1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/SaveAndRestore.h" 92 #include <algorithm> 93 using namespace llvm; 94 95 #define DEBUG_TYPE "scalar-evolution" 96 97 STATISTIC(NumArrayLenItCounts, 98 "Number of trip counts computed with array length"); 99 STATISTIC(NumTripCountsComputed, 100 "Number of loops with predictable loop counts"); 101 STATISTIC(NumTripCountsNotComputed, 102 "Number of loops without predictable loop counts"); 103 STATISTIC(NumBruteForceTripCountsComputed, 104 "Number of loops with trip counts computed by force"); 105 106 static cl::opt<unsigned> 107 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 108 cl::desc("Maximum number of iterations SCEV will " 109 "symbolically execute a constant " 110 "derived loop"), 111 cl::init(100)); 112 113 // FIXME: Enable this with XDEBUG when the test suite is clean. 114 static cl::opt<bool> 115 VerifySCEV("verify-scev", 116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 117 118 //===----------------------------------------------------------------------===// 119 // SCEV class definitions 120 //===----------------------------------------------------------------------===// 121 122 //===----------------------------------------------------------------------===// 123 // Implementation of the SCEV class. 124 // 125 126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 127 void SCEV::dump() const { 128 print(dbgs()); 129 dbgs() << '\n'; 130 } 131 #endif 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getValue()->getValue().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getValue()->getValue(); 537 const APInt &RA = RC->getValue()->getValue(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 namespace { 670 struct FindSCEVSize { 671 int Size; 672 FindSCEVSize() : Size(0) {} 673 674 bool follow(const SCEV *S) { 675 ++Size; 676 // Keep looking at all operands of S. 677 return true; 678 } 679 bool isDone() const { 680 return false; 681 } 682 }; 683 } 684 685 // Returns the size of the SCEV S. 686 static inline int sizeOfSCEV(const SCEV *S) { 687 FindSCEVSize F; 688 SCEVTraversal<FindSCEVSize> ST(F); 689 ST.visitAll(S); 690 return F.Size; 691 } 692 693 namespace { 694 695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 696 public: 697 // Computes the Quotient and Remainder of the division of Numerator by 698 // Denominator. 699 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 700 const SCEV *Denominator, const SCEV **Quotient, 701 const SCEV **Remainder) { 702 assert(Numerator && Denominator && "Uninitialized SCEV"); 703 704 SCEVDivision D(SE, Numerator, Denominator); 705 706 // Check for the trivial case here to avoid having to check for it in the 707 // rest of the code. 708 if (Numerator == Denominator) { 709 *Quotient = D.One; 710 *Remainder = D.Zero; 711 return; 712 } 713 714 if (Numerator->isZero()) { 715 *Quotient = D.Zero; 716 *Remainder = D.Zero; 717 return; 718 } 719 720 // A simple case when N/1. The quotient is N. 721 if (Denominator->isOne()) { 722 *Quotient = Numerator; 723 *Remainder = D.Zero; 724 return; 725 } 726 727 // Split the Denominator when it is a product. 728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 729 const SCEV *Q, *R; 730 *Quotient = Numerator; 731 for (const SCEV *Op : T->operands()) { 732 divide(SE, *Quotient, Op, &Q, &R); 733 *Quotient = Q; 734 735 // Bail out when the Numerator is not divisible by one of the terms of 736 // the Denominator. 737 if (!R->isZero()) { 738 *Quotient = D.Zero; 739 *Remainder = Numerator; 740 return; 741 } 742 } 743 *Remainder = D.Zero; 744 return; 745 } 746 747 D.visit(Numerator); 748 *Quotient = D.Quotient; 749 *Remainder = D.Remainder; 750 } 751 752 // Except in the trivial case described above, we do not know how to divide 753 // Expr by Denominator for the following functions with empty implementation. 754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 760 void visitUnknown(const SCEVUnknown *Numerator) {} 761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 762 763 void visitConstant(const SCEVConstant *Numerator) { 764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 765 APInt NumeratorVal = Numerator->getValue()->getValue(); 766 APInt DenominatorVal = D->getValue()->getValue(); 767 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 768 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 769 770 if (NumeratorBW > DenominatorBW) 771 DenominatorVal = DenominatorVal.sext(NumeratorBW); 772 else if (NumeratorBW < DenominatorBW) 773 NumeratorVal = NumeratorVal.sext(DenominatorBW); 774 775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 778 Quotient = SE.getConstant(QuotientVal); 779 Remainder = SE.getConstant(RemainderVal); 780 return; 781 } 782 } 783 784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 785 const SCEV *StartQ, *StartR, *StepQ, *StepR; 786 if (!Numerator->isAffine()) 787 return cannotDivide(Numerator); 788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 790 // Bail out if the types do not match. 791 Type *Ty = Denominator->getType(); 792 if (Ty != StartQ->getType() || Ty != StartR->getType() || 793 Ty != StepQ->getType() || Ty != StepR->getType()) 794 return cannotDivide(Numerator); 795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 } 800 801 void visitAddExpr(const SCEVAddExpr *Numerator) { 802 SmallVector<const SCEV *, 2> Qs, Rs; 803 Type *Ty = Denominator->getType(); 804 805 for (const SCEV *Op : Numerator->operands()) { 806 const SCEV *Q, *R; 807 divide(SE, Op, Denominator, &Q, &R); 808 809 // Bail out if types do not match. 810 if (Ty != Q->getType() || Ty != R->getType()) 811 return cannotDivide(Numerator); 812 813 Qs.push_back(Q); 814 Rs.push_back(R); 815 } 816 817 if (Qs.size() == 1) { 818 Quotient = Qs[0]; 819 Remainder = Rs[0]; 820 return; 821 } 822 823 Quotient = SE.getAddExpr(Qs); 824 Remainder = SE.getAddExpr(Rs); 825 } 826 827 void visitMulExpr(const SCEVMulExpr *Numerator) { 828 SmallVector<const SCEV *, 2> Qs; 829 Type *Ty = Denominator->getType(); 830 831 bool FoundDenominatorTerm = false; 832 for (const SCEV *Op : Numerator->operands()) { 833 // Bail out if types do not match. 834 if (Ty != Op->getType()) 835 return cannotDivide(Numerator); 836 837 if (FoundDenominatorTerm) { 838 Qs.push_back(Op); 839 continue; 840 } 841 842 // Check whether Denominator divides one of the product operands. 843 const SCEV *Q, *R; 844 divide(SE, Op, Denominator, &Q, &R); 845 if (!R->isZero()) { 846 Qs.push_back(Op); 847 continue; 848 } 849 850 // Bail out if types do not match. 851 if (Ty != Q->getType()) 852 return cannotDivide(Numerator); 853 854 FoundDenominatorTerm = true; 855 Qs.push_back(Q); 856 } 857 858 if (FoundDenominatorTerm) { 859 Remainder = Zero; 860 if (Qs.size() == 1) 861 Quotient = Qs[0]; 862 else 863 Quotient = SE.getMulExpr(Qs); 864 return; 865 } 866 867 if (!isa<SCEVUnknown>(Denominator)) 868 return cannotDivide(Numerator); 869 870 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 871 ValueToValueMap RewriteMap; 872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 873 cast<SCEVConstant>(Zero)->getValue(); 874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 875 876 if (Remainder->isZero()) { 877 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 879 cast<SCEVConstant>(One)->getValue(); 880 Quotient = 881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 882 return; 883 } 884 885 // Quotient is (Numerator - Remainder) divided by Denominator. 886 const SCEV *Q, *R; 887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 888 // This SCEV does not seem to simplify: fail the division here. 889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 890 return cannotDivide(Numerator); 891 divide(SE, Diff, Denominator, &Q, &R); 892 if (R != Zero) 893 return cannotDivide(Numerator); 894 Quotient = Q; 895 } 896 897 private: 898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 899 const SCEV *Denominator) 900 : SE(S), Denominator(Denominator) { 901 Zero = SE.getZero(Denominator->getType()); 902 One = SE.getOne(Denominator->getType()); 903 904 // We generally do not know how to divide Expr by Denominator. We 905 // initialize the division to a "cannot divide" state to simplify the rest 906 // of the code. 907 cannotDivide(Numerator); 908 } 909 910 // Convenience function for giving up on the division. We set the quotient to 911 // be equal to zero and the remainder to be equal to the numerator. 912 void cannotDivide(const SCEV *Numerator) { 913 Quotient = Zero; 914 Remainder = Numerator; 915 } 916 917 ScalarEvolution &SE; 918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 919 }; 920 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Simple SCEV method implementations 925 //===----------------------------------------------------------------------===// 926 927 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 928 /// Assume, K > 0. 929 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 930 ScalarEvolution &SE, 931 Type *ResultTy) { 932 // Handle the simplest case efficiently. 933 if (K == 1) 934 return SE.getTruncateOrZeroExtend(It, ResultTy); 935 936 // We are using the following formula for BC(It, K): 937 // 938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 939 // 940 // Suppose, W is the bitwidth of the return value. We must be prepared for 941 // overflow. Hence, we must assure that the result of our computation is 942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 943 // safe in modular arithmetic. 944 // 945 // However, this code doesn't use exactly that formula; the formula it uses 946 // is something like the following, where T is the number of factors of 2 in 947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 948 // exponentiation: 949 // 950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 951 // 952 // This formula is trivially equivalent to the previous formula. However, 953 // this formula can be implemented much more efficiently. The trick is that 954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 955 // arithmetic. To do exact division in modular arithmetic, all we have 956 // to do is multiply by the inverse. Therefore, this step can be done at 957 // width W. 958 // 959 // The next issue is how to safely do the division by 2^T. The way this 960 // is done is by doing the multiplication step at a width of at least W + T 961 // bits. This way, the bottom W+T bits of the product are accurate. Then, 962 // when we perform the division by 2^T (which is equivalent to a right shift 963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 964 // truncated out after the division by 2^T. 965 // 966 // In comparison to just directly using the first formula, this technique 967 // is much more efficient; using the first formula requires W * K bits, 968 // but this formula less than W + K bits. Also, the first formula requires 969 // a division step, whereas this formula only requires multiplies and shifts. 970 // 971 // It doesn't matter whether the subtraction step is done in the calculation 972 // width or the input iteration count's width; if the subtraction overflows, 973 // the result must be zero anyway. We prefer here to do it in the width of 974 // the induction variable because it helps a lot for certain cases; CodeGen 975 // isn't smart enough to ignore the overflow, which leads to much less 976 // efficient code if the width of the subtraction is wider than the native 977 // register width. 978 // 979 // (It's possible to not widen at all by pulling out factors of 2 before 980 // the multiplication; for example, K=2 can be calculated as 981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 982 // extra arithmetic, so it's not an obvious win, and it gets 983 // much more complicated for K > 3.) 984 985 // Protection from insane SCEVs; this bound is conservative, 986 // but it probably doesn't matter. 987 if (K > 1000) 988 return SE.getCouldNotCompute(); 989 990 unsigned W = SE.getTypeSizeInBits(ResultTy); 991 992 // Calculate K! / 2^T and T; we divide out the factors of two before 993 // multiplying for calculating K! / 2^T to avoid overflow. 994 // Other overflow doesn't matter because we only care about the bottom 995 // W bits of the result. 996 APInt OddFactorial(W, 1); 997 unsigned T = 1; 998 for (unsigned i = 3; i <= K; ++i) { 999 APInt Mult(W, i); 1000 unsigned TwoFactors = Mult.countTrailingZeros(); 1001 T += TwoFactors; 1002 Mult = Mult.lshr(TwoFactors); 1003 OddFactorial *= Mult; 1004 } 1005 1006 // We need at least W + T bits for the multiplication step 1007 unsigned CalculationBits = W + T; 1008 1009 // Calculate 2^T, at width T+W. 1010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1011 1012 // Calculate the multiplicative inverse of K! / 2^T; 1013 // this multiplication factor will perform the exact division by 1014 // K! / 2^T. 1015 APInt Mod = APInt::getSignedMinValue(W+1); 1016 APInt MultiplyFactor = OddFactorial.zext(W+1); 1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1018 MultiplyFactor = MultiplyFactor.trunc(W); 1019 1020 // Calculate the product, at width T+W 1021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1022 CalculationBits); 1023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1024 for (unsigned i = 1; i != K; ++i) { 1025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1026 Dividend = SE.getMulExpr(Dividend, 1027 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1028 } 1029 1030 // Divide by 2^T 1031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1032 1033 // Truncate the result, and divide by K! / 2^T. 1034 1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1037 } 1038 1039 /// evaluateAtIteration - Return the value of this chain of recurrences at 1040 /// the specified iteration number. We can evaluate this recurrence by 1041 /// multiplying each element in the chain by the binomial coefficient 1042 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1043 /// 1044 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1045 /// 1046 /// where BC(It, k) stands for binomial coefficient. 1047 /// 1048 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1049 ScalarEvolution &SE) const { 1050 const SCEV *Result = getStart(); 1051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1052 // The computation is correct in the face of overflow provided that the 1053 // multiplication is performed _after_ the evaluation of the binomial 1054 // coefficient. 1055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1056 if (isa<SCEVCouldNotCompute>(Coeff)) 1057 return Coeff; 1058 1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1060 } 1061 return Result; 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // SCEV Expression folder implementations 1066 //===----------------------------------------------------------------------===// 1067 1068 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1069 Type *Ty) { 1070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1071 "This is not a truncating conversion!"); 1072 assert(isSCEVable(Ty) && 1073 "This is not a conversion to a SCEVable type!"); 1074 Ty = getEffectiveSCEVType(Ty); 1075 1076 FoldingSetNodeID ID; 1077 ID.AddInteger(scTruncate); 1078 ID.AddPointer(Op); 1079 ID.AddPointer(Ty); 1080 void *IP = nullptr; 1081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1082 1083 // Fold if the operand is constant. 1084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1085 return getConstant( 1086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1087 1088 // trunc(trunc(x)) --> trunc(x) 1089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1090 return getTruncateExpr(ST->getOperand(), Ty); 1091 1092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1094 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1095 1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1099 1100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1101 // eliminate all the truncates, or we replace other casts with truncates. 1102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1103 SmallVector<const SCEV *, 4> Operands; 1104 bool hasTrunc = false; 1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1107 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1108 hasTrunc = isa<SCEVTruncateExpr>(S); 1109 Operands.push_back(S); 1110 } 1111 if (!hasTrunc) 1112 return getAddExpr(Operands); 1113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1114 } 1115 1116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1117 // eliminate all the truncates, or we replace other casts with truncates. 1118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1119 SmallVector<const SCEV *, 4> Operands; 1120 bool hasTrunc = false; 1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1123 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1124 hasTrunc = isa<SCEVTruncateExpr>(S); 1125 Operands.push_back(S); 1126 } 1127 if (!hasTrunc) 1128 return getMulExpr(Operands); 1129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1130 } 1131 1132 // If the input value is a chrec scev, truncate the chrec's operands. 1133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1134 SmallVector<const SCEV *, 4> Operands; 1135 for (const SCEV *Op : AddRec->operands()) 1136 Operands.push_back(getTruncateExpr(Op, Ty)); 1137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1138 } 1139 1140 // The cast wasn't folded; create an explicit cast node. We can reuse 1141 // the existing insert position since if we get here, we won't have 1142 // made any changes which would invalidate it. 1143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1144 Op, Ty); 1145 UniqueSCEVs.InsertNode(S, IP); 1146 return S; 1147 } 1148 1149 // Get the limit of a recurrence such that incrementing by Step cannot cause 1150 // signed overflow as long as the value of the recurrence within the 1151 // loop does not exceed this limit before incrementing. 1152 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1153 ICmpInst::Predicate *Pred, 1154 ScalarEvolution *SE) { 1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1156 if (SE->isKnownPositive(Step)) { 1157 *Pred = ICmpInst::ICMP_SLT; 1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1159 SE->getSignedRange(Step).getSignedMax()); 1160 } 1161 if (SE->isKnownNegative(Step)) { 1162 *Pred = ICmpInst::ICMP_SGT; 1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1164 SE->getSignedRange(Step).getSignedMin()); 1165 } 1166 return nullptr; 1167 } 1168 1169 // Get the limit of a recurrence such that incrementing by Step cannot cause 1170 // unsigned overflow as long as the value of the recurrence within the loop does 1171 // not exceed this limit before incrementing. 1172 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1173 ICmpInst::Predicate *Pred, 1174 ScalarEvolution *SE) { 1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1176 *Pred = ICmpInst::ICMP_ULT; 1177 1178 return SE->getConstant(APInt::getMinValue(BitWidth) - 1179 SE->getUnsignedRange(Step).getUnsignedMax()); 1180 } 1181 1182 namespace { 1183 1184 struct ExtendOpTraitsBase { 1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1186 }; 1187 1188 // Used to make code generic over signed and unsigned overflow. 1189 template <typename ExtendOp> struct ExtendOpTraits { 1190 // Members present: 1191 // 1192 // static const SCEV::NoWrapFlags WrapType; 1193 // 1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1195 // 1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1197 // ICmpInst::Predicate *Pred, 1198 // ScalarEvolution *SE); 1199 }; 1200 1201 template <> 1202 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1204 1205 static const GetExtendExprTy GetExtendExpr; 1206 1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1208 ICmpInst::Predicate *Pred, 1209 ScalarEvolution *SE) { 1210 return getSignedOverflowLimitForStep(Step, Pred, SE); 1211 } 1212 }; 1213 1214 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1216 1217 template <> 1218 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1220 1221 static const GetExtendExprTy GetExtendExpr; 1222 1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1224 ICmpInst::Predicate *Pred, 1225 ScalarEvolution *SE) { 1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1227 } 1228 }; 1229 1230 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1232 } 1233 1234 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1235 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1236 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1237 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1238 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1239 // expression "Step + sext/zext(PreIncAR)" is congruent with 1240 // "sext/zext(PostIncAR)" 1241 template <typename ExtendOpTy> 1242 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1243 ScalarEvolution *SE) { 1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1246 1247 const Loop *L = AR->getLoop(); 1248 const SCEV *Start = AR->getStart(); 1249 const SCEV *Step = AR->getStepRecurrence(*SE); 1250 1251 // Check for a simple looking step prior to loop entry. 1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1253 if (!SA) 1254 return nullptr; 1255 1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1257 // subtraction is expensive. For this purpose, perform a quick and dirty 1258 // difference, by checking for Step in the operand list. 1259 SmallVector<const SCEV *, 4> DiffOps; 1260 for (const SCEV *Op : SA->operands()) 1261 if (Op != Step) 1262 DiffOps.push_back(Op); 1263 1264 if (DiffOps.size() == SA->getNumOperands()) 1265 return nullptr; 1266 1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1268 // `Step`: 1269 1270 // 1. NSW/NUW flags on the step increment. 1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1274 1275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1276 // "S+X does not sign/unsign-overflow". 1277 // 1278 1279 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1282 return PreStart; 1283 1284 // 2. Direct overflow check on the step operation's expression. 1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1287 const SCEV *OperandExtendedStart = 1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1289 (SE->*GetExtendExpr)(Step, WideTy)); 1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1291 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1296 } 1297 return PreStart; 1298 } 1299 1300 // 3. Loop precondition. 1301 ICmpInst::Predicate Pred; 1302 const SCEV *OverflowLimit = 1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1304 1305 if (OverflowLimit && 1306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1307 return PreStart; 1308 1309 return nullptr; 1310 } 1311 1312 // Get the normalized zero or sign extended expression for this AddRec's Start. 1313 template <typename ExtendOpTy> 1314 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1315 ScalarEvolution *SE) { 1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1317 1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1319 if (!PreStart) 1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1321 1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1323 (SE->*GetExtendExpr)(PreStart, Ty)); 1324 } 1325 1326 // Try to prove away overflow by looking at "nearby" add recurrences. A 1327 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1328 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1329 // 1330 // Formally: 1331 // 1332 // {S,+,X} == {S-T,+,X} + T 1333 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1334 // 1335 // If ({S-T,+,X} + T) does not overflow ... (1) 1336 // 1337 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1338 // 1339 // If {S-T,+,X} does not overflow ... (2) 1340 // 1341 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1342 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1343 // 1344 // If (S-T)+T does not overflow ... (3) 1345 // 1346 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1347 // == {Ext(S),+,Ext(X)} == LHS 1348 // 1349 // Thus, if (1), (2) and (3) are true for some T, then 1350 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1351 // 1352 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1353 // does not overflow" restricted to the 0th iteration. Therefore we only need 1354 // to check for (1) and (2). 1355 // 1356 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1357 // is `Delta` (defined below). 1358 // 1359 template <typename ExtendOpTy> 1360 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1361 const SCEV *Step, 1362 const Loop *L) { 1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1364 1365 // We restrict `Start` to a constant to prevent SCEV from spending too much 1366 // time here. It is correct (but more expensive) to continue with a 1367 // non-constant `Start` and do a general SCEV subtraction to compute 1368 // `PreStart` below. 1369 // 1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1371 if (!StartC) 1372 return false; 1373 1374 APInt StartAI = StartC->getValue()->getValue(); 1375 1376 for (unsigned Delta : {-2, -1, 1, 2}) { 1377 const SCEV *PreStart = getConstant(StartAI - Delta); 1378 1379 // Give up if we don't already have the add recurrence we need because 1380 // actually constructing an add recurrence is relatively expensive. 1381 const SCEVAddRecExpr *PreAR = [&]() { 1382 FoldingSetNodeID ID; 1383 ID.AddInteger(scAddRecExpr); 1384 ID.AddPointer(PreStart); 1385 ID.AddPointer(Step); 1386 ID.AddPointer(L); 1387 void *IP = nullptr; 1388 return static_cast<SCEVAddRecExpr *>( 1389 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1390 }(); 1391 1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1396 DeltaS, &Pred, this); 1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1398 return true; 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1406 Type *Ty) { 1407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1408 "This is not an extending conversion!"); 1409 assert(isSCEVable(Ty) && 1410 "This is not a conversion to a SCEVable type!"); 1411 Ty = getEffectiveSCEVType(Ty); 1412 1413 // Fold if the operand is constant. 1414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1415 return getConstant( 1416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1417 1418 // zext(zext(x)) --> zext(x) 1419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1420 return getZeroExtendExpr(SZ->getOperand(), Ty); 1421 1422 // Before doing any expensive analysis, check to see if we've already 1423 // computed a SCEV for this Op and Ty. 1424 FoldingSetNodeID ID; 1425 ID.AddInteger(scZeroExtend); 1426 ID.AddPointer(Op); 1427 ID.AddPointer(Ty); 1428 void *IP = nullptr; 1429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1430 1431 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1433 // It's possible the bits taken off by the truncate were all zero bits. If 1434 // so, we should be able to simplify this further. 1435 const SCEV *X = ST->getOperand(); 1436 ConstantRange CR = getUnsignedRange(X); 1437 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1438 unsigned NewBits = getTypeSizeInBits(Ty); 1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1440 CR.zextOrTrunc(NewBits))) 1441 return getTruncateOrZeroExtend(X, Ty); 1442 } 1443 1444 // If the input value is a chrec scev, and we can prove that the value 1445 // did not overflow the old, smaller, value, we can zero extend all of the 1446 // operands (often constants). This allows analysis of something like 1447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1449 if (AR->isAffine()) { 1450 const SCEV *Start = AR->getStart(); 1451 const SCEV *Step = AR->getStepRecurrence(*this); 1452 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1453 const Loop *L = AR->getLoop(); 1454 1455 // If we have special knowledge that this addrec won't overflow, 1456 // we don't need to do any further analysis. 1457 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1458 return getAddRecExpr( 1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1461 1462 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1463 // Note that this serves two purposes: It filters out loops that are 1464 // simply not analyzable, and it covers the case where this code is 1465 // being called from within backedge-taken count analysis, such that 1466 // attempting to ask for the backedge-taken count would likely result 1467 // in infinite recursion. In the later case, the analysis code will 1468 // cope with a conservative value, and it will take care to purge 1469 // that value once it has finished. 1470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1472 // Manually compute the final value for AR, checking for 1473 // overflow. 1474 1475 // Check whether the backedge-taken count can be losslessly casted to 1476 // the addrec's type. The count is always unsigned. 1477 const SCEV *CastedMaxBECount = 1478 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1479 const SCEV *RecastedMaxBECount = 1480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1481 if (MaxBECount == RecastedMaxBECount) { 1482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1483 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1487 const SCEV *WideMaxBECount = 1488 getZeroExtendExpr(CastedMaxBECount, WideTy); 1489 const SCEV *OperandExtendedAdd = 1490 getAddExpr(WideStart, 1491 getMulExpr(WideMaxBECount, 1492 getZeroExtendExpr(Step, WideTy))); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy))); 1507 if (ZAdd == OperandExtendedAdd) { 1508 // Cache knowledge of AR NW, which is propagated to this AddRec. 1509 // Negative step causes unsigned wrap, but it still can't self-wrap. 1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1511 // Return the expression with the addrec on the outside. 1512 return getAddRecExpr( 1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1515 } 1516 } 1517 1518 // If the backedge is guarded by a comparison with the pre-inc value 1519 // the addrec is safe. Also, if the entry is guarded by a comparison 1520 // with the start value and the backedge is guarded by a comparison 1521 // with the post-inc value, the addrec is safe. 1522 if (isKnownPositive(Step)) { 1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1524 getUnsignedRange(Step).getUnsignedMax()); 1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1528 AR->getPostIncExpr(*this), N))) { 1529 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1531 // Return the expression with the addrec on the outside. 1532 return getAddRecExpr( 1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1535 } 1536 } else if (isKnownNegative(Step)) { 1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1538 getSignedRange(Step).getSignedMin()); 1539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1542 AR->getPostIncExpr(*this), N))) { 1543 // Cache knowledge of AR NW, which is propagated to this AddRec. 1544 // Negative step causes unsigned wrap, but it still can't self-wrap. 1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1546 // Return the expression with the addrec on the outside. 1547 return getAddRecExpr( 1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1550 } 1551 } 1552 } 1553 1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1556 return getAddRecExpr( 1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1559 } 1560 } 1561 1562 // The cast wasn't folded; create an explicit cast node. 1563 // Recompute the insert position, as it may have been invalidated. 1564 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1565 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1566 Op, Ty); 1567 UniqueSCEVs.InsertNode(S, IP); 1568 return S; 1569 } 1570 1571 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1572 Type *Ty) { 1573 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1574 "This is not an extending conversion!"); 1575 assert(isSCEVable(Ty) && 1576 "This is not a conversion to a SCEVable type!"); 1577 Ty = getEffectiveSCEVType(Ty); 1578 1579 // Fold if the operand is constant. 1580 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1581 return getConstant( 1582 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1583 1584 // sext(sext(x)) --> sext(x) 1585 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1586 return getSignExtendExpr(SS->getOperand(), Ty); 1587 1588 // sext(zext(x)) --> zext(x) 1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1590 return getZeroExtendExpr(SZ->getOperand(), Ty); 1591 1592 // Before doing any expensive analysis, check to see if we've already 1593 // computed a SCEV for this Op and Ty. 1594 FoldingSetNodeID ID; 1595 ID.AddInteger(scSignExtend); 1596 ID.AddPointer(Op); 1597 ID.AddPointer(Ty); 1598 void *IP = nullptr; 1599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1600 1601 // If the input value is provably positive, build a zext instead. 1602 if (isKnownNonNegative(Op)) 1603 return getZeroExtendExpr(Op, Ty); 1604 1605 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1606 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1607 // It's possible the bits taken off by the truncate were all sign bits. If 1608 // so, we should be able to simplify this further. 1609 const SCEV *X = ST->getOperand(); 1610 ConstantRange CR = getSignedRange(X); 1611 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1612 unsigned NewBits = getTypeSizeInBits(Ty); 1613 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1614 CR.sextOrTrunc(NewBits))) 1615 return getTruncateOrSignExtend(X, Ty); 1616 } 1617 1618 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1619 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1620 if (SA->getNumOperands() == 2) { 1621 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1622 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1623 if (SMul && SC1) { 1624 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1625 const APInt &C1 = SC1->getValue()->getValue(); 1626 const APInt &C2 = SC2->getValue()->getValue(); 1627 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1628 C2.ugt(C1) && C2.isPowerOf2()) 1629 return getAddExpr(getSignExtendExpr(SC1, Ty), 1630 getSignExtendExpr(SMul, Ty)); 1631 } 1632 } 1633 } 1634 } 1635 // If the input value is a chrec scev, and we can prove that the value 1636 // did not overflow the old, smaller, value, we can sign extend all of the 1637 // operands (often constants). This allows analysis of something like 1638 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1639 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1640 if (AR->isAffine()) { 1641 const SCEV *Start = AR->getStart(); 1642 const SCEV *Step = AR->getStepRecurrence(*this); 1643 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1644 const Loop *L = AR->getLoop(); 1645 1646 // If we have special knowledge that this addrec won't overflow, 1647 // we don't need to do any further analysis. 1648 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1649 return getAddRecExpr( 1650 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1651 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1652 1653 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1654 // Note that this serves two purposes: It filters out loops that are 1655 // simply not analyzable, and it covers the case where this code is 1656 // being called from within backedge-taken count analysis, such that 1657 // attempting to ask for the backedge-taken count would likely result 1658 // in infinite recursion. In the later case, the analysis code will 1659 // cope with a conservative value, and it will take care to purge 1660 // that value once it has finished. 1661 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1662 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1663 // Manually compute the final value for AR, checking for 1664 // overflow. 1665 1666 // Check whether the backedge-taken count can be losslessly casted to 1667 // the addrec's type. The count is always unsigned. 1668 const SCEV *CastedMaxBECount = 1669 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1670 const SCEV *RecastedMaxBECount = 1671 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1672 if (MaxBECount == RecastedMaxBECount) { 1673 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1674 // Check whether Start+Step*MaxBECount has no signed overflow. 1675 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1676 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1677 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1678 const SCEV *WideMaxBECount = 1679 getZeroExtendExpr(CastedMaxBECount, WideTy); 1680 const SCEV *OperandExtendedAdd = 1681 getAddExpr(WideStart, 1682 getMulExpr(WideMaxBECount, 1683 getSignExtendExpr(Step, WideTy))); 1684 if (SAdd == OperandExtendedAdd) { 1685 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1686 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1687 // Return the expression with the addrec on the outside. 1688 return getAddRecExpr( 1689 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1690 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1691 } 1692 // Similar to above, only this time treat the step value as unsigned. 1693 // This covers loops that count up with an unsigned step. 1694 OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getZeroExtendExpr(Step, WideTy))); 1698 if (SAdd == OperandExtendedAdd) { 1699 // If AR wraps around then 1700 // 1701 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1702 // => SAdd != OperandExtendedAdd 1703 // 1704 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1705 // (SAdd == OperandExtendedAdd => AR is NW) 1706 1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1708 1709 // Return the expression with the addrec on the outside. 1710 return getAddRecExpr( 1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1712 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1713 } 1714 } 1715 1716 // If the backedge is guarded by a comparison with the pre-inc value 1717 // the addrec is safe. Also, if the entry is guarded by a comparison 1718 // with the start value and the backedge is guarded by a comparison 1719 // with the post-inc value, the addrec is safe. 1720 ICmpInst::Predicate Pred; 1721 const SCEV *OverflowLimit = 1722 getSignedOverflowLimitForStep(Step, &Pred, this); 1723 if (OverflowLimit && 1724 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1725 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1726 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1727 OverflowLimit)))) { 1728 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1730 return getAddRecExpr( 1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1732 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1733 } 1734 } 1735 // If Start and Step are constants, check if we can apply this 1736 // transformation: 1737 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1738 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1739 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1740 if (SC1 && SC2) { 1741 const APInt &C1 = SC1->getValue()->getValue(); 1742 const APInt &C2 = SC2->getValue()->getValue(); 1743 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1744 C2.isPowerOf2()) { 1745 Start = getSignExtendExpr(Start, Ty); 1746 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1747 AR->getNoWrapFlags()); 1748 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1749 } 1750 } 1751 1752 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1753 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1754 return getAddRecExpr( 1755 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1756 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1757 } 1758 } 1759 1760 // The cast wasn't folded; create an explicit cast node. 1761 // Recompute the insert position, as it may have been invalidated. 