   }
8719   default:
8720     break;
8721   }
8722 
8723   return getCouldNotCompute();
8724 }
8725 
8726 ScalarEvolution::ExitLimit
8727 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8728                                                       SwitchInst *Switch,
8729                                                       BasicBlock *ExitingBlock,
8730                                                       bool ControlsExit) {
8731   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8732 
8733   // Give up if the exit is the default dest of a switch.
8734   if (Switch->getDefaultDest() == ExitingBlock)
8735     return getCouldNotCompute();
8736 
8737   assert(L->contains(Switch->getDefaultDest()) &&
8738          "Default case must not exit the loop!");
8739   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8740   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8741 
8742   // while (X != Y) --> while (X-Y != 0)
8743   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8744   if (EL.hasAnyInfo())
8745     return EL;
8746 
8747   return getCouldNotCompute();
8748 }
8749 
8750 static ConstantInt *
8751 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8752                                 ScalarEvolution &SE) {
8753   const SCEV *InVal = SE.getConstant(C);
8754   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8755   assert(isa<SCEVConstant>(Val) &&
8756          "Evaluation of SCEV at constant didn't fold correctly?");
8757   return cast<SCEVConstant>(Val)->getValue();
8758 }
8759 
8760 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8761     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8762   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8763   if (!RHS)
8764     return getCouldNotCompute();
8765 
8766   const BasicBlock *Latch = L->getLoopLatch();
8767   if (!Latch)
8768     return getCouldNotCompute();
8769 
8770   const BasicBlock *Predecessor = L->getLoopPredecessor();
8771   if (!Predecessor)
8772     return getCouldNotCompute();
8773 
8774   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8775   // Return LHS in OutLHS and shift_opt in OutOpCode.
8776   auto MatchPositiveShift =
8777       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8778 
8779     using namespace PatternMatch;
8780 
8781     ConstantInt *ShiftAmt;
8782     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8783       OutOpCode = Instruction::LShr;
8784     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8785       OutOpCode = Instruction::AShr;
8786     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8787       OutOpCode = Instruction::Shl;
8788     else
8789       return false;
8790 
8791     return ShiftAmt->getValue().isStrictlyPositive();
8792   };
8793 
8794   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8795   //
8796   // loop:
8797   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8798   //   %iv.shifted = lshr i32 %iv, <positive constant>
8799   //
8800   // Return true on a successful match.  Return the corresponding PHI node (%iv
8801   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8802   auto MatchShiftRecurrence =
8803       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8804     Optional<Instruction::BinaryOps> PostShiftOpCode;
8805 
8806     {
8807       Instruction::BinaryOps OpC;
8808       Value *V;
8809 
8810       // If we encounter a shift instruction, "peel off" the shift operation,
8811       // and remember that we did so.  Later when we inspect %iv's backedge
8812       // value, we will make sure that the backedge value uses the same
8813       // operation.
8814       //
8815       // Note: the peeled shift operation does not have to be the same
8816       // instruction as the one feeding into the PHI's backedge value.  We only
8817       // really care about it being the same *kind* of shift instruction --
8818       // that's all that is required for our later inferences to hold.
8819       if (MatchPositiveShift(LHS, V, OpC)) {
8820         PostShiftOpCode = OpC;
8821         LHS = V;
8822       }
8823     }
8824 
8825     PNOut = dyn_cast<PHINode>(LHS);
8826     if (!PNOut || PNOut->getParent() != L->getHeader())
8827       return false;
8828 
8829     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8830     Value *OpLHS;
8831 
8832     return
8833         // The backedge value for the PHI node must be a shift by a positive
8834         // amount
8835         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8836 
8837         // of the PHI node itself
8838         OpLHS == PNOut &&
8839 
8840         // and the kind of shift should be match the kind of shift we peeled
8841         // off, if any.
8842         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8843   };
8844 
8845   PHINode *PN;
8846   Instruction::BinaryOps OpCode;
8847   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8848     return getCouldNotCompute();
8849 
8850   const DataLayout &DL = getDataLayout();
8851 
8852   // The key rationale for this optimization is that for some kinds of shift
8853   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8854   // within a finite number of iterations.  If the condition guarding the
8855   // backedge (in the sense that the backedge is taken if the condition is true)
8856   // is false for the value the shift recurrence stabilizes to, then we know
8857   // that the backedge is taken only a finite number of times.
8858 
8859   ConstantInt *StableValue = nullptr;
8860   switch (OpCode) {
8861   default:
8862     llvm_unreachable("Impossible case!");
8863 
8864   case Instruction::AShr: {
8865     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8866     // bitwidth(K) iterations.
8867     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8868     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8869                                        Predecessor->getTerminator(), &DT);
8870     auto *Ty = cast<IntegerType>(RHS->getType());
8871     if (Known.isNonNegative())
8872       StableValue = ConstantInt::get(Ty, 0);
8873     else if (Known.isNegative())
8874       StableValue = ConstantInt::get(Ty, -1, true);
8875     else
8876       return getCouldNotCompute();
8877 
8878     break;
8879   }
8880   case Instruction::LShr:
8881   case Instruction::Shl:
8882     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8883     // stabilize to 0 in at most bitwidth(K) iterations.
8884     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8885     break;
8886   }
8887 
8888   auto *Result =
8889       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8890   assert(Result->getType()->isIntegerTy(1) &&
8891          "Otherwise cannot be an operand to a branch instruction");
8892 
8893   if (Result->isZeroValue()) {
8894     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8895     const SCEV *UpperBound =
8896         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8897     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8898   }
8899 
8900   return getCouldNotCompute();
8901 }
8902 
8903 /// Return true if we can constant fold an instruction of the specified type,
8904 /// assuming that all operands were constants.
8905 static bool CanConstantFold(const Instruction *I) {
8906   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8907       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8908       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8909     return true;
8910 
8911   if (const CallInst *CI = dyn_cast<CallInst>(I))
8912     if (const Function *F = CI->getCalledFunction())
8913       return canConstantFoldCallTo(CI, F);
8914   return false;
8915 }
8916 
8917 /// Determine whether this instruction can constant evolve within this loop
8918 /// assuming its operands can all constant evolve.
8919 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8920   // An instruction outside of the loop can't be derived from a loop PHI.
8921   if (!L->contains(I)) return false;
8922 
8923   if (isa<PHINode>(I)) {
8924     // We don't currently keep track of the control flow needed to evaluate
8925     // PHIs, so we cannot handle PHIs inside of loops.
8926     return L->getHeader() == I->getParent();
8927   }
8928 
8929   // If we won't be able to constant fold this expression even if the operands
8930   // are constants, bail early.
8931   return CanConstantFold(I);
8932 }
8933 
8934 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8935 /// recursing through each instruction operand until reaching a loop header phi.
8936 static PHINode *
8937 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8938                                DenseMap<Instruction *, PHINode *> &PHIMap,
8939                                unsigned Depth) {
8940   if (Depth > MaxConstantEvolvingDepth)
8941     return nullptr;
8942 
8943   // Otherwise, we can evaluate this instruction if all of its operands are
8944   // constant or derived from a PHI node themselves.
8945   PHINode *PHI = nullptr;
8946   for (Value *Op : UseInst->operands()) {
8947     if (isa<Constant>(Op)) continue;
8948 
8949     Instruction *OpInst = dyn_cast<Instruction>(Op);
8950     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8951 
8952     PHINode *P = dyn_cast<PHINode>(OpInst);
8953     if (!P)
8954       // If this operand is already visited, reuse the prior result.
8955       // We may have P != PHI if this is the deepest point at which the
8956       // inconsistent paths meet.
8957       P = PHIMap.lookup(OpInst);
8958     if (!P) {
8959       // Recurse and memoize the results, whether a phi is found or not.
8960       // This recursive call invalidates pointers into PHIMap.
8961       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8962       PHIMap[OpInst] = P;
8963     }
8964     if (!P)
8965       return nullptr;  // Not evolving from PHI
8966     if (PHI && PHI != P)
8967       return nullptr;  // Evolving from multiple different PHIs.
8968     PHI = P;
8969   }
8970   // This is a expression evolving from a constant PHI!
8971   return PHI;
8972 }
8973 
8974 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8975 /// in the loop that V is derived from.  We allow arbitrary operations along the
8976 /// way, but the operands of an operation must either be constants or a value
8977 /// derived from a constant PHI.  If this expression does not fit with these
8978 /// constraints, return null.
8979 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8980   Instruction *I = dyn_cast<Instruction>(V);
8981   if (!I || !canConstantEvolve(I, L)) return nullptr;
8982 
8983   if (PHINode *PN = dyn_cast<PHINode>(I))
8984     return PN;
8985 
8986   // Record non-constant instructions contained by the loop.
8987   DenseMap<Instruction *, PHINode *> PHIMap;
8988   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8989 }
8990 
8991 /// EvaluateExpression - Given an expression that passes the
8992 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8993 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8994 /// reason, return null.
8995 static Constant *EvaluateExpression(Value *V, const Loop *L,
8996                                     DenseMap<Instruction *, Constant *> &Vals,
8997                                     const DataLayout &DL,
8998                                     const TargetLibraryInfo *TLI) {
8999   // Convenient constant check, but redundant for recursive calls.
9000   if (Constant *C = dyn_cast<Constant>(V)) return C;
9001   Instruction *I = dyn_cast<Instruction>(V);
9002   if (!I) return nullptr;
9003 
9004   if (Constant *C = Vals.lookup(I)) return C;
9005 
9006   // An instruction inside the loop depends on a value outside the loop that we
9007   // weren't given a mapping for, or a value such as a call inside the loop.
9008   if (!canConstantEvolve(I, L)) return nullptr;
9009 
9010   // An unmapped PHI can be due to a branch or another loop inside this loop,
9011   // or due to this not being the initial iteration through a loop where we
9012   // couldn't compute the evolution of this particular PHI last time.
9013   if (isa<PHINode>(I)) return nullptr;
9014 
9015   std::vector<Constant*> Operands(I->getNumOperands());
9016 
9017   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
9018     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
9019     if (!Operand) {
9020       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
9021       if (!Operands[i]) return nullptr;
9022       continue;
9023     }
9024     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
9025     Vals[Operand] = C;
9026     if (!C) return nullptr;
9027     Operands[i] = C;
9028   }
9029 
9030   if (CmpInst *CI = dyn_cast<CmpInst>(I))
9031     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
9032                                            Operands[1], DL, TLI);
9033   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
9034     if (!LI->isVolatile())
9035       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
9036   }
9037   return ConstantFoldInstOperands(I, Operands, DL, TLI);
9038 }
9039 
9040 
9041 // If every incoming value to PN except the one for BB is a specific Constant,
9042 // return that, else return nullptr.
9043 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
9044   Constant *IncomingVal = nullptr;
9045 
9046   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9047     if (PN->getIncomingBlock(i) == BB)
9048       continue;
9049 
9050     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
9051     if (!CurrentVal)
9052       return nullptr;
9053 
9054     if (IncomingVal != CurrentVal) {
9055       if (IncomingVal)
9056         return nullptr;
9057       IncomingVal = CurrentVal;
9058     }
9059   }
9060 
9061   return IncomingVal;
9062 }
9063 
9064 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9065 /// in the header of its containing loop, we know the loop executes a
9066 /// constant number of times, and the PHI node is just a recurrence
9067 /// involving constants, fold it.
9068 Constant *
9069 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9070                                                    const APInt &BEs,
9071                                                    const Loop *L) {
9072   auto I = ConstantEvolutionLoopExitValue.find(PN);
9073   if (I != ConstantEvolutionLoopExitValue.end())
9074     return I->second;
9075 
9076   if (BEs.ugt(MaxBruteForceIterations))
9077     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
9078 
9079   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
9080 
9081   DenseMap<Instruction *, Constant *> CurrentIterVals;
9082   BasicBlock *Header = L->getHeader();
9083   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9084 
9085   BasicBlock *Latch = L->getLoopLatch();
9086   if (!Latch)
9087     return nullptr;
9088 
9089   for (PHINode &PHI : Header->phis()) {
9090     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9091       CurrentIterVals[&PHI] = StartCST;
9092   }
9093   if (!CurrentIterVals.count(PN))
9094     return RetVal = nullptr;
9095 
9096   Value *BEValue = PN->getIncomingValueForBlock(Latch);
9097 
9098   // Execute the loop symbolically to determine the exit value.
9099   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
9100          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9101 
9102   unsigned NumIterations = BEs.getZExtValue(); // must be in range
9103   unsigned IterationNum = 0;
9104   const DataLayout &DL = getDataLayout();
9105   for (; ; ++IterationNum) {
9106     if (IterationNum == NumIterations)
9107       return RetVal = CurrentIterVals[PN];  // Got exit value!
9108 
9109     // Compute the value of the PHIs for the next iteration.
9110     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9111     DenseMap<Instruction *, Constant *> NextIterVals;
9112     Constant *NextPHI =
9113         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9114     if (!NextPHI)
9115       return nullptr;        // Couldn't evaluate!
9116     NextIterVals[PN] = NextPHI;
9117 
9118     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9119 
9120     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
9121     // cease to be able to evaluate one of them or if they stop evolving,
9122     // because that doesn't necessarily prevent us from computing PN.
9123     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
9124     for (const auto &I : CurrentIterVals) {
9125       PHINode *PHI = dyn_cast<PHINode>(I.first);
9126       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
9127       PHIsToCompute.emplace_back(PHI, I.second);
9128     }
9129     // We use two distinct loops because EvaluateExpression may invalidate any
9130     // iterators into CurrentIterVals.
9131     for (const auto &I : PHIsToCompute) {
9132       PHINode *PHI = I.first;
9133       Constant *&NextPHI = NextIterVals[PHI];
9134       if (!NextPHI) {   // Not already computed.
9135         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9136         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9137       }
9138       if (NextPHI != I.second)
9139         StoppedEvolving = false;
9140     }
9141 
9142     // If all entries in CurrentIterVals == NextIterVals then we can stop
9143     // iterating, the loop can't continue to change.
9144     if (StoppedEvolving)
9145       return RetVal = CurrentIterVals[PN];
9146 
9147     CurrentIterVals.swap(NextIterVals);
9148   }
9149 }
9150 
9151 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9152                                                           Value *Cond,
9153                                                           bool ExitWhen) {
9154   PHINode *PN = getConstantEvolvingPHI(Cond, L);
9155   if (!PN) return getCouldNotCompute();
9156 
9157   // If the loop is canonicalized, the PHI will have exactly two entries.
9158   // That's the only form we support here.
9159   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9160 
9161   DenseMap<Instruction *, Constant *> CurrentIterVals;
9162   BasicBlock *Header = L->getHeader();
9163   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9164 
9165   BasicBlock *Latch = L->getLoopLatch();
9166   assert(Latch && "Should follow from NumIncomingValues == 2!");
9167 
9168   for (PHINode &PHI : Header->phis()) {
9169     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9170       CurrentIterVals[&PHI] = StartCST;
9171   }
9172   if (!CurrentIterVals.count(PN))
9173     return getCouldNotCompute();
9174 
9175   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
9176   // the loop symbolically to determine when the condition gets a value of
9177   // "ExitWhen".
9178   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
9179   const DataLayout &DL = getDataLayout();
9180   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9181     auto *CondVal = dyn_cast_or_null<ConstantInt>(
9182         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9183 
9184     // Couldn't symbolically evaluate.
9185     if (!CondVal) return getCouldNotCompute();
9186 
9187     if (CondVal->getValue() == uint64_t(ExitWhen)) {
9188       ++NumBruteForceTripCountsComputed;
9189       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9190     }
9191 
9192     // Update all the PHI nodes for the next iteration.
9193     DenseMap<Instruction *, Constant *> NextIterVals;
9194 
9195     // Create a list of which PHIs we need to compute. We want to do this before
9196     // calling EvaluateExpression on them because that may invalidate iterators
9197     // into CurrentIterVals.
9198     SmallVector<PHINode *, 8> PHIsToCompute;
9199     for (const auto &I : CurrentIterVals) {
9200       PHINode *PHI = dyn_cast<PHINode>(I.first);
9201       if (!PHI || PHI->getParent() != Header) continue;
9202       PHIsToCompute.push_back(PHI);
9203     }
9204     for (PHINode *PHI : PHIsToCompute) {
9205       Constant *&NextPHI = NextIterVals[PHI];
9206       if (NextPHI) continue;    // Already computed!
9207 
9208       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9209       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9210     }
9211     CurrentIterVals.swap(NextIterVals);
9212   }
9213 
9214   // Too many iterations were needed to evaluate.
9215   return getCouldNotCompute();
9216 }
9217 
9218 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9219   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9220       ValuesAtScopes[V];
9221   // Check to see if we've folded this expression at this loop before.
9222   for (auto &LS : Values)
9223     if (LS.first == L)
9224       return LS.second ? LS.second : V;
9225 
9226   Values.emplace_back(L, nullptr);
9227 
9228   // Otherwise compute it.
9229   const SCEV *C = computeSCEVAtScope(V, L);
9230   for (auto &LS : reverse(ValuesAtScopes[V]))
9231     if (LS.first == L) {
9232       LS.second = C;
9233       if (!isa<SCEVConstant>(C))
9234         ValuesAtScopesUsers[C].push_back({L, V});
9235       break;
9236     }
9237   return C;
9238 }
9239 
9240 /// This builds up a Constant using the ConstantExpr interface.  That way, we
9241 /// will return Constants for objects which aren't represented by a
9242 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9243 /// Returns NULL if the SCEV isn't representable as a Constant.
9244 static Constant *BuildConstantFromSCEV(const SCEV *V) {
9245   switch (V->getSCEVType()) {
9246   case scCouldNotCompute:
9247   case scAddRecExpr:
9248     return nullptr;
9249   case scConstant:
9250     return cast<SCEVConstant>(V)->getValue();
9251   case scUnknown:
9252     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9253   case scSignExtend: {
9254     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
9255     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
9256       return ConstantExpr::getSExt(CastOp, SS->getType());
9257     return nullptr;
9258   }
9259   case scZeroExtend: {
9260     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
9261     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
9262       return ConstantExpr::getZExt(CastOp, SZ->getType());
9263     return nullptr;
9264   }
9265   case scPtrToInt: {
9266     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9267     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9268       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9269 
9270     return nullptr;
9271   }
9272   case scTruncate: {
9273     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9274     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9275       return ConstantExpr::getTrunc(CastOp, ST->getType());
9276     return nullptr;
9277   }
9278   case scAddExpr: {
9279     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9280     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
9281       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
9282         unsigned AS = PTy->getAddressSpace();
9283         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
9284         C = ConstantExpr::getBitCast(C, DestPtrTy);
9285       }
9286       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
9287         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
9288         if (!C2)
9289           return nullptr;
9290 
9291         // First pointer!
9292         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
9293           unsigned AS = C2->getType()->getPointerAddressSpace();
9294           std::swap(C, C2);
9295           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
9296           // The offsets have been converted to bytes.  We can add bytes to an
9297           // i8* by GEP with the byte count in the first index.
9298           C = ConstantExpr::getBitCast(C, DestPtrTy);
9299         }
9300 
9301         // Don't bother trying to sum two pointers. We probably can't
9302         // statically compute a load that results from it anyway.
9303         if (C2->getType()->isPointerTy())
9304           return nullptr;
9305 
9306         if (C->getType()->isPointerTy()) {
9307           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9308                                              C, C2);
9309         } else {
9310           C = ConstantExpr::getAdd(C, C2);
9311         }
9312       }
9313       return C;
9314     }
9315     return nullptr;
9316   }
9317   case scMulExpr: {
9318     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
9319     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
9320       // Don't bother with pointers at all.
9321       if (C->getType()->isPointerTy())
9322         return nullptr;
9323       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
9324         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
9325         if (!C2 || C2->getType()->isPointerTy())
9326           return nullptr;
9327         C = ConstantExpr::getMul(C, C2);
9328       }
9329       return C;
9330     }
9331     return nullptr;
9332   }
9333   case scUDivExpr: {
9334     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
9335     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
9336       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
9337         if (LHS->getType() == RHS->getType())
9338           return ConstantExpr::getUDiv(LHS, RHS);
9339     return nullptr;
9340   }
9341   case scSMaxExpr:
9342   case scUMaxExpr:
9343   case scSMinExpr:
9344   case scUMinExpr:
9345   case scSequentialUMinExpr:
9346     return nullptr; // TODO: smax, umax, smin, umax, umin_seq.
9347   }
9348   llvm_unreachable("Unknown SCEV kind!");
9349 }
9350 
9351 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9352   if (isa<SCEVConstant>(V)) return V;
9353 
9354   // If this instruction is evolved from a constant-evolving PHI, compute the
9355   // exit value from the loop without using SCEVs.
9356   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
9357     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
9358       if (PHINode *PN = dyn_cast<PHINode>(I)) {
9359         const Loop *CurrLoop = this->LI[I->getParent()];
9360         // Looking for loop exit value.
9361         if (CurrLoop && CurrLoop->getParentLoop() == L &&
9362             PN->getParent() == CurrLoop->getHeader()) {
9363           // Okay, there is no closed form solution for the PHI node.  Check
9364           // to see if the loop that contains it has a known backedge-taken
9365           // count.  If so, we may be able to force computation of the exit
9366           // value.
9367           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
9368           // This trivial case can show up in some degenerate cases where
9369           // the incoming IR has not yet been fully simplified.
9370           if (BackedgeTakenCount->isZero()) {
9371             Value *InitValue = nullptr;
9372             bool MultipleInitValues = false;
9373             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
9374               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
9375                 if (!InitValue)
9376                   InitValue = PN->getIncomingValue(i);
9377                 else if (InitValue != PN->getIncomingValue(i)) {
9378                   MultipleInitValues = true;
9379                   break;
9380                 }
9381               }
9382             }
9383             if (!MultipleInitValues && InitValue)
9384               return getSCEV(InitValue);
9385           }
9386           // Do we have a loop invariant value flowing around the backedge
9387           // for a loop which must execute the backedge?
9388           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
9389               isKnownPositive(BackedgeTakenCount) &&
9390               PN->getNumIncomingValues() == 2) {
9391 
9392             unsigned InLoopPred =
9393                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
9394             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
9395             if (CurrLoop->isLoopInvariant(BackedgeVal))
9396               return getSCEV(BackedgeVal);
9397           }
9398           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
9399             // Okay, we know how many times the containing loop executes.  If
9400             // this is a constant evolving PHI node, get the final value at
9401             // the specified iteration number.
9402             Constant *RV = getConstantEvolutionLoopExitValue(
9403                 PN, BTCC->getAPInt(), CurrLoop);
9404             if (RV) return getSCEV(RV);
9405           }
9406         }
9407 
9408         // If there is a single-input Phi, evaluate it at our scope. If we can
9409         // prove that this replacement does not break LCSSA form, use new value.
9410         if (PN->getNumOperands() == 1) {
9411           const SCEV *Input = getSCEV(PN->getOperand(0));
9412           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
9413           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
9414           // for the simplest case just support constants.
9415           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
9416         }
9417       }
9418 
9419       // Okay, this is an expression that we cannot symbolically evaluate
9420       // into a SCEV.  Check to see if it's possible to symbolically evaluate
9421       // the arguments into constants, and if so, try to constant propagate the
9422       // result.  This is particularly useful for computing loop exit values.
