1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/IR/Argument.h" 86 #include "llvm/IR/BasicBlock.h" 87 #include "llvm/IR/CFG.h" 88 #include "llvm/IR/CallSite.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/ConstantRange.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DerivedTypes.h" 94 #include "llvm/IR/Dominators.h" 95 #include "llvm/IR/Function.h" 96 #include "llvm/IR/GlobalAlias.h" 97 #include "llvm/IR/GlobalValue.h" 98 #include "llvm/IR/GlobalVariable.h" 99 #include "llvm/IR/InstIterator.h" 100 #include "llvm/IR/InstrTypes.h" 101 #include "llvm/IR/Instruction.h" 102 #include "llvm/IR/Instructions.h" 103 #include "llvm/IR/IntrinsicInst.h" 104 #include "llvm/IR/Intrinsics.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/Metadata.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/PatternMatch.h" 109 #include "llvm/IR/Type.h" 110 #include "llvm/IR/Use.h" 111 #include "llvm/IR/User.h" 112 #include "llvm/IR/Value.h" 113 #include "llvm/Pass.h" 114 #include "llvm/Support/Casting.h" 115 #include "llvm/Support/CommandLine.h" 116 #include "llvm/Support/Compiler.h" 117 #include "llvm/Support/Debug.h" 118 #include "llvm/Support/ErrorHandling.h" 119 #include "llvm/Support/KnownBits.h" 120 #include "llvm/Support/SaveAndRestore.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <climits> 125 #include <cstddef> 126 #include <cstdint> 127 #include <cstdlib> 128 #include <map> 129 #include <memory> 130 #include <tuple> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 136 #define DEBUG_TYPE "scalar-evolution" 137 138 STATISTIC(NumArrayLenItCounts, 139 "Number of trip counts computed with array length"); 140 STATISTIC(NumTripCountsComputed, 141 "Number of loops with predictable loop counts"); 142 STATISTIC(NumTripCountsNotComputed, 143 "Number of loops without predictable loop counts"); 144 STATISTIC(NumBruteForceTripCountsComputed, 145 "Number of loops with trip counts computed by force"); 146 147 static cl::opt<unsigned> 148 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 149 cl::desc("Maximum number of iterations SCEV will " 150 "symbolically execute a constant " 151 "derived loop"), 152 cl::init(100)); 153 154 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 155 static cl::opt<bool> 156 VerifySCEV("verify-scev", 157 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 158 static cl::opt<bool> 159 VerifySCEVMap("verify-scev-maps", 160 cl::desc("Verify no dangling value in ScalarEvolution's " 161 "ExprValueMap (slow)")); 162 163 static cl::opt<unsigned> MulOpsInlineThreshold( 164 "scev-mulops-inline-threshold", cl::Hidden, 165 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 166 cl::init(32)); 167 168 static cl::opt<unsigned> AddOpsInlineThreshold( 169 "scev-addops-inline-threshold", cl::Hidden, 170 cl::desc("Threshold for inlining addition operands into a SCEV"), 171 cl::init(500)); 172 173 static cl::opt<unsigned> MaxSCEVCompareDepth( 174 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 175 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 176 cl::init(32)); 177 178 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 179 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 180 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 181 cl::init(2)); 182 183 static cl::opt<unsigned> MaxValueCompareDepth( 184 "scalar-evolution-max-value-compare-depth", cl::Hidden, 185 cl::desc("Maximum depth of recursive value complexity comparisons"), 186 cl::init(2)); 187 188 static cl::opt<unsigned> 189 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 190 cl::desc("Maximum depth of recursive arithmetics"), 191 cl::init(32)); 192 193 static cl::opt<unsigned> MaxConstantEvolvingDepth( 194 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 195 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 196 197 static cl::opt<unsigned> 198 MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden, 199 cl::desc("Maximum depth of recursive SExt/ZExt"), 200 cl::init(8)); 201 202 static cl::opt<unsigned> 203 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 204 cl::desc("Max coefficients in AddRec during evolving"), 205 cl::init(16)); 206 207 //===----------------------------------------------------------------------===// 208 // SCEV class definitions 209 //===----------------------------------------------------------------------===// 210 211 //===----------------------------------------------------------------------===// 212 // Implementation of the SCEV class. 213 // 214 215 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 216 LLVM_DUMP_METHOD void SCEV::dump() const { 217 print(dbgs()); 218 dbgs() << '\n'; 219 } 220 #endif 221 222 void SCEV::print(raw_ostream &OS) const { 223 switch (static_cast<SCEVTypes>(getSCEVType())) { 224 case scConstant: 225 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 226 return; 227 case scTruncate: { 228 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 229 const SCEV *Op = Trunc->getOperand(); 230 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 231 << *Trunc->getType() << ")"; 232 return; 233 } 234 case scZeroExtend: { 235 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 236 const SCEV *Op = ZExt->getOperand(); 237 OS << "(zext " << *Op->getType() << " " << *Op << " to " 238 << *ZExt->getType() << ")"; 239 return; 240 } 241 case scSignExtend: { 242 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 243 const SCEV *Op = SExt->getOperand(); 244 OS << "(sext " << *Op->getType() << " " << *Op << " to " 245 << *SExt->getType() << ")"; 246 return; 247 } 248 case scAddRecExpr: { 249 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 250 OS << "{" << *AR->getOperand(0); 251 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 252 OS << ",+," << *AR->getOperand(i); 253 OS << "}<"; 254 if (AR->hasNoUnsignedWrap()) 255 OS << "nuw><"; 256 if (AR->hasNoSignedWrap()) 257 OS << "nsw><"; 258 if (AR->hasNoSelfWrap() && 259 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 260 OS << "nw><"; 261 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 262 OS << ">"; 263 return; 264 } 265 case scAddExpr: 266 case scMulExpr: 267 case scUMaxExpr: 268 case scSMaxExpr: { 269 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 270 const char *OpStr = nullptr; 271 switch (NAry->getSCEVType()) { 272 case scAddExpr: OpStr = " + "; break; 273 case scMulExpr: OpStr = " * "; break; 274 case scUMaxExpr: OpStr = " umax "; break; 275 case scSMaxExpr: OpStr = " smax "; break; 276 } 277 OS << "("; 278 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 279 I != E; ++I) { 280 OS << **I; 281 if (std::next(I) != E) 282 OS << OpStr; 283 } 284 OS << ")"; 285 switch (NAry->getSCEVType()) { 286 case scAddExpr: 287 case scMulExpr: 288 if (NAry->hasNoUnsignedWrap()) 289 OS << "<nuw>"; 290 if (NAry->hasNoSignedWrap()) 291 OS << "<nsw>"; 292 } 293 return; 294 } 295 case scUDivExpr: { 296 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 297 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 298 return; 299 } 300 case scUnknown: { 301 const SCEVUnknown *U = cast<SCEVUnknown>(this); 302 Type *AllocTy; 303 if (U->isSizeOf(AllocTy)) { 304 OS << "sizeof(" << *AllocTy << ")"; 305 return; 306 } 307 if (U->isAlignOf(AllocTy)) { 308 OS << "alignof(" << *AllocTy << ")"; 309 return; 310 } 311 312 Type *CTy; 313 Constant *FieldNo; 314 if (U->isOffsetOf(CTy, FieldNo)) { 315 OS << "offsetof(" << *CTy << ", "; 316 FieldNo->printAsOperand(OS, false); 317 OS << ")"; 318 return; 319 } 320 321 // Otherwise just print it normally. 322 U->getValue()->printAsOperand(OS, false); 323 return; 324 } 325 case scCouldNotCompute: 326 OS << "***COULDNOTCOMPUTE***"; 327 return; 328 } 329 llvm_unreachable("Unknown SCEV kind!"); 330 } 331 332 Type *SCEV::getType() const { 333 switch (static_cast<SCEVTypes>(getSCEVType())) { 334 case scConstant: 335 return cast<SCEVConstant>(this)->getType(); 336 case scTruncate: 337 case scZeroExtend: 338 case scSignExtend: 339 return cast<SCEVCastExpr>(this)->getType(); 340 case scAddRecExpr: 341 case scMulExpr: 342 case scUMaxExpr: 343 case scSMaxExpr: 344 return cast<SCEVNAryExpr>(this)->getType(); 345 case scAddExpr: 346 return cast<SCEVAddExpr>(this)->getType(); 347 case scUDivExpr: 348 return cast<SCEVUDivExpr>(this)->getType(); 349 case scUnknown: 350 return cast<SCEVUnknown>(this)->getType(); 351 case scCouldNotCompute: 352 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 353 } 354 llvm_unreachable("Unknown SCEV kind!"); 355 } 356 357 bool SCEV::isZero() const { 358 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 359 return SC->getValue()->isZero(); 360 return false; 361 } 362 363 bool SCEV::isOne() const { 364 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 365 return SC->getValue()->isOne(); 366 return false; 367 } 368 369 bool SCEV::isAllOnesValue() const { 370 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 371 return SC->getValue()->isMinusOne(); 372 return false; 373 } 374 375 bool SCEV::isNonConstantNegative() const { 376 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 377 if (!Mul) return false; 378 379 // If there is a constant factor, it will be first. 380 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 381 if (!SC) return false; 382 383 // Return true if the value is negative, this matches things like (-42 * V). 384 return SC->getAPInt().isNegative(); 385 } 386 387 SCEVCouldNotCompute::SCEVCouldNotCompute() : 388 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 389 390 bool SCEVCouldNotCompute::classof(const SCEV *S) { 391 return S->getSCEVType() == scCouldNotCompute; 392 } 393 394 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 395 FoldingSetNodeID ID; 396 ID.AddInteger(scConstant); 397 ID.AddPointer(V); 398 void *IP = nullptr; 399 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 400 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 401 UniqueSCEVs.InsertNode(S, IP); 402 return S; 403 } 404 405 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 406 return getConstant(ConstantInt::get(getContext(), Val)); 407 } 408 409 const SCEV * 410 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 411 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 412 return getConstant(ConstantInt::get(ITy, V, isSigned)); 413 } 414 415 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 416 unsigned SCEVTy, const SCEV *op, Type *ty) 417 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 418 419 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 420 const SCEV *op, Type *ty) 421 : SCEVCastExpr(ID, scTruncate, op, ty) { 422 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 423 (Ty->isIntegerTy() || Ty->isPointerTy()) && 424 "Cannot truncate non-integer value!"); 425 } 426 427 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 428 const SCEV *op, Type *ty) 429 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 430 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 431 (Ty->isIntegerTy() || Ty->isPointerTy()) && 432 "Cannot zero extend non-integer value!"); 433 } 434 435 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 436 const SCEV *op, Type *ty) 437 : SCEVCastExpr(ID, scSignExtend, op, ty) { 438 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 439 (Ty->isIntegerTy() || Ty->isPointerTy()) && 440 "Cannot sign extend non-integer value!"); 441 } 442 443 void SCEVUnknown::deleted() { 444 // Clear this SCEVUnknown from various maps. 445 SE->forgetMemoizedResults(this); 446 447 // Remove this SCEVUnknown from the uniquing map. 448 SE->UniqueSCEVs.RemoveNode(this); 449 450 // Release the value. 451 setValPtr(nullptr); 452 } 453 454 void SCEVUnknown::allUsesReplacedWith(Value *New) { 455 // Remove this SCEVUnknown from the uniquing map. 456 SE->UniqueSCEVs.RemoveNode(this); 457 458 // Update this SCEVUnknown to point to the new value. This is needed 459 // because there may still be outstanding SCEVs which still point to 460 // this SCEVUnknown. 461 setValPtr(New); 462 } 463 464 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 465 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 466 if (VCE->getOpcode() == Instruction::PtrToInt) 467 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 468 if (CE->getOpcode() == Instruction::GetElementPtr && 469 CE->getOperand(0)->isNullValue() && 470 CE->getNumOperands() == 2) 471 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 472 if (CI->isOne()) { 473 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 474 ->getElementType(); 475 return true; 476 } 477 478 return false; 479 } 480 481 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 482 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 483 if (VCE->getOpcode() == Instruction::PtrToInt) 484 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 485 if (CE->getOpcode() == Instruction::GetElementPtr && 486 CE->getOperand(0)->isNullValue()) { 487 Type *Ty = 488 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 489 if (StructType *STy = dyn_cast<StructType>(Ty)) 490 if (!STy->isPacked() && 491 CE->getNumOperands() == 3 && 492 CE->getOperand(1)->isNullValue()) { 493 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 494 if (CI->isOne() && 495 STy->getNumElements() == 2 && 496 STy->getElementType(0)->isIntegerTy(1)) { 497 AllocTy = STy->getElementType(1); 498 return true; 499 } 500 } 501 } 502 503 return false; 504 } 505 506 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 507 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 508 if (VCE->getOpcode() == Instruction::PtrToInt) 509 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 510 if (CE->getOpcode() == Instruction::GetElementPtr && 511 CE->getNumOperands() == 3 && 512 CE->getOperand(0)->isNullValue() && 513 CE->getOperand(1)->isNullValue()) { 514 Type *Ty = 515 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 516 // Ignore vector types here so that ScalarEvolutionExpander doesn't 517 // emit getelementptrs that index into vectors. 518 if (Ty->isStructTy() || Ty->isArrayTy()) { 519 CTy = Ty; 520 FieldNo = CE->getOperand(2); 521 return true; 522 } 523 } 524 525 return false; 526 } 527 528 //===----------------------------------------------------------------------===// 529 // SCEV Utilities 530 //===----------------------------------------------------------------------===// 531 532 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 533 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 534 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 535 /// have been previously deemed to be "equally complex" by this routine. It is 536 /// intended to avoid exponential time complexity in cases like: 537 /// 538 /// %a = f(%x, %y) 539 /// %b = f(%a, %a) 540 /// %c = f(%b, %b) 541 /// 542 /// %d = f(%x, %y) 543 /// %e = f(%d, %d) 544 /// %f = f(%e, %e) 545 /// 546 /// CompareValueComplexity(%f, %c) 547 /// 548 /// Since we do not continue running this routine on expression trees once we 549 /// have seen unequal values, there is no need to track them in the cache. 550 static int 551 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache, 552 const LoopInfo *const LI, Value *LV, Value *RV, 553 unsigned Depth) { 554 if (Depth > MaxValueCompareDepth || EqCache.count({LV, RV})) 555 return 0; 556 557 // Order pointer values after integer values. This helps SCEVExpander form 558 // GEPs. 559 bool LIsPointer = LV->getType()->isPointerTy(), 560 RIsPointer = RV->getType()->isPointerTy(); 561 if (LIsPointer != RIsPointer) 562 return (int)LIsPointer - (int)RIsPointer; 563 564 // Compare getValueID values. 565 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 566 if (LID != RID) 567 return (int)LID - (int)RID; 568 569 // Sort arguments by their position. 570 if (const auto *LA = dyn_cast<Argument>(LV)) { 571 const auto *RA = cast<Argument>(RV); 572 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 573 return (int)LArgNo - (int)RArgNo; 574 } 575 576 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 577 const auto *RGV = cast<GlobalValue>(RV); 578 579 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 580 auto LT = GV->getLinkage(); 581 return !(GlobalValue::isPrivateLinkage(LT) || 582 GlobalValue::isInternalLinkage(LT)); 583 }; 584 585 // Use the names to distinguish the two values, but only if the 586 // names are semantically important. 587 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 588 return LGV->getName().compare(RGV->getName()); 589 } 590 591 // For instructions, compare their loop depth, and their operand count. This 592 // is pretty loose. 593 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 594 const auto *RInst = cast<Instruction>(RV); 595 596 // Compare loop depths. 597 const BasicBlock *LParent = LInst->getParent(), 598 *RParent = RInst->getParent(); 599 if (LParent != RParent) { 600 unsigned LDepth = LI->getLoopDepth(LParent), 601 RDepth = LI->getLoopDepth(RParent); 602 if (LDepth != RDepth) 603 return (int)LDepth - (int)RDepth; 604 } 605 606 // Compare the number of operands. 607 unsigned LNumOps = LInst->getNumOperands(), 608 RNumOps = RInst->getNumOperands(); 609 if (LNumOps != RNumOps) 610 return (int)LNumOps - (int)RNumOps; 611 612 for (unsigned Idx : seq(0u, LNumOps)) { 613 int Result = 614 CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx), 615 RInst->getOperand(Idx), Depth + 1); 616 if (Result != 0) 617 return Result; 618 } 619 } 620 621 EqCache.insert({LV, RV}); 622 return 0; 623 } 624 625 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 626 // than RHS, respectively. A three-way result allows recursive comparisons to be 627 // more efficient. 628 static int CompareSCEVComplexity( 629 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV, 630 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 631 DominatorTree &DT, unsigned Depth = 0) { 632 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 633 if (LHS == RHS) 634 return 0; 635 636 // Primarily, sort the SCEVs by their getSCEVType(). 637 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 638 if (LType != RType) 639 return (int)LType - (int)RType; 640 641 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.count({LHS, RHS})) 642 return 0; 643 // Aside from the getSCEVType() ordering, the particular ordering 644 // isn't very important except that it's beneficial to be consistent, 645 // so that (a + b) and (b + a) don't end up as different expressions. 646 switch (static_cast<SCEVTypes>(LType)) { 647 case scUnknown: { 648 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 649 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 650 651 SmallSet<std::pair<Value *, Value *>, 8> EqCache; 652 int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(), 653 Depth + 1); 654 if (X == 0) 655 EqCacheSCEV.insert({LHS, RHS}); 656 return X; 657 } 658 659 case scConstant: { 660 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 661 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 662 663 // Compare constant values. 664 const APInt &LA = LC->getAPInt(); 665 const APInt &RA = RC->getAPInt(); 666 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 667 if (LBitWidth != RBitWidth) 668 return (int)LBitWidth - (int)RBitWidth; 669 return LA.ult(RA) ? -1 : 1; 670 } 671 672 case scAddRecExpr: { 673 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 674 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 675 676 // There is always a dominance between two recs that are used by one SCEV, 677 // so we can safely sort recs by loop header dominance. We require such 678 // order in getAddExpr. 679 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 680 if (LLoop != RLoop) { 681 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 682 assert(LHead != RHead && "Two loops share the same header?"); 683 if (DT.dominates(LHead, RHead)) 684 return 1; 685 else 686 assert(DT.dominates(RHead, LHead) && 687 "No dominance between recurrences used by one SCEV?"); 688 return -1; 689 } 690 691 // Addrec complexity grows with operand count. 692 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 693 if (LNumOps != RNumOps) 694 return (int)LNumOps - (int)RNumOps; 695 696 // Lexicographically compare. 697 for (unsigned i = 0; i != LNumOps; ++i) { 698 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i), 699 RA->getOperand(i), DT, Depth + 1); 700 if (X != 0) 701 return X; 702 } 703 EqCacheSCEV.insert({LHS, RHS}); 704 return 0; 705 } 706 707 case scAddExpr: 708 case scMulExpr: 709 case scSMaxExpr: 710 case scUMaxExpr: { 711 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 712 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 713 714 // Lexicographically compare n-ary expressions. 715 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 716 if (LNumOps != RNumOps) 717 return (int)LNumOps - (int)RNumOps; 718 719 for (unsigned i = 0; i != LNumOps; ++i) { 720 if (i >= RNumOps) 721 return 1; 722 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i), 723 RC->getOperand(i), DT, Depth + 1); 724 if (X != 0) 725 return X; 726 } 727 EqCacheSCEV.insert({LHS, RHS}); 728 return 0; 729 } 730 731 case scUDivExpr: { 732 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 733 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 734 735 // Lexicographically compare udiv expressions. 736 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(), 737 DT, Depth + 1); 738 if (X != 0) 739 return X; 740 X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(), DT, 741 Depth + 1); 742 if (X == 0) 743 EqCacheSCEV.insert({LHS, RHS}); 744 return X; 745 } 746 747 case scTruncate: 748 case scZeroExtend: 749 case scSignExtend: { 750 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 751 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 752 753 // Compare cast expressions by operand. 754 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(), 755 RC->getOperand(), DT, Depth + 1); 756 if (X == 0) 757 EqCacheSCEV.insert({LHS, RHS}); 758 return X; 759 } 760 761 case scCouldNotCompute: 762 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 763 } 764 llvm_unreachable("Unknown SCEV kind!"); 765 } 766 767 /// Given a list of SCEV objects, order them by their complexity, and group 768 /// objects of the same complexity together by value. When this routine is 769 /// finished, we know that any duplicates in the vector are consecutive and that 770 /// complexity is monotonically increasing. 771 /// 772 /// Note that we go take special precautions to ensure that we get deterministic 773 /// results from this routine. In other words, we don't want the results of 774 /// this to depend on where the addresses of various SCEV objects happened to 775 /// land in memory. 776 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 777 LoopInfo *LI, DominatorTree &DT) { 778 if (Ops.size() < 2) return; // Noop 779 780 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache; 781 if (Ops.size() == 2) { 782 // This is the common case, which also happens to be trivially simple. 783 // Special case it. 784 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 785 if (CompareSCEVComplexity(EqCache, LI, RHS, LHS, DT) < 0) 786 std::swap(LHS, RHS); 787 return; 788 } 789 790 // Do the rough sort by complexity. 791 std::stable_sort(Ops.begin(), Ops.end(), 792 [&EqCache, LI, &DT](const SCEV *LHS, const SCEV *RHS) { 793 return 794 CompareSCEVComplexity(EqCache, LI, LHS, RHS, DT) < 0; 795 }); 796 797 // Now that we are sorted by complexity, group elements of the same 798 // complexity. Note that this is, at worst, N^2, but the vector is likely to 799 // be extremely short in practice. Note that we take this approach because we 800 // do not want to depend on the addresses of the objects we are grouping. 801 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 802 const SCEV *S = Ops[i]; 803 unsigned Complexity = S->getSCEVType(); 804 805 // If there are any objects of the same complexity and same value as this 806 // one, group them. 807 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 808 if (Ops[j] == S) { // Found a duplicate. 809 // Move it to immediately after i'th element. 810 std::swap(Ops[i+1], Ops[j]); 811 ++i; // no need to rescan it. 812 if (i == e-2) return; // Done! 813 } 814 } 815 } 816 } 817 818 // Returns the size of the SCEV S. 819 static inline int sizeOfSCEV(const SCEV *S) { 820 struct FindSCEVSize { 821 int Size = 0; 822 823 FindSCEVSize() = default; 824 825 bool follow(const SCEV *S) { 826 ++Size; 827 // Keep looking at all operands of S. 828 return true; 829 } 830 831 bool isDone() const { 832 return false; 833 } 834 }; 835 836 FindSCEVSize F; 837 SCEVTraversal<FindSCEVSize> ST(F); 838 ST.visitAll(S); 839 return F.Size; 840 } 841 842 namespace { 843 844 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 845 public: 846 // Computes the Quotient and Remainder of the division of Numerator by 847 // Denominator. 848 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 849 const SCEV *Denominator, const SCEV **Quotient, 850 const SCEV **Remainder) { 851 assert(Numerator && Denominator && "Uninitialized SCEV"); 852 853 SCEVDivision D(SE, Numerator, Denominator); 854 855 // Check for the trivial case here to avoid having to check for it in the 856 // rest of the code. 857 if (Numerator == Denominator) { 858 *Quotient = D.One; 859 *Remainder = D.Zero; 860 return; 861 } 862 863 if (Numerator->isZero()) { 864 *Quotient = D.Zero; 865 *Remainder = D.Zero; 866 return; 867 } 868 869 // A simple case when N/1. The quotient is N. 870 if (Denominator->isOne()) { 871 *Quotient = Numerator; 872 *Remainder = D.Zero; 873 return; 874 } 875 876 // Split the Denominator when it is a product. 877 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 878 const SCEV *Q, *R; 879 *Quotient = Numerator; 880 for (const SCEV *Op : T->operands()) { 881 divide(SE, *Quotient, Op, &Q, &R); 882 *Quotient = Q; 883 884 // Bail out when the Numerator is not divisible by one of the terms of 885 // the Denominator. 886 if (!R->isZero()) { 887 *Quotient = D.Zero; 888 *Remainder = Numerator; 889 return; 890 } 891 } 892 *Remainder = D.Zero; 893 return; 894 } 895 896 D.visit(Numerator); 897 *Quotient = D.Quotient; 898 *Remainder = D.Remainder; 899 } 900 901 // Except in the trivial case described above, we do not know how to divide 902 // Expr by Denominator for the following functions with empty implementation. 903 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 904 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 905 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 906 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 907 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 908 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 909 void visitUnknown(const SCEVUnknown *Numerator) {} 910 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 911 912 void visitConstant(const SCEVConstant *Numerator) { 913 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 914 APInt NumeratorVal = Numerator->getAPInt(); 915 APInt DenominatorVal = D->getAPInt(); 916 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 917 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 918 919 if (NumeratorBW > DenominatorBW) 920 DenominatorVal = DenominatorVal.sext(NumeratorBW); 921 else if (NumeratorBW < DenominatorBW) 922 NumeratorVal = NumeratorVal.sext(DenominatorBW); 923 924 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 925 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 926 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 927 Quotient = SE.getConstant(QuotientVal); 928 Remainder = SE.getConstant(RemainderVal); 929 return; 930 } 931 } 932 933 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 934 const SCEV *StartQ, *StartR, *StepQ, *StepR; 935 if (!Numerator->isAffine()) 936 return cannotDivide(Numerator); 937 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 938 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 939 // Bail out if the types do not match. 940 Type *Ty = Denominator->getType(); 941 if (Ty != StartQ->getType() || Ty != StartR->getType() || 942 Ty != StepQ->getType() || Ty != StepR->getType()) 943 return cannotDivide(Numerator); 944 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 945 Numerator->getNoWrapFlags()); 946 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 947 Numerator->getNoWrapFlags()); 948 } 949 950 void visitAddExpr(const SCEVAddExpr *Numerator) { 951 SmallVector<const SCEV *, 2> Qs, Rs; 952 Type *Ty = Denominator->getType(); 953 954 for (const SCEV *Op : Numerator->operands()) { 955 const SCEV *Q, *R; 956 divide(SE, Op, Denominator, &Q, &R); 957 958 // Bail out if types do not match. 959 if (Ty != Q->getType() || Ty != R->getType()) 960 return cannotDivide(Numerator); 961 962 Qs.push_back(Q); 963 Rs.push_back(R); 964 } 965 966 if (Qs.size() == 1) { 967 Quotient = Qs[0]; 968 Remainder = Rs[0]; 969 return; 970 } 971 972 Quotient = SE.getAddExpr(Qs); 973 Remainder = SE.getAddExpr(Rs); 974 } 975 976 void visitMulExpr(const SCEVMulExpr *Numerator) { 977 SmallVector<const SCEV *, 2> Qs; 978 Type *Ty = Denominator->getType(); 979 980 bool FoundDenominatorTerm = false; 981 for (const SCEV *Op : Numerator->operands()) { 982 // Bail out if types do not match. 983 if (Ty != Op->getType()) 984 return cannotDivide(Numerator); 985 986 if (FoundDenominatorTerm) { 987 Qs.push_back(Op); 988 continue; 989 } 990 991 // Check whether Denominator divides one of the product operands. 992 const SCEV *Q, *R; 993 divide(SE, Op, Denominator, &Q, &R); 994 if (!R->isZero()) { 995 Qs.push_back(Op); 996 continue; 997 } 998 999 // Bail out if types do not match. 1000 if (Ty != Q->getType()) 1001 return cannotDivide(Numerator); 1002 1003 FoundDenominatorTerm = true; 1004 Qs.push_back(Q); 1005 } 1006 1007 if (FoundDenominatorTerm) { 1008 Remainder = Zero; 1009 if (Qs.size() == 1) 1010 Quotient = Qs[0]; 1011 else 1012 Quotient = SE.getMulExpr(Qs); 1013 return; 1014 } 1015 1016 if (!isa<SCEVUnknown>(Denominator)) 1017 return cannotDivide(Numerator); 1018 1019 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 1020 ValueToValueMap RewriteMap; 1021 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1022 cast<SCEVConstant>(Zero)->getValue(); 1023 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1024 1025 if (Remainder->isZero()) { 1026 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 1027 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1028 cast<SCEVConstant>(One)->getValue(); 1029 Quotient = 1030 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1031 return; 1032 } 1033 1034 // Quotient is (Numerator - Remainder) divided by Denominator. 1035 const SCEV *Q, *R; 1036 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 1037 // This SCEV does not seem to simplify: fail the division here. 1038 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 1039 return cannotDivide(Numerator); 1040 divide(SE, Diff, Denominator, &Q, &R); 1041 if (R != Zero) 1042 return cannotDivide(Numerator); 1043 Quotient = Q; 1044 } 1045 1046 private: 1047 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 1048 const SCEV *Denominator) 1049 : SE(S), Denominator(Denominator) { 1050 Zero = SE.getZero(Denominator->getType()); 1051 One = SE.getOne(Denominator->getType()); 1052 1053 // We generally do not know how to divide Expr by Denominator. We 1054 // initialize the division to a "cannot divide" state to simplify the rest 1055 // of the code. 1056 cannotDivide(Numerator); 1057 } 1058 1059 // Convenience function for giving up on the division. We set the quotient to 1060 // be equal to zero and the remainder to be equal to the numerator. 1061 void cannotDivide(const SCEV *Numerator) { 1062 Quotient = Zero; 1063 Remainder = Numerator; 1064 } 1065 1066 ScalarEvolution &SE; 1067 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1068 }; 1069 1070 } // end anonymous namespace 1071 1072 //===----------------------------------------------------------------------===// 1073 // Simple SCEV method implementations 1074 //===----------------------------------------------------------------------===// 1075 1076 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1077 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1078 ScalarEvolution &SE, 1079 Type *ResultTy) { 1080 // Handle the simplest case efficiently. 1081 if (K == 1) 1082 return SE.getTruncateOrZeroExtend(It, ResultTy); 1083 1084 // We are using the following formula for BC(It, K): 1085 // 1086 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1087 // 1088 // Suppose, W is the bitwidth of the return value. We must be prepared for 1089 // overflow. Hence, we must assure that the result of our computation is 1090 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1091 // safe in modular arithmetic. 1092 // 1093 // However, this code doesn't use exactly that formula; the formula it uses 1094 // is something like the following, where T is the number of factors of 2 in 1095 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1096 // exponentiation: 1097 // 1098 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1099 // 1100 // This formula is trivially equivalent to the previous formula. However, 1101 // this formula can be implemented much more efficiently. The trick is that 1102 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1103 // arithmetic. To do exact division in modular arithmetic, all we have 1104 // to do is multiply by the inverse. Therefore, this step can be done at 1105 // width W. 1106 // 1107 // The next issue is how to safely do the division by 2^T. The way this 1108 // is done is by doing the multiplication step at a width of at least W + T 1109 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1110 // when we perform the division by 2^T (which is equivalent to a right shift 1111 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1112 // truncated out after the division by 2^T. 1113 // 1114 // In comparison to just directly using the first formula, this technique 1115 // is much more efficient; using the first formula requires W * K bits, 1116 // but this formula less than W + K bits. Also, the first formula requires 1117 // a division step, whereas this formula only requires multiplies and shifts. 1118 // 1119 // It doesn't matter whether the subtraction step is done in the calculation 1120 // width or the input iteration count's width; if the subtraction overflows, 1121 // the result must be zero anyway. We prefer here to do it in the width of 1122 // the induction variable because it helps a lot for certain cases; CodeGen 1123 // isn't smart enough to ignore the overflow, which leads to much less 1124 // efficient code if the width of the subtraction is wider than the native 1125 // register width. 1126 // 1127 // (It's possible to not widen at all by pulling out factors of 2 before 1128 // the multiplication; for example, K=2 can be calculated as 1129 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1130 // extra arithmetic, so it's not an obvious win, and it gets 1131 // much more complicated for K > 3.) 1132 1133 // Protection from insane SCEVs; this bound is conservative, 1134 // but it probably doesn't matter. 1135 if (K > 1000) 1136 return SE.getCouldNotCompute(); 1137 1138 unsigned W = SE.getTypeSizeInBits(ResultTy); 1139 1140 // Calculate K! / 2^T and T; we divide out the factors of two before 1141 // multiplying for calculating K! / 2^T to avoid overflow. 1142 // Other overflow doesn't matter because we only care about the bottom 1143 // W bits of the result. 1144 APInt OddFactorial(W, 1); 1145 unsigned T = 1; 1146 for (unsigned i = 3; i <= K; ++i) { 1147 APInt Mult(W, i); 1148 unsigned TwoFactors = Mult.countTrailingZeros(); 1149 T += TwoFactors; 1150 Mult.lshrInPlace(TwoFactors); 1151 OddFactorial *= Mult; 1152 } 1153 1154 // We need at least W + T bits for the multiplication step 1155 unsigned CalculationBits = W + T; 1156 1157 // Calculate 2^T, at width T+W. 1158 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1159 1160 // Calculate the multiplicative inverse of K! / 2^T; 1161 // this multiplication factor will perform the exact division by 1162 // K! / 2^T. 1163 APInt Mod = APInt::getSignedMinValue(W+1); 1164 APInt MultiplyFactor = OddFactorial.zext(W+1); 1165 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1166 MultiplyFactor = MultiplyFactor.trunc(W); 1167 1168 // Calculate the product, at width T+W 1169 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1170 CalculationBits); 1171 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1172 for (unsigned i = 1; i != K; ++i) { 1173 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1174 Dividend = SE.getMulExpr(Dividend, 1175 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1176 } 1177 1178 // Divide by 2^T 1179 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1180 1181 // Truncate the result, and divide by K! / 2^T. 1182 1183 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1184 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1185 } 1186 1187 /// Return the value of this chain of recurrences at the specified iteration 1188 /// number. We can evaluate this recurrence by multiplying each element in the 1189 /// chain by the binomial coefficient corresponding to it. In other words, we 1190 /// can evaluate {A,+,B,+,C,+,D} as: 1191 /// 1192 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1193 /// 1194 /// where BC(It, k) stands for binomial coefficient. 1195 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1196 ScalarEvolution &SE) const { 1197 const SCEV *Result = getStart(); 1198 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1199 // The computation is correct in the face of overflow provided that the 1200 // multiplication is performed _after_ the evaluation of the binomial 1201 // coefficient. 1202 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1203 if (isa<SCEVCouldNotCompute>(Coeff)) 1204 return Coeff; 1205 1206 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1207 } 1208 return Result; 1209 } 1210 1211 //===----------------------------------------------------------------------===// 1212 // SCEV Expression folder implementations 1213 //===----------------------------------------------------------------------===// 1214 1215 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1216 Type *Ty) { 1217 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1218 "This is not a truncating conversion!"); 1219 assert(isSCEVable(Ty) && 1220 "This is not a conversion to a SCEVable type!"); 1221 Ty = getEffectiveSCEVType(Ty); 1222 1223 FoldingSetNodeID ID; 1224 ID.AddInteger(scTruncate); 1225 ID.AddPointer(Op); 1226 ID.AddPointer(Ty); 1227 void *IP = nullptr; 1228 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1229 1230 // Fold if the operand is constant. 1231 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1232 return getConstant( 1233 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1234 1235 // trunc(trunc(x)) --> trunc(x) 1236 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1237 return getTruncateExpr(ST->getOperand(), Ty); 1238 1239 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1240 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1241 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1242 1243 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1244 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1245 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1246 1247 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1248 // eliminate all the truncates, or we replace other casts with truncates. 1249 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1250 SmallVector<const SCEV *, 4> Operands; 1251 bool hasTrunc = false; 1252 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1253 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1254 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1255 hasTrunc = isa<SCEVTruncateExpr>(S); 1256 Operands.push_back(S); 1257 } 1258 if (!hasTrunc) 1259 return getAddExpr(Operands); 1260 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1261 } 1262 1263 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1264 // eliminate all the truncates, or we replace other casts with truncates. 1265 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1266 SmallVector<const SCEV *, 4> Operands; 1267 bool hasTrunc = false; 1268 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1269 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1270 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1271 hasTrunc = isa<SCEVTruncateExpr>(S); 1272 Operands.push_back(S); 1273 } 1274 if (!hasTrunc) 1275 return getMulExpr(Operands); 1276 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1277 } 1278 1279 // If the input value is a chrec scev, truncate the chrec's operands. 1280 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1281 SmallVector<const SCEV *, 4> Operands; 1282 for (const SCEV *Op : AddRec->operands()) 1283 Operands.push_back(getTruncateExpr(Op, Ty)); 1284 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1285 } 1286 1287 // The cast wasn't folded; create an explicit cast node. We can reuse 1288 // the existing insert position since if we get here, we won't have 1289 // made any changes which would invalidate it. 1290 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1291 Op, Ty); 1292 UniqueSCEVs.InsertNode(S, IP); 1293 addToLoopUseLists(S); 1294 return S; 1295 } 1296 1297 // Get the limit of a recurrence such that incrementing by Step cannot cause 1298 // signed overflow as long as the value of the recurrence within the 1299 // loop does not exceed this limit before incrementing. 1300 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1301 ICmpInst::Predicate *Pred, 1302 ScalarEvolution *SE) { 1303 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1304 if (SE->isKnownPositive(Step)) { 1305 *Pred = ICmpInst::ICMP_SLT; 1306 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1307 SE->getSignedRangeMax(Step)); 1308 } 1309 if (SE->isKnownNegative(Step)) { 1310 *Pred = ICmpInst::ICMP_SGT; 1311 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1312 SE->getSignedRangeMin(Step)); 1313 } 1314 return nullptr; 1315 } 1316 1317 // Get the limit of a recurrence such that incrementing by Step cannot cause 1318 // unsigned overflow as long as the value of the recurrence within the loop does 1319 // not exceed this limit before incrementing. 1320 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1321 ICmpInst::Predicate *Pred, 1322 ScalarEvolution *SE) { 1323 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1324 *Pred = ICmpInst::ICMP_ULT; 1325 1326 return SE->getConstant(APInt::getMinValue(BitWidth) - 1327 SE->getUnsignedRangeMax(Step)); 1328 } 1329 1330 namespace { 1331 1332 struct ExtendOpTraitsBase { 1333 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1334 unsigned); 1335 }; 1336 1337 // Used to make code generic over signed and unsigned overflow. 1338 template <typename ExtendOp> struct ExtendOpTraits { 1339 // Members present: 1340 // 1341 // static const SCEV::NoWrapFlags WrapType; 1342 // 1343 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1344 // 1345 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1346 // ICmpInst::Predicate *Pred, 1347 // ScalarEvolution *SE); 1348 }; 1349 1350 template <> 1351 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1352 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1353 1354 static const GetExtendExprTy GetExtendExpr; 1355 1356 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1357 ICmpInst::Predicate *Pred, 1358 ScalarEvolution *SE) { 1359 return getSignedOverflowLimitForStep(Step, Pred, SE); 1360 } 1361 }; 1362 1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1364 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1365 1366 template <> 1367 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1368 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1369 1370 static const GetExtendExprTy GetExtendExpr; 1371 1372 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1373 ICmpInst::Predicate *Pred, 1374 ScalarEvolution *SE) { 1375 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1376 } 1377 }; 1378 1379 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1380 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1381 1382 } // end anonymous namespace 1383 1384 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1385 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1386 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1387 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1388 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1389 // expression "Step + sext/zext(PreIncAR)" is congruent with 1390 // "sext/zext(PostIncAR)" 1391 template <typename ExtendOpTy> 1392 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1393 ScalarEvolution *SE, unsigned Depth) { 1394 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1395 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1396 1397 const Loop *L = AR->getLoop(); 1398 const SCEV *Start = AR->getStart(); 1399 const SCEV *Step = AR->getStepRecurrence(*SE); 1400 1401 // Check for a simple looking step prior to loop entry. 1402 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1403 if (!SA) 1404 return nullptr; 1405 1406 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1407 // subtraction is expensive. For this purpose, perform a quick and dirty 1408 // difference, by checking for Step in the operand list. 1409 SmallVector<const SCEV *, 4> DiffOps; 1410 for (const SCEV *Op : SA->operands()) 1411 if (Op != Step) 1412 DiffOps.push_back(Op); 1413 1414 if (DiffOps.size() == SA->getNumOperands()) 1415 return nullptr; 1416 1417 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1418 // `Step`: 1419 1420 // 1. NSW/NUW flags on the step increment. 1421 auto PreStartFlags = 1422 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1423 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1424 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1425 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1426 1427 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1428 // "S+X does not sign/unsign-overflow". 1429 // 1430 1431 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1432 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1433 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1434 return PreStart; 1435 1436 // 2. Direct overflow check on the step operation's expression. 1437 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1438 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1439 const SCEV *OperandExtendedStart = 1440 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1441 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1442 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1443 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1444 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1445 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1446 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1447 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1448 } 1449 return PreStart; 1450 } 1451 1452 // 3. Loop precondition. 1453 ICmpInst::Predicate Pred; 1454 const SCEV *OverflowLimit = 1455 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1456 1457 if (OverflowLimit && 1458 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1459 return PreStart; 1460 1461 return nullptr; 1462 } 1463 1464 // Get the normalized zero or sign extended expression for this AddRec's Start. 