1762 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1763 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1764 Op, Ty); 1765 UniqueSCEVs.InsertNode(S, IP); 1766 return S; 1767 } 1768 1769 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1770 /// unspecified bits out to the given type. 1771 /// 1772 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1773 Type *Ty) { 1774 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1775 "This is not an extending conversion!"); 1776 assert(isSCEVable(Ty) && 1777 "This is not a conversion to a SCEVable type!"); 1778 Ty = getEffectiveSCEVType(Ty); 1779 1780 // Sign-extend negative constants. 1781 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1782 if (SC->getValue()->getValue().isNegative()) 1783 return getSignExtendExpr(Op, Ty); 1784 1785 // Peel off a truncate cast. 1786 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1787 const SCEV *NewOp = T->getOperand(); 1788 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1789 return getAnyExtendExpr(NewOp, Ty); 1790 return getTruncateOrNoop(NewOp, Ty); 1791 } 1792 1793 // Next try a zext cast. If the cast is folded, use it. 1794 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1795 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1796 return ZExt; 1797 1798 // Next try a sext cast. If the cast is folded, use it. 1799 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1800 if (!isa<SCEVSignExtendExpr>(SExt)) 1801 return SExt; 1802 1803 // Force the cast to be folded into the operands of an addrec. 1804 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1805 SmallVector<const SCEV *, 4> Ops; 1806 for (const SCEV *Op : AR->operands()) 1807 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1808 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1809 } 1810 1811 // If the expression is obviously signed, use the sext cast value. 1812 if (isa<SCEVSMaxExpr>(Op)) 1813 return SExt; 1814 1815 // Absent any other information, use the zext cast value. 1816 return ZExt; 1817 } 1818 1819 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1820 /// a list of operands to be added under the given scale, update the given 1821 /// map. This is a helper function for getAddRecExpr. As an example of 1822 /// what it does, given a sequence of operands that would form an add 1823 /// expression like this: 1824 /// 1825 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1826 /// 1827 /// where A and B are constants, update the map with these values: 1828 /// 1829 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1830 /// 1831 /// and add 13 + A*B*29 to AccumulatedConstant. 1832 /// This will allow getAddRecExpr to produce this: 1833 /// 1834 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1835 /// 1836 /// This form often exposes folding opportunities that are hidden in 1837 /// the original operand list. 1838 /// 1839 /// Return true iff it appears that any interesting folding opportunities 1840 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1841 /// the common case where no interesting opportunities are present, and 1842 /// is also used as a check to avoid infinite recursion. 1843 /// 1844 static bool 1845 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1846 SmallVectorImpl<const SCEV *> &NewOps, 1847 APInt &AccumulatedConstant, 1848 const SCEV *const *Ops, size_t NumOperands, 1849 const APInt &Scale, 1850 ScalarEvolution &SE) { 1851 bool Interesting = false; 1852 1853 // Iterate over the add operands. They are sorted, with constants first. 1854 unsigned i = 0; 1855 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1856 ++i; 1857 // Pull a buried constant out to the outside. 1858 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1859 Interesting = true; 1860 AccumulatedConstant += Scale * C->getValue()->getValue(); 1861 } 1862 1863 // Next comes everything else. We're especially interested in multiplies 1864 // here, but they're in the middle, so just visit the rest with one loop. 1865 for (; i != NumOperands; ++i) { 1866 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1867 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1868 APInt NewScale = 1869 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1870 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1871 // A multiplication of a constant with another add; recurse. 1872 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1873 Interesting |= 1874 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1875 Add->op_begin(), Add->getNumOperands(), 1876 NewScale, SE); 1877 } else { 1878 // A multiplication of a constant with some other value. Update 1879 // the map. 1880 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1881 const SCEV *Key = SE.getMulExpr(MulOps); 1882 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1883 if (Pair.second) { 1884 NewOps.push_back(Pair.first->first); 1885 } else { 1886 Pair.first->second += NewScale; 1887 // The map already had an entry for this value, which may indicate 1888 // a folding opportunity. 1889 Interesting = true; 1890 } 1891 } 1892 } else { 1893 // An ordinary operand. Update the map. 1894 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1895 M.insert(std::make_pair(Ops[i], Scale)); 1896 if (Pair.second) { 1897 NewOps.push_back(Pair.first->first); 1898 } else { 1899 Pair.first->second += Scale; 1900 // The map already had an entry for this value, which may indicate 1901 // a folding opportunity. 1902 Interesting = true; 1903 } 1904 } 1905 } 1906 1907 return Interesting; 1908 } 1909 1910 namespace { 1911 struct APIntCompare { 1912 bool operator()(const APInt &LHS, const APInt &RHS) const { 1913 return LHS.ult(RHS); 1914 } 1915 }; 1916 } 1917 1918 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1919 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1920 // can't-overflow flags for the operation if possible. 1921 static SCEV::NoWrapFlags 1922 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1923 const SmallVectorImpl<const SCEV *> &Ops, 1924 SCEV::NoWrapFlags OldFlags) { 1925 using namespace std::placeholders; 1926 1927 bool CanAnalyze = 1928 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1929 (void)CanAnalyze; 1930 assert(CanAnalyze && "don't call from other places!"); 1931 1932 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1933 SCEV::NoWrapFlags SignOrUnsignWrap = 1934 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1935 1936 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1937 auto IsKnownNonNegative = 1938 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1939 1940 if (SignOrUnsignWrap == SCEV::FlagNSW && 1941 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1942 return ScalarEvolution::setFlags(OldFlags, 1943 (SCEV::NoWrapFlags)SignOrUnsignMask); 1944 1945 return OldFlags; 1946 } 1947 1948 /// getAddExpr - Get a canonical add expression, or something simpler if 1949 /// possible. 1950 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1951 SCEV::NoWrapFlags Flags) { 1952 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1953 "only nuw or nsw allowed"); 1954 assert(!Ops.empty() && "Cannot get empty add!"); 1955 if (Ops.size() == 1) return Ops[0]; 1956 #ifndef NDEBUG 1957 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1958 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1959 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1960 "SCEVAddExpr operand types don't match!"); 1961 #endif 1962 1963 // Sort by complexity, this groups all similar expression types together. 1964 GroupByComplexity(Ops, &LI); 1965 1966 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1967 1968 // If there are any constants, fold them together. 1969 unsigned Idx = 0; 1970 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1971 ++Idx; 1972 assert(Idx < Ops.size()); 1973 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1974 // We found two constants, fold them together! 1975 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1976 RHSC->getValue()->getValue()); 1977 if (Ops.size() == 2) return Ops[0]; 1978 Ops.erase(Ops.begin()+1); // Erase the folded element 1979 LHSC = cast<SCEVConstant>(Ops[0]); 1980 } 1981 1982 // If we are left with a constant zero being added, strip it off. 1983 if (LHSC->getValue()->isZero()) { 1984 Ops.erase(Ops.begin()); 1985 --Idx; 1986 } 1987 1988 if (Ops.size() == 1) return Ops[0]; 1989 } 1990 1991 // Okay, check to see if the same value occurs in the operand list more than 1992 // once. If so, merge them together into an multiply expression. Since we 1993 // sorted the list, these values are required to be adjacent. 1994 Type *Ty = Ops[0]->getType(); 1995 bool FoundMatch = false; 1996 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1997 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1998 // Scan ahead to count how many equal operands there are. 1999 unsigned Count = 2; 2000 while (i+Count != e && Ops[i+Count] == Ops[i]) 2001 ++Count; 2002 // Merge the values into a multiply. 2003 const SCEV *Scale = getConstant(Ty, Count); 2004 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2005 if (Ops.size() == Count) 2006 return Mul; 2007 Ops[i] = Mul; 2008 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2009 --i; e -= Count - 1; 2010 FoundMatch = true; 2011 } 2012 if (FoundMatch) 2013 return getAddExpr(Ops, Flags); 2014 2015 // Check for truncates. If all the operands are truncated from the same 2016 // type, see if factoring out the truncate would permit the result to be 2017 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2018 // if the contents of the resulting outer trunc fold to something simple. 2019 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2020 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2021 Type *DstType = Trunc->getType(); 2022 Type *SrcType = Trunc->getOperand()->getType(); 2023 SmallVector<const SCEV *, 8> LargeOps; 2024 bool Ok = true; 2025 // Check all the operands to see if they can be represented in the 2026 // source type of the truncate. 2027 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2028 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2029 if (T->getOperand()->getType() != SrcType) { 2030 Ok = false; 2031 break; 2032 } 2033 LargeOps.push_back(T->getOperand()); 2034 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2035 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2036 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2037 SmallVector<const SCEV *, 8> LargeMulOps; 2038 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2039 if (const SCEVTruncateExpr *T = 2040 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2041 if (T->getOperand()->getType() != SrcType) { 2042 Ok = false; 2043 break; 2044 } 2045 LargeMulOps.push_back(T->getOperand()); 2046 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2047 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2048 } else { 2049 Ok = false; 2050 break; 2051 } 2052 } 2053 if (Ok) 2054 LargeOps.push_back(getMulExpr(LargeMulOps)); 2055 } else { 2056 Ok = false; 2057 break; 2058 } 2059 } 2060 if (Ok) { 2061 // Evaluate the expression in the larger type. 2062 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2063 // If it folds to something simple, use it. Otherwise, don't. 2064 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2065 return getTruncateExpr(Fold, DstType); 2066 } 2067 } 2068 2069 // Skip past any other cast SCEVs. 2070 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2071 ++Idx; 2072 2073 // If there are add operands they would be next. 2074 if (Idx < Ops.size()) { 2075 bool DeletedAdd = false; 2076 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2077 // If we have an add, expand the add operands onto the end of the operands 2078 // list. 2079 Ops.erase(Ops.begin()+Idx); 2080 Ops.append(Add->op_begin(), Add->op_end()); 2081 DeletedAdd = true; 2082 } 2083 2084 // If we deleted at least one add, we added operands to the end of the list, 2085 // and they are not necessarily sorted. Recurse to resort and resimplify 2086 // any operands we just acquired. 2087 if (DeletedAdd) 2088 return getAddExpr(Ops); 2089 } 2090 2091 // Skip over the add expression until we get to a multiply. 2092 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2093 ++Idx; 2094 2095 // Check to see if there are any folding opportunities present with 2096 // operands multiplied by constant values. 2097 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2098 uint64_t BitWidth = getTypeSizeInBits(Ty); 2099 DenseMap<const SCEV *, APInt> M; 2100 SmallVector<const SCEV *, 8> NewOps; 2101 APInt AccumulatedConstant(BitWidth, 0); 2102 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2103 Ops.data(), Ops.size(), 2104 APInt(BitWidth, 1), *this)) { 2105 // Some interesting folding opportunity is present, so its worthwhile to 2106 // re-generate the operands list. Group the operands by constant scale, 2107 // to avoid multiplying by the same constant scale multiple times. 2108 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2109 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2110 E = NewOps.end(); I != E; ++I) 2111 MulOpLists[M.find(*I)->second].push_back(*I); 2112 // Re-generate the operands list. 2113 Ops.clear(); 2114 if (AccumulatedConstant != 0) 2115 Ops.push_back(getConstant(AccumulatedConstant)); 2116 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2117 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2118 if (I->first != 0) 2119 Ops.push_back(getMulExpr(getConstant(I->first), 2120 getAddExpr(I->second))); 2121 if (Ops.empty()) 2122 return getZero(Ty); 2123 if (Ops.size() == 1) 2124 return Ops[0]; 2125 return getAddExpr(Ops); 2126 } 2127 } 2128 2129 // If we are adding something to a multiply expression, make sure the 2130 // something is not already an operand of the multiply. If so, merge it into 2131 // the multiply. 2132 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2133 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2134 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2135 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2136 if (isa<SCEVConstant>(MulOpSCEV)) 2137 continue; 2138 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2139 if (MulOpSCEV == Ops[AddOp]) { 2140 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2141 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2142 if (Mul->getNumOperands() != 2) { 2143 // If the multiply has more than two operands, we must get the 2144 // Y*Z term. 2145 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2146 Mul->op_begin()+MulOp); 2147 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2148 InnerMul = getMulExpr(MulOps); 2149 } 2150 const SCEV *One = getOne(Ty); 2151 const SCEV *AddOne = getAddExpr(One, InnerMul); 2152 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2153 if (Ops.size() == 2) return OuterMul; 2154 if (AddOp < Idx) { 2155 Ops.erase(Ops.begin()+AddOp); 2156 Ops.erase(Ops.begin()+Idx-1); 2157 } else { 2158 Ops.erase(Ops.begin()+Idx); 2159 Ops.erase(Ops.begin()+AddOp-1); 2160 } 2161 Ops.push_back(OuterMul); 2162 return getAddExpr(Ops); 2163 } 2164 2165 // Check this multiply against other multiplies being added together. 2166 for (unsigned OtherMulIdx = Idx+1; 2167 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2168 ++OtherMulIdx) { 2169 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2170 // If MulOp occurs in OtherMul, we can fold the two multiplies 2171 // together. 2172 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2173 OMulOp != e; ++OMulOp) 2174 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2175 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2176 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2177 if (Mul->getNumOperands() != 2) { 2178 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2179 Mul->op_begin()+MulOp); 2180 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2181 InnerMul1 = getMulExpr(MulOps); 2182 } 2183 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2184 if (OtherMul->getNumOperands() != 2) { 2185 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2186 OtherMul->op_begin()+OMulOp); 2187 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2188 InnerMul2 = getMulExpr(MulOps); 2189 } 2190 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2191 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2192 if (Ops.size() == 2) return OuterMul; 2193 Ops.erase(Ops.begin()+Idx); 2194 Ops.erase(Ops.begin()+OtherMulIdx-1); 2195 Ops.push_back(OuterMul); 2196 return getAddExpr(Ops); 2197 } 2198 } 2199 } 2200 } 2201 2202 // If there are any add recurrences in the operands list, see if any other 2203 // added values are loop invariant. If so, we can fold them into the 2204 // recurrence. 2205 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2206 ++Idx; 2207 2208 // Scan over all recurrences, trying to fold loop invariants into them. 2209 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2210 // Scan all of the other operands to this add and add them to the vector if 2211 // they are loop invariant w.r.t. the recurrence. 2212 SmallVector<const SCEV *, 8> LIOps; 2213 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2214 const Loop *AddRecLoop = AddRec->getLoop(); 2215 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2216 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2217 LIOps.push_back(Ops[i]); 2218 Ops.erase(Ops.begin()+i); 2219 --i; --e; 2220 } 2221 2222 // If we found some loop invariants, fold them into the recurrence. 2223 if (!LIOps.empty()) { 2224 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2225 LIOps.push_back(AddRec->getStart()); 2226 2227 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2228 AddRec->op_end()); 2229 AddRecOps[0] = getAddExpr(LIOps); 2230 2231 // Build the new addrec. Propagate the NUW and NSW flags if both the 2232 // outer add and the inner addrec are guaranteed to have no overflow. 2233 // Always propagate NW. 2234 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2235 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2236 2237 // If all of the other operands were loop invariant, we are done. 2238 if (Ops.size() == 1) return NewRec; 2239 2240 // Otherwise, add the folded AddRec by the non-invariant parts. 2241 for (unsigned i = 0;; ++i) 2242 if (Ops[i] == AddRec) { 2243 Ops[i] = NewRec; 2244 break; 2245 } 2246 return getAddExpr(Ops); 2247 } 2248 2249 // Okay, if there weren't any loop invariants to be folded, check to see if 2250 // there are multiple AddRec's with the same loop induction variable being 2251 // added together. If so, we can fold them. 2252 for (unsigned OtherIdx = Idx+1; 2253 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2254 ++OtherIdx) 2255 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2256 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2257 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2258 AddRec->op_end()); 2259 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2260 ++OtherIdx) 2261 if (const SCEVAddRecExpr *OtherAddRec = 2262 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2263 if (OtherAddRec->getLoop() == AddRecLoop) { 2264 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2265 i != e; ++i) { 2266 if (i >= AddRecOps.size()) { 2267 AddRecOps.append(OtherAddRec->op_begin()+i, 2268 OtherAddRec->op_end()); 2269 break; 2270 } 2271 AddRecOps[i] = getAddExpr(AddRecOps[i], 2272 OtherAddRec->getOperand(i)); 2273 } 2274 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2275 } 2276 // Step size has changed, so we cannot guarantee no self-wraparound. 2277 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2278 return getAddExpr(Ops); 2279 } 2280 2281 // Otherwise couldn't fold anything into this recurrence. Move onto the 2282 // next one. 2283 } 2284 2285 // Okay, it looks like we really DO need an add expr. Check to see if we 2286 // already have one, otherwise create a new one. 2287 FoldingSetNodeID ID; 2288 ID.AddInteger(scAddExpr); 2289 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2290 ID.AddPointer(Ops[i]); 2291 void *IP = nullptr; 2292 SCEVAddExpr *S = 2293 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2294 if (!S) { 2295 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2296 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2297 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2298 O, Ops.size()); 2299 UniqueSCEVs.InsertNode(S, IP); 2300 } 2301 S->setNoWrapFlags(Flags); 2302 return S; 2303 } 2304 2305 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2306 uint64_t k = i*j; 2307 if (j > 1 && k / j != i) Overflow = true; 2308 return k; 2309 } 2310 2311 /// Compute the result of "n choose k", the binomial coefficient. If an 2312 /// intermediate computation overflows, Overflow will be set and the return will 2313 /// be garbage. Overflow is not cleared on absence of overflow. 2314 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2315 // We use the multiplicative formula: 2316 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2317 // At each iteration, we take the n-th term of the numeral and divide by the 2318 // (k-n)th term of the denominator. This division will always produce an 2319 // integral result, and helps reduce the chance of overflow in the 2320 // intermediate computations. However, we can still overflow even when the 2321 // final result would fit. 2322 2323 if (n == 0 || n == k) return 1; 2324 if (k > n) return 0; 2325 2326 if (k > n/2) 2327 k = n-k; 2328 2329 uint64_t r = 1; 2330 for (uint64_t i = 1; i <= k; ++i) { 2331 r = umul_ov(r, n-(i-1), Overflow); 2332 r /= i; 2333 } 2334 return r; 2335 } 2336 2337 /// Determine if any of the operands in this SCEV are a constant or if 2338 /// any of the add or multiply expressions in this SCEV contain a constant. 2339 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2340 SmallVector<const SCEV *, 4> Ops; 2341 Ops.push_back(StartExpr); 2342 while (!Ops.empty()) { 2343 const SCEV *CurrentExpr = Ops.pop_back_val(); 2344 if (isa<SCEVConstant>(*CurrentExpr)) 2345 return true; 2346 2347 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2348 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2349 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2350 } 2351 } 2352 return false; 2353 } 2354 2355 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2356 /// possible. 2357 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2358 SCEV::NoWrapFlags Flags) { 2359 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2360 "only nuw or nsw allowed"); 2361 assert(!Ops.empty() && "Cannot get empty mul!"); 2362 if (Ops.size() == 1) return Ops[0]; 2363 #ifndef NDEBUG 2364 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2365 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2366 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2367 "SCEVMulExpr operand types don't match!"); 2368 #endif 2369 2370 // Sort by complexity, this groups all similar expression types together. 2371 GroupByComplexity(Ops, &LI); 2372 2373 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2374 2375 // If there are any constants, fold them together. 2376 unsigned Idx = 0; 2377 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2378 2379 // C1*(C2+V) -> C1*C2 + C1*V 2380 if (Ops.size() == 2) 2381 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2382 // If any of Add's ops are Adds or Muls with a constant, 2383 // apply this transformation as well. 2384 if (Add->getNumOperands() == 2) 2385 if (containsConstantSomewhere(Add)) 2386 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2387 getMulExpr(LHSC, Add->getOperand(1))); 2388 2389 ++Idx; 2390 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2391 // We found two constants, fold them together! 2392 ConstantInt *Fold = ConstantInt::get(getContext(), 2393 LHSC->getValue()->getValue() * 2394 RHSC->getValue()->getValue()); 2395 Ops[0] = getConstant(Fold); 2396 Ops.erase(Ops.begin()+1); // Erase the folded element 2397 if (Ops.size() == 1) return Ops[0]; 2398 LHSC = cast<SCEVConstant>(Ops[0]); 2399 } 2400 2401 // If we are left with a constant one being multiplied, strip it off. 2402 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2403 Ops.erase(Ops.begin()); 2404 --Idx; 2405 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2406 // If we have a multiply of zero, it will always be zero. 2407 return Ops[0]; 2408 } else if (Ops[0]->isAllOnesValue()) { 2409 // If we have a mul by -1 of an add, try distributing the -1 among the 2410 // add operands. 2411 if (Ops.size() == 2) { 2412 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2413 SmallVector<const SCEV *, 4> NewOps; 2414 bool AnyFolded = false; 2415 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2416 E = Add->op_end(); I != E; ++I) { 2417 const SCEV *Mul = getMulExpr(Ops[0], *I); 2418 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2419 NewOps.push_back(Mul); 2420 } 2421 if (AnyFolded) 2422 return getAddExpr(NewOps); 2423 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2424 // Negation preserves a recurrence's no self-wrap property. 2425 SmallVector<const SCEV *, 4> Operands; 2426 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2427 E = AddRec->op_end(); I != E; ++I) { 2428 Operands.push_back(getMulExpr(Ops[0], *I)); 2429 } 2430 return getAddRecExpr(Operands, AddRec->getLoop(), 2431 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2432 } 2433 } 2434 } 2435 2436 if (Ops.size() == 1) 2437 return Ops[0]; 2438 } 2439 2440 // Skip over the add expression until we get to a multiply. 2441 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2442 ++Idx; 2443 2444 // If there are mul operands inline them all into this expression. 2445 if (Idx < Ops.size()) { 2446 bool DeletedMul = false; 2447 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2448 // If we have an mul, expand the mul operands onto the end of the operands 2449 // list. 2450 Ops.erase(Ops.begin()+Idx); 2451 Ops.append(Mul->op_begin(), Mul->op_end()); 2452 DeletedMul = true; 2453 } 2454 2455 // If we deleted at least one mul, we added operands to the end of the list, 2456 // and they are not necessarily sorted. Recurse to resort and resimplify 2457 // any operands we just acquired. 2458 if (DeletedMul) 2459 return getMulExpr(Ops); 2460 } 2461 2462 // If there are any add recurrences in the operands list, see if any other 2463 // added values are loop invariant. If so, we can fold them into the 2464 // recurrence. 2465 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2466 ++Idx; 2467 2468 // Scan over all recurrences, trying to fold loop invariants into them. 2469 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2470 // Scan all of the other operands to this mul and add them to the vector if 2471 // they are loop invariant w.r.t. the recurrence. 2472 SmallVector<const SCEV *, 8> LIOps; 2473 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2474 const Loop *AddRecLoop = AddRec->getLoop(); 2475 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2476 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2477 LIOps.push_back(Ops[i]); 2478 Ops.erase(Ops.begin()+i); 2479 --i; --e; 2480 } 2481 2482 // If we found some loop invariants, fold them into the recurrence. 2483 if (!LIOps.empty()) { 2484 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2485 SmallVector<const SCEV *, 4> NewOps; 2486 NewOps.reserve(AddRec->getNumOperands()); 2487 const SCEV *Scale = getMulExpr(LIOps); 2488 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2489 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2490 2491 // Build the new addrec. Propagate the NUW and NSW flags if both the 2492 // outer mul and the inner addrec are guaranteed to have no overflow. 2493 // 2494 // No self-wrap cannot be guaranteed after changing the step size, but 2495 // will be inferred if either NUW or NSW is true. 2496 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2497 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2498 2499 // If all of the other operands were loop invariant, we are done. 2500 if (Ops.size() == 1) return NewRec; 2501 2502 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2503 for (unsigned i = 0;; ++i) 2504 if (Ops[i] == AddRec) { 2505 Ops[i] = NewRec; 2506 break; 2507 } 2508 return getMulExpr(Ops); 2509 } 2510 2511 // Okay, if there weren't any loop invariants to be folded, check to see if 2512 // there are multiple AddRec's with the same loop induction variable being 2513 // multiplied together. If so, we can fold them. 2514 2515 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2516 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2517 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2518 // ]]],+,...up to x=2n}. 2519 // Note that the arguments to choose() are always integers with values 2520 // known at compile time, never SCEV objects. 2521 // 2522 // The implementation avoids pointless extra computations when the two 2523 // addrec's are of different length (mathematically, it's equivalent to 2524 // an infinite stream of zeros on the right). 2525 bool OpsModified = false; 2526 for (unsigned OtherIdx = Idx+1; 2527 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2528 ++OtherIdx) { 2529 const SCEVAddRecExpr *OtherAddRec = 2530 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2531 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2532 continue; 2533 2534 bool Overflow = false; 2535 Type *Ty = AddRec->getType(); 2536 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2537 SmallVector<const SCEV*, 7> AddRecOps; 2538 for (int x = 0, xe = AddRec->getNumOperands() + 2539 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2540 const SCEV *Term = getZero(Ty); 2541 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2542 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2543 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2544 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2545 z < ze && !Overflow; ++z) { 2546 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2547 uint64_t Coeff; 2548 if (LargerThan64Bits) 2549 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2550 else 2551 Coeff = Coeff1*Coeff2; 2552 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2553 const SCEV *Term1 = AddRec->getOperand(y-z); 2554 const SCEV *Term2 = OtherAddRec->getOperand(z); 2555 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2556 } 2557 } 2558 AddRecOps.push_back(Term); 2559 } 2560 if (!Overflow) { 2561 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2562 SCEV::FlagAnyWrap); 2563 if (Ops.size() == 2) return NewAddRec; 2564 Ops[Idx] = NewAddRec; 2565 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2566 OpsModified = true; 2567 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2568 if (!AddRec) 2569 break; 2570 } 2571 } 2572 if (OpsModified) 2573 return getMulExpr(Ops); 2574 2575 // Otherwise couldn't fold anything into this recurrence. Move onto the 2576 // next one. 2577 } 2578 2579 // Okay, it looks like we really DO need an mul expr. Check to see if we 2580 // already have one, otherwise create a new one. 2581 FoldingSetNodeID ID; 2582 ID.AddInteger(scMulExpr); 2583 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2584 ID.AddPointer(Ops[i]); 2585 void *IP = nullptr; 2586 SCEVMulExpr *S = 2587 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2588 if (!S) { 2589 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2590 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2591 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2592 O, Ops.size()); 2593 UniqueSCEVs.InsertNode(S, IP); 2594 } 2595 S->setNoWrapFlags(Flags); 2596 return S; 2597 } 2598 2599 /// getUDivExpr - Get a canonical unsigned division expression, or something 2600 /// simpler if possible. 2601 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2602 const SCEV *RHS) { 2603 assert(getEffectiveSCEVType(LHS->getType()) == 2604 getEffectiveSCEVType(RHS->getType()) && 2605 "SCEVUDivExpr operand types don't match!"); 2606 2607 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2608 if (RHSC->getValue()->equalsInt(1)) 2609 return LHS; // X udiv 1 --> x 2610 // If the denominator is zero, the result of the udiv is undefined. Don't 2611 // try to analyze it, because the resolution chosen here may differ from 2612 // the resolution chosen in other parts of the compiler. 2613 if (!RHSC->getValue()->isZero()) { 2614 // Determine if the division can be folded into the operands of 2615 // its operands. 2616 // TODO: Generalize this to non-constants by using known-bits information. 2617 Type *Ty = LHS->getType(); 2618 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2619 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2620 // For non-power-of-two values, effectively round the value up to the 2621 // nearest power of two. 2622 if (!RHSC->getValue()->getValue().isPowerOf2()) 2623 ++MaxShiftAmt; 2624 IntegerType *ExtTy = 2625 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2626 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2627 if (const SCEVConstant *Step = 2628 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2629 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2630 const APInt &StepInt = Step->getValue()->getValue(); 2631 const APInt &DivInt = RHSC->getValue()->getValue(); 2632 if (!StepInt.urem(DivInt) && 2633 getZeroExtendExpr(AR, ExtTy) == 2634 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2635 getZeroExtendExpr(Step, ExtTy), 2636 AR->getLoop(), SCEV::FlagAnyWrap)) { 2637 SmallVector<const SCEV *, 4> Operands; 2638 for (const SCEV *Op : AR->operands()) 2639 Operands.push_back(getUDivExpr(Op, RHS)); 2640 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2641 } 2642 /// Get a canonical UDivExpr for a recurrence. 2643 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2644 // We can currently only fold X%N if X is constant. 2645 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2646 if (StartC && !DivInt.urem(StepInt) && 2647 getZeroExtendExpr(AR, ExtTy) == 2648 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2649 getZeroExtendExpr(Step, ExtTy), 2650 AR->getLoop(), SCEV::FlagAnyWrap)) { 2651 const APInt &StartInt = StartC->getValue()->getValue(); 2652 const APInt &StartRem = StartInt.urem(StepInt); 2653 if (StartRem != 0) 2654 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2655 AR->getLoop(), SCEV::FlagNW); 2656 } 2657 } 2658 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2659 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2660 SmallVector<const SCEV *, 4> Operands; 2661 for (const SCEV *Op : M->operands()) 2662 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2663 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2664 // Find an operand that's safely divisible. 2665 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2666 const SCEV *Op = M->getOperand(i); 2667 const SCEV *Div = getUDivExpr(Op, RHSC); 2668 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2669 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2670 M->op_end()); 2671 Operands[i] = Div; 2672 return getMulExpr(Operands); 2673 } 2674 } 2675 } 2676 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2677 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2678 SmallVector<const SCEV *, 4> Operands; 2679 for (const SCEV *Op : A->operands()) 2680 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2681 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2682 Operands.clear(); 2683 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2684 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2685 if (isa<SCEVUDivExpr>(Op) || 2686 getMulExpr(Op, RHS) != A->getOperand(i)) 2687 break; 2688 Operands.push_back(Op); 2689 } 2690 if (Operands.size() == A->getNumOperands()) 2691 return getAddExpr(Operands); 2692 } 2693 } 2694 2695 // Fold if both operands are constant. 2696 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2697 Constant *LHSCV = LHSC->getValue(); 2698 Constant *RHSCV = RHSC->getValue(); 2699 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2700 RHSCV))); 2701 } 2702 } 2703 } 2704 2705 FoldingSetNodeID ID; 2706 ID.AddInteger(scUDivExpr); 2707 ID.AddPointer(LHS); 2708 ID.AddPointer(RHS); 2709 void *IP = nullptr; 2710 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2711 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2712 LHS, RHS); 2713 UniqueSCEVs.InsertNode(S, IP); 2714 return S; 2715 } 2716 2717 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2718 APInt A = C1->getValue()->getValue().abs(); 2719 APInt B = C2->getValue()->getValue().abs(); 2720 uint32_t ABW = A.getBitWidth(); 2721 uint32_t BBW = B.getBitWidth(); 2722 2723 if (ABW > BBW) 2724 B = B.zext(ABW); 2725 else if (ABW < BBW) 2726 A = A.zext(BBW); 2727 2728 return APIntOps::GreatestCommonDivisor(A, B); 2729 } 2730 2731 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2732 /// something simpler if possible. There is no representation for an exact udiv 2733 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2734 /// We can't do this when it's not exact because the udiv may be clearing bits. 2735 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2736 const SCEV *RHS) { 2737 // TODO: we could try to find factors in all sorts of things, but for now we 2738 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2739 // end of this file for inspiration. 2740 2741 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2742 if (!Mul) 2743 return getUDivExpr(LHS, RHS); 2744 2745 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2746 // If the mulexpr multiplies by a constant, then that constant must be the 2747 // first element of the mulexpr. 2748 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2749 if (LHSCst == RHSCst) { 2750 SmallVector<const SCEV *, 2> Operands; 2751 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2752 return getMulExpr(Operands); 2753 } 2754 2755 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2756 // that there's a factor provided by one of the other terms. We need to 2757 // check. 2758 APInt Factor = gcd(LHSCst, RHSCst); 2759 if (!Factor.isIntN(1)) { 2760 LHSCst = cast<SCEVConstant>( 2761 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2762 RHSCst = cast<SCEVConstant>( 2763 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2764 SmallVector<const SCEV *, 2> Operands; 2765 Operands.push_back(LHSCst); 2766 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2767 LHS = getMulExpr(Operands); 2768 RHS = RHSCst; 2769 Mul = dyn_cast<SCEVMulExpr>(LHS); 2770 if (!Mul) 2771 return getUDivExactExpr(LHS, RHS); 2772 } 2773 } 2774 } 2775 2776 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2777 if (Mul->getOperand(i) == RHS) { 2778 SmallVector<const SCEV *, 2> Operands; 2779 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2780 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2781 return getMulExpr(Operands); 2782 } 2783 } 2784 2785 return getUDivExpr(LHS, RHS); 2786 } 2787 2788 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2789 /// Simplify the expression as much as possible. 