9423       if (CanConstantFold(I)) {
9424         SmallVector<Constant *, 4> Operands;
9425         bool MadeImprovement = false;
9426         for (Value *Op : I->operands()) {
9427           if (Constant *C = dyn_cast<Constant>(Op)) {
9428             Operands.push_back(C);
9429             continue;
9430           }
9431 
9432           // If any of the operands is non-constant and if they are
9433           // non-integer and non-pointer, don't even try to analyze them
9434           // with scev techniques.
9435           if (!isSCEVable(Op->getType()))
9436             return V;
9437 
9438           const SCEV *OrigV = getSCEV(Op);
9439           const SCEV *OpV = getSCEVAtScope(OrigV, L);
9440           MadeImprovement |= OrigV != OpV;
9441 
9442           Constant *C = BuildConstantFromSCEV(OpV);
9443           if (!C) return V;
9444           if (C->getType() != Op->getType())
9445             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
9446                                                               Op->getType(),
9447                                                               false),
9448                                       C, Op->getType());
9449           Operands.push_back(C);
9450         }
9451 
9452         // Check to see if getSCEVAtScope actually made an improvement.
9453         if (MadeImprovement) {
9454           Constant *C = nullptr;
9455           const DataLayout &DL = getDataLayout();
9456           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
9457             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
9458                                                 Operands[1], DL, &TLI);
9459           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
9460             if (!Load->isVolatile())
9461               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
9462                                                DL);
9463           } else
9464             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
9465           if (!C) return V;
9466           return getSCEV(C);
9467         }
9468       }
9469     }
9470 
9471     // This is some other type of SCEVUnknown, just return it.
9472     return V;
9473   }
9474 
9475   if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) {
9476     const auto *Comm = cast<SCEVNAryExpr>(V);
9477     // Avoid performing the look-up in the common case where the specified
9478     // expression has no loop-variant portions.
9479     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
9480       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9481       if (OpAtScope != Comm->getOperand(i)) {
9482         // Okay, at least one of these operands is loop variant but might be
9483         // foldable.  Build a new instance of the folded commutative expression.
9484         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
9485                                             Comm->op_begin()+i);
9486         NewOps.push_back(OpAtScope);
9487 
9488         for (++i; i != e; ++i) {
9489           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9490           NewOps.push_back(OpAtScope);
9491         }
9492         if (isa<SCEVAddExpr>(Comm))
9493           return getAddExpr(NewOps, Comm->getNoWrapFlags());
9494         if (isa<SCEVMulExpr>(Comm))
9495           return getMulExpr(NewOps, Comm->getNoWrapFlags());
9496         if (isa<SCEVMinMaxExpr>(Comm))
9497           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
9498         if (isa<SCEVSequentialMinMaxExpr>(Comm))
9499           return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps);
9500         llvm_unreachable("Unknown commutative / sequential min/max SCEV type!");
9501       }
9502     }
9503     // If we got here, all operands are loop invariant.
9504     return Comm;
9505   }
9506 
9507   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9508     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9509     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9510     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9511       return Div;   // must be loop invariant
9512     return getUDivExpr(LHS, RHS);
9513   }
9514 
9515   // If this is a loop recurrence for a loop that does not contain L, then we
9516   // are dealing with the final value computed by the loop.
9517   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9518     // First, attempt to evaluate each operand.
9519     // Avoid performing the look-up in the common case where the specified
9520     // expression has no loop-variant portions.
9521     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9522       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9523       if (OpAtScope == AddRec->getOperand(i))
9524         continue;
9525 
9526       // Okay, at least one of these operands is loop variant but might be
9527       // foldable.  Build a new instance of the folded commutative expression.
9528       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9529                                           AddRec->op_begin()+i);
9530       NewOps.push_back(OpAtScope);
9531       for (++i; i != e; ++i)
9532         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9533 
9534       const SCEV *FoldedRec =
9535         getAddRecExpr(NewOps, AddRec->getLoop(),
9536                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9537       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9538       // The addrec may be folded to a nonrecurrence, for example, if the
9539       // induction variable is multiplied by zero after constant folding. Go
9540       // ahead and return the folded value.
9541       if (!AddRec)
9542         return FoldedRec;
9543       break;
9544     }
9545 
9546     // If the scope is outside the addrec's loop, evaluate it by using the
9547     // loop exit value of the addrec.
9548     if (!AddRec->getLoop()->contains(L)) {
9549       // To evaluate this recurrence, we need to know how many times the AddRec
9550       // loop iterates.  Compute this now.
9551       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9552       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9553 
9554       // Then, evaluate the AddRec.
9555       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9556     }
9557 
9558     return AddRec;
9559   }
9560 
9561   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
9562     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9563     if (Op == Cast->getOperand())
9564       return Cast;  // must be loop invariant
9565     return getCastExpr(Cast->getSCEVType(), Op, Cast->getType());
9566   }
9567 
9568   llvm_unreachable("Unknown SCEV type!");
9569 }
9570 
9571 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9572   return getSCEVAtScope(getSCEV(V), L);
9573 }
9574 
9575 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9576   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9577     return stripInjectiveFunctions(ZExt->getOperand());
9578   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9579     return stripInjectiveFunctions(SExt->getOperand());
9580   return S;
9581 }
9582 
9583 /// Finds the minimum unsigned root of the following equation:
9584 ///
9585 ///     A * X = B (mod N)
9586 ///
9587 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9588 /// A and B isn't important.
9589 ///
9590 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9591 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9592                                                ScalarEvolution &SE) {
9593   uint32_t BW = A.getBitWidth();
9594   assert(BW == SE.getTypeSizeInBits(B->getType()));
9595   assert(A != 0 && "A must be non-zero.");
9596 
9597   // 1. D = gcd(A, N)
9598   //
9599   // The gcd of A and N may have only one prime factor: 2. The number of
9600   // trailing zeros in A is its multiplicity
9601   uint32_t Mult2 = A.countTrailingZeros();
9602   // D = 2^Mult2
9603 
9604   // 2. Check if B is divisible by D.
9605   //
9606   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9607   // is not less than multiplicity of this prime factor for D.
9608   if (SE.GetMinTrailingZeros(B) < Mult2)
9609     return SE.getCouldNotCompute();
9610 
9611   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9612   // modulo (N / D).
9613   //
9614   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9615   // (N / D) in general. The inverse itself always fits into BW bits, though,
9616   // so we immediately truncate it.
9617   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9618   APInt Mod(BW + 1, 0);
9619   Mod.setBit(BW - Mult2);  // Mod = N / D
9620   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9621 
9622   // 4. Compute the minimum unsigned root of the equation:
9623   // I * (B / D) mod (N / D)
9624   // To simplify the computation, we factor out the divide by D:
9625   // (I * B mod N) / D
9626   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9627   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9628 }
9629 
9630 /// For a given quadratic addrec, generate coefficients of the corresponding
9631 /// quadratic equation, multiplied by a common value to ensure that they are
9632 /// integers.
9633 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9634 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9635 /// were multiplied by, and BitWidth is the bit width of the original addrec
9636 /// coefficients.
9637 /// This function returns None if the addrec coefficients are not compile-
9638 /// time constants.
9639 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9640 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9641   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9642   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9643   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9644   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9645   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9646                     << *AddRec << '\n');
9647 
9648   // We currently can only solve this if the coefficients are constants.
9649   if (!LC || !MC || !NC) {
9650     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9651     return None;
9652   }
9653 
9654   APInt L = LC->getAPInt();
9655   APInt M = MC->getAPInt();
9656   APInt N = NC->getAPInt();
9657   assert(!N.isZero() && "This is not a quadratic addrec");
9658 
9659   unsigned BitWidth = LC->getAPInt().getBitWidth();
9660   unsigned NewWidth = BitWidth + 1;
9661   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9662                     << BitWidth << '\n');
9663   // The sign-extension (as opposed to a zero-extension) here matches the
9664   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9665   N = N.sext(NewWidth);
9666   M = M.sext(NewWidth);
9667   L = L.sext(NewWidth);
9668 
9669   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9670   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9671   //   L+M, L+2M+N, L+3M+3N, ...
9672   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9673   //
9674   // The equation Acc = 0 is then
9675   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9676   // In a quadratic form it becomes:
9677   //   N n^2 + (2M-N) n + 2L = 0.
9678 
9679   APInt A = N;
9680   APInt B = 2 * M - A;
9681   APInt C = 2 * L;
9682   APInt T = APInt(NewWidth, 2);
9683   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9684                     << "x + " << C << ", coeff bw: " << NewWidth
9685                     << ", multiplied by " << T << '\n');
9686   return std::make_tuple(A, B, C, T, BitWidth);
9687 }
9688 
9689 /// Helper function to compare optional APInts:
9690 /// (a) if X and Y both exist, return min(X, Y),
9691 /// (b) if neither X nor Y exist, return None,
9692 /// (c) if exactly one of X and Y exists, return that value.
9693 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9694   if (X.hasValue() && Y.hasValue()) {
9695     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9696     APInt XW = X->sextOrSelf(W);
9697     APInt YW = Y->sextOrSelf(W);
9698     return XW.slt(YW) ? *X : *Y;
9699   }
9700   if (!X.hasValue() && !Y.hasValue())
9701     return None;
9702   return X.hasValue() ? *X : *Y;
9703 }
9704 
9705 /// Helper function to truncate an optional APInt to a given BitWidth.
9706 /// When solving addrec-related equations, it is preferable to return a value
9707 /// that has the same bit width as the original addrec's coefficients. If the
9708 /// solution fits in the original bit width, truncate it (except for i1).
9709 /// Returning a value of a different bit width may inhibit some optimizations.
9710 ///
9711 /// In general, a solution to a quadratic equation generated from an addrec
9712 /// may require BW+1 bits, where BW is the bit width of the addrec's
9713 /// coefficients. The reason is that the coefficients of the quadratic
9714 /// equation are BW+1 bits wide (to avoid truncation when converting from
9715 /// the addrec to the equation).
9716 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9717   if (!X.hasValue())
9718     return None;
9719   unsigned W = X->getBitWidth();
9720   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9721     return X->trunc(BitWidth);
9722   return X;
9723 }
9724 
9725 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9726 /// iterations. The values L, M, N are assumed to be signed, and they
9727 /// should all have the same bit widths.
9728 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9729 /// where BW is the bit width of the addrec's coefficients.
9730 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9731 /// returned as such, otherwise the bit width of the returned value may
9732 /// be greater than BW.
9733 ///
9734 /// This function returns None if
9735 /// (a) the addrec coefficients are not constant, or
9736 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9737 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9738 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9739 static Optional<APInt>
9740 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9741   APInt A, B, C, M;
9742   unsigned BitWidth;
9743   auto T = GetQuadraticEquation(AddRec);
9744   if (!T.hasValue())
9745     return None;
9746 
9747   std::tie(A, B, C, M, BitWidth) = *T;
9748   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9749   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9750   if (!X.hasValue())
9751     return None;
9752 
9753   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9754   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9755   if (!V->isZero())
9756     return None;
9757 
9758   return TruncIfPossible(X, BitWidth);
9759 }
9760 
9761 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9762 /// iterations. The values M, N are assumed to be signed, and they
9763 /// should all have the same bit widths.
9764 /// Find the least n such that c(n) does not belong to the given range,
9765 /// while c(n-1) does.
9766 ///
9767 /// This function returns None if
9768 /// (a) the addrec coefficients are not constant, or
9769 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9770 ///     bounds of the range.
9771 static Optional<APInt>
9772 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9773                           const ConstantRange &Range, ScalarEvolution &SE) {
9774   assert(AddRec->getOperand(0)->isZero() &&
9775          "Starting value of addrec should be 0");
9776   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9777                     << Range << ", addrec " << *AddRec << '\n');
9778   // This case is handled in getNumIterationsInRange. Here we can assume that
9779   // we start in the range.
9780   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9781          "Addrec's initial value should be in range");
9782 
9783   APInt A, B, C, M;
9784   unsigned BitWidth;
9785   auto T = GetQuadraticEquation(AddRec);
9786   if (!T.hasValue())
9787     return None;
9788 
9789   // Be careful about the return value: there can be two reasons for not
9790   // returning an actual number. First, if no solutions to the equations
9791   // were found, and second, if the solutions don't leave the given range.
9792   // The first case means that the actual solution is "unknown", the second
9793   // means that it's known, but not valid. If the solution is unknown, we
9794   // cannot make any conclusions.
9795   // Return a pair: the optional solution and a flag indicating if the
9796   // solution was found.
9797   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9798     // Solve for signed overflow and unsigned overflow, pick the lower
9799     // solution.
9800     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9801                       << Bound << " (before multiplying by " << M << ")\n");
9802     Bound *= M; // The quadratic equation multiplier.
9803 
9804     Optional<APInt> SO = None;
9805     if (BitWidth > 1) {
9806       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9807                            "signed overflow\n");
9808       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9809     }
9810     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9811                          "unsigned overflow\n");
9812     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9813                                                               BitWidth+1);
9814 
9815     auto LeavesRange = [&] (const APInt &X) {
9816       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9817       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9818       if (Range.contains(V0->getValue()))
9819         return false;
9820       // X should be at least 1, so X-1 is non-negative.
9821       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9822       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9823       if (Range.contains(V1->getValue()))
9824         return true;
9825       return false;
9826     };
9827 
9828     // If SolveQuadraticEquationWrap returns None, it means that there can
9829     // be a solution, but the function failed to find it. We cannot treat it
9830     // as "no solution".
9831     if (!SO.hasValue() || !UO.hasValue())
9832       return { None, false };
9833 
9834     // Check the smaller value first to see if it leaves the range.
9835     // At this point, both SO and UO must have values.
9836     Optional<APInt> Min = MinOptional(SO, UO);
9837     if (LeavesRange(*Min))
9838       return { Min, true };
9839     Optional<APInt> Max = Min == SO ? UO : SO;
9840     if (LeavesRange(*Max))
9841       return { Max, true };
9842 
9843     // Solutions were found, but were eliminated, hence the "true".
9844     return { None, true };
9845   };
9846 
9847   std::tie(A, B, C, M, BitWidth) = *T;
9848   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9849   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9850   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9851   auto SL = SolveForBoundary(Lower);
9852   auto SU = SolveForBoundary(Upper);
9853   // If any of the solutions was unknown, no meaninigful conclusions can
9854   // be made.
9855   if (!SL.second || !SU.second)
9856     return None;
9857 
9858   // Claim: The correct solution is not some value between Min and Max.
9859   //
9860   // Justification: Assuming that Min and Max are different values, one of
9861   // them is when the first signed overflow happens, the other is when the
9862   // first unsigned overflow happens. Crossing the range boundary is only
9863   // possible via an overflow (treating 0 as a special case of it, modeling
9864   // an overflow as crossing k*2^W for some k).
9865   //
9866   // The interesting case here is when Min was eliminated as an invalid
9867   // solution, but Max was not. The argument is that if there was another
9868   // overflow between Min and Max, it would also have been eliminated if
9869   // it was considered.
9870   //
9871   // For a given boundary, it is possible to have two overflows of the same
9872   // type (signed/unsigned) without having the other type in between: this
9873   // can happen when the vertex of the parabola is between the iterations
9874   // corresponding to the overflows. This is only possible when the two
9875   // overflows cross k*2^W for the same k. In such case, if the second one
9876   // left the range (and was the first one to do so), the first overflow
9877   // would have to enter the range, which would mean that either we had left
9878   // the range before or that we started outside of it. Both of these cases
9879   // are contradictions.
9880   //
9881   // Claim: In the case where SolveForBoundary returns None, the correct
9882   // solution is not some value between the Max for this boundary and the
9883   // Min of the other boundary.
9884   //
9885   // Justification: Assume that we had such Max_A and Min_B corresponding
9886   // to range boundaries A and B and such that Max_A < Min_B. If there was
9887   // a solution between Max_A and Min_B, it would have to be caused by an
9888   // overflow corresponding to either A or B. It cannot correspond to B,
9889   // since Min_B is the first occurrence of such an overflow. If it
9890   // corresponded to A, it would have to be either a signed or an unsigned
9891   // overflow that is larger than both eliminated overflows for A. But
9892   // between the eliminated overflows and this overflow, the values would
9893   // cover the entire value space, thus crossing the other boundary, which
9894   // is a contradiction.
9895 
9896   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9897 }
9898 
9899 ScalarEvolution::ExitLimit
9900 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9901                               bool AllowPredicates) {
9902 
9903   // This is only used for loops with a "x != y" exit test. The exit condition
9904   // is now expressed as a single expression, V = x-y. So the exit test is
9905   // effectively V != 0.  We know and take advantage of the fact that this
9906   // expression only being used in a comparison by zero context.
9907 
9908   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9909   // If the value is a constant
9910   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9911     // If the value is already zero, the branch will execute zero times.
9912     if (C->getValue()->isZero()) return C;
9913     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9914   }
9915 
9916   const SCEVAddRecExpr *AddRec =
9917       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9918 
9919   if (!AddRec && AllowPredicates)
9920     // Try to make this an AddRec using runtime tests, in the first X
9921     // iterations of this loop, where X is the SCEV expression found by the
9922     // algorithm below.
9923     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9924 
9925   if (!AddRec || AddRec->getLoop() != L)
9926     return getCouldNotCompute();
9927 
9928   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9929   // the quadratic equation to solve it.
9930   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9931     // We can only use this value if the chrec ends up with an exact zero
9932     // value at this index.  When solving for "X*X != 5", for example, we
9933     // should not accept a root of 2.
9934     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9935       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9936       return ExitLimit(R, R, false, Predicates);
9937     }
9938     return getCouldNotCompute();
9939   }
9940 
9941   // Otherwise we can only handle this if it is affine.
9942   if (!AddRec->isAffine())
9943     return getCouldNotCompute();
9944 
9945   // If this is an affine expression, the execution count of this branch is
9946   // the minimum unsigned root of the following equation:
9947   //
9948   //     Start + Step*N = 0 (mod 2^BW)
9949   //
9950   // equivalent to:
9951   //
9952   //             Step*N = -Start (mod 2^BW)
9953   //
9954   // where BW is the common bit width of Start and Step.
9955 
9956   // Get the initial value for the loop.
9957   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9958   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9959 
9960   // For now we handle only constant steps.
9961   //
9962   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9963   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9964   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9965   // We have not yet seen any such cases.
9966   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9967   if (!StepC || StepC->getValue()->isZero())
9968     return getCouldNotCompute();
9969 
9970   // For positive steps (counting up until unsigned overflow):
9971   //   N = -Start/Step (as unsigned)
9972   // For negative steps (counting down to zero):
9973   //   N = Start/-Step
9974   // First compute the unsigned distance from zero in the direction of Step.
9975   bool CountDown = StepC->getAPInt().isNegative();
9976   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9977 
9978   // Handle unitary steps, which cannot wraparound.
9979   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9980   //   N = Distance (as unsigned)
9981   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9982     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9983     MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
9984 
9985     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9986     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9987     // case, and see if we can improve the bound.
9988     //
9989     // Explicitly handling this here is necessary because getUnsignedRange
9990     // isn't context-sensitive; it doesn't know that we only care about the
9991     // range inside the loop.
9992     const SCEV *Zero = getZero(Distance->getType());
9993     const SCEV *One = getOne(Distance->getType());
9994     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9995     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9996       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9997       // as "unsigned_max(Distance + 1) - 1".
9998       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9999       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
10000     }
10001     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
10002   }
10003 
10004   // If the condition controls loop exit (the loop exits only if the expression
10005   // is true) and the addition is no-wrap we can use unsigned divide to
10006   // compute the backedge count.  In this case, the step may not divide the
10007   // distance, but we don't care because if the condition is "missed" the loop
10008   // will have undefined behavior due to wrapping.
10009   if (ControlsExit && AddRec->hasNoSelfWrap() &&
10010       loopHasNoAbnormalExits(AddRec->getLoop())) {
10011     const SCEV *Exact =
10012         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
10013     const SCEV *Max = getCouldNotCompute();
10014     if (Exact != getCouldNotCompute()) {
10015       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
10016       Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
10017     }
10018     return ExitLimit(Exact, Max, false, Predicates);
10019   }
10020 
10021   // Solve the general equation.
10022   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
10023                                                getNegativeSCEV(Start), *this);
10024 
10025   const SCEV *M = E;
10026   if (E != getCouldNotCompute()) {
10027     APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L));
10028     M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
10029   }
10030   return ExitLimit(E, M, false, Predicates);
10031 }
10032 
10033 ScalarEvolution::ExitLimit
10034 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
10035   // Loops that look like: while (X == 0) are very strange indeed.  We don't
10036   // handle them yet except for the trivial case.  This could be expanded in the
10037   // future as needed.
10038 
10039   // If the value is a constant, check to see if it is known to be non-zero
10040   // already.  If so, the backedge will execute zero times.
10041   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10042     if (!C->getValue()->isZero())
10043       return getZero(C->getType());
10044     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10045   }
10046 
10047   // We could implement others, but I really doubt anyone writes loops like
10048   // this, and if they did, they would already be constant folded.
10049   return getCouldNotCompute();
10050 }
10051 
10052 std::pair<const BasicBlock *, const BasicBlock *>
10053 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
10054     const {
10055   // If the block has a unique predecessor, then there is no path from the
10056   // predecessor to the block that does not go through the direct edge
10057   // from the predecessor to the block.
10058   if (const BasicBlock *Pred = BB->getSinglePredecessor())
10059     return {Pred, BB};
10060 
10061   // A loop's header is defined to be a block that dominates the loop.
10062   // If the header has a unique predecessor outside the loop, it must be
10063   // a block that has exactly one successor that can reach the loop.
10064   if (const Loop *L = LI.getLoopFor(BB))
10065     return {L->getLoopPredecessor(), L->getHeader()};
10066 
10067   return {nullptr, nullptr};
10068 }
10069 
10070 /// SCEV structural equivalence is usually sufficient for testing whether two
10071 /// expressions are equal, however for the purposes of looking for a condition
10072 /// guarding a loop, it can be useful to be a little more general, since a
10073 /// front-end may have replicated the controlling expression.
10074 static bool HasSameValue(const SCEV *A, const SCEV *B) {
10075   // Quick check to see if they are the same SCEV.
10076   if (A == B) return true;
10077 
10078   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
10079     // Not all instructions that are "identical" compute the same value.  For
10080     // instance, two distinct alloca instructions allocating the same type are
10081     // identical and do not read memory; but compute distinct values.
10082     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
10083   };
10084 
10085   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10086   // two different instructions with the same value. Check for this case.
10087   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
10088     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
10089       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
10090         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
10091           if (ComputesEqualValues(AI, BI))
10092             return true;
10093 
10094   // Otherwise assume they may have a different value.
10095   return false;
10096 }
10097 
10098 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
10099                                            const SCEV *&LHS, const SCEV *&RHS,
10100                                            unsigned Depth,
10101                                            bool ControllingFiniteLoop) {
10102   bool Changed = false;
10103   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10104   // '0 != 0'.
10105   auto TrivialCase = [&](bool TriviallyTrue) {
10106     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
10107     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
10108     return true;
10109   };
10110   // If we hit the max recursion limit bail out.