1465 template <typename ExtendOpTy> 1466 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1467 ScalarEvolution *SE, 1468 unsigned Depth) { 1469 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1470 1471 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1472 if (!PreStart) 1473 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1474 1475 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1476 Depth), 1477 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1478 } 1479 1480 // Try to prove away overflow by looking at "nearby" add recurrences. A 1481 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1482 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1483 // 1484 // Formally: 1485 // 1486 // {S,+,X} == {S-T,+,X} + T 1487 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1488 // 1489 // If ({S-T,+,X} + T) does not overflow ... (1) 1490 // 1491 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1492 // 1493 // If {S-T,+,X} does not overflow ... (2) 1494 // 1495 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1496 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1497 // 1498 // If (S-T)+T does not overflow ... (3) 1499 // 1500 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1501 // == {Ext(S),+,Ext(X)} == LHS 1502 // 1503 // Thus, if (1), (2) and (3) are true for some T, then 1504 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1505 // 1506 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1507 // does not overflow" restricted to the 0th iteration. Therefore we only need 1508 // to check for (1) and (2). 1509 // 1510 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1511 // is `Delta` (defined below). 1512 template <typename ExtendOpTy> 1513 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1514 const SCEV *Step, 1515 const Loop *L) { 1516 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1517 1518 // We restrict `Start` to a constant to prevent SCEV from spending too much 1519 // time here. It is correct (but more expensive) to continue with a 1520 // non-constant `Start` and do a general SCEV subtraction to compute 1521 // `PreStart` below. 1522 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1523 if (!StartC) 1524 return false; 1525 1526 APInt StartAI = StartC->getAPInt(); 1527 1528 for (unsigned Delta : {-2, -1, 1, 2}) { 1529 const SCEV *PreStart = getConstant(StartAI - Delta); 1530 1531 FoldingSetNodeID ID; 1532 ID.AddInteger(scAddRecExpr); 1533 ID.AddPointer(PreStart); 1534 ID.AddPointer(Step); 1535 ID.AddPointer(L); 1536 void *IP = nullptr; 1537 const auto *PreAR = 1538 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1539 1540 // Give up if we don't already have the add recurrence we need because 1541 // actually constructing an add recurrence is relatively expensive. 1542 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1543 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1544 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1545 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1546 DeltaS, &Pred, this); 1547 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1548 return true; 1549 } 1550 } 1551 1552 return false; 1553 } 1554 1555 const SCEV * 1556 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1557 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1558 "This is not an extending conversion!"); 1559 assert(isSCEVable(Ty) && 1560 "This is not a conversion to a SCEVable type!"); 1561 Ty = getEffectiveSCEVType(Ty); 1562 1563 // Fold if the operand is constant. 1564 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1565 return getConstant( 1566 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1567 1568 // zext(zext(x)) --> zext(x) 1569 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1570 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1571 1572 // Before doing any expensive analysis, check to see if we've already 1573 // computed a SCEV for this Op and Ty. 1574 FoldingSetNodeID ID; 1575 ID.AddInteger(scZeroExtend); 1576 ID.AddPointer(Op); 1577 ID.AddPointer(Ty); 1578 void *IP = nullptr; 1579 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1580 if (Depth > MaxExtDepth) { 1581 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1582 Op, Ty); 1583 UniqueSCEVs.InsertNode(S, IP); 1584 addToLoopUseLists(S); 1585 return S; 1586 } 1587 1588 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1589 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1590 // It's possible the bits taken off by the truncate were all zero bits. If 1591 // so, we should be able to simplify this further. 1592 const SCEV *X = ST->getOperand(); 1593 ConstantRange CR = getUnsignedRange(X); 1594 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1595 unsigned NewBits = getTypeSizeInBits(Ty); 1596 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1597 CR.zextOrTrunc(NewBits))) 1598 return getTruncateOrZeroExtend(X, Ty); 1599 } 1600 1601 // If the input value is a chrec scev, and we can prove that the value 1602 // did not overflow the old, smaller, value, we can zero extend all of the 1603 // operands (often constants). This allows analysis of something like 1604 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1605 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1606 if (AR->isAffine()) { 1607 const SCEV *Start = AR->getStart(); 1608 const SCEV *Step = AR->getStepRecurrence(*this); 1609 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1610 const Loop *L = AR->getLoop(); 1611 1612 if (!AR->hasNoUnsignedWrap()) { 1613 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1614 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1615 } 1616 1617 // If we have special knowledge that this addrec won't overflow, 1618 // we don't need to do any further analysis. 1619 if (AR->hasNoUnsignedWrap()) 1620 return getAddRecExpr( 1621 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1622 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1623 1624 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1625 // Note that this serves two purposes: It filters out loops that are 1626 // simply not analyzable, and it covers the case where this code is 1627 // being called from within backedge-taken count analysis, such that 1628 // attempting to ask for the backedge-taken count would likely result 1629 // in infinite recursion. In the later case, the analysis code will 1630 // cope with a conservative value, and it will take care to purge 1631 // that value once it has finished. 1632 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1633 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1634 // Manually compute the final value for AR, checking for 1635 // overflow. 1636 1637 // Check whether the backedge-taken count can be losslessly casted to 1638 // the addrec's type. The count is always unsigned. 1639 const SCEV *CastedMaxBECount = 1640 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1641 const SCEV *RecastedMaxBECount = 1642 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1643 if (MaxBECount == RecastedMaxBECount) { 1644 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1645 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1646 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1647 SCEV::FlagAnyWrap, Depth + 1); 1648 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1649 SCEV::FlagAnyWrap, 1650 Depth + 1), 1651 WideTy, Depth + 1); 1652 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1653 const SCEV *WideMaxBECount = 1654 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1655 const SCEV *OperandExtendedAdd = 1656 getAddExpr(WideStart, 1657 getMulExpr(WideMaxBECount, 1658 getZeroExtendExpr(Step, WideTy, Depth + 1), 1659 SCEV::FlagAnyWrap, Depth + 1), 1660 SCEV::FlagAnyWrap, Depth + 1); 1661 if (ZAdd == OperandExtendedAdd) { 1662 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1663 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1664 // Return the expression with the addrec on the outside. 1665 return getAddRecExpr( 1666 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1667 Depth + 1), 1668 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1669 AR->getNoWrapFlags()); 1670 } 1671 // Similar to above, only this time treat the step value as signed. 1672 // This covers loops that count down. 1673 OperandExtendedAdd = 1674 getAddExpr(WideStart, 1675 getMulExpr(WideMaxBECount, 1676 getSignExtendExpr(Step, WideTy, Depth + 1), 1677 SCEV::FlagAnyWrap, Depth + 1), 1678 SCEV::FlagAnyWrap, Depth + 1); 1679 if (ZAdd == OperandExtendedAdd) { 1680 // Cache knowledge of AR NW, which is propagated to this AddRec. 1681 // Negative step causes unsigned wrap, but it still can't self-wrap. 1682 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1683 // Return the expression with the addrec on the outside. 1684 return getAddRecExpr( 1685 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1686 Depth + 1), 1687 getSignExtendExpr(Step, Ty, Depth + 1), L, 1688 AR->getNoWrapFlags()); 1689 } 1690 } 1691 } 1692 1693 // Normally, in the cases we can prove no-overflow via a 1694 // backedge guarding condition, we can also compute a backedge 1695 // taken count for the loop. The exceptions are assumptions and 1696 // guards present in the loop -- SCEV is not great at exploiting 1697 // these to compute max backedge taken counts, but can still use 1698 // these to prove lack of overflow. Use this fact to avoid 1699 // doing extra work that may not pay off. 1700 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1701 !AC.assumptions().empty()) { 1702 // If the backedge is guarded by a comparison with the pre-inc 1703 // value the addrec is safe. Also, if the entry is guarded by 1704 // a comparison with the start value and the backedge is 1705 // guarded by a comparison with the post-inc value, the addrec 1706 // is safe. 1707 if (isKnownPositive(Step)) { 1708 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1709 getUnsignedRangeMax(Step)); 1710 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1711 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1712 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1713 AR->getPostIncExpr(*this), N))) { 1714 // Cache knowledge of AR NUW, which is propagated to this 1715 // AddRec. 1716 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1717 // Return the expression with the addrec on the outside. 1718 return getAddRecExpr( 1719 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1720 Depth + 1), 1721 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1722 AR->getNoWrapFlags()); 1723 } 1724 } else if (isKnownNegative(Step)) { 1725 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1726 getSignedRangeMin(Step)); 1727 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1728 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1729 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1730 AR->getPostIncExpr(*this), N))) { 1731 // Cache knowledge of AR NW, which is propagated to this 1732 // AddRec. Negative step causes unsigned wrap, but it 1733 // still can't self-wrap. 1734 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1735 // Return the expression with the addrec on the outside. 1736 return getAddRecExpr( 1737 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1738 Depth + 1), 1739 getSignExtendExpr(Step, Ty, Depth + 1), L, 1740 AR->getNoWrapFlags()); 1741 } 1742 } 1743 } 1744 1745 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1746 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1747 return getAddRecExpr( 1748 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1749 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1750 } 1751 } 1752 1753 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1754 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1755 if (SA->hasNoUnsignedWrap()) { 1756 // If the addition does not unsign overflow then we can, by definition, 1757 // commute the zero extension with the addition operation. 1758 SmallVector<const SCEV *, 4> Ops; 1759 for (const auto *Op : SA->operands()) 1760 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1761 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1762 } 1763 } 1764 1765 // The cast wasn't folded; create an explicit cast node. 1766 // Recompute the insert position, as it may have been invalidated. 1767 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1768 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1769 Op, Ty); 1770 UniqueSCEVs.InsertNode(S, IP); 1771 addToLoopUseLists(S); 1772 return S; 1773 } 1774 1775 const SCEV * 1776 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1777 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1778 "This is not an extending conversion!"); 1779 assert(isSCEVable(Ty) && 1780 "This is not a conversion to a SCEVable type!"); 1781 Ty = getEffectiveSCEVType(Ty); 1782 1783 // Fold if the operand is constant. 1784 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1785 return getConstant( 1786 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1787 1788 // sext(sext(x)) --> sext(x) 1789 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1790 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1791 1792 // sext(zext(x)) --> zext(x) 1793 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1794 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1795 1796 // Before doing any expensive analysis, check to see if we've already 1797 // computed a SCEV for this Op and Ty. 1798 FoldingSetNodeID ID; 1799 ID.AddInteger(scSignExtend); 1800 ID.AddPointer(Op); 1801 ID.AddPointer(Ty); 1802 void *IP = nullptr; 1803 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1804 // Limit recursion depth. 1805 if (Depth > MaxExtDepth) { 1806 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1807 Op, Ty); 1808 UniqueSCEVs.InsertNode(S, IP); 1809 addToLoopUseLists(S); 1810 return S; 1811 } 1812 1813 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1814 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1815 // It's possible the bits taken off by the truncate were all sign bits. If 1816 // so, we should be able to simplify this further. 1817 const SCEV *X = ST->getOperand(); 1818 ConstantRange CR = getSignedRange(X); 1819 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1820 unsigned NewBits = getTypeSizeInBits(Ty); 1821 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1822 CR.sextOrTrunc(NewBits))) 1823 return getTruncateOrSignExtend(X, Ty); 1824 } 1825 1826 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1827 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1828 if (SA->getNumOperands() == 2) { 1829 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1830 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1831 if (SMul && SC1) { 1832 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1833 const APInt &C1 = SC1->getAPInt(); 1834 const APInt &C2 = SC2->getAPInt(); 1835 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1836 C2.ugt(C1) && C2.isPowerOf2()) 1837 return getAddExpr(getSignExtendExpr(SC1, Ty, Depth + 1), 1838 getSignExtendExpr(SMul, Ty, Depth + 1), 1839 SCEV::FlagAnyWrap, Depth + 1); 1840 } 1841 } 1842 } 1843 1844 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1845 if (SA->hasNoSignedWrap()) { 1846 // If the addition does not sign overflow then we can, by definition, 1847 // commute the sign extension with the addition operation. 1848 SmallVector<const SCEV *, 4> Ops; 1849 for (const auto *Op : SA->operands()) 1850 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1851 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1852 } 1853 } 1854 // If the input value is a chrec scev, and we can prove that the value 1855 // did not overflow the old, smaller, value, we can sign extend all of the 1856 // operands (often constants). This allows analysis of something like 1857 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1858 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1859 if (AR->isAffine()) { 1860 const SCEV *Start = AR->getStart(); 1861 const SCEV *Step = AR->getStepRecurrence(*this); 1862 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1863 const Loop *L = AR->getLoop(); 1864 1865 if (!AR->hasNoSignedWrap()) { 1866 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1867 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1868 } 1869 1870 // If we have special knowledge that this addrec won't overflow, 1871 // we don't need to do any further analysis. 1872 if (AR->hasNoSignedWrap()) 1873 return getAddRecExpr( 1874 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1875 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1876 1877 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1878 // Note that this serves two purposes: It filters out loops that are 1879 // simply not analyzable, and it covers the case where this code is 1880 // being called from within backedge-taken count analysis, such that 1881 // attempting to ask for the backedge-taken count would likely result 1882 // in infinite recursion. In the later case, the analysis code will 1883 // cope with a conservative value, and it will take care to purge 1884 // that value once it has finished. 1885 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1886 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1887 // Manually compute the final value for AR, checking for 1888 // overflow. 1889 1890 // Check whether the backedge-taken count can be losslessly casted to 1891 // the addrec's type. The count is always unsigned. 1892 const SCEV *CastedMaxBECount = 1893 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1894 const SCEV *RecastedMaxBECount = 1895 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1896 if (MaxBECount == RecastedMaxBECount) { 1897 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1898 // Check whether Start+Step*MaxBECount has no signed overflow. 1899 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1900 SCEV::FlagAnyWrap, Depth + 1); 1901 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1902 SCEV::FlagAnyWrap, 1903 Depth + 1), 1904 WideTy, Depth + 1); 1905 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1906 const SCEV *WideMaxBECount = 1907 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1908 const SCEV *OperandExtendedAdd = 1909 getAddExpr(WideStart, 1910 getMulExpr(WideMaxBECount, 1911 getSignExtendExpr(Step, WideTy, Depth + 1), 1912 SCEV::FlagAnyWrap, Depth + 1), 1913 SCEV::FlagAnyWrap, Depth + 1); 1914 if (SAdd == OperandExtendedAdd) { 1915 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1916 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1917 // Return the expression with the addrec on the outside. 1918 return getAddRecExpr( 1919 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1920 Depth + 1), 1921 getSignExtendExpr(Step, Ty, Depth + 1), L, 1922 AR->getNoWrapFlags()); 1923 } 1924 // Similar to above, only this time treat the step value as unsigned. 1925 // This covers loops that count up with an unsigned step. 1926 OperandExtendedAdd = 1927 getAddExpr(WideStart, 1928 getMulExpr(WideMaxBECount, 1929 getZeroExtendExpr(Step, WideTy, Depth + 1), 1930 SCEV::FlagAnyWrap, Depth + 1), 1931 SCEV::FlagAnyWrap, Depth + 1); 1932 if (SAdd == OperandExtendedAdd) { 1933 // If AR wraps around then 1934 // 1935 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1936 // => SAdd != OperandExtendedAdd 1937 // 1938 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1939 // (SAdd == OperandExtendedAdd => AR is NW) 1940 1941 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1942 1943 // Return the expression with the addrec on the outside. 1944 return getAddRecExpr( 1945 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1946 Depth + 1), 1947 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1948 AR->getNoWrapFlags()); 1949 } 1950 } 1951 } 1952 1953 // Normally, in the cases we can prove no-overflow via a 1954 // backedge guarding condition, we can also compute a backedge 1955 // taken count for the loop. The exceptions are assumptions and 1956 // guards present in the loop -- SCEV is not great at exploiting 1957 // these to compute max backedge taken counts, but can still use 1958 // these to prove lack of overflow. Use this fact to avoid 1959 // doing extra work that may not pay off. 1960 1961 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1962 !AC.assumptions().empty()) { 1963 // If the backedge is guarded by a comparison with the pre-inc 1964 // value the addrec is safe. Also, if the entry is guarded by 1965 // a comparison with the start value and the backedge is 1966 // guarded by a comparison with the post-inc value, the addrec 1967 // is safe. 1968 ICmpInst::Predicate Pred; 1969 const SCEV *OverflowLimit = 1970 getSignedOverflowLimitForStep(Step, &Pred, this); 1971 if (OverflowLimit && 1972 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1973 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1974 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1975 OverflowLimit)))) { 1976 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1977 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1978 return getAddRecExpr( 1979 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1980 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1981 } 1982 } 1983 1984 // If Start and Step are constants, check if we can apply this 1985 // transformation: 1986 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1987 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1988 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1989 if (SC1 && SC2) { 1990 const APInt &C1 = SC1->getAPInt(); 1991 const APInt &C2 = SC2->getAPInt(); 1992 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1993 C2.isPowerOf2()) { 1994 Start = getSignExtendExpr(Start, Ty, Depth + 1); 1995 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1996 AR->getNoWrapFlags()); 1997 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty, Depth + 1), 1998 SCEV::FlagAnyWrap, Depth + 1); 1999 } 2000 } 2001 2002 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2003 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2004 return getAddRecExpr( 2005 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2006 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2007 } 2008 } 2009 2010 // If the input value is provably positive and we could not simplify 2011 // away the sext build a zext instead. 2012 if (isKnownNonNegative(Op)) 2013 return getZeroExtendExpr(Op, Ty, Depth + 1); 2014 2015 // The cast wasn't folded; create an explicit cast node. 2016 // Recompute the insert position, as it may have been invalidated. 2017 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2018 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2019 Op, Ty); 2020 UniqueSCEVs.InsertNode(S, IP); 2021 addToLoopUseLists(S); 2022 return S; 2023 } 2024 2025 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2026 /// unspecified bits out to the given type. 2027 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2028 Type *Ty) { 2029 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2030 "This is not an extending conversion!"); 2031 assert(isSCEVable(Ty) && 2032 "This is not a conversion to a SCEVable type!"); 2033 Ty = getEffectiveSCEVType(Ty); 2034 2035 // Sign-extend negative constants. 2036 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2037 if (SC->getAPInt().isNegative()) 2038 return getSignExtendExpr(Op, Ty); 2039 2040 // Peel off a truncate cast. 2041 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2042 const SCEV *NewOp = T->getOperand(); 2043 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2044 return getAnyExtendExpr(NewOp, Ty); 2045 return getTruncateOrNoop(NewOp, Ty); 2046 } 2047 2048 // Next try a zext cast. If the cast is folded, use it. 2049 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2050 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2051 return ZExt; 2052 2053 // Next try a sext cast. If the cast is folded, use it. 2054 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2055 if (!isa<SCEVSignExtendExpr>(SExt)) 2056 return SExt; 2057 2058 // Force the cast to be folded into the operands of an addrec. 2059 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2060 SmallVector<const SCEV *, 4> Ops; 2061 for (const SCEV *Op : AR->operands()) 2062 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2063 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2064 } 2065 2066 // If the expression is obviously signed, use the sext cast value. 2067 if (isa<SCEVSMaxExpr>(Op)) 2068 return SExt; 2069 2070 // Absent any other information, use the zext cast value. 2071 return ZExt; 2072 } 2073 2074 /// Process the given Ops list, which is a list of operands to be added under 2075 /// the given scale, update the given map. This is a helper function for 2076 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2077 /// that would form an add expression like this: 2078 /// 2079 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2080 /// 2081 /// where A and B are constants, update the map with these values: 2082 /// 2083 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2084 /// 2085 /// and add 13 + A*B*29 to AccumulatedConstant. 2086 /// This will allow getAddRecExpr to produce this: 2087 /// 2088 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2089 /// 2090 /// This form often exposes folding opportunities that are hidden in 2091 /// the original operand list. 2092 /// 2093 /// Return true iff it appears that any interesting folding opportunities 2094 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2095 /// the common case where no interesting opportunities are present, and 2096 /// is also used as a check to avoid infinite recursion. 2097 static bool 2098 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2099 SmallVectorImpl<const SCEV *> &NewOps, 2100 APInt &AccumulatedConstant, 2101 const SCEV *const *Ops, size_t NumOperands, 2102 const APInt &Scale, 2103 ScalarEvolution &SE) { 2104 bool Interesting = false; 2105 2106 // Iterate over the add operands. They are sorted, with constants first. 2107 unsigned i = 0; 2108 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2109 ++i; 2110 // Pull a buried constant out to the outside. 2111 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2112 Interesting = true; 2113 AccumulatedConstant += Scale * C->getAPInt(); 2114 } 2115 2116 // Next comes everything else. We're especially interested in multiplies 2117 // here, but they're in the middle, so just visit the rest with one loop. 2118 for (; i != NumOperands; ++i) { 2119 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2120 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2121 APInt NewScale = 2122 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2123 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2124 // A multiplication of a constant with another add; recurse. 2125 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2126 Interesting |= 2127 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2128 Add->op_begin(), Add->getNumOperands(), 2129 NewScale, SE); 2130 } else { 2131 // A multiplication of a constant with some other value. Update 2132 // the map. 2133 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2134 const SCEV *Key = SE.getMulExpr(MulOps); 2135 auto Pair = M.insert({Key, NewScale}); 2136 if (Pair.second) { 2137 NewOps.push_back(Pair.first->first); 2138 } else { 2139 Pair.first->second += NewScale; 2140 // The map already had an entry for this value, which may indicate 2141 // a folding opportunity. 2142 Interesting = true; 2143 } 2144 } 2145 } else { 2146 // An ordinary operand. Update the map. 2147 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2148 M.insert({Ops[i], Scale}); 2149 if (Pair.second) { 2150 NewOps.push_back(Pair.first->first); 2151 } else { 2152 Pair.first->second += Scale; 2153 // The map already had an entry for this value, which may indicate 2154 // a folding opportunity. 2155 Interesting = true; 2156 } 2157 } 2158 } 2159 2160 return Interesting; 2161 } 2162 2163 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2164 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2165 // can't-overflow flags for the operation if possible. 2166 static SCEV::NoWrapFlags 2167 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2168 const SmallVectorImpl<const SCEV *> &Ops, 2169 SCEV::NoWrapFlags Flags) { 2170 using namespace std::placeholders; 2171 2172 using OBO = OverflowingBinaryOperator; 2173 2174 bool CanAnalyze = 2175 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2176 (void)CanAnalyze; 2177 assert(CanAnalyze && "don't call from other places!"); 2178 2179 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2180 SCEV::NoWrapFlags SignOrUnsignWrap = 2181 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2182 2183 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2184 auto IsKnownNonNegative = [&](const SCEV *S) { 2185 return SE->isKnownNonNegative(S); 2186 }; 2187 2188 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2189 Flags = 2190 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2191 2192 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2193 2194 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 2195 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 2196 2197 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2198 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2199 2200 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2201 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2202 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2203 Instruction::Add, C, OBO::NoSignedWrap); 2204 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2205 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2206 } 2207 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2208 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2209 Instruction::Add, C, OBO::NoUnsignedWrap); 2210 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2211 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2212 } 2213 } 2214 2215 return Flags; 2216 } 2217 2218 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2219 if (!isLoopInvariant(S, L)) 2220 return false; 2221 // If a value depends on a SCEVUnknown which is defined after the loop, we 2222 // conservatively assume that we cannot calculate it at the loop's entry. 2223 struct FindDominatedSCEVUnknown { 2224 bool Found = false; 2225 const Loop *L; 2226 DominatorTree &DT; 2227 LoopInfo &LI; 2228 2229 FindDominatedSCEVUnknown(const Loop *L, DominatorTree &DT, LoopInfo &LI) 2230 : L(L), DT(DT), LI(LI) {} 2231 2232 bool checkSCEVUnknown(const SCEVUnknown *SU) { 2233 if (auto *I = dyn_cast<Instruction>(SU->getValue())) { 2234 if (DT.dominates(L->getHeader(), I->getParent())) 2235 Found = true; 2236 else 2237 assert(DT.dominates(I->getParent(), L->getHeader()) && 2238 "No dominance relationship between SCEV and loop?"); 2239 } 2240 return false; 2241 } 2242 2243 bool follow(const SCEV *S) { 2244 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 2245 case scConstant: 2246 return false; 2247 case scAddRecExpr: 2248 case scTruncate: 2249 case scZeroExtend: 2250 case scSignExtend: 2251 case scAddExpr: 2252 case scMulExpr: 2253 case scUMaxExpr: 2254 case scSMaxExpr: 2255 case scUDivExpr: 2256 return true; 2257 case scUnknown: 2258 return checkSCEVUnknown(cast<SCEVUnknown>(S)); 2259 case scCouldNotCompute: 2260 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2261 } 2262 return false; 2263 } 2264 2265 bool isDone() { return Found; } 2266 }; 2267 2268 FindDominatedSCEVUnknown FSU(L, DT, LI); 2269 SCEVTraversal<FindDominatedSCEVUnknown> ST(FSU); 2270 ST.visitAll(S); 2271 return !FSU.Found; 2272 } 2273 2274 /// Get a canonical add expression, or something simpler if possible. 2275 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2276 SCEV::NoWrapFlags Flags, 2277 unsigned Depth) { 2278 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2279 "only nuw or nsw allowed"); 2280 assert(!Ops.empty() && "Cannot get empty add!"); 2281 if (Ops.size() == 1) return Ops[0]; 2282 #ifndef NDEBUG 2283 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2284 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2285 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2286 "SCEVAddExpr operand types don't match!"); 2287 #endif 2288 2289 // Sort by complexity, this groups all similar expression types together. 2290 GroupByComplexity(Ops, &LI, DT); 2291 2292 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2293 2294 // If there are any constants, fold them together. 2295 unsigned Idx = 0; 2296 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2297 ++Idx; 2298 assert(Idx < Ops.size()); 2299 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2300 // We found two constants, fold them together! 2301 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2302 if (Ops.size() == 2) return Ops[0]; 2303 Ops.erase(Ops.begin()+1); // Erase the folded element 2304 LHSC = cast<SCEVConstant>(Ops[0]); 2305 } 2306 2307 // If we are left with a constant zero being added, strip it off. 2308 if (LHSC->getValue()->isZero()) { 2309 Ops.erase(Ops.begin()); 2310 --Idx; 2311 } 2312 2313 if (Ops.size() == 1) return Ops[0]; 2314 } 2315 2316 // Limit recursion calls depth. 2317 if (Depth > MaxArithDepth) 2318 return getOrCreateAddExpr(Ops, Flags); 2319 2320 // Okay, check to see if the same value occurs in the operand list more than 2321 // once. If so, merge them together into an multiply expression. Since we 2322 // sorted the list, these values are required to be adjacent. 2323 Type *Ty = Ops[0]->getType(); 2324 bool FoundMatch = false; 2325 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2326 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2327 // Scan ahead to count how many equal operands there are. 2328 unsigned Count = 2; 2329 while (i+Count != e && Ops[i+Count] == Ops[i]) 2330 ++Count; 2331 // Merge the values into a multiply. 2332 const SCEV *Scale = getConstant(Ty, Count); 2333 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2334 if (Ops.size() == Count) 2335 return Mul; 2336 Ops[i] = Mul; 2337 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2338 --i; e -= Count - 1; 2339 FoundMatch = true; 2340 } 2341 if (FoundMatch) 2342 return getAddExpr(Ops, Flags); 2343 2344 // Check for truncates. If all the operands are truncated from the same 2345 // type, see if factoring out the truncate would permit the result to be 2346 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2347 // if the contents of the resulting outer trunc fold to something simple. 2348 auto FindTruncSrcType = [&]() -> Type * { 2349 // We're ultimately looking to fold an addrec of truncs and muls of only 2350 // constants and truncs, so if we find any other types of SCEV 2351 // as operands of the addrec then we bail and return nullptr here. 2352 // Otherwise, we return the type of the operand of a trunc that we find. 2353 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2354 return T->getOperand()->getType(); 2355 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2356 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2357 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2358 return T->getOperand()->getType(); 2359 } 2360 return nullptr; 2361 }; 2362 if (auto *SrcType = FindTruncSrcType()) { 2363 SmallVector<const SCEV *, 8> LargeOps; 2364 bool Ok = true; 2365 // Check all the operands to see if they can be represented in the 2366 // source type of the truncate. 2367 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2368 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2369 if (T->getOperand()->getType() != SrcType) { 2370 Ok = false; 2371 break; 2372 } 2373 LargeOps.push_back(T->getOperand()); 2374 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2375 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2376 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2377 SmallVector<const SCEV *, 8> LargeMulOps; 2378 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2379 if (const SCEVTruncateExpr *T = 2380 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2381 if (T->getOperand()->getType() != SrcType) { 2382 Ok = false; 2383 break; 2384 } 2385 LargeMulOps.push_back(T->getOperand()); 2386 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2387 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2388 } else { 2389 Ok = false; 2390 break; 2391 } 2392 } 2393 if (Ok) 2394 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2395 } else { 2396 Ok = false; 2397 break; 2398 } 2399 } 2400 if (Ok) { 2401 // Evaluate the expression in the larger type. 2402 const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1); 2403 // If it folds to something simple, use it. Otherwise, don't. 2404 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2405 return getTruncateExpr(Fold, Ty); 2406 } 2407 } 2408 2409 // Skip past any other cast SCEVs. 2410 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2411 ++Idx; 2412 2413 // If there are add operands they would be next. 2414 if (Idx < Ops.size()) { 2415 bool DeletedAdd = false; 2416 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2417 if (Ops.size() > AddOpsInlineThreshold || 2418 Add->getNumOperands() > AddOpsInlineThreshold) 2419 break; 2420 // If we have an add, expand the add operands onto the end of the operands 2421 // list. 2422 Ops.erase(Ops.begin()+Idx); 2423 Ops.append(Add->op_begin(), Add->op_end()); 2424 DeletedAdd = true; 2425 } 2426 2427 // If we deleted at least one add, we added operands to the end of the list, 2428 // and they are not necessarily sorted. Recurse to resort and resimplify 2429 // any operands we just acquired. 2430 if (DeletedAdd) 2431 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2432 } 2433 2434 // Skip over the add expression until we get to a multiply. 2435 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2436 ++Idx; 2437 2438 // Check to see if there are any folding opportunities present with 2439 // operands multiplied by constant values. 2440 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2441 uint64_t BitWidth = getTypeSizeInBits(Ty); 2442 DenseMap<const SCEV *, APInt> M; 2443 SmallVector<const SCEV *, 8> NewOps; 2444 APInt AccumulatedConstant(BitWidth, 0); 2445 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2446 Ops.data(), Ops.size(), 2447 APInt(BitWidth, 1), *this)) { 2448 struct APIntCompare { 2449 bool operator()(const APInt &LHS, const APInt &RHS) const { 2450 return LHS.ult(RHS); 2451 } 2452 }; 2453 2454 // Some interesting folding opportunity is present, so its worthwhile to 2455 // re-generate the operands list. Group the operands by constant scale, 2456 // to avoid multiplying by the same constant scale multiple times. 2457 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2458 for (const SCEV *NewOp : NewOps) 2459 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2460 // Re-generate the operands list. 2461 Ops.clear(); 2462 if (AccumulatedConstant != 0) 2463 Ops.push_back(getConstant(AccumulatedConstant)); 2464 for (auto &MulOp : MulOpLists) 2465 if (MulOp.first != 0) 2466 Ops.push_back(getMulExpr( 2467 getConstant(MulOp.first), 2468 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2469 SCEV::FlagAnyWrap, Depth + 1)); 2470 if (Ops.empty()) 2471 return getZero(Ty); 2472 if (Ops.size() == 1) 2473 return Ops[0]; 2474 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2475 } 2476 } 2477 2478 // If we are adding something to a multiply expression, make sure the 2479 // something is not already an operand of the multiply. If so, merge it into 2480 // the multiply. 2481 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2482 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2483 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2484 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2485 if (isa<SCEVConstant>(MulOpSCEV)) 2486 continue; 2487 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2488 if (MulOpSCEV == Ops[AddOp]) { 2489 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2490 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2491 if (Mul->getNumOperands() != 2) { 2492 // If the multiply has more than two operands, we must get the 2493 // Y*Z term. 2494 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2495 Mul->op_begin()+MulOp); 2496 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2497 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2498 } 2499 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2500 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2501 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2502 SCEV::FlagAnyWrap, Depth + 1); 2503 if (Ops.size() == 2) return OuterMul; 2504 if (AddOp < Idx) { 2505 Ops.erase(Ops.begin()+AddOp); 2506 Ops.erase(Ops.begin()+Idx-1); 2507 } else { 2508 Ops.erase(Ops.begin()+Idx); 2509 Ops.erase(Ops.begin()+AddOp-1); 2510 } 2511 Ops.push_back(OuterMul); 2512 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2513 } 2514 2515 // Check this multiply against other multiplies being added together. 2516 for (unsigned OtherMulIdx = Idx+1; 2517 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2518 ++OtherMulIdx) { 2519 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2520 // If MulOp occurs in OtherMul, we can fold the two multiplies 2521 // together. 2522 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2523 OMulOp != e; ++OMulOp) 2524 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2525 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2526 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2527 if (Mul->getNumOperands() != 2) { 2528 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2529 Mul->op_begin()+MulOp); 2530 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2531 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2532 } 2533 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2534 if (OtherMul->getNumOperands() != 2) { 2535 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2536 OtherMul->op_begin()+OMulOp); 2537 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2538 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2539 } 2540 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2541 const SCEV *InnerMulSum = 2542 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2543 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2544 SCEV::FlagAnyWrap, Depth + 1); 2545 if (Ops.size() == 2) return OuterMul; 2546 Ops.erase(Ops.begin()+Idx); 2547 Ops.erase(Ops.begin()+OtherMulIdx-1); 2548 Ops.push_back(OuterMul); 2549 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2550 } 2551 } 2552 } 2553 } 2554 2555 // If there are any add recurrences in the operands list, see if any other 2556 // added values are loop invariant. If so, we can fold them into the 2557 // recurrence. 2558 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2559 ++Idx; 2560 2561 // Scan over all recurrences, trying to fold loop invariants into them. 2562 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2563 // Scan all of the other operands to this add and add them to the vector if 2564 // they are loop invariant w.r.t. the recurrence. 2565 SmallVector<const SCEV *, 8> LIOps; 2566 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2567 const Loop *AddRecLoop = AddRec->getLoop(); 2568 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2569 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2570 LIOps.push_back(Ops[i]); 2571 Ops.erase(Ops.begin()+i); 2572 --i; --e; 2573 } 2574 2575 // If we found some loop invariants, fold them into the recurrence. 2576 if (!LIOps.empty()) { 2577 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2578 LIOps.push_back(AddRec->getStart()); 2579 2580 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2581 AddRec->op_end()); 2582 // This follows from the fact that the no-wrap flags on the outer add 2583 // expression are applicable on the 0th iteration, when the add recurrence 2584 // will be equal to its start value. 2585 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2586 2587 // Build the new addrec. Propagate the NUW and NSW flags if both the 2588 // outer add and the inner addrec are guaranteed to have no overflow. 2589 // Always propagate NW. 2590 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2591 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2592 2593 // If all of the other operands were loop invariant, we are done. 2594 if (Ops.size() == 1) return NewRec; 2595 2596 // Otherwise, add the folded AddRec by the non-invariant parts. 2597 for (unsigned i = 0;; ++i) 2598 if (Ops[i] == AddRec) { 2599 Ops[i] = NewRec; 2600 break; 2601 } 2602 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2603 } 2604 2605 // Okay, if there weren't any loop invariants to be folded, check to see if 2606 // there are multiple AddRec's with the same loop induction variable being 2607 // added together. If so, we can fold them. 2608 for (unsigned OtherIdx = Idx+1; 2609 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2610 ++OtherIdx) { 2611 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2612 // so that the 1st found AddRecExpr is dominated by all others. 2613 assert(DT.dominates( 2614 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2615 AddRec->getLoop()->getHeader()) && 2616 "AddRecExprs are not sorted in reverse dominance order?"); 2617 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2618 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2619 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2620 AddRec->op_end()); 2621 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2622 ++OtherIdx) { 2623 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2624 if (OtherAddRec->getLoop() == AddRecLoop) { 2625 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2626 i != e; ++i) { 2627 if (i >= AddRecOps.size()) { 2628 AddRecOps.append(OtherAddRec->op_begin()+i, 2629 OtherAddRec->op_end()); 2630 break; 2631 } 2632 SmallVector<const SCEV *, 2> TwoOps = { 2633 AddRecOps[i], OtherAddRec->getOperand(i)}; 2634 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2635 } 2636 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2637 } 2638 } 2639 // Step size has changed, so we cannot guarantee no self-wraparound. 2640 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2641 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2642 } 2643 } 2644 2645 // Otherwise couldn't fold anything into this recurrence. Move onto the 2646 // next one. 2647 } 2648 2649 // Okay, it looks like we really DO need an add expr. Check to see if we 2650 // already have one, otherwise create a new one. 2651 return getOrCreateAddExpr(Ops, Flags); 2652 } 2653 2654 const SCEV * 2655 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2656 SCEV::NoWrapFlags Flags) { 2657 FoldingSetNodeID ID; 2658 ID.AddInteger(scAddExpr); 2659 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2660 ID.AddPointer(Ops[i]); 2661 void *IP = nullptr; 2662 SCEVAddExpr *S = 2663 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2664 if (!S) { 2665 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2666 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2667 S = new (SCEVAllocator) 2668 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2669 UniqueSCEVs.InsertNode(S, IP); 2670 addToLoopUseLists(S); 2671 } 2672 S->setNoWrapFlags(Flags); 2673 return S; 2674 } 2675 2676 const SCEV * 2677 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2678 SCEV::NoWrapFlags Flags) { 2679 FoldingSetNodeID ID; 2680 ID.AddInteger(scMulExpr); 2681 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2682 ID.AddPointer(Ops[i]); 2683 void *IP = nullptr; 2684 SCEVMulExpr *S = 2685 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2686 if (!S) { 2687 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2688 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2689 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2690 O, Ops.size()); 2691 UniqueSCEVs.InsertNode(S, IP); 2692 addToLoopUseLists(S); 2693 } 2694 S->setNoWrapFlags(Flags); 2695 return S; 2696 } 2697 2698 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2699 uint64_t k = i*j; 2700 if (j > 1 && k / j != i) Overflow = true; 2701 return k; 2702 } 2703 2704 /// Compute the result of "n choose k", the binomial coefficient. If an 2705 /// intermediate computation overflows, Overflow will be set and the return will 2706 /// be garbage. Overflow is not cleared on absence of overflow. 