2790 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2791 const Loop *L, 2792 SCEV::NoWrapFlags Flags) { 2793 SmallVector<const SCEV *, 4> Operands; 2794 Operands.push_back(Start); 2795 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2796 if (StepChrec->getLoop() == L) { 2797 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2798 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2799 } 2800 2801 Operands.push_back(Step); 2802 return getAddRecExpr(Operands, L, Flags); 2803 } 2804 2805 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2806 /// Simplify the expression as much as possible. 2807 const SCEV * 2808 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2809 const Loop *L, SCEV::NoWrapFlags Flags) { 2810 if (Operands.size() == 1) return Operands[0]; 2811 #ifndef NDEBUG 2812 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2813 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2814 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2815 "SCEVAddRecExpr operand types don't match!"); 2816 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2817 assert(isLoopInvariant(Operands[i], L) && 2818 "SCEVAddRecExpr operand is not loop-invariant!"); 2819 #endif 2820 2821 if (Operands.back()->isZero()) { 2822 Operands.pop_back(); 2823 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2824 } 2825 2826 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2827 // use that information to infer NUW and NSW flags. However, computing a 2828 // BE count requires calling getAddRecExpr, so we may not yet have a 2829 // meaningful BE count at this point (and if we don't, we'd be stuck 2830 // with a SCEVCouldNotCompute as the cached BE count). 2831 2832 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2833 2834 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2835 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2836 const Loop *NestedLoop = NestedAR->getLoop(); 2837 if (L->contains(NestedLoop) 2838 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2839 : (!NestedLoop->contains(L) && 2840 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2841 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2842 NestedAR->op_end()); 2843 Operands[0] = NestedAR->getStart(); 2844 // AddRecs require their operands be loop-invariant with respect to their 2845 // loops. Don't perform this transformation if it would break this 2846 // requirement. 2847 bool AllInvariant = 2848 std::all_of(Operands.begin(), Operands.end(), 2849 [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2850 2851 if (AllInvariant) { 2852 // Create a recurrence for the outer loop with the same step size. 2853 // 2854 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2855 // inner recurrence has the same property. 2856 SCEV::NoWrapFlags OuterFlags = 2857 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2858 2859 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2860 AllInvariant = std::all_of( 2861 NestedOperands.begin(), NestedOperands.end(), 2862 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); }); 2863 2864 if (AllInvariant) { 2865 // Ok, both add recurrences are valid after the transformation. 2866 // 2867 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2868 // the outer recurrence has the same property. 2869 SCEV::NoWrapFlags InnerFlags = 2870 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2871 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2872 } 2873 } 2874 // Reset Operands to its original state. 2875 Operands[0] = NestedAR; 2876 } 2877 } 2878 2879 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2880 // already have one, otherwise create a new one. 2881 FoldingSetNodeID ID; 2882 ID.AddInteger(scAddRecExpr); 2883 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2884 ID.AddPointer(Operands[i]); 2885 ID.AddPointer(L); 2886 void *IP = nullptr; 2887 SCEVAddRecExpr *S = 2888 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2889 if (!S) { 2890 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2891 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2892 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2893 O, Operands.size(), L); 2894 UniqueSCEVs.InsertNode(S, IP); 2895 } 2896 S->setNoWrapFlags(Flags); 2897 return S; 2898 } 2899 2900 const SCEV * 2901 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2902 const SmallVectorImpl<const SCEV *> &IndexExprs, 2903 bool InBounds) { 2904 // getSCEV(Base)->getType() has the same address space as Base->getType() 2905 // because SCEV::getType() preserves the address space. 2906 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2907 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2908 // instruction to its SCEV, because the Instruction may be guarded by control 2909 // flow and the no-overflow bits may not be valid for the expression in any 2910 // context. This can be fixed similarly to how these flags are handled for 2911 // adds. 2912 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2913 2914 const SCEV *TotalOffset = getZero(IntPtrTy); 2915 // The address space is unimportant. The first thing we do on CurTy is getting 2916 // its element type. 2917 Type *CurTy = PointerType::getUnqual(PointeeType); 2918 for (const SCEV *IndexExpr : IndexExprs) { 2919 // Compute the (potentially symbolic) offset in bytes for this index. 2920 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2921 // For a struct, add the member offset. 2922 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2923 unsigned FieldNo = Index->getZExtValue(); 2924 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2925 2926 // Add the field offset to the running total offset. 2927 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2928 2929 // Update CurTy to the type of the field at Index. 2930 CurTy = STy->getTypeAtIndex(Index); 2931 } else { 2932 // Update CurTy to its element type. 2933 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2934 // For an array, add the element offset, explicitly scaled. 2935 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2936 // Getelementptr indices are signed. 2937 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2938 2939 // Multiply the index by the element size to compute the element offset. 2940 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2941 2942 // Add the element offset to the running total offset. 2943 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2944 } 2945 } 2946 2947 // Add the total offset from all the GEP indices to the base. 2948 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2949 } 2950 2951 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2952 const SCEV *RHS) { 2953 SmallVector<const SCEV *, 2> Ops; 2954 Ops.push_back(LHS); 2955 Ops.push_back(RHS); 2956 return getSMaxExpr(Ops); 2957 } 2958 2959 const SCEV * 2960 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2961 assert(!Ops.empty() && "Cannot get empty smax!"); 2962 if (Ops.size() == 1) return Ops[0]; 2963 #ifndef NDEBUG 2964 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2965 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2966 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2967 "SCEVSMaxExpr operand types don't match!"); 2968 #endif 2969 2970 // Sort by complexity, this groups all similar expression types together. 2971 GroupByComplexity(Ops, &LI); 2972 2973 // If there are any constants, fold them together. 2974 unsigned Idx = 0; 2975 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2976 ++Idx; 2977 assert(Idx < Ops.size()); 2978 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2979 // We found two constants, fold them together! 2980 ConstantInt *Fold = ConstantInt::get(getContext(), 2981 APIntOps::smax(LHSC->getValue()->getValue(), 2982 RHSC->getValue()->getValue())); 2983 Ops[0] = getConstant(Fold); 2984 Ops.erase(Ops.begin()+1); // Erase the folded element 2985 if (Ops.size() == 1) return Ops[0]; 2986 LHSC = cast<SCEVConstant>(Ops[0]); 2987 } 2988 2989 // If we are left with a constant minimum-int, strip it off. 2990 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2991 Ops.erase(Ops.begin()); 2992 --Idx; 2993 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2994 // If we have an smax with a constant maximum-int, it will always be 2995 // maximum-int. 2996 return Ops[0]; 2997 } 2998 2999 if (Ops.size() == 1) return Ops[0]; 3000 } 3001 3002 // Find the first SMax 3003 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3004 ++Idx; 3005 3006 // Check to see if one of the operands is an SMax. If so, expand its operands 3007 // onto our operand list, and recurse to simplify. 3008 if (Idx < Ops.size()) { 3009 bool DeletedSMax = false; 3010 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3011 Ops.erase(Ops.begin()+Idx); 3012 Ops.append(SMax->op_begin(), SMax->op_end()); 3013 DeletedSMax = true; 3014 } 3015 3016 if (DeletedSMax) 3017 return getSMaxExpr(Ops); 3018 } 3019 3020 // Okay, check to see if the same value occurs in the operand list twice. If 3021 // so, delete one. Since we sorted the list, these values are required to 3022 // be adjacent. 3023 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3024 // X smax Y smax Y --> X smax Y 3025 // X smax Y --> X, if X is always greater than Y 3026 if (Ops[i] == Ops[i+1] || 3027 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3028 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3029 --i; --e; 3030 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3031 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3032 --i; --e; 3033 } 3034 3035 if (Ops.size() == 1) return Ops[0]; 3036 3037 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3038 3039 // Okay, it looks like we really DO need an smax expr. Check to see if we 3040 // already have one, otherwise create a new one. 3041 FoldingSetNodeID ID; 3042 ID.AddInteger(scSMaxExpr); 3043 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3044 ID.AddPointer(Ops[i]); 3045 void *IP = nullptr; 3046 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3047 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3048 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3049 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3050 O, Ops.size()); 3051 UniqueSCEVs.InsertNode(S, IP); 3052 return S; 3053 } 3054 3055 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3056 const SCEV *RHS) { 3057 SmallVector<const SCEV *, 2> Ops; 3058 Ops.push_back(LHS); 3059 Ops.push_back(RHS); 3060 return getUMaxExpr(Ops); 3061 } 3062 3063 const SCEV * 3064 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3065 assert(!Ops.empty() && "Cannot get empty umax!"); 3066 if (Ops.size() == 1) return Ops[0]; 3067 #ifndef NDEBUG 3068 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3069 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3070 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3071 "SCEVUMaxExpr operand types don't match!"); 3072 #endif 3073 3074 // Sort by complexity, this groups all similar expression types together. 3075 GroupByComplexity(Ops, &LI); 3076 3077 // If there are any constants, fold them together. 3078 unsigned Idx = 0; 3079 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3080 ++Idx; 3081 assert(Idx < Ops.size()); 3082 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3083 // We found two constants, fold them together! 3084 ConstantInt *Fold = ConstantInt::get(getContext(), 3085 APIntOps::umax(LHSC->getValue()->getValue(), 3086 RHSC->getValue()->getValue())); 3087 Ops[0] = getConstant(Fold); 3088 Ops.erase(Ops.begin()+1); // Erase the folded element 3089 if (Ops.size() == 1) return Ops[0]; 3090 LHSC = cast<SCEVConstant>(Ops[0]); 3091 } 3092 3093 // If we are left with a constant minimum-int, strip it off. 3094 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3095 Ops.erase(Ops.begin()); 3096 --Idx; 3097 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3098 // If we have an umax with a constant maximum-int, it will always be 3099 // maximum-int. 3100 return Ops[0]; 3101 } 3102 3103 if (Ops.size() == 1) return Ops[0]; 3104 } 3105 3106 // Find the first UMax 3107 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3108 ++Idx; 3109 3110 // Check to see if one of the operands is a UMax. If so, expand its operands 3111 // onto our operand list, and recurse to simplify. 3112 if (Idx < Ops.size()) { 3113 bool DeletedUMax = false; 3114 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3115 Ops.erase(Ops.begin()+Idx); 3116 Ops.append(UMax->op_begin(), UMax->op_end()); 3117 DeletedUMax = true; 3118 } 3119 3120 if (DeletedUMax) 3121 return getUMaxExpr(Ops); 3122 } 3123 3124 // Okay, check to see if the same value occurs in the operand list twice. If 3125 // so, delete one. Since we sorted the list, these values are required to 3126 // be adjacent. 3127 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3128 // X umax Y umax Y --> X umax Y 3129 // X umax Y --> X, if X is always greater than Y 3130 if (Ops[i] == Ops[i+1] || 3131 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3132 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3133 --i; --e; 3134 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3135 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3136 --i; --e; 3137 } 3138 3139 if (Ops.size() == 1) return Ops[0]; 3140 3141 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3142 3143 // Okay, it looks like we really DO need a umax expr. Check to see if we 3144 // already have one, otherwise create a new one. 3145 FoldingSetNodeID ID; 3146 ID.AddInteger(scUMaxExpr); 3147 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3148 ID.AddPointer(Ops[i]); 3149 void *IP = nullptr; 3150 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3151 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3152 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3153 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3154 O, Ops.size()); 3155 UniqueSCEVs.InsertNode(S, IP); 3156 return S; 3157 } 3158 3159 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3160 const SCEV *RHS) { 3161 // ~smax(~x, ~y) == smin(x, y). 3162 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3163 } 3164 3165 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3166 const SCEV *RHS) { 3167 // ~umax(~x, ~y) == umin(x, y) 3168 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3169 } 3170 3171 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3172 // We can bypass creating a target-independent 3173 // constant expression and then folding it back into a ConstantInt. 3174 // This is just a compile-time optimization. 3175 return getConstant(IntTy, 3176 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3177 } 3178 3179 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3180 StructType *STy, 3181 unsigned FieldNo) { 3182 // We can bypass creating a target-independent 3183 // constant expression and then folding it back into a ConstantInt. 3184 // This is just a compile-time optimization. 3185 return getConstant( 3186 IntTy, 3187 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3188 FieldNo)); 3189 } 3190 3191 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3192 // Don't attempt to do anything other than create a SCEVUnknown object 3193 // here. createSCEV only calls getUnknown after checking for all other 3194 // interesting possibilities, and any other code that calls getUnknown 3195 // is doing so in order to hide a value from SCEV canonicalization. 3196 3197 FoldingSetNodeID ID; 3198 ID.AddInteger(scUnknown); 3199 ID.AddPointer(V); 3200 void *IP = nullptr; 3201 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3202 assert(cast<SCEVUnknown>(S)->getValue() == V && 3203 "Stale SCEVUnknown in uniquing map!"); 3204 return S; 3205 } 3206 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3207 FirstUnknown); 3208 FirstUnknown = cast<SCEVUnknown>(S); 3209 UniqueSCEVs.InsertNode(S, IP); 3210 return S; 3211 } 3212 3213 //===----------------------------------------------------------------------===// 3214 // Basic SCEV Analysis and PHI Idiom Recognition Code 3215 // 3216 3217 /// isSCEVable - Test if values of the given type are analyzable within 3218 /// the SCEV framework. This primarily includes integer types, and it 3219 /// can optionally include pointer types if the ScalarEvolution class 3220 /// has access to target-specific information. 3221 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3222 // Integers and pointers are always SCEVable. 3223 return Ty->isIntegerTy() || Ty->isPointerTy(); 3224 } 3225 3226 /// getTypeSizeInBits - Return the size in bits of the specified type, 3227 /// for which isSCEVable must return true. 3228 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3229 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3230 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty); 3231 } 3232 3233 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3234 /// the given type and which represents how SCEV will treat the given 3235 /// type, for which isSCEVable must return true. For pointer types, 3236 /// this is the pointer-sized integer type. 3237 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3238 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3239 3240 if (Ty->isIntegerTy()) 3241 return Ty; 3242 3243 // The only other support type is pointer. 3244 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3245 return F.getParent()->getDataLayout().getIntPtrType(Ty); 3246 } 3247 3248 const SCEV *ScalarEvolution::getCouldNotCompute() { 3249 return CouldNotCompute.get(); 3250 } 3251 3252 namespace { 3253 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3254 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3255 // is set iff if find such SCEVUnknown. 3256 // 3257 struct FindInvalidSCEVUnknown { 3258 bool FindOne; 3259 FindInvalidSCEVUnknown() { FindOne = false; } 3260 bool follow(const SCEV *S) { 3261 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3262 case scConstant: 3263 return false; 3264 case scUnknown: 3265 if (!cast<SCEVUnknown>(S)->getValue()) 3266 FindOne = true; 3267 return false; 3268 default: 3269 return true; 3270 } 3271 } 3272 bool isDone() const { return FindOne; } 3273 }; 3274 } 3275 3276 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3277 FindInvalidSCEVUnknown F; 3278 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3279 ST.visitAll(S); 3280 3281 return !F.FindOne; 3282 } 3283 3284 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3285 /// expression and create a new one. 3286 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3287 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3288 3289 const SCEV *S = getExistingSCEV(V); 3290 if (S == nullptr) { 3291 S = createSCEV(V); 3292 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3293 } 3294 return S; 3295 } 3296 3297 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3298 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3299 3300 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3301 if (I != ValueExprMap.end()) { 3302 const SCEV *S = I->second; 3303 if (checkValidity(S)) 3304 return S; 3305 ValueExprMap.erase(I); 3306 } 3307 return nullptr; 3308 } 3309 3310 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3311 /// 3312 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3313 SCEV::NoWrapFlags Flags) { 3314 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3315 return getConstant( 3316 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3317 3318 Type *Ty = V->getType(); 3319 Ty = getEffectiveSCEVType(Ty); 3320 return getMulExpr( 3321 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3322 } 3323 3324 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3325 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3326 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3327 return getConstant( 3328 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3329 3330 Type *Ty = V->getType(); 3331 Ty = getEffectiveSCEVType(Ty); 3332 const SCEV *AllOnes = 3333 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3334 return getMinusSCEV(AllOnes, V); 3335 } 3336 3337 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3338 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3339 SCEV::NoWrapFlags Flags) { 3340 // Fast path: X - X --> 0. 3341 if (LHS == RHS) 3342 return getZero(LHS->getType()); 3343 3344 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3345 // makes it so that we cannot make much use of NUW. 3346 auto AddFlags = SCEV::FlagAnyWrap; 3347 const bool RHSIsNotMinSigned = 3348 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3349 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3350 // Let M be the minimum representable signed value. Then (-1)*RHS 3351 // signed-wraps if and only if RHS is M. That can happen even for 3352 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3353 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3354 // (-1)*RHS, we need to prove that RHS != M. 3355 // 3356 // If LHS is non-negative and we know that LHS - RHS does not 3357 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3358 // either by proving that RHS > M or that LHS >= 0. 3359 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3360 AddFlags = SCEV::FlagNSW; 3361 } 3362 } 3363 3364 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3365 // RHS is NSW and LHS >= 0. 3366 // 3367 // The difficulty here is that the NSW flag may have been proven 3368 // relative to a loop that is to be found in a recurrence in LHS and 3369 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3370 // larger scope than intended. 3371 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3372 3373 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3374 } 3375 3376 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3377 /// input value to the specified type. If the type must be extended, it is zero 3378 /// extended. 3379 const SCEV * 3380 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3381 Type *SrcTy = V->getType(); 3382 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3383 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3384 "Cannot truncate or zero extend with non-integer arguments!"); 3385 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3386 return V; // No conversion 3387 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3388 return getTruncateExpr(V, Ty); 3389 return getZeroExtendExpr(V, Ty); 3390 } 3391 3392 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3393 /// input value to the specified type. If the type must be extended, it is sign 3394 /// extended. 3395 const SCEV * 3396 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3397 Type *Ty) { 3398 Type *SrcTy = V->getType(); 3399 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3400 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3401 "Cannot truncate or zero extend with non-integer arguments!"); 3402 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3403 return V; // No conversion 3404 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3405 return getTruncateExpr(V, Ty); 3406 return getSignExtendExpr(V, Ty); 3407 } 3408 3409 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3410 /// input value to the specified type. If the type must be extended, it is zero 3411 /// extended. The conversion must not be narrowing. 3412 const SCEV * 3413 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3414 Type *SrcTy = V->getType(); 3415 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3416 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3417 "Cannot noop or zero extend with non-integer arguments!"); 3418 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3419 "getNoopOrZeroExtend cannot truncate!"); 3420 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3421 return V; // No conversion 3422 return getZeroExtendExpr(V, Ty); 3423 } 3424 3425 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3426 /// input value to the specified type. If the type must be extended, it is sign 3427 /// extended. The conversion must not be narrowing. 3428 const SCEV * 3429 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3430 Type *SrcTy = V->getType(); 3431 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3432 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3433 "Cannot noop or sign extend with non-integer arguments!"); 3434 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3435 "getNoopOrSignExtend cannot truncate!"); 3436 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3437 return V; // No conversion 3438 return getSignExtendExpr(V, Ty); 3439 } 3440 3441 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3442 /// the input value to the specified type. If the type must be extended, 3443 /// it is extended with unspecified bits. The conversion must not be 3444 /// narrowing. 3445 const SCEV * 3446 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3447 Type *SrcTy = V->getType(); 3448 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3449 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3450 "Cannot noop or any extend with non-integer arguments!"); 3451 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3452 "getNoopOrAnyExtend cannot truncate!"); 3453 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3454 return V; // No conversion 3455 return getAnyExtendExpr(V, Ty); 3456 } 3457 3458 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3459 /// input value to the specified type. The conversion must not be widening. 3460 const SCEV * 3461 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3462 Type *SrcTy = V->getType(); 3463 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3464 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3465 "Cannot truncate or noop with non-integer arguments!"); 3466 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3467 "getTruncateOrNoop cannot extend!"); 3468 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3469 return V; // No conversion 3470 return getTruncateExpr(V, Ty); 3471 } 3472 3473 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3474 /// the types using zero-extension, and then perform a umax operation 3475 /// with them. 3476 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3477 const SCEV *RHS) { 3478 const SCEV *PromotedLHS = LHS; 3479 const SCEV *PromotedRHS = RHS; 3480 3481 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3482 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3483 else 3484 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3485 3486 return getUMaxExpr(PromotedLHS, PromotedRHS); 3487 } 3488 3489 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3490 /// the types using zero-extension, and then perform a umin operation 3491 /// with them. 3492 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3493 const SCEV *RHS) { 3494 const SCEV *PromotedLHS = LHS; 3495 const SCEV *PromotedRHS = RHS; 3496 3497 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3498 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3499 else 3500 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3501 3502 return getUMinExpr(PromotedLHS, PromotedRHS); 3503 } 3504 3505 /// getPointerBase - Transitively follow the chain of pointer-type operands 3506 /// until reaching a SCEV that does not have a single pointer operand. This 3507 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3508 /// but corner cases do exist. 3509 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3510 // A pointer operand may evaluate to a nonpointer expression, such as null. 3511 if (!V->getType()->isPointerTy()) 3512 return V; 3513 3514 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3515 return getPointerBase(Cast->getOperand()); 3516 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3517 const SCEV *PtrOp = nullptr; 3518 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3519 I != E; ++I) { 3520 if ((*I)->getType()->isPointerTy()) { 3521 // Cannot find the base of an expression with multiple pointer operands. 3522 if (PtrOp) 3523 return V; 3524 PtrOp = *I; 3525 } 3526 } 3527 if (!PtrOp) 3528 return V; 3529 return getPointerBase(PtrOp); 3530 } 3531 return V; 3532 } 3533 3534 /// PushDefUseChildren - Push users of the given Instruction 3535 /// onto the given Worklist. 3536 static void 3537 PushDefUseChildren(Instruction *I, 3538 SmallVectorImpl<Instruction *> &Worklist) { 3539 // Push the def-use children onto the Worklist stack. 3540 for (User *U : I->users()) 3541 Worklist.push_back(cast<Instruction>(U)); 3542 } 3543 3544 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3545 /// instructions that depend on the given instruction and removes them from 3546 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3547 /// resolution. 3548 void 3549 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3550 SmallVector<Instruction *, 16> Worklist; 3551 PushDefUseChildren(PN, Worklist); 3552 3553 SmallPtrSet<Instruction *, 8> Visited; 3554 Visited.insert(PN); 3555 while (!Worklist.empty()) { 3556 Instruction *I = Worklist.pop_back_val(); 3557 if (!Visited.insert(I).second) 3558 continue; 3559 3560 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3561 if (It != ValueExprMap.end()) { 3562 const SCEV *Old = It->second; 3563 3564 // Short-circuit the def-use traversal if the symbolic name 3565 // ceases to appear in expressions. 3566 if (Old != SymName && !hasOperand(Old, SymName)) 3567 continue; 3568 3569 // SCEVUnknown for a PHI either means that it has an unrecognized 3570 // structure, it's a PHI that's in the progress of being computed 3571 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3572 // additional loop trip count information isn't going to change anything. 3573 // In the second case, createNodeForPHI will perform the necessary 3574 // updates on its own when it gets to that point. In the third, we do 3575 // want to forget the SCEVUnknown. 3576 if (!isa<PHINode>(I) || 3577 !isa<SCEVUnknown>(Old) || 3578 (I != PN && Old == SymName)) { 3579 forgetMemoizedResults(Old); 3580 ValueExprMap.erase(It); 3581 } 3582 } 3583 3584 PushDefUseChildren(I, Worklist); 3585 } 3586 } 3587 3588 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3589 const Loop *L = LI.getLoopFor(PN->getParent()); 3590 if (!L || L->getHeader() != PN->getParent()) 3591 return nullptr; 3592 3593 // The loop may have multiple entrances or multiple exits; we can analyze 3594 // this phi as an addrec if it has a unique entry value and a unique 3595 // backedge value. 3596 Value *BEValueV = nullptr, *StartValueV = nullptr; 3597 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3598 Value *V = PN->getIncomingValue(i); 3599 if (L->contains(PN->getIncomingBlock(i))) { 3600 if (!BEValueV) { 3601 BEValueV = V; 3602 } else if (BEValueV != V) { 3603 BEValueV = nullptr; 3604 break; 3605 } 3606 } else if (!StartValueV) { 3607 StartValueV = V; 3608 } else if (StartValueV != V) { 3609 StartValueV = nullptr; 3610 break; 3611 } 3612 } 3613 if (BEValueV && StartValueV) { 3614 // While we are analyzing this PHI node, handle its value symbolically. 3615 const SCEV *SymbolicName = getUnknown(PN); 3616 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3617 "PHI node already processed?"); 3618 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3619 3620 // Using this symbolic name for the PHI, analyze the value coming around 3621 // the back-edge. 3622 const SCEV *BEValue = getSCEV(BEValueV); 3623 3624 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3625 // has a special value for the first iteration of the loop. 3626 3627 // If the value coming around the backedge is an add with the symbolic 3628 // value we just inserted, then we found a simple induction variable! 3629 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3630 // If there is a single occurrence of the symbolic value, replace it 3631 // with a recurrence. 3632 unsigned FoundIndex = Add->getNumOperands(); 3633 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3634 if (Add->getOperand(i) == SymbolicName) 3635 if (FoundIndex == e) { 3636 FoundIndex = i; 3637 break; 3638 } 3639 3640 if (FoundIndex != Add->getNumOperands()) { 3641 // Create an add with everything but the specified operand. 3642 SmallVector<const SCEV *, 8> Ops; 3643 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3644 if (i != FoundIndex) 3645 Ops.push_back(Add->getOperand(i)); 3646 const SCEV *Accum = getAddExpr(Ops); 3647 3648 // This is not a valid addrec if the step amount is varying each 3649 // loop iteration, but is not itself an addrec in this loop. 3650 if (isLoopInvariant(Accum, L) || 3651 (isa<SCEVAddRecExpr>(Accum) && 3652 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3653 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3654 3655 // If the increment doesn't overflow, then neither the addrec nor 3656 // the post-increment will overflow. 3657 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3658 if (OBO->getOperand(0) == PN) { 3659 if (OBO->hasNoUnsignedWrap()) 3660 Flags = setFlags(Flags, SCEV::FlagNUW); 3661 if (OBO->hasNoSignedWrap()) 3662 Flags = setFlags(Flags, SCEV::FlagNSW); 3663 } 3664 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3665 // If the increment is an inbounds GEP, then we know the address 3666 // space cannot be wrapped around. We cannot make any guarantee 3667 // about signed or unsigned overflow because pointers are 3668 // unsigned but we may have a negative index from the base 3669 // pointer. We can guarantee that no unsigned wrap occurs if the 3670 // indices form a positive value. 3671 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3672 Flags = setFlags(Flags, SCEV::FlagNW); 3673 3674 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3675 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3676 Flags = setFlags(Flags, SCEV::FlagNUW); 3677 } 3678 3679 // We cannot transfer nuw and nsw flags from subtraction 3680 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3681 // for instance. 3682 } 3683 3684 const SCEV *StartVal = getSCEV(StartValueV); 3685 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3686 3687 // Since the no-wrap flags are on the increment, they apply to the 3688 // post-incremented value as well. 3689 if (isLoopInvariant(Accum, L)) 3690 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3691 3692 // Okay, for the entire analysis of this edge we assumed the PHI 3693 // to be symbolic. We now need to go back and purge all of the 3694 // entries for the scalars that use the symbolic expression. 3695 ForgetSymbolicName(PN, SymbolicName); 3696 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3697 return PHISCEV; 3698 } 3699 } 3700 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 3701 // Otherwise, this could be a loop like this: 3702 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3703 // In this case, j = {1,+,1} and BEValue is j. 3704 // Because the other in-value of i (0) fits the evolution of BEValue 3705 // i really is an addrec evolution. 3706 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3707 const SCEV *StartVal = getSCEV(StartValueV); 3708 3709 // If StartVal = j.start - j.stride, we can use StartVal as the 3710 // initial step of the addrec evolution. 3711 if (StartVal == 3712 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) { 3713 // FIXME: For constant StartVal, we should be able to infer 3714 // no-wrap flags. 3715 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1), 3716 L, SCEV::FlagAnyWrap); 3717 3718 // Okay, for the entire analysis of this edge we assumed the PHI 3719 // to be symbolic. We now need to go back and purge all of the 3720 // entries for the scalars that use the symbolic expression. 3721 ForgetSymbolicName(PN, SymbolicName); 3722 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3723 return PHISCEV; 3724 } 3725 } 3726 } 3727 } 3728 3729 return nullptr; 3730 } 3731 3732 // Checks if the SCEV S is available at BB. S is considered available at BB 3733 // if S can be materialized at BB without introducing a fault. 3734 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3735 BasicBlock *BB) { 3736 struct CheckAvailable { 3737 bool TraversalDone = false; 3738 bool Available = true; 3739 3740 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3741 BasicBlock *BB = nullptr; 3742 DominatorTree &DT; 3743 3744 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3745 : L(L), BB(BB), DT(DT) {} 3746 3747 bool setUnavailable() { 3748 TraversalDone = true; 3749 Available = false; 3750 return false; 3751 } 3752 3753 bool follow(const SCEV *S) { 3754 switch (S->getSCEVType()) { 3755 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3756 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3757 // These expressions are available if their operand(s) is/are. 3758 return true; 3759 3760 case scAddRecExpr: { 3761 // We allow add recurrences that are on the loop BB is in, or some 3762 // outer loop. This guarantees availability because the value of the 3763 // add recurrence at BB is simply the "current" value of the induction 3764 // variable. We can relax this in the future; for instance an add 3765 // recurrence on a sibling dominating loop is also available at BB. 3766 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3767 if (L && (ARLoop == L || ARLoop->contains(L))) 3768 return true; 3769 3770 return setUnavailable(); 3771 } 3772 3773 case scUnknown: { 3774 // For SCEVUnknown, we check for simple dominance. 3775 const auto *SU = cast<SCEVUnknown>(S); 3776 Value *V = SU->getValue(); 3777 3778 if (isa<Argument>(V)) 3779 return false; 3780 3781 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3782 return false; 3783 3784 return setUnavailable(); 3785 } 3786 3787 case scUDivExpr: 3788 case scCouldNotCompute: 3789 // We do not try to smart about these at all. 3790 return setUnavailable(); 3791 } 3792 llvm_unreachable("switch should be fully covered!"); 3793 } 3794 3795 bool isDone() { return TraversalDone; } 3796 }; 3797 3798 CheckAvailable CA(L, BB, DT); 3799 SCEVTraversal<CheckAvailable> ST(CA); 3800 3801 ST.visitAll(S); 3802 return CA.Available; 3803 } 3804 3805 // Try to match a control flow sequence that branches out at BI and merges back 3806 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3807 // match. 3808 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3809 Value *&C, Value *&LHS, Value *&RHS) { 3810 C = BI->getCondition(); 3811 3812 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3813 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3814 3815 if (!LeftEdge.isSingleEdge()) 3816 return false; 3817 3818 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3819 3820 Use &LeftUse = Merge->getOperandUse(0); 3821 Use &RightUse = Merge->getOperandUse(1); 3822 3823 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3824 LHS = LeftUse; 3825 RHS = RightUse; 3826 return true; 3827 } 3828 3829 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3830 LHS = RightUse; 3831 RHS = LeftUse; 3832 return true; 3833 } 3834 3835 return false; 3836 } 3837 3838 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3839 if (PN->getNumIncomingValues() == 2) { 3840 const Loop *L = LI.getLoopFor(PN->getParent()); 3841 3842 // Try to match 3843 // 3844 // br %cond, label %left, label %right 3845 // left: 3846 // br label %merge 3847 // right: 3848 // br label %merge 3849 // merge: 3850 // V = phi [ %x, %left ], [ %y, %right ] 3851 // 3852 // as "select %cond, %x, %y" 3853 3854 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3855 assert(IDom && "At least the entry block should dominate PN"); 3856 3857 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3858 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3859 3860 if (BI && BI->isConditional() && 3861 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3862 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3863 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3864 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3865 } 3866 3867 return nullptr; 3868 } 3869 3870 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3871 if (const SCEV *S = createAddRecFromPHI(PN)) 3872 return S; 3873 3874 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3875 return S; 3876 3877 // If the PHI has a single incoming value, follow that value, unless the 3878 // PHI's incoming blocks are in a different loop, in which case doing so 3879 // risks breaking LCSSA form. Instcombine would normally zap these, but 3880 // it doesn't have DominatorTree information, so it may miss cases. 