10111   if (Depth >= 3)
10112     return false;
10113 
10114   // Canonicalize a constant to the right side.
10115   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
10116     // Check for both operands constant.
10117     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
10118       if (ConstantExpr::getICmp(Pred,
10119                                 LHSC->getValue(),
10120                                 RHSC->getValue())->isNullValue())
10121         return TrivialCase(false);
10122       else
10123         return TrivialCase(true);
10124     }
10125     // Otherwise swap the operands to put the constant on the right.
10126     std::swap(LHS, RHS);
10127     Pred = ICmpInst::getSwappedPredicate(Pred);
10128     Changed = true;
10129   }
10130 
10131   // If we're comparing an addrec with a value which is loop-invariant in the
10132   // addrec's loop, put the addrec on the left. Also make a dominance check,
10133   // as both operands could be addrecs loop-invariant in each other's loop.
10134   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
10135     const Loop *L = AR->getLoop();
10136     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
10137       std::swap(LHS, RHS);
10138       Pred = ICmpInst::getSwappedPredicate(Pred);
10139       Changed = true;
10140     }
10141   }
10142 
10143   // If there's a constant operand, canonicalize comparisons with boundary
10144   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10145   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
10146     const APInt &RA = RC->getAPInt();
10147 
10148     bool SimplifiedByConstantRange = false;
10149 
10150     if (!ICmpInst::isEquality(Pred)) {
10151       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
10152       if (ExactCR.isFullSet())
10153         return TrivialCase(true);
10154       else if (ExactCR.isEmptySet())
10155         return TrivialCase(false);
10156 
10157       APInt NewRHS;
10158       CmpInst::Predicate NewPred;
10159       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10160           ICmpInst::isEquality(NewPred)) {
10161         // We were able to convert an inequality to an equality.
10162         Pred = NewPred;
10163         RHS = getConstant(NewRHS);
10164         Changed = SimplifiedByConstantRange = true;
10165       }
10166     }
10167 
10168     if (!SimplifiedByConstantRange) {
10169       switch (Pred) {
10170       default:
10171         break;
10172       case ICmpInst::ICMP_EQ:
10173       case ICmpInst::ICMP_NE:
10174         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10175         if (!RA)
10176           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
10177             if (const SCEVMulExpr *ME =
10178                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
10179               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
10180                   ME->getOperand(0)->isAllOnesValue()) {
10181                 RHS = AE->getOperand(1);
10182                 LHS = ME->getOperand(1);
10183                 Changed = true;
10184               }
10185         break;
10186 
10187 
10188         // The "Should have been caught earlier!" messages refer to the fact
10189         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10190         // should have fired on the corresponding cases, and canonicalized the
10191         // check to trivial case.
10192 
10193       case ICmpInst::ICMP_UGE:
10194         assert(!RA.isMinValue() && "Should have been caught earlier!");
10195         Pred = ICmpInst::ICMP_UGT;
10196         RHS = getConstant(RA - 1);
10197         Changed = true;
10198         break;
10199       case ICmpInst::ICMP_ULE:
10200         assert(!RA.isMaxValue() && "Should have been caught earlier!");
10201         Pred = ICmpInst::ICMP_ULT;
10202         RHS = getConstant(RA + 1);
10203         Changed = true;
10204         break;
10205       case ICmpInst::ICMP_SGE:
10206         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10207         Pred = ICmpInst::ICMP_SGT;
10208         RHS = getConstant(RA - 1);
10209         Changed = true;
10210         break;
10211       case ICmpInst::ICMP_SLE:
10212         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10213         Pred = ICmpInst::ICMP_SLT;
10214         RHS = getConstant(RA + 1);
10215         Changed = true;
10216         break;
10217       }
10218     }
10219   }
10220 
10221   // Check for obvious equality.
10222   if (HasSameValue(LHS, RHS)) {
10223     if (ICmpInst::isTrueWhenEqual(Pred))
10224       return TrivialCase(true);
10225     if (ICmpInst::isFalseWhenEqual(Pred))
10226       return TrivialCase(false);
10227   }
10228 
10229   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10230   // adding or subtracting 1 from one of the operands. This can be done for
10231   // one of two reasons:
10232   // 1) The range of the RHS does not include the (signed/unsigned) boundaries
10233   // 2) The loop is finite, with this comparison controlling the exit. Since the
10234   // loop is finite, the bound cannot include the corresponding boundary
10235   // (otherwise it would loop forever).
10236   switch (Pred) {
10237   case ICmpInst::ICMP_SLE:
10238     if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) {
10239       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10240                        SCEV::FlagNSW);
10241       Pred = ICmpInst::ICMP_SLT;
10242       Changed = true;
10243     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10244       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10245                        SCEV::FlagNSW);
10246       Pred = ICmpInst::ICMP_SLT;
10247       Changed = true;
10248     }
10249     break;
10250   case ICmpInst::ICMP_SGE:
10251     if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) {
10252       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10253                        SCEV::FlagNSW);
10254       Pred = ICmpInst::ICMP_SGT;
10255       Changed = true;
10256     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10257       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10258                        SCEV::FlagNSW);
10259       Pred = ICmpInst::ICMP_SGT;
10260       Changed = true;
10261     }
10262     break;
10263   case ICmpInst::ICMP_ULE:
10264     if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) {
10265       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10266                        SCEV::FlagNUW);
10267       Pred = ICmpInst::ICMP_ULT;
10268       Changed = true;
10269     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10270       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10271       Pred = ICmpInst::ICMP_ULT;
10272       Changed = true;
10273     }
10274     break;
10275   case ICmpInst::ICMP_UGE:
10276     if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) {
10277       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10278       Pred = ICmpInst::ICMP_UGT;
10279       Changed = true;
10280     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10281       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10282                        SCEV::FlagNUW);
10283       Pred = ICmpInst::ICMP_UGT;
10284       Changed = true;
10285     }
10286     break;
10287   default:
10288     break;
10289   }
10290 
10291   // TODO: More simplifications are possible here.
10292 
10293   // Recursively simplify until we either hit a recursion limit or nothing
10294   // changes.
10295   if (Changed)
10296     return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1,
10297                                 ControllingFiniteLoop);
10298 
10299   return Changed;
10300 }
10301 
10302 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10303   return getSignedRangeMax(S).isNegative();
10304 }
10305 
10306 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10307   return getSignedRangeMin(S).isStrictlyPositive();
10308 }
10309 
10310 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10311   return !getSignedRangeMin(S).isNegative();
10312 }
10313 
10314 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10315   return !getSignedRangeMax(S).isStrictlyPositive();
10316 }
10317 
10318 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10319   return getUnsignedRangeMin(S) != 0;
10320 }
10321 
10322 std::pair<const SCEV *, const SCEV *>
10323 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10324   // Compute SCEV on entry of loop L.
10325   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10326   if (Start == getCouldNotCompute())
10327     return { Start, Start };
10328   // Compute post increment SCEV for loop L.
10329   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10330   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10331   return { Start, PostInc };
10332 }
10333 
10334 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10335                                           const SCEV *LHS, const SCEV *RHS) {
10336   // First collect all loops.
10337   SmallPtrSet<const Loop *, 8> LoopsUsed;
10338   getUsedLoops(LHS, LoopsUsed);
10339   getUsedLoops(RHS, LoopsUsed);
10340 
10341   if (LoopsUsed.empty())
10342     return false;
10343 
10344   // Domination relationship must be a linear order on collected loops.
10345 #ifndef NDEBUG
10346   for (auto *L1 : LoopsUsed)
10347     for (auto *L2 : LoopsUsed)
10348       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
10349               DT.dominates(L2->getHeader(), L1->getHeader())) &&
10350              "Domination relationship is not a linear order");
10351 #endif
10352 
10353   const Loop *MDL =
10354       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
10355                         [&](const Loop *L1, const Loop *L2) {
10356          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
10357        });
10358 
10359   // Get init and post increment value for LHS.
10360   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
10361   // if LHS contains unknown non-invariant SCEV then bail out.
10362   if (SplitLHS.first == getCouldNotCompute())
10363     return false;
10364   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
10365   // Get init and post increment value for RHS.
10366   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
10367   // if RHS contains unknown non-invariant SCEV then bail out.
10368   if (SplitRHS.first == getCouldNotCompute())
10369     return false;
10370   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10371   // It is possible that init SCEV contains an invariant load but it does
10372   // not dominate MDL and is not available at MDL loop entry, so we should
10373   // check it here.
10374   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10375       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10376     return false;
10377 
10378   // It seems backedge guard check is faster than entry one so in some cases
10379   // it can speed up whole estimation by short circuit
10380   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10381                                      SplitRHS.second) &&
10382          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10383 }
10384 
10385 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10386                                        const SCEV *LHS, const SCEV *RHS) {
10387   // Canonicalize the inputs first.
10388   (void)SimplifyICmpOperands(Pred, LHS, RHS);
10389 
10390   if (isKnownViaInduction(Pred, LHS, RHS))
10391     return true;
10392 
10393   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10394     return true;
10395 
10396   // Otherwise see what can be done with some simple reasoning.
10397   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10398 }
10399 
10400 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10401                                                   const SCEV *LHS,
10402                                                   const SCEV *RHS) {
10403   if (isKnownPredicate(Pred, LHS, RHS))
10404     return true;
10405   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10406     return false;
10407   return None;
10408 }
10409 
10410 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10411                                          const SCEV *LHS, const SCEV *RHS,
10412                                          const Instruction *CtxI) {
10413   // TODO: Analyze guards and assumes from Context's block.
10414   return isKnownPredicate(Pred, LHS, RHS) ||
10415          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10416 }
10417 
10418 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
10419                                                     const SCEV *LHS,
10420                                                     const SCEV *RHS,
10421                                                     const Instruction *CtxI) {
10422   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10423   if (KnownWithoutContext)
10424     return KnownWithoutContext;
10425 
10426   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10427     return true;
10428   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10429                                           ICmpInst::getInversePredicate(Pred),
10430                                           LHS, RHS))
10431     return false;
10432   return None;
10433 }
10434 
10435 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10436                                               const SCEVAddRecExpr *LHS,
10437                                               const SCEV *RHS) {
10438   const Loop *L = LHS->getLoop();
10439   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10440          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10441 }
10442 
10443 Optional<ScalarEvolution::MonotonicPredicateType>
10444 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10445                                            ICmpInst::Predicate Pred) {
10446   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10447 
10448 #ifndef NDEBUG
10449   // Verify an invariant: inverting the predicate should turn a monotonically
10450   // increasing change to a monotonically decreasing one, and vice versa.
10451   if (Result) {
10452     auto ResultSwapped =
10453         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10454 
10455     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
10456     assert(ResultSwapped.getValue() != Result.getValue() &&
10457            "monotonicity should flip as we flip the predicate");
10458   }
10459 #endif
10460 
10461   return Result;
10462 }
10463 
10464 Optional<ScalarEvolution::MonotonicPredicateType>
10465 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10466                                                ICmpInst::Predicate Pred) {
10467   // A zero step value for LHS means the induction variable is essentially a
10468   // loop invariant value. We don't really depend on the predicate actually
10469   // flipping from false to true (for increasing predicates, and the other way
10470   // around for decreasing predicates), all we care about is that *if* the
10471   // predicate changes then it only changes from false to true.
10472   //
10473   // A zero step value in itself is not very useful, but there may be places
10474   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10475   // as general as possible.
10476 
10477   // Only handle LE/LT/GE/GT predicates.
10478   if (!ICmpInst::isRelational(Pred))
10479     return None;
10480 
10481   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10482   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10483          "Should be greater or less!");
10484 
10485   // Check that AR does not wrap.
10486   if (ICmpInst::isUnsigned(Pred)) {
10487     if (!LHS->hasNoUnsignedWrap())
10488       return None;
10489     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10490   } else {
10491     assert(ICmpInst::isSigned(Pred) &&
10492            "Relational predicate is either signed or unsigned!");
10493     if (!LHS->hasNoSignedWrap())
10494       return None;
10495 
10496     const SCEV *Step = LHS->getStepRecurrence(*this);
10497 
10498     if (isKnownNonNegative(Step))
10499       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10500 
10501     if (isKnownNonPositive(Step))
10502       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10503 
10504     return None;
10505   }
10506 }
10507 
10508 Optional<ScalarEvolution::LoopInvariantPredicate>
10509 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10510                                            const SCEV *LHS, const SCEV *RHS,
10511                                            const Loop *L) {
10512 
10513   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10514   if (!isLoopInvariant(RHS, L)) {
10515     if (!isLoopInvariant(LHS, L))
10516       return None;
10517 
10518     std::swap(LHS, RHS);
10519     Pred = ICmpInst::getSwappedPredicate(Pred);
10520   }
10521 
10522   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10523   if (!ArLHS || ArLHS->getLoop() != L)
10524     return None;
10525 
10526   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10527   if (!MonotonicType)
10528     return None;
10529   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10530   // true as the loop iterates, and the backedge is control dependent on
10531   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10532   //
10533   //   * if the predicate was false in the first iteration then the predicate
10534   //     is never evaluated again, since the loop exits without taking the
10535   //     backedge.
10536   //   * if the predicate was true in the first iteration then it will
10537   //     continue to be true for all future iterations since it is
10538   //     monotonically increasing.
10539   //
10540   // For both the above possibilities, we can replace the loop varying
10541   // predicate with its value on the first iteration of the loop (which is
10542   // loop invariant).
10543   //
10544   // A similar reasoning applies for a monotonically decreasing predicate, by
10545   // replacing true with false and false with true in the above two bullets.
10546   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10547   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10548 
10549   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10550     return None;
10551 
10552   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10553 }
10554 
10555 Optional<ScalarEvolution::LoopInvariantPredicate>
10556 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10557     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10558     const Instruction *CtxI, const SCEV *MaxIter) {
10559   // Try to prove the following set of facts:
10560   // - The predicate is monotonic in the iteration space.
10561   // - If the check does not fail on the 1st iteration:
10562   //   - No overflow will happen during first MaxIter iterations;
10563   //   - It will not fail on the MaxIter'th iteration.
10564   // If the check does fail on the 1st iteration, we leave the loop and no
10565   // other checks matter.
10566 
10567   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10568   if (!isLoopInvariant(RHS, L)) {
10569     if (!isLoopInvariant(LHS, L))
10570       return None;
10571 
10572     std::swap(LHS, RHS);
10573     Pred = ICmpInst::getSwappedPredicate(Pred);
10574   }
10575 
10576   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10577   if (!AR || AR->getLoop() != L)
10578     return None;
10579 
10580   // The predicate must be relational (i.e. <, <=, >=, >).
10581   if (!ICmpInst::isRelational(Pred))
10582     return None;
10583 
10584   // TODO: Support steps other than +/- 1.
10585   const SCEV *Step = AR->getStepRecurrence(*this);
10586   auto *One = getOne(Step->getType());
10587   auto *MinusOne = getNegativeSCEV(One);
10588   if (Step != One && Step != MinusOne)
10589     return None;
10590 
10591   // Type mismatch here means that MaxIter is potentially larger than max
10592   // unsigned value in start type, which mean we cannot prove no wrap for the
10593   // indvar.
10594   if (AR->getType() != MaxIter->getType())
10595     return None;
10596 
10597   // Value of IV on suggested last iteration.
10598   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10599   // Does it still meet the requirement?
10600   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10601     return None;
10602   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10603   // not exceed max unsigned value of this type), this effectively proves
10604   // that there is no wrap during the iteration. To prove that there is no
10605   // signed/unsigned wrap, we need to check that
10606   // Start <= Last for step = 1 or Start >= Last for step = -1.
10607   ICmpInst::Predicate NoOverflowPred =
10608       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10609   if (Step == MinusOne)
10610     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10611   const SCEV *Start = AR->getStart();
10612   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10613     return None;
10614 
10615   // Everything is fine.
10616   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10617 }
10618 
10619 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10620     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10621   if (HasSameValue(LHS, RHS))
10622     return ICmpInst::isTrueWhenEqual(Pred);
10623 
10624   // This code is split out from isKnownPredicate because it is called from
10625   // within isLoopEntryGuardedByCond.
10626 
10627   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10628                          const ConstantRange &RangeRHS) {
10629     return RangeLHS.icmp(Pred, RangeRHS);
10630   };
10631 
10632   // The check at the top of the function catches the case where the values are
10633   // known to be equal.
10634   if (Pred == CmpInst::ICMP_EQ)
10635     return false;
10636 
10637   if (Pred == CmpInst::ICMP_NE) {
10638     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10639         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10640       return true;
10641     auto *Diff = getMinusSCEV(LHS, RHS);
10642     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10643   }
10644 
10645   if (CmpInst::isSigned(Pred))
10646     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10647 
10648   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10649 }
10650 
10651 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10652                                                     const SCEV *LHS,
10653                                                     const SCEV *RHS) {
10654   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10655   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10656   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10657   // OutC1 and OutC2.
10658   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10659                                       APInt &OutC1, APInt &OutC2,
10660                                       SCEV::NoWrapFlags ExpectedFlags) {
10661     const SCEV *XNonConstOp, *XConstOp;
10662     const SCEV *YNonConstOp, *YConstOp;
10663     SCEV::NoWrapFlags XFlagsPresent;
10664     SCEV::NoWrapFlags YFlagsPresent;
10665 
10666     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10667       XConstOp = getZero(X->getType());
10668       XNonConstOp = X;
10669       XFlagsPresent = ExpectedFlags;
10670     }
10671     if (!isa<SCEVConstant>(XConstOp) ||
10672         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10673       return false;
10674 
10675     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10676       YConstOp = getZero(Y->getType());
10677       YNonConstOp = Y;
10678       YFlagsPresent = ExpectedFlags;
10679     }
10680 
10681     if (!isa<SCEVConstant>(YConstOp) ||
10682         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10683       return false;
10684 
10685     if (YNonConstOp != XNonConstOp)
10686       return false;
10687 
10688     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10689     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10690 
10691     return true;
10692   };
10693 
10694   APInt C1;
10695   APInt C2;
10696 
10697   switch (Pred) {
10698   default:
10699     break;
10700 
10701   case ICmpInst::ICMP_SGE:
10702     std::swap(LHS, RHS);
10703     LLVM_FALLTHROUGH;
10704   case ICmpInst::ICMP_SLE:
10705     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10706     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10707       return true;
10708 
10709     break;
10710 
10711   case ICmpInst::ICMP_SGT:
10712     std::swap(LHS, RHS);
10713     LLVM_FALLTHROUGH;
10714   case ICmpInst::ICMP_SLT:
10715     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10716     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10717       return true;
10718 
10719     break;
10720 
10721   case ICmpInst::ICMP_UGE:
10722     std::swap(LHS, RHS);
10723     LLVM_FALLTHROUGH;
10724   case ICmpInst::ICMP_ULE:
10725     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10726     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10727       return true;
10728 
10729     break;
10730 
10731   case ICmpInst::ICMP_UGT:
10732     std::swap(LHS, RHS);
10733     LLVM_FALLTHROUGH;
10734   case ICmpInst::ICMP_ULT:
10735     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10736     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10737       return true;
10738     break;
10739   }
10740 
10741   return false;
10742 }
10743 
10744 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10745                                                    const SCEV *LHS,
10746                                                    const SCEV *RHS) {
10747   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10748     return false;
10749 
10750   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10751   // the stack can result in exponential time complexity.
10752   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10753 
10754   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10755   //
10756   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10757   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10758   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10759   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10760   // use isKnownPredicate later if needed.
10761   return isKnownNonNegative(RHS) &&
10762          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10763          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10764 }
10765 
10766 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10767                                         ICmpInst::Predicate Pred,
10768                                         const SCEV *LHS, const SCEV *RHS) {
10769   // No need to even try if we know the module has no guards.
10770   if (!HasGuards)
10771     return false;
10772 
10773   return any_of(*BB, [&](const Instruction &I) {
10774     using namespace llvm::PatternMatch;
10775 
10776     Value *Condition;
10777     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10778                          m_Value(Condition))) &&
10779            isImpliedCond(Pred, LHS, RHS, Condition, false);
10780   });
10781 }
10782 
10783 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10784 /// protected by a conditional between LHS and RHS.  This is used to
10785 /// to eliminate casts.
10786 bool
10787 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10788                                              ICmpInst::Predicate Pred,
10789                                              const SCEV *LHS, const SCEV *RHS) {
10790   // Interpret a null as meaning no loop, where there is obviously no guard
10791   // (interprocedural conditions notwithstanding).
10792   if (!L) return true;
10793 
10794   if (VerifyIR)
10795     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10796            "This cannot be done on broken IR!");
10797 
10798 
10799   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10800     return true;
10801 
10802   BasicBlock *Latch = L->getLoopLatch();
10803   if (!Latch)
10804     return false;
10805 
10806   BranchInst *LoopContinuePredicate =
10807     dyn_cast<BranchInst>(Latch->getTerminator());
10808   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10809       isImpliedCond(Pred, LHS, RHS,
10810                     LoopContinuePredicate->getCondition(),
10811                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10812     return true;
10813 
10814   // We don't want more than one activation of the following loops on the stack
10815   // -- that can lead to O(n!) time complexity.
10816   if (WalkingBEDominatingConds)
10817     return false;
10818 
10819   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10820 
10821   // See if we can exploit a trip count to prove the predicate.
10822   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10823   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10824   if (LatchBECount != getCouldNotCompute()) {
10825     // We know that Latch branches back to the loop header exactly
10826     // LatchBECount times.  This means the backdege condition at Latch is
10827     // equivalent to  "{0,+,1} u< LatchBECount".
10828     Type *Ty = LatchBECount->getType();
10829     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10830     const SCEV *LoopCounter =
10831       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10832     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10833                       LatchBECount))
10834       return true;
10835   }
10836 
10837   // Check conditions due to any @llvm.assume intrinsics.
10838   for (auto &AssumeVH : AC.assumptions()) {
10839     if (!AssumeVH)
10840       continue;
10841     auto *CI = cast<CallInst>(AssumeVH);
10842     if (!DT.dominates(CI, Latch->getTerminator()))
10843       continue;
10844 
10845     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10846       return true;
10847   }
10848 
10849   // If the loop is not reachable from the entry block, we risk running into an
10850   // infinite loop as we walk up into the dom tree.  These loops do not matter
10851   // anyway, so we just return a conservative answer when we see them.
10852   if (!DT.isReachableFromEntry(L->getHeader()))
10853     return false;
10854 
10855   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10856     return true;
10857 
10858   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10859        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10860     assert(DTN && "should reach the loop header before reaching the root!");
10861 
10862     BasicBlock *BB = DTN->getBlock();
10863     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10864       return true;
10865 
10866     BasicBlock *PBB = BB->getSinglePredecessor();
10867     if (!PBB)
10868       continue;
10869 
10870     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10871     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10872       continue;
10873 
10874     Value *Condition = ContinuePredicate->getCondition();
10875 
10876     // If we have an edge `E` within the loop body that dominates the only
10877     // latch, the condition guarding `E` also guards the backedge.  This
10878     // reasoning works only for loops with a single latch.