2707 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2708 // We use the multiplicative formula: 2709 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2710 // At each iteration, we take the n-th term of the numeral and divide by the 2711 // (k-n)th term of the denominator. This division will always produce an 2712 // integral result, and helps reduce the chance of overflow in the 2713 // intermediate computations. However, we can still overflow even when the 2714 // final result would fit. 2715 2716 if (n == 0 || n == k) return 1; 2717 if (k > n) return 0; 2718 2719 if (k > n/2) 2720 k = n-k; 2721 2722 uint64_t r = 1; 2723 for (uint64_t i = 1; i <= k; ++i) { 2724 r = umul_ov(r, n-(i-1), Overflow); 2725 r /= i; 2726 } 2727 return r; 2728 } 2729 2730 /// Determine if any of the operands in this SCEV are a constant or if 2731 /// any of the add or multiply expressions in this SCEV contain a constant. 2732 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2733 struct FindConstantInAddMulChain { 2734 bool FoundConstant = false; 2735 2736 bool follow(const SCEV *S) { 2737 FoundConstant |= isa<SCEVConstant>(S); 2738 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2739 } 2740 2741 bool isDone() const { 2742 return FoundConstant; 2743 } 2744 }; 2745 2746 FindConstantInAddMulChain F; 2747 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2748 ST.visitAll(StartExpr); 2749 return F.FoundConstant; 2750 } 2751 2752 /// Get a canonical multiply expression, or something simpler if possible. 2753 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2754 SCEV::NoWrapFlags Flags, 2755 unsigned Depth) { 2756 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2757 "only nuw or nsw allowed"); 2758 assert(!Ops.empty() && "Cannot get empty mul!"); 2759 if (Ops.size() == 1) return Ops[0]; 2760 #ifndef NDEBUG 2761 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2762 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2763 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2764 "SCEVMulExpr operand types don't match!"); 2765 #endif 2766 2767 // Sort by complexity, this groups all similar expression types together. 2768 GroupByComplexity(Ops, &LI, DT); 2769 2770 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2771 2772 // Limit recursion calls depth. 2773 if (Depth > MaxArithDepth) 2774 return getOrCreateMulExpr(Ops, Flags); 2775 2776 // If there are any constants, fold them together. 2777 unsigned Idx = 0; 2778 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2779 2780 // C1*(C2+V) -> C1*C2 + C1*V 2781 if (Ops.size() == 2) 2782 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2783 // If any of Add's ops are Adds or Muls with a constant, 2784 // apply this transformation as well. 2785 if (Add->getNumOperands() == 2) 2786 // TODO: There are some cases where this transformation is not 2787 // profitable, for example: 2788 // Add = (C0 + X) * Y + Z. 2789 // Maybe the scope of this transformation should be narrowed down. 2790 if (containsConstantInAddMulChain(Add)) 2791 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2792 SCEV::FlagAnyWrap, Depth + 1), 2793 getMulExpr(LHSC, Add->getOperand(1), 2794 SCEV::FlagAnyWrap, Depth + 1), 2795 SCEV::FlagAnyWrap, Depth + 1); 2796 2797 ++Idx; 2798 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2799 // We found two constants, fold them together! 2800 ConstantInt *Fold = 2801 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2802 Ops[0] = getConstant(Fold); 2803 Ops.erase(Ops.begin()+1); // Erase the folded element 2804 if (Ops.size() == 1) return Ops[0]; 2805 LHSC = cast<SCEVConstant>(Ops[0]); 2806 } 2807 2808 // If we are left with a constant one being multiplied, strip it off. 2809 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2810 Ops.erase(Ops.begin()); 2811 --Idx; 2812 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2813 // If we have a multiply of zero, it will always be zero. 2814 return Ops[0]; 2815 } else if (Ops[0]->isAllOnesValue()) { 2816 // If we have a mul by -1 of an add, try distributing the -1 among the 2817 // add operands. 2818 if (Ops.size() == 2) { 2819 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2820 SmallVector<const SCEV *, 4> NewOps; 2821 bool AnyFolded = false; 2822 for (const SCEV *AddOp : Add->operands()) { 2823 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2824 Depth + 1); 2825 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2826 NewOps.push_back(Mul); 2827 } 2828 if (AnyFolded) 2829 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2830 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2831 // Negation preserves a recurrence's no self-wrap property. 2832 SmallVector<const SCEV *, 4> Operands; 2833 for (const SCEV *AddRecOp : AddRec->operands()) 2834 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2835 Depth + 1)); 2836 2837 return getAddRecExpr(Operands, AddRec->getLoop(), 2838 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2839 } 2840 } 2841 } 2842 2843 if (Ops.size() == 1) 2844 return Ops[0]; 2845 } 2846 2847 // Skip over the add expression until we get to a multiply. 2848 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2849 ++Idx; 2850 2851 // If there are mul operands inline them all into this expression. 2852 if (Idx < Ops.size()) { 2853 bool DeletedMul = false; 2854 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2855 if (Ops.size() > MulOpsInlineThreshold) 2856 break; 2857 // If we have an mul, expand the mul operands onto the end of the 2858 // operands list. 2859 Ops.erase(Ops.begin()+Idx); 2860 Ops.append(Mul->op_begin(), Mul->op_end()); 2861 DeletedMul = true; 2862 } 2863 2864 // If we deleted at least one mul, we added operands to the end of the 2865 // list, and they are not necessarily sorted. Recurse to resort and 2866 // resimplify any operands we just acquired. 2867 if (DeletedMul) 2868 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2869 } 2870 2871 // If there are any add recurrences in the operands list, see if any other 2872 // added values are loop invariant. If so, we can fold them into the 2873 // recurrence. 2874 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2875 ++Idx; 2876 2877 // Scan over all recurrences, trying to fold loop invariants into them. 2878 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2879 // Scan all of the other operands to this mul and add them to the vector 2880 // if they are loop invariant w.r.t. the recurrence. 2881 SmallVector<const SCEV *, 8> LIOps; 2882 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2883 const Loop *AddRecLoop = AddRec->getLoop(); 2884 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2885 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2886 LIOps.push_back(Ops[i]); 2887 Ops.erase(Ops.begin()+i); 2888 --i; --e; 2889 } 2890 2891 // If we found some loop invariants, fold them into the recurrence. 2892 if (!LIOps.empty()) { 2893 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2894 SmallVector<const SCEV *, 4> NewOps; 2895 NewOps.reserve(AddRec->getNumOperands()); 2896 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2897 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2898 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2899 SCEV::FlagAnyWrap, Depth + 1)); 2900 2901 // Build the new addrec. Propagate the NUW and NSW flags if both the 2902 // outer mul and the inner addrec are guaranteed to have no overflow. 2903 // 2904 // No self-wrap cannot be guaranteed after changing the step size, but 2905 // will be inferred if either NUW or NSW is true. 2906 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2907 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2908 2909 // If all of the other operands were loop invariant, we are done. 2910 if (Ops.size() == 1) return NewRec; 2911 2912 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2913 for (unsigned i = 0;; ++i) 2914 if (Ops[i] == AddRec) { 2915 Ops[i] = NewRec; 2916 break; 2917 } 2918 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2919 } 2920 2921 // Okay, if there weren't any loop invariants to be folded, check to see 2922 // if there are multiple AddRec's with the same loop induction variable 2923 // being multiplied together. If so, we can fold them. 2924 2925 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2926 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2927 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2928 // ]]],+,...up to x=2n}. 2929 // Note that the arguments to choose() are always integers with values 2930 // known at compile time, never SCEV objects. 2931 // 2932 // The implementation avoids pointless extra computations when the two 2933 // addrec's are of different length (mathematically, it's equivalent to 2934 // an infinite stream of zeros on the right). 2935 bool OpsModified = false; 2936 for (unsigned OtherIdx = Idx+1; 2937 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2938 ++OtherIdx) { 2939 const SCEVAddRecExpr *OtherAddRec = 2940 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2941 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2942 continue; 2943 2944 // Limit max number of arguments to avoid creation of unreasonably big 2945 // SCEVAddRecs with very complex operands. 2946 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 2947 MaxAddRecSize) 2948 continue; 2949 2950 bool Overflow = false; 2951 Type *Ty = AddRec->getType(); 2952 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2953 SmallVector<const SCEV*, 7> AddRecOps; 2954 for (int x = 0, xe = AddRec->getNumOperands() + 2955 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2956 const SCEV *Term = getZero(Ty); 2957 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2958 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2959 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2960 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2961 z < ze && !Overflow; ++z) { 2962 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2963 uint64_t Coeff; 2964 if (LargerThan64Bits) 2965 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2966 else 2967 Coeff = Coeff1*Coeff2; 2968 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2969 const SCEV *Term1 = AddRec->getOperand(y-z); 2970 const SCEV *Term2 = OtherAddRec->getOperand(z); 2971 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2, 2972 SCEV::FlagAnyWrap, Depth + 1), 2973 SCEV::FlagAnyWrap, Depth + 1); 2974 } 2975 } 2976 AddRecOps.push_back(Term); 2977 } 2978 if (!Overflow) { 2979 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2980 SCEV::FlagAnyWrap); 2981 if (Ops.size() == 2) return NewAddRec; 2982 Ops[Idx] = NewAddRec; 2983 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2984 OpsModified = true; 2985 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2986 if (!AddRec) 2987 break; 2988 } 2989 } 2990 if (OpsModified) 2991 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2992 2993 // Otherwise couldn't fold anything into this recurrence. Move onto the 2994 // next one. 2995 } 2996 2997 // Okay, it looks like we really DO need an mul expr. Check to see if we 2998 // already have one, otherwise create a new one. 2999 return getOrCreateMulExpr(Ops, Flags); 3000 } 3001 3002 /// Represents an unsigned remainder expression based on unsigned division. 3003 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3004 const SCEV *RHS) { 3005 assert(getEffectiveSCEVType(LHS->getType()) == 3006 getEffectiveSCEVType(RHS->getType()) && 3007 "SCEVURemExpr operand types don't match!"); 3008 3009 // Short-circuit easy cases 3010 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3011 // If constant is one, the result is trivial 3012 if (RHSC->getValue()->isOne()) 3013 return getZero(LHS->getType()); // X urem 1 --> 0 3014 3015 // If constant is a power of two, fold into a zext(trunc(LHS)). 3016 if (RHSC->getAPInt().isPowerOf2()) { 3017 Type *FullTy = LHS->getType(); 3018 Type *TruncTy = 3019 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3020 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3021 } 3022 } 3023 3024 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3025 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3026 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3027 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3028 } 3029 3030 /// Get a canonical unsigned division expression, or something simpler if 3031 /// possible. 3032 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3033 const SCEV *RHS) { 3034 assert(getEffectiveSCEVType(LHS->getType()) == 3035 getEffectiveSCEVType(RHS->getType()) && 3036 "SCEVUDivExpr operand types don't match!"); 3037 3038 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3039 if (RHSC->getValue()->isOne()) 3040 return LHS; // X udiv 1 --> x 3041 // If the denominator is zero, the result of the udiv is undefined. Don't 3042 // try to analyze it, because the resolution chosen here may differ from 3043 // the resolution chosen in other parts of the compiler. 3044 if (!RHSC->getValue()->isZero()) { 3045 // Determine if the division can be folded into the operands of 3046 // its operands. 3047 // TODO: Generalize this to non-constants by using known-bits information. 3048 Type *Ty = LHS->getType(); 3049 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3050 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3051 // For non-power-of-two values, effectively round the value up to the 3052 // nearest power of two. 3053 if (!RHSC->getAPInt().isPowerOf2()) 3054 ++MaxShiftAmt; 3055 IntegerType *ExtTy = 3056 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3057 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3058 if (const SCEVConstant *Step = 3059 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3060 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3061 const APInt &StepInt = Step->getAPInt(); 3062 const APInt &DivInt = RHSC->getAPInt(); 3063 if (!StepInt.urem(DivInt) && 3064 getZeroExtendExpr(AR, ExtTy) == 3065 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3066 getZeroExtendExpr(Step, ExtTy), 3067 AR->getLoop(), SCEV::FlagAnyWrap)) { 3068 SmallVector<const SCEV *, 4> Operands; 3069 for (const SCEV *Op : AR->operands()) 3070 Operands.push_back(getUDivExpr(Op, RHS)); 3071 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3072 } 3073 /// Get a canonical UDivExpr for a recurrence. 3074 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3075 // We can currently only fold X%N if X is constant. 3076 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3077 if (StartC && !DivInt.urem(StepInt) && 3078 getZeroExtendExpr(AR, ExtTy) == 3079 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3080 getZeroExtendExpr(Step, ExtTy), 3081 AR->getLoop(), SCEV::FlagAnyWrap)) { 3082 const APInt &StartInt = StartC->getAPInt(); 3083 const APInt &StartRem = StartInt.urem(StepInt); 3084 if (StartRem != 0) 3085 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 3086 AR->getLoop(), SCEV::FlagNW); 3087 } 3088 } 3089 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3090 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3091 SmallVector<const SCEV *, 4> Operands; 3092 for (const SCEV *Op : M->operands()) 3093 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3094 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3095 // Find an operand that's safely divisible. 3096 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3097 const SCEV *Op = M->getOperand(i); 3098 const SCEV *Div = getUDivExpr(Op, RHSC); 3099 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3100 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3101 M->op_end()); 3102 Operands[i] = Div; 3103 return getMulExpr(Operands); 3104 } 3105 } 3106 } 3107 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3108 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3109 SmallVector<const SCEV *, 4> Operands; 3110 for (const SCEV *Op : A->operands()) 3111 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3112 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3113 Operands.clear(); 3114 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3115 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3116 if (isa<SCEVUDivExpr>(Op) || 3117 getMulExpr(Op, RHS) != A->getOperand(i)) 3118 break; 3119 Operands.push_back(Op); 3120 } 3121 if (Operands.size() == A->getNumOperands()) 3122 return getAddExpr(Operands); 3123 } 3124 } 3125 3126 // Fold if both operands are constant. 3127 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3128 Constant *LHSCV = LHSC->getValue(); 3129 Constant *RHSCV = RHSC->getValue(); 3130 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3131 RHSCV))); 3132 } 3133 } 3134 } 3135 3136 FoldingSetNodeID ID; 3137 ID.AddInteger(scUDivExpr); 3138 ID.AddPointer(LHS); 3139 ID.AddPointer(RHS); 3140 void *IP = nullptr; 3141 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3142 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3143 LHS, RHS); 3144 UniqueSCEVs.InsertNode(S, IP); 3145 addToLoopUseLists(S); 3146 return S; 3147 } 3148 3149 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3150 APInt A = C1->getAPInt().abs(); 3151 APInt B = C2->getAPInt().abs(); 3152 uint32_t ABW = A.getBitWidth(); 3153 uint32_t BBW = B.getBitWidth(); 3154 3155 if (ABW > BBW) 3156 B = B.zext(ABW); 3157 else if (ABW < BBW) 3158 A = A.zext(BBW); 3159 3160 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3161 } 3162 3163 /// Get a canonical unsigned division expression, or something simpler if 3164 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3165 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3166 /// it's not exact because the udiv may be clearing bits. 3167 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3168 const SCEV *RHS) { 3169 // TODO: we could try to find factors in all sorts of things, but for now we 3170 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3171 // end of this file for inspiration. 3172 3173 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3174 if (!Mul || !Mul->hasNoUnsignedWrap()) 3175 return getUDivExpr(LHS, RHS); 3176 3177 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3178 // If the mulexpr multiplies by a constant, then that constant must be the 3179 // first element of the mulexpr. 3180 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3181 if (LHSCst == RHSCst) { 3182 SmallVector<const SCEV *, 2> Operands; 3183 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3184 return getMulExpr(Operands); 3185 } 3186 3187 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3188 // that there's a factor provided by one of the other terms. We need to 3189 // check. 3190 APInt Factor = gcd(LHSCst, RHSCst); 3191 if (!Factor.isIntN(1)) { 3192 LHSCst = 3193 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3194 RHSCst = 3195 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3196 SmallVector<const SCEV *, 2> Operands; 3197 Operands.push_back(LHSCst); 3198 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3199 LHS = getMulExpr(Operands); 3200 RHS = RHSCst; 3201 Mul = dyn_cast<SCEVMulExpr>(LHS); 3202 if (!Mul) 3203 return getUDivExactExpr(LHS, RHS); 3204 } 3205 } 3206 } 3207 3208 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3209 if (Mul->getOperand(i) == RHS) { 3210 SmallVector<const SCEV *, 2> Operands; 3211 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3212 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3213 return getMulExpr(Operands); 3214 } 3215 } 3216 3217 return getUDivExpr(LHS, RHS); 3218 } 3219 3220 /// Get an add recurrence expression for the specified loop. Simplify the 3221 /// expression as much as possible. 3222 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3223 const Loop *L, 3224 SCEV::NoWrapFlags Flags) { 3225 SmallVector<const SCEV *, 4> Operands; 3226 Operands.push_back(Start); 3227 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3228 if (StepChrec->getLoop() == L) { 3229 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3230 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3231 } 3232 3233 Operands.push_back(Step); 3234 return getAddRecExpr(Operands, L, Flags); 3235 } 3236 3237 /// Get an add recurrence expression for the specified loop. Simplify the 3238 /// expression as much as possible. 3239 const SCEV * 3240 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3241 const Loop *L, SCEV::NoWrapFlags Flags) { 3242 if (Operands.size() == 1) return Operands[0]; 3243 #ifndef NDEBUG 3244 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3245 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3246 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3247 "SCEVAddRecExpr operand types don't match!"); 3248 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3249 assert(isLoopInvariant(Operands[i], L) && 3250 "SCEVAddRecExpr operand is not loop-invariant!"); 3251 #endif 3252 3253 if (Operands.back()->isZero()) { 3254 Operands.pop_back(); 3255 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3256 } 3257 3258 // It's tempting to want to call getMaxBackedgeTakenCount count here and 3259 // use that information to infer NUW and NSW flags. However, computing a 3260 // BE count requires calling getAddRecExpr, so we may not yet have a 3261 // meaningful BE count at this point (and if we don't, we'd be stuck 3262 // with a SCEVCouldNotCompute as the cached BE count). 3263 3264 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3265 3266 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3267 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3268 const Loop *NestedLoop = NestedAR->getLoop(); 3269 if (L->contains(NestedLoop) 3270 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3271 : (!NestedLoop->contains(L) && 3272 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3273 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3274 NestedAR->op_end()); 3275 Operands[0] = NestedAR->getStart(); 3276 // AddRecs require their operands be loop-invariant with respect to their 3277 // loops. Don't perform this transformation if it would break this 3278 // requirement. 3279 bool AllInvariant = all_of( 3280 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3281 3282 if (AllInvariant) { 3283 // Create a recurrence for the outer loop with the same step size. 3284 // 3285 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3286 // inner recurrence has the same property. 3287 SCEV::NoWrapFlags OuterFlags = 3288 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3289 3290 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3291 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3292 return isLoopInvariant(Op, NestedLoop); 3293 }); 3294 3295 if (AllInvariant) { 3296 // Ok, both add recurrences are valid after the transformation. 3297 // 3298 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3299 // the outer recurrence has the same property. 3300 SCEV::NoWrapFlags InnerFlags = 3301 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3302 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3303 } 3304 } 3305 // Reset Operands to its original state. 3306 Operands[0] = NestedAR; 3307 } 3308 } 3309 3310 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3311 // already have one, otherwise create a new one. 3312 FoldingSetNodeID ID; 3313 ID.AddInteger(scAddRecExpr); 3314 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3315 ID.AddPointer(Operands[i]); 3316 ID.AddPointer(L); 3317 void *IP = nullptr; 3318 SCEVAddRecExpr *S = 3319 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3320 if (!S) { 3321 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 3322 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 3323 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 3324 O, Operands.size(), L); 3325 UniqueSCEVs.InsertNode(S, IP); 3326 addToLoopUseLists(S); 3327 } 3328 S->setNoWrapFlags(Flags); 3329 return S; 3330 } 3331 3332 const SCEV * 3333 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3334 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3335 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3336 // getSCEV(Base)->getType() has the same address space as Base->getType() 3337 // because SCEV::getType() preserves the address space. 3338 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3339 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3340 // instruction to its SCEV, because the Instruction may be guarded by control 3341 // flow and the no-overflow bits may not be valid for the expression in any 3342 // context. This can be fixed similarly to how these flags are handled for 3343 // adds. 3344 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3345 : SCEV::FlagAnyWrap; 3346 3347 const SCEV *TotalOffset = getZero(IntPtrTy); 3348 // The array size is unimportant. The first thing we do on CurTy is getting 3349 // its element type. 3350 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3351 for (const SCEV *IndexExpr : IndexExprs) { 3352 // Compute the (potentially symbolic) offset in bytes for this index. 3353 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3354 // For a struct, add the member offset. 3355 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3356 unsigned FieldNo = Index->getZExtValue(); 3357 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3358 3359 // Add the field offset to the running total offset. 3360 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3361 3362 // Update CurTy to the type of the field at Index. 3363 CurTy = STy->getTypeAtIndex(Index); 3364 } else { 3365 // Update CurTy to its element type. 3366 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3367 // For an array, add the element offset, explicitly scaled. 3368 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3369 // Getelementptr indices are signed. 3370 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3371 3372 // Multiply the index by the element size to compute the element offset. 3373 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3374 3375 // Add the element offset to the running total offset. 3376 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3377 } 3378 } 3379 3380 // Add the total offset from all the GEP indices to the base. 3381 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3382 } 3383 3384 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3385 const SCEV *RHS) { 3386 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3387 return getSMaxExpr(Ops); 3388 } 3389 3390 const SCEV * 3391 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3392 assert(!Ops.empty() && "Cannot get empty smax!"); 3393 if (Ops.size() == 1) return Ops[0]; 3394 #ifndef NDEBUG 3395 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3396 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3397 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3398 "SCEVSMaxExpr operand types don't match!"); 3399 #endif 3400 3401 // Sort by complexity, this groups all similar expression types together. 3402 GroupByComplexity(Ops, &LI, DT); 3403 3404 // If there are any constants, fold them together. 3405 unsigned Idx = 0; 3406 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3407 ++Idx; 3408 assert(Idx < Ops.size()); 3409 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3410 // We found two constants, fold them together! 3411 ConstantInt *Fold = ConstantInt::get( 3412 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3413 Ops[0] = getConstant(Fold); 3414 Ops.erase(Ops.begin()+1); // Erase the folded element 3415 if (Ops.size() == 1) return Ops[0]; 3416 LHSC = cast<SCEVConstant>(Ops[0]); 3417 } 3418 3419 // If we are left with a constant minimum-int, strip it off. 3420 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3421 Ops.erase(Ops.begin()); 3422 --Idx; 3423 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3424 // If we have an smax with a constant maximum-int, it will always be 3425 // maximum-int. 3426 return Ops[0]; 3427 } 3428 3429 if (Ops.size() == 1) return Ops[0]; 3430 } 3431 3432 // Find the first SMax 3433 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3434 ++Idx; 3435 3436 // Check to see if one of the operands is an SMax. If so, expand its operands 3437 // onto our operand list, and recurse to simplify. 3438 if (Idx < Ops.size()) { 3439 bool DeletedSMax = false; 3440 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3441 Ops.erase(Ops.begin()+Idx); 3442 Ops.append(SMax->op_begin(), SMax->op_end()); 3443 DeletedSMax = true; 3444 } 3445 3446 if (DeletedSMax) 3447 return getSMaxExpr(Ops); 3448 } 3449 3450 // Okay, check to see if the same value occurs in the operand list twice. If 3451 // so, delete one. Since we sorted the list, these values are required to 3452 // be adjacent. 3453 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3454 // X smax Y smax Y --> X smax Y 3455 // X smax Y --> X, if X is always greater than Y 3456 if (Ops[i] == Ops[i+1] || 3457 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3458 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3459 --i; --e; 3460 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3461 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3462 --i; --e; 3463 } 3464 3465 if (Ops.size() == 1) return Ops[0]; 3466 3467 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3468 3469 // Okay, it looks like we really DO need an smax expr. Check to see if we 3470 // already have one, otherwise create a new one. 3471 FoldingSetNodeID ID; 3472 ID.AddInteger(scSMaxExpr); 3473 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3474 ID.AddPointer(Ops[i]); 3475 void *IP = nullptr; 3476 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3477 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3478 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3479 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3480 O, Ops.size()); 3481 UniqueSCEVs.InsertNode(S, IP); 3482 addToLoopUseLists(S); 3483 return S; 3484 } 3485 3486 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3487 const SCEV *RHS) { 3488 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3489 return getUMaxExpr(Ops); 3490 } 3491 3492 const SCEV * 3493 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3494 assert(!Ops.empty() && "Cannot get empty umax!"); 3495 if (Ops.size() == 1) return Ops[0]; 3496 #ifndef NDEBUG 3497 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3498 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3499 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3500 "SCEVUMaxExpr operand types don't match!"); 3501 #endif 3502 3503 // Sort by complexity, this groups all similar expression types together. 3504 GroupByComplexity(Ops, &LI, DT); 3505 3506 // If there are any constants, fold them together. 3507 unsigned Idx = 0; 3508 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3509 ++Idx; 3510 assert(Idx < Ops.size()); 3511 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3512 // We found two constants, fold them together! 3513 ConstantInt *Fold = ConstantInt::get( 3514 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3515 Ops[0] = getConstant(Fold); 3516 Ops.erase(Ops.begin()+1); // Erase the folded element 3517 if (Ops.size() == 1) return Ops[0]; 3518 LHSC = cast<SCEVConstant>(Ops[0]); 3519 } 3520 3521 // If we are left with a constant minimum-int, strip it off. 3522 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3523 Ops.erase(Ops.begin()); 3524 --Idx; 3525 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3526 // If we have an umax with a constant maximum-int, it will always be 3527 // maximum-int. 3528 return Ops[0]; 3529 } 3530 3531 if (Ops.size() == 1) return Ops[0]; 3532 } 3533 3534 // Find the first UMax 3535 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3536 ++Idx; 3537 3538 // Check to see if one of the operands is a UMax. If so, expand its operands 3539 // onto our operand list, and recurse to simplify. 3540 if (Idx < Ops.size()) { 3541 bool DeletedUMax = false; 3542 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3543 Ops.erase(Ops.begin()+Idx); 3544 Ops.append(UMax->op_begin(), UMax->op_end()); 3545 DeletedUMax = true; 3546 } 3547 3548 if (DeletedUMax) 3549 return getUMaxExpr(Ops); 3550 } 3551 3552 // Okay, check to see if the same value occurs in the operand list twice. If 3553 // so, delete one. Since we sorted the list, these values are required to 3554 // be adjacent. 3555 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3556 // X umax Y umax Y --> X umax Y 3557 // X umax Y --> X, if X is always greater than Y 3558 if (Ops[i] == Ops[i+1] || 3559 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3560 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3561 --i; --e; 3562 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3563 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3564 --i; --e; 3565 } 3566 3567 if (Ops.size() == 1) return Ops[0]; 3568 3569 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3570 3571 // Okay, it looks like we really DO need a umax expr. Check to see if we 3572 // already have one, otherwise create a new one. 3573 FoldingSetNodeID ID; 3574 ID.AddInteger(scUMaxExpr); 3575 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3576 ID.AddPointer(Ops[i]); 3577 void *IP = nullptr; 3578 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3579 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3580 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3581 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3582 O, Ops.size()); 3583 UniqueSCEVs.InsertNode(S, IP); 3584 addToLoopUseLists(S); 3585 return S; 3586 } 3587 3588 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3589 const SCEV *RHS) { 3590 // ~smax(~x, ~y) == smin(x, y). 3591 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3592 } 3593 3594 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3595 const SCEV *RHS) { 3596 // ~umax(~x, ~y) == umin(x, y) 3597 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3598 } 3599 3600 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3601 // We can bypass creating a target-independent 3602 // constant expression and then folding it back into a ConstantInt. 3603 // This is just a compile-time optimization. 3604 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3605 } 3606 3607 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3608 StructType *STy, 3609 unsigned FieldNo) { 3610 // We can bypass creating a target-independent 3611 // constant expression and then folding it back into a ConstantInt. 3612 // This is just a compile-time optimization. 3613 return getConstant( 3614 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3615 } 3616 3617 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3618 // Don't attempt to do anything other than create a SCEVUnknown object 3619 // here. createSCEV only calls getUnknown after checking for all other 3620 // interesting possibilities, and any other code that calls getUnknown 3621 // is doing so in order to hide a value from SCEV canonicalization. 3622 3623 FoldingSetNodeID ID; 3624 ID.AddInteger(scUnknown); 3625 ID.AddPointer(V); 3626 void *IP = nullptr; 3627 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3628 assert(cast<SCEVUnknown>(S)->getValue() == V && 3629 "Stale SCEVUnknown in uniquing map!"); 3630 return S; 3631 } 3632 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3633 FirstUnknown); 3634 FirstUnknown = cast<SCEVUnknown>(S); 3635 UniqueSCEVs.InsertNode(S, IP); 3636 return S; 3637 } 3638 3639 //===----------------------------------------------------------------------===// 3640 // Basic SCEV Analysis and PHI Idiom Recognition Code 3641 // 3642 3643 /// Test if values of the given type are analyzable within the SCEV 3644 /// framework. This primarily includes integer types, and it can optionally 3645 /// include pointer types if the ScalarEvolution class has access to 3646 /// target-specific information. 3647 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3648 // Integers and pointers are always SCEVable. 3649 return Ty->isIntegerTy() || Ty->isPointerTy(); 3650 } 3651 3652 /// Return the size in bits of the specified type, for which isSCEVable must 3653 /// return true. 3654 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3655 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3656 return getDataLayout().getTypeSizeInBits(Ty); 3657 } 3658 3659 /// Return a type with the same bitwidth as the given type and which represents 3660 /// how SCEV will treat the given type, for which isSCEVable must return 3661 /// true. For pointer types, this is the pointer-sized integer type. 3662 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3663 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3664 3665 if (Ty->isIntegerTy()) 3666 return Ty; 3667 3668 // The only other support type is pointer. 3669 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3670 return getDataLayout().getIntPtrType(Ty); 3671 } 3672 3673 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3674 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3675 } 3676 3677 const SCEV *ScalarEvolution::getCouldNotCompute() { 3678 return CouldNotCompute.get(); 3679 } 3680 3681 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3682 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3683 auto *SU = dyn_cast<SCEVUnknown>(S); 3684 return SU && SU->getValue() == nullptr; 3685 }); 3686 3687 return !ContainsNulls; 3688 } 3689 3690 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3691 HasRecMapType::iterator I = HasRecMap.find(S); 3692 if (I != HasRecMap.end()) 3693 return I->second; 3694 3695 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3696 HasRecMap.insert({S, FoundAddRec}); 3697 return FoundAddRec; 3698 } 3699 3700 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3701 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3702 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3703 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3704 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3705 if (!Add) 3706 return {S, nullptr}; 3707 3708 if (Add->getNumOperands() != 2) 3709 return {S, nullptr}; 3710 3711 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3712 if (!ConstOp) 3713 return {S, nullptr}; 3714 3715 return {Add->getOperand(1), ConstOp->getValue()}; 3716 } 3717 3718 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3719 /// by the value and offset from any ValueOffsetPair in the set. 3720 SetVector<ScalarEvolution::ValueOffsetPair> * 3721 ScalarEvolution::getSCEVValues(const SCEV *S) { 3722 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3723 if (SI == ExprValueMap.end()) 3724 return nullptr; 3725 #ifndef NDEBUG 3726 if (VerifySCEVMap) { 3727 // Check there is no dangling Value in the set returned. 3728 for (const auto &VE : SI->second) 3729 assert(ValueExprMap.count(VE.first)); 3730 } 3731 #endif 3732 return &SI->second; 3733 } 3734 3735 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3736 /// cannot be used separately. eraseValueFromMap should be used to remove 3737 /// V from ValueExprMap and ExprValueMap at the same time. 3738 void ScalarEvolution::eraseValueFromMap(Value *V) { 3739 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3740 if (I != ValueExprMap.end()) { 3741 const SCEV *S = I->second; 3742 // Remove {V, 0} from the set of ExprValueMap[S] 3743 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3744 SV->remove({V, nullptr}); 3745 3746 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3747 const SCEV *Stripped; 3748 ConstantInt *Offset; 3749 std::tie(Stripped, Offset) = splitAddExpr(S); 3750 if (Offset != nullptr) { 3751 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3752 SV->remove({V, Offset}); 3753 } 3754 ValueExprMap.erase(V); 3755 } 3756 } 3757 3758 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3759 /// create a new one. 3760 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3761 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3762 3763 const SCEV *S = getExistingSCEV(V); 3764 if (S == nullptr) { 3765 S = createSCEV(V); 3766 // During PHI resolution, it is possible to create two SCEVs for the same 3767 // V, so it is needed to double check whether V->S is inserted into 3768 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3769 std::pair<ValueExprMapType::iterator, bool> Pair = 3770 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3771 if (Pair.second) { 3772 ExprValueMap[S].insert({V, nullptr}); 3773 3774 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3775 // ExprValueMap. 3776 const SCEV *Stripped = S; 3777 ConstantInt *Offset = nullptr; 3778 std::tie(Stripped, Offset) = splitAddExpr(S); 3779 // If stripped is SCEVUnknown, don't bother to save 3780 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3781 // increase the complexity of the expansion code. 3782 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3783 // because it may generate add/sub instead of GEP in SCEV expansion. 3784 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3785 !isa<GetElementPtrInst>(V)) 3786 ExprValueMap[Stripped].insert({V, Offset}); 3787 } 3788 } 3789 return S; 3790 } 3791 3792 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3793 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3794 3795 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3796 if (I != ValueExprMap.end()) { 3797 const SCEV *S = I->second; 3798 if (checkValidity(S)) 3799 return S; 3800 eraseValueFromMap(V); 3801 forgetMemoizedResults(S); 3802 } 3803 return nullptr; 3804 } 3805 3806 /// Return a SCEV corresponding to -V = -1*V 3807 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3808 SCEV::NoWrapFlags Flags) { 3809 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3810 return getConstant( 3811 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3812 3813 Type *Ty = V->getType(); 3814 Ty = getEffectiveSCEVType(Ty); 3815 return getMulExpr( 3816 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3817 } 3818 3819 /// Return a SCEV corresponding to ~V = -1-V 3820 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3821 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3822 return getConstant( 3823 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3824 3825 Type *Ty = V->getType(); 3826 Ty = getEffectiveSCEVType(Ty); 3827 const SCEV *AllOnes = 3828 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3829 return getMinusSCEV(AllOnes, V); 3830 } 3831 3832 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3833 SCEV::NoWrapFlags Flags, 3834 unsigned Depth) { 3835 // Fast path: X - X --> 0. 3836 if (LHS == RHS) 3837 return getZero(LHS->getType()); 3838 3839 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3840 // makes it so that we cannot make much use of NUW. 3841 auto AddFlags = SCEV::FlagAnyWrap; 3842 const bool RHSIsNotMinSigned = 3843 !getSignedRangeMin(RHS).isMinSignedValue(); 3844 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3845 // Let M be the minimum representable signed value. Then (-1)*RHS 3846 // signed-wraps if and only if RHS is M. That can happen even for 3847 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3848 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3849 // (-1)*RHS, we need to prove that RHS != M. 3850 // 3851 // If LHS is non-negative and we know that LHS - RHS does not 3852 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3853 // either by proving that RHS > M or that LHS >= 0. 3854 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3855 AddFlags = SCEV::FlagNSW; 3856 } 3857 } 3858 3859 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3860 // RHS is NSW and LHS >= 0. 3861 // 3862 // The difficulty here is that the NSW flag may have been proven 3863 // relative to a loop that is to be found in a recurrence in LHS and 3864 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3865 // larger scope than intended. 3866 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3867 3868 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3869 } 3870 3871 const SCEV * 3872 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3873 Type *SrcTy = V->getType(); 3874 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3875 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3876 "Cannot truncate or zero extend with non-integer arguments!"); 3877 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3878 return V; // No conversion 3879 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3880 return getTruncateExpr(V, Ty); 3881 return getZeroExtendExpr(V, Ty); 3882 } 3883 3884 const SCEV * 3885 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3886 Type *Ty) { 3887 Type *SrcTy = V->getType(); 3888 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3889 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3890 "Cannot truncate or zero extend with non-integer arguments!"); 3891 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3892 return V; // No conversion 3893 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3894 return getTruncateExpr(V, Ty); 3895 return getSignExtendExpr(V, Ty); 3896 } 3897 3898 const SCEV * 3899 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3900 Type *SrcTy = V->getType(); 3901 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3902 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3903 "Cannot noop or zero extend with non-integer arguments!"); 3904 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3905 "getNoopOrZeroExtend cannot truncate!"); 3906 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3907 return V; // No conversion 3908 return getZeroExtendExpr(V, Ty); 3909 } 3910 3911 const SCEV * 3912 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3913 Type *SrcTy = V->getType(); 3914 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3915 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3916 "Cannot noop or sign extend with non-integer arguments!"); 3917 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3918 "getNoopOrSignExtend cannot truncate!"); 3919 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3920 return V; // No conversion 3921 return getSignExtendExpr(V, Ty); 3922 } 3923 3924 const SCEV * 3925 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3926 Type *SrcTy = V->getType(); 3927 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3928 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3929 "Cannot noop or any extend with non-integer arguments!"); 3930 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3931 "getNoopOrAnyExtend cannot truncate!"); 3932 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3933 return V; // No conversion 3934 return getAnyExtendExpr(V, Ty); 3935 } 3936 3937 const SCEV * 3938 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3939 Type *SrcTy = V->getType(); 3940 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3941 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3942 "Cannot truncate or noop with non-integer arguments!"); 3943 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3944 "getTruncateOrNoop cannot extend!"); 3945 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3946 return V; // No conversion 3947 return getTruncateExpr(V, Ty); 3948 } 3949 3950 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3951 const SCEV *RHS) { 3952 const SCEV *PromotedLHS = LHS; 3953 const SCEV *PromotedRHS = RHS; 3954 3955 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3956 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3957 else 3958 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3959 3960 return getUMaxExpr(PromotedLHS, PromotedRHS); 3961 } 3962 3963 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3964 const SCEV *RHS) { 3965 const SCEV *PromotedLHS = LHS; 3966 const SCEV *PromotedRHS = RHS; 3967 3968 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3969 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3970 else 3971 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3972 3973 return getUMinExpr(PromotedLHS, PromotedRHS); 3974 } 3975 3976 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3977 // A pointer operand may evaluate to a nonpointer expression, such as null. 3978 if (!V->getType()->isPointerTy()) 3979 return V; 3980 3981 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3982 return getPointerBase(Cast->getOperand()); 3983 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3984 const SCEV *PtrOp = nullptr; 3985 for (const SCEV *NAryOp : NAry->operands()) { 3986 if (NAryOp->getType()->isPointerTy()) { 3987 // Cannot find the base of an expression with multiple pointer operands. 