3881 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI, 3882 &DT, &AC)) 3883 if (LI.replacementPreservesLCSSAForm(PN, V)) 3884 return getSCEV(V); 3885 3886 // If it's not a loop phi, we can't handle it yet. 3887 return getUnknown(PN); 3888 } 3889 3890 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3891 Value *Cond, 3892 Value *TrueVal, 3893 Value *FalseVal) { 3894 // Handle "constant" branch or select. This can occur for instance when a 3895 // loop pass transforms an inner loop and moves on to process the outer loop. 3896 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 3897 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 3898 3899 // Try to match some simple smax or umax patterns. 3900 auto *ICI = dyn_cast<ICmpInst>(Cond); 3901 if (!ICI) 3902 return getUnknown(I); 3903 3904 Value *LHS = ICI->getOperand(0); 3905 Value *RHS = ICI->getOperand(1); 3906 3907 switch (ICI->getPredicate()) { 3908 case ICmpInst::ICMP_SLT: 3909 case ICmpInst::ICMP_SLE: 3910 std::swap(LHS, RHS); 3911 // fall through 3912 case ICmpInst::ICMP_SGT: 3913 case ICmpInst::ICMP_SGE: 3914 // a >s b ? a+x : b+x -> smax(a, b)+x 3915 // a >s b ? b+x : a+x -> smin(a, b)+x 3916 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3917 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 3918 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 3919 const SCEV *LA = getSCEV(TrueVal); 3920 const SCEV *RA = getSCEV(FalseVal); 3921 const SCEV *LDiff = getMinusSCEV(LA, LS); 3922 const SCEV *RDiff = getMinusSCEV(RA, RS); 3923 if (LDiff == RDiff) 3924 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3925 LDiff = getMinusSCEV(LA, RS); 3926 RDiff = getMinusSCEV(RA, LS); 3927 if (LDiff == RDiff) 3928 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3929 } 3930 break; 3931 case ICmpInst::ICMP_ULT: 3932 case ICmpInst::ICMP_ULE: 3933 std::swap(LHS, RHS); 3934 // fall through 3935 case ICmpInst::ICMP_UGT: 3936 case ICmpInst::ICMP_UGE: 3937 // a >u b ? a+x : b+x -> umax(a, b)+x 3938 // a >u b ? b+x : a+x -> umin(a, b)+x 3939 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3940 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3941 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 3942 const SCEV *LA = getSCEV(TrueVal); 3943 const SCEV *RA = getSCEV(FalseVal); 3944 const SCEV *LDiff = getMinusSCEV(LA, LS); 3945 const SCEV *RDiff = getMinusSCEV(RA, RS); 3946 if (LDiff == RDiff) 3947 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3948 LDiff = getMinusSCEV(LA, RS); 3949 RDiff = getMinusSCEV(RA, LS); 3950 if (LDiff == RDiff) 3951 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3952 } 3953 break; 3954 case ICmpInst::ICMP_NE: 3955 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3956 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 3957 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 3958 const SCEV *One = getOne(I->getType()); 3959 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3960 const SCEV *LA = getSCEV(TrueVal); 3961 const SCEV *RA = getSCEV(FalseVal); 3962 const SCEV *LDiff = getMinusSCEV(LA, LS); 3963 const SCEV *RDiff = getMinusSCEV(RA, One); 3964 if (LDiff == RDiff) 3965 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3966 } 3967 break; 3968 case ICmpInst::ICMP_EQ: 3969 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3970 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 3971 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 3972 const SCEV *One = getOne(I->getType()); 3973 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3974 const SCEV *LA = getSCEV(TrueVal); 3975 const SCEV *RA = getSCEV(FalseVal); 3976 const SCEV *LDiff = getMinusSCEV(LA, One); 3977 const SCEV *RDiff = getMinusSCEV(RA, LS); 3978 if (LDiff == RDiff) 3979 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3980 } 3981 break; 3982 default: 3983 break; 3984 } 3985 3986 return getUnknown(I); 3987 } 3988 3989 /// createNodeForGEP - Expand GEP instructions into add and multiply 3990 /// operations. This allows them to be analyzed by regular SCEV code. 3991 /// 3992 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3993 Value *Base = GEP->getOperand(0); 3994 // Don't attempt to analyze GEPs over unsized objects. 3995 if (!Base->getType()->getPointerElementType()->isSized()) 3996 return getUnknown(GEP); 3997 3998 SmallVector<const SCEV *, 4> IndexExprs; 3999 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4000 IndexExprs.push_back(getSCEV(*Index)); 4001 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4002 GEP->isInBounds()); 4003 } 4004 4005 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4006 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4007 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4008 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4009 uint32_t 4010 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4011 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4012 return C->getValue()->getValue().countTrailingZeros(); 4013 4014 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4015 return std::min(GetMinTrailingZeros(T->getOperand()), 4016 (uint32_t)getTypeSizeInBits(T->getType())); 4017 4018 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4019 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4020 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4021 getTypeSizeInBits(E->getType()) : OpRes; 4022 } 4023 4024 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4025 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4026 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4027 getTypeSizeInBits(E->getType()) : OpRes; 4028 } 4029 4030 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4031 // The result is the min of all operands results. 4032 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4033 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4034 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4035 return MinOpRes; 4036 } 4037 4038 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4039 // The result is the sum of all operands results. 4040 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4041 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4042 for (unsigned i = 1, e = M->getNumOperands(); 4043 SumOpRes != BitWidth && i != e; ++i) 4044 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4045 BitWidth); 4046 return SumOpRes; 4047 } 4048 4049 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4050 // The result is the min of all operands results. 4051 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4052 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4053 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4054 return MinOpRes; 4055 } 4056 4057 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4058 // The result is the min of all operands results. 4059 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4060 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4061 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4062 return MinOpRes; 4063 } 4064 4065 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4066 // The result is the min of all operands results. 4067 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4068 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4069 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4070 return MinOpRes; 4071 } 4072 4073 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4074 // For a SCEVUnknown, ask ValueTracking. 4075 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4076 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4077 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(), 4078 0, &AC, nullptr, &DT); 4079 return Zeros.countTrailingOnes(); 4080 } 4081 4082 // SCEVUDivExpr 4083 return 0; 4084 } 4085 4086 /// GetRangeFromMetadata - Helper method to assign a range to V from 4087 /// metadata present in the IR. 4088 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4089 if (Instruction *I = dyn_cast<Instruction>(V)) { 4090 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 4091 ConstantRange TotalRange( 4092 cast<IntegerType>(I->getType())->getBitWidth(), false); 4093 4094 unsigned NumRanges = MD->getNumOperands() / 2; 4095 assert(NumRanges >= 1); 4096 4097 for (unsigned i = 0; i < NumRanges; ++i) { 4098 ConstantInt *Lower = 4099 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 4100 ConstantInt *Upper = 4101 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 4102 ConstantRange Range(Lower->getValue(), Upper->getValue()); 4103 TotalRange = TotalRange.unionWith(Range); 4104 } 4105 4106 return TotalRange; 4107 } 4108 } 4109 4110 return None; 4111 } 4112 4113 /// getRange - Determine the range for a particular SCEV. If SignHint is 4114 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4115 /// with a "cleaner" unsigned (resp. signed) representation. 4116 /// 4117 ConstantRange 4118 ScalarEvolution::getRange(const SCEV *S, 4119 ScalarEvolution::RangeSignHint SignHint) { 4120 DenseMap<const SCEV *, ConstantRange> &Cache = 4121 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4122 : SignedRanges; 4123 4124 // See if we've computed this range already. 4125 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4126 if (I != Cache.end()) 4127 return I->second; 4128 4129 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4130 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 4131 4132 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4133 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4134 4135 // If the value has known zeros, the maximum value will have those known zeros 4136 // as well. 4137 uint32_t TZ = GetMinTrailingZeros(S); 4138 if (TZ != 0) { 4139 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4140 ConservativeResult = 4141 ConstantRange(APInt::getMinValue(BitWidth), 4142 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4143 else 4144 ConservativeResult = ConstantRange( 4145 APInt::getSignedMinValue(BitWidth), 4146 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4147 } 4148 4149 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4150 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4151 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4152 X = X.add(getRange(Add->getOperand(i), SignHint)); 4153 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4154 } 4155 4156 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4157 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4158 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4159 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4160 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4161 } 4162 4163 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4164 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4165 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4166 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4167 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4168 } 4169 4170 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4171 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4172 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4173 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4174 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4175 } 4176 4177 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4178 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4179 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4180 return setRange(UDiv, SignHint, 4181 ConservativeResult.intersectWith(X.udiv(Y))); 4182 } 4183 4184 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4185 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4186 return setRange(ZExt, SignHint, 4187 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4188 } 4189 4190 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4191 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4192 return setRange(SExt, SignHint, 4193 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4194 } 4195 4196 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4197 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4198 return setRange(Trunc, SignHint, 4199 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4200 } 4201 4202 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4203 // If there's no unsigned wrap, the value will never be less than its 4204 // initial value. 4205 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4206 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4207 if (!C->getValue()->isZero()) 4208 ConservativeResult = 4209 ConservativeResult.intersectWith( 4210 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4211 4212 // If there's no signed wrap, and all the operands have the same sign or 4213 // zero, the value won't ever change sign. 4214 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4215 bool AllNonNeg = true; 4216 bool AllNonPos = true; 4217 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4218 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4219 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4220 } 4221 if (AllNonNeg) 4222 ConservativeResult = ConservativeResult.intersectWith( 4223 ConstantRange(APInt(BitWidth, 0), 4224 APInt::getSignedMinValue(BitWidth))); 4225 else if (AllNonPos) 4226 ConservativeResult = ConservativeResult.intersectWith( 4227 ConstantRange(APInt::getSignedMinValue(BitWidth), 4228 APInt(BitWidth, 1))); 4229 } 4230 4231 // TODO: non-affine addrec 4232 if (AddRec->isAffine()) { 4233 Type *Ty = AddRec->getType(); 4234 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4235 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4236 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4237 4238 // Check for overflow. This must be done with ConstantRange arithmetic 4239 // because we could be called from within the ScalarEvolution overflow 4240 // checking code. 4241 4242 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4243 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4244 ConstantRange ZExtMaxBECountRange = 4245 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4246 4247 const SCEV *Start = AddRec->getStart(); 4248 const SCEV *Step = AddRec->getStepRecurrence(*this); 4249 ConstantRange StepSRange = getSignedRange(Step); 4250 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4251 4252 ConstantRange StartURange = getUnsignedRange(Start); 4253 ConstantRange EndURange = 4254 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4255 4256 // Check for unsigned overflow. 4257 ConstantRange ZExtStartURange = 4258 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4259 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4260 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4261 ZExtEndURange) { 4262 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4263 EndURange.getUnsignedMin()); 4264 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4265 EndURange.getUnsignedMax()); 4266 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4267 if (!IsFullRange) 4268 ConservativeResult = 4269 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4270 } 4271 4272 ConstantRange StartSRange = getSignedRange(Start); 4273 ConstantRange EndSRange = 4274 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4275 4276 // Check for signed overflow. This must be done with ConstantRange 4277 // arithmetic because we could be called from within the ScalarEvolution 4278 // overflow checking code. 4279 ConstantRange SExtStartSRange = 4280 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4281 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4282 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4283 SExtEndSRange) { 4284 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4285 EndSRange.getSignedMin()); 4286 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4287 EndSRange.getSignedMax()); 4288 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4289 if (!IsFullRange) 4290 ConservativeResult = 4291 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4292 } 4293 } 4294 } 4295 4296 return setRange(AddRec, SignHint, ConservativeResult); 4297 } 4298 4299 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4300 // Check if the IR explicitly contains !range metadata. 4301 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4302 if (MDRange.hasValue()) 4303 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4304 4305 // Split here to avoid paying the compile-time cost of calling both 4306 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4307 // if needed. 4308 const DataLayout &DL = F.getParent()->getDataLayout(); 4309 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4310 // For a SCEVUnknown, ask ValueTracking. 4311 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4312 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4313 if (Ones != ~Zeros + 1) 4314 ConservativeResult = 4315 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4316 } else { 4317 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4318 "generalize as needed!"); 4319 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4320 if (NS > 1) 4321 ConservativeResult = ConservativeResult.intersectWith( 4322 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4323 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4324 } 4325 4326 return setRange(U, SignHint, ConservativeResult); 4327 } 4328 4329 return setRange(S, SignHint, ConservativeResult); 4330 } 4331 4332 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4333 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4334 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4335 4336 // Return early if there are no flags to propagate to the SCEV. 4337 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4338 if (BinOp->hasNoUnsignedWrap()) 4339 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4340 if (BinOp->hasNoSignedWrap()) 4341 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4342 if (Flags == SCEV::FlagAnyWrap) { 4343 return SCEV::FlagAnyWrap; 4344 } 4345 4346 // Here we check that BinOp is in the header of the innermost loop 4347 // containing BinOp, since we only deal with instructions in the loop 4348 // header. The actual loop we need to check later will come from an add 4349 // recurrence, but getting that requires computing the SCEV of the operands, 4350 // which can be expensive. This check we can do cheaply to rule out some 4351 // cases early. 4352 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4353 if (innermostContainingLoop == nullptr || 4354 innermostContainingLoop->getHeader() != BinOp->getParent()) 4355 return SCEV::FlagAnyWrap; 4356 4357 // Only proceed if we can prove that BinOp does not yield poison. 4358 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4359 4360 // At this point we know that if V is executed, then it does not wrap 4361 // according to at least one of NSW or NUW. If V is not executed, then we do 4362 // not know if the calculation that V represents would wrap. Multiple 4363 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4364 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4365 // derived from other instructions that map to the same SCEV. We cannot make 4366 // that guarantee for cases where V is not executed. So we need to find the 4367 // loop that V is considered in relation to and prove that V is executed for 4368 // every iteration of that loop. That implies that the value that V 4369 // calculates does not wrap anywhere in the loop, so then we can apply the 4370 // flags to the SCEV. 4371 // 4372 // We check isLoopInvariant to disambiguate in case we are adding two 4373 // recurrences from different loops, so that we know which loop to prove 4374 // that V is executed in. 4375 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4376 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4377 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4378 const int OtherOpIndex = 1 - OpIndex; 4379 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4380 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4381 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4382 return Flags; 4383 } 4384 } 4385 return SCEV::FlagAnyWrap; 4386 } 4387 4388 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4389 /// the expression. 4390 /// 4391 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4392 if (!isSCEVable(V->getType())) 4393 return getUnknown(V); 4394 4395 unsigned Opcode = Instruction::UserOp1; 4396 if (Instruction *I = dyn_cast<Instruction>(V)) { 4397 Opcode = I->getOpcode(); 4398 4399 // Don't attempt to analyze instructions in blocks that aren't 4400 // reachable. Such instructions don't matter, and they aren't required 4401 // to obey basic rules for definitions dominating uses which this 4402 // analysis depends on. 4403 if (!DT.isReachableFromEntry(I->getParent())) 4404 return getUnknown(V); 4405 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4406 Opcode = CE->getOpcode(); 4407 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4408 return getConstant(CI); 4409 else if (isa<ConstantPointerNull>(V)) 4410 return getZero(V->getType()); 4411 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4412 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4413 else 4414 return getUnknown(V); 4415 4416 Operator *U = cast<Operator>(V); 4417 switch (Opcode) { 4418 case Instruction::Add: { 4419 // The simple thing to do would be to just call getSCEV on both operands 4420 // and call getAddExpr with the result. However if we're looking at a 4421 // bunch of things all added together, this can be quite inefficient, 4422 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4423 // Instead, gather up all the operands and make a single getAddExpr call. 4424 // LLVM IR canonical form means we need only traverse the left operands. 4425 SmallVector<const SCEV *, 4> AddOps; 4426 for (Value *Op = U;; Op = U->getOperand(0)) { 4427 U = dyn_cast<Operator>(Op); 4428 unsigned Opcode = U ? U->getOpcode() : 0; 4429 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4430 assert(Op != V && "V should be an add"); 4431 AddOps.push_back(getSCEV(Op)); 4432 break; 4433 } 4434 4435 if (auto *OpSCEV = getExistingSCEV(U)) { 4436 AddOps.push_back(OpSCEV); 4437 break; 4438 } 4439 4440 // If a NUW or NSW flag can be applied to the SCEV for this 4441 // addition, then compute the SCEV for this addition by itself 4442 // with a separate call to getAddExpr. We need to do that 4443 // instead of pushing the operands of the addition onto AddOps, 4444 // since the flags are only known to apply to this particular 4445 // addition - they may not apply to other additions that can be 4446 // formed with operands from AddOps. 4447 const SCEV *RHS = getSCEV(U->getOperand(1)); 4448 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4449 if (Flags != SCEV::FlagAnyWrap) { 4450 const SCEV *LHS = getSCEV(U->getOperand(0)); 4451 if (Opcode == Instruction::Sub) 4452 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4453 else 4454 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4455 break; 4456 } 4457 4458 if (Opcode == Instruction::Sub) 4459 AddOps.push_back(getNegativeSCEV(RHS)); 4460 else 4461 AddOps.push_back(RHS); 4462 } 4463 return getAddExpr(AddOps); 4464 } 4465 4466 case Instruction::Mul: { 4467 SmallVector<const SCEV *, 4> MulOps; 4468 for (Value *Op = U;; Op = U->getOperand(0)) { 4469 U = dyn_cast<Operator>(Op); 4470 if (!U || U->getOpcode() != Instruction::Mul) { 4471 assert(Op != V && "V should be a mul"); 4472 MulOps.push_back(getSCEV(Op)); 4473 break; 4474 } 4475 4476 if (auto *OpSCEV = getExistingSCEV(U)) { 4477 MulOps.push_back(OpSCEV); 4478 break; 4479 } 4480 4481 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4482 if (Flags != SCEV::FlagAnyWrap) { 4483 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4484 getSCEV(U->getOperand(1)), Flags)); 4485 break; 4486 } 4487 4488 MulOps.push_back(getSCEV(U->getOperand(1))); 4489 } 4490 return getMulExpr(MulOps); 4491 } 4492 case Instruction::UDiv: 4493 return getUDivExpr(getSCEV(U->getOperand(0)), 4494 getSCEV(U->getOperand(1))); 4495 case Instruction::Sub: 4496 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4497 getNoWrapFlagsFromUB(U)); 4498 case Instruction::And: 4499 // For an expression like x&255 that merely masks off the high bits, 4500 // use zext(trunc(x)) as the SCEV expression. 4501 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4502 if (CI->isNullValue()) 4503 return getSCEV(U->getOperand(1)); 4504 if (CI->isAllOnesValue()) 4505 return getSCEV(U->getOperand(0)); 4506 const APInt &A = CI->getValue(); 4507 4508 // Instcombine's ShrinkDemandedConstant may strip bits out of 4509 // constants, obscuring what would otherwise be a low-bits mask. 4510 // Use computeKnownBits to compute what ShrinkDemandedConstant 4511 // knew about to reconstruct a low-bits mask value. 4512 unsigned LZ = A.countLeadingZeros(); 4513 unsigned TZ = A.countTrailingZeros(); 4514 unsigned BitWidth = A.getBitWidth(); 4515 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4516 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4517 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT); 4518 4519 APInt EffectiveMask = 4520 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4521 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4522 const SCEV *MulCount = getConstant( 4523 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4524 return getMulExpr( 4525 getZeroExtendExpr( 4526 getTruncateExpr( 4527 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4528 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4529 U->getType()), 4530 MulCount); 4531 } 4532 } 4533 break; 4534 4535 case Instruction::Or: 4536 // If the RHS of the Or is a constant, we may have something like: 4537 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4538 // optimizations will transparently handle this case. 4539 // 4540 // In order for this transformation to be safe, the LHS must be of the 4541 // form X*(2^n) and the Or constant must be less than 2^n. 4542 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4543 const SCEV *LHS = getSCEV(U->getOperand(0)); 4544 const APInt &CIVal = CI->getValue(); 4545 if (GetMinTrailingZeros(LHS) >= 4546 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4547 // Build a plain add SCEV. 4548 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4549 // If the LHS of the add was an addrec and it has no-wrap flags, 4550 // transfer the no-wrap flags, since an or won't introduce a wrap. 4551 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4552 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4553 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4554 OldAR->getNoWrapFlags()); 4555 } 4556 return S; 4557 } 4558 } 4559 break; 4560 case Instruction::Xor: 4561 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4562 // If the RHS of the xor is a signbit, then this is just an add. 4563 // Instcombine turns add of signbit into xor as a strength reduction step. 4564 if (CI->getValue().isSignBit()) 4565 return getAddExpr(getSCEV(U->getOperand(0)), 4566 getSCEV(U->getOperand(1))); 4567 4568 // If the RHS of xor is -1, then this is a not operation. 4569 if (CI->isAllOnesValue()) 4570 return getNotSCEV(getSCEV(U->getOperand(0))); 4571 4572 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4573 // This is a variant of the check for xor with -1, and it handles 4574 // the case where instcombine has trimmed non-demanded bits out 4575 // of an xor with -1. 4576 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4577 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4578 if (BO->getOpcode() == Instruction::And && 4579 LCI->getValue() == CI->getValue()) 4580 if (const SCEVZeroExtendExpr *Z = 4581 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4582 Type *UTy = U->getType(); 4583 const SCEV *Z0 = Z->getOperand(); 4584 Type *Z0Ty = Z0->getType(); 4585 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4586 4587 // If C is a low-bits mask, the zero extend is serving to 4588 // mask off the high bits. Complement the operand and 4589 // re-apply the zext. 4590 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4591 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4592 4593 // If C is a single bit, it may be in the sign-bit position 4594 // before the zero-extend. In this case, represent the xor 4595 // using an add, which is equivalent, and re-apply the zext. 4596 APInt Trunc = CI->getValue().trunc(Z0TySize); 4597 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4598 Trunc.isSignBit()) 4599 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4600 UTy); 4601 } 4602 } 4603 break; 4604 4605 case Instruction::Shl: 4606 // Turn shift left of a constant amount into a multiply. 4607 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4608 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4609 4610 // If the shift count is not less than the bitwidth, the result of 4611 // the shift is undefined. Don't try to analyze it, because the 4612 // resolution chosen here may differ from the resolution chosen in 4613 // other parts of the compiler. 4614 if (SA->getValue().uge(BitWidth)) 4615 break; 4616 4617 // It is currently not resolved how to interpret NSW for left 4618 // shift by BitWidth - 1, so we avoid applying flags in that 4619 // case. Remove this check (or this comment) once the situation 4620 // is resolved. See 4621 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4622 // and http://reviews.llvm.org/D8890 . 4623 auto Flags = SCEV::FlagAnyWrap; 4624 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4625 4626 Constant *X = ConstantInt::get(getContext(), 4627 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4628 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4629 } 4630 break; 4631 4632 case Instruction::LShr: 4633 // Turn logical shift right of a constant into a unsigned divide. 4634 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4635 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4636 4637 // If the shift count is not less than the bitwidth, the result of 4638 // the shift is undefined. Don't try to analyze it, because the 4639 // resolution chosen here may differ from the resolution chosen in 4640 // other parts of the compiler. 4641 if (SA->getValue().uge(BitWidth)) 4642 break; 4643 4644 Constant *X = ConstantInt::get(getContext(), 4645 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4646 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4647 } 4648 break; 4649 4650 case Instruction::AShr: 4651 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4652 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4653 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4654 if (L->getOpcode() == Instruction::Shl && 4655 L->getOperand(1) == U->getOperand(1)) { 4656 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4657 4658 // If the shift count is not less than the bitwidth, the result of 4659 // the shift is undefined. Don't try to analyze it, because the 4660 // resolution chosen here may differ from the resolution chosen in 4661 // other parts of the compiler. 4662 if (CI->getValue().uge(BitWidth)) 4663 break; 4664 4665 uint64_t Amt = BitWidth - CI->getZExtValue(); 4666 if (Amt == BitWidth) 4667 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4668 return 4669 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4670 IntegerType::get(getContext(), 4671 Amt)), 4672 U->getType()); 4673 } 4674 break; 4675 4676 case Instruction::Trunc: 4677 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4678 4679 case Instruction::ZExt: 4680 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4681 4682 case Instruction::SExt: 4683 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4684 4685 case Instruction::BitCast: 4686 // BitCasts are no-op casts so we just eliminate the cast. 4687 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4688 return getSCEV(U->getOperand(0)); 4689 break; 4690 4691 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4692 // lead to pointer expressions which cannot safely be expanded to GEPs, 4693 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4694 // simplifying integer expressions. 4695 4696 case Instruction::GetElementPtr: 4697 return createNodeForGEP(cast<GEPOperator>(U)); 4698 4699 case Instruction::PHI: 4700 return createNodeForPHI(cast<PHINode>(U)); 4701 4702 case Instruction::Select: 4703 // U can also be a select constant expr, which let fall through. Since 4704 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4705 // constant expressions cannot have instructions as operands, we'd have 4706 // returned getUnknown for a select constant expressions anyway. 4707 if (isa<Instruction>(U)) 4708 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4709 U->getOperand(1), U->getOperand(2)); 4710 4711 default: // We cannot analyze this expression. 4712 break; 4713 } 4714 4715 return getUnknown(V); 4716 } 4717 4718 4719 4720 //===----------------------------------------------------------------------===// 4721 // Iteration Count Computation Code 4722 // 4723 4724 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4725 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4726 return getSmallConstantTripCount(L, ExitingBB); 4727 4728 // No trip count information for multiple exits. 4729 return 0; 4730 } 4731 4732 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4733 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4734 /// constant. Will also return 0 if the maximum trip count is very large (>= 4735 /// 2^32). 4736 /// 4737 /// This "trip count" assumes that control exits via ExitingBlock. More 4738 /// precisely, it is the number of times that control may reach ExitingBlock 4739 /// before taking the branch. For loops with multiple exits, it may not be the 4740 /// number times that the loop header executes because the loop may exit 4741 /// prematurely via another branch. 4742 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4743 BasicBlock *ExitingBlock) { 4744 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4745 assert(L->isLoopExiting(ExitingBlock) && 4746 "Exiting block must actually branch out of the loop!"); 4747 const SCEVConstant *ExitCount = 4748 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4749 if (!ExitCount) 4750 return 0; 4751 4752 ConstantInt *ExitConst = ExitCount->getValue(); 4753 4754 // Guard against huge trip counts. 4755 if (ExitConst->getValue().getActiveBits() > 32) 4756 return 0; 4757 4758 // In case of integer overflow, this returns 0, which is correct. 4759 return ((unsigned)ExitConst->getZExtValue()) + 1; 4760 } 4761 4762 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4763 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4764 return getSmallConstantTripMultiple(L, ExitingBB); 4765 4766 // No trip multiple information for multiple exits. 4767 return 0; 4768 } 4769 4770 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4771 /// trip count of this loop as a normal unsigned value, if possible. This 4772 /// means that the actual trip count is always a multiple of the returned 4773 /// value (don't forget the trip count could very well be zero as well!). 4774 /// 4775 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4776 /// multiple of a constant (which is also the case if the trip count is simply 4777 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4778 /// if the trip count is very large (>= 2^32). 4779 /// 4780 /// As explained in the comments for getSmallConstantTripCount, this assumes 4781 /// that control exits the loop via ExitingBlock. 4782 unsigned 4783 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4784 BasicBlock *ExitingBlock) { 4785 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4786 assert(L->isLoopExiting(ExitingBlock) && 4787 "Exiting block must actually branch out of the loop!"); 4788 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4789 if (ExitCount == getCouldNotCompute()) 4790 return 1; 4791 4792 // Get the trip count from the BE count by adding 1. 4793 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4794 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4795 // to factor simple cases. 4796 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4797 TCMul = Mul->getOperand(0); 4798 4799 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4800 if (!MulC) 4801 return 1; 4802 4803 ConstantInt *Result = MulC->getValue(); 4804 4805 // Guard against huge trip counts (this requires checking 4806 // for zero to handle the case where the trip count == -1 and the 4807 // addition wraps). 4808 if (!Result || Result->getValue().getActiveBits() > 32 || 4809 Result->getValue().getActiveBits() == 0) 4810 return 1; 4811 4812 return (unsigned)Result->getZExtValue(); 4813 } 4814 4815 // getExitCount - Get the expression for the number of loop iterations for which 4816 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4817 // SCEVCouldNotCompute. 4818 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4819 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4820 } 4821 4822 /// getBackedgeTakenCount - If the specified loop has a predictable 4823 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4824 /// object. The backedge-taken count is the number of times the loop header 4825 /// will be branched to from within the loop. This is one less than the 4826 /// trip count of the loop, since it doesn't count the first iteration, 4827 /// when the header is branched to from outside the loop. 4828 /// 4829 /// Note that it is not valid to call this method on a loop without a 4830 /// loop-invariant backedge-taken count (see 4831 /// hasLoopInvariantBackedgeTakenCount). 4832 /// 4833 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4834 return getBackedgeTakenInfo(L).getExact(this); 4835 } 4836 4837 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4838 /// return the least SCEV value that is known never to be less than the 4839 /// actual backedge taken count. 4840 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4841 return getBackedgeTakenInfo(L).getMax(this); 4842 } 4843 4844 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4845 /// onto the given Worklist. 4846 static void 4847 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4848 BasicBlock *Header = L->getHeader(); 4849 4850 // Push all Loop-header PHIs onto the Worklist stack. 4851 for (BasicBlock::iterator I = Header->begin(); 4852 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4853 Worklist.push_back(PN); 4854 } 4855 4856 const ScalarEvolution::BackedgeTakenInfo & 4857 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4858 // Initially insert an invalid entry for this loop. If the insertion 4859 // succeeds, proceed to actually compute a backedge-taken count and 4860 // update the value. The temporary CouldNotCompute value tells SCEV 4861 // code elsewhere that it shouldn't attempt to request a new 4862 // backedge-taken count, which could result in infinite recursion. 