10879 
10880     BasicBlockEdge DominatingEdge(PBB, BB);
10881     if (DominatingEdge.isSingleEdge()) {
10882       // We're constructively (and conservatively) enumerating edges within the
10883       // loop body that dominate the latch.  The dominator tree better agree
10884       // with us on this:
10885       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10886 
10887       if (isImpliedCond(Pred, LHS, RHS, Condition,
10888                         BB != ContinuePredicate->getSuccessor(0)))
10889         return true;
10890     }
10891   }
10892 
10893   return false;
10894 }
10895 
10896 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10897                                                      ICmpInst::Predicate Pred,
10898                                                      const SCEV *LHS,
10899                                                      const SCEV *RHS) {
10900   if (VerifyIR)
10901     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10902            "This cannot be done on broken IR!");
10903 
10904   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10905   // the facts (a >= b && a != b) separately. A typical situation is when the
10906   // non-strict comparison is known from ranges and non-equality is known from
10907   // dominating predicates. If we are proving strict comparison, we always try
10908   // to prove non-equality and non-strict comparison separately.
10909   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10910   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10911   bool ProvedNonStrictComparison = false;
10912   bool ProvedNonEquality = false;
10913 
10914   auto SplitAndProve =
10915     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10916     if (!ProvedNonStrictComparison)
10917       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10918     if (!ProvedNonEquality)
10919       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10920     if (ProvedNonStrictComparison && ProvedNonEquality)
10921       return true;
10922     return false;
10923   };
10924 
10925   if (ProvingStrictComparison) {
10926     auto ProofFn = [&](ICmpInst::Predicate P) {
10927       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10928     };
10929     if (SplitAndProve(ProofFn))
10930       return true;
10931   }
10932 
10933   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10934   auto ProveViaGuard = [&](const BasicBlock *Block) {
10935     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10936       return true;
10937     if (ProvingStrictComparison) {
10938       auto ProofFn = [&](ICmpInst::Predicate P) {
10939         return isImpliedViaGuard(Block, P, LHS, RHS);
10940       };
10941       if (SplitAndProve(ProofFn))
10942         return true;
10943     }
10944     return false;
10945   };
10946 
10947   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10948   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10949     const Instruction *CtxI = &BB->front();
10950     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
10951       return true;
10952     if (ProvingStrictComparison) {
10953       auto ProofFn = [&](ICmpInst::Predicate P) {
10954         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
10955       };
10956       if (SplitAndProve(ProofFn))
10957         return true;
10958     }
10959     return false;
10960   };
10961 
10962   // Starting at the block's predecessor, climb up the predecessor chain, as long
10963   // as there are predecessors that can be found that have unique successors
10964   // leading to the original block.
10965   const Loop *ContainingLoop = LI.getLoopFor(BB);
10966   const BasicBlock *PredBB;
10967   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10968     PredBB = ContainingLoop->getLoopPredecessor();
10969   else
10970     PredBB = BB->getSinglePredecessor();
10971   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10972        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10973     if (ProveViaGuard(Pair.first))
10974       return true;
10975 
10976     const BranchInst *LoopEntryPredicate =
10977         dyn_cast<BranchInst>(Pair.first->getTerminator());
10978     if (!LoopEntryPredicate ||
10979         LoopEntryPredicate->isUnconditional())
10980       continue;
10981 
10982     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10983                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10984       return true;
10985   }
10986 
10987   // Check conditions due to any @llvm.assume intrinsics.
10988   for (auto &AssumeVH : AC.assumptions()) {
10989     if (!AssumeVH)
10990       continue;
10991     auto *CI = cast<CallInst>(AssumeVH);
10992     if (!DT.dominates(CI, BB))
10993       continue;
10994 
10995     if (ProveViaCond(CI->getArgOperand(0), false))
10996       return true;
10997   }
10998 
10999   return false;
11000 }
11001 
11002 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
11003                                                ICmpInst::Predicate Pred,
11004                                                const SCEV *LHS,
11005                                                const SCEV *RHS) {
11006   // Interpret a null as meaning no loop, where there is obviously no guard
11007   // (interprocedural conditions notwithstanding).
11008   if (!L)
11009     return false;
11010 
11011   // Both LHS and RHS must be available at loop entry.
11012   assert(isAvailableAtLoopEntry(LHS, L) &&
11013          "LHS is not available at Loop Entry");
11014   assert(isAvailableAtLoopEntry(RHS, L) &&
11015          "RHS is not available at Loop Entry");
11016 
11017   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11018     return true;
11019 
11020   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
11021 }
11022 
11023 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11024                                     const SCEV *RHS,
11025                                     const Value *FoundCondValue, bool Inverse,
11026                                     const Instruction *CtxI) {
11027   // False conditions implies anything. Do not bother analyzing it further.
11028   if (FoundCondValue ==
11029       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
11030     return true;
11031 
11032   if (!PendingLoopPredicates.insert(FoundCondValue).second)
11033     return false;
11034 
11035   auto ClearOnExit =
11036       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
11037 
11038   // Recursively handle And and Or conditions.
11039   const Value *Op0, *Op1;
11040   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
11041     if (!Inverse)
11042       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11043              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11044   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
11045     if (Inverse)
11046       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11047              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11048   }
11049 
11050   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
11051   if (!ICI) return false;
11052 
11053   // Now that we found a conditional branch that dominates the loop or controls
11054   // the loop latch. Check to see if it is the comparison we are looking for.
11055   ICmpInst::Predicate FoundPred;
11056   if (Inverse)
11057     FoundPred = ICI->getInversePredicate();
11058   else
11059     FoundPred = ICI->getPredicate();
11060 
11061   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
11062   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
11063 
11064   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
11065 }
11066 
11067 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11068                                     const SCEV *RHS,
11069                                     ICmpInst::Predicate FoundPred,
11070                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
11071                                     const Instruction *CtxI) {
11072   // Balance the types.
11073   if (getTypeSizeInBits(LHS->getType()) <
11074       getTypeSizeInBits(FoundLHS->getType())) {
11075     // For unsigned and equality predicates, try to prove that both found
11076     // operands fit into narrow unsigned range. If so, try to prove facts in
11077     // narrow types.
11078     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() &&
11079         !FoundRHS->getType()->isPointerTy()) {
11080       auto *NarrowType = LHS->getType();
11081       auto *WideType = FoundLHS->getType();
11082       auto BitWidth = getTypeSizeInBits(NarrowType);
11083       const SCEV *MaxValue = getZeroExtendExpr(
11084           getConstant(APInt::getMaxValue(BitWidth)), WideType);
11085       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
11086                                           MaxValue) &&
11087           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
11088                                           MaxValue)) {
11089         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
11090         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
11091         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
11092                                        TruncFoundRHS, CtxI))
11093           return true;
11094       }
11095     }
11096 
11097     if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
11098       return false;
11099     if (CmpInst::isSigned(Pred)) {
11100       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
11101       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
11102     } else {
11103       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
11104       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
11105     }
11106   } else if (getTypeSizeInBits(LHS->getType()) >
11107       getTypeSizeInBits(FoundLHS->getType())) {
11108     if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
11109       return false;
11110     if (CmpInst::isSigned(FoundPred)) {
11111       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
11112       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
11113     } else {
11114       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
11115       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
11116     }
11117   }
11118   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
11119                                     FoundRHS, CtxI);
11120 }
11121 
11122 bool ScalarEvolution::isImpliedCondBalancedTypes(
11123     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11124     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
11125     const Instruction *CtxI) {
11126   assert(getTypeSizeInBits(LHS->getType()) ==
11127              getTypeSizeInBits(FoundLHS->getType()) &&
11128          "Types should be balanced!");
11129   // Canonicalize the query to match the way instcombine will have
11130   // canonicalized the comparison.
11131   if (SimplifyICmpOperands(Pred, LHS, RHS))
11132     if (LHS == RHS)
11133       return CmpInst::isTrueWhenEqual(Pred);
11134   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
11135     if (FoundLHS == FoundRHS)
11136       return CmpInst::isFalseWhenEqual(FoundPred);
11137 
11138   // Check to see if we can make the LHS or RHS match.
11139   if (LHS == FoundRHS || RHS == FoundLHS) {
11140     if (isa<SCEVConstant>(RHS)) {
11141       std::swap(FoundLHS, FoundRHS);
11142       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
11143     } else {
11144       std::swap(LHS, RHS);
11145       Pred = ICmpInst::getSwappedPredicate(Pred);
11146     }
11147   }
11148 
11149   // Check whether the found predicate is the same as the desired predicate.
11150   if (FoundPred == Pred)
11151     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11152 
11153   // Check whether swapping the found predicate makes it the same as the
11154   // desired predicate.
11155   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
11156     // We can write the implication
11157     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
11158     // using one of the following ways:
11159     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
11160     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
11161     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
11162     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
11163     // Forms 1. and 2. require swapping the operands of one condition. Don't
11164     // do this if it would break canonical constant/addrec ordering.
11165     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11166       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11167                                    CtxI);
11168     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11169       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11170 
11171     // There's no clear preference between forms 3. and 4., try both.  Avoid
11172     // forming getNotSCEV of pointer values as the resulting subtract is
11173     // not legal.
11174     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11175         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11176                               FoundLHS, FoundRHS, CtxI))
11177       return true;
11178 
11179     if (!FoundLHS->getType()->isPointerTy() &&
11180         !FoundRHS->getType()->isPointerTy() &&
11181         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11182                               getNotSCEV(FoundRHS), CtxI))
11183       return true;
11184 
11185     return false;
11186   }
11187 
11188   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11189                                    CmpInst::Predicate P2) {
11190     assert(P1 != P2 && "Handled earlier!");
11191     return CmpInst::isRelational(P2) &&
11192            P1 == CmpInst::getFlippedSignednessPredicate(P2);
11193   };
11194   if (IsSignFlippedPredicate(Pred, FoundPred)) {
11195     // Unsigned comparison is the same as signed comparison when both the
11196     // operands are non-negative or negative.
11197     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11198         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11199       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11200     // Create local copies that we can freely swap and canonicalize our
11201     // conditions to "le/lt".
11202     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11203     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11204                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11205     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11206       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
11207       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
11208       std::swap(CanonicalLHS, CanonicalRHS);
11209       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11210     }
11211     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11212            "Must be!");
11213     assert((ICmpInst::isLT(CanonicalFoundPred) ||
11214             ICmpInst::isLE(CanonicalFoundPred)) &&
11215            "Must be!");
11216     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11217       // Use implication:
11218       // x <u y && y >=s 0 --> x <s y.
11219       // If we can prove the left part, the right part is also proven.
11220       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11221                                    CanonicalRHS, CanonicalFoundLHS,
11222                                    CanonicalFoundRHS);
11223     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11224       // Use implication:
11225       // x <s y && y <s 0 --> x <u y.
11226       // If we can prove the left part, the right part is also proven.
11227       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11228                                    CanonicalRHS, CanonicalFoundLHS,
11229                                    CanonicalFoundRHS);
11230   }
11231 
11232   // Check if we can make progress by sharpening ranges.
11233   if (FoundPred == ICmpInst::ICMP_NE &&
11234       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11235 
11236     const SCEVConstant *C = nullptr;
11237     const SCEV *V = nullptr;
11238 
11239     if (isa<SCEVConstant>(FoundLHS)) {
11240       C = cast<SCEVConstant>(FoundLHS);
11241       V = FoundRHS;
11242     } else {
11243       C = cast<SCEVConstant>(FoundRHS);
11244       V = FoundLHS;
11245     }
11246 
11247     // The guarding predicate tells us that C != V. If the known range
11248     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
11249     // range we consider has to correspond to same signedness as the
11250     // predicate we're interested in folding.
11251 
11252     APInt Min = ICmpInst::isSigned(Pred) ?
11253         getSignedRangeMin(V) : getUnsignedRangeMin(V);
11254 
11255     if (Min == C->getAPInt()) {
11256       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11257       // This is true even if (Min + 1) wraps around -- in case of
11258       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11259 
11260       APInt SharperMin = Min + 1;
11261 
11262       switch (Pred) {
11263         case ICmpInst::ICMP_SGE:
11264         case ICmpInst::ICMP_UGE:
11265           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
11266           // RHS, we're done.
11267           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11268                                     CtxI))
11269             return true;
11270           LLVM_FALLTHROUGH;
11271 
11272         case ICmpInst::ICMP_SGT:
11273         case ICmpInst::ICMP_UGT:
11274           // We know from the range information that (V `Pred` Min ||
11275           // V == Min).  We know from the guarding condition that !(V
11276           // == Min).  This gives us
11277           //
11278           //       V `Pred` Min || V == Min && !(V == Min)
11279           //   =>  V `Pred` Min
11280           //
11281           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11282 
11283           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
11284             return true;
11285           break;
11286 
11287         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11288         case ICmpInst::ICMP_SLE:
11289         case ICmpInst::ICMP_ULE:
11290           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11291                                     LHS, V, getConstant(SharperMin), CtxI))
11292             return true;
11293           LLVM_FALLTHROUGH;
11294 
11295         case ICmpInst::ICMP_SLT:
11296         case ICmpInst::ICMP_ULT:
11297           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11298                                     LHS, V, getConstant(Min), CtxI))
11299             return true;
11300           break;
11301 
11302         default:
11303           // No change
11304           break;
11305       }
11306     }
11307   }
11308 
11309   // Check whether the actual condition is beyond sufficient.
11310   if (FoundPred == ICmpInst::ICMP_EQ)
11311     if (ICmpInst::isTrueWhenEqual(Pred))
11312       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11313         return true;
11314   if (Pred == ICmpInst::ICMP_NE)
11315     if (!ICmpInst::isTrueWhenEqual(FoundPred))
11316       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11317         return true;
11318 
11319   // Otherwise assume the worst.
11320   return false;
11321 }
11322 
11323 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11324                                      const SCEV *&L, const SCEV *&R,
11325                                      SCEV::NoWrapFlags &Flags) {
11326   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
11327   if (!AE || AE->getNumOperands() != 2)
11328     return false;
11329 
11330   L = AE->getOperand(0);
11331   R = AE->getOperand(1);
11332   Flags = AE->getNoWrapFlags();
11333   return true;
11334 }
11335 
11336 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
11337                                                            const SCEV *Less) {
11338   // We avoid subtracting expressions here because this function is usually
11339   // fairly deep in the call stack (i.e. is called many times).
11340 
11341   // X - X = 0.
11342   if (More == Less)
11343     return APInt(getTypeSizeInBits(More->getType()), 0);
11344 
11345   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
11346     const auto *LAR = cast<SCEVAddRecExpr>(Less);
11347     const auto *MAR = cast<SCEVAddRecExpr>(More);
11348 
11349     if (LAR->getLoop() != MAR->getLoop())
11350       return None;
11351 
11352     // We look at affine expressions only; not for correctness but to keep
11353     // getStepRecurrence cheap.
11354     if (!LAR->isAffine() || !MAR->isAffine())
11355       return None;
11356 
11357     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
11358       return None;
11359 
11360     Less = LAR->getStart();
11361     More = MAR->getStart();
11362 
11363     // fall through
11364   }
11365 
11366   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
11367     const auto &M = cast<SCEVConstant>(More)->getAPInt();
11368     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
11369     return M - L;
11370   }
11371 
11372   SCEV::NoWrapFlags Flags;
11373   const SCEV *LLess = nullptr, *RLess = nullptr;
11374   const SCEV *LMore = nullptr, *RMore = nullptr;
11375   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11376   // Compare (X + C1) vs X.
11377   if (splitBinaryAdd(Less, LLess, RLess, Flags))
11378     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11379       if (RLess == More)
11380         return -(C1->getAPInt());
11381 
11382   // Compare X vs (X + C2).
11383   if (splitBinaryAdd(More, LMore, RMore, Flags))
11384     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11385       if (RMore == Less)
11386         return C2->getAPInt();
11387 
11388   // Compare (X + C1) vs (X + C2).
11389   if (C1 && C2 && RLess == RMore)
11390     return C2->getAPInt() - C1->getAPInt();
11391 
11392   return None;
11393 }
11394 
11395 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11396     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11397     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11398   // Try to recognize the following pattern:
11399   //
11400   //   FoundRHS = ...
11401   // ...
11402   // loop:
11403   //   FoundLHS = {Start,+,W}
11404   // context_bb: // Basic block from the same loop
11405   //   known(Pred, FoundLHS, FoundRHS)
11406   //
11407   // If some predicate is known in the context of a loop, it is also known on
11408   // each iteration of this loop, including the first iteration. Therefore, in
11409   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11410   // prove the original pred using this fact.
11411   if (!CtxI)
11412     return false;
11413   const BasicBlock *ContextBB = CtxI->getParent();
11414   // Make sure AR varies in the context block.
11415   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
11416     const Loop *L = AR->getLoop();
11417     // Make sure that context belongs to the loop and executes on 1st iteration
11418     // (if it ever executes at all).
11419     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11420       return false;
11421     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
11422       return false;
11423     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
11424   }
11425 
11426   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
11427     const Loop *L = AR->getLoop();
11428     // Make sure that context belongs to the loop and executes on 1st iteration
11429     // (if it ever executes at all).
11430     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11431       return false;
11432     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
11433       return false;
11434     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
11435   }
11436 
11437   return false;
11438 }
11439 
11440 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11441     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11442     const SCEV *FoundLHS, const SCEV *FoundRHS) {
11443   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11444     return false;
11445 
11446   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11447   if (!AddRecLHS)
11448     return false;
11449 
11450   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
11451   if (!AddRecFoundLHS)
11452     return false;
11453 
11454   // We'd like to let SCEV reason about control dependencies, so we constrain
11455   // both the inequalities to be about add recurrences on the same loop.  This
11456   // way we can use isLoopEntryGuardedByCond later.
11457 
11458   const Loop *L = AddRecFoundLHS->getLoop();
11459   if (L != AddRecLHS->getLoop())
11460     return false;
11461 
11462   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
11463   //
11464   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11465   //                                                                  ... (2)
11466   //
11467   // Informal proof for (2), assuming (1) [*]:
11468   //
11469   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
11470   //
11471   // Then
11472   //
11473   //       FoundLHS s< FoundRHS s< INT_MIN - C
11474   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
11475   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
11476   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
11477   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
11478   // <=>  FoundLHS + C s< FoundRHS + C
11479   //
11480   // [*]: (1) can be proved by ruling out overflow.
11481   //
11482   // [**]: This can be proved by analyzing all the four possibilities:
11483   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
11484   //    (A s>= 0, B s>= 0).
11485   //
11486   // Note:
11487   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
11488   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
11489   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
11490   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
11491   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
11492   // C)".
11493 
11494   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
11495   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
11496   if (!LDiff || !RDiff || *LDiff != *RDiff)
11497     return false;
11498 
11499   if (LDiff->isMinValue())
11500     return true;
11501 
11502   APInt FoundRHSLimit;
11503 
11504   if (Pred == CmpInst::ICMP_ULT) {
11505     FoundRHSLimit = -(*RDiff);
11506   } else {
11507     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
11508     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11509   }
11510 
11511   // Try to prove (1) or (2), as needed.
11512   return isAvailableAtLoopEntry(FoundRHS, L) &&
11513          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11514                                   getConstant(FoundRHSLimit));
11515 }
11516 
11517 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11518                                         const SCEV *LHS, const SCEV *RHS,
11519                                         const SCEV *FoundLHS,
11520                                         const SCEV *FoundRHS, unsigned Depth) {
11521   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11522 
11523   auto ClearOnExit = make_scope_exit([&]() {
11524     if (LPhi) {
11525       bool Erased = PendingMerges.erase(LPhi);
11526       assert(Erased && "Failed to erase LPhi!");
11527       (void)Erased;
11528     }
11529     if (RPhi) {
11530       bool Erased = PendingMerges.erase(RPhi);
11531       assert(Erased && "Failed to erase RPhi!");
11532       (void)Erased;
11533     }
11534   });
11535 
11536   // Find respective Phis and check that they are not being pending.
11537   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11538     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11539       if (!PendingMerges.insert(Phi).second)
11540         return false;
11541       LPhi = Phi;
11542     }
11543   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11544     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11545       // If we detect a loop of Phi nodes being processed by this method, for
11546       // example:
11547       //
11548       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11549       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11550       //
11551       // we don't want to deal with a case that complex, so return conservative
11552       // answer false.
11553       if (!PendingMerges.insert(Phi).second)
11554         return false;
11555       RPhi = Phi;
11556     }
11557 
11558   // If none of LHS, RHS is a Phi, nothing to do here.
11559   if (!LPhi && !RPhi)
11560     return false;
11561 
11562   // If there is a SCEVUnknown Phi we are interested in, make it left.
11563   if (!LPhi) {
11564     std::swap(LHS, RHS);
11565     std::swap(FoundLHS, FoundRHS);
11566     std::swap(LPhi, RPhi);
11567     Pred = ICmpInst::getSwappedPredicate(Pred);
11568   }
11569 
11570   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11571   const BasicBlock *LBB = LPhi->getParent();
11572   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11573 
11574   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11575     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11576            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11577            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11578   };
11579 
11580   if (RPhi && RPhi->getParent() == LBB) {
11581     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11582     // If we compare two Phis from the same block, and for each entry block
11583     // the predicate is true for incoming values from this block, then the
11584     // predicate is also true for the Phis.
11585     for (const BasicBlock *IncBB : predecessors(LBB)) {
11586       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11587       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11588       if (!ProvedEasily(L, R))
11589         return false;
11590     }
11591   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11592     // Case two: RHS is also a Phi from the same basic block, and it is an
11593     // AddRec. It means that there is a loop which has both AddRec and Unknown
11594     // PHIs, for it we can compare incoming values of AddRec from above the loop
11595     // and latch with their respective incoming values of LPhi.
11596     // TODO: Generalize to handle loops with many inputs in a header.
11597     if (LPhi->getNumIncomingValues() != 2) return false;
11598 
11599     auto *RLoop = RAR->getLoop();
11600     auto *Predecessor = RLoop->getLoopPredecessor();
11601     assert(Predecessor && "Loop with AddRec with no predecessor?");
11602     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11603     if (!ProvedEasily(L1, RAR->getStart()))
11604       return false;
11605     auto *Latch = RLoop->getLoopLatch();
11606     assert(Latch && "Loop with AddRec with no latch?");
11607     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11608     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11609       return false;
11610   } else {
11611     // In all other cases go over inputs of LHS and compare each of them to RHS,
11612     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11613     // At this point RHS is either a non-Phi, or it is a Phi from some block
11614     // different from LBB.
11615     for (const BasicBlock *IncBB : predecessors(LBB)) {
11616       // Check that RHS is available in this block.
11617       if (!dominates(RHS, IncBB))
11618         return false;
11619       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11620       // Make sure L does not refer to a value from a potentially previous
11621       // iteration of a loop.
11622       if (!properlyDominates(L, IncBB))
11623         return false;
11624       if (!ProvedEasily(L, RHS))
11625         return false;
11626     }
11627   }
11628   return true;
11629 }
11630 
11631 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
11632                                                     const SCEV *LHS,
11633                                                     const SCEV *RHS,
11634                                                     const SCEV *FoundLHS,
11635                                                     const SCEV *FoundRHS) {
11636   // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue).  First, make
11637   // sure that we are dealing with same LHS.