3988 if (PtrOp) 3989 return V; 3990 PtrOp = NAryOp; 3991 } 3992 } 3993 if (!PtrOp) 3994 return V; 3995 return getPointerBase(PtrOp); 3996 } 3997 return V; 3998 } 3999 4000 /// Push users of the given Instruction onto the given Worklist. 4001 static void 4002 PushDefUseChildren(Instruction *I, 4003 SmallVectorImpl<Instruction *> &Worklist) { 4004 // Push the def-use children onto the Worklist stack. 4005 for (User *U : I->users()) 4006 Worklist.push_back(cast<Instruction>(U)); 4007 } 4008 4009 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4010 SmallVector<Instruction *, 16> Worklist; 4011 PushDefUseChildren(PN, Worklist); 4012 4013 SmallPtrSet<Instruction *, 8> Visited; 4014 Visited.insert(PN); 4015 while (!Worklist.empty()) { 4016 Instruction *I = Worklist.pop_back_val(); 4017 if (!Visited.insert(I).second) 4018 continue; 4019 4020 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4021 if (It != ValueExprMap.end()) { 4022 const SCEV *Old = It->second; 4023 4024 // Short-circuit the def-use traversal if the symbolic name 4025 // ceases to appear in expressions. 4026 if (Old != SymName && !hasOperand(Old, SymName)) 4027 continue; 4028 4029 // SCEVUnknown for a PHI either means that it has an unrecognized 4030 // structure, it's a PHI that's in the progress of being computed 4031 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4032 // additional loop trip count information isn't going to change anything. 4033 // In the second case, createNodeForPHI will perform the necessary 4034 // updates on its own when it gets to that point. In the third, we do 4035 // want to forget the SCEVUnknown. 4036 if (!isa<PHINode>(I) || 4037 !isa<SCEVUnknown>(Old) || 4038 (I != PN && Old == SymName)) { 4039 eraseValueFromMap(It->first); 4040 forgetMemoizedResults(Old); 4041 } 4042 } 4043 4044 PushDefUseChildren(I, Worklist); 4045 } 4046 } 4047 4048 namespace { 4049 4050 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4051 public: 4052 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4053 : SCEVRewriteVisitor(SE), L(L) {} 4054 4055 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4056 ScalarEvolution &SE) { 4057 SCEVInitRewriter Rewriter(L, SE); 4058 const SCEV *Result = Rewriter.visit(S); 4059 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4060 } 4061 4062 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4063 if (!SE.isLoopInvariant(Expr, L)) 4064 Valid = false; 4065 return Expr; 4066 } 4067 4068 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4069 // Only allow AddRecExprs for this loop. 4070 if (Expr->getLoop() == L) 4071 return Expr->getStart(); 4072 Valid = false; 4073 return Expr; 4074 } 4075 4076 bool isValid() { return Valid; } 4077 4078 private: 4079 const Loop *L; 4080 bool Valid = true; 4081 }; 4082 4083 /// This class evaluates the compare condition by matching it against the 4084 /// condition of loop latch. If there is a match we assume a true value 4085 /// for the condition while building SCEV nodes. 4086 class SCEVBackedgeConditionFolder 4087 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4088 public: 4089 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4090 ScalarEvolution &SE) { 4091 bool IsPosBECond = false; 4092 Value *BECond = nullptr; 4093 if (BasicBlock *Latch = L->getLoopLatch()) { 4094 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4095 if (BI && BI->isConditional() && 4096 BI->getSuccessor(0) != BI->getSuccessor(1)) { 4097 BECond = BI->getCondition(); 4098 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4099 } else { 4100 return S; 4101 } 4102 } 4103 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4104 return Rewriter.visit(S); 4105 } 4106 4107 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4108 const SCEV *Result = Expr; 4109 bool InvariantF = SE.isLoopInvariant(Expr, L); 4110 4111 if (!InvariantF) { 4112 Instruction *I = cast<Instruction>(Expr->getValue()); 4113 switch (I->getOpcode()) { 4114 case Instruction::Select: { 4115 SelectInst *SI = cast<SelectInst>(I); 4116 Optional<const SCEV *> Res = 4117 compareWithBackedgeCondition(SI->getCondition()); 4118 if (Res.hasValue()) { 4119 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4120 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4121 } 4122 break; 4123 } 4124 default: { 4125 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4126 if (Res.hasValue()) 4127 Result = Res.getValue(); 4128 break; 4129 } 4130 } 4131 } 4132 return Result; 4133 } 4134 4135 private: 4136 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4137 bool IsPosBECond, ScalarEvolution &SE) 4138 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4139 IsPositiveBECond(IsPosBECond) {} 4140 4141 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4142 4143 const Loop *L; 4144 /// Loop back condition. 4145 Value *BackedgeCond = nullptr; 4146 /// Set to true if loop back is on positive branch condition. 4147 bool IsPositiveBECond; 4148 }; 4149 4150 Optional<const SCEV *> 4151 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4152 4153 // If value matches the backedge condition for loop latch, 4154 // then return a constant evolution node based on loopback 4155 // branch taken. 4156 if (BackedgeCond == IC) 4157 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4158 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4159 return None; 4160 } 4161 4162 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4163 public: 4164 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4165 : SCEVRewriteVisitor(SE), L(L) {} 4166 4167 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4168 ScalarEvolution &SE) { 4169 SCEVShiftRewriter Rewriter(L, SE); 4170 const SCEV *Result = Rewriter.visit(S); 4171 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4172 } 4173 4174 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4175 // Only allow AddRecExprs for this loop. 4176 if (!SE.isLoopInvariant(Expr, L)) 4177 Valid = false; 4178 return Expr; 4179 } 4180 4181 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4182 if (Expr->getLoop() == L && Expr->isAffine()) 4183 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4184 Valid = false; 4185 return Expr; 4186 } 4187 4188 bool isValid() { return Valid; } 4189 4190 private: 4191 const Loop *L; 4192 bool Valid = true; 4193 }; 4194 4195 } // end anonymous namespace 4196 4197 SCEV::NoWrapFlags 4198 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4199 if (!AR->isAffine()) 4200 return SCEV::FlagAnyWrap; 4201 4202 using OBO = OverflowingBinaryOperator; 4203 4204 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4205 4206 if (!AR->hasNoSignedWrap()) { 4207 ConstantRange AddRecRange = getSignedRange(AR); 4208 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4209 4210 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4211 Instruction::Add, IncRange, OBO::NoSignedWrap); 4212 if (NSWRegion.contains(AddRecRange)) 4213 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4214 } 4215 4216 if (!AR->hasNoUnsignedWrap()) { 4217 ConstantRange AddRecRange = getUnsignedRange(AR); 4218 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4219 4220 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4221 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4222 if (NUWRegion.contains(AddRecRange)) 4223 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4224 } 4225 4226 return Result; 4227 } 4228 4229 namespace { 4230 4231 /// Represents an abstract binary operation. This may exist as a 4232 /// normal instruction or constant expression, or may have been 4233 /// derived from an expression tree. 4234 struct BinaryOp { 4235 unsigned Opcode; 4236 Value *LHS; 4237 Value *RHS; 4238 bool IsNSW = false; 4239 bool IsNUW = false; 4240 4241 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4242 /// constant expression. 4243 Operator *Op = nullptr; 4244 4245 explicit BinaryOp(Operator *Op) 4246 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4247 Op(Op) { 4248 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4249 IsNSW = OBO->hasNoSignedWrap(); 4250 IsNUW = OBO->hasNoUnsignedWrap(); 4251 } 4252 } 4253 4254 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4255 bool IsNUW = false) 4256 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4257 }; 4258 4259 } // end anonymous namespace 4260 4261 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4262 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4263 auto *Op = dyn_cast<Operator>(V); 4264 if (!Op) 4265 return None; 4266 4267 // Implementation detail: all the cleverness here should happen without 4268 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4269 // SCEV expressions when possible, and we should not break that. 4270 4271 switch (Op->getOpcode()) { 4272 case Instruction::Add: 4273 case Instruction::Sub: 4274 case Instruction::Mul: 4275 case Instruction::UDiv: 4276 case Instruction::URem: 4277 case Instruction::And: 4278 case Instruction::Or: 4279 case Instruction::AShr: 4280 case Instruction::Shl: 4281 return BinaryOp(Op); 4282 4283 case Instruction::Xor: 4284 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4285 // If the RHS of the xor is a signmask, then this is just an add. 4286 // Instcombine turns add of signmask into xor as a strength reduction step. 4287 if (RHSC->getValue().isSignMask()) 4288 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4289 return BinaryOp(Op); 4290 4291 case Instruction::LShr: 4292 // Turn logical shift right of a constant into a unsigned divide. 4293 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4294 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4295 4296 // If the shift count is not less than the bitwidth, the result of 4297 // the shift is undefined. Don't try to analyze it, because the 4298 // resolution chosen here may differ from the resolution chosen in 4299 // other parts of the compiler. 4300 if (SA->getValue().ult(BitWidth)) { 4301 Constant *X = 4302 ConstantInt::get(SA->getContext(), 4303 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4304 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4305 } 4306 } 4307 return BinaryOp(Op); 4308 4309 case Instruction::ExtractValue: { 4310 auto *EVI = cast<ExtractValueInst>(Op); 4311 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4312 break; 4313 4314 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 4315 if (!CI) 4316 break; 4317 4318 if (auto *F = CI->getCalledFunction()) 4319 switch (F->getIntrinsicID()) { 4320 case Intrinsic::sadd_with_overflow: 4321 case Intrinsic::uadd_with_overflow: 4322 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4323 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4324 CI->getArgOperand(1)); 4325 4326 // Now that we know that all uses of the arithmetic-result component of 4327 // CI are guarded by the overflow check, we can go ahead and pretend 4328 // that the arithmetic is non-overflowing. 4329 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 4330 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4331 CI->getArgOperand(1), /* IsNSW = */ true, 4332 /* IsNUW = */ false); 4333 else 4334 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4335 CI->getArgOperand(1), /* IsNSW = */ false, 4336 /* IsNUW*/ true); 4337 case Intrinsic::ssub_with_overflow: 4338 case Intrinsic::usub_with_overflow: 4339 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4340 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4341 CI->getArgOperand(1)); 4342 4343 // The same reasoning as sadd/uadd above. 4344 if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow) 4345 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4346 CI->getArgOperand(1), /* IsNSW = */ true, 4347 /* IsNUW = */ false); 4348 else 4349 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4350 CI->getArgOperand(1), /* IsNSW = */ false, 4351 /* IsNUW = */ true); 4352 case Intrinsic::smul_with_overflow: 4353 case Intrinsic::umul_with_overflow: 4354 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 4355 CI->getArgOperand(1)); 4356 default: 4357 break; 4358 } 4359 } 4360 4361 default: 4362 break; 4363 } 4364 4365 return None; 4366 } 4367 4368 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4369 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4370 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4371 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4372 /// follows one of the following patterns: 4373 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4374 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4375 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4376 /// we return the type of the truncation operation, and indicate whether the 4377 /// truncated type should be treated as signed/unsigned by setting 4378 /// \p Signed to true/false, respectively. 4379 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4380 bool &Signed, ScalarEvolution &SE) { 4381 // The case where Op == SymbolicPHI (that is, with no type conversions on 4382 // the way) is handled by the regular add recurrence creating logic and 4383 // would have already been triggered in createAddRecForPHI. Reaching it here 4384 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4385 // because one of the other operands of the SCEVAddExpr updating this PHI is 4386 // not invariant). 4387 // 4388 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4389 // this case predicates that allow us to prove that Op == SymbolicPHI will 4390 // be added. 4391 if (Op == SymbolicPHI) 4392 return nullptr; 4393 4394 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4395 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4396 if (SourceBits != NewBits) 4397 return nullptr; 4398 4399 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4400 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4401 if (!SExt && !ZExt) 4402 return nullptr; 4403 const SCEVTruncateExpr *Trunc = 4404 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4405 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4406 if (!Trunc) 4407 return nullptr; 4408 const SCEV *X = Trunc->getOperand(); 4409 if (X != SymbolicPHI) 4410 return nullptr; 4411 Signed = SExt != nullptr; 4412 return Trunc->getType(); 4413 } 4414 4415 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4416 if (!PN->getType()->isIntegerTy()) 4417 return nullptr; 4418 const Loop *L = LI.getLoopFor(PN->getParent()); 4419 if (!L || L->getHeader() != PN->getParent()) 4420 return nullptr; 4421 return L; 4422 } 4423 4424 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4425 // computation that updates the phi follows the following pattern: 4426 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4427 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4428 // If so, try to see if it can be rewritten as an AddRecExpr under some 4429 // Predicates. If successful, return them as a pair. Also cache the results 4430 // of the analysis. 4431 // 4432 // Example usage scenario: 4433 // Say the Rewriter is called for the following SCEV: 4434 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4435 // where: 4436 // %X = phi i64 (%Start, %BEValue) 4437 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4438 // and call this function with %SymbolicPHI = %X. 4439 // 4440 // The analysis will find that the value coming around the backedge has 4441 // the following SCEV: 4442 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4443 // Upon concluding that this matches the desired pattern, the function 4444 // will return the pair {NewAddRec, SmallPredsVec} where: 4445 // NewAddRec = {%Start,+,%Step} 4446 // SmallPredsVec = {P1, P2, P3} as follows: 4447 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4448 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4449 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4450 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4451 // under the predicates {P1,P2,P3}. 4452 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4453 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4454 // 4455 // TODO's: 4456 // 4457 // 1) Extend the Induction descriptor to also support inductions that involve 4458 // casts: When needed (namely, when we are called in the context of the 4459 // vectorizer induction analysis), a Set of cast instructions will be 4460 // populated by this method, and provided back to isInductionPHI. This is 4461 // needed to allow the vectorizer to properly record them to be ignored by 4462 // the cost model and to avoid vectorizing them (otherwise these casts, 4463 // which are redundant under the runtime overflow checks, will be 4464 // vectorized, which can be costly). 4465 // 4466 // 2) Support additional induction/PHISCEV patterns: We also want to support 4467 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4468 // after the induction update operation (the induction increment): 4469 // 4470 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4471 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4472 // 4473 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4474 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4475 // 4476 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4477 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4478 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4479 SmallVector<const SCEVPredicate *, 3> Predicates; 4480 4481 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4482 // return an AddRec expression under some predicate. 4483 4484 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4485 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4486 assert(L && "Expecting an integer loop header phi"); 4487 4488 // The loop may have multiple entrances or multiple exits; we can analyze 4489 // this phi as an addrec if it has a unique entry value and a unique 4490 // backedge value. 4491 Value *BEValueV = nullptr, *StartValueV = nullptr; 4492 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4493 Value *V = PN->getIncomingValue(i); 4494 if (L->contains(PN->getIncomingBlock(i))) { 4495 if (!BEValueV) { 4496 BEValueV = V; 4497 } else if (BEValueV != V) { 4498 BEValueV = nullptr; 4499 break; 4500 } 4501 } else if (!StartValueV) { 4502 StartValueV = V; 4503 } else if (StartValueV != V) { 4504 StartValueV = nullptr; 4505 break; 4506 } 4507 } 4508 if (!BEValueV || !StartValueV) 4509 return None; 4510 4511 const SCEV *BEValue = getSCEV(BEValueV); 4512 4513 // If the value coming around the backedge is an add with the symbolic 4514 // value we just inserted, possibly with casts that we can ignore under 4515 // an appropriate runtime guard, then we found a simple induction variable! 4516 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4517 if (!Add) 4518 return None; 4519 4520 // If there is a single occurrence of the symbolic value, possibly 4521 // casted, replace it with a recurrence. 4522 unsigned FoundIndex = Add->getNumOperands(); 4523 Type *TruncTy = nullptr; 4524 bool Signed; 4525 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4526 if ((TruncTy = 4527 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4528 if (FoundIndex == e) { 4529 FoundIndex = i; 4530 break; 4531 } 4532 4533 if (FoundIndex == Add->getNumOperands()) 4534 return None; 4535 4536 // Create an add with everything but the specified operand. 4537 SmallVector<const SCEV *, 8> Ops; 4538 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4539 if (i != FoundIndex) 4540 Ops.push_back(Add->getOperand(i)); 4541 const SCEV *Accum = getAddExpr(Ops); 4542 4543 // The runtime checks will not be valid if the step amount is 4544 // varying inside the loop. 4545 if (!isLoopInvariant(Accum, L)) 4546 return None; 4547 4548 // *** Part2: Create the predicates 4549 4550 // Analysis was successful: we have a phi-with-cast pattern for which we 4551 // can return an AddRec expression under the following predicates: 4552 // 4553 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4554 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4555 // P2: An Equal predicate that guarantees that 4556 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4557 // P3: An Equal predicate that guarantees that 4558 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4559 // 4560 // As we next prove, the above predicates guarantee that: 4561 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4562 // 4563 // 4564 // More formally, we want to prove that: 4565 // Expr(i+1) = Start + (i+1) * Accum 4566 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4567 // 4568 // Given that: 4569 // 1) Expr(0) = Start 4570 // 2) Expr(1) = Start + Accum 4571 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4572 // 3) Induction hypothesis (step i): 4573 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4574 // 4575 // Proof: 4576 // Expr(i+1) = 4577 // = Start + (i+1)*Accum 4578 // = (Start + i*Accum) + Accum 4579 // = Expr(i) + Accum 4580 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4581 // :: from step i 4582 // 4583 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4584 // 4585 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4586 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4587 // + Accum :: from P3 4588 // 4589 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4590 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4591 // 4592 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4593 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4594 // 4595 // By induction, the same applies to all iterations 1<=i<n: 4596 // 4597 4598 // Create a truncated addrec for which we will add a no overflow check (P1). 4599 const SCEV *StartVal = getSCEV(StartValueV); 4600 const SCEV *PHISCEV = 4601 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4602 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4603 4604 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4605 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4606 // will be constant. 4607 // 4608 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4609 // add P1. 4610 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4611 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4612 Signed ? SCEVWrapPredicate::IncrementNSSW 4613 : SCEVWrapPredicate::IncrementNUSW; 4614 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4615 Predicates.push_back(AddRecPred); 4616 } 4617 4618 // Create the Equal Predicates P2,P3: 4619 4620 // It is possible that the predicates P2 and/or P3 are computable at 4621 // compile time due to StartVal and/or Accum being constants. 4622 // If either one is, then we can check that now and escape if either P2 4623 // or P3 is false. 4624 4625 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4626 // for each of StartVal and Accum 4627 auto GetExtendedExpr = [&](const SCEV *Expr) -> const SCEV * { 4628 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4629 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4630 const SCEV *ExtendedExpr = 4631 Signed ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4632 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4633 return ExtendedExpr; 4634 }; 4635 4636 // Given: 4637 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4638 // = GetExtendedExpr(Expr) 4639 // Determine whether the predicate P: Expr == ExtendedExpr 4640 // is known to be false at compile time 4641 auto PredIsKnownFalse = [&](const SCEV *Expr, 4642 const SCEV *ExtendedExpr) -> bool { 4643 return Expr != ExtendedExpr && 4644 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4645 }; 4646 4647 const SCEV *StartExtended = GetExtendedExpr(StartVal); 4648 if (PredIsKnownFalse(StartVal, StartExtended)) { 4649 DEBUG(dbgs() << "P2 is compile-time false\n";); 4650 return None; 4651 } 4652 4653 const SCEV *AccumExtended = GetExtendedExpr(Accum); 4654 if (PredIsKnownFalse(Accum, AccumExtended)) { 4655 DEBUG(dbgs() << "P3 is compile-time false\n";); 4656 return None; 4657 } 4658 4659 auto AppendPredicate = [&](const SCEV *Expr, 4660 const SCEV *ExtendedExpr) -> void { 4661 if (Expr != ExtendedExpr && 4662 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4663 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4664 DEBUG (dbgs() << "Added Predicate: " << *Pred); 4665 Predicates.push_back(Pred); 4666 } 4667 }; 4668 4669 AppendPredicate(StartVal, StartExtended); 4670 AppendPredicate(Accum, AccumExtended); 4671 4672 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4673 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4674 // into NewAR if it will also add the runtime overflow checks specified in 4675 // Predicates. 4676 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4677 4678 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4679 std::make_pair(NewAR, Predicates); 4680 // Remember the result of the analysis for this SCEV at this locayyytion. 4681 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4682 return PredRewrite; 4683 } 4684 4685 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4686 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4687 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4688 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4689 if (!L) 4690 return None; 4691 4692 // Check to see if we already analyzed this PHI. 4693 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4694 if (I != PredicatedSCEVRewrites.end()) { 4695 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4696 I->second; 4697 // Analysis was done before and failed to create an AddRec: 4698 if (Rewrite.first == SymbolicPHI) 4699 return None; 4700 // Analysis was done before and succeeded to create an AddRec under 4701 // a predicate: 4702 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4703 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4704 return Rewrite; 4705 } 4706 4707 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4708 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4709 4710 // Record in the cache that the analysis failed 4711 if (!Rewrite) { 4712 SmallVector<const SCEVPredicate *, 3> Predicates; 4713 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4714 return None; 4715 } 4716 4717 return Rewrite; 4718 } 4719 4720 /// A helper function for createAddRecFromPHI to handle simple cases. 4721 /// 4722 /// This function tries to find an AddRec expression for the simplest (yet most 4723 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4724 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4725 /// technique for finding the AddRec expression. 4726 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4727 Value *BEValueV, 4728 Value *StartValueV) { 4729 const Loop *L = LI.getLoopFor(PN->getParent()); 4730 assert(L && L->getHeader() == PN->getParent()); 4731 assert(BEValueV && StartValueV); 4732 4733 auto BO = MatchBinaryOp(BEValueV, DT); 4734 if (!BO) 4735 return nullptr; 4736 4737 if (BO->Opcode != Instruction::Add) 4738 return nullptr; 4739 4740 const SCEV *Accum = nullptr; 4741 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4742 Accum = getSCEV(BO->RHS); 4743 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4744 Accum = getSCEV(BO->LHS); 4745 4746 if (!Accum) 4747 return nullptr; 4748 4749 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4750 if (BO->IsNUW) 4751 Flags = setFlags(Flags, SCEV::FlagNUW); 4752 if (BO->IsNSW) 4753 Flags = setFlags(Flags, SCEV::FlagNSW); 4754 4755 const SCEV *StartVal = getSCEV(StartValueV); 4756 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4757 4758 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4759 4760 // We can add Flags to the post-inc expression only if we 4761 // know that it is *undefined behavior* for BEValueV to 4762 // overflow. 4763 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4764 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4765 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4766 4767 return PHISCEV; 4768 } 4769 4770 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4771 const Loop *L = LI.getLoopFor(PN->getParent()); 4772 if (!L || L->getHeader() != PN->getParent()) 4773 return nullptr; 4774 4775 // The loop may have multiple entrances or multiple exits; we can analyze 4776 // this phi as an addrec if it has a unique entry value and a unique 4777 // backedge value. 4778 Value *BEValueV = nullptr, *StartValueV = nullptr; 4779 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4780 Value *V = PN->getIncomingValue(i); 4781 if (L->contains(PN->getIncomingBlock(i))) { 4782 if (!BEValueV) { 4783 BEValueV = V; 4784 } else if (BEValueV != V) { 4785 BEValueV = nullptr; 4786 break; 4787 } 4788 } else if (!StartValueV) { 4789 StartValueV = V; 4790 } else if (StartValueV != V) { 4791 StartValueV = nullptr; 4792 break; 4793 } 4794 } 4795 if (!BEValueV || !StartValueV) 4796 return nullptr; 4797 4798 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4799 "PHI node already processed?"); 4800 4801 // First, try to find AddRec expression without creating a fictituos symbolic 4802 // value for PN. 4803 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4804 return S; 4805 4806 // Handle PHI node value symbolically. 4807 const SCEV *SymbolicName = getUnknown(PN); 4808 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4809 4810 // Using this symbolic name for the PHI, analyze the value coming around 4811 // the back-edge. 4812 const SCEV *BEValue = getSCEV(BEValueV); 4813 4814 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4815 // has a special value for the first iteration of the loop. 4816 4817 // If the value coming around the backedge is an add with the symbolic 4818 // value we just inserted, then we found a simple induction variable! 4819 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4820 // If there is a single occurrence of the symbolic value, replace it 4821 // with a recurrence. 4822 unsigned FoundIndex = Add->getNumOperands(); 4823 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4824 if (Add->getOperand(i) == SymbolicName) 4825 if (FoundIndex == e) { 4826 FoundIndex = i; 4827 break; 4828 } 4829 4830 if (FoundIndex != Add->getNumOperands()) { 4831 // Create an add with everything but the specified operand. 4832 SmallVector<const SCEV *, 8> Ops; 4833 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4834 if (i != FoundIndex) 4835 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 4836 L, *this)); 4837 const SCEV *Accum = getAddExpr(Ops); 4838 4839 // This is not a valid addrec if the step amount is varying each 4840 // loop iteration, but is not itself an addrec in this loop. 4841 if (isLoopInvariant(Accum, L) || 4842 (isa<SCEVAddRecExpr>(Accum) && 4843 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4844 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4845 4846 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4847 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4848 if (BO->IsNUW) 4849 Flags = setFlags(Flags, SCEV::FlagNUW); 4850 if (BO->IsNSW) 4851 Flags = setFlags(Flags, SCEV::FlagNSW); 4852 } 4853 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4854 // If the increment is an inbounds GEP, then we know the address 4855 // space cannot be wrapped around. We cannot make any guarantee 4856 // about signed or unsigned overflow because pointers are 4857 // unsigned but we may have a negative index from the base 4858 // pointer. We can guarantee that no unsigned wrap occurs if the 4859 // indices form a positive value. 4860 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4861 Flags = setFlags(Flags, SCEV::FlagNW); 4862 4863 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4864 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4865 Flags = setFlags(Flags, SCEV::FlagNUW); 4866 } 4867 4868 // We cannot transfer nuw and nsw flags from subtraction 4869 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4870 // for instance. 4871 } 4872 4873 const SCEV *StartVal = getSCEV(StartValueV); 4874 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4875 4876 // Okay, for the entire analysis of this edge we assumed the PHI 4877 // to be symbolic. We now need to go back and purge all of the 4878 // entries for the scalars that use the symbolic expression. 4879 forgetSymbolicName(PN, SymbolicName); 4880 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4881 4882 // We can add Flags to the post-inc expression only if we 4883 // know that it is *undefined behavior* for BEValueV to 4884 // overflow. 4885 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4886 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4887 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4888 4889 return PHISCEV; 4890 } 4891 } 4892 } else { 4893 // Otherwise, this could be a loop like this: 4894 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4895 // In this case, j = {1,+,1} and BEValue is j. 4896 // Because the other in-value of i (0) fits the evolution of BEValue 4897 // i really is an addrec evolution. 4898 // 4899 // We can generalize this saying that i is the shifted value of BEValue 4900 // by one iteration: 4901 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4902 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4903 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 4904 if (Shifted != getCouldNotCompute() && 4905 Start != getCouldNotCompute()) { 4906 const SCEV *StartVal = getSCEV(StartValueV); 4907 if (Start == StartVal) { 4908 // Okay, for the entire analysis of this edge we assumed the PHI 4909 // to be symbolic. We now need to go back and purge all of the 4910 // entries for the scalars that use the symbolic expression. 4911 forgetSymbolicName(PN, SymbolicName); 4912 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4913 return Shifted; 4914 } 4915 } 4916 } 4917 4918 // Remove the temporary PHI node SCEV that has been inserted while intending 4919 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4920 // as it will prevent later (possibly simpler) SCEV expressions to be added 4921 // to the ValueExprMap. 4922 eraseValueFromMap(PN); 4923 4924 return nullptr; 4925 } 4926 4927 // Checks if the SCEV S is available at BB. S is considered available at BB 4928 // if S can be materialized at BB without introducing a fault. 4929 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4930 BasicBlock *BB) { 4931 struct CheckAvailable { 4932 bool TraversalDone = false; 4933 bool Available = true; 4934 4935 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4936 BasicBlock *BB = nullptr; 4937 DominatorTree &DT; 4938 4939 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4940 : L(L), BB(BB), DT(DT) {} 4941 4942 bool setUnavailable() { 4943 TraversalDone = true; 4944 Available = false; 4945 return false; 4946 } 4947 4948 bool follow(const SCEV *S) { 4949 switch (S->getSCEVType()) { 4950 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4951 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4952 // These expressions are available if their operand(s) is/are. 4953 return true; 4954 4955 case scAddRecExpr: { 4956 // We allow add recurrences that are on the loop BB is in, or some 4957 // outer loop. This guarantees availability because the value of the 4958 // add recurrence at BB is simply the "current" value of the induction 4959 // variable. We can relax this in the future; for instance an add 4960 // recurrence on a sibling dominating loop is also available at BB. 4961 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4962 if (L && (ARLoop == L || ARLoop->contains(L))) 4963 return true; 4964 4965 return setUnavailable(); 4966 } 4967 4968 case scUnknown: { 4969 // For SCEVUnknown, we check for simple dominance. 4970 const auto *SU = cast<SCEVUnknown>(S); 4971 Value *V = SU->getValue(); 4972 4973 if (isa<Argument>(V)) 4974 return false; 4975 4976 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 4977 return false; 4978 4979 return setUnavailable(); 4980 } 4981 4982 case scUDivExpr: 4983 case scCouldNotCompute: 4984 // We do not try to smart about these at all. 4985 return setUnavailable(); 4986 } 4987 llvm_unreachable("switch should be fully covered!"); 4988 } 4989 4990 bool isDone() { return TraversalDone; } 4991 }; 4992 4993 CheckAvailable CA(L, BB, DT); 4994 SCEVTraversal<CheckAvailable> ST(CA); 4995 4996 ST.visitAll(S); 4997 return CA.Available; 4998 } 4999 5000 // Try to match a control flow sequence that branches out at BI and merges back 5001 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5002 // match. 5003 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5004 Value *&C, Value *&LHS, Value *&RHS) { 5005 C = BI->getCondition(); 5006 5007 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5008 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5009 5010 if (!LeftEdge.isSingleEdge()) 5011 return false; 5012 5013 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5014 5015 Use &LeftUse = Merge->getOperandUse(0); 5016 Use &RightUse = Merge->getOperandUse(1); 5017 5018 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5019 LHS = LeftUse; 5020 RHS = RightUse; 5021 return true; 5022 } 5023 5024 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5025 LHS = RightUse; 5026 RHS = LeftUse; 5027 return true; 5028 } 5029 5030 return false; 5031 } 5032 5033 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5034 auto IsReachable = 5035 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5036 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5037 const Loop *L = LI.getLoopFor(PN->getParent()); 5038 5039 // We don't want to break LCSSA, even in a SCEV expression tree. 5040 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5041 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5042 return nullptr; 5043 5044 // Try to match 5045 // 5046 // br %cond, label %left, label %right 5047 // left: 5048 // br label %merge 5049 // right: 5050 // br label %merge 5051 // merge: 5052 // V = phi [ %x, %left ], [ %y, %right ] 5053 // 5054 // as "select %cond, %x, %y" 5055 5056 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5057 assert(IDom && "At least the entry block should dominate PN"); 5058 5059 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5060 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5061 5062 if (BI && BI->isConditional() && 5063 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5064 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5065 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5066 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5067 } 5068 5069 return nullptr; 5070 } 5071 5072 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5073 if (const SCEV *S = createAddRecFromPHI(PN)) 5074 return S; 5075 5076 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5077 return S; 5078 5079 // If the PHI has a single incoming value, follow that value, unless the 5080 // PHI's incoming blocks are in a different loop, in which case doing so 5081 // risks breaking LCSSA form. Instcombine would normally zap these, but 5082 // it doesn't have DominatorTree information, so it may miss cases. 5083 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5084 if (LI.replacementPreservesLCSSAForm(PN, V)) 5085 return getSCEV(V); 5086 5087 // If it's not a loop phi, we can't handle it yet. 5088 return getUnknown(PN); 5089 } 5090 5091 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5092 Value *Cond, 5093 Value *TrueVal, 5094 Value *FalseVal) { 5095 // Handle "constant" branch or select. This can occur for instance when a 5096 // loop pass transforms an inner loop and moves on to process the outer loop. 5097 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5098 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5099 5100 // Try to match some simple smax or umax patterns. 5101 auto *ICI = dyn_cast<ICmpInst>(Cond); 5102 if (!ICI) 5103 return getUnknown(I); 5104 5105 Value *LHS = ICI->getOperand(0); 5106 Value *RHS = ICI->getOperand(1); 5107 5108 switch (ICI->getPredicate()) { 5109 case ICmpInst::ICMP_SLT: 5110 case ICmpInst::ICMP_SLE: 5111 std::swap(LHS, RHS); 5112 LLVM_FALLTHROUGH; 5113 case ICmpInst::ICMP_SGT: 5114 case ICmpInst::ICMP_SGE: 5115 // a >s b ? a+x : b+x -> smax(a, b)+x 5116 // a >s b ? b+x : a+x -> smin(a, b)+x 5117 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5118 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5119 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5120 const SCEV *LA = getSCEV(TrueVal); 5121 const SCEV *RA = getSCEV(FalseVal); 5122 const SCEV *LDiff = getMinusSCEV(LA, LS); 5123 const SCEV *RDiff = getMinusSCEV(RA, RS); 5124 if (LDiff == RDiff) 5125 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5126 LDiff = getMinusSCEV(LA, RS); 5127 RDiff = getMinusSCEV(RA, LS); 5128 if (LDiff == RDiff) 5129 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5130 } 5131 break; 5132 case ICmpInst::ICMP_ULT: 5133 case ICmpInst::ICMP_ULE: 5134 std::swap(LHS, RHS); 5135 LLVM_FALLTHROUGH; 5136 case ICmpInst::ICMP_UGT: 5137 case ICmpInst::ICMP_UGE: 5138 // a >u b ? a+x : b+x -> umax(a, b)+x 5139 // a >u b ? b+x : a+x -> umin(a, b)+x 5140 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5141 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5142 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5143 const SCEV *LA = getSCEV(TrueVal); 5144 const SCEV *RA = getSCEV(FalseVal); 5145 const SCEV *LDiff = getMinusSCEV(LA, LS); 5146 const SCEV *RDiff = getMinusSCEV(RA, RS); 5147 if (LDiff == RDiff) 5148 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5149 LDiff = getMinusSCEV(LA, RS); 5150 RDiff = getMinusSCEV(RA, LS); 5151 if (LDiff == RDiff) 5152 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5153 } 5154 break; 5155 case ICmpInst::ICMP_NE: 5156 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5157 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5158 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5159 const SCEV *One = getOne(I->getType()); 5160 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5161 const SCEV *LA = getSCEV(TrueVal); 5162 const SCEV *RA = getSCEV(FalseVal); 5163 const SCEV *LDiff = getMinusSCEV(LA, LS); 5164 const SCEV *RDiff = getMinusSCEV(RA, One); 5165 if (LDiff == RDiff) 5166 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5167 } 5168 break; 5169 case ICmpInst::ICMP_EQ: 5170 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5171 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5172 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5173 const SCEV *One = getOne(I->getType()); 5174 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5175 const SCEV *LA = getSCEV(TrueVal); 5176 const SCEV *RA = getSCEV(FalseVal); 5177 const SCEV *LDiff = getMinusSCEV(LA, One); 5178 const SCEV *RDiff = getMinusSCEV(RA, LS); 5179 if (LDiff == RDiff) 5180 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5181 } 5182 break; 5183 default: 5184 break; 5185 } 5186 5187 return getUnknown(I); 5188 } 5189 5190 /// Expand GEP instructions into add and multiply operations. This allows them 5191 /// to be analyzed by regular SCEV code. 5192 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5193 // Don't attempt to analyze GEPs over unsized objects. 5194 if (!GEP->getSourceElementType()->isSized()) 5195 return getUnknown(GEP); 5196 5197 SmallVector<const SCEV *, 4> IndexExprs; 5198 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5199 IndexExprs.push_back(getSCEV(*Index)); 5200 return getGEPExpr(GEP, IndexExprs); 5201 } 5202 5203 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5204 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5205 return C->getAPInt().countTrailingZeros(); 5206 5207 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5208 return std::min(GetMinTrailingZeros(T->getOperand()), 5209 (uint32_t)getTypeSizeInBits(T->getType())); 5210 5211 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5212 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5213 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5214 ? getTypeSizeInBits(E->getType()) 5215 : OpRes; 5216 } 5217 5218 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5219 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5220 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5221 ? getTypeSizeInBits(E->getType()) 5222 : OpRes; 5223 } 5224 5225 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5226 // The result is the min of all operands results. 5227 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5228 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5229 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5230 return MinOpRes; 5231 } 5232 5233 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5234 // The result is the sum of all operands results. 5235 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5236 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5237 for (unsigned i = 1, e = M->getNumOperands(); 5238 SumOpRes != BitWidth && i != e; ++i) 5239 SumOpRes = 5240 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5241 return SumOpRes; 5242 } 5243 5244 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5245 // The result is the min of all operands results. 5246 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5247 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5248 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5249 return MinOpRes; 5250 } 5251 5252 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5253 // The result is the min of all operands results. 5254 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5255 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5256 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5257 return MinOpRes; 5258 } 5259 5260 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5261 // The result is the min of all operands results. 5262 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5263 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5264 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5265 return MinOpRes; 5266 } 5267 5268 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5269 // For a SCEVUnknown, ask ValueTracking. 5270 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5271 return Known.countMinTrailingZeros(); 5272 } 5273 5274 // SCEVUDivExpr 5275 return 0; 5276 } 5277 5278 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5279 auto I = MinTrailingZerosCache.find(S); 5280 if (I != MinTrailingZerosCache.end()) 5281 return I->second; 5282 5283 uint32_t Result = GetMinTrailingZerosImpl(S); 5284 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5285 assert(InsertPair.second && "Should insert a new key"); 5286 return InsertPair.first->second; 5287 } 5288 5289 /// Helper method to assign a range to V from metadata present in the IR. 5290 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5291 if (Instruction *I = dyn_cast<Instruction>(V)) 5292 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5293 return getConstantRangeFromMetadata(*MD); 5294 5295 return None; 5296 } 5297 5298 /// Determine the range for a particular SCEV. If SignHint is 5299 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5300 /// with a "cleaner" unsigned (resp. signed) representation. 