4863 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4864 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4865 if (!Pair.second) 4866 return Pair.first->second; 4867 4868 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4869 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4870 // must be cleared in this scope. 4871 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4872 4873 if (Result.getExact(this) != getCouldNotCompute()) { 4874 assert(isLoopInvariant(Result.getExact(this), L) && 4875 isLoopInvariant(Result.getMax(this), L) && 4876 "Computed backedge-taken count isn't loop invariant for loop!"); 4877 ++NumTripCountsComputed; 4878 } 4879 else if (Result.getMax(this) == getCouldNotCompute() && 4880 isa<PHINode>(L->getHeader()->begin())) { 4881 // Only count loops that have phi nodes as not being computable. 4882 ++NumTripCountsNotComputed; 4883 } 4884 4885 // Now that we know more about the trip count for this loop, forget any 4886 // existing SCEV values for PHI nodes in this loop since they are only 4887 // conservative estimates made without the benefit of trip count 4888 // information. This is similar to the code in forgetLoop, except that 4889 // it handles SCEVUnknown PHI nodes specially. 4890 if (Result.hasAnyInfo()) { 4891 SmallVector<Instruction *, 16> Worklist; 4892 PushLoopPHIs(L, Worklist); 4893 4894 SmallPtrSet<Instruction *, 8> Visited; 4895 while (!Worklist.empty()) { 4896 Instruction *I = Worklist.pop_back_val(); 4897 if (!Visited.insert(I).second) 4898 continue; 4899 4900 ValueExprMapType::iterator It = 4901 ValueExprMap.find_as(static_cast<Value *>(I)); 4902 if (It != ValueExprMap.end()) { 4903 const SCEV *Old = It->second; 4904 4905 // SCEVUnknown for a PHI either means that it has an unrecognized 4906 // structure, or it's a PHI that's in the progress of being computed 4907 // by createNodeForPHI. In the former case, additional loop trip 4908 // count information isn't going to change anything. In the later 4909 // case, createNodeForPHI will perform the necessary updates on its 4910 // own when it gets to that point. 4911 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4912 forgetMemoizedResults(Old); 4913 ValueExprMap.erase(It); 4914 } 4915 if (PHINode *PN = dyn_cast<PHINode>(I)) 4916 ConstantEvolutionLoopExitValue.erase(PN); 4917 } 4918 4919 PushDefUseChildren(I, Worklist); 4920 } 4921 } 4922 4923 // Re-lookup the insert position, since the call to 4924 // computeBackedgeTakenCount above could result in a 4925 // recusive call to getBackedgeTakenInfo (on a different 4926 // loop), which would invalidate the iterator computed 4927 // earlier. 4928 return BackedgeTakenCounts.find(L)->second = Result; 4929 } 4930 4931 /// forgetLoop - This method should be called by the client when it has 4932 /// changed a loop in a way that may effect ScalarEvolution's ability to 4933 /// compute a trip count, or if the loop is deleted. 4934 void ScalarEvolution::forgetLoop(const Loop *L) { 4935 // Drop any stored trip count value. 4936 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4937 BackedgeTakenCounts.find(L); 4938 if (BTCPos != BackedgeTakenCounts.end()) { 4939 BTCPos->second.clear(); 4940 BackedgeTakenCounts.erase(BTCPos); 4941 } 4942 4943 // Drop information about expressions based on loop-header PHIs. 4944 SmallVector<Instruction *, 16> Worklist; 4945 PushLoopPHIs(L, Worklist); 4946 4947 SmallPtrSet<Instruction *, 8> Visited; 4948 while (!Worklist.empty()) { 4949 Instruction *I = Worklist.pop_back_val(); 4950 if (!Visited.insert(I).second) 4951 continue; 4952 4953 ValueExprMapType::iterator It = 4954 ValueExprMap.find_as(static_cast<Value *>(I)); 4955 if (It != ValueExprMap.end()) { 4956 forgetMemoizedResults(It->second); 4957 ValueExprMap.erase(It); 4958 if (PHINode *PN = dyn_cast<PHINode>(I)) 4959 ConstantEvolutionLoopExitValue.erase(PN); 4960 } 4961 4962 PushDefUseChildren(I, Worklist); 4963 } 4964 4965 // Forget all contained loops too, to avoid dangling entries in the 4966 // ValuesAtScopes map. 4967 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4968 forgetLoop(*I); 4969 } 4970 4971 /// forgetValue - This method should be called by the client when it has 4972 /// changed a value in a way that may effect its value, or which may 4973 /// disconnect it from a def-use chain linking it to a loop. 4974 void ScalarEvolution::forgetValue(Value *V) { 4975 Instruction *I = dyn_cast<Instruction>(V); 4976 if (!I) return; 4977 4978 // Drop information about expressions based on loop-header PHIs. 4979 SmallVector<Instruction *, 16> Worklist; 4980 Worklist.push_back(I); 4981 4982 SmallPtrSet<Instruction *, 8> Visited; 4983 while (!Worklist.empty()) { 4984 I = Worklist.pop_back_val(); 4985 if (!Visited.insert(I).second) 4986 continue; 4987 4988 ValueExprMapType::iterator It = 4989 ValueExprMap.find_as(static_cast<Value *>(I)); 4990 if (It != ValueExprMap.end()) { 4991 forgetMemoizedResults(It->second); 4992 ValueExprMap.erase(It); 4993 if (PHINode *PN = dyn_cast<PHINode>(I)) 4994 ConstantEvolutionLoopExitValue.erase(PN); 4995 } 4996 4997 PushDefUseChildren(I, Worklist); 4998 } 4999 } 5000 5001 /// getExact - Get the exact loop backedge taken count considering all loop 5002 /// exits. A computable result can only be returned for loops with a single 5003 /// exit. Returning the minimum taken count among all exits is incorrect 5004 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5005 /// assumes that the limit of each loop test is never skipped. This is a valid 5006 /// assumption as long as the loop exits via that test. For precise results, it 5007 /// is the caller's responsibility to specify the relevant loop exit using 5008 /// getExact(ExitingBlock, SE). 5009 const SCEV * 5010 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5011 // If any exits were not computable, the loop is not computable. 5012 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5013 5014 // We need exactly one computable exit. 5015 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5016 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5017 5018 const SCEV *BECount = nullptr; 5019 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5020 ENT != nullptr; ENT = ENT->getNextExit()) { 5021 5022 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5023 5024 if (!BECount) 5025 BECount = ENT->ExactNotTaken; 5026 else if (BECount != ENT->ExactNotTaken) 5027 return SE->getCouldNotCompute(); 5028 } 5029 assert(BECount && "Invalid not taken count for loop exit"); 5030 return BECount; 5031 } 5032 5033 /// getExact - Get the exact not taken count for this loop exit. 5034 const SCEV * 5035 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5036 ScalarEvolution *SE) const { 5037 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5038 ENT != nullptr; ENT = ENT->getNextExit()) { 5039 5040 if (ENT->ExitingBlock == ExitingBlock) 5041 return ENT->ExactNotTaken; 5042 } 5043 return SE->getCouldNotCompute(); 5044 } 5045 5046 /// getMax - Get the max backedge taken count for the loop. 5047 const SCEV * 5048 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5049 return Max ? Max : SE->getCouldNotCompute(); 5050 } 5051 5052 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5053 ScalarEvolution *SE) const { 5054 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5055 return true; 5056 5057 if (!ExitNotTaken.ExitingBlock) 5058 return false; 5059 5060 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5061 ENT != nullptr; ENT = ENT->getNextExit()) { 5062 5063 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5064 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5065 return true; 5066 } 5067 } 5068 return false; 5069 } 5070 5071 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5072 /// computable exit into a persistent ExitNotTakenInfo array. 5073 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5074 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5075 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5076 5077 if (!Complete) 5078 ExitNotTaken.setIncomplete(); 5079 5080 unsigned NumExits = ExitCounts.size(); 5081 if (NumExits == 0) return; 5082 5083 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5084 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5085 if (NumExits == 1) return; 5086 5087 // Handle the rare case of multiple computable exits. 5088 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5089 5090 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5091 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5092 PrevENT->setNextExit(ENT); 5093 ENT->ExitingBlock = ExitCounts[i].first; 5094 ENT->ExactNotTaken = ExitCounts[i].second; 5095 } 5096 } 5097 5098 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5099 void ScalarEvolution::BackedgeTakenInfo::clear() { 5100 ExitNotTaken.ExitingBlock = nullptr; 5101 ExitNotTaken.ExactNotTaken = nullptr; 5102 delete[] ExitNotTaken.getNextExit(); 5103 } 5104 5105 /// computeBackedgeTakenCount - Compute the number of times the backedge 5106 /// of the specified loop will execute. 5107 ScalarEvolution::BackedgeTakenInfo 5108 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5109 SmallVector<BasicBlock *, 8> ExitingBlocks; 5110 L->getExitingBlocks(ExitingBlocks); 5111 5112 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5113 bool CouldComputeBECount = true; 5114 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5115 const SCEV *MustExitMaxBECount = nullptr; 5116 const SCEV *MayExitMaxBECount = nullptr; 5117 5118 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5119 // and compute maxBECount. 5120 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5121 BasicBlock *ExitBB = ExitingBlocks[i]; 5122 ExitLimit EL = computeExitLimit(L, ExitBB); 5123 5124 // 1. For each exit that can be computed, add an entry to ExitCounts. 5125 // CouldComputeBECount is true only if all exits can be computed. 5126 if (EL.Exact == getCouldNotCompute()) 5127 // We couldn't compute an exact value for this exit, so 5128 // we won't be able to compute an exact value for the loop. 5129 CouldComputeBECount = false; 5130 else 5131 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5132 5133 // 2. Derive the loop's MaxBECount from each exit's max number of 5134 // non-exiting iterations. Partition the loop exits into two kinds: 5135 // LoopMustExits and LoopMayExits. 5136 // 5137 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5138 // is a LoopMayExit. If any computable LoopMustExit is found, then 5139 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5140 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5141 // considered greater than any computable EL.Max. 5142 if (EL.Max != getCouldNotCompute() && Latch && 5143 DT.dominates(ExitBB, Latch)) { 5144 if (!MustExitMaxBECount) 5145 MustExitMaxBECount = EL.Max; 5146 else { 5147 MustExitMaxBECount = 5148 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5149 } 5150 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5151 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5152 MayExitMaxBECount = EL.Max; 5153 else { 5154 MayExitMaxBECount = 5155 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5156 } 5157 } 5158 } 5159 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5160 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5161 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5162 } 5163 5164 ScalarEvolution::ExitLimit 5165 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5166 5167 // Okay, we've chosen an exiting block. See what condition causes us to exit 5168 // at this block and remember the exit block and whether all other targets 5169 // lead to the loop header. 5170 bool MustExecuteLoopHeader = true; 5171 BasicBlock *Exit = nullptr; 5172 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5173 SI != SE; ++SI) 5174 if (!L->contains(*SI)) { 5175 if (Exit) // Multiple exit successors. 5176 return getCouldNotCompute(); 5177 Exit = *SI; 5178 } else if (*SI != L->getHeader()) { 5179 MustExecuteLoopHeader = false; 5180 } 5181 5182 // At this point, we know we have a conditional branch that determines whether 5183 // the loop is exited. However, we don't know if the branch is executed each 5184 // time through the loop. If not, then the execution count of the branch will 5185 // not be equal to the trip count of the loop. 5186 // 5187 // Currently we check for this by checking to see if the Exit branch goes to 5188 // the loop header. If so, we know it will always execute the same number of 5189 // times as the loop. We also handle the case where the exit block *is* the 5190 // loop header. This is common for un-rotated loops. 5191 // 5192 // If both of those tests fail, walk up the unique predecessor chain to the 5193 // header, stopping if there is an edge that doesn't exit the loop. If the 5194 // header is reached, the execution count of the branch will be equal to the 5195 // trip count of the loop. 5196 // 5197 // More extensive analysis could be done to handle more cases here. 5198 // 5199 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5200 // The simple checks failed, try climbing the unique predecessor chain 5201 // up to the header. 5202 bool Ok = false; 5203 for (BasicBlock *BB = ExitingBlock; BB; ) { 5204 BasicBlock *Pred = BB->getUniquePredecessor(); 5205 if (!Pred) 5206 return getCouldNotCompute(); 5207 TerminatorInst *PredTerm = Pred->getTerminator(); 5208 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5209 if (PredSucc == BB) 5210 continue; 5211 // If the predecessor has a successor that isn't BB and isn't 5212 // outside the loop, assume the worst. 5213 if (L->contains(PredSucc)) 5214 return getCouldNotCompute(); 5215 } 5216 if (Pred == L->getHeader()) { 5217 Ok = true; 5218 break; 5219 } 5220 BB = Pred; 5221 } 5222 if (!Ok) 5223 return getCouldNotCompute(); 5224 } 5225 5226 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5227 TerminatorInst *Term = ExitingBlock->getTerminator(); 5228 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5229 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5230 // Proceed to the next level to examine the exit condition expression. 5231 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5232 BI->getSuccessor(1), 5233 /*ControlsExit=*/IsOnlyExit); 5234 } 5235 5236 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5237 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5238 /*ControlsExit=*/IsOnlyExit); 5239 5240 return getCouldNotCompute(); 5241 } 5242 5243 /// computeExitLimitFromCond - Compute the number of times the 5244 /// backedge of the specified loop will execute if its exit condition 5245 /// were a conditional branch of ExitCond, TBB, and FBB. 5246 /// 5247 /// @param ControlsExit is true if ExitCond directly controls the exit 5248 /// branch. In this case, we can assume that the loop exits only if the 5249 /// condition is true and can infer that failing to meet the condition prior to 5250 /// integer wraparound results in undefined behavior. 5251 ScalarEvolution::ExitLimit 5252 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5253 Value *ExitCond, 5254 BasicBlock *TBB, 5255 BasicBlock *FBB, 5256 bool ControlsExit) { 5257 // Check if the controlling expression for this loop is an And or Or. 5258 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5259 if (BO->getOpcode() == Instruction::And) { 5260 // Recurse on the operands of the and. 5261 bool EitherMayExit = L->contains(TBB); 5262 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5263 ControlsExit && !EitherMayExit); 5264 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5265 ControlsExit && !EitherMayExit); 5266 const SCEV *BECount = getCouldNotCompute(); 5267 const SCEV *MaxBECount = getCouldNotCompute(); 5268 if (EitherMayExit) { 5269 // Both conditions must be true for the loop to continue executing. 5270 // Choose the less conservative count. 5271 if (EL0.Exact == getCouldNotCompute() || 5272 EL1.Exact == getCouldNotCompute()) 5273 BECount = getCouldNotCompute(); 5274 else 5275 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5276 if (EL0.Max == getCouldNotCompute()) 5277 MaxBECount = EL1.Max; 5278 else if (EL1.Max == getCouldNotCompute()) 5279 MaxBECount = EL0.Max; 5280 else 5281 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5282 } else { 5283 // Both conditions must be true at the same time for the loop to exit. 5284 // For now, be conservative. 5285 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5286 if (EL0.Max == EL1.Max) 5287 MaxBECount = EL0.Max; 5288 if (EL0.Exact == EL1.Exact) 5289 BECount = EL0.Exact; 5290 } 5291 5292 return ExitLimit(BECount, MaxBECount); 5293 } 5294 if (BO->getOpcode() == Instruction::Or) { 5295 // Recurse on the operands of the or. 5296 bool EitherMayExit = L->contains(FBB); 5297 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5298 ControlsExit && !EitherMayExit); 5299 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5300 ControlsExit && !EitherMayExit); 5301 const SCEV *BECount = getCouldNotCompute(); 5302 const SCEV *MaxBECount = getCouldNotCompute(); 5303 if (EitherMayExit) { 5304 // Both conditions must be false for the loop to continue executing. 5305 // Choose the less conservative count. 5306 if (EL0.Exact == getCouldNotCompute() || 5307 EL1.Exact == getCouldNotCompute()) 5308 BECount = getCouldNotCompute(); 5309 else 5310 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5311 if (EL0.Max == getCouldNotCompute()) 5312 MaxBECount = EL1.Max; 5313 else if (EL1.Max == getCouldNotCompute()) 5314 MaxBECount = EL0.Max; 5315 else 5316 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5317 } else { 5318 // Both conditions must be false at the same time for the loop to exit. 5319 // For now, be conservative. 5320 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5321 if (EL0.Max == EL1.Max) 5322 MaxBECount = EL0.Max; 5323 if (EL0.Exact == EL1.Exact) 5324 BECount = EL0.Exact; 5325 } 5326 5327 return ExitLimit(BECount, MaxBECount); 5328 } 5329 } 5330 5331 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5332 // Proceed to the next level to examine the icmp. 5333 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5334 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5335 5336 // Check for a constant condition. These are normally stripped out by 5337 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5338 // preserve the CFG and is temporarily leaving constant conditions 5339 // in place. 5340 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5341 if (L->contains(FBB) == !CI->getZExtValue()) 5342 // The backedge is always taken. 5343 return getCouldNotCompute(); 5344 else 5345 // The backedge is never taken. 5346 return getZero(CI->getType()); 5347 } 5348 5349 // If it's not an integer or pointer comparison then compute it the hard way. 5350 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5351 } 5352 5353 ScalarEvolution::ExitLimit 5354 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5355 ICmpInst *ExitCond, 5356 BasicBlock *TBB, 5357 BasicBlock *FBB, 5358 bool ControlsExit) { 5359 5360 // If the condition was exit on true, convert the condition to exit on false 5361 ICmpInst::Predicate Cond; 5362 if (!L->contains(FBB)) 5363 Cond = ExitCond->getPredicate(); 5364 else 5365 Cond = ExitCond->getInversePredicate(); 5366 5367 // Handle common loops like: for (X = "string"; *X; ++X) 5368 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5369 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5370 ExitLimit ItCnt = 5371 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5372 if (ItCnt.hasAnyInfo()) 5373 return ItCnt; 5374 } 5375 5376 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5377 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5378 5379 // Try to evaluate any dependencies out of the loop. 5380 LHS = getSCEVAtScope(LHS, L); 5381 RHS = getSCEVAtScope(RHS, L); 5382 5383 // At this point, we would like to compute how many iterations of the 5384 // loop the predicate will return true for these inputs. 5385 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5386 // If there is a loop-invariant, force it into the RHS. 5387 std::swap(LHS, RHS); 5388 Cond = ICmpInst::getSwappedPredicate(Cond); 5389 } 5390 5391 // Simplify the operands before analyzing them. 5392 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5393 5394 // If we have a comparison of a chrec against a constant, try to use value 5395 // ranges to answer this query. 5396 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5397 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5398 if (AddRec->getLoop() == L) { 5399 // Form the constant range. 5400 ConstantRange CompRange( 5401 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5402 5403 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5404 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5405 } 5406 5407 switch (Cond) { 5408 case ICmpInst::ICMP_NE: { // while (X != Y) 5409 // Convert to: while (X-Y != 0) 5410 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5411 if (EL.hasAnyInfo()) return EL; 5412 break; 5413 } 5414 case ICmpInst::ICMP_EQ: { // while (X == Y) 5415 // Convert to: while (X-Y == 0) 5416 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5417 if (EL.hasAnyInfo()) return EL; 5418 break; 5419 } 5420 case ICmpInst::ICMP_SLT: 5421 case ICmpInst::ICMP_ULT: { // while (X < Y) 5422 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5423 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5424 if (EL.hasAnyInfo()) return EL; 5425 break; 5426 } 5427 case ICmpInst::ICMP_SGT: 5428 case ICmpInst::ICMP_UGT: { // while (X > Y) 5429 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5430 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5431 if (EL.hasAnyInfo()) return EL; 5432 break; 5433 } 5434 default: 5435 #if 0 5436 dbgs() << "computeBackedgeTakenCount "; 5437 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5438 dbgs() << "[unsigned] "; 5439 dbgs() << *LHS << " " 5440 << Instruction::getOpcodeName(Instruction::ICmp) 5441 << " " << *RHS << "\n"; 5442 #endif 5443 break; 5444 } 5445 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5446 } 5447 5448 ScalarEvolution::ExitLimit 5449 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5450 SwitchInst *Switch, 5451 BasicBlock *ExitingBlock, 5452 bool ControlsExit) { 5453 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5454 5455 // Give up if the exit is the default dest of a switch. 5456 if (Switch->getDefaultDest() == ExitingBlock) 5457 return getCouldNotCompute(); 5458 5459 assert(L->contains(Switch->getDefaultDest()) && 5460 "Default case must not exit the loop!"); 5461 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5462 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5463 5464 // while (X != Y) --> while (X-Y != 0) 5465 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5466 if (EL.hasAnyInfo()) 5467 return EL; 5468 5469 return getCouldNotCompute(); 5470 } 5471 5472 static ConstantInt * 5473 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5474 ScalarEvolution &SE) { 5475 const SCEV *InVal = SE.getConstant(C); 5476 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5477 assert(isa<SCEVConstant>(Val) && 5478 "Evaluation of SCEV at constant didn't fold correctly?"); 5479 return cast<SCEVConstant>(Val)->getValue(); 5480 } 5481 5482 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5483 /// 'icmp op load X, cst', try to see if we can compute the backedge 5484 /// execution count. 5485 ScalarEvolution::ExitLimit 5486 ScalarEvolution::computeLoadConstantCompareExitLimit( 5487 LoadInst *LI, 5488 Constant *RHS, 5489 const Loop *L, 5490 ICmpInst::Predicate predicate) { 5491 5492 if (LI->isVolatile()) return getCouldNotCompute(); 5493 5494 // Check to see if the loaded pointer is a getelementptr of a global. 5495 // TODO: Use SCEV instead of manually grubbing with GEPs. 5496 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5497 if (!GEP) return getCouldNotCompute(); 5498 5499 // Make sure that it is really a constant global we are gepping, with an 5500 // initializer, and make sure the first IDX is really 0. 5501 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5502 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5503 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5504 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5505 return getCouldNotCompute(); 5506 5507 // Okay, we allow one non-constant index into the GEP instruction. 5508 Value *VarIdx = nullptr; 5509 std::vector<Constant*> Indexes; 5510 unsigned VarIdxNum = 0; 5511 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5512 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5513 Indexes.push_back(CI); 5514 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5515 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5516 VarIdx = GEP->getOperand(i); 5517 VarIdxNum = i-2; 5518 Indexes.push_back(nullptr); 5519 } 5520 5521 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5522 if (!VarIdx) 5523 return getCouldNotCompute(); 5524 5525 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5526 // Check to see if X is a loop variant variable value now. 5527 const SCEV *Idx = getSCEV(VarIdx); 5528 Idx = getSCEVAtScope(Idx, L); 5529 5530 // We can only recognize very limited forms of loop index expressions, in 5531 // particular, only affine AddRec's like {C1,+,C2}. 5532 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5533 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5534 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5535 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5536 return getCouldNotCompute(); 5537 5538 unsigned MaxSteps = MaxBruteForceIterations; 5539 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5540 ConstantInt *ItCst = ConstantInt::get( 5541 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5542 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5543 5544 // Form the GEP offset. 5545 Indexes[VarIdxNum] = Val; 5546 5547 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5548 Indexes); 5549 if (!Result) break; // Cannot compute! 5550 5551 // Evaluate the condition for this iteration. 5552 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5553 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5554 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5555 #if 0 5556 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5557 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5558 << "***\n"; 5559 #endif 5560 ++NumArrayLenItCounts; 5561 return getConstant(ItCst); // Found terminating iteration! 5562 } 5563 } 5564 return getCouldNotCompute(); 5565 } 5566 5567 5568 /// CanConstantFold - Return true if we can constant fold an instruction of the 5569 /// specified type, assuming that all operands were constants. 5570 static bool CanConstantFold(const Instruction *I) { 5571 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5572 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5573 isa<LoadInst>(I)) 5574 return true; 5575 5576 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5577 if (const Function *F = CI->getCalledFunction()) 5578 return canConstantFoldCallTo(F); 5579 return false; 5580 } 5581 5582 /// Determine whether this instruction can constant evolve within this loop 5583 /// assuming its operands can all constant evolve. 5584 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5585 // An instruction outside of the loop can't be derived from a loop PHI. 5586 if (!L->contains(I)) return false; 5587 5588 if (isa<PHINode>(I)) { 5589 // We don't currently keep track of the control flow needed to evaluate 5590 // PHIs, so we cannot handle PHIs inside of loops. 5591 return L->getHeader() == I->getParent(); 5592 } 5593 5594 // If we won't be able to constant fold this expression even if the operands 5595 // are constants, bail early. 5596 return CanConstantFold(I); 5597 } 5598 5599 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5600 /// recursing through each instruction operand until reaching a loop header phi. 5601 static PHINode * 5602 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5603 DenseMap<Instruction *, PHINode *> &PHIMap) { 5604 5605 // Otherwise, we can evaluate this instruction if all of its operands are 5606 // constant or derived from a PHI node themselves. 5607 PHINode *PHI = nullptr; 5608 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5609 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5610 5611 if (isa<Constant>(*OpI)) continue; 5612 5613 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5614 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5615 5616 PHINode *P = dyn_cast<PHINode>(OpInst); 5617 if (!P) 5618 // If this operand is already visited, reuse the prior result. 5619 // We may have P != PHI if this is the deepest point at which the 5620 // inconsistent paths meet. 5621 P = PHIMap.lookup(OpInst); 5622 if (!P) { 5623 // Recurse and memoize the results, whether a phi is found or not. 5624 // This recursive call invalidates pointers into PHIMap. 5625 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5626 PHIMap[OpInst] = P; 5627 } 5628 if (!P) 5629 return nullptr; // Not evolving from PHI 5630 if (PHI && PHI != P) 5631 return nullptr; // Evolving from multiple different PHIs. 5632 PHI = P; 5633 } 5634 // This is a expression evolving from a constant PHI! 5635 return PHI; 5636 } 5637 5638 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5639 /// in the loop that V is derived from. We allow arbitrary operations along the 5640 /// way, but the operands of an operation must either be constants or a value 5641 /// derived from a constant PHI. If this expression does not fit with these 5642 /// constraints, return null. 5643 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5644 Instruction *I = dyn_cast<Instruction>(V); 5645 if (!I || !canConstantEvolve(I, L)) return nullptr; 5646 5647 if (PHINode *PN = dyn_cast<PHINode>(I)) 5648 return PN; 5649 5650 // Record non-constant instructions contained by the loop. 5651 DenseMap<Instruction *, PHINode *> PHIMap; 5652 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5653 } 5654 5655 /// EvaluateExpression - Given an expression that passes the 5656 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5657 /// in the loop has the value PHIVal. If we can't fold this expression for some 5658 /// reason, return null. 5659 static Constant *EvaluateExpression(Value *V, const Loop *L, 5660 DenseMap<Instruction *, Constant *> &Vals, 5661 const DataLayout &DL, 5662 const TargetLibraryInfo *TLI) { 5663 // Convenient constant check, but redundant for recursive calls. 5664 if (Constant *C = dyn_cast<Constant>(V)) return C; 5665 Instruction *I = dyn_cast<Instruction>(V); 5666 if (!I) return nullptr; 5667 5668 if (Constant *C = Vals.lookup(I)) return C; 5669 5670 // An instruction inside the loop depends on a value outside the loop that we 5671 // weren't given a mapping for, or a value such as a call inside the loop. 5672 if (!canConstantEvolve(I, L)) return nullptr; 5673 5674 // An unmapped PHI can be due to a branch or another loop inside this loop, 5675 // or due to this not being the initial iteration through a loop where we 5676 // couldn't compute the evolution of this particular PHI last time. 5677 if (isa<PHINode>(I)) return nullptr; 5678 5679 std::vector<Constant*> Operands(I->getNumOperands()); 5680 5681 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5682 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5683 if (!Operand) { 5684 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5685 if (!Operands[i]) return nullptr; 5686 continue; 5687 } 5688 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5689 Vals[Operand] = C; 5690 if (!C) return nullptr; 5691 Operands[i] = C; 5692 } 5693 5694 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5695 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5696 Operands[1], DL, TLI); 5697 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5698 if (!LI->isVolatile()) 5699 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5700 } 5701 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5702 TLI); 5703 } 5704 5705 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5706 /// in the header of its containing loop, we know the loop executes a 5707 /// constant number of times, and the PHI node is just a recurrence 5708 /// involving constants, fold it. 5709 Constant * 5710 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5711 const APInt &BEs, 5712 const Loop *L) { 5713 auto I = ConstantEvolutionLoopExitValue.find(PN); 5714 if (I != ConstantEvolutionLoopExitValue.end()) 5715 return I->second; 5716 5717 if (BEs.ugt(MaxBruteForceIterations)) 5718 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5719 5720 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5721 5722 DenseMap<Instruction *, Constant *> CurrentIterVals; 5723 BasicBlock *Header = L->getHeader(); 5724 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5725 5726 BasicBlock *Latch = L->getLoopLatch(); 5727 if (!Latch) 5728 return nullptr; 5729 5730 // Since the loop has one latch, the PHI node must have two entries. One 5731 // entry must be a constant (coming in from outside of the loop), and the 5732 // second must be derived from the same PHI. 5733 5734 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5735 ? PN->getIncomingBlock(1) 5736 : PN->getIncomingBlock(0); 5737 5738 assert(PN->getNumIncomingValues() == 2 && "Follows from having one latch!"); 5739 5740 // Note: not all PHI nodes in the same block have to have their incoming 5741 // values in the same order, so we use the basic block to look up the incoming 5742 // value, not an index. 5743 5744 for (auto &I : *Header) { 5745 PHINode *PHI = dyn_cast<PHINode>(&I); 5746 if (!PHI) break; 5747 auto *StartCST = 5748 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5749 if (!StartCST) continue; 5750 CurrentIterVals[PHI] = StartCST; 5751 } 5752 if (!CurrentIterVals.count(PN)) 5753 return RetVal = nullptr; 5754 5755 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5756 5757 // Execute the loop symbolically to determine the exit value. 5758 if (BEs.getActiveBits() >= 32) 5759 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5760 5761 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5762 unsigned IterationNum = 0; 5763 const DataLayout &DL = F.getParent()->getDataLayout(); 5764 for (; ; ++IterationNum) { 5765 if (IterationNum == NumIterations) 5766 return RetVal = CurrentIterVals[PN]; // Got exit value! 5767 5768 // Compute the value of the PHIs for the next iteration. 5769 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5770 DenseMap<Instruction *, Constant *> NextIterVals; 5771 Constant *NextPHI = 5772 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5773 if (!NextPHI) 5774 return nullptr; // Couldn't evaluate! 5775 NextIterVals[PN] = NextPHI; 5776 5777 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5778 5779 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5780 // cease to be able to evaluate one of them or if they stop evolving, 5781 // because that doesn't necessarily prevent us from computing PN. 5782 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5783 for (const auto &I : CurrentIterVals) { 5784 PHINode *PHI = dyn_cast<PHINode>(I.first); 5785 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5786 PHIsToCompute.emplace_back(PHI, I.second); 5787 } 5788 // We use two distinct loops because EvaluateExpression may invalidate any 5789 // iterators into CurrentIterVals. 5790 for (const auto &I : PHIsToCompute) { 5791 PHINode *PHI = I.first; 5792 Constant *&NextPHI = NextIterVals[PHI]; 5793 if (!NextPHI) { // Not already computed. 5794 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5795 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5796 } 5797 if (NextPHI != I.second) 5798 StoppedEvolving = false; 5799 } 5800 5801 // If all entries in CurrentIterVals == NextIterVals then we can stop 5802 // iterating, the loop can't continue to change. 5803 if (StoppedEvolving) 5804 return RetVal = CurrentIterVals[PN]; 5805 5806 CurrentIterVals.swap(NextIterVals); 5807 } 5808 } 5809 5810 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 5811 Value *Cond, 5812 bool ExitWhen) { 5813 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5814 if (!PN) return getCouldNotCompute(); 5815 5816 // If the loop is canonicalized, the PHI will have exactly two entries. 5817 // That's the only form we support here. 5818 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5819 5820 DenseMap<Instruction *, Constant *> CurrentIterVals; 5821 BasicBlock *Header = L->getHeader(); 5822 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5823 5824 BasicBlock *Latch = L->getLoopLatch(); 5825 assert(Latch && "Should follow from NumIncomingValues == 2!"); 5826 5827 // NonLatch is the preheader, or something equivalent. 5828 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5829 ? PN->getIncomingBlock(1) 5830 : PN->getIncomingBlock(0); 5831 5832 // Note: not all PHI nodes in the same block have to have their incoming 5833 // values in the same order, so we use the basic block to look up the incoming 5834 // value, not an index. 5835 5836 for (auto &I : *Header) { 5837 PHINode *PHI = dyn_cast<PHINode>(&I); 5838 if (!PHI) 5839 break; 5840 auto *StartCST = 5841 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5842 if (!StartCST) continue; 5843 CurrentIterVals[PHI] = StartCST; 5844 } 5845 if (!CurrentIterVals.count(PN)) 5846 return getCouldNotCompute(); 5847 5848 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5849 // the loop symbolically to determine when the condition gets a value of 5850 // "ExitWhen". 5851 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5852 const DataLayout &DL = F.getParent()->getDataLayout(); 5853 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5854 auto *CondVal = dyn_cast_or_null<ConstantInt>( 5855 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5856 5857 // Couldn't symbolically evaluate. 5858 if (!CondVal) return getCouldNotCompute(); 5859 5860 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5861 ++NumBruteForceTripCountsComputed; 5862 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5863 } 5864 5865 // Update all the PHI nodes for the next iteration. 5866 DenseMap<Instruction *, Constant *> NextIterVals; 5867 5868 // Create a list of which PHIs we need to compute. We want to do this before 5869 // calling EvaluateExpression on them because that may invalidate iterators 5870 // into CurrentIterVals. 5871 SmallVector<PHINode *, 8> PHIsToCompute; 5872 for (const auto &I : CurrentIterVals) { 5873 PHINode *PHI = dyn_cast<PHINode>(I.first); 5874 if (!PHI || PHI->getParent() != Header) continue; 5875 PHIsToCompute.push_back(PHI); 5876 } 5877 for (PHINode *PHI : PHIsToCompute) { 5878 Constant *&NextPHI = NextIterVals[PHI]; 5879 if (NextPHI) continue; // Already computed! 5880 5881 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5882 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5883 } 5884 CurrentIterVals.swap(NextIterVals); 5885 } 5886 5887 // Too many iterations were needed to evaluate. 