11638   if (RHS == FoundRHS) {
11639     std::swap(LHS, RHS);
11640     std::swap(FoundLHS, FoundRHS);
11641     Pred = ICmpInst::getSwappedPredicate(Pred);
11642   }
11643   if (LHS != FoundLHS)
11644     return false;
11645 
11646   auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
11647   if (!SUFoundRHS)
11648     return false;
11649 
11650   Value *Shiftee, *ShiftValue;
11651 
11652   using namespace PatternMatch;
11653   if (match(SUFoundRHS->getValue(),
11654             m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
11655     auto *ShifteeS = getSCEV(Shiftee);
11656     // Prove one of the following:
11657     // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
11658     // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
11659     // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
11660     //   ---> LHS <s RHS
11661     // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
11662     //   ---> LHS <=s RHS
11663     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
11664       return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
11665     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
11666       if (isKnownNonNegative(ShifteeS))
11667         return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
11668   }
11669 
11670   return false;
11671 }
11672 
11673 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11674                                             const SCEV *LHS, const SCEV *RHS,
11675                                             const SCEV *FoundLHS,
11676                                             const SCEV *FoundRHS,
11677                                             const Instruction *CtxI) {
11678   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11679     return true;
11680 
11681   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11682     return true;
11683 
11684   if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
11685     return true;
11686 
11687   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11688                                           CtxI))
11689     return true;
11690 
11691   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11692                                      FoundLHS, FoundRHS);
11693 }
11694 
11695 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11696 template <typename MinMaxExprType>
11697 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11698                                  const SCEV *Candidate) {
11699   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11700   if (!MinMaxExpr)
11701     return false;
11702 
11703   return is_contained(MinMaxExpr->operands(), Candidate);
11704 }
11705 
11706 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11707                                            ICmpInst::Predicate Pred,
11708                                            const SCEV *LHS, const SCEV *RHS) {
11709   // If both sides are affine addrecs for the same loop, with equal
11710   // steps, and we know the recurrences don't wrap, then we only
11711   // need to check the predicate on the starting values.
11712 
11713   if (!ICmpInst::isRelational(Pred))
11714     return false;
11715 
11716   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11717   if (!LAR)
11718     return false;
11719   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11720   if (!RAR)
11721     return false;
11722   if (LAR->getLoop() != RAR->getLoop())
11723     return false;
11724   if (!LAR->isAffine() || !RAR->isAffine())
11725     return false;
11726 
11727   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11728     return false;
11729 
11730   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11731                          SCEV::FlagNSW : SCEV::FlagNUW;
11732   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11733     return false;
11734 
11735   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11736 }
11737 
11738 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11739 /// expression?
11740 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11741                                         ICmpInst::Predicate Pred,
11742                                         const SCEV *LHS, const SCEV *RHS) {
11743   switch (Pred) {
11744   default:
11745     return false;
11746 
11747   case ICmpInst::ICMP_SGE:
11748     std::swap(LHS, RHS);
11749     LLVM_FALLTHROUGH;
11750   case ICmpInst::ICMP_SLE:
11751     return
11752         // min(A, ...) <= A
11753         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11754         // A <= max(A, ...)
11755         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11756 
11757   case ICmpInst::ICMP_UGE:
11758     std::swap(LHS, RHS);
11759     LLVM_FALLTHROUGH;
11760   case ICmpInst::ICMP_ULE:
11761     return
11762         // min(A, ...) <= A
11763         // FIXME: what about umin_seq?
11764         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11765         // A <= max(A, ...)
11766         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11767   }
11768 
11769   llvm_unreachable("covered switch fell through?!");
11770 }
11771 
11772 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11773                                              const SCEV *LHS, const SCEV *RHS,
11774                                              const SCEV *FoundLHS,
11775                                              const SCEV *FoundRHS,
11776                                              unsigned Depth) {
11777   assert(getTypeSizeInBits(LHS->getType()) ==
11778              getTypeSizeInBits(RHS->getType()) &&
11779          "LHS and RHS have different sizes?");
11780   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11781              getTypeSizeInBits(FoundRHS->getType()) &&
11782          "FoundLHS and FoundRHS have different sizes?");
11783   // We want to avoid hurting the compile time with analysis of too big trees.
11784   if (Depth > MaxSCEVOperationsImplicationDepth)
11785     return false;
11786 
11787   // We only want to work with GT comparison so far.
11788   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11789     Pred = CmpInst::getSwappedPredicate(Pred);
11790     std::swap(LHS, RHS);
11791     std::swap(FoundLHS, FoundRHS);
11792   }
11793 
11794   // For unsigned, try to reduce it to corresponding signed comparison.
11795   if (Pred == ICmpInst::ICMP_UGT)
11796     // We can replace unsigned predicate with its signed counterpart if all
11797     // involved values are non-negative.
11798     // TODO: We could have better support for unsigned.
11799     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11800       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11801       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11802       // use this fact to prove that LHS and RHS are non-negative.
11803       const SCEV *MinusOne = getMinusOne(LHS->getType());
11804       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11805                                 FoundRHS) &&
11806           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11807                                 FoundRHS))
11808         Pred = ICmpInst::ICMP_SGT;
11809     }
11810 
11811   if (Pred != ICmpInst::ICMP_SGT)
11812     return false;
11813 
11814   auto GetOpFromSExt = [&](const SCEV *S) {
11815     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11816       return Ext->getOperand();
11817     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11818     // the constant in some cases.
11819     return S;
11820   };
11821 
11822   // Acquire values from extensions.
11823   auto *OrigLHS = LHS;
11824   auto *OrigFoundLHS = FoundLHS;
11825   LHS = GetOpFromSExt(LHS);
11826   FoundLHS = GetOpFromSExt(FoundLHS);
11827 
11828   // Is the SGT predicate can be proved trivially or using the found context.
11829   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11830     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11831            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11832                                   FoundRHS, Depth + 1);
11833   };
11834 
11835   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11836     // We want to avoid creation of any new non-constant SCEV. Since we are
11837     // going to compare the operands to RHS, we should be certain that we don't
11838     // need any size extensions for this. So let's decline all cases when the
11839     // sizes of types of LHS and RHS do not match.
11840     // TODO: Maybe try to get RHS from sext to catch more cases?
11841     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11842       return false;
11843 
11844     // Should not overflow.
11845     if (!LHSAddExpr->hasNoSignedWrap())
11846       return false;
11847 
11848     auto *LL = LHSAddExpr->getOperand(0);
11849     auto *LR = LHSAddExpr->getOperand(1);
11850     auto *MinusOne = getMinusOne(RHS->getType());
11851 
11852     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11853     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11854       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11855     };
11856     // Try to prove the following rule:
11857     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11858     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11859     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11860       return true;
11861   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11862     Value *LL, *LR;
11863     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11864 
11865     using namespace llvm::PatternMatch;
11866 
11867     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11868       // Rules for division.
11869       // We are going to perform some comparisons with Denominator and its
11870       // derivative expressions. In general case, creating a SCEV for it may
11871       // lead to a complex analysis of the entire graph, and in particular it
11872       // can request trip count recalculation for the same loop. This would
11873       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11874       // this, we only want to create SCEVs that are constants in this section.
11875       // So we bail if Denominator is not a constant.
11876       if (!isa<ConstantInt>(LR))
11877         return false;
11878 
11879       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11880 
11881       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11882       // then a SCEV for the numerator already exists and matches with FoundLHS.
11883       auto *Numerator = getExistingSCEV(LL);
11884       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11885         return false;
11886 
11887       // Make sure that the numerator matches with FoundLHS and the denominator
11888       // is positive.
11889       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11890         return false;
11891 
11892       auto *DTy = Denominator->getType();
11893       auto *FRHSTy = FoundRHS->getType();
11894       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11895         // One of types is a pointer and another one is not. We cannot extend
11896         // them properly to a wider type, so let us just reject this case.
11897         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11898         // to avoid this check.
11899         return false;
11900 
11901       // Given that:
11902       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11903       auto *WTy = getWiderType(DTy, FRHSTy);
11904       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11905       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11906 
11907       // Try to prove the following rule:
11908       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11909       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11910       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11911       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11912       if (isKnownNonPositive(RHS) &&
11913           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11914         return true;
11915 
11916       // Try to prove the following rule:
11917       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11918       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11919       // If we divide it by Denominator > 2, then:
11920       // 1. If FoundLHS is negative, then the result is 0.
11921       // 2. If FoundLHS is non-negative, then the result is non-negative.
11922       // Anyways, the result is non-negative.
11923       auto *MinusOne = getMinusOne(WTy);
11924       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11925       if (isKnownNegative(RHS) &&
11926           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11927         return true;
11928     }
11929   }
11930 
11931   // If our expression contained SCEVUnknown Phis, and we split it down and now
11932   // need to prove something for them, try to prove the predicate for every
11933   // possible incoming values of those Phis.
11934   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11935     return true;
11936 
11937   return false;
11938 }
11939 
11940 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11941                                         const SCEV *LHS, const SCEV *RHS) {
11942   // zext x u<= sext x, sext x s<= zext x
11943   switch (Pred) {
11944   case ICmpInst::ICMP_SGE:
11945     std::swap(LHS, RHS);
11946     LLVM_FALLTHROUGH;
11947   case ICmpInst::ICMP_SLE: {
11948     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11949     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11950     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11951     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11952       return true;
11953     break;
11954   }
11955   case ICmpInst::ICMP_UGE:
11956     std::swap(LHS, RHS);
11957     LLVM_FALLTHROUGH;
11958   case ICmpInst::ICMP_ULE: {
11959     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11960     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11961     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11962     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11963       return true;
11964     break;
11965   }
11966   default:
11967     break;
11968   };
11969   return false;
11970 }
11971 
11972 bool
11973 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11974                                            const SCEV *LHS, const SCEV *RHS) {
11975   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11976          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11977          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11978          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11979          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11980 }
11981 
11982 bool
11983 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11984                                              const SCEV *LHS, const SCEV *RHS,
11985                                              const SCEV *FoundLHS,
11986                                              const SCEV *FoundRHS) {
11987   switch (Pred) {
11988   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11989   case ICmpInst::ICMP_EQ:
11990   case ICmpInst::ICMP_NE:
11991     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11992       return true;
11993     break;
11994   case ICmpInst::ICMP_SLT:
11995   case ICmpInst::ICMP_SLE:
11996     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11997         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11998       return true;
11999     break;
12000   case ICmpInst::ICMP_SGT:
12001   case ICmpInst::ICMP_SGE:
12002     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
12003         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
12004       return true;
12005     break;
12006   case ICmpInst::ICMP_ULT:
12007   case ICmpInst::ICMP_ULE:
12008     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
12009         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
12010       return true;
12011     break;
12012   case ICmpInst::ICMP_UGT:
12013   case ICmpInst::ICMP_UGE:
12014     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
12015         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
12016       return true;
12017     break;
12018   }
12019 
12020   // Maybe it can be proved via operations?
12021   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
12022     return true;
12023 
12024   return false;
12025 }
12026 
12027 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
12028                                                      const SCEV *LHS,
12029                                                      const SCEV *RHS,
12030                                                      const SCEV *FoundLHS,
12031                                                      const SCEV *FoundRHS) {
12032   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
12033     // The restriction on `FoundRHS` be lifted easily -- it exists only to
12034     // reduce the compile time impact of this optimization.
12035     return false;
12036 
12037   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
12038   if (!Addend)
12039     return false;
12040 
12041   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
12042 
12043   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12044   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
12045   ConstantRange FoundLHSRange =
12046       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
12047 
12048   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12049   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
12050 
12051   // We can also compute the range of values for `LHS` that satisfy the
12052   // consequent, "`LHS` `Pred` `RHS`":
12053   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
12054   // The antecedent implies the consequent if every value of `LHS` that
12055   // satisfies the antecedent also satisfies the consequent.
12056   return LHSRange.icmp(Pred, ConstRHS);
12057 }
12058 
12059 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
12060                                         bool IsSigned) {
12061   assert(isKnownPositive(Stride) && "Positive stride expected!");
12062 
12063   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12064   const SCEV *One = getOne(Stride->getType());
12065 
12066   if (IsSigned) {
12067     APInt MaxRHS = getSignedRangeMax(RHS);
12068     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
12069     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12070 
12071     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12072     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
12073   }
12074 
12075   APInt MaxRHS = getUnsignedRangeMax(RHS);
12076   APInt MaxValue = APInt::getMaxValue(BitWidth);
12077   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12078 
12079   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12080   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
12081 }
12082 
12083 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
12084                                         bool IsSigned) {
12085 
12086   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12087   const SCEV *One = getOne(Stride->getType());
12088 
12089   if (IsSigned) {
12090     APInt MinRHS = getSignedRangeMin(RHS);
12091     APInt MinValue = APInt::getSignedMinValue(BitWidth);
12092     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12093 
12094     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12095     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
12096   }
12097 
12098   APInt MinRHS = getUnsignedRangeMin(RHS);
12099   APInt MinValue = APInt::getMinValue(BitWidth);
12100   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12101 
12102   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12103   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
12104 }
12105 
12106 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
12107   // umin(N, 1) + floor((N - umin(N, 1)) / D)
12108   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12109   // expression fixes the case of N=0.
12110   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
12111   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
12112   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
12113 }
12114 
12115 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
12116                                                     const SCEV *Stride,
12117                                                     const SCEV *End,
12118                                                     unsigned BitWidth,
12119                                                     bool IsSigned) {
12120   // The logic in this function assumes we can represent a positive stride.
12121   // If we can't, the backedge-taken count must be zero.
12122   if (IsSigned && BitWidth == 1)
12123     return getZero(Stride->getType());
12124 
12125   // This code has only been closely audited for negative strides in the
12126   // unsigned comparison case, it may be correct for signed comparison, but
12127   // that needs to be established.
12128   assert((!IsSigned || !isKnownNonPositive(Stride)) &&
12129          "Stride is expected strictly positive for signed case!");
12130 
12131   // Calculate the maximum backedge count based on the range of values
12132   // permitted by Start, End, and Stride.
12133   APInt MinStart =
12134       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
12135 
12136   APInt MinStride =
12137       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
12138 
12139   // We assume either the stride is positive, or the backedge-taken count
12140   // is zero. So force StrideForMaxBECount to be at least one.
12141   APInt One(BitWidth, 1);
12142   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
12143                                        : APIntOps::umax(One, MinStride);
12144 
12145   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
12146                             : APInt::getMaxValue(BitWidth);
12147   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12148 
12149   // Although End can be a MAX expression we estimate MaxEnd considering only
12150   // the case End = RHS of the loop termination condition. This is safe because
12151   // in the other case (End - Start) is zero, leading to a zero maximum backedge
12152   // taken count.
12153   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
12154                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
12155 
12156   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12157   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
12158                     : APIntOps::umax(MaxEnd, MinStart);
12159 
12160   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
12161                          getConstant(StrideForMaxBECount) /* Step */);
12162 }
12163 
12164 ScalarEvolution::ExitLimit
12165 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12166                                   const Loop *L, bool IsSigned,
12167                                   bool ControlsExit, bool AllowPredicates) {
12168   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12169 
12170   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12171   bool PredicatedIV = false;
12172 
12173   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12174     // Can we prove this loop *must* be UB if overflow of IV occurs?
12175     // Reasoning goes as follows:
12176     // * Suppose the IV did self wrap.
12177     // * If Stride evenly divides the iteration space, then once wrap
12178     //   occurs, the loop must revisit the same values.
12179     // * We know that RHS is invariant, and that none of those values
12180     //   caused this exit to be taken previously.  Thus, this exit is
12181     //   dynamically dead.
12182     // * If this is the sole exit, then a dead exit implies the loop
12183     //   must be infinite if there are no abnormal exits.
12184     // * If the loop were infinite, then it must either not be mustprogress
12185     //   or have side effects. Otherwise, it must be UB.
12186     // * It can't (by assumption), be UB so we have contradicted our
12187     //   premise and can conclude the IV did not in fact self-wrap.
12188     if (!isLoopInvariant(RHS, L))
12189       return false;
12190 
12191     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
12192     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12193       return false;
12194 
12195     if (!ControlsExit || !loopHasNoAbnormalExits(L))
12196       return false;
12197 
12198     return loopIsFiniteByAssumption(L);
12199   };
12200 
12201   if (!IV) {
12202     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12203       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12204       if (AR && AR->getLoop() == L && AR->isAffine()) {
12205         auto canProveNUW = [&]() {
12206           if (!isLoopInvariant(RHS, L))
12207             return false;
12208 
12209           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12210             // We need the sequence defined by AR to strictly increase in the
12211             // unsigned integer domain for the logic below to hold.
12212             return false;
12213 
12214           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12215           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12216           // If RHS <=u Limit, then there must exist a value V in the sequence
12217           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12218           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
12219           // overflow occurs.  This limit also implies that a signed comparison
12220           // (in the wide bitwidth) is equivalent to an unsigned comparison as
12221           // the high bits on both sides must be zero.
12222           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12223           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12224           Limit = Limit.zext(OuterBitWidth);
12225           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12226         };
12227         auto Flags = AR->getNoWrapFlags();
12228         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12229           Flags = setFlags(Flags, SCEV::FlagNUW);
12230 
12231         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12232         if (AR->hasNoUnsignedWrap()) {
12233           // Emulate what getZeroExtendExpr would have done during construction
12234           // if we'd been able to infer the fact just above at that time.
12235           const SCEV *Step = AR->getStepRecurrence(*this);
12236           Type *Ty = ZExt->getType();
12237           auto *S = getAddRecExpr(
12238             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12239             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12240           IV = dyn_cast<SCEVAddRecExpr>(S);
12241         }
12242       }
12243     }
12244   }
12245 
12246 
12247   if (!IV && AllowPredicates) {
12248     // Try to make this an AddRec using runtime tests, in the first X
12249     // iterations of this loop, where X is the SCEV expression found by the
12250     // algorithm below.
12251     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12252     PredicatedIV = true;
12253   }
12254 
12255   // Avoid weird loops
12256   if (!IV || IV->getLoop() != L || !IV->isAffine())
12257     return getCouldNotCompute();
12258 
12259   // A precondition of this method is that the condition being analyzed
12260   // reaches an exiting branch which dominates the latch.  Given that, we can
12261   // assume that an increment which violates the nowrap specification and
12262   // produces poison must cause undefined behavior when the resulting poison
12263   // value is branched upon and thus we can conclude that the backedge is
12264   // taken no more often than would be required to produce that poison value.
12265   // Note that a well defined loop can exit on the iteration which violates
12266   // the nowrap specification if there is another exit (either explicit or
12267   // implicit/exceptional) which causes the loop to execute before the
12268   // exiting instruction we're analyzing would trigger UB.
12269   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12270   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12271   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12272 
12273   const SCEV *Stride = IV->getStepRecurrence(*this);
12274 
12275   bool PositiveStride = isKnownPositive(Stride);
12276 
12277   // Avoid negative or zero stride values.
12278   if (!PositiveStride) {
12279     // We can compute the correct backedge taken count for loops with unknown
12280     // strides if we can prove that the loop is not an infinite loop with side
12281     // effects. Here's the loop structure we are trying to handle -
12282     //
12283     // i = start
12284     // do {
12285     //   A[i] = i;
12286     //   i += s;
12287     // } while (i < end);
12288     //
12289     // The backedge taken count for such loops is evaluated as -
12290     // (max(end, start + stride) - start - 1) /u stride
12291     //
12292     // The additional preconditions that we need to check to prove correctness
12293     // of the above formula is as follows -
12294     //
12295     // a) IV is either nuw or nsw depending upon signedness (indicated by the
12296     //    NoWrap flag).
12297     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12298     //    no side effects within the loop)
12299     // c) loop has a single static exit (with no abnormal exits)
12300     //
12301     // Precondition a) implies that if the stride is negative, this is a single
12302     // trip loop. The backedge taken count formula reduces to zero in this case.
12303     //
12304     // Precondition b) and c) combine to imply that if rhs is invariant in L,
12305     // then a zero stride means the backedge can't be taken without executing
12306     // undefined behavior.
12307     //
12308     // The positive stride case is the same as isKnownPositive(Stride) returning
12309     // true (original behavior of the function).
12310     //
12311     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12312         !loopHasNoAbnormalExits(L))
12313       return getCouldNotCompute();
12314 
12315     // This bailout is protecting the logic in computeMaxBECountForLT which
12316     // has not yet been sufficiently auditted or tested with negative strides.
12317     // We used to filter out all known-non-positive cases here, we're in the
12318     // process of being less restrictive bit by bit.
12319     if (IsSigned && isKnownNonPositive(Stride))
12320       return getCouldNotCompute();
12321 
12322     if (!isKnownNonZero(Stride)) {
12323       // If we have a step of zero, and RHS isn't invariant in L, we don't know
12324       // if it might eventually be greater than start and if so, on which
12325       // iteration.  We can't even produce a useful upper bound.
12326       if (!isLoopInvariant(RHS, L))
12327         return getCouldNotCompute();
12328 
12329       // We allow a potentially zero stride, but we need to divide by stride
12330       // below.  Since the loop can't be infinite and this check must control
12331       // the sole exit, we can infer the exit must be taken on the first
12332       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
12333       // we know the numerator in the divides below must be zero, so we can
12334       // pick an arbitrary non-zero value for the denominator (e.g. stride)
12335       // and produce the right result.
12336       // FIXME: Handle the case where Stride is poison?
12337       auto wouldZeroStrideBeUB = [&]() {
12338         // Proof by contradiction.  Suppose the stride were zero.  If we can
12339         // prove that the backedge *is* taken on the first iteration, then since
12340         // we know this condition controls the sole exit, we must have an
12341         // infinite loop.  We can't have a (well defined) infinite loop per
12342         // check just above.
12343         // Note: The (Start - Stride) term is used to get the start' term from
12344         // (start' + stride,+,stride). Remember that we only care about the
12345         // result of this expression when stride == 0 at runtime.
12346         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
12347         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
12348       };
12349       if (!wouldZeroStrideBeUB()) {
12350         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
12351       }
12352     }
12353   } else if (!Stride->isOne() && !NoWrap) {
12354     auto isUBOnWrap = [&]() {
12355       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
12356       // follows trivially from the fact that every (un)signed-wrapped, but
12357       // not self-wrapped value must be LT than the last value before
12358       // (un)signed wrap.  Since we know that last value didn't exit, nor
12359       // will any smaller one.
12360       return canAssumeNoSelfWrap(IV);
12361     };
12362 
12363     // Avoid proven overflow cases: this will ensure that the backedge taken
12364     // count will not generate any unsigned overflow. Relaxed no-overflow
12365     // conditions exploit NoWrapFlags, allowing to optimize in presence of
12366     // undefined behaviors like the case of C language.
12367     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12368       return getCouldNotCompute();
12369   }
12370 
12371   // On all paths just preceeding, we established the following invariant:
12372   //   IV can be assumed not to overflow up to and including the exiting
12373   //   iteration.  We proved this in one of two ways:
12374   //   1) We can show overflow doesn't occur before the exiting iteration
12375   //      1a) canIVOverflowOnLT, and b) step of one
12376   //   2) We can show that if overflow occurs, the loop must execute UB
12377   //      before any possible exit.