5301 const ConstantRange & 5302 ScalarEvolution::getRangeRef(const SCEV *S, 5303 ScalarEvolution::RangeSignHint SignHint) { 5304 DenseMap<const SCEV *, ConstantRange> &Cache = 5305 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5306 : SignedRanges; 5307 5308 // See if we've computed this range already. 5309 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5310 if (I != Cache.end()) 5311 return I->second; 5312 5313 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5314 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5315 5316 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5317 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5318 5319 // If the value has known zeros, the maximum value will have those known zeros 5320 // as well. 5321 uint32_t TZ = GetMinTrailingZeros(S); 5322 if (TZ != 0) { 5323 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5324 ConservativeResult = 5325 ConstantRange(APInt::getMinValue(BitWidth), 5326 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5327 else 5328 ConservativeResult = ConstantRange( 5329 APInt::getSignedMinValue(BitWidth), 5330 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5331 } 5332 5333 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5334 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5335 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5336 X = X.add(getRangeRef(Add->getOperand(i), SignHint)); 5337 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 5338 } 5339 5340 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5341 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5342 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5343 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5344 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 5345 } 5346 5347 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5348 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5349 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5350 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5351 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 5352 } 5353 5354 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5355 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5356 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5357 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5358 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 5359 } 5360 5361 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5362 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5363 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5364 return setRange(UDiv, SignHint, 5365 ConservativeResult.intersectWith(X.udiv(Y))); 5366 } 5367 5368 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5369 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5370 return setRange(ZExt, SignHint, 5371 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 5372 } 5373 5374 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5375 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5376 return setRange(SExt, SignHint, 5377 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 5378 } 5379 5380 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5381 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5382 return setRange(Trunc, SignHint, 5383 ConservativeResult.intersectWith(X.truncate(BitWidth))); 5384 } 5385 5386 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5387 // If there's no unsigned wrap, the value will never be less than its 5388 // initial value. 5389 if (AddRec->hasNoUnsignedWrap()) 5390 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 5391 if (!C->getValue()->isZero()) 5392 ConservativeResult = ConservativeResult.intersectWith( 5393 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 5394 5395 // If there's no signed wrap, and all the operands have the same sign or 5396 // zero, the value won't ever change sign. 5397 if (AddRec->hasNoSignedWrap()) { 5398 bool AllNonNeg = true; 5399 bool AllNonPos = true; 5400 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5401 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 5402 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 5403 } 5404 if (AllNonNeg) 5405 ConservativeResult = ConservativeResult.intersectWith( 5406 ConstantRange(APInt(BitWidth, 0), 5407 APInt::getSignedMinValue(BitWidth))); 5408 else if (AllNonPos) 5409 ConservativeResult = ConservativeResult.intersectWith( 5410 ConstantRange(APInt::getSignedMinValue(BitWidth), 5411 APInt(BitWidth, 1))); 5412 } 5413 5414 // TODO: non-affine addrec 5415 if (AddRec->isAffine()) { 5416 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 5417 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5418 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5419 auto RangeFromAffine = getRangeForAffineAR( 5420 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5421 BitWidth); 5422 if (!RangeFromAffine.isFullSet()) 5423 ConservativeResult = 5424 ConservativeResult.intersectWith(RangeFromAffine); 5425 5426 auto RangeFromFactoring = getRangeViaFactoring( 5427 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5428 BitWidth); 5429 if (!RangeFromFactoring.isFullSet()) 5430 ConservativeResult = 5431 ConservativeResult.intersectWith(RangeFromFactoring); 5432 } 5433 } 5434 5435 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5436 } 5437 5438 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5439 // Check if the IR explicitly contains !range metadata. 5440 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5441 if (MDRange.hasValue()) 5442 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 5443 5444 // Split here to avoid paying the compile-time cost of calling both 5445 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5446 // if needed. 5447 const DataLayout &DL = getDataLayout(); 5448 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5449 // For a SCEVUnknown, ask ValueTracking. 5450 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5451 if (Known.One != ~Known.Zero + 1) 5452 ConservativeResult = 5453 ConservativeResult.intersectWith(ConstantRange(Known.One, 5454 ~Known.Zero + 1)); 5455 } else { 5456 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5457 "generalize as needed!"); 5458 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5459 if (NS > 1) 5460 ConservativeResult = ConservativeResult.intersectWith( 5461 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5462 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 5463 } 5464 5465 return setRange(U, SignHint, std::move(ConservativeResult)); 5466 } 5467 5468 return setRange(S, SignHint, std::move(ConservativeResult)); 5469 } 5470 5471 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5472 // values that the expression can take. Initially, the expression has a value 5473 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5474 // argument defines if we treat Step as signed or unsigned. 5475 static ConstantRange getRangeForAffineARHelper(APInt Step, 5476 const ConstantRange &StartRange, 5477 const APInt &MaxBECount, 5478 unsigned BitWidth, bool Signed) { 5479 // If either Step or MaxBECount is 0, then the expression won't change, and we 5480 // just need to return the initial range. 5481 if (Step == 0 || MaxBECount == 0) 5482 return StartRange; 5483 5484 // If we don't know anything about the initial value (i.e. StartRange is 5485 // FullRange), then we don't know anything about the final range either. 5486 // Return FullRange. 5487 if (StartRange.isFullSet()) 5488 return ConstantRange(BitWidth, /* isFullSet = */ true); 5489 5490 // If Step is signed and negative, then we use its absolute value, but we also 5491 // note that we're moving in the opposite direction. 5492 bool Descending = Signed && Step.isNegative(); 5493 5494 if (Signed) 5495 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5496 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5497 // This equations hold true due to the well-defined wrap-around behavior of 5498 // APInt. 5499 Step = Step.abs(); 5500 5501 // Check if Offset is more than full span of BitWidth. If it is, the 5502 // expression is guaranteed to overflow. 5503 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5504 return ConstantRange(BitWidth, /* isFullSet = */ true); 5505 5506 // Offset is by how much the expression can change. Checks above guarantee no 5507 // overflow here. 5508 APInt Offset = Step * MaxBECount; 5509 5510 // Minimum value of the final range will match the minimal value of StartRange 5511 // if the expression is increasing and will be decreased by Offset otherwise. 5512 // Maximum value of the final range will match the maximal value of StartRange 5513 // if the expression is decreasing and will be increased by Offset otherwise. 5514 APInt StartLower = StartRange.getLower(); 5515 APInt StartUpper = StartRange.getUpper() - 1; 5516 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5517 : (StartUpper + std::move(Offset)); 5518 5519 // It's possible that the new minimum/maximum value will fall into the initial 5520 // range (due to wrap around). This means that the expression can take any 5521 // value in this bitwidth, and we have to return full range. 5522 if (StartRange.contains(MovedBoundary)) 5523 return ConstantRange(BitWidth, /* isFullSet = */ true); 5524 5525 APInt NewLower = 5526 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5527 APInt NewUpper = 5528 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5529 NewUpper += 1; 5530 5531 // If we end up with full range, return a proper full range. 5532 if (NewLower == NewUpper) 5533 return ConstantRange(BitWidth, /* isFullSet = */ true); 5534 5535 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5536 return ConstantRange(std::move(NewLower), std::move(NewUpper)); 5537 } 5538 5539 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5540 const SCEV *Step, 5541 const SCEV *MaxBECount, 5542 unsigned BitWidth) { 5543 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5544 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5545 "Precondition!"); 5546 5547 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5548 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5549 5550 // First, consider step signed. 5551 ConstantRange StartSRange = getSignedRange(Start); 5552 ConstantRange StepSRange = getSignedRange(Step); 5553 5554 // If Step can be both positive and negative, we need to find ranges for the 5555 // maximum absolute step values in both directions and union them. 5556 ConstantRange SR = 5557 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5558 MaxBECountValue, BitWidth, /* Signed = */ true); 5559 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5560 StartSRange, MaxBECountValue, 5561 BitWidth, /* Signed = */ true)); 5562 5563 // Next, consider step unsigned. 5564 ConstantRange UR = getRangeForAffineARHelper( 5565 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5566 MaxBECountValue, BitWidth, /* Signed = */ false); 5567 5568 // Finally, intersect signed and unsigned ranges. 5569 return SR.intersectWith(UR); 5570 } 5571 5572 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5573 const SCEV *Step, 5574 const SCEV *MaxBECount, 5575 unsigned BitWidth) { 5576 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5577 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5578 5579 struct SelectPattern { 5580 Value *Condition = nullptr; 5581 APInt TrueValue; 5582 APInt FalseValue; 5583 5584 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5585 const SCEV *S) { 5586 Optional<unsigned> CastOp; 5587 APInt Offset(BitWidth, 0); 5588 5589 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5590 "Should be!"); 5591 5592 // Peel off a constant offset: 5593 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5594 // In the future we could consider being smarter here and handle 5595 // {Start+Step,+,Step} too. 5596 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5597 return; 5598 5599 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5600 S = SA->getOperand(1); 5601 } 5602 5603 // Peel off a cast operation 5604 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5605 CastOp = SCast->getSCEVType(); 5606 S = SCast->getOperand(); 5607 } 5608 5609 using namespace llvm::PatternMatch; 5610 5611 auto *SU = dyn_cast<SCEVUnknown>(S); 5612 const APInt *TrueVal, *FalseVal; 5613 if (!SU || 5614 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5615 m_APInt(FalseVal)))) { 5616 Condition = nullptr; 5617 return; 5618 } 5619 5620 TrueValue = *TrueVal; 5621 FalseValue = *FalseVal; 5622 5623 // Re-apply the cast we peeled off earlier 5624 if (CastOp.hasValue()) 5625 switch (*CastOp) { 5626 default: 5627 llvm_unreachable("Unknown SCEV cast type!"); 5628 5629 case scTruncate: 5630 TrueValue = TrueValue.trunc(BitWidth); 5631 FalseValue = FalseValue.trunc(BitWidth); 5632 break; 5633 case scZeroExtend: 5634 TrueValue = TrueValue.zext(BitWidth); 5635 FalseValue = FalseValue.zext(BitWidth); 5636 break; 5637 case scSignExtend: 5638 TrueValue = TrueValue.sext(BitWidth); 5639 FalseValue = FalseValue.sext(BitWidth); 5640 break; 5641 } 5642 5643 // Re-apply the constant offset we peeled off earlier 5644 TrueValue += Offset; 5645 FalseValue += Offset; 5646 } 5647 5648 bool isRecognized() { return Condition != nullptr; } 5649 }; 5650 5651 SelectPattern StartPattern(*this, BitWidth, Start); 5652 if (!StartPattern.isRecognized()) 5653 return ConstantRange(BitWidth, /* isFullSet = */ true); 5654 5655 SelectPattern StepPattern(*this, BitWidth, Step); 5656 if (!StepPattern.isRecognized()) 5657 return ConstantRange(BitWidth, /* isFullSet = */ true); 5658 5659 if (StartPattern.Condition != StepPattern.Condition) { 5660 // We don't handle this case today; but we could, by considering four 5661 // possibilities below instead of two. I'm not sure if there are cases where 5662 // that will help over what getRange already does, though. 5663 return ConstantRange(BitWidth, /* isFullSet = */ true); 5664 } 5665 5666 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5667 // construct arbitrary general SCEV expressions here. This function is called 5668 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5669 // say) can end up caching a suboptimal value. 5670 5671 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5672 // C2352 and C2512 (otherwise it isn't needed). 5673 5674 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5675 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5676 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5677 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5678 5679 ConstantRange TrueRange = 5680 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5681 ConstantRange FalseRange = 5682 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5683 5684 return TrueRange.unionWith(FalseRange); 5685 } 5686 5687 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5688 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5689 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5690 5691 // Return early if there are no flags to propagate to the SCEV. 5692 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5693 if (BinOp->hasNoUnsignedWrap()) 5694 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5695 if (BinOp->hasNoSignedWrap()) 5696 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5697 if (Flags == SCEV::FlagAnyWrap) 5698 return SCEV::FlagAnyWrap; 5699 5700 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5701 } 5702 5703 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5704 // Here we check that I is in the header of the innermost loop containing I, 5705 // since we only deal with instructions in the loop header. The actual loop we 5706 // need to check later will come from an add recurrence, but getting that 5707 // requires computing the SCEV of the operands, which can be expensive. This 5708 // check we can do cheaply to rule out some cases early. 5709 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5710 if (InnermostContainingLoop == nullptr || 5711 InnermostContainingLoop->getHeader() != I->getParent()) 5712 return false; 5713 5714 // Only proceed if we can prove that I does not yield poison. 5715 if (!programUndefinedIfFullPoison(I)) 5716 return false; 5717 5718 // At this point we know that if I is executed, then it does not wrap 5719 // according to at least one of NSW or NUW. If I is not executed, then we do 5720 // not know if the calculation that I represents would wrap. Multiple 5721 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5722 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5723 // derived from other instructions that map to the same SCEV. We cannot make 5724 // that guarantee for cases where I is not executed. So we need to find the 5725 // loop that I is considered in relation to and prove that I is executed for 5726 // every iteration of that loop. That implies that the value that I 5727 // calculates does not wrap anywhere in the loop, so then we can apply the 5728 // flags to the SCEV. 5729 // 5730 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5731 // from different loops, so that we know which loop to prove that I is 5732 // executed in. 5733 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5734 // I could be an extractvalue from a call to an overflow intrinsic. 5735 // TODO: We can do better here in some cases. 5736 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5737 return false; 5738 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5739 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5740 bool AllOtherOpsLoopInvariant = true; 5741 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5742 ++OtherOpIndex) { 5743 if (OtherOpIndex != OpIndex) { 5744 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5745 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5746 AllOtherOpsLoopInvariant = false; 5747 break; 5748 } 5749 } 5750 } 5751 if (AllOtherOpsLoopInvariant && 5752 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5753 return true; 5754 } 5755 } 5756 return false; 5757 } 5758 5759 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5760 // If we know that \c I can never be poison period, then that's enough. 5761 if (isSCEVExprNeverPoison(I)) 5762 return true; 5763 5764 // For an add recurrence specifically, we assume that infinite loops without 5765 // side effects are undefined behavior, and then reason as follows: 5766 // 5767 // If the add recurrence is poison in any iteration, it is poison on all 5768 // future iterations (since incrementing poison yields poison). If the result 5769 // of the add recurrence is fed into the loop latch condition and the loop 5770 // does not contain any throws or exiting blocks other than the latch, we now 5771 // have the ability to "choose" whether the backedge is taken or not (by 5772 // choosing a sufficiently evil value for the poison feeding into the branch) 5773 // for every iteration including and after the one in which \p I first became 5774 // poison. There are two possibilities (let's call the iteration in which \p 5775 // I first became poison as K): 5776 // 5777 // 1. In the set of iterations including and after K, the loop body executes 5778 // no side effects. In this case executing the backege an infinte number 5779 // of times will yield undefined behavior. 5780 // 5781 // 2. In the set of iterations including and after K, the loop body executes 5782 // at least one side effect. In this case, that specific instance of side 5783 // effect is control dependent on poison, which also yields undefined 5784 // behavior. 5785 5786 auto *ExitingBB = L->getExitingBlock(); 5787 auto *LatchBB = L->getLoopLatch(); 5788 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5789 return false; 5790 5791 SmallPtrSet<const Instruction *, 16> Pushed; 5792 SmallVector<const Instruction *, 8> PoisonStack; 5793 5794 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5795 // things that are known to be fully poison under that assumption go on the 5796 // PoisonStack. 5797 Pushed.insert(I); 5798 PoisonStack.push_back(I); 5799 5800 bool LatchControlDependentOnPoison = false; 5801 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5802 const Instruction *Poison = PoisonStack.pop_back_val(); 5803 5804 for (auto *PoisonUser : Poison->users()) { 5805 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 5806 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5807 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5808 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5809 assert(BI->isConditional() && "Only possibility!"); 5810 if (BI->getParent() == LatchBB) { 5811 LatchControlDependentOnPoison = true; 5812 break; 5813 } 5814 } 5815 } 5816 } 5817 5818 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5819 } 5820 5821 ScalarEvolution::LoopProperties 5822 ScalarEvolution::getLoopProperties(const Loop *L) { 5823 using LoopProperties = ScalarEvolution::LoopProperties; 5824 5825 auto Itr = LoopPropertiesCache.find(L); 5826 if (Itr == LoopPropertiesCache.end()) { 5827 auto HasSideEffects = [](Instruction *I) { 5828 if (auto *SI = dyn_cast<StoreInst>(I)) 5829 return !SI->isSimple(); 5830 5831 return I->mayHaveSideEffects(); 5832 }; 5833 5834 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5835 /*HasNoSideEffects*/ true}; 5836 5837 for (auto *BB : L->getBlocks()) 5838 for (auto &I : *BB) { 5839 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5840 LP.HasNoAbnormalExits = false; 5841 if (HasSideEffects(&I)) 5842 LP.HasNoSideEffects = false; 5843 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5844 break; // We're already as pessimistic as we can get. 5845 } 5846 5847 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5848 assert(InsertPair.second && "We just checked!"); 5849 Itr = InsertPair.first; 5850 } 5851 5852 return Itr->second; 5853 } 5854 5855 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5856 if (!isSCEVable(V->getType())) 5857 return getUnknown(V); 5858 5859 if (Instruction *I = dyn_cast<Instruction>(V)) { 5860 // Don't attempt to analyze instructions in blocks that aren't 5861 // reachable. Such instructions don't matter, and they aren't required 5862 // to obey basic rules for definitions dominating uses which this 5863 // analysis depends on. 5864 if (!DT.isReachableFromEntry(I->getParent())) 5865 return getUnknown(V); 5866 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5867 return getConstant(CI); 5868 else if (isa<ConstantPointerNull>(V)) 5869 return getZero(V->getType()); 5870 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5871 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5872 else if (!isa<ConstantExpr>(V)) 5873 return getUnknown(V); 5874 5875 Operator *U = cast<Operator>(V); 5876 if (auto BO = MatchBinaryOp(U, DT)) { 5877 switch (BO->Opcode) { 5878 case Instruction::Add: { 5879 // The simple thing to do would be to just call getSCEV on both operands 5880 // and call getAddExpr with the result. However if we're looking at a 5881 // bunch of things all added together, this can be quite inefficient, 5882 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5883 // Instead, gather up all the operands and make a single getAddExpr call. 5884 // LLVM IR canonical form means we need only traverse the left operands. 5885 SmallVector<const SCEV *, 4> AddOps; 5886 do { 5887 if (BO->Op) { 5888 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5889 AddOps.push_back(OpSCEV); 5890 break; 5891 } 5892 5893 // If a NUW or NSW flag can be applied to the SCEV for this 5894 // addition, then compute the SCEV for this addition by itself 5895 // with a separate call to getAddExpr. We need to do that 5896 // instead of pushing the operands of the addition onto AddOps, 5897 // since the flags are only known to apply to this particular 5898 // addition - they may not apply to other additions that can be 5899 // formed with operands from AddOps. 5900 const SCEV *RHS = getSCEV(BO->RHS); 5901 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5902 if (Flags != SCEV::FlagAnyWrap) { 5903 const SCEV *LHS = getSCEV(BO->LHS); 5904 if (BO->Opcode == Instruction::Sub) 5905 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 5906 else 5907 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 5908 break; 5909 } 5910 } 5911 5912 if (BO->Opcode == Instruction::Sub) 5913 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 5914 else 5915 AddOps.push_back(getSCEV(BO->RHS)); 5916 5917 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5918 if (!NewBO || (NewBO->Opcode != Instruction::Add && 5919 NewBO->Opcode != Instruction::Sub)) { 5920 AddOps.push_back(getSCEV(BO->LHS)); 5921 break; 5922 } 5923 BO = NewBO; 5924 } while (true); 5925 5926 return getAddExpr(AddOps); 5927 } 5928 5929 case Instruction::Mul: { 5930 SmallVector<const SCEV *, 4> MulOps; 5931 do { 5932 if (BO->Op) { 5933 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5934 MulOps.push_back(OpSCEV); 5935 break; 5936 } 5937 5938 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5939 if (Flags != SCEV::FlagAnyWrap) { 5940 MulOps.push_back( 5941 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 5942 break; 5943 } 5944 } 5945 5946 MulOps.push_back(getSCEV(BO->RHS)); 5947 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5948 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 5949 MulOps.push_back(getSCEV(BO->LHS)); 5950 break; 5951 } 5952 BO = NewBO; 5953 } while (true); 5954 5955 return getMulExpr(MulOps); 5956 } 5957 case Instruction::UDiv: 5958 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5959 case Instruction::URem: 5960 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5961 case Instruction::Sub: { 5962 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5963 if (BO->Op) 5964 Flags = getNoWrapFlagsFromUB(BO->Op); 5965 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 5966 } 5967 case Instruction::And: 5968 // For an expression like x&255 that merely masks off the high bits, 5969 // use zext(trunc(x)) as the SCEV expression. 5970 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5971 if (CI->isZero()) 5972 return getSCEV(BO->RHS); 5973 if (CI->isMinusOne()) 5974 return getSCEV(BO->LHS); 5975 const APInt &A = CI->getValue(); 5976 5977 // Instcombine's ShrinkDemandedConstant may strip bits out of 5978 // constants, obscuring what would otherwise be a low-bits mask. 5979 // Use computeKnownBits to compute what ShrinkDemandedConstant 5980 // knew about to reconstruct a low-bits mask value. 5981 unsigned LZ = A.countLeadingZeros(); 5982 unsigned TZ = A.countTrailingZeros(); 5983 unsigned BitWidth = A.getBitWidth(); 5984 KnownBits Known(BitWidth); 5985 computeKnownBits(BO->LHS, Known, getDataLayout(), 5986 0, &AC, nullptr, &DT); 5987 5988 APInt EffectiveMask = 5989 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 5990 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 5991 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 5992 const SCEV *LHS = getSCEV(BO->LHS); 5993 const SCEV *ShiftedLHS = nullptr; 5994 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 5995 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 5996 // For an expression like (x * 8) & 8, simplify the multiply. 5997 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 5998 unsigned GCD = std::min(MulZeros, TZ); 5999 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6000 SmallVector<const SCEV*, 4> MulOps; 6001 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6002 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6003 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6004 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6005 } 6006 } 6007 if (!ShiftedLHS) 6008 ShiftedLHS = getUDivExpr(LHS, MulCount); 6009 return getMulExpr( 6010 getZeroExtendExpr( 6011 getTruncateExpr(ShiftedLHS, 6012 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6013 BO->LHS->getType()), 6014 MulCount); 6015 } 6016 } 6017 break; 6018 6019 case Instruction::Or: 6020 // If the RHS of the Or is a constant, we may have something like: 6021 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6022 // optimizations will transparently handle this case. 6023 // 6024 // In order for this transformation to be safe, the LHS must be of the 6025 // form X*(2^n) and the Or constant must be less than 2^n. 6026 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6027 const SCEV *LHS = getSCEV(BO->LHS); 6028 const APInt &CIVal = CI->getValue(); 6029 if (GetMinTrailingZeros(LHS) >= 6030 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6031 // Build a plain add SCEV. 6032 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 6033 // If the LHS of the add was an addrec and it has no-wrap flags, 6034 // transfer the no-wrap flags, since an or won't introduce a wrap. 6035 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 6036 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 6037 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 6038 OldAR->getNoWrapFlags()); 6039 } 6040 return S; 6041 } 6042 } 6043 break; 6044 6045 case Instruction::Xor: 6046 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6047 // If the RHS of xor is -1, then this is a not operation. 6048 if (CI->isMinusOne()) 6049 return getNotSCEV(getSCEV(BO->LHS)); 6050 6051 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6052 // This is a variant of the check for xor with -1, and it handles 6053 // the case where instcombine has trimmed non-demanded bits out 6054 // of an xor with -1. 6055 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6056 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6057 if (LBO->getOpcode() == Instruction::And && 6058 LCI->getValue() == CI->getValue()) 6059 if (const SCEVZeroExtendExpr *Z = 6060 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6061 Type *UTy = BO->LHS->getType(); 6062 const SCEV *Z0 = Z->getOperand(); 6063 Type *Z0Ty = Z0->getType(); 6064 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6065 6066 // If C is a low-bits mask, the zero extend is serving to 6067 // mask off the high bits. Complement the operand and 6068 // re-apply the zext. 6069 if (CI->getValue().isMask(Z0TySize)) 6070 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6071 6072 // If C is a single bit, it may be in the sign-bit position 6073 // before the zero-extend. In this case, represent the xor 6074 // using an add, which is equivalent, and re-apply the zext. 6075 APInt Trunc = CI->getValue().trunc(Z0TySize); 6076 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6077 Trunc.isSignMask()) 6078 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6079 UTy); 6080 } 6081 } 6082 break; 6083 6084 case Instruction::Shl: 6085 // Turn shift left of a constant amount into a multiply. 6086 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6087 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6088 6089 // If the shift count is not less than the bitwidth, the result of 6090 // the shift is undefined. Don't try to analyze it, because the 6091 // resolution chosen here may differ from the resolution chosen in 6092 // other parts of the compiler. 6093 if (SA->getValue().uge(BitWidth)) 6094 break; 6095 6096 // It is currently not resolved how to interpret NSW for left 6097 // shift by BitWidth - 1, so we avoid applying flags in that 6098 // case. Remove this check (or this comment) once the situation 6099 // is resolved. See 6100 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 6101 // and http://reviews.llvm.org/D8890 . 6102 auto Flags = SCEV::FlagAnyWrap; 6103 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 6104 Flags = getNoWrapFlagsFromUB(BO->Op); 6105 6106 Constant *X = ConstantInt::get(getContext(), 6107 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6108 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6109 } 6110 break; 6111 6112 case Instruction::AShr: { 6113 // AShr X, C, where C is a constant. 6114 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6115 if (!CI) 6116 break; 6117 6118 Type *OuterTy = BO->LHS->getType(); 6119 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6120 // If the shift count is not less than the bitwidth, the result of 6121 // the shift is undefined. Don't try to analyze it, because the 6122 // resolution chosen here may differ from the resolution chosen in 6123 // other parts of the compiler. 6124 if (CI->getValue().uge(BitWidth)) 6125 break; 6126 6127 if (CI->isZero()) 6128 return getSCEV(BO->LHS); // shift by zero --> noop 6129 6130 uint64_t AShrAmt = CI->getZExtValue(); 6131 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6132 6133 Operator *L = dyn_cast<Operator>(BO->LHS); 6134 if (L && L->getOpcode() == Instruction::Shl) { 6135 // X = Shl A, n 6136 // Y = AShr X, m 6137 // Both n and m are constant. 6138 6139 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6140 if (L->getOperand(1) == BO->RHS) 6141 // For a two-shift sext-inreg, i.e. n = m, 6142 // use sext(trunc(x)) as the SCEV expression. 6143 return getSignExtendExpr( 6144 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6145 6146 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6147 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6148 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6149 if (ShlAmt > AShrAmt) { 6150 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6151 // expression. We already checked that ShlAmt < BitWidth, so 6152 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6153 // ShlAmt - AShrAmt < Amt. 6154 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6155 ShlAmt - AShrAmt); 6156 return getSignExtendExpr( 6157 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6158 getConstant(Mul)), OuterTy); 6159 } 6160 } 6161 } 6162 break; 6163 } 6164 } 6165 } 6166 6167 switch (U->getOpcode()) { 6168 case Instruction::Trunc: 6169 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6170 6171 case Instruction::ZExt: 6172 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6173 6174 case Instruction::SExt: 6175 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6176 // The NSW flag of a subtract does not always survive the conversion to 6177 // A + (-1)*B. By pushing sign extension onto its operands we are much 6178 // more likely to preserve NSW and allow later AddRec optimisations. 6179 // 6180 // NOTE: This is effectively duplicating this logic from getSignExtend: 6181 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6182 // but by that point the NSW information has potentially been lost. 6183 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6184 Type *Ty = U->getType(); 6185 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6186 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6187 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6188 } 6189 } 6190 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6191 6192 case Instruction::BitCast: 6193 // BitCasts are no-op casts so we just eliminate the cast. 6194 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6195 return getSCEV(U->getOperand(0)); 6196 break; 6197 6198 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6199 // lead to pointer expressions which cannot safely be expanded to GEPs, 6200 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6201 // simplifying integer expressions. 6202 6203 case Instruction::GetElementPtr: 6204 return createNodeForGEP(cast<GEPOperator>(U)); 6205 6206 case Instruction::PHI: 6207 return createNodeForPHI(cast<PHINode>(U)); 6208 6209 case Instruction::Select: 6210 // U can also be a select constant expr, which let fall through. Since 6211 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6212 // constant expressions cannot have instructions as operands, we'd have 6213 // returned getUnknown for a select constant expressions anyway. 6214 if (isa<Instruction>(U)) 6215 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6216 U->getOperand(1), U->getOperand(2)); 6217 break; 6218 6219 case Instruction::Call: 6220 case Instruction::Invoke: 6221 if (Value *RV = CallSite(U).getReturnedArgOperand()) 6222 return getSCEV(RV); 6223 break; 6224 } 6225 6226 return getUnknown(V); 6227 } 6228 6229 //===----------------------------------------------------------------------===// 6230 // Iteration Count Computation Code 6231 // 6232 6233 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6234 if (!ExitCount) 6235 return 0; 6236 6237 ConstantInt *ExitConst = ExitCount->getValue(); 6238 6239 // Guard against huge trip counts. 6240 if (ExitConst->getValue().getActiveBits() > 32) 6241 return 0; 6242 6243 // In case of integer overflow, this returns 0, which is correct. 6244 return ((unsigned)ExitConst->getZExtValue()) + 1; 6245 } 6246 6247 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6248 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6249 return getSmallConstantTripCount(L, ExitingBB); 6250 6251 // No trip count information for multiple exits. 6252 return 0; 6253 } 6254 6255 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6256 BasicBlock *ExitingBlock) { 6257 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6258 assert(L->isLoopExiting(ExitingBlock) && 6259 "Exiting block must actually branch out of the loop!"); 6260 const SCEVConstant *ExitCount = 6261 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6262 return getConstantTripCount(ExitCount); 6263 } 6264 6265 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6266 const auto *MaxExitCount = 6267 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 6268 return getConstantTripCount(MaxExitCount); 6269 } 6270 6271 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6272 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6273 return getSmallConstantTripMultiple(L, ExitingBB); 6274 6275 // No trip multiple information for multiple exits. 6276 return 0; 6277 } 6278 6279 /// Returns the largest constant divisor of the trip count of this loop as a 6280 /// normal unsigned value, if possible. This means that the actual trip count is 6281 /// always a multiple of the returned value (don't forget the trip count could 6282 /// very well be zero as well!). 6283 /// 6284 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6285 /// multiple of a constant (which is also the case if the trip count is simply 6286 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6287 /// if the trip count is very large (>= 2^32). 6288 /// 6289 /// As explained in the comments for getSmallConstantTripCount, this assumes 6290 /// that control exits the loop via ExitingBlock. 6291 unsigned 6292 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6293 BasicBlock *ExitingBlock) { 6294 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6295 assert(L->isLoopExiting(ExitingBlock) && 6296 "Exiting block must actually branch out of the loop!"); 6297 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6298 if (ExitCount == getCouldNotCompute()) 6299 return 1; 6300 6301 // Get the trip count from the BE count by adding 1. 6302 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6303 6304 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6305 if (!TC) 6306 // Attempt to factor more general cases. Returns the greatest power of 6307 // two divisor. If overflow happens, the trip count expression is still 6308 // divisible by the greatest power of 2 divisor returned. 6309 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6310 6311 ConstantInt *Result = TC->getValue(); 6312 6313 // Guard against huge trip counts (this requires checking 6314 // for zero to handle the case where the trip count == -1 and the 6315 // addition wraps). 6316 if (!Result || Result->getValue().getActiveBits() > 32 || 6317 Result->getValue().getActiveBits() == 0) 6318 return 1; 6319 6320 return (unsigned)Result->getZExtValue(); 6321 } 6322 6323 /// Get the expression for the number of loop iterations for which this loop is 6324 /// guaranteed not to exit via ExitingBlock. Otherwise return 6325 /// SCEVCouldNotCompute. 6326 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6327 BasicBlock *ExitingBlock) { 6328 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6329 } 6330 6331 const SCEV * 6332 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6333 SCEVUnionPredicate &Preds) { 6334 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds); 6335 } 6336 6337 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 6338 return getBackedgeTakenInfo(L).getExact(this); 6339 } 6340 6341 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 6342 /// known never to be less than the actual backedge taken count. 6343 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 6344 return getBackedgeTakenInfo(L).getMax(this); 6345 } 6346 6347 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6348 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6349 } 6350 6351 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6352 static void 6353 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6354 BasicBlock *Header = L->getHeader(); 6355 6356 // Push all Loop-header PHIs onto the Worklist stack. 6357 for (BasicBlock::iterator I = Header->begin(); 6358 PHINode *PN = dyn_cast<PHINode>(I); ++I) 6359 Worklist.push_back(PN); 6360 } 6361 6362 const ScalarEvolution::BackedgeTakenInfo & 6363 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6364 auto &BTI = getBackedgeTakenInfo(L); 6365 if (BTI.hasFullInfo()) 6366 return BTI; 6367 6368 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6369 6370 if (!Pair.second) 6371 return Pair.first->second; 6372 6373 BackedgeTakenInfo Result = 6374 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6375 6376 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6377 } 6378 6379 const ScalarEvolution::BackedgeTakenInfo & 6380 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6381 // Initially insert an invalid entry for this loop. If the insertion 6382 // succeeds, proceed to actually compute a backedge-taken count and 6383 // update the value. The temporary CouldNotCompute value tells SCEV 6384 // code elsewhere that it shouldn't attempt to request a new 6385 // backedge-taken count, which could result in infinite recursion. 6386 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6387 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6388 if (!Pair.second) 6389 return Pair.first->second; 6390 6391 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6392 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6393 // must be cleared in this scope. 6394 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6395 6396 if (Result.getExact(this) != getCouldNotCompute()) { 6397 assert(isLoopInvariant(Result.getExact(this), L) && 6398 isLoopInvariant(Result.getMax(this), L) && 6399 "Computed backedge-taken count isn't loop invariant for loop!"); 6400 ++NumTripCountsComputed; 6401 } 6402 else if (Result.getMax(this) == getCouldNotCompute() && 6403 isa<PHINode>(L->getHeader()->begin())) { 6404 // Only count loops that have phi nodes as not being computable. 6405 ++NumTripCountsNotComputed; 6406 } 6407 6408 // Now that we know more about the trip count for this loop, forget any 6409 // existing SCEV values for PHI nodes in this loop since they are only 6410 // conservative estimates made without the benefit of trip count 6411 // information. This is similar to the code in forgetLoop, except that 6412 // it handles SCEVUnknown PHI nodes specially. 6413 if (Result.hasAnyInfo()) { 6414 SmallVector<Instruction *, 16> Worklist; 6415 PushLoopPHIs(L, Worklist); 6416 6417 SmallPtrSet<Instruction *, 8> Visited; 6418 while (!Worklist.empty()) { 6419 Instruction *I = Worklist.pop_back_val(); 6420 if (!Visited.insert(I).second) 6421 continue; 6422 6423 ValueExprMapType::iterator It = 6424 ValueExprMap.find_as(static_cast<Value *>(I)); 6425 if (It != ValueExprMap.end()) { 6426 const SCEV *Old = It->second; 6427 6428 // SCEVUnknown for a PHI either means that it has an unrecognized 6429 // structure, or it's a PHI that's in the progress of being computed 6430 // by createNodeForPHI. In the former case, additional loop trip 6431 // count information isn't going to change anything. In the later 6432 // case, createNodeForPHI will perform the necessary updates on its 6433 // own when it gets to that point. 6434 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6435 eraseValueFromMap(It->first); 6436 forgetMemoizedResults(Old, false); 6437 } 6438 if (PHINode *PN = dyn_cast<PHINode>(I)) 6439 ConstantEvolutionLoopExitValue.erase(PN); 6440 } 6441 6442 PushDefUseChildren(I, Worklist); 6443 } 6444 } 6445 6446 // Re-lookup the insert position, since the call to 6447 // computeBackedgeTakenCount above could result in a 6448 // recusive call to getBackedgeTakenInfo (on a different 6449 // loop), which would invalidate the iterator computed 6450 // earlier. 6451 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6452 } 6453 6454 void ScalarEvolution::forgetLoop(const Loop *L) { 6455 // Drop any stored trip count value. 6456 auto RemoveLoopFromBackedgeMap = 6457 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6458 auto BTCPos = Map.find(L); 6459 if (BTCPos != Map.end()) { 6460 BTCPos->second.clear(); 6461 Map.erase(BTCPos); 6462 } 6463 }; 6464 6465 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6466 SmallVector<Instruction *, 32> Worklist; 6467 SmallPtrSet<Instruction *, 16> Visited; 6468 6469 // Iterate over all the loops and sub-loops to drop SCEV information. 6470 while (!LoopWorklist.empty()) { 6471 auto *CurrL = LoopWorklist.pop_back_val(); 6472 6473 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6474 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6475 6476 // Drop information about predicated SCEV rewrites for this loop. 6477 for (auto I = PredicatedSCEVRewrites.begin(); 6478 I != PredicatedSCEVRewrites.end();) { 6479 std::pair<const SCEV *, const Loop *> Entry = I->first; 6480 if (Entry.second == CurrL) 6481 PredicatedSCEVRewrites.erase(I++); 6482 else 6483 ++I; 6484 } 6485 6486 auto LoopUsersItr = LoopUsers.find(CurrL); 6487 if (LoopUsersItr != LoopUsers.end()) { 6488 for (auto *S : LoopUsersItr->second) 6489 forgetMemoizedResults(S); 6490 LoopUsers.erase(LoopUsersItr); 6491 } 6492 6493 // Drop information about expressions based on loop-header PHIs. 6494 PushLoopPHIs(CurrL, Worklist); 6495 6496 while (!Worklist.empty()) { 6497 Instruction *I = Worklist.pop_back_val(); 6498 if (!Visited.insert(I).second) 6499 continue; 6500 6501 ValueExprMapType::iterator It = 6502 ValueExprMap.find_as(static_cast<Value *>(I)); 6503 if (It != ValueExprMap.end()) { 6504 eraseValueFromMap(It->first); 6505 forgetMemoizedResults(It->second); 6506 if (PHINode *PN = dyn_cast<PHINode>(I)) 6507 ConstantEvolutionLoopExitValue.erase(PN); 6508 } 6509 6510 PushDefUseChildren(I, Worklist); 6511 } 6512 6513 for (auto I = ExitLimits.begin(); I != ExitLimits.end(); ++I) { 6514 auto &Query = I->first; 6515 if (Query.L == CurrL) 6516 ExitLimits.erase(I); 6517 } 6518 6519 LoopPropertiesCache.erase(CurrL); 6520 // Forget all contained loops too, to avoid dangling entries in the 6521 // ValuesAtScopes map. 6522 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6523 } 6524 } 6525 6526 void ScalarEvolution::forgetValue(Value *V) { 6527 Instruction *I = dyn_cast<Instruction>(V); 6528 if (!I) return; 6529 6530 // Drop information about expressions based on loop-header PHIs. 6531 SmallVector<Instruction *, 16> Worklist; 6532 Worklist.push_back(I); 6533 6534 SmallPtrSet<Instruction *, 8> Visited; 6535 while (!Worklist.empty()) { 6536 I = Worklist.pop_back_val(); 6537 if (!Visited.insert(I).second) 6538 continue; 6539 6540 ValueExprMapType::iterator It = 6541 ValueExprMap.find_as(static_cast<Value *>(I)); 6542 if (It != ValueExprMap.end()) { 6543 eraseValueFromMap(It->first); 6544 forgetMemoizedResults(It->second); 6545 if (PHINode *PN = dyn_cast<PHINode>(I)) 6546 ConstantEvolutionLoopExitValue.erase(PN); 6547 } 6548 6549 PushDefUseChildren(I, Worklist); 6550 } 6551 } 6552 6553 /// Get the exact loop backedge taken count considering all loop exits. A 6554 /// computable result can only be returned for loops with a single exit. 6555 /// Returning the minimum taken count among all exits is incorrect because one 6556 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that 6557 /// the limit of each loop test is never skipped. This is a valid assumption as 6558 /// long as the loop exits via that test. For precise results, it is the 6559 /// caller's responsibility to specify the relevant loop exit using 6560 /// getExact(ExitingBlock, SE). 