5888 return getCouldNotCompute(); 5889 } 5890 5891 /// getSCEVAtScope - Return a SCEV expression for the specified value 5892 /// at the specified scope in the program. The L value specifies a loop 5893 /// nest to evaluate the expression at, where null is the top-level or a 5894 /// specified loop is immediately inside of the loop. 5895 /// 5896 /// This method can be used to compute the exit value for a variable defined 5897 /// in a loop by querying what the value will hold in the parent loop. 5898 /// 5899 /// In the case that a relevant loop exit value cannot be computed, the 5900 /// original value V is returned. 5901 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5902 // Check to see if we've folded this expression at this loop before. 5903 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5904 for (unsigned u = 0; u < Values.size(); u++) { 5905 if (Values[u].first == L) 5906 return Values[u].second ? Values[u].second : V; 5907 } 5908 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5909 // Otherwise compute it. 5910 const SCEV *C = computeSCEVAtScope(V, L); 5911 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5912 for (unsigned u = Values2.size(); u > 0; u--) { 5913 if (Values2[u - 1].first == L) { 5914 Values2[u - 1].second = C; 5915 break; 5916 } 5917 } 5918 return C; 5919 } 5920 5921 /// This builds up a Constant using the ConstantExpr interface. That way, we 5922 /// will return Constants for objects which aren't represented by a 5923 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5924 /// Returns NULL if the SCEV isn't representable as a Constant. 5925 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5926 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5927 case scCouldNotCompute: 5928 case scAddRecExpr: 5929 break; 5930 case scConstant: 5931 return cast<SCEVConstant>(V)->getValue(); 5932 case scUnknown: 5933 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5934 case scSignExtend: { 5935 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5936 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5937 return ConstantExpr::getSExt(CastOp, SS->getType()); 5938 break; 5939 } 5940 case scZeroExtend: { 5941 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5942 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5943 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5944 break; 5945 } 5946 case scTruncate: { 5947 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5948 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5949 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5950 break; 5951 } 5952 case scAddExpr: { 5953 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5954 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5955 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5956 unsigned AS = PTy->getAddressSpace(); 5957 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5958 C = ConstantExpr::getBitCast(C, DestPtrTy); 5959 } 5960 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5961 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5962 if (!C2) return nullptr; 5963 5964 // First pointer! 5965 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5966 unsigned AS = C2->getType()->getPointerAddressSpace(); 5967 std::swap(C, C2); 5968 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5969 // The offsets have been converted to bytes. We can add bytes to an 5970 // i8* by GEP with the byte count in the first index. 5971 C = ConstantExpr::getBitCast(C, DestPtrTy); 5972 } 5973 5974 // Don't bother trying to sum two pointers. We probably can't 5975 // statically compute a load that results from it anyway. 5976 if (C2->getType()->isPointerTy()) 5977 return nullptr; 5978 5979 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5980 if (PTy->getElementType()->isStructTy()) 5981 C2 = ConstantExpr::getIntegerCast( 5982 C2, Type::getInt32Ty(C->getContext()), true); 5983 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 5984 } else 5985 C = ConstantExpr::getAdd(C, C2); 5986 } 5987 return C; 5988 } 5989 break; 5990 } 5991 case scMulExpr: { 5992 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5993 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5994 // Don't bother with pointers at all. 5995 if (C->getType()->isPointerTy()) return nullptr; 5996 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5997 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5998 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5999 C = ConstantExpr::getMul(C, C2); 6000 } 6001 return C; 6002 } 6003 break; 6004 } 6005 case scUDivExpr: { 6006 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6007 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6008 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6009 if (LHS->getType() == RHS->getType()) 6010 return ConstantExpr::getUDiv(LHS, RHS); 6011 break; 6012 } 6013 case scSMaxExpr: 6014 case scUMaxExpr: 6015 break; // TODO: smax, umax. 6016 } 6017 return nullptr; 6018 } 6019 6020 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6021 if (isa<SCEVConstant>(V)) return V; 6022 6023 // If this instruction is evolved from a constant-evolving PHI, compute the 6024 // exit value from the loop without using SCEVs. 6025 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6026 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6027 const Loop *LI = this->LI[I->getParent()]; 6028 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6029 if (PHINode *PN = dyn_cast<PHINode>(I)) 6030 if (PN->getParent() == LI->getHeader()) { 6031 // Okay, there is no closed form solution for the PHI node. Check 6032 // to see if the loop that contains it has a known backedge-taken 6033 // count. If so, we may be able to force computation of the exit 6034 // value. 6035 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6036 if (const SCEVConstant *BTCC = 6037 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6038 // Okay, we know how many times the containing loop executes. If 6039 // this is a constant evolving PHI node, get the final value at 6040 // the specified iteration number. 6041 Constant *RV = getConstantEvolutionLoopExitValue(PN, 6042 BTCC->getValue()->getValue(), 6043 LI); 6044 if (RV) return getSCEV(RV); 6045 } 6046 } 6047 6048 // Okay, this is an expression that we cannot symbolically evaluate 6049 // into a SCEV. Check to see if it's possible to symbolically evaluate 6050 // the arguments into constants, and if so, try to constant propagate the 6051 // result. This is particularly useful for computing loop exit values. 6052 if (CanConstantFold(I)) { 6053 SmallVector<Constant *, 4> Operands; 6054 bool MadeImprovement = false; 6055 for (Value *Op : I->operands()) { 6056 if (Constant *C = dyn_cast<Constant>(Op)) { 6057 Operands.push_back(C); 6058 continue; 6059 } 6060 6061 // If any of the operands is non-constant and if they are 6062 // non-integer and non-pointer, don't even try to analyze them 6063 // with scev techniques. 6064 if (!isSCEVable(Op->getType())) 6065 return V; 6066 6067 const SCEV *OrigV = getSCEV(Op); 6068 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6069 MadeImprovement |= OrigV != OpV; 6070 6071 Constant *C = BuildConstantFromSCEV(OpV); 6072 if (!C) return V; 6073 if (C->getType() != Op->getType()) 6074 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6075 Op->getType(), 6076 false), 6077 C, Op->getType()); 6078 Operands.push_back(C); 6079 } 6080 6081 // Check to see if getSCEVAtScope actually made an improvement. 6082 if (MadeImprovement) { 6083 Constant *C = nullptr; 6084 const DataLayout &DL = F.getParent()->getDataLayout(); 6085 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6086 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6087 Operands[1], DL, &TLI); 6088 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6089 if (!LI->isVolatile()) 6090 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6091 } else 6092 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6093 DL, &TLI); 6094 if (!C) return V; 6095 return getSCEV(C); 6096 } 6097 } 6098 } 6099 6100 // This is some other type of SCEVUnknown, just return it. 6101 return V; 6102 } 6103 6104 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6105 // Avoid performing the look-up in the common case where the specified 6106 // expression has no loop-variant portions. 6107 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6108 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6109 if (OpAtScope != Comm->getOperand(i)) { 6110 // Okay, at least one of these operands is loop variant but might be 6111 // foldable. Build a new instance of the folded commutative expression. 6112 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6113 Comm->op_begin()+i); 6114 NewOps.push_back(OpAtScope); 6115 6116 for (++i; i != e; ++i) { 6117 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6118 NewOps.push_back(OpAtScope); 6119 } 6120 if (isa<SCEVAddExpr>(Comm)) 6121 return getAddExpr(NewOps); 6122 if (isa<SCEVMulExpr>(Comm)) 6123 return getMulExpr(NewOps); 6124 if (isa<SCEVSMaxExpr>(Comm)) 6125 return getSMaxExpr(NewOps); 6126 if (isa<SCEVUMaxExpr>(Comm)) 6127 return getUMaxExpr(NewOps); 6128 llvm_unreachable("Unknown commutative SCEV type!"); 6129 } 6130 } 6131 // If we got here, all operands are loop invariant. 6132 return Comm; 6133 } 6134 6135 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6136 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6137 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6138 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6139 return Div; // must be loop invariant 6140 return getUDivExpr(LHS, RHS); 6141 } 6142 6143 // If this is a loop recurrence for a loop that does not contain L, then we 6144 // are dealing with the final value computed by the loop. 6145 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6146 // First, attempt to evaluate each operand. 6147 // Avoid performing the look-up in the common case where the specified 6148 // expression has no loop-variant portions. 6149 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6150 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6151 if (OpAtScope == AddRec->getOperand(i)) 6152 continue; 6153 6154 // Okay, at least one of these operands is loop variant but might be 6155 // foldable. Build a new instance of the folded commutative expression. 6156 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6157 AddRec->op_begin()+i); 6158 NewOps.push_back(OpAtScope); 6159 for (++i; i != e; ++i) 6160 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6161 6162 const SCEV *FoldedRec = 6163 getAddRecExpr(NewOps, AddRec->getLoop(), 6164 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6165 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6166 // The addrec may be folded to a nonrecurrence, for example, if the 6167 // induction variable is multiplied by zero after constant folding. Go 6168 // ahead and return the folded value. 6169 if (!AddRec) 6170 return FoldedRec; 6171 break; 6172 } 6173 6174 // If the scope is outside the addrec's loop, evaluate it by using the 6175 // loop exit value of the addrec. 6176 if (!AddRec->getLoop()->contains(L)) { 6177 // To evaluate this recurrence, we need to know how many times the AddRec 6178 // loop iterates. Compute this now. 6179 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6180 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6181 6182 // Then, evaluate the AddRec. 6183 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6184 } 6185 6186 return AddRec; 6187 } 6188 6189 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6190 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6191 if (Op == Cast->getOperand()) 6192 return Cast; // must be loop invariant 6193 return getZeroExtendExpr(Op, Cast->getType()); 6194 } 6195 6196 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6197 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6198 if (Op == Cast->getOperand()) 6199 return Cast; // must be loop invariant 6200 return getSignExtendExpr(Op, Cast->getType()); 6201 } 6202 6203 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6204 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6205 if (Op == Cast->getOperand()) 6206 return Cast; // must be loop invariant 6207 return getTruncateExpr(Op, Cast->getType()); 6208 } 6209 6210 llvm_unreachable("Unknown SCEV type!"); 6211 } 6212 6213 /// getSCEVAtScope - This is a convenience function which does 6214 /// getSCEVAtScope(getSCEV(V), L). 6215 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6216 return getSCEVAtScope(getSCEV(V), L); 6217 } 6218 6219 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6220 /// following equation: 6221 /// 6222 /// A * X = B (mod N) 6223 /// 6224 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6225 /// A and B isn't important. 6226 /// 6227 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6228 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6229 ScalarEvolution &SE) { 6230 uint32_t BW = A.getBitWidth(); 6231 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6232 assert(A != 0 && "A must be non-zero."); 6233 6234 // 1. D = gcd(A, N) 6235 // 6236 // The gcd of A and N may have only one prime factor: 2. The number of 6237 // trailing zeros in A is its multiplicity 6238 uint32_t Mult2 = A.countTrailingZeros(); 6239 // D = 2^Mult2 6240 6241 // 2. Check if B is divisible by D. 6242 // 6243 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6244 // is not less than multiplicity of this prime factor for D. 6245 if (B.countTrailingZeros() < Mult2) 6246 return SE.getCouldNotCompute(); 6247 6248 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6249 // modulo (N / D). 6250 // 6251 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6252 // bit width during computations. 6253 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6254 APInt Mod(BW + 1, 0); 6255 Mod.setBit(BW - Mult2); // Mod = N / D 6256 APInt I = AD.multiplicativeInverse(Mod); 6257 6258 // 4. Compute the minimum unsigned root of the equation: 6259 // I * (B / D) mod (N / D) 6260 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6261 6262 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6263 // bits. 6264 return SE.getConstant(Result.trunc(BW)); 6265 } 6266 6267 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6268 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6269 /// might be the same) or two SCEVCouldNotCompute objects. 6270 /// 6271 static std::pair<const SCEV *,const SCEV *> 6272 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6273 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6274 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6275 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6276 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6277 6278 // We currently can only solve this if the coefficients are constants. 6279 if (!LC || !MC || !NC) { 6280 const SCEV *CNC = SE.getCouldNotCompute(); 6281 return std::make_pair(CNC, CNC); 6282 } 6283 6284 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6285 const APInt &L = LC->getValue()->getValue(); 6286 const APInt &M = MC->getValue()->getValue(); 6287 const APInt &N = NC->getValue()->getValue(); 6288 APInt Two(BitWidth, 2); 6289 APInt Four(BitWidth, 4); 6290 6291 { 6292 using namespace APIntOps; 6293 const APInt& C = L; 6294 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6295 // The B coefficient is M-N/2 6296 APInt B(M); 6297 B -= sdiv(N,Two); 6298 6299 // The A coefficient is N/2 6300 APInt A(N.sdiv(Two)); 6301 6302 // Compute the B^2-4ac term. 6303 APInt SqrtTerm(B); 6304 SqrtTerm *= B; 6305 SqrtTerm -= Four * (A * C); 6306 6307 if (SqrtTerm.isNegative()) { 6308 // The loop is provably infinite. 6309 const SCEV *CNC = SE.getCouldNotCompute(); 6310 return std::make_pair(CNC, CNC); 6311 } 6312 6313 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6314 // integer value or else APInt::sqrt() will assert. 6315 APInt SqrtVal(SqrtTerm.sqrt()); 6316 6317 // Compute the two solutions for the quadratic formula. 6318 // The divisions must be performed as signed divisions. 6319 APInt NegB(-B); 6320 APInt TwoA(A << 1); 6321 if (TwoA.isMinValue()) { 6322 const SCEV *CNC = SE.getCouldNotCompute(); 6323 return std::make_pair(CNC, CNC); 6324 } 6325 6326 LLVMContext &Context = SE.getContext(); 6327 6328 ConstantInt *Solution1 = 6329 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6330 ConstantInt *Solution2 = 6331 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6332 6333 return std::make_pair(SE.getConstant(Solution1), 6334 SE.getConstant(Solution2)); 6335 } // end APIntOps namespace 6336 } 6337 6338 /// HowFarToZero - Return the number of times a backedge comparing the specified 6339 /// value to zero will execute. If not computable, return CouldNotCompute. 6340 /// 6341 /// This is only used for loops with a "x != y" exit test. The exit condition is 6342 /// now expressed as a single expression, V = x-y. So the exit test is 6343 /// effectively V != 0. We know and take advantage of the fact that this 6344 /// expression only being used in a comparison by zero context. 6345 ScalarEvolution::ExitLimit 6346 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6347 // If the value is a constant 6348 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6349 // If the value is already zero, the branch will execute zero times. 6350 if (C->getValue()->isZero()) return C; 6351 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6352 } 6353 6354 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6355 if (!AddRec || AddRec->getLoop() != L) 6356 return getCouldNotCompute(); 6357 6358 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6359 // the quadratic equation to solve it. 6360 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6361 std::pair<const SCEV *,const SCEV *> Roots = 6362 SolveQuadraticEquation(AddRec, *this); 6363 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6364 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6365 if (R1 && R2) { 6366 #if 0 6367 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6368 << " sol#2: " << *R2 << "\n"; 6369 #endif 6370 // Pick the smallest positive root value. 6371 if (ConstantInt *CB = 6372 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6373 R1->getValue(), 6374 R2->getValue()))) { 6375 if (!CB->getZExtValue()) 6376 std::swap(R1, R2); // R1 is the minimum root now. 6377 6378 // We can only use this value if the chrec ends up with an exact zero 6379 // value at this index. When solving for "X*X != 5", for example, we 6380 // should not accept a root of 2. 6381 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6382 if (Val->isZero()) 6383 return R1; // We found a quadratic root! 6384 } 6385 } 6386 return getCouldNotCompute(); 6387 } 6388 6389 // Otherwise we can only handle this if it is affine. 6390 if (!AddRec->isAffine()) 6391 return getCouldNotCompute(); 6392 6393 // If this is an affine expression, the execution count of this branch is 6394 // the minimum unsigned root of the following equation: 6395 // 6396 // Start + Step*N = 0 (mod 2^BW) 6397 // 6398 // equivalent to: 6399 // 6400 // Step*N = -Start (mod 2^BW) 6401 // 6402 // where BW is the common bit width of Start and Step. 6403 6404 // Get the initial value for the loop. 6405 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6406 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6407 6408 // For now we handle only constant steps. 6409 // 6410 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6411 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6412 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6413 // We have not yet seen any such cases. 6414 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6415 if (!StepC || StepC->getValue()->equalsInt(0)) 6416 return getCouldNotCompute(); 6417 6418 // For positive steps (counting up until unsigned overflow): 6419 // N = -Start/Step (as unsigned) 6420 // For negative steps (counting down to zero): 6421 // N = Start/-Step 6422 // First compute the unsigned distance from zero in the direction of Step. 6423 bool CountDown = StepC->getValue()->getValue().isNegative(); 6424 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6425 6426 // Handle unitary steps, which cannot wraparound. 6427 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6428 // N = Distance (as unsigned) 6429 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6430 ConstantRange CR = getUnsignedRange(Start); 6431 const SCEV *MaxBECount; 6432 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6433 // When counting up, the worst starting value is 1, not 0. 6434 MaxBECount = CR.getUnsignedMax().isMinValue() 6435 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6436 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6437 else 6438 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6439 : -CR.getUnsignedMin()); 6440 return ExitLimit(Distance, MaxBECount); 6441 } 6442 6443 // As a special case, handle the instance where Step is a positive power of 6444 // two. In this case, determining whether Step divides Distance evenly can be 6445 // done by counting and comparing the number of trailing zeros of Step and 6446 // Distance. 6447 if (!CountDown) { 6448 const APInt &StepV = StepC->getValue()->getValue(); 6449 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6450 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6451 // case is not handled as this code is guarded by !CountDown. 6452 if (StepV.isPowerOf2() && 6453 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6454 // Here we've constrained the equation to be of the form 6455 // 6456 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6457 // 6458 // where we're operating on a W bit wide integer domain and k is 6459 // non-negative. The smallest unsigned solution for X is the trip count. 6460 // 6461 // (0) is equivalent to: 6462 // 6463 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6464 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6465 // <=> 2^k * Distance' - X = L * 2^(W - N) 6466 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6467 // 6468 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6469 // by 2^(W - N). 6470 // 6471 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6472 // 6473 // E.g. say we're solving 6474 // 6475 // 2 * Val = 2 * X (in i8) ... (3) 6476 // 6477 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6478 // 6479 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6480 // necessarily the smallest unsigned value of X that satisfies (3). 6481 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6482 // is i8 1, not i8 -127 6483 6484 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6485 6486 // Since SCEV does not have a URem node, we construct one using a truncate 6487 // and a zero extend. 6488 6489 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6490 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6491 auto *WideTy = Distance->getType(); 6492 6493 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6494 } 6495 } 6496 6497 // If the condition controls loop exit (the loop exits only if the expression 6498 // is true) and the addition is no-wrap we can use unsigned divide to 6499 // compute the backedge count. In this case, the step may not divide the 6500 // distance, but we don't care because if the condition is "missed" the loop 6501 // will have undefined behavior due to wrapping. 6502 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6503 const SCEV *Exact = 6504 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6505 return ExitLimit(Exact, Exact); 6506 } 6507 6508 // Then, try to solve the above equation provided that Start is constant. 6509 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6510 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6511 -StartC->getValue()->getValue(), 6512 *this); 6513 return getCouldNotCompute(); 6514 } 6515 6516 /// HowFarToNonZero - Return the number of times a backedge checking the 6517 /// specified value for nonzero will execute. If not computable, return 6518 /// CouldNotCompute 6519 ScalarEvolution::ExitLimit 6520 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6521 // Loops that look like: while (X == 0) are very strange indeed. We don't 6522 // handle them yet except for the trivial case. This could be expanded in the 6523 // future as needed. 6524 6525 // If the value is a constant, check to see if it is known to be non-zero 6526 // already. If so, the backedge will execute zero times. 6527 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6528 if (!C->getValue()->isNullValue()) 6529 return getZero(C->getType()); 6530 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6531 } 6532 6533 // We could implement others, but I really doubt anyone writes loops like 6534 // this, and if they did, they would already be constant folded. 6535 return getCouldNotCompute(); 6536 } 6537 6538 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6539 /// (which may not be an immediate predecessor) which has exactly one 6540 /// successor from which BB is reachable, or null if no such block is 6541 /// found. 6542 /// 6543 std::pair<BasicBlock *, BasicBlock *> 6544 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6545 // If the block has a unique predecessor, then there is no path from the 6546 // predecessor to the block that does not go through the direct edge 6547 // from the predecessor to the block. 6548 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6549 return std::make_pair(Pred, BB); 6550 6551 // A loop's header is defined to be a block that dominates the loop. 6552 // If the header has a unique predecessor outside the loop, it must be 6553 // a block that has exactly one successor that can reach the loop. 6554 if (Loop *L = LI.getLoopFor(BB)) 6555 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6556 6557 return std::pair<BasicBlock *, BasicBlock *>(); 6558 } 6559 6560 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6561 /// testing whether two expressions are equal, however for the purposes of 6562 /// looking for a condition guarding a loop, it can be useful to be a little 6563 /// more general, since a front-end may have replicated the controlling 6564 /// expression. 6565 /// 6566 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6567 // Quick check to see if they are the same SCEV. 6568 if (A == B) return true; 6569 6570 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6571 // Not all instructions that are "identical" compute the same value. For 6572 // instance, two distinct alloca instructions allocating the same type are 6573 // identical and do not read memory; but compute distinct values. 6574 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6575 }; 6576 6577 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6578 // two different instructions with the same value. Check for this case. 6579 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6580 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6581 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6582 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6583 if (ComputesEqualValues(AI, BI)) 6584 return true; 6585 6586 // Otherwise assume they may have a different value. 6587 return false; 6588 } 6589 6590 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6591 /// predicate Pred. Return true iff any changes were made. 6592 /// 6593 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6594 const SCEV *&LHS, const SCEV *&RHS, 6595 unsigned Depth) { 6596 bool Changed = false; 6597 6598 // If we hit the max recursion limit bail out. 6599 if (Depth >= 3) 6600 return false; 6601 6602 // Canonicalize a constant to the right side. 6603 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6604 // Check for both operands constant. 6605 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6606 if (ConstantExpr::getICmp(Pred, 6607 LHSC->getValue(), 6608 RHSC->getValue())->isNullValue()) 6609 goto trivially_false; 6610 else 6611 goto trivially_true; 6612 } 6613 // Otherwise swap the operands to put the constant on the right. 6614 std::swap(LHS, RHS); 6615 Pred = ICmpInst::getSwappedPredicate(Pred); 6616 Changed = true; 6617 } 6618 6619 // If we're comparing an addrec with a value which is loop-invariant in the 6620 // addrec's loop, put the addrec on the left. Also make a dominance check, 6621 // as both operands could be addrecs loop-invariant in each other's loop. 6622 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6623 const Loop *L = AR->getLoop(); 6624 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6625 std::swap(LHS, RHS); 6626 Pred = ICmpInst::getSwappedPredicate(Pred); 6627 Changed = true; 6628 } 6629 } 6630 6631 // If there's a constant operand, canonicalize comparisons with boundary 6632 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6633 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6634 const APInt &RA = RC->getValue()->getValue(); 6635 switch (Pred) { 6636 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6637 case ICmpInst::ICMP_EQ: 6638 case ICmpInst::ICMP_NE: 6639 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6640 if (!RA) 6641 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6642 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6643 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6644 ME->getOperand(0)->isAllOnesValue()) { 6645 RHS = AE->getOperand(1); 6646 LHS = ME->getOperand(1); 6647 Changed = true; 6648 } 6649 break; 6650 case ICmpInst::ICMP_UGE: 6651 if ((RA - 1).isMinValue()) { 6652 Pred = ICmpInst::ICMP_NE; 6653 RHS = getConstant(RA - 1); 6654 Changed = true; 6655 break; 6656 } 6657 if (RA.isMaxValue()) { 6658 Pred = ICmpInst::ICMP_EQ; 6659 Changed = true; 6660 break; 6661 } 6662 if (RA.isMinValue()) goto trivially_true; 6663 6664 Pred = ICmpInst::ICMP_UGT; 6665 RHS = getConstant(RA - 1); 6666 Changed = true; 6667 break; 6668 case ICmpInst::ICMP_ULE: 6669 if ((RA + 1).isMaxValue()) { 6670 Pred = ICmpInst::ICMP_NE; 6671 RHS = getConstant(RA + 1); 6672 Changed = true; 6673 break; 6674 } 6675 if (RA.isMinValue()) { 6676 Pred = ICmpInst::ICMP_EQ; 6677 Changed = true; 6678 break; 6679 } 6680 if (RA.isMaxValue()) goto trivially_true; 6681 6682 Pred = ICmpInst::ICMP_ULT; 6683 RHS = getConstant(RA + 1); 6684 Changed = true; 6685 break; 6686 case ICmpInst::ICMP_SGE: 6687 if ((RA - 1).isMinSignedValue()) { 6688 Pred = ICmpInst::ICMP_NE; 6689 RHS = getConstant(RA - 1); 6690 Changed = true; 6691 break; 6692 } 6693 if (RA.isMaxSignedValue()) { 6694 Pred = ICmpInst::ICMP_EQ; 6695 Changed = true; 6696 break; 6697 } 6698 if (RA.isMinSignedValue()) goto trivially_true; 6699 6700 Pred = ICmpInst::ICMP_SGT; 6701 RHS = getConstant(RA - 1); 6702 Changed = true; 6703 break; 6704 case ICmpInst::ICMP_SLE: 6705 if ((RA + 1).isMaxSignedValue()) { 6706 Pred = ICmpInst::ICMP_NE; 6707 RHS = getConstant(RA + 1); 6708 Changed = true; 6709 break; 6710 } 6711 if (RA.isMinSignedValue()) { 6712 Pred = ICmpInst::ICMP_EQ; 6713 Changed = true; 6714 break; 6715 } 6716 if (RA.isMaxSignedValue()) goto trivially_true; 6717 6718 Pred = ICmpInst::ICMP_SLT; 6719 RHS = getConstant(RA + 1); 6720 Changed = true; 6721 break; 6722 case ICmpInst::ICMP_UGT: 6723 if (RA.isMinValue()) { 6724 Pred = ICmpInst::ICMP_NE; 6725 Changed = true; 6726 break; 6727 } 6728 if ((RA + 1).isMaxValue()) { 6729 Pred = ICmpInst::ICMP_EQ; 6730 RHS = getConstant(RA + 1); 6731 Changed = true; 6732 break; 6733 } 6734 if (RA.isMaxValue()) goto trivially_false; 6735 break; 6736 case ICmpInst::ICMP_ULT: 6737 if (RA.isMaxValue()) { 6738 Pred = ICmpInst::ICMP_NE; 6739 Changed = true; 6740 break; 6741 } 6742 if ((RA - 1).isMinValue()) { 6743 Pred = ICmpInst::ICMP_EQ; 6744 RHS = getConstant(RA - 1); 6745 Changed = true; 6746 break; 6747 } 6748 if (RA.isMinValue()) goto trivially_false; 6749 break; 6750 case ICmpInst::ICMP_SGT: 6751 if (RA.isMinSignedValue()) { 6752 Pred = ICmpInst::ICMP_NE; 6753 Changed = true; 6754 break; 6755 } 6756 if ((RA + 1).isMaxSignedValue()) { 6757 Pred = ICmpInst::ICMP_EQ; 6758 RHS = getConstant(RA + 1); 6759 Changed = true; 6760 break; 6761 } 6762 if (RA.isMaxSignedValue()) goto trivially_false; 6763 break; 6764 case ICmpInst::ICMP_SLT: 6765 if (RA.isMaxSignedValue()) { 6766 Pred = ICmpInst::ICMP_NE; 6767 Changed = true; 6768 break; 6769 } 6770 if ((RA - 1).isMinSignedValue()) { 6771 Pred = ICmpInst::ICMP_EQ; 6772 RHS = getConstant(RA - 1); 6773 Changed = true; 6774 break; 6775 } 6776 if (RA.isMinSignedValue()) goto trivially_false; 6777 break; 6778 } 6779 } 6780 6781 // Check for obvious equality. 6782 if (HasSameValue(LHS, RHS)) { 6783 if (ICmpInst::isTrueWhenEqual(Pred)) 6784 goto trivially_true; 6785 if (ICmpInst::isFalseWhenEqual(Pred)) 6786 goto trivially_false; 6787 } 6788 6789 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6790 // adding or subtracting 1 from one of the operands. 6791 switch (Pred) { 6792 case ICmpInst::ICMP_SLE: 6793 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6794 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6795 SCEV::FlagNSW); 6796 Pred = ICmpInst::ICMP_SLT; 6797 Changed = true; 6798 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6799 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6800 SCEV::FlagNSW); 6801 Pred = ICmpInst::ICMP_SLT; 6802 Changed = true; 6803 } 6804 break; 6805 case ICmpInst::ICMP_SGE: 6806 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6807 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6808 SCEV::FlagNSW); 6809 Pred = ICmpInst::ICMP_SGT; 6810 Changed = true; 6811 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6812 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6813 SCEV::FlagNSW); 6814 Pred = ICmpInst::ICMP_SGT; 6815 Changed = true; 6816 } 6817 break; 6818 case ICmpInst::ICMP_ULE: 6819 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6820 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6821 SCEV::FlagNUW); 6822 Pred = ICmpInst::ICMP_ULT; 6823 Changed = true; 6824 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6825 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6826 SCEV::FlagNUW); 6827 Pred = ICmpInst::ICMP_ULT; 6828 Changed = true; 6829 } 6830 break; 6831 case ICmpInst::ICMP_UGE: 6832 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6833 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6834 SCEV::FlagNUW); 6835 Pred = ICmpInst::ICMP_UGT; 6836 Changed = true; 6837 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6838 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6839 SCEV::FlagNUW); 6840 Pred = ICmpInst::ICMP_UGT; 6841 Changed = true; 6842 } 6843 break; 6844 default: 6845 break; 6846 } 6847 6848 // TODO: More simplifications are possible here. 6849 6850 // Recursively simplify until we either hit a recursion limit or nothing 6851 // changes. 6852 if (Changed) 6853 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6854 6855 return Changed; 6856 6857 trivially_true: 6858 // Return 0 == 0. 6859 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6860 Pred = ICmpInst::ICMP_EQ; 6861 return true; 6862 6863 trivially_false: 6864 // Return 0 != 0. 6865 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6866 Pred = ICmpInst::ICMP_NE; 6867 return true; 6868 } 6869 6870 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6871 return getSignedRange(S).getSignedMax().isNegative(); 6872 } 6873 6874 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6875 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6876 } 6877 6878 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6879 return !getSignedRange(S).getSignedMin().isNegative(); 6880 } 6881 6882 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6883 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6884 } 6885 6886 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6887 return isKnownNegative(S) || isKnownPositive(S); 6888 } 6889 6890 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6891 const SCEV *LHS, const SCEV *RHS) { 6892 // Canonicalize the inputs first. 6893 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6894 6895 // If LHS or RHS is an addrec, check to see if the condition is true in 6896 // every iteration of the loop. 6897 // If LHS and RHS are both addrec, both conditions must be true in 6898 // every iteration of the loop. 6899 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6900 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6901 bool LeftGuarded = false; 6902 bool RightGuarded = false; 6903 if (LAR) { 6904 const Loop *L = LAR->getLoop(); 6905 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6906 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6907 if (!RAR) return true; 6908 LeftGuarded = true; 6909 } 6910 } 6911 if (RAR) { 6912 const Loop *L = RAR->getLoop(); 6913 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6914 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6915 if (!LAR) return true; 6916 RightGuarded = true; 6917 } 6918 } 6919 if (LeftGuarded && RightGuarded) 6920 return true; 6921 6922 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 6923 return true; 6924 6925 // Otherwise see what can be done with known constant ranges. 6926 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6927 } 6928 6929 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6930 ICmpInst::Predicate Pred, 6931 bool &Increasing) { 6932 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6933 6934 #ifndef NDEBUG 6935 // Verify an invariant: inverting the predicate should turn a monotonically 6936 // increasing change to a monotonically decreasing one, and vice versa. 6937 bool IncreasingSwapped; 6938 bool ResultSwapped = isMonotonicPredicateImpl( 6939 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6940 6941 assert(Result == ResultSwapped && "should be able to analyze both!"); 6942 if (ResultSwapped) 6943 assert(Increasing == !IncreasingSwapped && 6944 "monotonicity should flip as we flip the predicate"); 6945 #endif 6946 6947 return Result; 6948 } 6949 6950 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6951 ICmpInst::Predicate Pred, 6952 bool &Increasing) { 6953 6954 // A zero step value for LHS means the induction variable is essentially a 6955 // loop invariant value. We don't really depend on the predicate actually 6956 // flipping from false to true (for increasing predicates, and the other way 6957 // around for decreasing predicates), all we care about is that *if* the 6958 // predicate changes then it only changes from false to true. 6959 // 6960 // A zero step value in itself is not very useful, but there may be places 6961 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6962 // as general as possible. 6963 6964 switch (Pred) { 6965 default: 6966 return false; // Conservative answer 6967 6968 case ICmpInst::ICMP_UGT: 6969 case ICmpInst::ICMP_UGE: 6970 case ICmpInst::ICMP_ULT: 6971 case ICmpInst::ICMP_ULE: 6972 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 6973 return false; 6974 6975 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 6976 return true; 6977 6978 case ICmpInst::ICMP_SGT: 6979 case ICmpInst::ICMP_SGE: 6980 case ICmpInst::ICMP_SLT: 6981 case ICmpInst::ICMP_SLE: { 6982 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 6983 return false; 6984 6985 const SCEV *Step = LHS->getStepRecurrence(*this); 6986 6987 if (isKnownNonNegative(Step)) { 6988 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 6989 return true; 6990 } 6991 6992 if (isKnownNonPositive(Step)) { 6993 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 6994 return true; 6995 } 6996 6997 return false; 6998 } 6999 7000 } 7001 7002 llvm_unreachable("switch has default clause!"); 7003 } 7004 7005 bool ScalarEvolution::isLoopInvariantPredicate( 7006 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7007 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7008 const SCEV *&InvariantRHS) { 7009 7010 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7011 if (!isLoopInvariant(RHS, L)) { 7012 if (!isLoopInvariant(LHS, L)) 7013 return false; 7014 7015 std::swap(LHS, RHS); 7016 Pred = ICmpInst::getSwappedPredicate(Pred); 7017 } 7018 7019 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7020 if (!ArLHS || ArLHS->getLoop() != L) 7021 return false; 7022 7023 bool Increasing; 7024 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7025 return false; 7026 7027 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7028 // true as the loop iterates, and the backedge is control dependent on 7029 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7030 // 7031 // * if the predicate was false in the first iteration then the predicate 7032 // is never evaluated again, since the loop exits without taking the 7033 // backedge. 