12378   // Note that we have not yet proved RHS invariant (in general).
12379 
12380   const SCEV *Start = IV->getStart();
12381 
12382   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12383   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12384   // Use integer-typed versions for actual computation; we can't subtract
12385   // pointers in general.
12386   const SCEV *OrigStart = Start;
12387   const SCEV *OrigRHS = RHS;
12388   if (Start->getType()->isPointerTy()) {
12389     Start = getLosslessPtrToIntExpr(Start);
12390     if (isa<SCEVCouldNotCompute>(Start))
12391       return Start;
12392   }
12393   if (RHS->getType()->isPointerTy()) {
12394     RHS = getLosslessPtrToIntExpr(RHS);
12395     if (isa<SCEVCouldNotCompute>(RHS))
12396       return RHS;
12397   }
12398 
12399   // When the RHS is not invariant, we do not know the end bound of the loop and
12400   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
12401   // calculate the MaxBECount, given the start, stride and max value for the end
12402   // bound of the loop (RHS), and the fact that IV does not overflow (which is
12403   // checked above).
12404   if (!isLoopInvariant(RHS, L)) {
12405     const SCEV *MaxBECount = computeMaxBECountForLT(
12406         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12407     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
12408                      false /*MaxOrZero*/, Predicates);
12409   }
12410 
12411   // We use the expression (max(End,Start)-Start)/Stride to describe the
12412   // backedge count, as if the backedge is taken at least once max(End,Start)
12413   // is End and so the result is as above, and if not max(End,Start) is Start
12414   // so we get a backedge count of zero.
12415   const SCEV *BECount = nullptr;
12416   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
12417   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
12418   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
12419   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
12420   // Can we prove (max(RHS,Start) > Start - Stride?
12421   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
12422       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
12423     // In this case, we can use a refined formula for computing backedge taken
12424     // count.  The general formula remains:
12425     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12426     // We want to use the alternate formula:
12427     //   "((End - 1) - (Start - Stride)) /u Stride"
12428     // Let's do a quick case analysis to show these are equivalent under
12429     // our precondition that max(RHS,Start) > Start - Stride.
12430     // * For RHS <= Start, the backedge-taken count must be zero.
12431     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12432     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12433     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12434     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
12435     //     this to the stride of 1 case.
12436     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12437     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12438     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12439     //   "((RHS - (Start - Stride) - 1) /u Stride".
12440     //   Our preconditions trivially imply no overflow in that form.
12441     const SCEV *MinusOne = getMinusOne(Stride->getType());
12442     const SCEV *Numerator =
12443         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
12444     BECount = getUDivExpr(Numerator, Stride);
12445   }
12446 
12447   const SCEV *BECountIfBackedgeTaken = nullptr;
12448   if (!BECount) {
12449     auto canProveRHSGreaterThanEqualStart = [&]() {
12450       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12451       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
12452         return true;
12453 
12454       // (RHS > Start - 1) implies RHS >= Start.
12455       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12456       //   "Start - 1" doesn't overflow.
12457       // * For signed comparison, if Start - 1 does overflow, it's equal
12458       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12459       // * For unsigned comparison, if Start - 1 does overflow, it's equal
12460       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12461       //
12462       // FIXME: Should isLoopEntryGuardedByCond do this for us?
12463       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12464       auto *StartMinusOne = getAddExpr(OrigStart,
12465                                        getMinusOne(OrigStart->getType()));
12466       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
12467     };
12468 
12469     // If we know that RHS >= Start in the context of loop, then we know that
12470     // max(RHS, Start) = RHS at this point.
12471     const SCEV *End;
12472     if (canProveRHSGreaterThanEqualStart()) {
12473       End = RHS;
12474     } else {
12475       // If RHS < Start, the backedge will be taken zero times.  So in
12476       // general, we can write the backedge-taken count as:
12477       //
12478       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
12479       //
12480       // We convert it to the following to make it more convenient for SCEV:
12481       //
12482       //     ceil(max(RHS, Start) - Start) / Stride
12483       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
12484 
12485       // See what would happen if we assume the backedge is taken. This is
12486       // used to compute MaxBECount.
12487       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
12488     }
12489 
12490     // At this point, we know:
12491     //
12492     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
12493     // 2. The index variable doesn't overflow.
12494     //
12495     // Therefore, we know N exists such that
12496     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
12497     // doesn't overflow.
12498     //
12499     // Using this information, try to prove whether the addition in
12500     // "(Start - End) + (Stride - 1)" has unsigned overflow.
12501     const SCEV *One = getOne(Stride->getType());
12502     bool MayAddOverflow = [&] {
12503       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
12504         if (StrideC->getAPInt().isPowerOf2()) {
12505           // Suppose Stride is a power of two, and Start/End are unsigned
12506           // integers.  Let UMAX be the largest representable unsigned
12507           // integer.
12508           //
12509           // By the preconditions of this function, we know
12510           // "(Start + Stride * N) >= End", and this doesn't overflow.
12511           // As a formula:
12512           //
12513           //   End <= (Start + Stride * N) <= UMAX
12514           //
12515           // Subtracting Start from all the terms:
12516           //
12517           //   End - Start <= Stride * N <= UMAX - Start
12518           //
12519           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
12520           //
12521           //   End - Start <= Stride * N <= UMAX
12522           //
12523           // Stride * N is a multiple of Stride. Therefore,
12524           //
12525           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
12526           //
12527           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
12528           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
12529           //
12530           //   End - Start <= Stride * N <= UMAX - Stride - 1
12531           //
12532           // Dropping the middle term:
12533           //
12534           //   End - Start <= UMAX - Stride - 1
12535           //
12536           // Adding Stride - 1 to both sides:
12537           //
12538           //   (End - Start) + (Stride - 1) <= UMAX
12539           //
12540           // In other words, the addition doesn't have unsigned overflow.
12541           //
12542           // A similar proof works if we treat Start/End as signed values.
12543           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
12544           // use signed max instead of unsigned max. Note that we're trying
12545           // to prove a lack of unsigned overflow in either case.
12546           return false;
12547         }
12548       }
12549       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
12550         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
12551         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
12552         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
12553         //
12554         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
12555         return false;
12556       }
12557       return true;
12558     }();
12559 
12560     const SCEV *Delta = getMinusSCEV(End, Start);
12561     if (!MayAddOverflow) {
12562       // floor((D + (S - 1)) / S)
12563       // We prefer this formulation if it's legal because it's fewer operations.
12564       BECount =
12565           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
12566     } else {
12567       BECount = getUDivCeilSCEV(Delta, Stride);
12568     }
12569   }
12570 
12571   const SCEV *MaxBECount;
12572   bool MaxOrZero = false;
12573   if (isa<SCEVConstant>(BECount)) {
12574     MaxBECount = BECount;
12575   } else if (BECountIfBackedgeTaken &&
12576              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
12577     // If we know exactly how many times the backedge will be taken if it's
12578     // taken at least once, then the backedge count will either be that or
12579     // zero.
12580     MaxBECount = BECountIfBackedgeTaken;
12581     MaxOrZero = true;
12582   } else {
12583     MaxBECount = computeMaxBECountForLT(
12584         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12585   }
12586 
12587   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12588       !isa<SCEVCouldNotCompute>(BECount))
12589     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12590 
12591   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12592 }
12593 
12594 ScalarEvolution::ExitLimit
12595 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12596                                      const Loop *L, bool IsSigned,
12597                                      bool ControlsExit, bool AllowPredicates) {
12598   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12599   // We handle only IV > Invariant
12600   if (!isLoopInvariant(RHS, L))
12601     return getCouldNotCompute();
12602 
12603   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12604   if (!IV && AllowPredicates)
12605     // Try to make this an AddRec using runtime tests, in the first X
12606     // iterations of this loop, where X is the SCEV expression found by the
12607     // algorithm below.
12608     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12609 
12610   // Avoid weird loops
12611   if (!IV || IV->getLoop() != L || !IV->isAffine())
12612     return getCouldNotCompute();
12613 
12614   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12615   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12616   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12617 
12618   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12619 
12620   // Avoid negative or zero stride values
12621   if (!isKnownPositive(Stride))
12622     return getCouldNotCompute();
12623 
12624   // Avoid proven overflow cases: this will ensure that the backedge taken count
12625   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12626   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12627   // behaviors like the case of C language.
12628   if (!Stride->isOne() && !NoWrap)
12629     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12630       return getCouldNotCompute();
12631 
12632   const SCEV *Start = IV->getStart();
12633   const SCEV *End = RHS;
12634   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12635     // If we know that Start >= RHS in the context of loop, then we know that
12636     // min(RHS, Start) = RHS at this point.
12637     if (isLoopEntryGuardedByCond(
12638             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12639       End = RHS;
12640     else
12641       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12642   }
12643 
12644   if (Start->getType()->isPointerTy()) {
12645     Start = getLosslessPtrToIntExpr(Start);
12646     if (isa<SCEVCouldNotCompute>(Start))
12647       return Start;
12648   }
12649   if (End->getType()->isPointerTy()) {
12650     End = getLosslessPtrToIntExpr(End);
12651     if (isa<SCEVCouldNotCompute>(End))
12652       return End;
12653   }
12654 
12655   // Compute ((Start - End) + (Stride - 1)) / Stride.
12656   // FIXME: This can overflow. Holding off on fixing this for now;
12657   // howManyGreaterThans will hopefully be gone soon.
12658   const SCEV *One = getOne(Stride->getType());
12659   const SCEV *BECount = getUDivExpr(
12660       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12661 
12662   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12663                             : getUnsignedRangeMax(Start);
12664 
12665   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12666                              : getUnsignedRangeMin(Stride);
12667 
12668   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12669   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12670                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12671 
12672   // Although End can be a MIN expression we estimate MinEnd considering only
12673   // the case End = RHS. This is safe because in the other case (Start - End)
12674   // is zero, leading to a zero maximum backedge taken count.
12675   APInt MinEnd =
12676     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12677              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12678 
12679   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12680                                ? BECount
12681                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12682                                                  getConstant(MinStride));
12683 
12684   if (isa<SCEVCouldNotCompute>(MaxBECount))
12685     MaxBECount = BECount;
12686 
12687   return ExitLimit(BECount, MaxBECount, false, Predicates);
12688 }
12689 
12690 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12691                                                     ScalarEvolution &SE) const {
12692   if (Range.isFullSet())  // Infinite loop.
12693     return SE.getCouldNotCompute();
12694 
12695   // If the start is a non-zero constant, shift the range to simplify things.
12696   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12697     if (!SC->getValue()->isZero()) {
12698       SmallVector<const SCEV *, 4> Operands(operands());
12699       Operands[0] = SE.getZero(SC->getType());
12700       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12701                                              getNoWrapFlags(FlagNW));
12702       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12703         return ShiftedAddRec->getNumIterationsInRange(
12704             Range.subtract(SC->getAPInt()), SE);
12705       // This is strange and shouldn't happen.
12706       return SE.getCouldNotCompute();
12707     }
12708 
12709   // The only time we can solve this is when we have all constant indices.
12710   // Otherwise, we cannot determine the overflow conditions.
12711   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12712     return SE.getCouldNotCompute();
12713 
12714   // Okay at this point we know that all elements of the chrec are constants and
12715   // that the start element is zero.
12716 
12717   // First check to see if the range contains zero.  If not, the first
12718   // iteration exits.
12719   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12720   if (!Range.contains(APInt(BitWidth, 0)))
12721     return SE.getZero(getType());
12722 
12723   if (isAffine()) {
12724     // If this is an affine expression then we have this situation:
12725     //   Solve {0,+,A} in Range  ===  Ax in Range
12726 
12727     // We know that zero is in the range.  If A is positive then we know that
12728     // the upper value of the range must be the first possible exit value.
12729     // If A is negative then the lower of the range is the last possible loop
12730     // value.  Also note that we already checked for a full range.
12731     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12732     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12733 
12734     // The exit value should be (End+A)/A.
12735     APInt ExitVal = (End + A).udiv(A);
12736     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12737 
12738     // Evaluate at the exit value.  If we really did fall out of the valid
12739     // range, then we computed our trip count, otherwise wrap around or other
12740     // things must have happened.
12741     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12742     if (Range.contains(Val->getValue()))
12743       return SE.getCouldNotCompute();  // Something strange happened
12744 
12745     // Ensure that the previous value is in the range.
12746     assert(Range.contains(
12747            EvaluateConstantChrecAtConstant(this,
12748            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12749            "Linear scev computation is off in a bad way!");
12750     return SE.getConstant(ExitValue);
12751   }
12752 
12753   if (isQuadratic()) {
12754     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12755       return SE.getConstant(S.getValue());
12756   }
12757 
12758   return SE.getCouldNotCompute();
12759 }
12760 
12761 const SCEVAddRecExpr *
12762 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12763   assert(getNumOperands() > 1 && "AddRec with zero step?");
12764   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12765   // but in this case we cannot guarantee that the value returned will be an
12766   // AddRec because SCEV does not have a fixed point where it stops
12767   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12768   // may happen if we reach arithmetic depth limit while simplifying. So we
12769   // construct the returned value explicitly.
12770   SmallVector<const SCEV *, 3> Ops;
12771   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12772   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12773   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12774     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12775   // We know that the last operand is not a constant zero (otherwise it would
12776   // have been popped out earlier). This guarantees us that if the result has
12777   // the same last operand, then it will also not be popped out, meaning that
12778   // the returned value will be an AddRec.
12779   const SCEV *Last = getOperand(getNumOperands() - 1);
12780   assert(!Last->isZero() && "Recurrency with zero step?");
12781   Ops.push_back(Last);
12782   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12783                                                SCEV::FlagAnyWrap));
12784 }
12785 
12786 // Return true when S contains at least an undef value.
12787 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
12788   return SCEVExprContains(S, [](const SCEV *S) {
12789     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12790       return isa<UndefValue>(SU->getValue());
12791     return false;
12792   });
12793 }
12794 
12795 // Return true when S contains a value that is a nullptr.
12796 bool ScalarEvolution::containsErasedValue(const SCEV *S) const {
12797   return SCEVExprContains(S, [](const SCEV *S) {
12798     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12799       return SU->getValue() == nullptr;
12800     return false;
12801   });
12802 }
12803 
12804 /// Return the size of an element read or written by Inst.
12805 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12806   Type *Ty;
12807   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12808     Ty = Store->getValueOperand()->getType();
12809   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12810     Ty = Load->getType();
12811   else
12812     return nullptr;
12813 
12814   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12815   return getSizeOfExpr(ETy, Ty);
12816 }
12817 
12818 //===----------------------------------------------------------------------===//
12819 //                   SCEVCallbackVH Class Implementation
12820 //===----------------------------------------------------------------------===//
12821 
12822 void ScalarEvolution::SCEVCallbackVH::deleted() {
12823   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12824   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12825     SE->ConstantEvolutionLoopExitValue.erase(PN);
12826   SE->eraseValueFromMap(getValPtr());
12827   // this now dangles!
12828 }
12829 
12830 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12831   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12832 
12833   // Forget all the expressions associated with users of the old value,
12834   // so that future queries will recompute the expressions using the new
12835   // value.
12836   Value *Old = getValPtr();
12837   SmallVector<User *, 16> Worklist(Old->users());
12838   SmallPtrSet<User *, 8> Visited;
12839   while (!Worklist.empty()) {
12840     User *U = Worklist.pop_back_val();
12841     // Deleting the Old value will cause this to dangle. Postpone
12842     // that until everything else is done.
12843     if (U == Old)
12844       continue;
12845     if (!Visited.insert(U).second)
12846       continue;
12847     if (PHINode *PN = dyn_cast<PHINode>(U))
12848       SE->ConstantEvolutionLoopExitValue.erase(PN);
12849     SE->eraseValueFromMap(U);
12850     llvm::append_range(Worklist, U->users());
12851   }
12852   // Delete the Old value.
12853   if (PHINode *PN = dyn_cast<PHINode>(Old))
12854     SE->ConstantEvolutionLoopExitValue.erase(PN);
12855   SE->eraseValueFromMap(Old);
12856   // this now dangles!
12857 }
12858 
12859 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12860   : CallbackVH(V), SE(se) {}
12861 
12862 //===----------------------------------------------------------------------===//
12863 //                   ScalarEvolution Class Implementation
12864 //===----------------------------------------------------------------------===//
12865 
12866 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12867                                  AssumptionCache &AC, DominatorTree &DT,
12868                                  LoopInfo &LI)
12869     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12870       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12871       LoopDispositions(64), BlockDispositions(64) {
12872   // To use guards for proving predicates, we need to scan every instruction in
12873   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12874   // time if the IR does not actually contain any calls to
12875   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12876   //
12877   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12878   // to _add_ guards to the module when there weren't any before, and wants
12879   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12880   // efficient in lieu of being smart in that rather obscure case.
12881 
12882   auto *GuardDecl = F.getParent()->getFunction(
12883       Intrinsic::getName(Intrinsic::experimental_guard));
12884   HasGuards = GuardDecl && !GuardDecl->use_empty();
12885 }
12886 
12887 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12888     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12889       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12890       ValueExprMap(std::move(Arg.ValueExprMap)),
12891       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12892       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12893       PendingMerges(std::move(Arg.PendingMerges)),
12894       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12895       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12896       PredicatedBackedgeTakenCounts(
12897           std::move(Arg.PredicatedBackedgeTakenCounts)),
12898       BECountUsers(std::move(Arg.BECountUsers)),
12899       ConstantEvolutionLoopExitValue(
12900           std::move(Arg.ConstantEvolutionLoopExitValue)),
12901       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12902       ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
12903       LoopDispositions(std::move(Arg.LoopDispositions)),
12904       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12905       BlockDispositions(std::move(Arg.BlockDispositions)),
12906       SCEVUsers(std::move(Arg.SCEVUsers)),
12907       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12908       SignedRanges(std::move(Arg.SignedRanges)),
12909       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12910       UniquePreds(std::move(Arg.UniquePreds)),
12911       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12912       LoopUsers(std::move(Arg.LoopUsers)),
12913       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12914       FirstUnknown(Arg.FirstUnknown) {
12915   Arg.FirstUnknown = nullptr;
12916 }
12917 
12918 ScalarEvolution::~ScalarEvolution() {
12919   // Iterate through all the SCEVUnknown instances and call their
12920   // destructors, so that they release their references to their values.
12921   for (SCEVUnknown *U = FirstUnknown; U;) {
12922     SCEVUnknown *Tmp = U;
12923     U = U->Next;
12924     Tmp->~SCEVUnknown();
12925   }
12926   FirstUnknown = nullptr;
12927 
12928   ExprValueMap.clear();
12929   ValueExprMap.clear();
12930   HasRecMap.clear();
12931   BackedgeTakenCounts.clear();
12932   PredicatedBackedgeTakenCounts.clear();
12933 
12934   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12935   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12936   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12937   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12938   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12939 }
12940 
12941 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12942   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12943 }
12944 
12945 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12946                           const Loop *L) {
12947   // Print all inner loops first
12948   for (Loop *I : *L)
12949     PrintLoopInfo(OS, SE, I);
12950 
12951   OS << "Loop ";
12952   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12953   OS << ": ";
12954 
12955   SmallVector<BasicBlock *, 8> ExitingBlocks;
12956   L->getExitingBlocks(ExitingBlocks);
12957   if (ExitingBlocks.size() != 1)
12958     OS << "<multiple exits> ";
12959 
12960   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12961     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12962   else
12963     OS << "Unpredictable backedge-taken count.\n";
12964 
12965   if (ExitingBlocks.size() > 1)
12966     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12967       OS << "  exit count for " << ExitingBlock->getName() << ": "
12968          << *SE->getExitCount(L, ExitingBlock) << "\n";
12969     }
12970 
12971   OS << "Loop ";
12972   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12973   OS << ": ";
12974 
12975   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12976     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12977     if (SE->isBackedgeTakenCountMaxOrZero(L))
12978       OS << ", actual taken count either this or zero.";
12979   } else {
12980     OS << "Unpredictable max backedge-taken count. ";
12981   }
12982 
12983   OS << "\n"
12984         "Loop ";
12985   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12986   OS << ": ";
12987 
12988   SmallVector<const SCEVPredicate *, 4> Preds;
12989   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
12990   if (!isa<SCEVCouldNotCompute>(PBT)) {
12991     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12992     OS << " Predicates:\n";
12993     for (auto *P : Preds)
12994       P->print(OS, 4);
12995   } else {
12996     OS << "Unpredictable predicated backedge-taken count. ";
12997   }
12998   OS << "\n";
12999 
13000   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
13001     OS << "Loop ";
13002     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13003     OS << ": ";
13004     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
13005   }
13006 }
13007 
13008 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
13009   switch (LD) {
13010   case ScalarEvolution::LoopVariant:
13011     return "Variant";
13012   case ScalarEvolution::LoopInvariant:
13013     return "Invariant";
13014   case ScalarEvolution::LoopComputable:
13015     return "Computable";
13016   }
13017   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
13018 }
13019 
13020 void ScalarEvolution::print(raw_ostream &OS) const {
13021   // ScalarEvolution's implementation of the print method is to print
13022   // out SCEV values of all instructions that are interesting. Doing
13023   // this potentially causes it to create new SCEV objects though,
13024   // which technically conflicts with the const qualifier. This isn't
13025   // observable from outside the class though, so casting away the
13026   // const isn't dangerous.
13027   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13028 
13029   if (ClassifyExpressions) {
13030     OS << "Classifying expressions for: ";
13031     F.printAsOperand(OS, /*PrintType=*/false);
13032     OS << "\n";
13033     for (Instruction &I : instructions(F))
13034       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
13035         OS << I << '\n';
13036         OS << "  -->  ";
13037         const SCEV *SV = SE.getSCEV(&I);
13038         SV->print(OS);
13039         if (!isa<SCEVCouldNotCompute>(SV)) {
13040           OS << " U: ";
13041           SE.getUnsignedRange(SV).print(OS);
13042           OS << " S: ";
13043           SE.getSignedRange(SV).print(OS);
13044         }
13045 
13046         const Loop *L = LI.getLoopFor(I.getParent());
13047 
13048         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
13049         if (AtUse != SV) {
13050           OS << "  -->  ";
13051           AtUse->print(OS);
13052           if (!isa<SCEVCouldNotCompute>(AtUse)) {
13053             OS << " U: ";
13054             SE.getUnsignedRange(AtUse).print(OS);
13055             OS << " S: ";
13056             SE.getSignedRange(AtUse).print(OS);
13057           }
13058         }
13059 
13060         if (L) {
13061           OS << "\t\t" "Exits: ";
13062           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
13063           if (!SE.isLoopInvariant(ExitValue, L)) {
13064             OS << "<<Unknown>>";
13065           } else {
13066             OS << *ExitValue;
13067           }
13068 
13069           bool First = true;
13070           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
13071             if (First) {
13072               OS << "\t\t" "LoopDispositions: { ";
13073               First = false;
13074             } else {
13075               OS << ", ";
13076             }
13077 
13078             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13079             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
13080           }
13081 
13082           for (auto *InnerL : depth_first(L)) {
13083             if (InnerL == L)
13084               continue;
13085             if (First) {
13086               OS << "\t\t" "LoopDispositions: { ";
13087               First = false;
13088             } else {
13089               OS << ", ";
13090             }
13091 
13092             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13093             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
13094           }
13095 
13096           OS << " }";
13097         }
13098 
13099         OS << "\n";
13100       }
13101   }
13102 
13103   OS << "Determining loop execution counts for: ";
13104   F.printAsOperand(OS, /*PrintType=*/false);
13105   OS << "\n";
13106   for (Loop *I : LI)
13107     PrintLoopInfo(OS, &SE, I);
13108 }
13109 
13110 ScalarEvolution::LoopDisposition
13111 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
13112   auto &Values = LoopDispositions[S];
13113   for (auto &V : Values) {
13114     if (V.getPointer() == L)
13115       return V.getInt();
13116   }
13117   Values.emplace_back(L, LoopVariant);
13118   LoopDisposition D = computeLoopDisposition(S, L);
13119   auto &Values2 = LoopDispositions[S];
13120   for (auto &V : llvm::reverse(Values2)) {
13121     if (V.getPointer() == L) {
13122       V.setInt(D);
13123       break;
13124     }
13125   }
13126   return D;
13127 }
13128 
13129 ScalarEvolution::LoopDisposition
13130 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
13131   switch (S->getSCEVType()) {
13132   case scConstant:
13133     return LoopInvariant;
13134   case scPtrToInt:
13135   case scTruncate:
13136   case scZeroExtend:
13137   case scSignExtend:
13138     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
13139   case scAddRecExpr: {
13140     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13141 
13142     // If L is the addrec's loop, it's computable.