6561 const SCEV * 6562 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE, 6563 SCEVUnionPredicate *Preds) const { 6564 // If any exits were not computable, the loop is not computable. 6565 if (!isComplete() || ExitNotTaken.empty()) 6566 return SE->getCouldNotCompute(); 6567 6568 const SCEV *BECount = nullptr; 6569 for (auto &ENT : ExitNotTaken) { 6570 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 6571 6572 if (!BECount) 6573 BECount = ENT.ExactNotTaken; 6574 else if (BECount != ENT.ExactNotTaken) 6575 return SE->getCouldNotCompute(); 6576 if (Preds && !ENT.hasAlwaysTruePredicate()) 6577 Preds->add(ENT.Predicate.get()); 6578 6579 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6580 "Predicate should be always true!"); 6581 } 6582 6583 assert(BECount && "Invalid not taken count for loop exit"); 6584 return BECount; 6585 } 6586 6587 /// Get the exact not taken count for this loop exit. 6588 const SCEV * 6589 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 6590 ScalarEvolution *SE) const { 6591 for (auto &ENT : ExitNotTaken) 6592 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6593 return ENT.ExactNotTaken; 6594 6595 return SE->getCouldNotCompute(); 6596 } 6597 6598 /// getMax - Get the max backedge taken count for the loop. 6599 const SCEV * 6600 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6601 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6602 return !ENT.hasAlwaysTruePredicate(); 6603 }; 6604 6605 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6606 return SE->getCouldNotCompute(); 6607 6608 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6609 "No point in having a non-constant max backedge taken count!"); 6610 return getMax(); 6611 } 6612 6613 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6614 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6615 return !ENT.hasAlwaysTruePredicate(); 6616 }; 6617 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6618 } 6619 6620 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6621 ScalarEvolution *SE) const { 6622 if (getMax() && getMax() != SE->getCouldNotCompute() && 6623 SE->hasOperand(getMax(), S)) 6624 return true; 6625 6626 for (auto &ENT : ExitNotTaken) 6627 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6628 SE->hasOperand(ENT.ExactNotTaken, S)) 6629 return true; 6630 6631 return false; 6632 } 6633 6634 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6635 : ExactNotTaken(E), MaxNotTaken(E) { 6636 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6637 isa<SCEVConstant>(MaxNotTaken)) && 6638 "No point in having a non-constant max backedge taken count!"); 6639 } 6640 6641 ScalarEvolution::ExitLimit::ExitLimit( 6642 const SCEV *E, const SCEV *M, bool MaxOrZero, 6643 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6644 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6645 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6646 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6647 "Exact is not allowed to be less precise than Max"); 6648 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6649 isa<SCEVConstant>(MaxNotTaken)) && 6650 "No point in having a non-constant max backedge taken count!"); 6651 for (auto *PredSet : PredSetList) 6652 for (auto *P : *PredSet) 6653 addPredicate(P); 6654 } 6655 6656 ScalarEvolution::ExitLimit::ExitLimit( 6657 const SCEV *E, const SCEV *M, bool MaxOrZero, 6658 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6659 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6660 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6661 isa<SCEVConstant>(MaxNotTaken)) && 6662 "No point in having a non-constant max backedge taken count!"); 6663 } 6664 6665 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6666 bool MaxOrZero) 6667 : ExitLimit(E, M, MaxOrZero, None) { 6668 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6669 isa<SCEVConstant>(MaxNotTaken)) && 6670 "No point in having a non-constant max backedge taken count!"); 6671 } 6672 6673 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6674 /// computable exit into a persistent ExitNotTakenInfo array. 6675 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6676 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6677 &&ExitCounts, 6678 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6679 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6680 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6681 6682 ExitNotTaken.reserve(ExitCounts.size()); 6683 std::transform( 6684 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6685 [&](const EdgeExitInfo &EEI) { 6686 BasicBlock *ExitBB = EEI.first; 6687 const ExitLimit &EL = EEI.second; 6688 if (EL.Predicates.empty()) 6689 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 6690 6691 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6692 for (auto *Pred : EL.Predicates) 6693 Predicate->add(Pred); 6694 6695 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 6696 }); 6697 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6698 "No point in having a non-constant max backedge taken count!"); 6699 } 6700 6701 /// Invalidate this result and free the ExitNotTakenInfo array. 6702 void ScalarEvolution::BackedgeTakenInfo::clear() { 6703 ExitNotTaken.clear(); 6704 } 6705 6706 /// Compute the number of times the backedge of the specified loop will execute. 6707 ScalarEvolution::BackedgeTakenInfo 6708 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 6709 bool AllowPredicates) { 6710 SmallVector<BasicBlock *, 8> ExitingBlocks; 6711 L->getExitingBlocks(ExitingBlocks); 6712 6713 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6714 6715 SmallVector<EdgeExitInfo, 4> ExitCounts; 6716 bool CouldComputeBECount = true; 6717 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 6718 const SCEV *MustExitMaxBECount = nullptr; 6719 const SCEV *MayExitMaxBECount = nullptr; 6720 bool MustExitMaxOrZero = false; 6721 6722 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 6723 // and compute maxBECount. 6724 // Do a union of all the predicates here. 6725 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 6726 BasicBlock *ExitBB = ExitingBlocks[i]; 6727 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 6728 6729 assert((AllowPredicates || EL.Predicates.empty()) && 6730 "Predicated exit limit when predicates are not allowed!"); 6731 6732 // 1. For each exit that can be computed, add an entry to ExitCounts. 6733 // CouldComputeBECount is true only if all exits can be computed. 6734 if (EL.ExactNotTaken == getCouldNotCompute()) 6735 // We couldn't compute an exact value for this exit, so 6736 // we won't be able to compute an exact value for the loop. 6737 CouldComputeBECount = false; 6738 else 6739 ExitCounts.emplace_back(ExitBB, EL); 6740 6741 // 2. Derive the loop's MaxBECount from each exit's max number of 6742 // non-exiting iterations. Partition the loop exits into two kinds: 6743 // LoopMustExits and LoopMayExits. 6744 // 6745 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 6746 // is a LoopMayExit. If any computable LoopMustExit is found, then 6747 // MaxBECount is the minimum EL.MaxNotTaken of computable 6748 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 6749 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 6750 // computable EL.MaxNotTaken. 6751 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 6752 DT.dominates(ExitBB, Latch)) { 6753 if (!MustExitMaxBECount) { 6754 MustExitMaxBECount = EL.MaxNotTaken; 6755 MustExitMaxOrZero = EL.MaxOrZero; 6756 } else { 6757 MustExitMaxBECount = 6758 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 6759 } 6760 } else if (MayExitMaxBECount != getCouldNotCompute()) { 6761 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 6762 MayExitMaxBECount = EL.MaxNotTaken; 6763 else { 6764 MayExitMaxBECount = 6765 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 6766 } 6767 } 6768 } 6769 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 6770 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 6771 // The loop backedge will be taken the maximum or zero times if there's 6772 // a single exit that must be taken the maximum or zero times. 6773 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 6774 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 6775 MaxBECount, MaxOrZero); 6776 } 6777 6778 ScalarEvolution::ExitLimit 6779 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 6780 bool AllowPredicates) { 6781 ExitLimitQuery Query(L, ExitingBlock, AllowPredicates); 6782 auto MaybeEL = ExitLimits.find(Query); 6783 if (MaybeEL != ExitLimits.end()) 6784 return MaybeEL->second; 6785 ExitLimit EL = computeExitLimitImpl(L, ExitingBlock, AllowPredicates); 6786 ExitLimits.insert({Query, EL}); 6787 return EL; 6788 } 6789 6790 ScalarEvolution::ExitLimit 6791 ScalarEvolution::computeExitLimitImpl(const Loop *L, BasicBlock *ExitingBlock, 6792 bool AllowPredicates) { 6793 // Okay, we've chosen an exiting block. See what condition causes us to exit 6794 // at this block and remember the exit block and whether all other targets 6795 // lead to the loop header. 6796 bool MustExecuteLoopHeader = true; 6797 BasicBlock *Exit = nullptr; 6798 for (auto *SBB : successors(ExitingBlock)) 6799 if (!L->contains(SBB)) { 6800 if (Exit) // Multiple exit successors. 6801 return getCouldNotCompute(); 6802 Exit = SBB; 6803 } else if (SBB != L->getHeader()) { 6804 MustExecuteLoopHeader = false; 6805 } 6806 6807 // At this point, we know we have a conditional branch that determines whether 6808 // the loop is exited. However, we don't know if the branch is executed each 6809 // time through the loop. If not, then the execution count of the branch will 6810 // not be equal to the trip count of the loop. 6811 // 6812 // Currently we check for this by checking to see if the Exit branch goes to 6813 // the loop header. If so, we know it will always execute the same number of 6814 // times as the loop. We also handle the case where the exit block *is* the 6815 // loop header. This is common for un-rotated loops. 6816 // 6817 // If both of those tests fail, walk up the unique predecessor chain to the 6818 // header, stopping if there is an edge that doesn't exit the loop. If the 6819 // header is reached, the execution count of the branch will be equal to the 6820 // trip count of the loop. 6821 // 6822 // More extensive analysis could be done to handle more cases here. 6823 // 6824 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 6825 // The simple checks failed, try climbing the unique predecessor chain 6826 // up to the header. 6827 bool Ok = false; 6828 for (BasicBlock *BB = ExitingBlock; BB; ) { 6829 BasicBlock *Pred = BB->getUniquePredecessor(); 6830 if (!Pred) 6831 return getCouldNotCompute(); 6832 TerminatorInst *PredTerm = Pred->getTerminator(); 6833 for (const BasicBlock *PredSucc : PredTerm->successors()) { 6834 if (PredSucc == BB) 6835 continue; 6836 // If the predecessor has a successor that isn't BB and isn't 6837 // outside the loop, assume the worst. 6838 if (L->contains(PredSucc)) 6839 return getCouldNotCompute(); 6840 } 6841 if (Pred == L->getHeader()) { 6842 Ok = true; 6843 break; 6844 } 6845 BB = Pred; 6846 } 6847 if (!Ok) 6848 return getCouldNotCompute(); 6849 } 6850 6851 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 6852 TerminatorInst *Term = ExitingBlock->getTerminator(); 6853 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 6854 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 6855 // Proceed to the next level to examine the exit condition expression. 6856 return computeExitLimitFromCond( 6857 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1), 6858 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 6859 } 6860 6861 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 6862 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 6863 /*ControlsExit=*/IsOnlyExit); 6864 6865 return getCouldNotCompute(); 6866 } 6867 6868 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 6869 const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB, 6870 bool ControlsExit, bool AllowPredicates) { 6871 ScalarEvolution::ExitLimitCacheTy Cache(L, TBB, FBB, AllowPredicates); 6872 return computeExitLimitFromCondCached(Cache, L, ExitCond, TBB, FBB, 6873 ControlsExit, AllowPredicates); 6874 } 6875 6876 Optional<ScalarEvolution::ExitLimit> 6877 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 6878 BasicBlock *TBB, BasicBlock *FBB, 6879 bool ControlsExit, bool AllowPredicates) { 6880 (void)this->L; 6881 (void)this->TBB; 6882 (void)this->FBB; 6883 (void)this->AllowPredicates; 6884 6885 assert(this->L == L && this->TBB == TBB && this->FBB == FBB && 6886 this->AllowPredicates == AllowPredicates && 6887 "Variance in assumed invariant key components!"); 6888 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 6889 if (Itr == TripCountMap.end()) 6890 return None; 6891 return Itr->second; 6892 } 6893 6894 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 6895 BasicBlock *TBB, BasicBlock *FBB, 6896 bool ControlsExit, 6897 bool AllowPredicates, 6898 const ExitLimit &EL) { 6899 assert(this->L == L && this->TBB == TBB && this->FBB == FBB && 6900 this->AllowPredicates == AllowPredicates && 6901 "Variance in assumed invariant key components!"); 6902 6903 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 6904 assert(InsertResult.second && "Expected successful insertion!"); 6905 (void)InsertResult; 6906 } 6907 6908 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 6909 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB, 6910 BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) { 6911 6912 if (auto MaybeEL = 6913 Cache.find(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates)) 6914 return *MaybeEL; 6915 6916 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, TBB, FBB, 6917 ControlsExit, AllowPredicates); 6918 Cache.insert(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates, EL); 6919 return EL; 6920 } 6921 6922 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 6923 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB, 6924 BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) { 6925 // Check if the controlling expression for this loop is an And or Or. 6926 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 6927 if (BO->getOpcode() == Instruction::And) { 6928 // Recurse on the operands of the and. 6929 bool EitherMayExit = L->contains(TBB); 6930 ExitLimit EL0 = computeExitLimitFromCondCached( 6931 Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit, 6932 AllowPredicates); 6933 ExitLimit EL1 = computeExitLimitFromCondCached( 6934 Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit, 6935 AllowPredicates); 6936 const SCEV *BECount = getCouldNotCompute(); 6937 const SCEV *MaxBECount = getCouldNotCompute(); 6938 if (EitherMayExit) { 6939 // Both conditions must be true for the loop to continue executing. 6940 // Choose the less conservative count. 6941 if (EL0.ExactNotTaken == getCouldNotCompute() || 6942 EL1.ExactNotTaken == getCouldNotCompute()) 6943 BECount = getCouldNotCompute(); 6944 else 6945 BECount = 6946 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6947 if (EL0.MaxNotTaken == getCouldNotCompute()) 6948 MaxBECount = EL1.MaxNotTaken; 6949 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6950 MaxBECount = EL0.MaxNotTaken; 6951 else 6952 MaxBECount = 6953 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 6954 } else { 6955 // Both conditions must be true at the same time for the loop to exit. 6956 // For now, be conservative. 6957 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 6958 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6959 MaxBECount = EL0.MaxNotTaken; 6960 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6961 BECount = EL0.ExactNotTaken; 6962 } 6963 6964 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 6965 // to be more aggressive when computing BECount than when computing 6966 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 6967 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 6968 // to not. 6969 if (isa<SCEVCouldNotCompute>(MaxBECount) && 6970 !isa<SCEVCouldNotCompute>(BECount)) 6971 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 6972 6973 return ExitLimit(BECount, MaxBECount, false, 6974 {&EL0.Predicates, &EL1.Predicates}); 6975 } 6976 if (BO->getOpcode() == Instruction::Or) { 6977 // Recurse on the operands of the or. 6978 bool EitherMayExit = L->contains(FBB); 6979 ExitLimit EL0 = computeExitLimitFromCondCached( 6980 Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit, 6981 AllowPredicates); 6982 ExitLimit EL1 = computeExitLimitFromCondCached( 6983 Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit, 6984 AllowPredicates); 6985 const SCEV *BECount = getCouldNotCompute(); 6986 const SCEV *MaxBECount = getCouldNotCompute(); 6987 if (EitherMayExit) { 6988 // Both conditions must be false for the loop to continue executing. 6989 // Choose the less conservative count. 6990 if (EL0.ExactNotTaken == getCouldNotCompute() || 6991 EL1.ExactNotTaken == getCouldNotCompute()) 6992 BECount = getCouldNotCompute(); 6993 else 6994 BECount = 6995 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6996 if (EL0.MaxNotTaken == getCouldNotCompute()) 6997 MaxBECount = EL1.MaxNotTaken; 6998 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6999 MaxBECount = EL0.MaxNotTaken; 7000 else 7001 MaxBECount = 7002 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7003 } else { 7004 // Both conditions must be false at the same time for the loop to exit. 7005 // For now, be conservative. 7006 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 7007 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7008 MaxBECount = EL0.MaxNotTaken; 7009 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7010 BECount = EL0.ExactNotTaken; 7011 } 7012 7013 return ExitLimit(BECount, MaxBECount, false, 7014 {&EL0.Predicates, &EL1.Predicates}); 7015 } 7016 } 7017 7018 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7019 // Proceed to the next level to examine the icmp. 7020 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7021 ExitLimit EL = 7022 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 7023 if (EL.hasFullInfo() || !AllowPredicates) 7024 return EL; 7025 7026 // Try again, but use SCEV predicates this time. 7027 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit, 7028 /*AllowPredicates=*/true); 7029 } 7030 7031 // Check for a constant condition. These are normally stripped out by 7032 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7033 // preserve the CFG and is temporarily leaving constant conditions 7034 // in place. 7035 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7036 if (L->contains(FBB) == !CI->getZExtValue()) 7037 // The backedge is always taken. 7038 return getCouldNotCompute(); 7039 else 7040 // The backedge is never taken. 7041 return getZero(CI->getType()); 7042 } 7043 7044 // If it's not an integer or pointer comparison then compute it the hard way. 7045 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 7046 } 7047 7048 ScalarEvolution::ExitLimit 7049 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7050 ICmpInst *ExitCond, 7051 BasicBlock *TBB, 7052 BasicBlock *FBB, 7053 bool ControlsExit, 7054 bool AllowPredicates) { 7055 // If the condition was exit on true, convert the condition to exit on false 7056 ICmpInst::Predicate Cond; 7057 if (!L->contains(FBB)) 7058 Cond = ExitCond->getPredicate(); 7059 else 7060 Cond = ExitCond->getInversePredicate(); 7061 7062 // Handle common loops like: for (X = "string"; *X; ++X) 7063 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7064 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7065 ExitLimit ItCnt = 7066 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 7067 if (ItCnt.hasAnyInfo()) 7068 return ItCnt; 7069 } 7070 7071 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7072 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7073 7074 // Try to evaluate any dependencies out of the loop. 7075 LHS = getSCEVAtScope(LHS, L); 7076 RHS = getSCEVAtScope(RHS, L); 7077 7078 // At this point, we would like to compute how many iterations of the 7079 // loop the predicate will return true for these inputs. 7080 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7081 // If there is a loop-invariant, force it into the RHS. 7082 std::swap(LHS, RHS); 7083 Cond = ICmpInst::getSwappedPredicate(Cond); 7084 } 7085 7086 // Simplify the operands before analyzing them. 7087 (void)SimplifyICmpOperands(Cond, LHS, RHS); 7088 7089 // If we have a comparison of a chrec against a constant, try to use value 7090 // ranges to answer this query. 7091 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7092 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7093 if (AddRec->getLoop() == L) { 7094 // Form the constant range. 7095 ConstantRange CompRange = 7096 ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt()); 7097 7098 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7099 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7100 } 7101 7102 switch (Cond) { 7103 case ICmpInst::ICMP_NE: { // while (X != Y) 7104 // Convert to: while (X-Y != 0) 7105 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7106 AllowPredicates); 7107 if (EL.hasAnyInfo()) return EL; 7108 break; 7109 } 7110 case ICmpInst::ICMP_EQ: { // while (X == Y) 7111 // Convert to: while (X-Y == 0) 7112 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7113 if (EL.hasAnyInfo()) return EL; 7114 break; 7115 } 7116 case ICmpInst::ICMP_SLT: 7117 case ICmpInst::ICMP_ULT: { // while (X < Y) 7118 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 7119 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7120 AllowPredicates); 7121 if (EL.hasAnyInfo()) return EL; 7122 break; 7123 } 7124 case ICmpInst::ICMP_SGT: 7125 case ICmpInst::ICMP_UGT: { // while (X > Y) 7126 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 7127 ExitLimit EL = 7128 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7129 AllowPredicates); 7130 if (EL.hasAnyInfo()) return EL; 7131 break; 7132 } 7133 default: 7134 break; 7135 } 7136 7137 auto *ExhaustiveCount = 7138 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 7139 7140 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7141 return ExhaustiveCount; 7142 7143 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7144 ExitCond->getOperand(1), L, Cond); 7145 } 7146 7147 ScalarEvolution::ExitLimit 7148 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7149 SwitchInst *Switch, 7150 BasicBlock *ExitingBlock, 7151 bool ControlsExit) { 7152 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7153 7154 // Give up if the exit is the default dest of a switch. 7155 if (Switch->getDefaultDest() == ExitingBlock) 7156 return getCouldNotCompute(); 7157 7158 assert(L->contains(Switch->getDefaultDest()) && 7159 "Default case must not exit the loop!"); 7160 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7161 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7162 7163 // while (X != Y) --> while (X-Y != 0) 7164 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7165 if (EL.hasAnyInfo()) 7166 return EL; 7167 7168 return getCouldNotCompute(); 7169 } 7170 7171 static ConstantInt * 7172 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7173 ScalarEvolution &SE) { 7174 const SCEV *InVal = SE.getConstant(C); 7175 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7176 assert(isa<SCEVConstant>(Val) && 7177 "Evaluation of SCEV at constant didn't fold correctly?"); 7178 return cast<SCEVConstant>(Val)->getValue(); 7179 } 7180 7181 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7182 /// compute the backedge execution count. 7183 ScalarEvolution::ExitLimit 7184 ScalarEvolution::computeLoadConstantCompareExitLimit( 7185 LoadInst *LI, 7186 Constant *RHS, 7187 const Loop *L, 7188 ICmpInst::Predicate predicate) { 7189 if (LI->isVolatile()) return getCouldNotCompute(); 7190 7191 // Check to see if the loaded pointer is a getelementptr of a global. 7192 // TODO: Use SCEV instead of manually grubbing with GEPs. 7193 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7194 if (!GEP) return getCouldNotCompute(); 7195 7196 // Make sure that it is really a constant global we are gepping, with an 7197 // initializer, and make sure the first IDX is really 0. 7198 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7199 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7200 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7201 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7202 return getCouldNotCompute(); 7203 7204 // Okay, we allow one non-constant index into the GEP instruction. 7205 Value *VarIdx = nullptr; 7206 std::vector<Constant*> Indexes; 7207 unsigned VarIdxNum = 0; 7208 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7209 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7210 Indexes.push_back(CI); 7211 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7212 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7213 VarIdx = GEP->getOperand(i); 7214 VarIdxNum = i-2; 7215 Indexes.push_back(nullptr); 7216 } 7217 7218 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7219 if (!VarIdx) 7220 return getCouldNotCompute(); 7221 7222 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7223 // Check to see if X is a loop variant variable value now. 7224 const SCEV *Idx = getSCEV(VarIdx); 7225 Idx = getSCEVAtScope(Idx, L); 7226 7227 // We can only recognize very limited forms of loop index expressions, in 7228 // particular, only affine AddRec's like {C1,+,C2}. 7229 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7230 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7231 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7232 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7233 return getCouldNotCompute(); 7234 7235 unsigned MaxSteps = MaxBruteForceIterations; 7236 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7237 ConstantInt *ItCst = ConstantInt::get( 7238 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7239 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7240 7241 // Form the GEP offset. 7242 Indexes[VarIdxNum] = Val; 7243 7244 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7245 Indexes); 7246 if (!Result) break; // Cannot compute! 7247 7248 // Evaluate the condition for this iteration. 7249 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7250 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7251 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7252 ++NumArrayLenItCounts; 7253 return getConstant(ItCst); // Found terminating iteration! 7254 } 7255 } 7256 return getCouldNotCompute(); 7257 } 7258 7259 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7260 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7261 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7262 if (!RHS) 7263 return getCouldNotCompute(); 7264 7265 const BasicBlock *Latch = L->getLoopLatch(); 7266 if (!Latch) 7267 return getCouldNotCompute(); 7268 7269 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7270 if (!Predecessor) 7271 return getCouldNotCompute(); 7272 7273 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7274 // Return LHS in OutLHS and shift_opt in OutOpCode. 7275 auto MatchPositiveShift = 7276 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7277 7278 using namespace PatternMatch; 7279 7280 ConstantInt *ShiftAmt; 7281 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7282 OutOpCode = Instruction::LShr; 7283 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7284 OutOpCode = Instruction::AShr; 7285 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7286 OutOpCode = Instruction::Shl; 7287 else 7288 return false; 7289 7290 return ShiftAmt->getValue().isStrictlyPositive(); 7291 }; 7292 7293 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7294 // 7295 // loop: 7296 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7297 // %iv.shifted = lshr i32 %iv, <positive constant> 7298 // 7299 // Return true on a successful match. Return the corresponding PHI node (%iv 7300 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7301 auto MatchShiftRecurrence = 7302 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7303 Optional<Instruction::BinaryOps> PostShiftOpCode; 7304 7305 { 7306 Instruction::BinaryOps OpC; 7307 Value *V; 7308 7309 // If we encounter a shift instruction, "peel off" the shift operation, 7310 // and remember that we did so. Later when we inspect %iv's backedge 7311 // value, we will make sure that the backedge value uses the same 7312 // operation. 7313 // 7314 // Note: the peeled shift operation does not have to be the same 7315 // instruction as the one feeding into the PHI's backedge value. We only 7316 // really care about it being the same *kind* of shift instruction -- 7317 // that's all that is required for our later inferences to hold. 7318 if (MatchPositiveShift(LHS, V, OpC)) { 7319 PostShiftOpCode = OpC; 7320 LHS = V; 7321 } 7322 } 7323 7324 PNOut = dyn_cast<PHINode>(LHS); 7325 if (!PNOut || PNOut->getParent() != L->getHeader()) 7326 return false; 7327 7328 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7329 Value *OpLHS; 7330 7331 return 7332 // The backedge value for the PHI node must be a shift by a positive 7333 // amount 7334 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7335 7336 // of the PHI node itself 7337 OpLHS == PNOut && 7338 7339 // and the kind of shift should be match the kind of shift we peeled 7340 // off, if any. 7341 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7342 }; 7343 7344 PHINode *PN; 7345 Instruction::BinaryOps OpCode; 7346 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7347 return getCouldNotCompute(); 7348 7349 const DataLayout &DL = getDataLayout(); 7350 7351 // The key rationale for this optimization is that for some kinds of shift 7352 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7353 // within a finite number of iterations. If the condition guarding the 7354 // backedge (in the sense that the backedge is taken if the condition is true) 7355 // is false for the value the shift recurrence stabilizes to, then we know 7356 // that the backedge is taken only a finite number of times. 7357 7358 ConstantInt *StableValue = nullptr; 7359 switch (OpCode) { 7360 default: 7361 llvm_unreachable("Impossible case!"); 7362 7363 case Instruction::AShr: { 7364 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7365 // bitwidth(K) iterations. 7366 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7367 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7368 Predecessor->getTerminator(), &DT); 7369 auto *Ty = cast<IntegerType>(RHS->getType()); 7370 if (Known.isNonNegative()) 7371 StableValue = ConstantInt::get(Ty, 0); 7372 else if (Known.isNegative()) 7373 StableValue = ConstantInt::get(Ty, -1, true); 7374 else 7375 return getCouldNotCompute(); 7376 7377 break; 7378 } 7379 case Instruction::LShr: 7380 case Instruction::Shl: 7381 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7382 // stabilize to 0 in at most bitwidth(K) iterations. 7383 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7384 break; 7385 } 7386 7387 auto *Result = 7388 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7389 assert(Result->getType()->isIntegerTy(1) && 7390 "Otherwise cannot be an operand to a branch instruction"); 7391 7392 if (Result->isZeroValue()) { 7393 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7394 const SCEV *UpperBound = 7395 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7396 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7397 } 7398 7399 return getCouldNotCompute(); 7400 } 7401 7402 /// Return true if we can constant fold an instruction of the specified type, 7403 /// assuming that all operands were constants. 7404 static bool CanConstantFold(const Instruction *I) { 7405 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7406 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7407 isa<LoadInst>(I)) 7408 return true; 7409 7410 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7411 if (const Function *F = CI->getCalledFunction()) 7412 return canConstantFoldCallTo(CI, F); 7413 return false; 7414 } 7415 7416 /// Determine whether this instruction can constant evolve within this loop 7417 /// assuming its operands can all constant evolve. 7418 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7419 // An instruction outside of the loop can't be derived from a loop PHI. 7420 if (!L->contains(I)) return false; 7421 7422 if (isa<PHINode>(I)) { 7423 // We don't currently keep track of the control flow needed to evaluate 7424 // PHIs, so we cannot handle PHIs inside of loops. 7425 return L->getHeader() == I->getParent(); 7426 } 7427 7428 // If we won't be able to constant fold this expression even if the operands 7429 // are constants, bail early. 7430 return CanConstantFold(I); 7431 } 7432 7433 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7434 /// recursing through each instruction operand until reaching a loop header phi. 7435 static PHINode * 7436 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7437 DenseMap<Instruction *, PHINode *> &PHIMap, 7438 unsigned Depth) { 7439 if (Depth > MaxConstantEvolvingDepth) 7440 return nullptr; 7441 7442 // Otherwise, we can evaluate this instruction if all of its operands are 7443 // constant or derived from a PHI node themselves. 7444 PHINode *PHI = nullptr; 7445 for (Value *Op : UseInst->operands()) { 7446 if (isa<Constant>(Op)) continue; 7447 7448 Instruction *OpInst = dyn_cast<Instruction>(Op); 7449 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7450 7451 PHINode *P = dyn_cast<PHINode>(OpInst); 7452 if (!P) 7453 // If this operand is already visited, reuse the prior result. 7454 // We may have P != PHI if this is the deepest point at which the 7455 // inconsistent paths meet. 7456 P = PHIMap.lookup(OpInst); 7457 if (!P) { 7458 // Recurse and memoize the results, whether a phi is found or not. 7459 // This recursive call invalidates pointers into PHIMap. 7460 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7461 PHIMap[OpInst] = P; 7462 } 7463 if (!P) 7464 return nullptr; // Not evolving from PHI 7465 if (PHI && PHI != P) 7466 return nullptr; // Evolving from multiple different PHIs. 7467 PHI = P; 7468 } 7469 // This is a expression evolving from a constant PHI! 7470 return PHI; 7471 } 7472 7473 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7474 /// in the loop that V is derived from. We allow arbitrary operations along the 7475 /// way, but the operands of an operation must either be constants or a value 7476 /// derived from a constant PHI. If this expression does not fit with these 7477 /// constraints, return null. 7478 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7479 Instruction *I = dyn_cast<Instruction>(V); 7480 if (!I || !canConstantEvolve(I, L)) return nullptr; 7481 7482 if (PHINode *PN = dyn_cast<PHINode>(I)) 7483 return PN; 7484 7485 // Record non-constant instructions contained by the loop. 7486 DenseMap<Instruction *, PHINode *> PHIMap; 7487 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7488 } 7489 7490 /// EvaluateExpression - Given an expression that passes the 7491 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7492 /// in the loop has the value PHIVal. If we can't fold this expression for some 7493 /// reason, return null. 7494 static Constant *EvaluateExpression(Value *V, const Loop *L, 7495 DenseMap<Instruction *, Constant *> &Vals, 7496 const DataLayout &DL, 7497 const TargetLibraryInfo *TLI) { 7498 // Convenient constant check, but redundant for recursive calls. 7499 if (Constant *C = dyn_cast<Constant>(V)) return C; 7500 Instruction *I = dyn_cast<Instruction>(V); 7501 if (!I) return nullptr; 7502 7503 if (Constant *C = Vals.lookup(I)) return C; 7504 7505 // An instruction inside the loop depends on a value outside the loop that we 7506 // weren't given a mapping for, or a value such as a call inside the loop. 7507 if (!canConstantEvolve(I, L)) return nullptr; 7508 7509 // An unmapped PHI can be due to a branch or another loop inside this loop, 7510 // or due to this not being the initial iteration through a loop where we 7511 // couldn't compute the evolution of this particular PHI last time. 7512 if (isa<PHINode>(I)) return nullptr; 7513 7514 std::vector<Constant*> Operands(I->getNumOperands()); 7515 7516 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7517 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7518 if (!Operand) { 7519 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7520 if (!Operands[i]) return nullptr; 7521 continue; 7522 } 7523 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7524 Vals[Operand] = C; 7525 if (!C) return nullptr; 7526 Operands[i] = C; 7527 } 7528 7529 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7530 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7531 Operands[1], DL, TLI); 7532 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7533 if (!LI->isVolatile()) 7534 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7535 } 7536 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7537 } 7538 7539 7540 // If every incoming value to PN except the one for BB is a specific Constant, 7541 // return that, else return nullptr. 7542 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7543 Constant *IncomingVal = nullptr; 7544 7545 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7546 if (PN->getIncomingBlock(i) == BB) 7547 continue; 7548 7549 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7550 if (!CurrentVal) 7551 return nullptr; 7552 7553 if (IncomingVal != CurrentVal) { 7554 if (IncomingVal) 7555 return nullptr; 7556 IncomingVal = CurrentVal; 7557 } 7558 } 7559 7560 return IncomingVal; 7561 } 7562 7563 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7564 /// in the header of its containing loop, we know the loop executes a 7565 /// constant number of times, and the PHI node is just a recurrence 7566 /// involving constants, fold it. 7567 Constant * 7568 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7569 const APInt &BEs, 7570 const Loop *L) { 7571 auto I = ConstantEvolutionLoopExitValue.find(PN); 7572 if (I != ConstantEvolutionLoopExitValue.end()) 7573 return I->second; 7574 7575 if (BEs.ugt(MaxBruteForceIterations)) 7576 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7577 7578 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7579 7580 DenseMap<Instruction *, Constant *> CurrentIterVals; 7581 BasicBlock *Header = L->getHeader(); 7582 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7583 7584 BasicBlock *Latch = L->getLoopLatch(); 7585 if (!Latch) 7586 return nullptr; 7587 7588 for (auto &I : *Header) { 7589 PHINode *PHI = dyn_cast<PHINode>(&I); 7590 if (!PHI) break; 7591 auto *StartCST = getOtherIncomingValue(PHI, Latch); 7592 if (!StartCST) continue; 7593 CurrentIterVals[PHI] = StartCST; 7594 } 7595 if (!CurrentIterVals.count(PN)) 7596 return RetVal = nullptr; 7597 7598 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7599 7600 // Execute the loop symbolically to determine the exit value. 7601 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7602 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7603 7604 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7605 unsigned IterationNum = 0; 7606 const DataLayout &DL = getDataLayout(); 7607 for (; ; ++IterationNum) { 7608 if (IterationNum == NumIterations) 7609 return RetVal = CurrentIterVals[PN]; // Got exit value! 7610 7611 // Compute the value of the PHIs for the next iteration. 7612 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7613 DenseMap<Instruction *, Constant *> NextIterVals; 7614 Constant *NextPHI = 7615 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7616 if (!NextPHI) 7617 return nullptr; // Couldn't evaluate! 7618 NextIterVals[PN] = NextPHI; 7619 7620 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7621 7622 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7623 // cease to be able to evaluate one of them or if they stop evolving, 7624 // because that doesn't necessarily prevent us from computing PN. 7625 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7626 for (const auto &I : CurrentIterVals) { 7627 PHINode *PHI = dyn_cast<PHINode>(I.first); 7628 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7629 PHIsToCompute.emplace_back(PHI, I.second); 7630 } 7631 // We use two distinct loops because EvaluateExpression may invalidate any 7632 // iterators into CurrentIterVals. 7633 for (const auto &I : PHIsToCompute) { 7634 PHINode *PHI = I.first; 7635 Constant *&NextPHI = NextIterVals[PHI]; 7636 if (!NextPHI) { // Not already computed. 7637 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7638 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7639 } 7640 if (NextPHI != I.second) 7641 StoppedEvolving = false; 7642 } 7643 7644 // If all entries in CurrentIterVals == NextIterVals then we can stop 7645 // iterating, the loop can't continue to change. 7646 if (StoppedEvolving) 7647 return RetVal = CurrentIterVals[PN]; 7648 7649 CurrentIterVals.swap(NextIterVals); 7650 } 7651 } 7652 7653 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7654 Value *Cond, 7655 bool ExitWhen) { 7656 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7657 if (!PN) return getCouldNotCompute(); 7658 7659 // If the loop is canonicalized, the PHI will have exactly two entries. 7660 // That's the only form we support here. 7661 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7662 7663 DenseMap<Instruction *, Constant *> CurrentIterVals; 7664 BasicBlock *Header = L->getHeader(); 7665 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7666 7667 BasicBlock *Latch = L->getLoopLatch(); 7668 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7669 7670 for (auto &I : *Header) { 7671 PHINode *PHI = dyn_cast<PHINode>(&I); 7672 if (!PHI) 7673 break; 7674 auto *StartCST = getOtherIncomingValue(PHI, Latch); 7675 if (!StartCST) continue; 7676 CurrentIterVals[PHI] = StartCST; 7677 } 7678 if (!CurrentIterVals.count(PN)) 7679 return getCouldNotCompute(); 7680 7681 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7682 // the loop symbolically to determine when the condition gets a value of 7683 // "ExitWhen". 7684 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7685 const DataLayout &DL = getDataLayout(); 7686 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7687 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7688 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7689 7690 // Couldn't symbolically evaluate. 7691 if (!CondVal) return getCouldNotCompute(); 7692 7693 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7694 ++NumBruteForceTripCountsComputed; 7695 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7696 } 7697 7698 // Update all the PHI nodes for the next iteration. 7699 DenseMap<Instruction *, Constant *> NextIterVals; 7700 7701 // Create a list of which PHIs we need to compute. We want to do this before 7702 // calling EvaluateExpression on them because that may invalidate iterators 7703 // into CurrentIterVals. 7704 SmallVector<PHINode *, 8> PHIsToCompute; 7705 for (const auto &I : CurrentIterVals) { 7706 PHINode *PHI = dyn_cast<PHINode>(I.first); 7707 if (!PHI || PHI->getParent() != Header) continue; 7708 PHIsToCompute.push_back(PHI); 7709 } 7710 for (PHINode *PHI : PHIsToCompute) { 7711 Constant *&NextPHI = NextIterVals[PHI]; 7712 if (NextPHI) continue; // Already computed! 7713 7714 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7715 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7716 } 7717 CurrentIterVals.swap(NextIterVals); 7718 } 7719 7720 // Too many iterations were needed to evaluate. 7721 return getCouldNotCompute(); 7722 } 7723 7724 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7725 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7726 ValuesAtScopes[V]; 7727 // Check to see if we've folded this expression at this loop before. 7728 for (auto &LS : Values) 7729 if (LS.first == L) 7730 return LS.second ? LS.second : V; 7731 7732 Values.emplace_back(L, nullptr); 7733 7734 // Otherwise compute it. 7735 const SCEV *C = computeSCEVAtScope(V, L); 7736 for (auto &LS : reverse(ValuesAtScopes[V])) 7737 if (LS.first == L) { 7738 LS.second = C; 7739 break; 7740 } 7741 return C; 7742 } 7743 7744 /// This builds up a Constant using the ConstantExpr interface. That way, we 7745 /// will return Constants for objects which aren't represented by a 7746 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7747 /// Returns NULL if the SCEV isn't representable as a Constant. 7748 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7749 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7750 case scCouldNotCompute: 7751 case scAddRecExpr: 7752 break; 7753 case scConstant: 7754 return cast<SCEVConstant>(V)->getValue(); 7755 case scUnknown: 7756 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7757 case scSignExtend: { 7758 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7759 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 7760 return ConstantExpr::getSExt(CastOp, SS->getType()); 7761 break; 7762 } 7763 case scZeroExtend: { 7764 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 7765 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 7766 return ConstantExpr::getZExt(CastOp, SZ->getType()); 7767 break; 7768 } 7769 case scTruncate: { 7770 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 7771 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 7772 return ConstantExpr::getTrunc(CastOp, ST->getType()); 7773 break; 7774 } 7775 case scAddExpr: { 7776 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 7777 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 7778 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7779 unsigned AS = PTy->getAddressSpace(); 7780 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7781 C = ConstantExpr::getBitCast(C, DestPtrTy); 7782 } 7783 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 7784 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 7785 if (!C2) return nullptr; 7786 7787 // First pointer! 7788 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 7789 unsigned AS = C2->getType()->getPointerAddressSpace(); 7790 std::swap(C, C2); 7791 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7792 // The offsets have been converted to bytes. We can add bytes to an 7793 // i8* by GEP with the byte count in the first index. 7794 C = ConstantExpr::getBitCast(C, DestPtrTy); 7795 } 7796 7797 // Don't bother trying to sum two pointers. We probably can't 7798 // statically compute a load that results from it anyway. 