7034 // * if the predicate was true in the first iteration then it will 7035 // continue to be true for all future iterations since it is 7036 // monotonically increasing. 7037 // 7038 // For both the above possibilities, we can replace the loop varying 7039 // predicate with its value on the first iteration of the loop (which is 7040 // loop invariant). 7041 // 7042 // A similar reasoning applies for a monotonically decreasing predicate, by 7043 // replacing true with false and false with true in the above two bullets. 7044 7045 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7046 7047 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7048 return false; 7049 7050 InvariantPred = Pred; 7051 InvariantLHS = ArLHS->getStart(); 7052 InvariantRHS = RHS; 7053 return true; 7054 } 7055 7056 bool 7057 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7058 const SCEV *LHS, const SCEV *RHS) { 7059 if (HasSameValue(LHS, RHS)) 7060 return ICmpInst::isTrueWhenEqual(Pred); 7061 7062 // This code is split out from isKnownPredicate because it is called from 7063 // within isLoopEntryGuardedByCond. 7064 switch (Pred) { 7065 default: 7066 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7067 case ICmpInst::ICMP_SGT: 7068 std::swap(LHS, RHS); 7069 case ICmpInst::ICMP_SLT: { 7070 ConstantRange LHSRange = getSignedRange(LHS); 7071 ConstantRange RHSRange = getSignedRange(RHS); 7072 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7073 return true; 7074 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7075 return false; 7076 break; 7077 } 7078 case ICmpInst::ICMP_SGE: 7079 std::swap(LHS, RHS); 7080 case ICmpInst::ICMP_SLE: { 7081 ConstantRange LHSRange = getSignedRange(LHS); 7082 ConstantRange RHSRange = getSignedRange(RHS); 7083 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7084 return true; 7085 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7086 return false; 7087 break; 7088 } 7089 case ICmpInst::ICMP_UGT: 7090 std::swap(LHS, RHS); 7091 case ICmpInst::ICMP_ULT: { 7092 ConstantRange LHSRange = getUnsignedRange(LHS); 7093 ConstantRange RHSRange = getUnsignedRange(RHS); 7094 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7095 return true; 7096 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7097 return false; 7098 break; 7099 } 7100 case ICmpInst::ICMP_UGE: 7101 std::swap(LHS, RHS); 7102 case ICmpInst::ICMP_ULE: { 7103 ConstantRange LHSRange = getUnsignedRange(LHS); 7104 ConstantRange RHSRange = getUnsignedRange(RHS); 7105 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7106 return true; 7107 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7108 return false; 7109 break; 7110 } 7111 case ICmpInst::ICMP_NE: { 7112 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7113 return true; 7114 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7115 return true; 7116 7117 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7118 if (isKnownNonZero(Diff)) 7119 return true; 7120 break; 7121 } 7122 case ICmpInst::ICMP_EQ: 7123 // The check at the top of the function catches the case where 7124 // the values are known to be equal. 7125 break; 7126 } 7127 return false; 7128 } 7129 7130 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7131 const SCEV *LHS, 7132 const SCEV *RHS) { 7133 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7134 return false; 7135 7136 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7137 // the stack can result in exponential time complexity. 7138 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7139 7140 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7141 // 7142 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7143 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7144 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7145 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7146 // use isKnownPredicate later if needed. 7147 if (isKnownNonNegative(RHS) && 7148 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7149 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS)) 7150 return true; 7151 7152 return false; 7153 } 7154 7155 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7156 /// protected by a conditional between LHS and RHS. This is used to 7157 /// to eliminate casts. 7158 bool 7159 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7160 ICmpInst::Predicate Pred, 7161 const SCEV *LHS, const SCEV *RHS) { 7162 // Interpret a null as meaning no loop, where there is obviously no guard 7163 // (interprocedural conditions notwithstanding). 7164 if (!L) return true; 7165 7166 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7167 7168 BasicBlock *Latch = L->getLoopLatch(); 7169 if (!Latch) 7170 return false; 7171 7172 BranchInst *LoopContinuePredicate = 7173 dyn_cast<BranchInst>(Latch->getTerminator()); 7174 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7175 isImpliedCond(Pred, LHS, RHS, 7176 LoopContinuePredicate->getCondition(), 7177 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7178 return true; 7179 7180 // We don't want more than one activation of the following loops on the stack 7181 // -- that can lead to O(n!) time complexity. 7182 if (WalkingBEDominatingConds) 7183 return false; 7184 7185 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7186 7187 // See if we can exploit a trip count to prove the predicate. 7188 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7189 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7190 if (LatchBECount != getCouldNotCompute()) { 7191 // We know that Latch branches back to the loop header exactly 7192 // LatchBECount times. This means the backdege condition at Latch is 7193 // equivalent to "{0,+,1} u< LatchBECount". 7194 Type *Ty = LatchBECount->getType(); 7195 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7196 const SCEV *LoopCounter = 7197 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7198 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7199 LatchBECount)) 7200 return true; 7201 } 7202 7203 // Check conditions due to any @llvm.assume intrinsics. 7204 for (auto &AssumeVH : AC.assumptions()) { 7205 if (!AssumeVH) 7206 continue; 7207 auto *CI = cast<CallInst>(AssumeVH); 7208 if (!DT.dominates(CI, Latch->getTerminator())) 7209 continue; 7210 7211 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7212 return true; 7213 } 7214 7215 // If the loop is not reachable from the entry block, we risk running into an 7216 // infinite loop as we walk up into the dom tree. These loops do not matter 7217 // anyway, so we just return a conservative answer when we see them. 7218 if (!DT.isReachableFromEntry(L->getHeader())) 7219 return false; 7220 7221 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7222 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7223 7224 assert(DTN && "should reach the loop header before reaching the root!"); 7225 7226 BasicBlock *BB = DTN->getBlock(); 7227 BasicBlock *PBB = BB->getSinglePredecessor(); 7228 if (!PBB) 7229 continue; 7230 7231 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7232 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7233 continue; 7234 7235 Value *Condition = ContinuePredicate->getCondition(); 7236 7237 // If we have an edge `E` within the loop body that dominates the only 7238 // latch, the condition guarding `E` also guards the backedge. This 7239 // reasoning works only for loops with a single latch. 7240 7241 BasicBlockEdge DominatingEdge(PBB, BB); 7242 if (DominatingEdge.isSingleEdge()) { 7243 // We're constructively (and conservatively) enumerating edges within the 7244 // loop body that dominate the latch. The dominator tree better agree 7245 // with us on this: 7246 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7247 7248 if (isImpliedCond(Pred, LHS, RHS, Condition, 7249 BB != ContinuePredicate->getSuccessor(0))) 7250 return true; 7251 } 7252 } 7253 7254 return false; 7255 } 7256 7257 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7258 /// by a conditional between LHS and RHS. This is used to help avoid max 7259 /// expressions in loop trip counts, and to eliminate casts. 7260 bool 7261 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7262 ICmpInst::Predicate Pred, 7263 const SCEV *LHS, const SCEV *RHS) { 7264 // Interpret a null as meaning no loop, where there is obviously no guard 7265 // (interprocedural conditions notwithstanding). 7266 if (!L) return false; 7267 7268 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7269 7270 // Starting at the loop predecessor, climb up the predecessor chain, as long 7271 // as there are predecessors that can be found that have unique successors 7272 // leading to the original header. 7273 for (std::pair<BasicBlock *, BasicBlock *> 7274 Pair(L->getLoopPredecessor(), L->getHeader()); 7275 Pair.first; 7276 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7277 7278 BranchInst *LoopEntryPredicate = 7279 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7280 if (!LoopEntryPredicate || 7281 LoopEntryPredicate->isUnconditional()) 7282 continue; 7283 7284 if (isImpliedCond(Pred, LHS, RHS, 7285 LoopEntryPredicate->getCondition(), 7286 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7287 return true; 7288 } 7289 7290 // Check conditions due to any @llvm.assume intrinsics. 7291 for (auto &AssumeVH : AC.assumptions()) { 7292 if (!AssumeVH) 7293 continue; 7294 auto *CI = cast<CallInst>(AssumeVH); 7295 if (!DT.dominates(CI, L->getHeader())) 7296 continue; 7297 7298 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7299 return true; 7300 } 7301 7302 return false; 7303 } 7304 7305 /// RAII wrapper to prevent recursive application of isImpliedCond. 7306 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7307 /// currently evaluating isImpliedCond. 7308 struct MarkPendingLoopPredicate { 7309 Value *Cond; 7310 DenseSet<Value*> &LoopPreds; 7311 bool Pending; 7312 7313 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7314 : Cond(C), LoopPreds(LP) { 7315 Pending = !LoopPreds.insert(Cond).second; 7316 } 7317 ~MarkPendingLoopPredicate() { 7318 if (!Pending) 7319 LoopPreds.erase(Cond); 7320 } 7321 }; 7322 7323 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7324 /// and RHS is true whenever the given Cond value evaluates to true. 7325 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7326 const SCEV *LHS, const SCEV *RHS, 7327 Value *FoundCondValue, 7328 bool Inverse) { 7329 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7330 if (Mark.Pending) 7331 return false; 7332 7333 // Recursively handle And and Or conditions. 7334 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7335 if (BO->getOpcode() == Instruction::And) { 7336 if (!Inverse) 7337 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7338 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7339 } else if (BO->getOpcode() == Instruction::Or) { 7340 if (Inverse) 7341 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7342 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7343 } 7344 } 7345 7346 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7347 if (!ICI) return false; 7348 7349 // Now that we found a conditional branch that dominates the loop or controls 7350 // the loop latch. Check to see if it is the comparison we are looking for. 7351 ICmpInst::Predicate FoundPred; 7352 if (Inverse) 7353 FoundPred = ICI->getInversePredicate(); 7354 else 7355 FoundPred = ICI->getPredicate(); 7356 7357 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7358 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7359 7360 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7361 } 7362 7363 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7364 const SCEV *RHS, 7365 ICmpInst::Predicate FoundPred, 7366 const SCEV *FoundLHS, 7367 const SCEV *FoundRHS) { 7368 // Balance the types. 7369 if (getTypeSizeInBits(LHS->getType()) < 7370 getTypeSizeInBits(FoundLHS->getType())) { 7371 if (CmpInst::isSigned(Pred)) { 7372 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7373 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7374 } else { 7375 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7376 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7377 } 7378 } else if (getTypeSizeInBits(LHS->getType()) > 7379 getTypeSizeInBits(FoundLHS->getType())) { 7380 if (CmpInst::isSigned(FoundPred)) { 7381 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7382 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7383 } else { 7384 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7385 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7386 } 7387 } 7388 7389 // Canonicalize the query to match the way instcombine will have 7390 // canonicalized the comparison. 7391 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7392 if (LHS == RHS) 7393 return CmpInst::isTrueWhenEqual(Pred); 7394 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7395 if (FoundLHS == FoundRHS) 7396 return CmpInst::isFalseWhenEqual(FoundPred); 7397 7398 // Check to see if we can make the LHS or RHS match. 7399 if (LHS == FoundRHS || RHS == FoundLHS) { 7400 if (isa<SCEVConstant>(RHS)) { 7401 std::swap(FoundLHS, FoundRHS); 7402 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7403 } else { 7404 std::swap(LHS, RHS); 7405 Pred = ICmpInst::getSwappedPredicate(Pred); 7406 } 7407 } 7408 7409 // Check whether the found predicate is the same as the desired predicate. 7410 if (FoundPred == Pred) 7411 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7412 7413 // Check whether swapping the found predicate makes it the same as the 7414 // desired predicate. 7415 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7416 if (isa<SCEVConstant>(RHS)) 7417 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7418 else 7419 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7420 RHS, LHS, FoundLHS, FoundRHS); 7421 } 7422 7423 // Check if we can make progress by sharpening ranges. 7424 if (FoundPred == ICmpInst::ICMP_NE && 7425 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7426 7427 const SCEVConstant *C = nullptr; 7428 const SCEV *V = nullptr; 7429 7430 if (isa<SCEVConstant>(FoundLHS)) { 7431 C = cast<SCEVConstant>(FoundLHS); 7432 V = FoundRHS; 7433 } else { 7434 C = cast<SCEVConstant>(FoundRHS); 7435 V = FoundLHS; 7436 } 7437 7438 // The guarding predicate tells us that C != V. If the known range 7439 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7440 // range we consider has to correspond to same signedness as the 7441 // predicate we're interested in folding. 7442 7443 APInt Min = ICmpInst::isSigned(Pred) ? 7444 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7445 7446 if (Min == C->getValue()->getValue()) { 7447 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7448 // This is true even if (Min + 1) wraps around -- in case of 7449 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7450 7451 APInt SharperMin = Min + 1; 7452 7453 switch (Pred) { 7454 case ICmpInst::ICMP_SGE: 7455 case ICmpInst::ICMP_UGE: 7456 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7457 // RHS, we're done. 7458 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7459 getConstant(SharperMin))) 7460 return true; 7461 7462 case ICmpInst::ICMP_SGT: 7463 case ICmpInst::ICMP_UGT: 7464 // We know from the range information that (V `Pred` Min || 7465 // V == Min). We know from the guarding condition that !(V 7466 // == Min). This gives us 7467 // 7468 // V `Pred` Min || V == Min && !(V == Min) 7469 // => V `Pred` Min 7470 // 7471 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7472 7473 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7474 return true; 7475 7476 default: 7477 // No change 7478 break; 7479 } 7480 } 7481 } 7482 7483 // Check whether the actual condition is beyond sufficient. 7484 if (FoundPred == ICmpInst::ICMP_EQ) 7485 if (ICmpInst::isTrueWhenEqual(Pred)) 7486 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7487 return true; 7488 if (Pred == ICmpInst::ICMP_NE) 7489 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7490 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7491 return true; 7492 7493 // Otherwise assume the worst. 7494 return false; 7495 } 7496 7497 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7498 const SCEV *&L, const SCEV *&R, 7499 SCEV::NoWrapFlags &Flags) { 7500 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7501 if (!AE || AE->getNumOperands() != 2) 7502 return false; 7503 7504 L = AE->getOperand(0); 7505 R = AE->getOperand(1); 7506 Flags = AE->getNoWrapFlags(); 7507 return true; 7508 } 7509 7510 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7511 const SCEV *More, 7512 APInt &C) { 7513 // We avoid subtracting expressions here because this function is usually 7514 // fairly deep in the call stack (i.e. is called many times). 7515 7516 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7517 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7518 const auto *MAR = cast<SCEVAddRecExpr>(More); 7519 7520 if (LAR->getLoop() != MAR->getLoop()) 7521 return false; 7522 7523 // We look at affine expressions only; not for correctness but to keep 7524 // getStepRecurrence cheap. 7525 if (!LAR->isAffine() || !MAR->isAffine()) 7526 return false; 7527 7528 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7529 return false; 7530 7531 Less = LAR->getStart(); 7532 More = MAR->getStart(); 7533 7534 // fall through 7535 } 7536 7537 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7538 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7539 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7540 C = M - L; 7541 return true; 7542 } 7543 7544 const SCEV *L, *R; 7545 SCEV::NoWrapFlags Flags; 7546 if (splitBinaryAdd(Less, L, R, Flags)) 7547 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7548 if (R == More) { 7549 C = -(LC->getValue()->getValue()); 7550 return true; 7551 } 7552 7553 if (splitBinaryAdd(More, L, R, Flags)) 7554 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7555 if (R == Less) { 7556 C = LC->getValue()->getValue(); 7557 return true; 7558 } 7559 7560 return false; 7561 } 7562 7563 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7564 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7565 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7566 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7567 return false; 7568 7569 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7570 if (!AddRecLHS) 7571 return false; 7572 7573 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7574 if (!AddRecFoundLHS) 7575 return false; 7576 7577 // We'd like to let SCEV reason about control dependencies, so we constrain 7578 // both the inequalities to be about add recurrences on the same loop. This 7579 // way we can use isLoopEntryGuardedByCond later. 7580 7581 const Loop *L = AddRecFoundLHS->getLoop(); 7582 if (L != AddRecLHS->getLoop()) 7583 return false; 7584 7585 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7586 // 7587 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7588 // ... (2) 7589 // 7590 // Informal proof for (2), assuming (1) [*]: 7591 // 7592 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7593 // 7594 // Then 7595 // 7596 // FoundLHS s< FoundRHS s< INT_MIN - C 7597 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7598 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7599 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7600 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7601 // <=> FoundLHS + C s< FoundRHS + C 7602 // 7603 // [*]: (1) can be proved by ruling out overflow. 7604 // 7605 // [**]: This can be proved by analyzing all the four possibilities: 7606 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7607 // (A s>= 0, B s>= 0). 7608 // 7609 // Note: 7610 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7611 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7612 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7613 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7614 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7615 // C)". 7616 7617 APInt LDiff, RDiff; 7618 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7619 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7620 LDiff != RDiff) 7621 return false; 7622 7623 if (LDiff == 0) 7624 return true; 7625 7626 APInt FoundRHSLimit; 7627 7628 if (Pred == CmpInst::ICMP_ULT) { 7629 FoundRHSLimit = -RDiff; 7630 } else { 7631 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7632 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7633 } 7634 7635 // Try to prove (1) or (2), as needed. 7636 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7637 getConstant(FoundRHSLimit)); 7638 } 7639 7640 /// isImpliedCondOperands - Test whether the condition described by Pred, 7641 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7642 /// and FoundRHS is true. 7643 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7644 const SCEV *LHS, const SCEV *RHS, 7645 const SCEV *FoundLHS, 7646 const SCEV *FoundRHS) { 7647 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7648 return true; 7649 7650 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7651 return true; 7652 7653 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7654 FoundLHS, FoundRHS) || 7655 // ~x < ~y --> x > y 7656 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7657 getNotSCEV(FoundRHS), 7658 getNotSCEV(FoundLHS)); 7659 } 7660 7661 7662 /// If Expr computes ~A, return A else return nullptr 7663 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7664 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7665 if (!Add || Add->getNumOperands() != 2 || 7666 !Add->getOperand(0)->isAllOnesValue()) 7667 return nullptr; 7668 7669 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7670 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7671 !AddRHS->getOperand(0)->isAllOnesValue()) 7672 return nullptr; 7673 7674 return AddRHS->getOperand(1); 7675 } 7676 7677 7678 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7679 template<typename MaxExprType> 7680 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7681 const SCEV *Candidate) { 7682 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7683 if (!MaxExpr) return false; 7684 7685 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7686 return It != MaxExpr->op_end(); 7687 } 7688 7689 7690 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7691 template<typename MaxExprType> 7692 static bool IsMinConsistingOf(ScalarEvolution &SE, 7693 const SCEV *MaybeMinExpr, 7694 const SCEV *Candidate) { 7695 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7696 if (!MaybeMaxExpr) 7697 return false; 7698 7699 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7700 } 7701 7702 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7703 ICmpInst::Predicate Pred, 7704 const SCEV *LHS, const SCEV *RHS) { 7705 7706 // If both sides are affine addrecs for the same loop, with equal 7707 // steps, and we know the recurrences don't wrap, then we only 7708 // need to check the predicate on the starting values. 7709 7710 if (!ICmpInst::isRelational(Pred)) 7711 return false; 7712 7713 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7714 if (!LAR) 7715 return false; 7716 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7717 if (!RAR) 7718 return false; 7719 if (LAR->getLoop() != RAR->getLoop()) 7720 return false; 7721 if (!LAR->isAffine() || !RAR->isAffine()) 7722 return false; 7723 7724 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7725 return false; 7726 7727 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7728 SCEV::FlagNSW : SCEV::FlagNUW; 7729 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7730 return false; 7731 7732 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7733 } 7734 7735 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7736 /// expression? 7737 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7738 ICmpInst::Predicate Pred, 7739 const SCEV *LHS, const SCEV *RHS) { 7740 switch (Pred) { 7741 default: 7742 return false; 7743 7744 case ICmpInst::ICMP_SGE: 7745 std::swap(LHS, RHS); 7746 // fall through 7747 case ICmpInst::ICMP_SLE: 7748 return 7749 // min(A, ...) <= A 7750 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7751 // A <= max(A, ...) 7752 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7753 7754 case ICmpInst::ICMP_UGE: 7755 std::swap(LHS, RHS); 7756 // fall through 7757 case ICmpInst::ICMP_ULE: 7758 return 7759 // min(A, ...) <= A 7760 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7761 // A <= max(A, ...) 7762 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7763 } 7764 7765 llvm_unreachable("covered switch fell through?!"); 7766 } 7767 7768 /// isImpliedCondOperandsHelper - Test whether the condition described by 7769 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7770 /// FoundLHS, and FoundRHS is true. 7771 bool 7772 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7773 const SCEV *LHS, const SCEV *RHS, 7774 const SCEV *FoundLHS, 7775 const SCEV *FoundRHS) { 7776 auto IsKnownPredicateFull = 7777 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7778 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7779 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7780 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS); 7781 }; 7782 7783 switch (Pred) { 7784 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7785 case ICmpInst::ICMP_EQ: 7786 case ICmpInst::ICMP_NE: 7787 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7788 return true; 7789 break; 7790 case ICmpInst::ICMP_SLT: 7791 case ICmpInst::ICMP_SLE: 7792 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7793 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7794 return true; 7795 break; 7796 case ICmpInst::ICMP_SGT: 7797 case ICmpInst::ICMP_SGE: 7798 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7799 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7800 return true; 7801 break; 7802 case ICmpInst::ICMP_ULT: 7803 case ICmpInst::ICMP_ULE: 7804 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7805 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7806 return true; 7807 break; 7808 case ICmpInst::ICMP_UGT: 7809 case ICmpInst::ICMP_UGE: 7810 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7811 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7812 return true; 7813 break; 7814 } 7815 7816 return false; 7817 } 7818 7819 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7820 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7821 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7822 const SCEV *LHS, 7823 const SCEV *RHS, 7824 const SCEV *FoundLHS, 7825 const SCEV *FoundRHS) { 7826 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7827 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7828 // reduce the compile time impact of this optimization. 7829 return false; 7830 7831 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7832 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7833 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7834 return false; 7835 7836 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7837 7838 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7839 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7840 ConstantRange FoundLHSRange = 7841 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7842 7843 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7844 // for `LHS`: 7845 APInt Addend = 7846 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7847 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7848 7849 // We can also compute the range of values for `LHS` that satisfy the 7850 // consequent, "`LHS` `Pred` `RHS`": 7851 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7852 ConstantRange SatisfyingLHSRange = 7853 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7854 7855 // The antecedent implies the consequent if every value of `LHS` that 7856 // satisfies the antecedent also satisfies the consequent. 7857 return SatisfyingLHSRange.contains(LHSRange); 7858 } 7859 7860 // Verify if an linear IV with positive stride can overflow when in a 7861 // less-than comparison, knowing the invariant term of the comparison, the 7862 // stride and the knowledge of NSW/NUW flags on the recurrence. 7863 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7864 bool IsSigned, bool NoWrap) { 7865 if (NoWrap) return false; 7866 7867 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7868 const SCEV *One = getOne(Stride->getType()); 7869 7870 if (IsSigned) { 7871 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7872 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7873 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7874 .getSignedMax(); 7875 7876 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7877 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7878 } 7879 7880 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7881 APInt MaxValue = APInt::getMaxValue(BitWidth); 7882 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7883 .getUnsignedMax(); 7884 7885 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7886 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7887 } 7888 7889 // Verify if an linear IV with negative stride can overflow when in a 7890 // greater-than comparison, knowing the invariant term of the comparison, 7891 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7892 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7893 bool IsSigned, bool NoWrap) { 7894 if (NoWrap) return false; 7895 7896 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7897 const SCEV *One = getOne(Stride->getType()); 7898 7899 if (IsSigned) { 7900 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7901 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7902 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7903 .getSignedMax(); 7904 7905 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7906 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7907 } 7908 7909 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7910 APInt MinValue = APInt::getMinValue(BitWidth); 7911 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7912 .getUnsignedMax(); 7913 7914 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7915 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7916 } 7917 7918 // Compute the backedge taken count knowing the interval difference, the 7919 // stride and presence of the equality in the comparison. 7920 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7921 bool Equality) { 7922 const SCEV *One = getOne(Step->getType()); 7923 Delta = Equality ? getAddExpr(Delta, Step) 7924 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7925 return getUDivExpr(Delta, Step); 7926 } 7927 7928 /// HowManyLessThans - Return the number of times a backedge containing the 7929 /// specified less-than comparison will execute. If not computable, return 7930 /// CouldNotCompute. 7931 /// 7932 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7933 /// the branch (loops exits only if condition is true). In this case, we can use 7934 /// NoWrapFlags to skip overflow checks. 7935 ScalarEvolution::ExitLimit 7936 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7937 const Loop *L, bool IsSigned, 7938 bool ControlsExit) { 7939 // We handle only IV < Invariant 7940 if (!isLoopInvariant(RHS, L)) 7941 return getCouldNotCompute(); 7942 7943 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7944 7945 // Avoid weird loops 7946 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7947 return getCouldNotCompute(); 7948 7949 bool NoWrap = ControlsExit && 7950 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7951 7952 const SCEV *Stride = IV->getStepRecurrence(*this); 7953 7954 // Avoid negative or zero stride values 7955 if (!isKnownPositive(Stride)) 7956 return getCouldNotCompute(); 7957 7958 // Avoid proven overflow cases: this will ensure that the backedge taken count 7959 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7960 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7961 // behaviors like the case of C language. 7962 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7963 return getCouldNotCompute(); 7964 7965 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7966 : ICmpInst::ICMP_ULT; 7967 const SCEV *Start = IV->getStart(); 7968 const SCEV *End = RHS; 7969 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7970 const SCEV *Diff = getMinusSCEV(RHS, Start); 7971 // If we have NoWrap set, then we can assume that the increment won't 7972 // overflow, in which case if RHS - Start is a constant, we don't need to 7973 // do a max operation since we can just figure it out statically 7974 if (NoWrap && isa<SCEVConstant>(Diff)) { 7975 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7976 if (D.isNegative()) 7977 End = Start; 7978 } else 7979 End = IsSigned ? getSMaxExpr(RHS, Start) 7980 : getUMaxExpr(RHS, Start); 7981 } 7982 7983 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7984 7985 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7986 : getUnsignedRange(Start).getUnsignedMin(); 7987 7988 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7989 : getUnsignedRange(Stride).getUnsignedMin(); 7990 7991 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7992 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7993 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7994 7995 // Although End can be a MAX expression we estimate MaxEnd considering only 7996 // the case End = RHS. This is safe because in the other case (End - Start) 7997 // is zero, leading to a zero maximum backedge taken count. 7998 APInt MaxEnd = 7999 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8000 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8001 8002 const SCEV *MaxBECount; 8003 if (isa<SCEVConstant>(BECount)) 8004 MaxBECount = BECount; 8005 else 8006 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8007 getConstant(MinStride), false); 8008 8009 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8010 MaxBECount = BECount; 8011 8012 return ExitLimit(BECount, MaxBECount); 8013 } 8014 8015 ScalarEvolution::ExitLimit 8016 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8017 const Loop *L, bool IsSigned, 8018 bool ControlsExit) { 8019 // We handle only IV > Invariant 8020 if (!isLoopInvariant(RHS, L)) 8021 return getCouldNotCompute(); 8022 8023 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8024 8025 // Avoid weird loops 8026 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8027 return getCouldNotCompute(); 8028 8029 bool NoWrap = ControlsExit && 8030 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8031 8032 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8033 8034 // Avoid negative or zero stride values 8035 if (!isKnownPositive(Stride)) 8036 return getCouldNotCompute(); 8037 8038 // Avoid proven overflow cases: this will ensure that the backedge taken count 8039 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8040 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8041 // behaviors like the case of C language. 8042 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8043 return getCouldNotCompute(); 8044 8045 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8046 : ICmpInst::ICMP_UGT; 8047 8048 const SCEV *Start = IV->getStart(); 8049 const SCEV *End = RHS; 8050 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8051 const SCEV *Diff = getMinusSCEV(RHS, Start); 8052 // If we have NoWrap set, then we can assume that the increment won't 8053 // overflow, in which case if RHS - Start is a constant, we don't need to 8054 // do a max operation since we can just figure it out statically 8055 if (NoWrap && isa<SCEVConstant>(Diff)) { 8056 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8057 if (!D.isNegative()) 8058 End = Start; 8059 } else 8060 End = IsSigned ? getSMinExpr(RHS, Start) 8061 : getUMinExpr(RHS, Start); 8062 } 8063 8064 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8065 8066 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8067 : getUnsignedRange(Start).getUnsignedMax(); 8068 8069 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8070 : getUnsignedRange(Stride).getUnsignedMin(); 8071 8072 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8073 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8074 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8075 8076 // Although End can be a MIN expression we estimate MinEnd considering only 8077 // the case End = RHS. This is safe because in the other case (Start - End) 8078 // is zero, leading to a zero maximum backedge taken count. 8079 APInt MinEnd = 8080 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8081 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8082 8083 8084 const SCEV *MaxBECount = getCouldNotCompute(); 8085 if (isa<SCEVConstant>(BECount)) 8086 MaxBECount = BECount; 8087 else 8088 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8089 getConstant(MinStride), false); 8090 8091 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8092 MaxBECount = BECount; 8093 8094 return ExitLimit(BECount, MaxBECount); 8095 } 8096 8097 /// getNumIterationsInRange - Return the number of iterations of this loop that 8098 /// produce values in the specified constant range. Another way of looking at 8099 /// this is that it returns the first iteration number where the value is not in 8100 /// the condition, thus computing the exit count. If the iteration count can't 8101 /// be computed, an instance of SCEVCouldNotCompute is returned. 8102 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8103 ScalarEvolution &SE) const { 8104 if (Range.isFullSet()) // Infinite loop. 8105 return SE.getCouldNotCompute(); 8106 8107 // If the start is a non-zero constant, shift the range to simplify things. 8108 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8109 if (!SC->getValue()->isZero()) { 8110 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8111 Operands[0] = SE.getZero(SC->getType()); 8112 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8113 getNoWrapFlags(FlagNW)); 8114 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8115 return ShiftedAddRec->getNumIterationsInRange( 8116 Range.subtract(SC->getValue()->getValue()), SE); 8117 // This is strange and shouldn't happen. 8118 return SE.getCouldNotCompute(); 8119 } 8120 8121 // The only time we can solve this is when we have all constant indices. 8122 // Otherwise, we cannot determine the overflow conditions. 