13143     if (AR->getLoop() == L)
13144       return LoopComputable;
13145 
13146     // Add recurrences are never invariant in the function-body (null loop).
13147     if (!L)
13148       return LoopVariant;
13149 
13150     // Everything that is not defined at loop entry is variant.
13151     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
13152       return LoopVariant;
13153     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
13154            " dominate the contained loop's header?");
13155 
13156     // This recurrence is invariant w.r.t. L if AR's loop contains L.
13157     if (AR->getLoop()->contains(L))
13158       return LoopInvariant;
13159 
13160     // This recurrence is variant w.r.t. L if any of its operands
13161     // are variant.
13162     for (auto *Op : AR->operands())
13163       if (!isLoopInvariant(Op, L))
13164         return LoopVariant;
13165 
13166     // Otherwise it's loop-invariant.
13167     return LoopInvariant;
13168   }
13169   case scAddExpr:
13170   case scMulExpr:
13171   case scUMaxExpr:
13172   case scSMaxExpr:
13173   case scUMinExpr:
13174   case scSMinExpr:
13175   case scSequentialUMinExpr: {
13176     bool HasVarying = false;
13177     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
13178       LoopDisposition D = getLoopDisposition(Op, L);
13179       if (D == LoopVariant)
13180         return LoopVariant;
13181       if (D == LoopComputable)
13182         HasVarying = true;
13183     }
13184     return HasVarying ? LoopComputable : LoopInvariant;
13185   }
13186   case scUDivExpr: {
13187     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13188     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
13189     if (LD == LoopVariant)
13190       return LoopVariant;
13191     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
13192     if (RD == LoopVariant)
13193       return LoopVariant;
13194     return (LD == LoopInvariant && RD == LoopInvariant) ?
13195            LoopInvariant : LoopComputable;
13196   }
13197   case scUnknown:
13198     // All non-instruction values are loop invariant.  All instructions are loop
13199     // invariant if they are not contained in the specified loop.
13200     // Instructions are never considered invariant in the function body
13201     // (null loop) because they are defined within the "loop".
13202     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13203       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13204     return LoopInvariant;
13205   case scCouldNotCompute:
13206     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13207   }
13208   llvm_unreachable("Unknown SCEV kind!");
13209 }
13210 
13211 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13212   return getLoopDisposition(S, L) == LoopInvariant;
13213 }
13214 
13215 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13216   return getLoopDisposition(S, L) == LoopComputable;
13217 }
13218 
13219 ScalarEvolution::BlockDisposition
13220 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13221   auto &Values = BlockDispositions[S];
13222   for (auto &V : Values) {
13223     if (V.getPointer() == BB)
13224       return V.getInt();
13225   }
13226   Values.emplace_back(BB, DoesNotDominateBlock);
13227   BlockDisposition D = computeBlockDisposition(S, BB);
13228   auto &Values2 = BlockDispositions[S];
13229   for (auto &V : llvm::reverse(Values2)) {
13230     if (V.getPointer() == BB) {
13231       V.setInt(D);
13232       break;
13233     }
13234   }
13235   return D;
13236 }
13237 
13238 ScalarEvolution::BlockDisposition
13239 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13240   switch (S->getSCEVType()) {
13241   case scConstant:
13242     return ProperlyDominatesBlock;
13243   case scPtrToInt:
13244   case scTruncate:
13245   case scZeroExtend:
13246   case scSignExtend:
13247     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
13248   case scAddRecExpr: {
13249     // This uses a "dominates" query instead of "properly dominates" query
13250     // to test for proper dominance too, because the instruction which
13251     // produces the addrec's value is a PHI, and a PHI effectively properly
13252     // dominates its entire containing block.
13253     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13254     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13255       return DoesNotDominateBlock;
13256 
13257     // Fall through into SCEVNAryExpr handling.
13258     LLVM_FALLTHROUGH;
13259   }
13260   case scAddExpr:
13261   case scMulExpr:
13262   case scUMaxExpr:
13263   case scSMaxExpr:
13264   case scUMinExpr:
13265   case scSMinExpr:
13266   case scSequentialUMinExpr: {
13267     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
13268     bool Proper = true;
13269     for (const SCEV *NAryOp : NAry->operands()) {
13270       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13271       if (D == DoesNotDominateBlock)
13272         return DoesNotDominateBlock;
13273       if (D == DominatesBlock)
13274         Proper = false;
13275     }
13276     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13277   }
13278   case scUDivExpr: {
13279     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13280     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
13281     BlockDisposition LD = getBlockDisposition(LHS, BB);
13282     if (LD == DoesNotDominateBlock)
13283       return DoesNotDominateBlock;
13284     BlockDisposition RD = getBlockDisposition(RHS, BB);
13285     if (RD == DoesNotDominateBlock)
13286       return DoesNotDominateBlock;
13287     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
13288       ProperlyDominatesBlock : DominatesBlock;
13289   }
13290   case scUnknown:
13291     if (Instruction *I =
13292           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13293       if (I->getParent() == BB)
13294         return DominatesBlock;
13295       if (DT.properlyDominates(I->getParent(), BB))
13296         return ProperlyDominatesBlock;
13297       return DoesNotDominateBlock;
13298     }
13299     return ProperlyDominatesBlock;
13300   case scCouldNotCompute:
13301     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13302   }
13303   llvm_unreachable("Unknown SCEV kind!");
13304 }
13305 
13306 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13307   return getBlockDisposition(S, BB) >= DominatesBlock;
13308 }
13309 
13310 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13311   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13312 }
13313 
13314 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13315   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13316 }
13317 
13318 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
13319                                                 bool Predicated) {
13320   auto &BECounts =
13321       Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13322   auto It = BECounts.find(L);
13323   if (It != BECounts.end()) {
13324     for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
13325       if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
13326         auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
13327         assert(UserIt != BECountUsers.end());
13328         UserIt->second.erase({L, Predicated});
13329       }
13330     }
13331     BECounts.erase(It);
13332   }
13333 }
13334 
13335 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
13336   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
13337   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
13338 
13339   while (!Worklist.empty()) {
13340     const SCEV *Curr = Worklist.pop_back_val();
13341     auto Users = SCEVUsers.find(Curr);
13342     if (Users != SCEVUsers.end())
13343       for (auto *User : Users->second)
13344         if (ToForget.insert(User).second)
13345           Worklist.push_back(User);
13346   }
13347 
13348   for (auto *S : ToForget)
13349     forgetMemoizedResultsImpl(S);
13350 
13351   for (auto I = PredicatedSCEVRewrites.begin();
13352        I != PredicatedSCEVRewrites.end();) {
13353     std::pair<const SCEV *, const Loop *> Entry = I->first;
13354     if (ToForget.count(Entry.first))
13355       PredicatedSCEVRewrites.erase(I++);
13356     else
13357       ++I;
13358   }
13359 }
13360 
13361 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
13362   LoopDispositions.erase(S);
13363   BlockDispositions.erase(S);
13364   UnsignedRanges.erase(S);
13365   SignedRanges.erase(S);
13366   HasRecMap.erase(S);
13367   MinTrailingZerosCache.erase(S);
13368 
13369   auto ExprIt = ExprValueMap.find(S);
13370   if (ExprIt != ExprValueMap.end()) {
13371     for (Value *V : ExprIt->second) {
13372       auto ValueIt = ValueExprMap.find_as(V);
13373       if (ValueIt != ValueExprMap.end())
13374         ValueExprMap.erase(ValueIt);
13375     }
13376     ExprValueMap.erase(ExprIt);
13377   }
13378 
13379   auto ScopeIt = ValuesAtScopes.find(S);
13380   if (ScopeIt != ValuesAtScopes.end()) {
13381     for (const auto &Pair : ScopeIt->second)
13382       if (!isa_and_nonnull<SCEVConstant>(Pair.second))
13383         erase_value(ValuesAtScopesUsers[Pair.second],
13384                     std::make_pair(Pair.first, S));
13385     ValuesAtScopes.erase(ScopeIt);
13386   }
13387 
13388   auto ScopeUserIt = ValuesAtScopesUsers.find(S);
13389   if (ScopeUserIt != ValuesAtScopesUsers.end()) {
13390     for (const auto &Pair : ScopeUserIt->second)
13391       erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
13392     ValuesAtScopesUsers.erase(ScopeUserIt);
13393   }
13394 
13395   auto BEUsersIt = BECountUsers.find(S);
13396   if (BEUsersIt != BECountUsers.end()) {
13397     // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
13398     auto Copy = BEUsersIt->second;
13399     for (const auto &Pair : Copy)
13400       forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
13401     BECountUsers.erase(BEUsersIt);
13402   }
13403 }
13404 
13405 void
13406 ScalarEvolution::getUsedLoops(const SCEV *S,
13407                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13408   struct FindUsedLoops {
13409     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13410         : LoopsUsed(LoopsUsed) {}
13411     SmallPtrSetImpl<const Loop *> &LoopsUsed;
13412     bool follow(const SCEV *S) {
13413       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13414         LoopsUsed.insert(AR->getLoop());
13415       return true;
13416     }
13417 
13418     bool isDone() const { return false; }
13419   };
13420 
13421   FindUsedLoops F(LoopsUsed);
13422   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13423 }
13424 
13425 void ScalarEvolution::getReachableBlocks(
13426     SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) {
13427   SmallVector<BasicBlock *> Worklist;
13428   Worklist.push_back(&F.getEntryBlock());
13429   while (!Worklist.empty()) {
13430     BasicBlock *BB = Worklist.pop_back_val();
13431     if (!Reachable.insert(BB).second)
13432       continue;
13433 
13434     Value *Cond;
13435     BasicBlock *TrueBB, *FalseBB;
13436     if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB),
13437                                         m_BasicBlock(FalseBB)))) {
13438       if (auto *C = dyn_cast<ConstantInt>(Cond)) {
13439         Worklist.push_back(C->isOne() ? TrueBB : FalseBB);
13440         continue;
13441       }
13442 
13443       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13444         const SCEV *L = getSCEV(Cmp->getOperand(0));
13445         const SCEV *R = getSCEV(Cmp->getOperand(1));
13446         if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) {
13447           Worklist.push_back(TrueBB);
13448           continue;
13449         }
13450         if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L,
13451                                               R)) {
13452           Worklist.push_back(FalseBB);
13453           continue;
13454         }
13455       }
13456     }
13457 
13458     append_range(Worklist, successors(BB));
13459   }
13460 }
13461 
13462 void ScalarEvolution::verify() const {
13463   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13464   ScalarEvolution SE2(F, TLI, AC, DT, LI);
13465 
13466   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
13467 
13468   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13469   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
13470     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
13471 
13472     const SCEV *visitConstant(const SCEVConstant *Constant) {
13473       return SE.getConstant(Constant->getAPInt());
13474     }
13475 
13476     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13477       return SE.getUnknown(Expr->getValue());
13478     }
13479 
13480     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
13481       return SE.getCouldNotCompute();
13482     }
13483   };
13484 
13485   SCEVMapper SCM(SE2);
13486   SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
13487   SE2.getReachableBlocks(ReachableBlocks, F);
13488 
13489   auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * {
13490     if (containsUndefs(Old) || containsUndefs(New)) {
13491       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13492       // not propagate undef aggressively).  This means we can (and do) fail
13493       // verification in cases where a transform makes a value go from "undef"
13494       // to "undef+1" (say).  The transform is fine, since in both cases the
13495       // result is "undef", but SCEV thinks the value increased by 1.
13496       return nullptr;
13497     }
13498 
13499     // Unless VerifySCEVStrict is set, we only compare constant deltas.
13500     const SCEV *Delta = SE2.getMinusSCEV(Old, New);
13501     if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta))
13502       return nullptr;
13503 
13504     return Delta;
13505   };
13506 
13507   while (!LoopStack.empty()) {
13508     auto *L = LoopStack.pop_back_val();
13509     llvm::append_range(LoopStack, *L);
13510 
13511     // Only verify BECounts in reachable loops. For an unreachable loop,
13512     // any BECount is legal.
13513     if (!ReachableBlocks.contains(L->getHeader()))
13514       continue;
13515 
13516     // Only verify cached BECounts. Computing new BECounts may change the
13517     // results of subsequent SCEV uses.
13518     auto It = BackedgeTakenCounts.find(L);
13519     if (It == BackedgeTakenCounts.end())
13520       continue;
13521 
13522     auto *CurBECount =
13523         SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this)));
13524     auto *NewBECount = SE2.getBackedgeTakenCount(L);
13525 
13526     if (CurBECount == SE2.getCouldNotCompute() ||
13527         NewBECount == SE2.getCouldNotCompute()) {
13528       // NB! This situation is legal, but is very suspicious -- whatever pass
13529       // change the loop to make a trip count go from could not compute to
13530       // computable or vice-versa *should have* invalidated SCEV.  However, we
13531       // choose not to assert here (for now) since we don't want false
13532       // positives.
13533       continue;
13534     }
13535 
13536     if (SE.getTypeSizeInBits(CurBECount->getType()) >
13537         SE.getTypeSizeInBits(NewBECount->getType()))
13538       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
13539     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
13540              SE.getTypeSizeInBits(NewBECount->getType()))
13541       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
13542 
13543     const SCEV *Delta = GetDelta(CurBECount, NewBECount);
13544     if (Delta && !Delta->isZero()) {
13545       dbgs() << "Trip Count for " << *L << " Changed!\n";
13546       dbgs() << "Old: " << *CurBECount << "\n";
13547       dbgs() << "New: " << *NewBECount << "\n";
13548       dbgs() << "Delta: " << *Delta << "\n";
13549       std::abort();
13550     }
13551   }
13552 
13553   // Collect all valid loops currently in LoopInfo.
13554   SmallPtrSet<Loop *, 32> ValidLoops;
13555   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
13556   while (!Worklist.empty()) {
13557     Loop *L = Worklist.pop_back_val();
13558     if (ValidLoops.insert(L).second)
13559       Worklist.append(L->begin(), L->end());
13560   }
13561   for (auto &KV : ValueExprMap) {
13562 #ifndef NDEBUG
13563     // Check for SCEV expressions referencing invalid/deleted loops.
13564     if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
13565       assert(ValidLoops.contains(AR->getLoop()) &&
13566              "AddRec references invalid loop");
13567     }
13568 #endif
13569 
13570     // Check that the value is also part of the reverse map.
13571     auto It = ExprValueMap.find(KV.second);
13572     if (It == ExprValueMap.end() || !It->second.contains(KV.first)) {
13573       dbgs() << "Value " << *KV.first
13574              << " is in ValueExprMap but not in ExprValueMap\n";
13575       std::abort();
13576     }
13577 
13578     if (auto *I = dyn_cast<Instruction>(&*KV.first)) {
13579       if (!ReachableBlocks.contains(I->getParent()))
13580         continue;
13581       const SCEV *OldSCEV = SCM.visit(KV.second);
13582       const SCEV *NewSCEV = SE2.getSCEV(I);
13583       const SCEV *Delta = GetDelta(OldSCEV, NewSCEV);
13584       if (Delta && !Delta->isZero()) {
13585         dbgs() << "SCEV for value " << *I << " changed!\n"
13586                << "Old: " << *OldSCEV << "\n"
13587                << "New: " << *NewSCEV << "\n"
13588                << "Delta: " << *Delta << "\n";
13589         std::abort();
13590       }
13591     }
13592   }
13593 
13594   for (const auto &KV : ExprValueMap) {
13595     for (Value *V : KV.second) {
13596       auto It = ValueExprMap.find_as(V);
13597       if (It == ValueExprMap.end()) {
13598         dbgs() << "Value " << *V
13599                << " is in ExprValueMap but not in ValueExprMap\n";
13600         std::abort();
13601       }
13602       if (It->second != KV.first) {
13603         dbgs() << "Value " << *V << " mapped to " << *It->second
13604                << " rather than " << *KV.first << "\n";
13605         std::abort();
13606       }
13607     }
13608   }
13609 
13610   // Verify integrity of SCEV users.
13611   for (const auto &S : UniqueSCEVs) {
13612     SmallVector<const SCEV *, 4> Ops;
13613     collectUniqueOps(&S, Ops);
13614     for (const auto *Op : Ops) {
13615       // We do not store dependencies of constants.
13616       if (isa<SCEVConstant>(Op))
13617         continue;
13618       auto It = SCEVUsers.find(Op);
13619       if (It != SCEVUsers.end() && It->second.count(&S))
13620         continue;
13621       dbgs() << "Use of operand  " << *Op << " by user " << S
13622              << " is not being tracked!\n";
13623       std::abort();
13624     }
13625   }
13626 
13627   // Verify integrity of ValuesAtScopes users.
13628   for (const auto &ValueAndVec : ValuesAtScopes) {
13629     const SCEV *Value = ValueAndVec.first;
13630     for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
13631       const Loop *L = LoopAndValueAtScope.first;
13632       const SCEV *ValueAtScope = LoopAndValueAtScope.second;
13633       if (!isa<SCEVConstant>(ValueAtScope)) {
13634         auto It = ValuesAtScopesUsers.find(ValueAtScope);
13635         if (It != ValuesAtScopesUsers.end() &&
13636             is_contained(It->second, std::make_pair(L, Value)))
13637           continue;
13638         dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13639                << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
13640         std::abort();
13641       }
13642     }
13643   }
13644 
13645   for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
13646     const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
13647     for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
13648       const Loop *L = LoopAndValue.first;
13649       const SCEV *Value = LoopAndValue.second;
13650       assert(!isa<SCEVConstant>(Value));
13651       auto It = ValuesAtScopes.find(Value);
13652       if (It != ValuesAtScopes.end() &&
13653           is_contained(It->second, std::make_pair(L, ValueAtScope)))
13654         continue;
13655       dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13656              << *ValueAtScope << " missing in ValuesAtScopes\n";
13657       std::abort();
13658     }
13659   }
13660 
13661   // Verify integrity of BECountUsers.
13662   auto VerifyBECountUsers = [&](bool Predicated) {
13663     auto &BECounts =
13664         Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13665     for (const auto &LoopAndBEInfo : BECounts) {
13666       for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
13667         if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
13668           auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
13669           if (UserIt != BECountUsers.end() &&
13670               UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
13671             continue;
13672           dbgs() << "Value " << *ENT.ExactNotTaken << " for loop "
13673                  << *LoopAndBEInfo.first << " missing from BECountUsers\n";
13674           std::abort();
13675         }
13676       }
13677     }
13678   };
13679   VerifyBECountUsers(/* Predicated */ false);
13680   VerifyBECountUsers(/* Predicated */ true);
13681 }
13682 
13683 bool ScalarEvolution::invalidate(
13684     Function &F, const PreservedAnalyses &PA,
13685     FunctionAnalysisManager::Invalidator &Inv) {
13686   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
13687   // of its dependencies is invalidated.
13688   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
13689   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
13690          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
13691          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
13692          Inv.invalidate<LoopAnalysis>(F, PA);
13693 }
13694 
13695 AnalysisKey ScalarEvolutionAnalysis::Key;
13696 
13697 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
13698                                              FunctionAnalysisManager &AM) {
13699   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
13700                          AM.getResult<AssumptionAnalysis>(F),
13701                          AM.getResult<DominatorTreeAnalysis>(F),
13702                          AM.getResult<LoopAnalysis>(F));
13703 }
13704 
13705 PreservedAnalyses
13706 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
13707   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
13708   return PreservedAnalyses::all();
13709 }
13710 
13711 PreservedAnalyses
13712 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
13713   // For compatibility with opt's -analyze feature under legacy pass manager
13714   // which was not ported to NPM. This keeps tests using
13715   // update_analyze_test_checks.py working.
13716   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
13717      << F.getName() << "':\n";
13718   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
13719   return PreservedAnalyses::all();
13720 }
13721 
13722 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
13723                       "Scalar Evolution Analysis", false, true)
13724 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
13725 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
13726 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
13727 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
13728 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
13729                     "Scalar Evolution Analysis", false, true)
13730 
13731 char ScalarEvolutionWrapperPass::ID = 0;
13732 
13733 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
13734   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13735 }
13736 
13737 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
13738   SE.reset(new ScalarEvolution(
13739       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
13740       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
13741       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
13742       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
13743   return false;
13744 }
13745 
13746 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
13747 
13748 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
13749   SE->print(OS);
13750 }
13751 
13752 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13753   if (!VerifySCEV)
13754     return;
13755 
13756   SE->verify();
13757 }
13758 
13759 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
13760   AU.setPreservesAll();
13761   AU.addRequiredTransitive<AssumptionCacheTracker>();
13762   AU.addRequiredTransitive<LoopInfoWrapperPass>();
13763   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
13764   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
13765 }
13766 
13767 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
13768                                                         const SCEV *RHS) {
13769   return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS);
13770 }
13771 
13772 const SCEVPredicate *
13773 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
13774                                      const SCEV *LHS, const SCEV *RHS) {
13775   FoldingSetNodeID ID;
13776   assert(LHS->getType() == RHS->getType() &&
13777          "Type mismatch between LHS and RHS");
13778   // Unique this node based on the arguments
13779   ID.AddInteger(SCEVPredicate::P_Compare);
13780   ID.AddInteger(Pred);
13781   ID.AddPointer(LHS);
13782   ID.AddPointer(RHS);
13783   void *IP = nullptr;
13784   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13785     return S;
13786   SCEVComparePredicate *Eq = new (SCEVAllocator)
13787     SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS);
13788   UniquePreds.InsertNode(Eq, IP);
13789   return Eq;
13790 }
13791 
13792 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13793     const SCEVAddRecExpr *AR,
13794     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13795   FoldingSetNodeID ID;
13796   // Unique this node based on the arguments
13797   ID.AddInteger(SCEVPredicate::P_Wrap);
13798   ID.AddPointer(AR);
13799   ID.AddInteger(AddedFlags);
13800   void *IP = nullptr;
13801   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13802     return S;
13803   auto *OF = new (SCEVAllocator)
13804       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13805   UniquePreds.InsertNode(OF, IP);
13806   return OF;
13807 }
13808 
13809 namespace {
13810 
13811 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13812 public:
13813 
13814   /// Rewrites \p S in the context of a loop L and the SCEV predication
13815   /// infrastructure.