7799 if (C2->getType()->isPointerTy()) 7800 return nullptr; 7801 7802 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7803 if (PTy->getElementType()->isStructTy()) 7804 C2 = ConstantExpr::getIntegerCast( 7805 C2, Type::getInt32Ty(C->getContext()), true); 7806 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 7807 } else 7808 C = ConstantExpr::getAdd(C, C2); 7809 } 7810 return C; 7811 } 7812 break; 7813 } 7814 case scMulExpr: { 7815 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 7816 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 7817 // Don't bother with pointers at all. 7818 if (C->getType()->isPointerTy()) return nullptr; 7819 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 7820 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 7821 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 7822 C = ConstantExpr::getMul(C, C2); 7823 } 7824 return C; 7825 } 7826 break; 7827 } 7828 case scUDivExpr: { 7829 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 7830 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 7831 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 7832 if (LHS->getType() == RHS->getType()) 7833 return ConstantExpr::getUDiv(LHS, RHS); 7834 break; 7835 } 7836 case scSMaxExpr: 7837 case scUMaxExpr: 7838 break; // TODO: smax, umax. 7839 } 7840 return nullptr; 7841 } 7842 7843 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 7844 if (isa<SCEVConstant>(V)) return V; 7845 7846 // If this instruction is evolved from a constant-evolving PHI, compute the 7847 // exit value from the loop without using SCEVs. 7848 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 7849 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 7850 const Loop *LI = this->LI[I->getParent()]; 7851 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 7852 if (PHINode *PN = dyn_cast<PHINode>(I)) 7853 if (PN->getParent() == LI->getHeader()) { 7854 // Okay, there is no closed form solution for the PHI node. Check 7855 // to see if the loop that contains it has a known backedge-taken 7856 // count. If so, we may be able to force computation of the exit 7857 // value. 7858 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 7859 if (const SCEVConstant *BTCC = 7860 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 7861 7862 // This trivial case can show up in some degenerate cases where 7863 // the incoming IR has not yet been fully simplified. 7864 if (BTCC->getValue()->isZero()) { 7865 Value *InitValue = nullptr; 7866 bool MultipleInitValues = false; 7867 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 7868 if (!LI->contains(PN->getIncomingBlock(i))) { 7869 if (!InitValue) 7870 InitValue = PN->getIncomingValue(i); 7871 else if (InitValue != PN->getIncomingValue(i)) { 7872 MultipleInitValues = true; 7873 break; 7874 } 7875 } 7876 if (!MultipleInitValues && InitValue) 7877 return getSCEV(InitValue); 7878 } 7879 } 7880 // Okay, we know how many times the containing loop executes. If 7881 // this is a constant evolving PHI node, get the final value at 7882 // the specified iteration number. 7883 Constant *RV = 7884 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 7885 if (RV) return getSCEV(RV); 7886 } 7887 } 7888 7889 // Okay, this is an expression that we cannot symbolically evaluate 7890 // into a SCEV. Check to see if it's possible to symbolically evaluate 7891 // the arguments into constants, and if so, try to constant propagate the 7892 // result. This is particularly useful for computing loop exit values. 7893 if (CanConstantFold(I)) { 7894 SmallVector<Constant *, 4> Operands; 7895 bool MadeImprovement = false; 7896 for (Value *Op : I->operands()) { 7897 if (Constant *C = dyn_cast<Constant>(Op)) { 7898 Operands.push_back(C); 7899 continue; 7900 } 7901 7902 // If any of the operands is non-constant and if they are 7903 // non-integer and non-pointer, don't even try to analyze them 7904 // with scev techniques. 7905 if (!isSCEVable(Op->getType())) 7906 return V; 7907 7908 const SCEV *OrigV = getSCEV(Op); 7909 const SCEV *OpV = getSCEVAtScope(OrigV, L); 7910 MadeImprovement |= OrigV != OpV; 7911 7912 Constant *C = BuildConstantFromSCEV(OpV); 7913 if (!C) return V; 7914 if (C->getType() != Op->getType()) 7915 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 7916 Op->getType(), 7917 false), 7918 C, Op->getType()); 7919 Operands.push_back(C); 7920 } 7921 7922 // Check to see if getSCEVAtScope actually made an improvement. 7923 if (MadeImprovement) { 7924 Constant *C = nullptr; 7925 const DataLayout &DL = getDataLayout(); 7926 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 7927 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7928 Operands[1], DL, &TLI); 7929 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 7930 if (!LI->isVolatile()) 7931 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7932 } else 7933 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 7934 if (!C) return V; 7935 return getSCEV(C); 7936 } 7937 } 7938 } 7939 7940 // This is some other type of SCEVUnknown, just return it. 7941 return V; 7942 } 7943 7944 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 7945 // Avoid performing the look-up in the common case where the specified 7946 // expression has no loop-variant portions. 7947 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 7948 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7949 if (OpAtScope != Comm->getOperand(i)) { 7950 // Okay, at least one of these operands is loop variant but might be 7951 // foldable. Build a new instance of the folded commutative expression. 7952 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 7953 Comm->op_begin()+i); 7954 NewOps.push_back(OpAtScope); 7955 7956 for (++i; i != e; ++i) { 7957 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7958 NewOps.push_back(OpAtScope); 7959 } 7960 if (isa<SCEVAddExpr>(Comm)) 7961 return getAddExpr(NewOps); 7962 if (isa<SCEVMulExpr>(Comm)) 7963 return getMulExpr(NewOps); 7964 if (isa<SCEVSMaxExpr>(Comm)) 7965 return getSMaxExpr(NewOps); 7966 if (isa<SCEVUMaxExpr>(Comm)) 7967 return getUMaxExpr(NewOps); 7968 llvm_unreachable("Unknown commutative SCEV type!"); 7969 } 7970 } 7971 // If we got here, all operands are loop invariant. 7972 return Comm; 7973 } 7974 7975 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 7976 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 7977 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 7978 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 7979 return Div; // must be loop invariant 7980 return getUDivExpr(LHS, RHS); 7981 } 7982 7983 // If this is a loop recurrence for a loop that does not contain L, then we 7984 // are dealing with the final value computed by the loop. 7985 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 7986 // First, attempt to evaluate each operand. 7987 // Avoid performing the look-up in the common case where the specified 7988 // expression has no loop-variant portions. 7989 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 7990 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 7991 if (OpAtScope == AddRec->getOperand(i)) 7992 continue; 7993 7994 // Okay, at least one of these operands is loop variant but might be 7995 // foldable. Build a new instance of the folded commutative expression. 7996 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 7997 AddRec->op_begin()+i); 7998 NewOps.push_back(OpAtScope); 7999 for (++i; i != e; ++i) 8000 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8001 8002 const SCEV *FoldedRec = 8003 getAddRecExpr(NewOps, AddRec->getLoop(), 8004 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8005 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8006 // The addrec may be folded to a nonrecurrence, for example, if the 8007 // induction variable is multiplied by zero after constant folding. Go 8008 // ahead and return the folded value. 8009 if (!AddRec) 8010 return FoldedRec; 8011 break; 8012 } 8013 8014 // If the scope is outside the addrec's loop, evaluate it by using the 8015 // loop exit value of the addrec. 8016 if (!AddRec->getLoop()->contains(L)) { 8017 // To evaluate this recurrence, we need to know how many times the AddRec 8018 // loop iterates. Compute this now. 8019 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8020 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8021 8022 // Then, evaluate the AddRec. 8023 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8024 } 8025 8026 return AddRec; 8027 } 8028 8029 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8030 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8031 if (Op == Cast->getOperand()) 8032 return Cast; // must be loop invariant 8033 return getZeroExtendExpr(Op, Cast->getType()); 8034 } 8035 8036 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8037 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8038 if (Op == Cast->getOperand()) 8039 return Cast; // must be loop invariant 8040 return getSignExtendExpr(Op, Cast->getType()); 8041 } 8042 8043 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8044 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8045 if (Op == Cast->getOperand()) 8046 return Cast; // must be loop invariant 8047 return getTruncateExpr(Op, Cast->getType()); 8048 } 8049 8050 llvm_unreachable("Unknown SCEV type!"); 8051 } 8052 8053 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8054 return getSCEVAtScope(getSCEV(V), L); 8055 } 8056 8057 /// Finds the minimum unsigned root of the following equation: 8058 /// 8059 /// A * X = B (mod N) 8060 /// 8061 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8062 /// A and B isn't important. 8063 /// 8064 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8065 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8066 ScalarEvolution &SE) { 8067 uint32_t BW = A.getBitWidth(); 8068 assert(BW == SE.getTypeSizeInBits(B->getType())); 8069 assert(A != 0 && "A must be non-zero."); 8070 8071 // 1. D = gcd(A, N) 8072 // 8073 // The gcd of A and N may have only one prime factor: 2. The number of 8074 // trailing zeros in A is its multiplicity 8075 uint32_t Mult2 = A.countTrailingZeros(); 8076 // D = 2^Mult2 8077 8078 // 2. Check if B is divisible by D. 8079 // 8080 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8081 // is not less than multiplicity of this prime factor for D. 8082 if (SE.GetMinTrailingZeros(B) < Mult2) 8083 return SE.getCouldNotCompute(); 8084 8085 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8086 // modulo (N / D). 8087 // 8088 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8089 // (N / D) in general. The inverse itself always fits into BW bits, though, 8090 // so we immediately truncate it. 8091 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8092 APInt Mod(BW + 1, 0); 8093 Mod.setBit(BW - Mult2); // Mod = N / D 8094 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8095 8096 // 4. Compute the minimum unsigned root of the equation: 8097 // I * (B / D) mod (N / D) 8098 // To simplify the computation, we factor out the divide by D: 8099 // (I * B mod N) / D 8100 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8101 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8102 } 8103 8104 /// Find the roots of the quadratic equation for the given quadratic chrec 8105 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 8106 /// two SCEVCouldNotCompute objects. 8107 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 8108 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8109 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8110 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8111 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8112 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8113 8114 // We currently can only solve this if the coefficients are constants. 8115 if (!LC || !MC || !NC) 8116 return None; 8117 8118 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 8119 const APInt &L = LC->getAPInt(); 8120 const APInt &M = MC->getAPInt(); 8121 const APInt &N = NC->getAPInt(); 8122 APInt Two(BitWidth, 2); 8123 8124 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 8125 8126 // The A coefficient is N/2 8127 APInt A = N.sdiv(Two); 8128 8129 // The B coefficient is M-N/2 8130 APInt B = M; 8131 B -= A; // A is the same as N/2. 8132 8133 // The C coefficient is L. 8134 const APInt& C = L; 8135 8136 // Compute the B^2-4ac term. 8137 APInt SqrtTerm = B; 8138 SqrtTerm *= B; 8139 SqrtTerm -= 4 * (A * C); 8140 8141 if (SqrtTerm.isNegative()) { 8142 // The loop is provably infinite. 8143 return None; 8144 } 8145 8146 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 8147 // integer value or else APInt::sqrt() will assert. 8148 APInt SqrtVal = SqrtTerm.sqrt(); 8149 8150 // Compute the two solutions for the quadratic formula. 8151 // The divisions must be performed as signed divisions. 8152 APInt NegB = -std::move(B); 8153 APInt TwoA = std::move(A); 8154 TwoA <<= 1; 8155 if (TwoA.isNullValue()) 8156 return None; 8157 8158 LLVMContext &Context = SE.getContext(); 8159 8160 ConstantInt *Solution1 = 8161 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 8162 ConstantInt *Solution2 = 8163 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 8164 8165 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 8166 cast<SCEVConstant>(SE.getConstant(Solution2))); 8167 } 8168 8169 ScalarEvolution::ExitLimit 8170 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8171 bool AllowPredicates) { 8172 8173 // This is only used for loops with a "x != y" exit test. The exit condition 8174 // is now expressed as a single expression, V = x-y. So the exit test is 8175 // effectively V != 0. We know and take advantage of the fact that this 8176 // expression only being used in a comparison by zero context. 8177 8178 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8179 // If the value is a constant 8180 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8181 // If the value is already zero, the branch will execute zero times. 8182 if (C->getValue()->isZero()) return C; 8183 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8184 } 8185 8186 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 8187 if (!AddRec && AllowPredicates) 8188 // Try to make this an AddRec using runtime tests, in the first X 8189 // iterations of this loop, where X is the SCEV expression found by the 8190 // algorithm below. 8191 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8192 8193 if (!AddRec || AddRec->getLoop() != L) 8194 return getCouldNotCompute(); 8195 8196 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8197 // the quadratic equation to solve it. 8198 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8199 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 8200 const SCEVConstant *R1 = Roots->first; 8201 const SCEVConstant *R2 = Roots->second; 8202 // Pick the smallest positive root value. 8203 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8204 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8205 if (!CB->getZExtValue()) 8206 std::swap(R1, R2); // R1 is the minimum root now. 8207 8208 // We can only use this value if the chrec ends up with an exact zero 8209 // value at this index. When solving for "X*X != 5", for example, we 8210 // should not accept a root of 2. 8211 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 8212 if (Val->isZero()) 8213 // We found a quadratic root! 8214 return ExitLimit(R1, R1, false, Predicates); 8215 } 8216 } 8217 return getCouldNotCompute(); 8218 } 8219 8220 // Otherwise we can only handle this if it is affine. 8221 if (!AddRec->isAffine()) 8222 return getCouldNotCompute(); 8223 8224 // If this is an affine expression, the execution count of this branch is 8225 // the minimum unsigned root of the following equation: 8226 // 8227 // Start + Step*N = 0 (mod 2^BW) 8228 // 8229 // equivalent to: 8230 // 8231 // Step*N = -Start (mod 2^BW) 8232 // 8233 // where BW is the common bit width of Start and Step. 8234 8235 // Get the initial value for the loop. 8236 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8237 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8238 8239 // For now we handle only constant steps. 8240 // 8241 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8242 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8243 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8244 // We have not yet seen any such cases. 8245 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8246 if (!StepC || StepC->getValue()->isZero()) 8247 return getCouldNotCompute(); 8248 8249 // For positive steps (counting up until unsigned overflow): 8250 // N = -Start/Step (as unsigned) 8251 // For negative steps (counting down to zero): 8252 // N = Start/-Step 8253 // First compute the unsigned distance from zero in the direction of Step. 8254 bool CountDown = StepC->getAPInt().isNegative(); 8255 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8256 8257 // Handle unitary steps, which cannot wraparound. 8258 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8259 // N = Distance (as unsigned) 8260 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8261 APInt MaxBECount = getUnsignedRangeMax(Distance); 8262 8263 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8264 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8265 // case, and see if we can improve the bound. 8266 // 8267 // Explicitly handling this here is necessary because getUnsignedRange 8268 // isn't context-sensitive; it doesn't know that we only care about the 8269 // range inside the loop. 8270 const SCEV *Zero = getZero(Distance->getType()); 8271 const SCEV *One = getOne(Distance->getType()); 8272 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8273 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8274 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8275 // as "unsigned_max(Distance + 1) - 1". 8276 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8277 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8278 } 8279 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8280 } 8281 8282 // If the condition controls loop exit (the loop exits only if the expression 8283 // is true) and the addition is no-wrap we can use unsigned divide to 8284 // compute the backedge count. In this case, the step may not divide the 8285 // distance, but we don't care because if the condition is "missed" the loop 8286 // will have undefined behavior due to wrapping. 8287 if (ControlsExit && AddRec->hasNoSelfWrap() && 8288 loopHasNoAbnormalExits(AddRec->getLoop())) { 8289 const SCEV *Exact = 8290 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8291 const SCEV *Max = 8292 Exact == getCouldNotCompute() 8293 ? Exact 8294 : getConstant(getUnsignedRangeMax(Exact)); 8295 return ExitLimit(Exact, Max, false, Predicates); 8296 } 8297 8298 // Solve the general equation. 8299 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8300 getNegativeSCEV(Start), *this); 8301 const SCEV *M = E == getCouldNotCompute() 8302 ? E 8303 : getConstant(getUnsignedRangeMax(E)); 8304 return ExitLimit(E, M, false, Predicates); 8305 } 8306 8307 ScalarEvolution::ExitLimit 8308 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8309 // Loops that look like: while (X == 0) are very strange indeed. We don't 8310 // handle them yet except for the trivial case. This could be expanded in the 8311 // future as needed. 8312 8313 // If the value is a constant, check to see if it is known to be non-zero 8314 // already. If so, the backedge will execute zero times. 8315 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8316 if (!C->getValue()->isZero()) 8317 return getZero(C->getType()); 8318 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8319 } 8320 8321 // We could implement others, but I really doubt anyone writes loops like 8322 // this, and if they did, they would already be constant folded. 8323 return getCouldNotCompute(); 8324 } 8325 8326 std::pair<BasicBlock *, BasicBlock *> 8327 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8328 // If the block has a unique predecessor, then there is no path from the 8329 // predecessor to the block that does not go through the direct edge 8330 // from the predecessor to the block. 8331 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8332 return {Pred, BB}; 8333 8334 // A loop's header is defined to be a block that dominates the loop. 8335 // If the header has a unique predecessor outside the loop, it must be 8336 // a block that has exactly one successor that can reach the loop. 8337 if (Loop *L = LI.getLoopFor(BB)) 8338 return {L->getLoopPredecessor(), L->getHeader()}; 8339 8340 return {nullptr, nullptr}; 8341 } 8342 8343 /// SCEV structural equivalence is usually sufficient for testing whether two 8344 /// expressions are equal, however for the purposes of looking for a condition 8345 /// guarding a loop, it can be useful to be a little more general, since a 8346 /// front-end may have replicated the controlling expression. 8347 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8348 // Quick check to see if they are the same SCEV. 8349 if (A == B) return true; 8350 8351 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8352 // Not all instructions that are "identical" compute the same value. For 8353 // instance, two distinct alloca instructions allocating the same type are 8354 // identical and do not read memory; but compute distinct values. 8355 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8356 }; 8357 8358 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8359 // two different instructions with the same value. Check for this case. 8360 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8361 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8362 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8363 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8364 if (ComputesEqualValues(AI, BI)) 8365 return true; 8366 8367 // Otherwise assume they may have a different value. 8368 return false; 8369 } 8370 8371 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8372 const SCEV *&LHS, const SCEV *&RHS, 8373 unsigned Depth) { 8374 bool Changed = false; 8375 8376 // If we hit the max recursion limit bail out. 8377 if (Depth >= 3) 8378 return false; 8379 8380 // Canonicalize a constant to the right side. 8381 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8382 // Check for both operands constant. 8383 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8384 if (ConstantExpr::getICmp(Pred, 8385 LHSC->getValue(), 8386 RHSC->getValue())->isNullValue()) 8387 goto trivially_false; 8388 else 8389 goto trivially_true; 8390 } 8391 // Otherwise swap the operands to put the constant on the right. 8392 std::swap(LHS, RHS); 8393 Pred = ICmpInst::getSwappedPredicate(Pred); 8394 Changed = true; 8395 } 8396 8397 // If we're comparing an addrec with a value which is loop-invariant in the 8398 // addrec's loop, put the addrec on the left. Also make a dominance check, 8399 // as both operands could be addrecs loop-invariant in each other's loop. 8400 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8401 const Loop *L = AR->getLoop(); 8402 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8403 std::swap(LHS, RHS); 8404 Pred = ICmpInst::getSwappedPredicate(Pred); 8405 Changed = true; 8406 } 8407 } 8408 8409 // If there's a constant operand, canonicalize comparisons with boundary 8410 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8411 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8412 const APInt &RA = RC->getAPInt(); 8413 8414 bool SimplifiedByConstantRange = false; 8415 8416 if (!ICmpInst::isEquality(Pred)) { 8417 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8418 if (ExactCR.isFullSet()) 8419 goto trivially_true; 8420 else if (ExactCR.isEmptySet()) 8421 goto trivially_false; 8422 8423 APInt NewRHS; 8424 CmpInst::Predicate NewPred; 8425 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8426 ICmpInst::isEquality(NewPred)) { 8427 // We were able to convert an inequality to an equality. 8428 Pred = NewPred; 8429 RHS = getConstant(NewRHS); 8430 Changed = SimplifiedByConstantRange = true; 8431 } 8432 } 8433 8434 if (!SimplifiedByConstantRange) { 8435 switch (Pred) { 8436 default: 8437 break; 8438 case ICmpInst::ICMP_EQ: 8439 case ICmpInst::ICMP_NE: 8440 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8441 if (!RA) 8442 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8443 if (const SCEVMulExpr *ME = 8444 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8445 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8446 ME->getOperand(0)->isAllOnesValue()) { 8447 RHS = AE->getOperand(1); 8448 LHS = ME->getOperand(1); 8449 Changed = true; 8450 } 8451 break; 8452 8453 8454 // The "Should have been caught earlier!" messages refer to the fact 8455 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8456 // should have fired on the corresponding cases, and canonicalized the 8457 // check to trivially_true or trivially_false. 8458 8459 case ICmpInst::ICMP_UGE: 8460 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8461 Pred = ICmpInst::ICMP_UGT; 8462 RHS = getConstant(RA - 1); 8463 Changed = true; 8464 break; 8465 case ICmpInst::ICMP_ULE: 8466 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8467 Pred = ICmpInst::ICMP_ULT; 8468 RHS = getConstant(RA + 1); 8469 Changed = true; 8470 break; 8471 case ICmpInst::ICMP_SGE: 8472 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8473 Pred = ICmpInst::ICMP_SGT; 8474 RHS = getConstant(RA - 1); 8475 Changed = true; 8476 break; 8477 case ICmpInst::ICMP_SLE: 8478 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8479 Pred = ICmpInst::ICMP_SLT; 8480 RHS = getConstant(RA + 1); 8481 Changed = true; 8482 break; 8483 } 8484 } 8485 } 8486 8487 // Check for obvious equality. 8488 if (HasSameValue(LHS, RHS)) { 8489 if (ICmpInst::isTrueWhenEqual(Pred)) 8490 goto trivially_true; 8491 if (ICmpInst::isFalseWhenEqual(Pred)) 8492 goto trivially_false; 8493 } 8494 8495 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 8496 // adding or subtracting 1 from one of the operands. 8497 switch (Pred) { 8498 case ICmpInst::ICMP_SLE: 8499 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 8500 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8501 SCEV::FlagNSW); 8502 Pred = ICmpInst::ICMP_SLT; 8503 Changed = true; 8504 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 8505 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 8506 SCEV::FlagNSW); 8507 Pred = ICmpInst::ICMP_SLT; 8508 Changed = true; 8509 } 8510 break; 8511 case ICmpInst::ICMP_SGE: 8512 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 8513 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 8514 SCEV::FlagNSW); 8515 Pred = ICmpInst::ICMP_SGT; 8516 Changed = true; 8517 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 8518 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8519 SCEV::FlagNSW); 8520 Pred = ICmpInst::ICMP_SGT; 8521 Changed = true; 8522 } 8523 break; 8524 case ICmpInst::ICMP_ULE: 8525 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 8526 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8527 SCEV::FlagNUW); 8528 Pred = ICmpInst::ICMP_ULT; 8529 Changed = true; 8530 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 8531 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 8532 Pred = ICmpInst::ICMP_ULT; 8533 Changed = true; 8534 } 8535 break; 8536 case ICmpInst::ICMP_UGE: 8537 if (!getUnsignedRangeMin(RHS).isMinValue()) { 8538 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 8539 Pred = ICmpInst::ICMP_UGT; 8540 Changed = true; 8541 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 8542 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8543 SCEV::FlagNUW); 8544 Pred = ICmpInst::ICMP_UGT; 8545 Changed = true; 8546 } 8547 break; 8548 default: 8549 break; 8550 } 8551 8552 // TODO: More simplifications are possible here. 8553 8554 // Recursively simplify until we either hit a recursion limit or nothing 8555 // changes. 8556 if (Changed) 8557 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 8558 8559 return Changed; 8560 8561 trivially_true: 8562 // Return 0 == 0. 8563 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8564 Pred = ICmpInst::ICMP_EQ; 8565 return true; 8566 8567 trivially_false: 8568 // Return 0 != 0. 8569 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8570 Pred = ICmpInst::ICMP_NE; 8571 return true; 8572 } 8573 8574 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 8575 return getSignedRangeMax(S).isNegative(); 8576 } 8577 8578 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 8579 return getSignedRangeMin(S).isStrictlyPositive(); 8580 } 8581 8582 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 8583 return !getSignedRangeMin(S).isNegative(); 8584 } 8585 8586 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 8587 return !getSignedRangeMax(S).isStrictlyPositive(); 8588 } 8589 8590 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 8591 return isKnownNegative(S) || isKnownPositive(S); 8592 } 8593 8594 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 8595 const SCEV *LHS, const SCEV *RHS) { 8596 // Canonicalize the inputs first. 8597 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8598 8599 // If LHS or RHS is an addrec, check to see if the condition is true in 8600 // every iteration of the loop. 8601 // If LHS and RHS are both addrec, both conditions must be true in 8602 // every iteration of the loop. 8603 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8604 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8605 bool LeftGuarded = false; 8606 bool RightGuarded = false; 8607 if (LAR) { 8608 const Loop *L = LAR->getLoop(); 8609 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 8610 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 8611 if (!RAR) return true; 8612 LeftGuarded = true; 8613 } 8614 } 8615 if (RAR) { 8616 const Loop *L = RAR->getLoop(); 8617 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 8618 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 8619 if (!LAR) return true; 8620 RightGuarded = true; 8621 } 8622 } 8623 if (LeftGuarded && RightGuarded) 8624 return true; 8625 8626 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 8627 return true; 8628 8629 // Otherwise see what can be done with known constant ranges. 8630 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 8631 } 8632 8633 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 8634 ICmpInst::Predicate Pred, 8635 bool &Increasing) { 8636 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 8637 8638 #ifndef NDEBUG 8639 // Verify an invariant: inverting the predicate should turn a monotonically 8640 // increasing change to a monotonically decreasing one, and vice versa. 8641 bool IncreasingSwapped; 8642 bool ResultSwapped = isMonotonicPredicateImpl( 8643 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 8644 8645 assert(Result == ResultSwapped && "should be able to analyze both!"); 8646 if (ResultSwapped) 8647 assert(Increasing == !IncreasingSwapped && 8648 "monotonicity should flip as we flip the predicate"); 8649 #endif 8650 8651 return Result; 8652 } 8653 8654 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 8655 ICmpInst::Predicate Pred, 8656 bool &Increasing) { 8657 8658 // A zero step value for LHS means the induction variable is essentially a 8659 // loop invariant value. We don't really depend on the predicate actually 8660 // flipping from false to true (for increasing predicates, and the other way 8661 // around for decreasing predicates), all we care about is that *if* the 8662 // predicate changes then it only changes from false to true. 8663 // 8664 // A zero step value in itself is not very useful, but there may be places 8665 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 8666 // as general as possible. 8667 8668 switch (Pred) { 8669 default: 8670 return false; // Conservative answer 8671 8672 case ICmpInst::ICMP_UGT: 8673 case ICmpInst::ICMP_UGE: 8674 case ICmpInst::ICMP_ULT: 8675 case ICmpInst::ICMP_ULE: 8676 if (!LHS->hasNoUnsignedWrap()) 8677 return false; 8678 8679 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 8680 return true; 8681 8682 case ICmpInst::ICMP_SGT: 8683 case ICmpInst::ICMP_SGE: 8684 case ICmpInst::ICMP_SLT: 8685 case ICmpInst::ICMP_SLE: { 8686 if (!LHS->hasNoSignedWrap()) 8687 return false; 8688 8689 const SCEV *Step = LHS->getStepRecurrence(*this); 8690 8691 if (isKnownNonNegative(Step)) { 8692 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 8693 return true; 8694 } 8695 8696 if (isKnownNonPositive(Step)) { 8697 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 8698 return true; 8699 } 8700 8701 return false; 8702 } 8703 8704 } 8705 8706 llvm_unreachable("switch has default clause!"); 8707 } 8708 8709 bool ScalarEvolution::isLoopInvariantPredicate( 8710 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 8711 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 8712 const SCEV *&InvariantRHS) { 8713 8714 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 8715 if (!isLoopInvariant(RHS, L)) { 8716 if (!isLoopInvariant(LHS, L)) 8717 return false; 8718 8719 std::swap(LHS, RHS); 8720 Pred = ICmpInst::getSwappedPredicate(Pred); 8721 } 8722 8723 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8724 if (!ArLHS || ArLHS->getLoop() != L) 8725 return false; 8726 8727 bool Increasing; 8728 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 8729 return false; 8730 8731 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 8732 // true as the loop iterates, and the backedge is control dependent on 8733 // "ArLHS `Pred` RHS" == true then we can reason as follows: 8734 // 8735 // * if the predicate was false in the first iteration then the predicate 8736 // is never evaluated again, since the loop exits without taking the 8737 // backedge. 8738 // * if the predicate was true in the first iteration then it will 8739 // continue to be true for all future iterations since it is 8740 // monotonically increasing. 8741 // 8742 // For both the above possibilities, we can replace the loop varying 8743 // predicate with its value on the first iteration of the loop (which is 8744 // loop invariant). 8745 // 8746 // A similar reasoning applies for a monotonically decreasing predicate, by 8747 // replacing true with false and false with true in the above two bullets. 8748 8749 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 8750 8751 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 8752 return false; 8753 8754 InvariantPred = Pred; 8755 InvariantLHS = ArLHS->getStart(); 8756 InvariantRHS = RHS; 8757 return true; 8758 } 8759 8760 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 8761 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8762 if (HasSameValue(LHS, RHS)) 8763 return ICmpInst::isTrueWhenEqual(Pred); 8764 8765 // This code is split out from isKnownPredicate because it is called from 8766 // within isLoopEntryGuardedByCond. 8767 8768 auto CheckRanges = 8769 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 8770 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 8771 .contains(RangeLHS); 8772 }; 8773 8774 // The check at the top of the function catches the case where the values are 8775 // known to be equal. 8776 if (Pred == CmpInst::ICMP_EQ) 8777 return false; 8778 8779 if (Pred == CmpInst::ICMP_NE) 8780 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 8781 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 8782 isKnownNonZero(getMinusSCEV(LHS, RHS)); 8783 8784 if (CmpInst::isSigned(Pred)) 8785 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 8786 8787 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 8788 } 8789 8790 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 8791 const SCEV *LHS, 8792 const SCEV *RHS) { 8793 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 8794 // Return Y via OutY. 8795 auto MatchBinaryAddToConst = 8796 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 8797 SCEV::NoWrapFlags ExpectedFlags) { 8798 const SCEV *NonConstOp, *ConstOp; 8799 SCEV::NoWrapFlags FlagsPresent; 8800 8801 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 8802 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 8803 return false; 8804 8805 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 8806 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 8807 }; 8808 8809 APInt C; 8810 8811 switch (Pred) { 8812 default: 8813 break; 8814 8815 case ICmpInst::ICMP_SGE: 8816 std::swap(LHS, RHS); 8817 LLVM_FALLTHROUGH; 8818 case ICmpInst::ICMP_SLE: 8819 // X s<= (X + C)<nsw> if C >= 0 8820 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 8821 return true; 8822 8823 // (X + C)<nsw> s<= X if C <= 0 8824 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 8825 !C.isStrictlyPositive()) 8826 return true; 8827 break; 8828 8829 case ICmpInst::ICMP_SGT: 8830 std::swap(LHS, RHS); 8831 LLVM_FALLTHROUGH; 8832 case ICmpInst::ICMP_SLT: 8833 // X s< (X + C)<nsw> if C > 0 8834 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 8835 C.isStrictlyPositive()) 8836 return true; 8837 8838 // (X + C)<nsw> s< X if C < 0 8839 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 8840 return true; 8841 break; 8842 } 8843 8844 return false; 8845 } 8846 8847 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 8848 const SCEV *LHS, 8849 const SCEV *RHS) { 8850 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 8851 return false; 8852 8853 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 8854 // the stack can result in exponential time complexity. 8855 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 8856 8857 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 8858 // 8859 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 8860 // isKnownPredicate. isKnownPredicate is more powerful, but also more 8861 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 8862 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 8863 // use isKnownPredicate later if needed. 8864 return isKnownNonNegative(RHS) && 8865 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 8866 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 8867 } 8868 8869 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 8870 ICmpInst::Predicate Pred, 8871 const SCEV *LHS, const SCEV *RHS) { 8872 // No need to even try if we know the module has no guards. 8873 if (!HasGuards) 8874 return false; 8875 8876 return any_of(*BB, [&](Instruction &I) { 8877 using namespace llvm::PatternMatch; 8878 8879 Value *Condition; 8880 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 8881 m_Value(Condition))) && 8882 isImpliedCond(Pred, LHS, RHS, Condition, false); 8883 }); 8884 } 8885 8886 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 8887 /// protected by a conditional between LHS and RHS. This is used to 8888 /// to eliminate casts. 8889 bool 8890 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 8891 ICmpInst::Predicate Pred, 8892 const SCEV *LHS, const SCEV *RHS) { 8893 // Interpret a null as meaning no loop, where there is obviously no guard 8894 // (interprocedural conditions notwithstanding). 8895 if (!L) return true; 8896 8897 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8898 return true; 8899 8900 BasicBlock *Latch = L->getLoopLatch(); 8901 if (!Latch) 8902 return false; 8903 8904 BranchInst *LoopContinuePredicate = 8905 dyn_cast<BranchInst>(Latch->getTerminator()); 8906 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 8907 isImpliedCond(Pred, LHS, RHS, 8908 LoopContinuePredicate->getCondition(), 8909 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 8910 return true; 8911 8912 // We don't want more than one activation of the following loops on the stack 8913 // -- that can lead to O(n!) time complexity. 8914 if (WalkingBEDominatingConds) 8915 return false; 8916 8917 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 8918 8919 // See if we can exploit a trip count to prove the predicate. 8920 const auto &BETakenInfo = getBackedgeTakenInfo(L); 8921 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 8922 if (LatchBECount != getCouldNotCompute()) { 8923 // We know that Latch branches back to the loop header exactly 8924 // LatchBECount times. This means the backdege condition at Latch is 8925 // equivalent to "{0,+,1} u< LatchBECount". 8926 Type *Ty = LatchBECount->getType(); 8927 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 8928 const SCEV *LoopCounter = 8929 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 8930 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 8931 LatchBECount)) 8932 return true; 8933 } 8934 8935 // Check conditions due to any @llvm.assume intrinsics. 8936 for (auto &AssumeVH : AC.assumptions()) { 8937 if (!AssumeVH) 8938 continue; 8939 auto *CI = cast<CallInst>(AssumeVH); 8940 if (!DT.dominates(CI, Latch->getTerminator())) 8941 continue; 8942 8943 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8944 return true; 8945 } 8946 8947 // If the loop is not reachable from the entry block, we risk running into an 8948 // infinite loop as we walk up into the dom tree. These loops do not matter 8949 // anyway, so we just return a conservative answer when we see them. 8950 if (!DT.isReachableFromEntry(L->getHeader())) 8951 return false; 8952 8953 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 8954 return true; 8955 8956 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 8957 DTN != HeaderDTN; DTN = DTN->getIDom()) { 8958 assert(DTN && "should reach the loop header before reaching the root!"); 8959 8960 BasicBlock *BB = DTN->getBlock(); 8961 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 8962 return true; 8963 8964 BasicBlock *PBB = BB->getSinglePredecessor(); 8965 if (!PBB) 8966 continue; 8967 8968 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 8969 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 8970 continue; 8971 8972 Value *Condition = ContinuePredicate->getCondition(); 8973 8974 // If we have an edge `E` within the loop body that dominates the only 8975 // latch, the condition guarding `E` also guards the backedge. This 8976 // reasoning works only for loops with a single latch. 8977 8978 BasicBlockEdge DominatingEdge(PBB, BB); 8979 if (DominatingEdge.isSingleEdge()) { 8980 // We're constructively (and conservatively) enumerating edges within the 8981 // loop body that dominate the latch. The dominator tree better agree 8982 // with us on this: 8983 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 8984 8985 if (isImpliedCond(Pred, LHS, RHS, Condition, 8986 BB != ContinuePredicate->getSuccessor(0))) 8987 return true; 8988 } 8989 } 8990 8991 return false; 8992 } 8993 8994 bool 8995 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 8996 ICmpInst::Predicate Pred, 8997 const SCEV *LHS, const SCEV *RHS) { 8998 // Interpret a null as meaning no loop, where there is obviously no guard 8999 // (interprocedural conditions notwithstanding). 9000 if (!L) return false; 9001 9002 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 9003 return true; 9004 9005 // Starting at the loop predecessor, climb up the predecessor chain, as long 9006 // as there are predecessors that can be found that have unique successors 9007 // leading to the original header. 9008 for (std::pair<BasicBlock *, BasicBlock *> 9009 Pair(L->getLoopPredecessor(), L->getHeader()); 9010 Pair.first; 9011 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9012 9013 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS)) 9014 return true; 9015 9016 BranchInst *LoopEntryPredicate = 9017 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9018 if (!LoopEntryPredicate || 9019 LoopEntryPredicate->isUnconditional()) 9020 continue; 9021 9022 if (isImpliedCond(Pred, LHS, RHS, 9023 LoopEntryPredicate->getCondition(), 9024 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9025 return true; 9026 } 9027 9028 // Check conditions due to any @llvm.assume intrinsics. 9029 for (auto &AssumeVH : AC.assumptions()) { 9030 if (!AssumeVH) 9031 continue; 9032 auto *CI = cast<CallInst>(AssumeVH); 9033 if (!DT.dominates(CI, L->getHeader())) 9034 continue; 9035 9036 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9037 return true; 9038 } 9039 9040 return false; 9041 } 9042 9043 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 9044 const SCEV *LHS, const SCEV *RHS, 9045 Value *FoundCondValue, 9046 bool Inverse) { 9047 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9048 return false; 9049 9050 auto ClearOnExit = 9051 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9052 9053 // Recursively handle And and Or conditions. 9054 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9055 if (BO->getOpcode() == Instruction::And) { 9056 if (!Inverse) 9057 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9058 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9059 } else if (BO->getOpcode() == Instruction::Or) { 9060 if (Inverse) 9061 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9062 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9063 } 9064 } 9065 9066 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9067 if (!ICI) return false; 9068 9069 // Now that we found a conditional branch that dominates the loop or controls 9070 // the loop latch. Check to see if it is the comparison we are looking for. 9071 ICmpInst::Predicate FoundPred; 9072 if (Inverse) 9073 FoundPred = ICI->getInversePredicate(); 9074 else 9075 FoundPred = ICI->getPredicate(); 9076 9077 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9078 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9079 9080 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 9081 } 9082 9083 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9084 const SCEV *RHS, 9085 ICmpInst::Predicate FoundPred, 9086 const SCEV *FoundLHS, 9087 const SCEV *FoundRHS) { 9088 // Balance the types. 9089 if (getTypeSizeInBits(LHS->getType()) < 9090 getTypeSizeInBits(FoundLHS->getType())) { 9091 if (CmpInst::isSigned(Pred)) { 9092 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9093 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9094 } else { 9095 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9096 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9097 } 9098 } else if (getTypeSizeInBits(LHS->getType()) > 9099 getTypeSizeInBits(FoundLHS->getType())) { 9100 if (CmpInst::isSigned(FoundPred)) { 9101 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9102 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9103 } else { 9104 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9105 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9106 } 9107 } 9108 9109 // Canonicalize the query to match the way instcombine will have 9110 // canonicalized the comparison. 9111 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9112 if (LHS == RHS) 9113 return CmpInst::isTrueWhenEqual(Pred); 9114 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9115 if (FoundLHS == FoundRHS) 9116 return CmpInst::isFalseWhenEqual(FoundPred); 9117 9118 // Check to see if we can make the LHS or RHS match. 9119 if (LHS == FoundRHS || RHS == FoundLHS) { 9120 if (isa<SCEVConstant>(RHS)) { 9121 std::swap(FoundLHS, FoundRHS); 9122 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9123 } else { 9124 std::swap(LHS, RHS); 9125 Pred = ICmpInst::getSwappedPredicate(Pred); 9126 } 9127 } 9128 9129 // Check whether the found predicate is the same as the desired predicate. 9130 if (FoundPred == Pred) 9131 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9132 9133 // Check whether swapping the found predicate makes it the same as the 9134 // desired predicate. 9135 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9136 if (isa<SCEVConstant>(RHS)) 9137 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 9138 else 9139 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 9140 RHS, LHS, FoundLHS, FoundRHS); 9141 } 9142 9143 // Unsigned comparison is the same as signed comparison when both the operands 9144 // are non-negative. 9145 if (CmpInst::isUnsigned(FoundPred) && 9146 CmpInst::getSignedPredicate(FoundPred) == Pred && 9147 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9148 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9149 9150 // Check if we can make progress by sharpening ranges. 