8123 if (std::any_of(op_begin(), op_end(), 8124 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);})) 8125 return SE.getCouldNotCompute(); 8126 8127 // Okay at this point we know that all elements of the chrec are constants and 8128 // that the start element is zero. 8129 8130 // First check to see if the range contains zero. If not, the first 8131 // iteration exits. 8132 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8133 if (!Range.contains(APInt(BitWidth, 0))) 8134 return SE.getZero(getType()); 8135 8136 if (isAffine()) { 8137 // If this is an affine expression then we have this situation: 8138 // Solve {0,+,A} in Range === Ax in Range 8139 8140 // We know that zero is in the range. If A is positive then we know that 8141 // the upper value of the range must be the first possible exit value. 8142 // If A is negative then the lower of the range is the last possible loop 8143 // value. Also note that we already checked for a full range. 8144 APInt One(BitWidth,1); 8145 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8146 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8147 8148 // The exit value should be (End+A)/A. 8149 APInt ExitVal = (End + A).udiv(A); 8150 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8151 8152 // Evaluate at the exit value. If we really did fall out of the valid 8153 // range, then we computed our trip count, otherwise wrap around or other 8154 // things must have happened. 8155 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8156 if (Range.contains(Val->getValue())) 8157 return SE.getCouldNotCompute(); // Something strange happened 8158 8159 // Ensure that the previous value is in the range. This is a sanity check. 8160 assert(Range.contains( 8161 EvaluateConstantChrecAtConstant(this, 8162 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8163 "Linear scev computation is off in a bad way!"); 8164 return SE.getConstant(ExitValue); 8165 } else if (isQuadratic()) { 8166 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8167 // quadratic equation to solve it. To do this, we must frame our problem in 8168 // terms of figuring out when zero is crossed, instead of when 8169 // Range.getUpper() is crossed. 8170 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8171 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8172 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8173 // getNoWrapFlags(FlagNW) 8174 FlagAnyWrap); 8175 8176 // Next, solve the constructed addrec 8177 std::pair<const SCEV *,const SCEV *> Roots = 8178 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8179 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8180 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8181 if (R1) { 8182 // Pick the smallest positive root value. 8183 if (ConstantInt *CB = 8184 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8185 R1->getValue(), R2->getValue()))) { 8186 if (!CB->getZExtValue()) 8187 std::swap(R1, R2); // R1 is the minimum root now. 8188 8189 // Make sure the root is not off by one. The returned iteration should 8190 // not be in the range, but the previous one should be. When solving 8191 // for "X*X < 5", for example, we should not return a root of 2. 8192 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8193 R1->getValue(), 8194 SE); 8195 if (Range.contains(R1Val->getValue())) { 8196 // The next iteration must be out of the range... 8197 ConstantInt *NextVal = 8198 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8199 8200 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8201 if (!Range.contains(R1Val->getValue())) 8202 return SE.getConstant(NextVal); 8203 return SE.getCouldNotCompute(); // Something strange happened 8204 } 8205 8206 // If R1 was not in the range, then it is a good return value. Make 8207 // sure that R1-1 WAS in the range though, just in case. 8208 ConstantInt *NextVal = 8209 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8210 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8211 if (Range.contains(R1Val->getValue())) 8212 return R1; 8213 return SE.getCouldNotCompute(); // Something strange happened 8214 } 8215 } 8216 } 8217 8218 return SE.getCouldNotCompute(); 8219 } 8220 8221 namespace { 8222 struct FindUndefs { 8223 bool Found; 8224 FindUndefs() : Found(false) {} 8225 8226 bool follow(const SCEV *S) { 8227 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8228 if (isa<UndefValue>(C->getValue())) 8229 Found = true; 8230 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8231 if (isa<UndefValue>(C->getValue())) 8232 Found = true; 8233 } 8234 8235 // Keep looking if we haven't found it yet. 8236 return !Found; 8237 } 8238 bool isDone() const { 8239 // Stop recursion if we have found an undef. 8240 return Found; 8241 } 8242 }; 8243 } 8244 8245 // Return true when S contains at least an undef value. 8246 static inline bool 8247 containsUndefs(const SCEV *S) { 8248 FindUndefs F; 8249 SCEVTraversal<FindUndefs> ST(F); 8250 ST.visitAll(S); 8251 8252 return F.Found; 8253 } 8254 8255 namespace { 8256 // Collect all steps of SCEV expressions. 8257 struct SCEVCollectStrides { 8258 ScalarEvolution &SE; 8259 SmallVectorImpl<const SCEV *> &Strides; 8260 8261 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8262 : SE(SE), Strides(S) {} 8263 8264 bool follow(const SCEV *S) { 8265 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8266 Strides.push_back(AR->getStepRecurrence(SE)); 8267 return true; 8268 } 8269 bool isDone() const { return false; } 8270 }; 8271 8272 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8273 struct SCEVCollectTerms { 8274 SmallVectorImpl<const SCEV *> &Terms; 8275 8276 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8277 : Terms(T) {} 8278 8279 bool follow(const SCEV *S) { 8280 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8281 if (!containsUndefs(S)) 8282 Terms.push_back(S); 8283 8284 // Stop recursion: once we collected a term, do not walk its operands. 8285 return false; 8286 } 8287 8288 // Keep looking. 8289 return true; 8290 } 8291 bool isDone() const { return false; } 8292 }; 8293 8294 // Check if a SCEV contains an AddRecExpr. 8295 struct SCEVHasAddRec { 8296 bool &ContainsAddRec; 8297 8298 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8299 ContainsAddRec = false; 8300 } 8301 8302 bool follow(const SCEV *S) { 8303 if (isa<SCEVAddRecExpr>(S)) { 8304 ContainsAddRec = true; 8305 8306 // Stop recursion: once we collected a term, do not walk its operands. 8307 return false; 8308 } 8309 8310 // Keep looking. 8311 return true; 8312 } 8313 bool isDone() const { return false; } 8314 }; 8315 8316 // Find factors that are multiplied with an expression that (possibly as a 8317 // subexpression) contains an AddRecExpr. In the expression: 8318 // 8319 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8320 // 8321 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8322 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8323 // parameters as they form a product with an induction variable. 8324 // 8325 // This collector expects all array size parameters to be in the same MulExpr. 8326 // It might be necessary to later add support for collecting parameters that are 8327 // spread over different nested MulExpr. 8328 struct SCEVCollectAddRecMultiplies { 8329 SmallVectorImpl<const SCEV *> &Terms; 8330 ScalarEvolution &SE; 8331 8332 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8333 : Terms(T), SE(SE) {} 8334 8335 bool follow(const SCEV *S) { 8336 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8337 bool HasAddRec = false; 8338 SmallVector<const SCEV *, 0> Operands; 8339 for (auto Op : Mul->operands()) { 8340 if (isa<SCEVUnknown>(Op)) { 8341 Operands.push_back(Op); 8342 } else { 8343 bool ContainsAddRec; 8344 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8345 visitAll(Op, ContiansAddRec); 8346 HasAddRec |= ContainsAddRec; 8347 } 8348 } 8349 if (Operands.size() == 0) 8350 return true; 8351 8352 if (!HasAddRec) 8353 return false; 8354 8355 Terms.push_back(SE.getMulExpr(Operands)); 8356 // Stop recursion: once we collected a term, do not walk its operands. 8357 return false; 8358 } 8359 8360 // Keep looking. 8361 return true; 8362 } 8363 bool isDone() const { return false; } 8364 }; 8365 } 8366 8367 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8368 /// two places: 8369 /// 1) The strides of AddRec expressions. 8370 /// 2) Unknowns that are multiplied with AddRec expressions. 8371 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8372 SmallVectorImpl<const SCEV *> &Terms) { 8373 SmallVector<const SCEV *, 4> Strides; 8374 SCEVCollectStrides StrideCollector(*this, Strides); 8375 visitAll(Expr, StrideCollector); 8376 8377 DEBUG({ 8378 dbgs() << "Strides:\n"; 8379 for (const SCEV *S : Strides) 8380 dbgs() << *S << "\n"; 8381 }); 8382 8383 for (const SCEV *S : Strides) { 8384 SCEVCollectTerms TermCollector(Terms); 8385 visitAll(S, TermCollector); 8386 } 8387 8388 DEBUG({ 8389 dbgs() << "Terms:\n"; 8390 for (const SCEV *T : Terms) 8391 dbgs() << *T << "\n"; 8392 }); 8393 8394 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8395 visitAll(Expr, MulCollector); 8396 } 8397 8398 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8399 SmallVectorImpl<const SCEV *> &Terms, 8400 SmallVectorImpl<const SCEV *> &Sizes) { 8401 int Last = Terms.size() - 1; 8402 const SCEV *Step = Terms[Last]; 8403 8404 // End of recursion. 8405 if (Last == 0) { 8406 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8407 SmallVector<const SCEV *, 2> Qs; 8408 for (const SCEV *Op : M->operands()) 8409 if (!isa<SCEVConstant>(Op)) 8410 Qs.push_back(Op); 8411 8412 Step = SE.getMulExpr(Qs); 8413 } 8414 8415 Sizes.push_back(Step); 8416 return true; 8417 } 8418 8419 for (const SCEV *&Term : Terms) { 8420 // Normalize the terms before the next call to findArrayDimensionsRec. 8421 const SCEV *Q, *R; 8422 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8423 8424 // Bail out when GCD does not evenly divide one of the terms. 8425 if (!R->isZero()) 8426 return false; 8427 8428 Term = Q; 8429 } 8430 8431 // Remove all SCEVConstants. 8432 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8433 return isa<SCEVConstant>(E); 8434 }), 8435 Terms.end()); 8436 8437 if (Terms.size() > 0) 8438 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8439 return false; 8440 8441 Sizes.push_back(Step); 8442 return true; 8443 } 8444 8445 namespace { 8446 struct FindParameter { 8447 bool FoundParameter; 8448 FindParameter() : FoundParameter(false) {} 8449 8450 bool follow(const SCEV *S) { 8451 if (isa<SCEVUnknown>(S)) { 8452 FoundParameter = true; 8453 // Stop recursion: we found a parameter. 8454 return false; 8455 } 8456 // Keep looking. 8457 return true; 8458 } 8459 bool isDone() const { 8460 // Stop recursion if we have found a parameter. 8461 return FoundParameter; 8462 } 8463 }; 8464 } 8465 8466 // Returns true when S contains at least a SCEVUnknown parameter. 8467 static inline bool 8468 containsParameters(const SCEV *S) { 8469 FindParameter F; 8470 SCEVTraversal<FindParameter> ST(F); 8471 ST.visitAll(S); 8472 8473 return F.FoundParameter; 8474 } 8475 8476 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8477 static inline bool 8478 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8479 for (const SCEV *T : Terms) 8480 if (containsParameters(T)) 8481 return true; 8482 return false; 8483 } 8484 8485 // Return the number of product terms in S. 8486 static inline int numberOfTerms(const SCEV *S) { 8487 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8488 return Expr->getNumOperands(); 8489 return 1; 8490 } 8491 8492 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8493 if (isa<SCEVConstant>(T)) 8494 return nullptr; 8495 8496 if (isa<SCEVUnknown>(T)) 8497 return T; 8498 8499 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8500 SmallVector<const SCEV *, 2> Factors; 8501 for (const SCEV *Op : M->operands()) 8502 if (!isa<SCEVConstant>(Op)) 8503 Factors.push_back(Op); 8504 8505 return SE.getMulExpr(Factors); 8506 } 8507 8508 return T; 8509 } 8510 8511 /// Return the size of an element read or written by Inst. 8512 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8513 Type *Ty; 8514 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8515 Ty = Store->getValueOperand()->getType(); 8516 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8517 Ty = Load->getType(); 8518 else 8519 return nullptr; 8520 8521 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8522 return getSizeOfExpr(ETy, Ty); 8523 } 8524 8525 /// Second step of delinearization: compute the array dimensions Sizes from the 8526 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8527 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8528 SmallVectorImpl<const SCEV *> &Sizes, 8529 const SCEV *ElementSize) const { 8530 8531 if (Terms.size() < 1 || !ElementSize) 8532 return; 8533 8534 // Early return when Terms do not contain parameters: we do not delinearize 8535 // non parametric SCEVs. 8536 if (!containsParameters(Terms)) 8537 return; 8538 8539 DEBUG({ 8540 dbgs() << "Terms:\n"; 8541 for (const SCEV *T : Terms) 8542 dbgs() << *T << "\n"; 8543 }); 8544 8545 // Remove duplicates. 8546 std::sort(Terms.begin(), Terms.end()); 8547 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8548 8549 // Put larger terms first. 8550 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8551 return numberOfTerms(LHS) > numberOfTerms(RHS); 8552 }); 8553 8554 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8555 8556 // Try to divide all terms by the element size. If term is not divisible by 8557 // element size, proceed with the original term. 8558 for (const SCEV *&Term : Terms) { 8559 const SCEV *Q, *R; 8560 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8561 if (!Q->isZero()) 8562 Term = Q; 8563 } 8564 8565 SmallVector<const SCEV *, 4> NewTerms; 8566 8567 // Remove constant factors. 8568 for (const SCEV *T : Terms) 8569 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8570 NewTerms.push_back(NewT); 8571 8572 DEBUG({ 8573 dbgs() << "Terms after sorting:\n"; 8574 for (const SCEV *T : NewTerms) 8575 dbgs() << *T << "\n"; 8576 }); 8577 8578 if (NewTerms.empty() || 8579 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8580 Sizes.clear(); 8581 return; 8582 } 8583 8584 // The last element to be pushed into Sizes is the size of an element. 8585 Sizes.push_back(ElementSize); 8586 8587 DEBUG({ 8588 dbgs() << "Sizes:\n"; 8589 for (const SCEV *S : Sizes) 8590 dbgs() << *S << "\n"; 8591 }); 8592 } 8593 8594 /// Third step of delinearization: compute the access functions for the 8595 /// Subscripts based on the dimensions in Sizes. 8596 void ScalarEvolution::computeAccessFunctions( 8597 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8598 SmallVectorImpl<const SCEV *> &Sizes) { 8599 8600 // Early exit in case this SCEV is not an affine multivariate function. 8601 if (Sizes.empty()) 8602 return; 8603 8604 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8605 if (!AR->isAffine()) 8606 return; 8607 8608 const SCEV *Res = Expr; 8609 int Last = Sizes.size() - 1; 8610 for (int i = Last; i >= 0; i--) { 8611 const SCEV *Q, *R; 8612 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8613 8614 DEBUG({ 8615 dbgs() << "Res: " << *Res << "\n"; 8616 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8617 dbgs() << "Res divided by Sizes[i]:\n"; 8618 dbgs() << "Quotient: " << *Q << "\n"; 8619 dbgs() << "Remainder: " << *R << "\n"; 8620 }); 8621 8622 Res = Q; 8623 8624 // Do not record the last subscript corresponding to the size of elements in 8625 // the array. 8626 if (i == Last) { 8627 8628 // Bail out if the remainder is too complex. 8629 if (isa<SCEVAddRecExpr>(R)) { 8630 Subscripts.clear(); 8631 Sizes.clear(); 8632 return; 8633 } 8634 8635 continue; 8636 } 8637 8638 // Record the access function for the current subscript. 8639 Subscripts.push_back(R); 8640 } 8641 8642 // Also push in last position the remainder of the last division: it will be 8643 // the access function of the innermost dimension. 8644 Subscripts.push_back(Res); 8645 8646 std::reverse(Subscripts.begin(), Subscripts.end()); 8647 8648 DEBUG({ 8649 dbgs() << "Subscripts:\n"; 8650 for (const SCEV *S : Subscripts) 8651 dbgs() << *S << "\n"; 8652 }); 8653 } 8654 8655 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8656 /// sizes of an array access. Returns the remainder of the delinearization that 8657 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8658 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8659 /// expressions in the stride and base of a SCEV corresponding to the 8660 /// computation of a GCD (greatest common divisor) of base and stride. When 8661 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8662 /// 8663 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8664 /// 8665 /// void foo(long n, long m, long o, double A[n][m][o]) { 8666 /// 8667 /// for (long i = 0; i < n; i++) 8668 /// for (long j = 0; j < m; j++) 8669 /// for (long k = 0; k < o; k++) 8670 /// A[i][j][k] = 1.0; 8671 /// } 8672 /// 8673 /// the delinearization input is the following AddRec SCEV: 8674 /// 8675 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8676 /// 8677 /// From this SCEV, we are able to say that the base offset of the access is %A 8678 /// because it appears as an offset that does not divide any of the strides in 8679 /// the loops: 8680 /// 8681 /// CHECK: Base offset: %A 8682 /// 8683 /// and then SCEV->delinearize determines the size of some of the dimensions of 8684 /// the array as these are the multiples by which the strides are happening: 8685 /// 8686 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8687 /// 8688 /// Note that the outermost dimension remains of UnknownSize because there are 8689 /// no strides that would help identifying the size of the last dimension: when 8690 /// the array has been statically allocated, one could compute the size of that 8691 /// dimension by dividing the overall size of the array by the size of the known 8692 /// dimensions: %m * %o * 8. 8693 /// 8694 /// Finally delinearize provides the access functions for the array reference 8695 /// that does correspond to A[i][j][k] of the above C testcase: 8696 /// 8697 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8698 /// 8699 /// The testcases are checking the output of a function pass: 8700 /// DelinearizationPass that walks through all loads and stores of a function 8701 /// asking for the SCEV of the memory access with respect to all enclosing 8702 /// loops, calling SCEV->delinearize on that and printing the results. 8703 8704 void ScalarEvolution::delinearize(const SCEV *Expr, 8705 SmallVectorImpl<const SCEV *> &Subscripts, 8706 SmallVectorImpl<const SCEV *> &Sizes, 8707 const SCEV *ElementSize) { 8708 // First step: collect parametric terms. 8709 SmallVector<const SCEV *, 4> Terms; 8710 collectParametricTerms(Expr, Terms); 8711 8712 if (Terms.empty()) 8713 return; 8714 8715 // Second step: find subscript sizes. 8716 findArrayDimensions(Terms, Sizes, ElementSize); 8717 8718 if (Sizes.empty()) 8719 return; 8720 8721 // Third step: compute the access functions for each subscript. 8722 computeAccessFunctions(Expr, Subscripts, Sizes); 8723 8724 if (Subscripts.empty()) 8725 return; 8726 8727 DEBUG({ 8728 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8729 dbgs() << "ArrayDecl[UnknownSize]"; 8730 for (const SCEV *S : Sizes) 8731 dbgs() << "[" << *S << "]"; 8732 8733 dbgs() << "\nArrayRef"; 8734 for (const SCEV *S : Subscripts) 8735 dbgs() << "[" << *S << "]"; 8736 dbgs() << "\n"; 8737 }); 8738 } 8739 8740 //===----------------------------------------------------------------------===// 8741 // SCEVCallbackVH Class Implementation 8742 //===----------------------------------------------------------------------===// 8743 8744 void ScalarEvolution::SCEVCallbackVH::deleted() { 8745 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8746 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8747 SE->ConstantEvolutionLoopExitValue.erase(PN); 8748 SE->ValueExprMap.erase(getValPtr()); 8749 // this now dangles! 8750 } 8751 8752 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8753 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8754 8755 // Forget all the expressions associated with users of the old value, 8756 // so that future queries will recompute the expressions using the new 8757 // value. 8758 Value *Old = getValPtr(); 8759 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8760 SmallPtrSet<User *, 8> Visited; 8761 while (!Worklist.empty()) { 8762 User *U = Worklist.pop_back_val(); 8763 // Deleting the Old value will cause this to dangle. Postpone 8764 // that until everything else is done. 8765 if (U == Old) 8766 continue; 8767 if (!Visited.insert(U).second) 8768 continue; 8769 if (PHINode *PN = dyn_cast<PHINode>(U)) 8770 SE->ConstantEvolutionLoopExitValue.erase(PN); 8771 SE->ValueExprMap.erase(U); 8772 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8773 } 8774 // Delete the Old value. 8775 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8776 SE->ConstantEvolutionLoopExitValue.erase(PN); 8777 SE->ValueExprMap.erase(Old); 8778 // this now dangles! 8779 } 8780 8781 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8782 : CallbackVH(V), SE(se) {} 8783 8784 //===----------------------------------------------------------------------===// 8785 // ScalarEvolution Class Implementation 8786 //===----------------------------------------------------------------------===// 8787 8788 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8789 AssumptionCache &AC, DominatorTree &DT, 8790 LoopInfo &LI) 8791 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8792 CouldNotCompute(new SCEVCouldNotCompute()), 8793 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8794 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 8795 FirstUnknown(nullptr) {} 8796 8797 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8798 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8799 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8800 ValueExprMap(std::move(Arg.ValueExprMap)), 8801 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8802 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8803 ConstantEvolutionLoopExitValue( 8804 std::move(Arg.ConstantEvolutionLoopExitValue)), 8805 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8806 LoopDispositions(std::move(Arg.LoopDispositions)), 8807 BlockDispositions(std::move(Arg.BlockDispositions)), 8808 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8809 SignedRanges(std::move(Arg.SignedRanges)), 8810 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8811 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8812 FirstUnknown(Arg.FirstUnknown) { 8813 Arg.FirstUnknown = nullptr; 8814 } 8815 8816 ScalarEvolution::~ScalarEvolution() { 8817 // Iterate through all the SCEVUnknown instances and call their 8818 // destructors, so that they release their references to their values. 8819 for (SCEVUnknown *U = FirstUnknown; U;) { 8820 SCEVUnknown *Tmp = U; 8821 U = U->Next; 8822 Tmp->~SCEVUnknown(); 8823 } 8824 FirstUnknown = nullptr; 8825 8826 ValueExprMap.clear(); 8827 8828 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8829 // that a loop had multiple computable exits. 8830 for (auto &BTCI : BackedgeTakenCounts) 8831 BTCI.second.clear(); 8832 8833 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8834 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8835 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 8836 } 8837 8838 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8839 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8840 } 8841 8842 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8843 const Loop *L) { 8844 // Print all inner loops first 8845 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8846 PrintLoopInfo(OS, SE, *I); 8847 8848 OS << "Loop "; 8849 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8850 OS << ": "; 8851 8852 SmallVector<BasicBlock *, 8> ExitBlocks; 8853 L->getExitBlocks(ExitBlocks); 8854 if (ExitBlocks.size() != 1) 8855 OS << "<multiple exits> "; 8856 8857 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8858 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8859 } else { 8860 OS << "Unpredictable backedge-taken count. "; 8861 } 8862 8863 OS << "\n" 8864 "Loop "; 8865 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8866 OS << ": "; 8867 8868 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8869 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8870 } else { 8871 OS << "Unpredictable max backedge-taken count. "; 8872 } 8873 8874 OS << "\n"; 8875 } 8876 8877 void ScalarEvolution::print(raw_ostream &OS) const { 8878 // ScalarEvolution's implementation of the print method is to print 8879 // out SCEV values of all instructions that are interesting. Doing 8880 // this potentially causes it to create new SCEV objects though, 8881 // which technically conflicts with the const qualifier. This isn't 8882 // observable from outside the class though, so casting away the 8883 // const isn't dangerous. 8884 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8885 8886 OS << "Classifying expressions for: "; 8887 F.printAsOperand(OS, /*PrintType=*/false); 8888 OS << "\n"; 8889 for (Instruction &I : instructions(F)) 8890 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 8891 OS << I << '\n'; 8892 OS << " --> "; 8893 const SCEV *SV = SE.getSCEV(&I); 8894 SV->print(OS); 8895 if (!isa<SCEVCouldNotCompute>(SV)) { 8896 OS << " U: "; 8897 SE.getUnsignedRange(SV).print(OS); 8898 OS << " S: "; 8899 SE.getSignedRange(SV).print(OS); 8900 } 8901 8902 const Loop *L = LI.getLoopFor(I.getParent()); 8903 8904 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8905 if (AtUse != SV) { 8906 OS << " --> "; 8907 AtUse->print(OS); 8908 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8909 OS << " U: "; 8910 SE.getUnsignedRange(AtUse).print(OS); 8911 OS << " S: "; 8912 SE.getSignedRange(AtUse).print(OS); 8913 } 8914 } 8915 8916 if (L) { 8917 OS << "\t\t" "Exits: "; 8918 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8919 if (!SE.isLoopInvariant(ExitValue, L)) { 8920 OS << "<<Unknown>>"; 8921 } else { 8922 OS << *ExitValue; 8923 } 8924 } 8925 8926 OS << "\n"; 8927 } 8928 8929 OS << "Determining loop execution counts for: "; 8930 F.printAsOperand(OS, /*PrintType=*/false); 8931 OS << "\n"; 8932 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 8933 PrintLoopInfo(OS, &SE, *I); 8934 } 8935 8936 ScalarEvolution::LoopDisposition 8937 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8938 auto &Values = LoopDispositions[S]; 8939 for (auto &V : Values) { 8940 if (V.getPointer() == L) 8941 return V.getInt(); 8942 } 8943 Values.emplace_back(L, LoopVariant); 8944 LoopDisposition D = computeLoopDisposition(S, L); 8945 auto &Values2 = LoopDispositions[S]; 8946 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8947 if (V.getPointer() == L) { 8948 V.setInt(D); 8949 break; 8950 } 8951 } 8952 return D; 8953 } 8954 8955 ScalarEvolution::LoopDisposition 8956 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8957 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8958 case scConstant: 8959 return LoopInvariant; 8960 case scTruncate: 8961 case scZeroExtend: 8962 case scSignExtend: 8963 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8964 case scAddRecExpr: { 8965 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8966 8967 // If L is the addrec's loop, it's computable. 8968 if (AR->getLoop() == L) 8969 return LoopComputable; 8970 8971 // Add recurrences are never invariant in the function-body (null loop). 8972 if (!L) 8973 return LoopVariant; 8974 8975 // This recurrence is variant w.r.t. L if L contains AR's loop. 8976 if (L->contains(AR->getLoop())) 8977 return LoopVariant; 8978 8979 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8980 if (AR->getLoop()->contains(L)) 8981 return LoopInvariant; 8982 8983 // This recurrence is variant w.r.t. L if any of its operands 8984 // are variant. 8985 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8986 I != E; ++I) 8987 if (!isLoopInvariant(*I, L)) 8988 return LoopVariant; 8989 8990 // Otherwise it's loop-invariant. 8991 return LoopInvariant; 8992 } 8993 case scAddExpr: 8994 case scMulExpr: 8995 case scUMaxExpr: 8996 case scSMaxExpr: { 8997 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8998 bool HasVarying = false; 8999 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9000 I != E; ++I) { 9001 LoopDisposition D = getLoopDisposition(*I, L); 9002 if (D == LoopVariant) 9003 return LoopVariant; 9004 if (D == LoopComputable) 9005 HasVarying = true; 9006 } 9007 return HasVarying ? LoopComputable : LoopInvariant; 9008 } 9009 case scUDivExpr: { 9010 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9011 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9012 if (LD == LoopVariant) 9013 return LoopVariant; 9014 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9015 if (RD == LoopVariant) 9016 return LoopVariant; 9017 return (LD == LoopInvariant && RD == LoopInvariant) ? 9018 LoopInvariant : LoopComputable; 9019 } 9020 case scUnknown: 9021 // All non-instruction values are loop invariant. All instructions are loop 9022 // invariant if they are not contained in the specified loop. 9023 // Instructions are never considered invariant in the function body 9024 // (null loop) because they are defined within the "loop". 9025 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9026 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9027 return LoopInvariant; 9028 case scCouldNotCompute: 9029 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9030 } 9031 llvm_unreachable("Unknown SCEV kind!"); 9032 } 9033 9034 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9035 return getLoopDisposition(S, L) == LoopInvariant; 9036 } 9037 9038 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9039 return getLoopDisposition(S, L) == LoopComputable; 9040 } 9041 9042 ScalarEvolution::BlockDisposition 9043 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9044 auto &Values = BlockDispositions[S]; 9045 for (auto &V : Values) { 9046 if (V.getPointer() == BB) 9047 return V.getInt(); 9048 } 9049 Values.emplace_back(BB, DoesNotDominateBlock); 9050 BlockDisposition D = computeBlockDisposition(S, BB); 9051 auto &Values2 = BlockDispositions[S]; 9052 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9053 if (V.getPointer() == BB) { 9054 V.setInt(D); 9055 break; 9056 } 9057 } 9058 return D; 9059 } 9060 9061 ScalarEvolution::BlockDisposition 9062 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9063 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9064 case scConstant: 9065 return ProperlyDominatesBlock; 9066 case scTruncate: 9067 case scZeroExtend: 9068 case scSignExtend: 9069 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9070 case scAddRecExpr: { 9071 // This uses a "dominates" query instead of "properly dominates" query 9072 // to test for proper dominance too, because the instruction which 9073 // produces the addrec's value is a PHI, and a PHI effectively properly 9074 // dominates its entire containing block. 9075 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9076 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9077 return DoesNotDominateBlock; 9078 } 9079 // FALL THROUGH into SCEVNAryExpr handling. 9080 case scAddExpr: 9081 case scMulExpr: 9082 case scUMaxExpr: 9083 case scSMaxExpr: { 9084 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9085 bool Proper = true; 9086 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9087 I != E; ++I) { 9088 BlockDisposition D = getBlockDisposition(*I, BB); 9089 if (D == DoesNotDominateBlock) 9090 return DoesNotDominateBlock; 9091 if (D == DominatesBlock) 9092 Proper = false; 9093 } 9094 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9095 } 9096 case scUDivExpr: { 9097 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9098 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9099 BlockDisposition LD = getBlockDisposition(LHS, BB); 9100 if (LD == DoesNotDominateBlock) 9101 return DoesNotDominateBlock; 9102 BlockDisposition RD = getBlockDisposition(RHS, BB); 9103 if (RD == DoesNotDominateBlock) 9104 return DoesNotDominateBlock; 9105 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9106 ProperlyDominatesBlock : DominatesBlock; 9107 } 9108 case scUnknown: 9109 if (Instruction *I = 9110 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9111 if (I->getParent() == BB) 9112 return DominatesBlock; 9113 if (DT.properlyDominates(I->getParent(), BB)) 9114 return ProperlyDominatesBlock; 9115 return DoesNotDominateBlock; 9116 } 9117 return ProperlyDominatesBlock; 9118 case scCouldNotCompute: 9119 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9120 } 9121 llvm_unreachable("Unknown SCEV kind!"); 9122 } 9123 9124 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9125 return getBlockDisposition(S, BB) >= DominatesBlock; 9126 } 9127 9128 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9129 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9130 } 9131 9132 namespace { 9133 // Search for a SCEV expression node within an expression tree. 9134 // Implements SCEVTraversal::Visitor. 9135 struct SCEVSearch { 9136 const SCEV *Node; 9137 bool IsFound; 9138 9139 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9140 9141 bool follow(const SCEV *S) { 9142 IsFound |= (S == Node); 9143 return !IsFound; 9144 } 9145 bool isDone() const { return IsFound; } 9146 }; 9147 } 9148 9149 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9150 SCEVSearch Search(Op); 9151 visitAll(S, Search); 9152 return Search.IsFound; 9153 } 9154 9155 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9156 ValuesAtScopes.erase(S); 9157 LoopDispositions.erase(S); 9158 BlockDispositions.erase(S); 9159 UnsignedRanges.erase(S); 9160 SignedRanges.erase(S); 9161 9162 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9163 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9164 BackedgeTakenInfo &BEInfo = I->second; 9165 if (BEInfo.hasOperand(S, this)) { 9166 BEInfo.clear(); 9167 BackedgeTakenCounts.erase(I++); 9168 } 9169 else 9170 ++I; 9171 } 9172 } 9173 9174 typedef DenseMap<const Loop *, std::string> VerifyMap; 9175 9176 /// replaceSubString - Replaces all occurrences of From in Str with To. 9177 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9178 size_t Pos = 0; 9179 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9180 Str.replace(Pos, From.size(), To.data(), To.size()); 9181 Pos += To.size(); 9182 } 9183 } 9184 9185 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9186 static void 9187 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9188 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9189 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9190 9191 std::string &S = Map[L]; 9192 if (S.empty()) { 9193 raw_string_ostream OS(S); 9194 SE.getBackedgeTakenCount(L)->print(OS); 9195 9196 // false and 0 are semantically equivalent. This can happen in dead loops. 9197 replaceSubString(OS.str(), "false", "0"); 9198 // Remove wrap flags, their use in SCEV is highly fragile. 9199 // FIXME: Remove this when SCEV gets smarter about them. 9200 replaceSubString(OS.str(), "<nw>", ""); 9201 replaceSubString(OS.str(), "<nsw>", ""); 9202 replaceSubString(OS.str(), "<nuw>", ""); 9203 } 9204 } 9205 } 9206 9207 void ScalarEvolution::verify() const { 9208 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9209 9210 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9211 // FIXME: It would be much better to store actual values instead of strings, 9212 // but SCEV pointers will change if we drop the caches. 9213 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9214 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9215 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9216 9217 // Gather stringified backedge taken counts for all loops using a fresh 9218 // ScalarEvolution object. 9219 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9220 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9221 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9222 9223 // Now compare whether they're the same with and without caches. This allows 9224 // verifying that no pass changed the cache. 9225 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9226 "New loops suddenly appeared!"); 9227 9228 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9229 OldE = BackedgeDumpsOld.end(), 9230 NewI = BackedgeDumpsNew.begin(); 9231 OldI != OldE; ++OldI, ++NewI) { 9232 assert(OldI->first == NewI->first && "Loop order changed!"); 9233 9234 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9235 // changes. 9236 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9237 // means that a pass is buggy or SCEV has to learn a new pattern but is 9238 // usually not harmful. 9239 if (OldI->second != NewI->second && 9240 OldI->second.find("undef") == std::string::npos && 9241 NewI->second.find("undef") == std::string::npos && 9242 OldI->second != "***COULDNOTCOMPUTE***" && 9243 NewI->second != "***COULDNOTCOMPUTE***") { 9244 dbgs() << "SCEVValidator: SCEV for loop '" 9245 << OldI->first->getHeader()->getName() 9246 << "' changed from '" << OldI->second 9247 << "' to '" << NewI->second << "'!\n"; 9248 std::abort(); 9249 } 9250 } 9251 9252 // TODO: Verify more things. 9253 } 9254 9255 char ScalarEvolutionAnalysis::PassID; 9256 9257 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9258 AnalysisManager<Function> *AM) { 9259 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9260 AM->getResult<AssumptionAnalysis>(F), 9261 AM->getResult<DominatorTreeAnalysis>(F), 9262 AM->getResult<LoopAnalysis>(F)); 9263 } 9264 9265 PreservedAnalyses 9266 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9267 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9268 return PreservedAnalyses::all(); 9269 } 9270 9271 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9272 "Scalar Evolution Analysis", false, true) 9273 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9274 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9275 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9276 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9277 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9278 "Scalar Evolution Analysis", false, true) 9279 char ScalarEvolutionWrapperPass::ID = 0; 9280 9281 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9282 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9283 } 9284 9285 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9286 SE.reset(new ScalarEvolution( 9287 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9288 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9289 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9290 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9291 return false; 9292 } 9293 9294 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9295 9296 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9297 SE->print(OS); 9298 } 9299 9300 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9301 if (!VerifySCEV) 9302 return; 9303 9304 SE->verify(); 9305 } 9306 9307 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9308 AU.setPreservesAll(); 9309 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9310 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9311 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9312 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9313 } 9314