13816   ///
13817   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13818   /// equivalences present in \p Pred.
13819   ///
13820   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13821   /// \p NewPreds such that the result will be an AddRecExpr.
13822   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13823                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13824                              const SCEVPredicate *Pred) {
13825     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13826     return Rewriter.visit(S);
13827   }
13828 
13829   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13830     if (Pred) {
13831       if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) {
13832         for (auto *Pred : U->getPredicates())
13833           if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred))
13834             if (IPred->getLHS() == Expr &&
13835                 IPred->getPredicate() == ICmpInst::ICMP_EQ)
13836               return IPred->getRHS();
13837       } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) {
13838         if (IPred->getLHS() == Expr &&
13839             IPred->getPredicate() == ICmpInst::ICMP_EQ)
13840           return IPred->getRHS();
13841       }
13842     }
13843     return convertToAddRecWithPreds(Expr);
13844   }
13845 
13846   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13847     const SCEV *Operand = visit(Expr->getOperand());
13848     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13849     if (AR && AR->getLoop() == L && AR->isAffine()) {
13850       // This couldn't be folded because the operand didn't have the nuw
13851       // flag. Add the nusw flag as an assumption that we could make.
13852       const SCEV *Step = AR->getStepRecurrence(SE);
13853       Type *Ty = Expr->getType();
13854       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13855         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13856                                 SE.getSignExtendExpr(Step, Ty), L,
13857                                 AR->getNoWrapFlags());
13858     }
13859     return SE.getZeroExtendExpr(Operand, Expr->getType());
13860   }
13861 
13862   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13863     const SCEV *Operand = visit(Expr->getOperand());
13864     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13865     if (AR && AR->getLoop() == L && AR->isAffine()) {
13866       // This couldn't be folded because the operand didn't have the nsw
13867       // flag. Add the nssw flag as an assumption that we could make.
13868       const SCEV *Step = AR->getStepRecurrence(SE);
13869       Type *Ty = Expr->getType();
13870       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13871         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13872                                 SE.getSignExtendExpr(Step, Ty), L,
13873                                 AR->getNoWrapFlags());
13874     }
13875     return SE.getSignExtendExpr(Operand, Expr->getType());
13876   }
13877 
13878 private:
13879   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13880                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13881                         const SCEVPredicate *Pred)
13882       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13883 
13884   bool addOverflowAssumption(const SCEVPredicate *P) {
13885     if (!NewPreds) {
13886       // Check if we've already made this assumption.
13887       return Pred && Pred->implies(P);
13888     }
13889     NewPreds->insert(P);
13890     return true;
13891   }
13892 
13893   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13894                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13895     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13896     return addOverflowAssumption(A);
13897   }
13898 
13899   // If \p Expr represents a PHINode, we try to see if it can be represented
13900   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13901   // to add this predicate as a runtime overflow check, we return the AddRec.
13902   // If \p Expr does not meet these conditions (is not a PHI node, or we
13903   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13904   // return \p Expr.
13905   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13906     if (!isa<PHINode>(Expr->getValue()))
13907       return Expr;
13908     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13909     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13910     if (!PredicatedRewrite)
13911       return Expr;
13912     for (auto *P : PredicatedRewrite->second){
13913       // Wrap predicates from outer loops are not supported.
13914       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13915         if (L != WP->getExpr()->getLoop())
13916           return Expr;
13917       }
13918       if (!addOverflowAssumption(P))
13919         return Expr;
13920     }
13921     return PredicatedRewrite->first;
13922   }
13923 
13924   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13925   const SCEVPredicate *Pred;
13926   const Loop *L;
13927 };
13928 
13929 } // end anonymous namespace
13930 
13931 const SCEV *
13932 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13933                                        const SCEVPredicate &Preds) {
13934   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13935 }
13936 
13937 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13938     const SCEV *S, const Loop *L,
13939     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13940   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13941   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13942   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13943 
13944   if (!AddRec)
13945     return nullptr;
13946 
13947   // Since the transformation was successful, we can now transfer the SCEV
13948   // predicates.
13949   for (auto *P : TransformPreds)
13950     Preds.insert(P);
13951 
13952   return AddRec;
13953 }
13954 
13955 /// SCEV predicates
13956 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13957                              SCEVPredicateKind Kind)
13958     : FastID(ID), Kind(Kind) {}
13959 
13960 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
13961                                    const ICmpInst::Predicate Pred,
13962                                    const SCEV *LHS, const SCEV *RHS)
13963   : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
13964   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13965   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13966 }
13967 
13968 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const {
13969   const auto *Op = dyn_cast<SCEVComparePredicate>(N);
13970 
13971   if (!Op)
13972     return false;
13973 
13974   if (Pred != ICmpInst::ICMP_EQ)
13975     return false;
13976 
13977   return Op->LHS == LHS && Op->RHS == RHS;
13978 }
13979 
13980 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
13981 
13982 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
13983   if (Pred == ICmpInst::ICMP_EQ)
13984     OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13985   else
13986     OS.indent(Depth) << "Compare predicate: " << *LHS
13987                      << " " << CmpInst::getPredicateName(Pred) << ") "
13988                      << *RHS << "\n";
13989 
13990 }
13991 
13992 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13993                                      const SCEVAddRecExpr *AR,
13994                                      IncrementWrapFlags Flags)
13995     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13996 
13997 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; }
13998 
13999 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
14000   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
14001 
14002   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
14003 }
14004 
14005 bool SCEVWrapPredicate::isAlwaysTrue() const {
14006   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
14007   IncrementWrapFlags IFlags = Flags;
14008 
14009   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
14010     IFlags = clearFlags(IFlags, IncrementNSSW);
14011 
14012   return IFlags == IncrementAnyWrap;
14013 }
14014 
14015 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
14016   OS.indent(Depth) << *getExpr() << " Added Flags: ";
14017   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
14018     OS << "<nusw>";
14019   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
14020     OS << "<nssw>";
14021   OS << "\n";
14022 }
14023 
14024 SCEVWrapPredicate::IncrementWrapFlags
14025 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
14026                                    ScalarEvolution &SE) {
14027   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
14028   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
14029 
14030   // We can safely transfer the NSW flag as NSSW.
14031   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
14032     ImpliedFlags = IncrementNSSW;
14033 
14034   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
14035     // If the increment is positive, the SCEV NUW flag will also imply the
14036     // WrapPredicate NUSW flag.
14037     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
14038       if (Step->getValue()->getValue().isNonNegative())
14039         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
14040   }
14041 
14042   return ImpliedFlags;
14043 }
14044 
14045 /// Union predicates don't get cached so create a dummy set ID for it.
14046 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds)
14047   : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
14048   for (auto *P : Preds)
14049     add(P);
14050 }
14051 
14052 bool SCEVUnionPredicate::isAlwaysTrue() const {
14053   return all_of(Preds,
14054                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
14055 }
14056 
14057 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
14058   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
14059     return all_of(Set->Preds,
14060                   [this](const SCEVPredicate *I) { return this->implies(I); });
14061 
14062   return any_of(Preds,
14063                 [N](const SCEVPredicate *I) { return I->implies(N); });
14064 }
14065 
14066 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
14067   for (auto Pred : Preds)
14068     Pred->print(OS, Depth);
14069 }
14070 
14071 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
14072   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
14073     for (auto Pred : Set->Preds)
14074       add(Pred);
14075     return;
14076   }
14077 
14078   Preds.push_back(N);
14079 }
14080 
14081 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
14082                                                      Loop &L)
14083     : SE(SE), L(L) {
14084   SmallVector<const SCEVPredicate*, 4> Empty;
14085   Preds = std::make_unique<SCEVUnionPredicate>(Empty);
14086 }
14087 
14088 void ScalarEvolution::registerUser(const SCEV *User,
14089                                    ArrayRef<const SCEV *> Ops) {
14090   for (auto *Op : Ops)
14091     // We do not expect that forgetting cached data for SCEVConstants will ever
14092     // open any prospects for sharpening or introduce any correctness issues,
14093     // so we don't bother storing their dependencies.
14094     if (!isa<SCEVConstant>(Op))
14095       SCEVUsers[Op].insert(User);
14096 }
14097 
14098 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
14099   const SCEV *Expr = SE.getSCEV(V);
14100   RewriteEntry &Entry = RewriteMap[Expr];
14101 
14102   // If we already have an entry and the version matches, return it.
14103   if (Entry.second && Generation == Entry.first)
14104     return Entry.second;
14105 
14106   // We found an entry but it's stale. Rewrite the stale entry
14107   // according to the current predicate.
14108   if (Entry.second)
14109     Expr = Entry.second;
14110 
14111   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
14112   Entry = {Generation, NewSCEV};
14113 
14114   return NewSCEV;
14115 }
14116 
14117 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
14118   if (!BackedgeCount) {
14119     SmallVector<const SCEVPredicate *, 4> Preds;
14120     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
14121     for (auto *P : Preds)
14122       addPredicate(*P);
14123   }
14124   return BackedgeCount;
14125 }
14126 
14127 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
14128   if (Preds->implies(&Pred))
14129     return;
14130 
14131   auto &OldPreds = Preds->getPredicates();
14132   SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end());
14133   NewPreds.push_back(&Pred);
14134   Preds = std::make_unique<SCEVUnionPredicate>(NewPreds);
14135   updateGeneration();
14136 }
14137 
14138 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const {
14139   return *Preds;
14140 }
14141 
14142 void PredicatedScalarEvolution::updateGeneration() {
14143   // If the generation number wrapped recompute everything.
14144   if (++Generation == 0) {
14145     for (auto &II : RewriteMap) {
14146       const SCEV *Rewritten = II.second.second;
14147       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)};
14148     }
14149   }
14150 }
14151 
14152 void PredicatedScalarEvolution::setNoOverflow(
14153     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14154   const SCEV *Expr = getSCEV(V);
14155   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14156 
14157   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
14158 
14159   // Clear the statically implied flags.
14160   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
14161   addPredicate(*SE.getWrapPredicate(AR, Flags));
14162 
14163   auto II = FlagsMap.insert({V, Flags});
14164   if (!II.second)
14165     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
14166 }
14167 
14168 bool PredicatedScalarEvolution::hasNoOverflow(
14169     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14170   const SCEV *Expr = getSCEV(V);
14171   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14172 
14173   Flags = SCEVWrapPredicate::clearFlags(
14174       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
14175 
14176   auto II = FlagsMap.find(V);
14177 
14178   if (II != FlagsMap.end())
14179     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
14180 
14181   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
14182 }
14183 
14184 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
14185   const SCEV *Expr = this->getSCEV(V);
14186   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
14187   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
14188 
14189   if (!New)
14190     return nullptr;
14191 
14192   for (auto *P : NewPreds)
14193     addPredicate(*P);
14194 
14195   RewriteMap[SE.getSCEV(V)] = {Generation, New};
14196   return New;
14197 }
14198 
14199 PredicatedScalarEvolution::PredicatedScalarEvolution(
14200     const PredicatedScalarEvolution &Init)
14201   : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
14202     Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())),
14203     Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
14204   for (auto I : Init.FlagsMap)
14205     FlagsMap.insert(I);
14206 }
14207 
14208 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
14209   // For each block.
14210   for (auto *BB : L.getBlocks())
14211     for (auto &I : *BB) {
14212       if (!SE.isSCEVable(I.getType()))
14213         continue;
14214 
14215       auto *Expr = SE.getSCEV(&I);
14216       auto II = RewriteMap.find(Expr);
14217 
14218       if (II == RewriteMap.end())
14219         continue;
14220 
14221       // Don't print things that are not interesting.
14222       if (II->second.second == Expr)
14223         continue;
14224 
14225       OS.indent(Depth) << "[PSE]" << I << ":\n";
14226       OS.indent(Depth + 2) << *Expr << "\n";
14227       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
14228     }
14229 }
14230 
14231 // Match the mathematical pattern A - (A / B) * B, where A and B can be
14232 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
14233 // for URem with constant power-of-2 second operands.
14234 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
14235 // 4, A / B becomes X / 8).
14236 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
14237                                 const SCEV *&RHS) {
14238   // Try to match 'zext (trunc A to iB) to iY', which is used
14239   // for URem with constant power-of-2 second operands. Make sure the size of
14240   // the operand A matches the size of the whole expressions.
14241   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
14242     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
14243       LHS = Trunc->getOperand();
14244       // Bail out if the type of the LHS is larger than the type of the
14245       // expression for now.
14246       if (getTypeSizeInBits(LHS->getType()) >
14247           getTypeSizeInBits(Expr->getType()))
14248         return false;
14249       if (LHS->getType() != Expr->getType())
14250         LHS = getZeroExtendExpr(LHS, Expr->getType());
14251       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
14252                         << getTypeSizeInBits(Trunc->getType()));
14253       return true;
14254     }
14255   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
14256   if (Add == nullptr || Add->getNumOperands() != 2)
14257     return false;
14258 
14259   const SCEV *A = Add->getOperand(1);
14260   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
14261 
14262   if (Mul == nullptr)
14263     return false;
14264 
14265   const auto MatchURemWithDivisor = [&](const SCEV *B) {
14266     // (SomeExpr + (-(SomeExpr / B) * B)).
14267     if (Expr == getURemExpr(A, B)) {
14268       LHS = A;
14269       RHS = B;
14270       return true;
14271     }
14272     return false;
14273   };
14274 
14275   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
14276   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
14277     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14278            MatchURemWithDivisor(Mul->getOperand(2));
14279 
14280   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
14281   if (Mul->getNumOperands() == 2)
14282     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14283            MatchURemWithDivisor(Mul->getOperand(0)) ||
14284            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
14285            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
14286   return false;
14287 }
14288 
14289 const SCEV *
14290 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
14291   SmallVector<BasicBlock*, 16> ExitingBlocks;
14292   L->getExitingBlocks(ExitingBlocks);
14293 
14294   // Form an expression for the maximum exit count possible for this loop. We
14295   // merge the max and exact information to approximate a version of
14296   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
14297   SmallVector<const SCEV*, 4> ExitCounts;
14298   for (BasicBlock *ExitingBB : ExitingBlocks) {
14299     const SCEV *ExitCount = getExitCount(L, ExitingBB);
14300     if (isa<SCEVCouldNotCompute>(ExitCount))
14301       ExitCount = getExitCount(L, ExitingBB,
14302                                   ScalarEvolution::ConstantMaximum);
14303     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
14304       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
14305              "We should only have known counts for exiting blocks that "
14306              "dominate latch!");
14307       ExitCounts.push_back(ExitCount);
14308     }
14309   }
14310   if (ExitCounts.empty())
14311     return getCouldNotCompute();
14312   return getUMinFromMismatchedTypes(ExitCounts);
14313 }
14314 
14315 /// A rewriter to replace SCEV expressions in Map with the corresponding entry
14316 /// in the map. It skips AddRecExpr because we cannot guarantee that the
14317 /// replacement is loop invariant in the loop of the AddRec.
14318 ///
14319 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is
14320 /// supported.
14321 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
14322   const DenseMap<const SCEV *, const SCEV *> &Map;
14323 
14324 public:
14325   SCEVLoopGuardRewriter(ScalarEvolution &SE,
14326                         DenseMap<const SCEV *, const SCEV *> &M)
14327       : SCEVRewriteVisitor(SE), Map(M) {}
14328 
14329   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
14330 
14331   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14332     auto I = Map.find(Expr);
14333     if (I == Map.end())
14334       return Expr;
14335     return I->second;
14336   }
14337 
14338   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14339     auto I = Map.find(Expr);
14340     if (I == Map.end())
14341       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
14342           Expr);
14343     return I->second;
14344   }
14345 };
14346 
14347 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
14348   SmallVector<const SCEV *> ExprsToRewrite;
14349   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
14350                               const SCEV *RHS,
14351                               DenseMap<const SCEV *, const SCEV *>
14352                                   &RewriteMap) {
14353     // WARNING: It is generally unsound to apply any wrap flags to the proposed
14354     // replacement SCEV which isn't directly implied by the structure of that
14355     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
14356     // legal.  See the scoping rules for flags in the header to understand why.
14357 
14358     // If LHS is a constant, apply information to the other expression.
14359     if (isa<SCEVConstant>(LHS)) {
14360       std::swap(LHS, RHS);
14361       Predicate = CmpInst::getSwappedPredicate(Predicate);
14362     }
14363 
14364     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
14365     // create this form when combining two checks of the form (X u< C2 + C1) and
14366     // (X >=u C1).
14367     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap,
14368                                  &ExprsToRewrite]() {
14369       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
14370       if (!AddExpr || AddExpr->getNumOperands() != 2)
14371         return false;
14372 
14373       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
14374       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
14375       auto *C2 = dyn_cast<SCEVConstant>(RHS);
14376       if (!C1 || !C2 || !LHSUnknown)
14377         return false;
14378 
14379       auto ExactRegion =
14380           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
14381               .sub(C1->getAPInt());
14382 
14383       // Bail out, unless we have a non-wrapping, monotonic range.
14384       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
14385         return false;
14386       auto I = RewriteMap.find(LHSUnknown);
14387       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
14388       RewriteMap[LHSUnknown] = getUMaxExpr(
14389           getConstant(ExactRegion.getUnsignedMin()),
14390           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
14391       ExprsToRewrite.push_back(LHSUnknown);
14392       return true;
14393     };
14394     if (MatchRangeCheckIdiom())
14395       return;
14396 
14397     // If we have LHS == 0, check if LHS is computing a property of some unknown
14398     // SCEV %v which we can rewrite %v to express explicitly.
14399     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
14400     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
14401         RHSC->getValue()->isNullValue()) {
14402       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
14403       // explicitly express that.
14404       const SCEV *URemLHS = nullptr;
14405       const SCEV *URemRHS = nullptr;
14406       if (matchURem(LHS, URemLHS, URemRHS)) {
14407         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
14408           auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
14409           RewriteMap[LHSUnknown] = Multiple;
14410           ExprsToRewrite.push_back(LHSUnknown);
14411           return;
14412         }
14413       }
14414     }
14415 
14416     // Do not apply information for constants or if RHS contains an AddRec.
14417     if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS))
14418       return;
14419 
14420     // If RHS is SCEVUnknown, make sure the information is applied to it.
14421     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
14422       std::swap(LHS, RHS);
14423       Predicate = CmpInst::getSwappedPredicate(Predicate);
14424     }
14425 
14426     // Limit to expressions that can be rewritten.
14427     if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS))
14428       return;
14429 
14430     // Check whether LHS has already been rewritten. In that case we want to
14431     // chain further rewrites onto the already rewritten value.
14432     auto I = RewriteMap.find(LHS);
14433     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
14434 
14435     const SCEV *RewrittenRHS = nullptr;
14436     switch (Predicate) {
14437     case CmpInst::ICMP_ULT:
14438       RewrittenRHS =
14439           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14440       break;
14441     case CmpInst::ICMP_SLT:
14442       RewrittenRHS =
14443           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14444       break;
14445     case CmpInst::ICMP_ULE:
14446       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
14447       break;
14448     case CmpInst::ICMP_SLE:
14449       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
14450       break;
14451     case CmpInst::ICMP_UGT:
14452       RewrittenRHS =
14453           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14454       break;
14455     case CmpInst::ICMP_SGT:
14456       RewrittenRHS =
14457           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14458       break;
14459     case CmpInst::ICMP_UGE:
14460       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
14461       break;
14462     case CmpInst::ICMP_SGE:
14463       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
14464       break;
14465     case CmpInst::ICMP_EQ:
14466       if (isa<SCEVConstant>(RHS))
14467         RewrittenRHS = RHS;
14468       break;
14469     case CmpInst::ICMP_NE:
14470       if (isa<SCEVConstant>(RHS) &&
14471           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
14472         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
14473       break;
14474     default:
14475       break;
14476     }
14477 
14478     if (RewrittenRHS) {
14479       RewriteMap[LHS] = RewrittenRHS;
14480       if (LHS == RewrittenLHS)
14481         ExprsToRewrite.push_back(LHS);
14482     }
14483   };
14484   // First, collect conditions from dominating branches. Starting at the loop
14485   // predecessor, climb up the predecessor chain, as long as there are
14486   // predecessors that can be found that have unique successors leading to the
14487   // original header.
14488   // TODO: share this logic with isLoopEntryGuardedByCond.
14489   SmallVector<std::pair<Value *, bool>> Terms;
14490   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
14491            L->getLoopPredecessor(), L->getHeader());
14492        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
14493 
14494     const BranchInst *LoopEntryPredicate =
14495         dyn_cast<BranchInst>(Pair.first->getTerminator());
14496     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
14497       continue;
14498 
14499     Terms.emplace_back(LoopEntryPredicate->getCondition(),
14500                        LoopEntryPredicate->getSuccessor(0) == Pair.second);
14501   }
14502 
14503   // Now apply the information from the collected conditions to RewriteMap.
14504   // Conditions are processed in reverse order, so the earliest conditions is
14505   // processed first. This ensures the SCEVs with the shortest dependency chains
14506   // are constructed first.
14507   DenseMap<const SCEV *, const SCEV *> RewriteMap;
14508   for (auto &E : reverse(Terms)) {
14509     bool EnterIfTrue = E.second;
14510     SmallVector<Value *, 8> Worklist;
14511     SmallPtrSet<Value *, 8> Visited;
14512     Worklist.push_back(E.first);
14513     while (!Worklist.empty()) {
14514       Value *Cond = Worklist.pop_back_val();
14515       if (!Visited.insert(Cond).second)
14516         continue;
14517 
14518       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14519         auto Predicate =
14520             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
14521         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
14522                          getSCEV(Cmp->getOperand(1)), RewriteMap);
14523         continue;
14524       }
14525 
14526       Value *L, *R;
14527       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
14528                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
14529         Worklist.push_back(L);
14530         Worklist.push_back(R);
14531       }
14532     }
14533   }
14534 
14535   // Also collect information from assumptions dominating the loop.
14536   for (auto &AssumeVH : AC.assumptions()) {
14537     if (!AssumeVH)
14538       continue;
14539     auto *AssumeI = cast<CallInst>(AssumeVH);
14540     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
14541     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
14542       continue;
14543     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
14544                      getSCEV(Cmp->getOperand(1)), RewriteMap);
14545   }
14546 
14547   if (RewriteMap.empty())
14548     return Expr;
14549 
14550   // Now that all rewrite information is collect, rewrite the collected
14551   // expressions with the information in the map. This applies information to
14552   // sub-expressions.
14553   if (ExprsToRewrite.size() > 1) {
14554     for (const SCEV *Expr : ExprsToRewrite) {
14555       const SCEV *RewriteTo = RewriteMap[Expr];
14556       RewriteMap.erase(Expr);
14557       SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14558       RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)});
14559     }
14560   }
14561 
14562   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14563   return Rewriter.visit(Expr);
14564 }
14565