9151 if (FoundPred == ICmpInst::ICMP_NE && 9152 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9153 9154 const SCEVConstant *C = nullptr; 9155 const SCEV *V = nullptr; 9156 9157 if (isa<SCEVConstant>(FoundLHS)) { 9158 C = cast<SCEVConstant>(FoundLHS); 9159 V = FoundRHS; 9160 } else { 9161 C = cast<SCEVConstant>(FoundRHS); 9162 V = FoundLHS; 9163 } 9164 9165 // The guarding predicate tells us that C != V. If the known range 9166 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9167 // range we consider has to correspond to same signedness as the 9168 // predicate we're interested in folding. 9169 9170 APInt Min = ICmpInst::isSigned(Pred) ? 9171 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9172 9173 if (Min == C->getAPInt()) { 9174 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9175 // This is true even if (Min + 1) wraps around -- in case of 9176 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9177 9178 APInt SharperMin = Min + 1; 9179 9180 switch (Pred) { 9181 case ICmpInst::ICMP_SGE: 9182 case ICmpInst::ICMP_UGE: 9183 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9184 // RHS, we're done. 9185 if (isImpliedCondOperands(Pred, LHS, RHS, V, 9186 getConstant(SharperMin))) 9187 return true; 9188 LLVM_FALLTHROUGH; 9189 9190 case ICmpInst::ICMP_SGT: 9191 case ICmpInst::ICMP_UGT: 9192 // We know from the range information that (V `Pred` Min || 9193 // V == Min). We know from the guarding condition that !(V 9194 // == Min). This gives us 9195 // 9196 // V `Pred` Min || V == Min && !(V == Min) 9197 // => V `Pred` Min 9198 // 9199 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9200 9201 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 9202 return true; 9203 LLVM_FALLTHROUGH; 9204 9205 default: 9206 // No change 9207 break; 9208 } 9209 } 9210 } 9211 9212 // Check whether the actual condition is beyond sufficient. 9213 if (FoundPred == ICmpInst::ICMP_EQ) 9214 if (ICmpInst::isTrueWhenEqual(Pred)) 9215 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9216 return true; 9217 if (Pred == ICmpInst::ICMP_NE) 9218 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9219 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 9220 return true; 9221 9222 // Otherwise assume the worst. 9223 return false; 9224 } 9225 9226 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9227 const SCEV *&L, const SCEV *&R, 9228 SCEV::NoWrapFlags &Flags) { 9229 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9230 if (!AE || AE->getNumOperands() != 2) 9231 return false; 9232 9233 L = AE->getOperand(0); 9234 R = AE->getOperand(1); 9235 Flags = AE->getNoWrapFlags(); 9236 return true; 9237 } 9238 9239 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9240 const SCEV *Less) { 9241 // We avoid subtracting expressions here because this function is usually 9242 // fairly deep in the call stack (i.e. is called many times). 9243 9244 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9245 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9246 const auto *MAR = cast<SCEVAddRecExpr>(More); 9247 9248 if (LAR->getLoop() != MAR->getLoop()) 9249 return None; 9250 9251 // We look at affine expressions only; not for correctness but to keep 9252 // getStepRecurrence cheap. 9253 if (!LAR->isAffine() || !MAR->isAffine()) 9254 return None; 9255 9256 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9257 return None; 9258 9259 Less = LAR->getStart(); 9260 More = MAR->getStart(); 9261 9262 // fall through 9263 } 9264 9265 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9266 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9267 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9268 return M - L; 9269 } 9270 9271 const SCEV *L, *R; 9272 SCEV::NoWrapFlags Flags; 9273 if (splitBinaryAdd(Less, L, R, Flags)) 9274 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 9275 if (R == More) 9276 return -(LC->getAPInt()); 9277 9278 if (splitBinaryAdd(More, L, R, Flags)) 9279 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 9280 if (R == Less) 9281 return LC->getAPInt(); 9282 9283 return None; 9284 } 9285 9286 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9287 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9288 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9289 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9290 return false; 9291 9292 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9293 if (!AddRecLHS) 9294 return false; 9295 9296 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9297 if (!AddRecFoundLHS) 9298 return false; 9299 9300 // We'd like to let SCEV reason about control dependencies, so we constrain 9301 // both the inequalities to be about add recurrences on the same loop. This 9302 // way we can use isLoopEntryGuardedByCond later. 9303 9304 const Loop *L = AddRecFoundLHS->getLoop(); 9305 if (L != AddRecLHS->getLoop()) 9306 return false; 9307 9308 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9309 // 9310 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9311 // ... (2) 9312 // 9313 // Informal proof for (2), assuming (1) [*]: 9314 // 9315 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 9316 // 9317 // Then 9318 // 9319 // FoundLHS s< FoundRHS s< INT_MIN - C 9320 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 9321 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 9322 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 9323 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 9324 // <=> FoundLHS + C s< FoundRHS + C 9325 // 9326 // [*]: (1) can be proved by ruling out overflow. 9327 // 9328 // [**]: This can be proved by analyzing all the four possibilities: 9329 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 9330 // (A s>= 0, B s>= 0). 9331 // 9332 // Note: 9333 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 9334 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 9335 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 9336 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 9337 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 9338 // C)". 9339 9340 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 9341 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 9342 if (!LDiff || !RDiff || *LDiff != *RDiff) 9343 return false; 9344 9345 if (LDiff->isMinValue()) 9346 return true; 9347 9348 APInt FoundRHSLimit; 9349 9350 if (Pred == CmpInst::ICMP_ULT) { 9351 FoundRHSLimit = -(*RDiff); 9352 } else { 9353 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 9354 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 9355 } 9356 9357 // Try to prove (1) or (2), as needed. 9358 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 9359 getConstant(FoundRHSLimit)); 9360 } 9361 9362 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 9363 const SCEV *LHS, const SCEV *RHS, 9364 const SCEV *FoundLHS, 9365 const SCEV *FoundRHS) { 9366 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9367 return true; 9368 9369 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9370 return true; 9371 9372 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 9373 FoundLHS, FoundRHS) || 9374 // ~x < ~y --> x > y 9375 isImpliedCondOperandsHelper(Pred, LHS, RHS, 9376 getNotSCEV(FoundRHS), 9377 getNotSCEV(FoundLHS)); 9378 } 9379 9380 /// If Expr computes ~A, return A else return nullptr 9381 static const SCEV *MatchNotExpr(const SCEV *Expr) { 9382 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 9383 if (!Add || Add->getNumOperands() != 2 || 9384 !Add->getOperand(0)->isAllOnesValue()) 9385 return nullptr; 9386 9387 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 9388 if (!AddRHS || AddRHS->getNumOperands() != 2 || 9389 !AddRHS->getOperand(0)->isAllOnesValue()) 9390 return nullptr; 9391 9392 return AddRHS->getOperand(1); 9393 } 9394 9395 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 9396 template<typename MaxExprType> 9397 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 9398 const SCEV *Candidate) { 9399 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 9400 if (!MaxExpr) return false; 9401 9402 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 9403 } 9404 9405 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 9406 template<typename MaxExprType> 9407 static bool IsMinConsistingOf(ScalarEvolution &SE, 9408 const SCEV *MaybeMinExpr, 9409 const SCEV *Candidate) { 9410 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 9411 if (!MaybeMaxExpr) 9412 return false; 9413 9414 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 9415 } 9416 9417 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 9418 ICmpInst::Predicate Pred, 9419 const SCEV *LHS, const SCEV *RHS) { 9420 // If both sides are affine addrecs for the same loop, with equal 9421 // steps, and we know the recurrences don't wrap, then we only 9422 // need to check the predicate on the starting values. 9423 9424 if (!ICmpInst::isRelational(Pred)) 9425 return false; 9426 9427 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 9428 if (!LAR) 9429 return false; 9430 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9431 if (!RAR) 9432 return false; 9433 if (LAR->getLoop() != RAR->getLoop()) 9434 return false; 9435 if (!LAR->isAffine() || !RAR->isAffine()) 9436 return false; 9437 9438 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 9439 return false; 9440 9441 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 9442 SCEV::FlagNSW : SCEV::FlagNUW; 9443 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 9444 return false; 9445 9446 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 9447 } 9448 9449 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 9450 /// expression? 9451 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 9452 ICmpInst::Predicate Pred, 9453 const SCEV *LHS, const SCEV *RHS) { 9454 switch (Pred) { 9455 default: 9456 return false; 9457 9458 case ICmpInst::ICMP_SGE: 9459 std::swap(LHS, RHS); 9460 LLVM_FALLTHROUGH; 9461 case ICmpInst::ICMP_SLE: 9462 return 9463 // min(A, ...) <= A 9464 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 9465 // A <= max(A, ...) 9466 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 9467 9468 case ICmpInst::ICMP_UGE: 9469 std::swap(LHS, RHS); 9470 LLVM_FALLTHROUGH; 9471 case ICmpInst::ICMP_ULE: 9472 return 9473 // min(A, ...) <= A 9474 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 9475 // A <= max(A, ...) 9476 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 9477 } 9478 9479 llvm_unreachable("covered switch fell through?!"); 9480 } 9481 9482 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 9483 const SCEV *LHS, const SCEV *RHS, 9484 const SCEV *FoundLHS, 9485 const SCEV *FoundRHS, 9486 unsigned Depth) { 9487 assert(getTypeSizeInBits(LHS->getType()) == 9488 getTypeSizeInBits(RHS->getType()) && 9489 "LHS and RHS have different sizes?"); 9490 assert(getTypeSizeInBits(FoundLHS->getType()) == 9491 getTypeSizeInBits(FoundRHS->getType()) && 9492 "FoundLHS and FoundRHS have different sizes?"); 9493 // We want to avoid hurting the compile time with analysis of too big trees. 9494 if (Depth > MaxSCEVOperationsImplicationDepth) 9495 return false; 9496 // We only want to work with ICMP_SGT comparison so far. 9497 // TODO: Extend to ICMP_UGT? 9498 if (Pred == ICmpInst::ICMP_SLT) { 9499 Pred = ICmpInst::ICMP_SGT; 9500 std::swap(LHS, RHS); 9501 std::swap(FoundLHS, FoundRHS); 9502 } 9503 if (Pred != ICmpInst::ICMP_SGT) 9504 return false; 9505 9506 auto GetOpFromSExt = [&](const SCEV *S) { 9507 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 9508 return Ext->getOperand(); 9509 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 9510 // the constant in some cases. 9511 return S; 9512 }; 9513 9514 // Acquire values from extensions. 9515 auto *OrigFoundLHS = FoundLHS; 9516 LHS = GetOpFromSExt(LHS); 9517 FoundLHS = GetOpFromSExt(FoundLHS); 9518 9519 // Is the SGT predicate can be proved trivially or using the found context. 9520 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 9521 return isKnownViaSimpleReasoning(ICmpInst::ICMP_SGT, S1, S2) || 9522 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 9523 FoundRHS, Depth + 1); 9524 }; 9525 9526 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 9527 // We want to avoid creation of any new non-constant SCEV. Since we are 9528 // going to compare the operands to RHS, we should be certain that we don't 9529 // need any size extensions for this. So let's decline all cases when the 9530 // sizes of types of LHS and RHS do not match. 9531 // TODO: Maybe try to get RHS from sext to catch more cases? 9532 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 9533 return false; 9534 9535 // Should not overflow. 9536 if (!LHSAddExpr->hasNoSignedWrap()) 9537 return false; 9538 9539 auto *LL = LHSAddExpr->getOperand(0); 9540 auto *LR = LHSAddExpr->getOperand(1); 9541 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 9542 9543 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 9544 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 9545 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 9546 }; 9547 // Try to prove the following rule: 9548 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 9549 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 9550 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 9551 return true; 9552 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 9553 Value *LL, *LR; 9554 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 9555 9556 using namespace llvm::PatternMatch; 9557 9558 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 9559 // Rules for division. 9560 // We are going to perform some comparisons with Denominator and its 9561 // derivative expressions. In general case, creating a SCEV for it may 9562 // lead to a complex analysis of the entire graph, and in particular it 9563 // can request trip count recalculation for the same loop. This would 9564 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 9565 // this, we only want to create SCEVs that are constants in this section. 9566 // So we bail if Denominator is not a constant. 9567 if (!isa<ConstantInt>(LR)) 9568 return false; 9569 9570 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 9571 9572 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 9573 // then a SCEV for the numerator already exists and matches with FoundLHS. 9574 auto *Numerator = getExistingSCEV(LL); 9575 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 9576 return false; 9577 9578 // Make sure that the numerator matches with FoundLHS and the denominator 9579 // is positive. 9580 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 9581 return false; 9582 9583 auto *DTy = Denominator->getType(); 9584 auto *FRHSTy = FoundRHS->getType(); 9585 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 9586 // One of types is a pointer and another one is not. We cannot extend 9587 // them properly to a wider type, so let us just reject this case. 9588 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 9589 // to avoid this check. 9590 return false; 9591 9592 // Given that: 9593 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 9594 auto *WTy = getWiderType(DTy, FRHSTy); 9595 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 9596 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 9597 9598 // Try to prove the following rule: 9599 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 9600 // For example, given that FoundLHS > 2. It means that FoundLHS is at 9601 // least 3. If we divide it by Denominator < 4, we will have at least 1. 9602 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 9603 if (isKnownNonPositive(RHS) && 9604 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 9605 return true; 9606 9607 // Try to prove the following rule: 9608 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 9609 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 9610 // If we divide it by Denominator > 2, then: 9611 // 1. If FoundLHS is negative, then the result is 0. 9612 // 2. If FoundLHS is non-negative, then the result is non-negative. 9613 // Anyways, the result is non-negative. 9614 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 9615 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 9616 if (isKnownNegative(RHS) && 9617 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 9618 return true; 9619 } 9620 } 9621 9622 return false; 9623 } 9624 9625 bool 9626 ScalarEvolution::isKnownViaSimpleReasoning(ICmpInst::Predicate Pred, 9627 const SCEV *LHS, const SCEV *RHS) { 9628 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 9629 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 9630 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 9631 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 9632 } 9633 9634 bool 9635 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 9636 const SCEV *LHS, const SCEV *RHS, 9637 const SCEV *FoundLHS, 9638 const SCEV *FoundRHS) { 9639 switch (Pred) { 9640 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 9641 case ICmpInst::ICMP_EQ: 9642 case ICmpInst::ICMP_NE: 9643 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 9644 return true; 9645 break; 9646 case ICmpInst::ICMP_SLT: 9647 case ICmpInst::ICMP_SLE: 9648 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 9649 isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 9650 return true; 9651 break; 9652 case ICmpInst::ICMP_SGT: 9653 case ICmpInst::ICMP_SGE: 9654 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 9655 isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 9656 return true; 9657 break; 9658 case ICmpInst::ICMP_ULT: 9659 case ICmpInst::ICMP_ULE: 9660 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 9661 isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 9662 return true; 9663 break; 9664 case ICmpInst::ICMP_UGT: 9665 case ICmpInst::ICMP_UGE: 9666 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 9667 isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 9668 return true; 9669 break; 9670 } 9671 9672 // Maybe it can be proved via operations? 9673 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9674 return true; 9675 9676 return false; 9677 } 9678 9679 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 9680 const SCEV *LHS, 9681 const SCEV *RHS, 9682 const SCEV *FoundLHS, 9683 const SCEV *FoundRHS) { 9684 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 9685 // The restriction on `FoundRHS` be lifted easily -- it exists only to 9686 // reduce the compile time impact of this optimization. 9687 return false; 9688 9689 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 9690 if (!Addend) 9691 return false; 9692 9693 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 9694 9695 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 9696 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 9697 ConstantRange FoundLHSRange = 9698 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 9699 9700 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 9701 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 9702 9703 // We can also compute the range of values for `LHS` that satisfy the 9704 // consequent, "`LHS` `Pred` `RHS`": 9705 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 9706 ConstantRange SatisfyingLHSRange = 9707 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 9708 9709 // The antecedent implies the consequent if every value of `LHS` that 9710 // satisfies the antecedent also satisfies the consequent. 9711 return SatisfyingLHSRange.contains(LHSRange); 9712 } 9713 9714 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 9715 bool IsSigned, bool NoWrap) { 9716 assert(isKnownPositive(Stride) && "Positive stride expected!"); 9717 9718 if (NoWrap) return false; 9719 9720 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9721 const SCEV *One = getOne(Stride->getType()); 9722 9723 if (IsSigned) { 9724 APInt MaxRHS = getSignedRangeMax(RHS); 9725 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 9726 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 9727 9728 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 9729 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 9730 } 9731 9732 APInt MaxRHS = getUnsignedRangeMax(RHS); 9733 APInt MaxValue = APInt::getMaxValue(BitWidth); 9734 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 9735 9736 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 9737 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 9738 } 9739 9740 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 9741 bool IsSigned, bool NoWrap) { 9742 if (NoWrap) return false; 9743 9744 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9745 const SCEV *One = getOne(Stride->getType()); 9746 9747 if (IsSigned) { 9748 APInt MinRHS = getSignedRangeMin(RHS); 9749 APInt MinValue = APInt::getSignedMinValue(BitWidth); 9750 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 9751 9752 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 9753 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 9754 } 9755 9756 APInt MinRHS = getUnsignedRangeMin(RHS); 9757 APInt MinValue = APInt::getMinValue(BitWidth); 9758 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 9759 9760 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 9761 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 9762 } 9763 9764 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 9765 bool Equality) { 9766 const SCEV *One = getOne(Step->getType()); 9767 Delta = Equality ? getAddExpr(Delta, Step) 9768 : getAddExpr(Delta, getMinusSCEV(Step, One)); 9769 return getUDivExpr(Delta, Step); 9770 } 9771 9772 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 9773 const SCEV *Stride, 9774 const SCEV *End, 9775 unsigned BitWidth, 9776 bool IsSigned) { 9777 9778 assert(!isKnownNonPositive(Stride) && 9779 "Stride is expected strictly positive!"); 9780 // Calculate the maximum backedge count based on the range of values 9781 // permitted by Start, End, and Stride. 9782 const SCEV *MaxBECount; 9783 APInt MinStart = 9784 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 9785 9786 APInt StrideForMaxBECount = 9787 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 9788 9789 // We already know that the stride is positive, so we paper over conservatism 9790 // in our range computation by forcing StrideForMaxBECount to be at least one. 9791 // In theory this is unnecessary, but we expect MaxBECount to be a 9792 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 9793 // is nothing to constant fold it to). 9794 APInt One(BitWidth, 1, IsSigned); 9795 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 9796 9797 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 9798 : APInt::getMaxValue(BitWidth); 9799 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 9800 9801 // Although End can be a MAX expression we estimate MaxEnd considering only 9802 // the case End = RHS of the loop termination condition. This is safe because 9803 // in the other case (End - Start) is zero, leading to a zero maximum backedge 9804 // taken count. 9805 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 9806 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 9807 9808 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 9809 getConstant(StrideForMaxBECount) /* Step */, 9810 false /* Equality */); 9811 9812 return MaxBECount; 9813 } 9814 9815 ScalarEvolution::ExitLimit 9816 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 9817 const Loop *L, bool IsSigned, 9818 bool ControlsExit, bool AllowPredicates) { 9819 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9820 9821 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 9822 bool PredicatedIV = false; 9823 9824 if (!IV && AllowPredicates) { 9825 // Try to make this an AddRec using runtime tests, in the first X 9826 // iterations of this loop, where X is the SCEV expression found by the 9827 // algorithm below. 9828 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 9829 PredicatedIV = true; 9830 } 9831 9832 // Avoid weird loops 9833 if (!IV || IV->getLoop() != L || !IV->isAffine()) 9834 return getCouldNotCompute(); 9835 9836 bool NoWrap = ControlsExit && 9837 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 9838 9839 const SCEV *Stride = IV->getStepRecurrence(*this); 9840 9841 bool PositiveStride = isKnownPositive(Stride); 9842 9843 // Avoid negative or zero stride values. 9844 if (!PositiveStride) { 9845 // We can compute the correct backedge taken count for loops with unknown 9846 // strides if we can prove that the loop is not an infinite loop with side 9847 // effects. Here's the loop structure we are trying to handle - 9848 // 9849 // i = start 9850 // do { 9851 // A[i] = i; 9852 // i += s; 9853 // } while (i < end); 9854 // 9855 // The backedge taken count for such loops is evaluated as - 9856 // (max(end, start + stride) - start - 1) /u stride 9857 // 9858 // The additional preconditions that we need to check to prove correctness 9859 // of the above formula is as follows - 9860 // 9861 // a) IV is either nuw or nsw depending upon signedness (indicated by the 9862 // NoWrap flag). 9863 // b) loop is single exit with no side effects. 9864 // 9865 // 9866 // Precondition a) implies that if the stride is negative, this is a single 9867 // trip loop. The backedge taken count formula reduces to zero in this case. 9868 // 9869 // Precondition b) implies that the unknown stride cannot be zero otherwise 9870 // we have UB. 9871 // 9872 // The positive stride case is the same as isKnownPositive(Stride) returning 9873 // true (original behavior of the function). 9874 // 9875 // We want to make sure that the stride is truly unknown as there are edge 9876 // cases where ScalarEvolution propagates no wrap flags to the 9877 // post-increment/decrement IV even though the increment/decrement operation 9878 // itself is wrapping. The computed backedge taken count may be wrong in 9879 // such cases. This is prevented by checking that the stride is not known to 9880 // be either positive or non-positive. For example, no wrap flags are 9881 // propagated to the post-increment IV of this loop with a trip count of 2 - 9882 // 9883 // unsigned char i; 9884 // for(i=127; i<128; i+=129) 9885 // A[i] = i; 9886 // 9887 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 9888 !loopHasNoSideEffects(L)) 9889 return getCouldNotCompute(); 9890 } else if (!Stride->isOne() && 9891 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 9892 // Avoid proven overflow cases: this will ensure that the backedge taken 9893 // count will not generate any unsigned overflow. Relaxed no-overflow 9894 // conditions exploit NoWrapFlags, allowing to optimize in presence of 9895 // undefined behaviors like the case of C language. 9896 return getCouldNotCompute(); 9897 9898 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 9899 : ICmpInst::ICMP_ULT; 9900 const SCEV *Start = IV->getStart(); 9901 const SCEV *End = RHS; 9902 // When the RHS is not invariant, we do not know the end bound of the loop and 9903 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 9904 // calculate the MaxBECount, given the start, stride and max value for the end 9905 // bound of the loop (RHS), and the fact that IV does not overflow (which is 9906 // checked above). 9907 if (!isLoopInvariant(RHS, L)) { 9908 const SCEV *MaxBECount = computeMaxBECountForLT( 9909 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 9910 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 9911 false /*MaxOrZero*/, Predicates); 9912 } 9913 // If the backedge is taken at least once, then it will be taken 9914 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 9915 // is the LHS value of the less-than comparison the first time it is evaluated 9916 // and End is the RHS. 9917 const SCEV *BECountIfBackedgeTaken = 9918 computeBECount(getMinusSCEV(End, Start), Stride, false); 9919 // If the loop entry is guarded by the result of the backedge test of the 9920 // first loop iteration, then we know the backedge will be taken at least 9921 // once and so the backedge taken count is as above. If not then we use the 9922 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 9923 // as if the backedge is taken at least once max(End,Start) is End and so the 9924 // result is as above, and if not max(End,Start) is Start so we get a backedge 9925 // count of zero. 9926 const SCEV *BECount; 9927 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 9928 BECount = BECountIfBackedgeTaken; 9929 else { 9930 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 9931 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 9932 } 9933 9934 const SCEV *MaxBECount; 9935 bool MaxOrZero = false; 9936 if (isa<SCEVConstant>(BECount)) 9937 MaxBECount = BECount; 9938 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 9939 // If we know exactly how many times the backedge will be taken if it's 9940 // taken at least once, then the backedge count will either be that or 9941 // zero. 9942 MaxBECount = BECountIfBackedgeTaken; 9943 MaxOrZero = true; 9944 } else { 9945 MaxBECount = computeMaxBECountForLT( 9946 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 9947 } 9948 9949 if (isa<SCEVCouldNotCompute>(MaxBECount) && 9950 !isa<SCEVCouldNotCompute>(BECount)) 9951 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 9952 9953 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 9954 } 9955 9956 ScalarEvolution::ExitLimit 9957 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 9958 const Loop *L, bool IsSigned, 9959 bool ControlsExit, bool AllowPredicates) { 9960 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9961 // We handle only IV > Invariant 9962 if (!isLoopInvariant(RHS, L)) 9963 return getCouldNotCompute(); 9964 9965 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 9966 if (!IV && AllowPredicates) 9967 // Try to make this an AddRec using runtime tests, in the first X 9968 // iterations of this loop, where X is the SCEV expression found by the 9969 // algorithm below. 9970 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 9971 9972 // Avoid weird loops 9973 if (!IV || IV->getLoop() != L || !IV->isAffine()) 9974 return getCouldNotCompute(); 9975 9976 bool NoWrap = ControlsExit && 9977 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 9978 9979 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 9980 9981 // Avoid negative or zero stride values 9982 if (!isKnownPositive(Stride)) 9983 return getCouldNotCompute(); 9984 9985 // Avoid proven overflow cases: this will ensure that the backedge taken count 9986 // will not generate any unsigned overflow. Relaxed no-overflow conditions 9987 // exploit NoWrapFlags, allowing to optimize in presence of undefined 9988 // behaviors like the case of C language. 9989 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 9990 return getCouldNotCompute(); 9991 9992 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 9993 : ICmpInst::ICMP_UGT; 9994 9995 const SCEV *Start = IV->getStart(); 9996 const SCEV *End = RHS; 9997 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 9998 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 9999 10000 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10001 10002 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10003 : getUnsignedRangeMax(Start); 10004 10005 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10006 : getUnsignedRangeMin(Stride); 10007 10008 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10009 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10010 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10011 10012 // Although End can be a MIN expression we estimate MinEnd considering only 10013 // the case End = RHS. This is safe because in the other case (Start - End) 10014 // is zero, leading to a zero maximum backedge taken count. 10015 APInt MinEnd = 10016 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10017 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10018 10019 10020 const SCEV *MaxBECount = getCouldNotCompute(); 10021 if (isa<SCEVConstant>(BECount)) 10022 MaxBECount = BECount; 10023 else 10024 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 10025 getConstant(MinStride), false); 10026 10027 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10028 MaxBECount = BECount; 10029 10030 return ExitLimit(BECount, MaxBECount, false, Predicates); 10031 } 10032 10033 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10034 ScalarEvolution &SE) const { 10035 if (Range.isFullSet()) // Infinite loop. 10036 return SE.getCouldNotCompute(); 10037 10038 // If the start is a non-zero constant, shift the range to simplify things. 10039 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10040 if (!SC->getValue()->isZero()) { 10041 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10042 Operands[0] = SE.getZero(SC->getType()); 10043 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10044 getNoWrapFlags(FlagNW)); 10045 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10046 return ShiftedAddRec->getNumIterationsInRange( 10047 Range.subtract(SC->getAPInt()), SE); 10048 // This is strange and shouldn't happen. 10049 return SE.getCouldNotCompute(); 10050 } 10051 10052 // The only time we can solve this is when we have all constant indices. 10053 // Otherwise, we cannot determine the overflow conditions. 10054 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10055 return SE.getCouldNotCompute(); 10056 10057 // Okay at this point we know that all elements of the chrec are constants and 10058 // that the start element is zero. 10059 10060 // First check to see if the range contains zero. If not, the first 10061 // iteration exits. 10062 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10063 if (!Range.contains(APInt(BitWidth, 0))) 10064 return SE.getZero(getType()); 10065 10066 if (isAffine()) { 10067 // If this is an affine expression then we have this situation: 10068 // Solve {0,+,A} in Range === Ax in Range 10069 10070 // We know that zero is in the range. If A is positive then we know that 10071 // the upper value of the range must be the first possible exit value. 10072 // If A is negative then the lower of the range is the last possible loop 10073 // value. Also note that we already checked for a full range. 10074 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10075 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10076 10077 // The exit value should be (End+A)/A. 10078 APInt ExitVal = (End + A).udiv(A); 10079 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10080 10081 // Evaluate at the exit value. If we really did fall out of the valid 10082 // range, then we computed our trip count, otherwise wrap around or other 10083 // things must have happened. 10084 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10085 if (Range.contains(Val->getValue())) 10086 return SE.getCouldNotCompute(); // Something strange happened 10087 10088 // Ensure that the previous value is in the range. This is a sanity check. 10089 assert(Range.contains( 10090 EvaluateConstantChrecAtConstant(this, 10091 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10092 "Linear scev computation is off in a bad way!"); 10093 return SE.getConstant(ExitValue); 10094 } else if (isQuadratic()) { 10095 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 10096 // quadratic equation to solve it. To do this, we must frame our problem in 10097 // terms of figuring out when zero is crossed, instead of when 10098 // Range.getUpper() is crossed. 10099 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 10100 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 10101 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 10102 10103 // Next, solve the constructed addrec 10104 if (auto Roots = 10105 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 10106 const SCEVConstant *R1 = Roots->first; 10107 const SCEVConstant *R2 = Roots->second; 10108 // Pick the smallest positive root value. 10109 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 10110 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 10111 if (!CB->getZExtValue()) 10112 std::swap(R1, R2); // R1 is the minimum root now. 10113 10114 // Make sure the root is not off by one. The returned iteration should 10115 // not be in the range, but the previous one should be. When solving 10116 // for "X*X < 5", for example, we should not return a root of 2. 10117 ConstantInt *R1Val = 10118 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 10119 if (Range.contains(R1Val->getValue())) { 10120 // The next iteration must be out of the range... 10121 ConstantInt *NextVal = 10122 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 10123 10124 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 10125 if (!Range.contains(R1Val->getValue())) 10126 return SE.getConstant(NextVal); 10127 return SE.getCouldNotCompute(); // Something strange happened 10128 } 10129 10130 // If R1 was not in the range, then it is a good return value. Make 10131 // sure that R1-1 WAS in the range though, just in case. 10132 ConstantInt *NextVal = 10133 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 10134 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 10135 if (Range.contains(R1Val->getValue())) 10136 return R1; 10137 return SE.getCouldNotCompute(); // Something strange happened 10138 } 10139 } 10140 } 10141 10142 return SE.getCouldNotCompute(); 10143 } 10144 10145 // Return true when S contains at least an undef value. 10146 static inline bool containsUndefs(const SCEV *S) { 10147 return SCEVExprContains(S, [](const SCEV *S) { 10148 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 10149 return isa<UndefValue>(SU->getValue()); 10150 else if (const auto *SC = dyn_cast<SCEVConstant>(S)) 10151 return isa<UndefValue>(SC->getValue()); 10152 return false; 10153 }); 10154 } 10155 10156 namespace { 10157 10158 // Collect all steps of SCEV expressions. 10159 struct SCEVCollectStrides { 10160 ScalarEvolution &SE; 10161 SmallVectorImpl<const SCEV *> &Strides; 10162 10163 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 10164 : SE(SE), Strides(S) {} 10165 10166 bool follow(const SCEV *S) { 10167 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 10168 Strides.push_back(AR->getStepRecurrence(SE)); 10169 return true; 10170 } 10171 10172 bool isDone() const { return false; } 10173 }; 10174 10175 // Collect all SCEVUnknown and SCEVMulExpr expressions. 10176 struct SCEVCollectTerms { 10177 SmallVectorImpl<const SCEV *> &Terms; 10178 10179 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 10180 10181 bool follow(const SCEV *S) { 10182 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 10183 isa<SCEVSignExtendExpr>(S)) { 10184 if (!containsUndefs(S)) 10185 Terms.push_back(S); 10186 10187 // Stop recursion: once we collected a term, do not walk its operands. 10188 return false; 10189 } 10190 10191 // Keep looking. 10192 return true; 10193 } 10194 10195 bool isDone() const { return false; } 10196 }; 10197 10198 // Check if a SCEV contains an AddRecExpr. 10199 struct SCEVHasAddRec { 10200 bool &ContainsAddRec; 10201 10202 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 10203 ContainsAddRec = false; 10204 } 10205 10206 bool follow(const SCEV *S) { 10207 if (isa<SCEVAddRecExpr>(S)) { 10208 ContainsAddRec = true; 10209 10210 // Stop recursion: once we collected a term, do not walk its operands. 10211 return false; 10212 } 10213 10214 // Keep looking. 10215 return true; 10216 } 10217 10218 bool isDone() const { return false; } 10219 }; 10220 10221 // Find factors that are multiplied with an expression that (possibly as a 10222 // subexpression) contains an AddRecExpr. In the expression: 10223 // 10224 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 10225 // 10226 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 10227 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 10228 // parameters as they form a product with an induction variable. 10229 // 10230 // This collector expects all array size parameters to be in the same MulExpr. 10231 // It might be necessary to later add support for collecting parameters that are 10232 // spread over different nested MulExpr. 10233 struct SCEVCollectAddRecMultiplies { 10234 SmallVectorImpl<const SCEV *> &Terms; 10235 ScalarEvolution &SE; 10236 10237 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 10238 : Terms(T), SE(SE) {} 10239 10240 bool follow(const SCEV *S) { 10241 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 10242 bool HasAddRec = false; 10243 SmallVector<const SCEV *, 0> Operands; 10244 for (auto Op : Mul->operands()) { 10245 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 10246 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 10247 Operands.push_back(Op); 10248 } else if (Unknown) { 10249 HasAddRec = true; 10250 } else { 10251 bool ContainsAddRec; 10252 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 10253 visitAll(Op, ContiansAddRec); 10254 HasAddRec |= ContainsAddRec; 10255 } 10256 } 10257 if (Operands.size() == 0) 10258 return true; 10259 10260 if (!HasAddRec) 10261 return false; 10262 10263 Terms.push_back(SE.getMulExpr(Operands)); 10264 // Stop recursion: once we collected a term, do not walk its operands. 10265 return false; 10266 } 10267 10268 // Keep looking. 10269 return true; 10270 } 10271 10272 bool isDone() const { return false; } 10273 }; 10274 10275 } // end anonymous namespace 10276 10277 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 10278 /// two places: 10279 /// 1) The strides of AddRec expressions. 10280 /// 2) Unknowns that are multiplied with AddRec expressions. 10281 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 10282 SmallVectorImpl<const SCEV *> &Terms) { 10283 SmallVector<const SCEV *, 4> Strides; 10284 SCEVCollectStrides StrideCollector(*this, Strides); 10285 visitAll(Expr, StrideCollector); 10286 10287 DEBUG({ 10288 dbgs() << "Strides:\n"; 10289 for (const SCEV *S : Strides) 10290 dbgs() << *S << "\n"; 10291 }); 10292 10293 for (const SCEV *S : Strides) { 10294 SCEVCollectTerms TermCollector(Terms); 10295 visitAll(S, TermCollector); 10296 } 10297 10298 DEBUG({ 10299 dbgs() << "Terms:\n"; 10300 for (const SCEV *T : Terms) 10301 dbgs() << *T << "\n"; 10302 }); 10303 10304 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 10305 visitAll(Expr, MulCollector); 10306 } 10307 10308 static bool findArrayDimensionsRec(ScalarEvolution &SE, 10309 SmallVectorImpl<const SCEV *> &Terms, 10310 SmallVectorImpl<const SCEV *> &Sizes) { 10311 int Last = Terms.size() - 1; 10312 const SCEV *Step = Terms[Last]; 10313 10314 // End of recursion. 10315 if (Last == 0) { 10316 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 10317 SmallVector<const SCEV *, 2> Qs; 10318 for (const SCEV *Op : M->operands()) 10319 if (!isa<SCEVConstant>(Op)) 10320 Qs.push_back(Op); 10321 10322 Step = SE.getMulExpr(Qs); 10323 } 10324 10325 Sizes.push_back(Step); 10326 return true; 10327 } 10328 10329 for (const SCEV *&Term : Terms) { 10330 // Normalize the terms before the next call to findArrayDimensionsRec. 10331 const SCEV *Q, *R; 10332 SCEVDivision::divide(SE, Term, Step, &Q, &R); 10333 10334 // Bail out when GCD does not evenly divide one of the terms. 10335 if (!R->isZero()) 10336 return false; 10337 10338 Term = Q; 10339 } 10340 10341 // Remove all SCEVConstants. 10342 Terms.erase( 10343 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 10344 Terms.end()); 10345 10346 if (Terms.size() > 0) 10347 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 10348 return false; 10349 10350 Sizes.push_back(Step); 10351 return true; 10352 } 10353 10354 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 10355 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 10356 for (const SCEV *T : Terms) 10357 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 10358 return true; 10359 return false; 10360 } 10361 10362 // Return the number of product terms in S. 10363 static inline int numberOfTerms(const SCEV *S) { 10364 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 10365 return Expr->getNumOperands(); 10366 return 1; 10367 } 10368 10369 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 10370 if (isa<SCEVConstant>(T)) 10371 return nullptr; 10372 10373 if (isa<SCEVUnknown>(T)) 10374 return T; 10375 10376 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 10377 SmallVector<const SCEV *, 2> Factors; 10378 for (const SCEV *Op : M->operands()) 10379 if (!isa<SCEVConstant>(Op)) 10380 Factors.push_back(Op); 10381 10382 return SE.getMulExpr(Factors); 10383 } 10384 10385 return T; 10386 } 10387 10388 /// Return the size of an element read or written by Inst. 10389 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 10390 Type *Ty; 10391 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 10392 Ty = Store->getValueOperand()->getType(); 10393 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 10394 Ty = Load->getType(); 10395 else 10396 return nullptr; 10397 10398 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 10399 return getSizeOfExpr(ETy, Ty); 10400 } 10401 10402 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 10403 SmallVectorImpl<const SCEV *> &Sizes, 10404 const SCEV *ElementSize) { 10405 if (Terms.size() < 1 || !ElementSize) 10406 return; 10407 10408 // Early return when Terms do not contain parameters: we do not delinearize 10409 // non parametric SCEVs. 10410 if (!containsParameters(Terms)) 10411 return; 10412 10413 DEBUG({ 10414 dbgs() << "Terms:\n"; 10415 for (const SCEV *T : Terms) 10416 dbgs() << *T << "\n"; 10417 }); 10418 10419 // Remove duplicates. 10420 array_pod_sort(Terms.begin(), Terms.end()); 10421 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 10422 10423 // Put larger terms first. 10424 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 10425 return numberOfTerms(LHS) > numberOfTerms(RHS); 10426 }); 10427 10428 // Try to divide all terms by the element size. If term is not divisible by 10429 // element size, proceed with the original term. 10430 for (const SCEV *&Term : Terms) { 10431 const SCEV *Q, *R; 10432 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 10433 if (!Q->isZero()) 10434 Term = Q; 10435 } 10436 10437 SmallVector<const SCEV *, 4> NewTerms; 10438 10439 // Remove constant factors. 10440 for (const SCEV *T : Terms) 10441 if (const SCEV *NewT = removeConstantFactors(*this, T)) 10442 NewTerms.push_back(NewT); 10443 10444 DEBUG({ 10445 dbgs() << "Terms after sorting:\n"; 10446 for (const SCEV *T : NewTerms) 10447 dbgs() << *T << "\n"; 10448 }); 10449 10450 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 10451 Sizes.clear(); 10452 return; 10453 } 10454 10455 // The last element to be pushed into Sizes is the size of an element. 10456 Sizes.push_back(ElementSize); 10457 10458 DEBUG({ 10459 dbgs() << "Sizes:\n"; 10460 for (const SCEV *S : Sizes) 10461 dbgs() << *S << "\n"; 10462 }); 10463 } 10464 10465 void ScalarEvolution::computeAccessFunctions( 10466 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 10467 SmallVectorImpl<const SCEV *> &Sizes) { 10468 // Early exit in case this SCEV is not an affine multivariate function. 10469 if (Sizes.empty()) 10470 return; 10471 10472 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 10473 if (!AR->isAffine()) 10474 return; 10475 10476 const SCEV *Res = Expr; 10477 int Last = Sizes.size() - 1; 10478 for (int i = Last; i >= 0; i--) { 10479 const SCEV *Q, *R; 10480 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 10481 10482 DEBUG({ 10483 dbgs() << "Res: " << *Res << "\n"; 10484 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 10485 dbgs() << "Res divided by Sizes[i]:\n"; 10486 dbgs() << "Quotient: " << *Q << "\n"; 10487 dbgs() << "Remainder: " << *R << "\n"; 10488 }); 10489 10490 Res = Q; 10491 10492 // Do not record the last subscript corresponding to the size of elements in 10493 // the array. 10494 if (i == Last) { 10495 10496 // Bail out if the remainder is too complex. 10497 if (isa<SCEVAddRecExpr>(R)) { 10498 Subscripts.clear(); 10499 Sizes.clear(); 10500 return; 10501 } 10502 10503 continue; 10504 } 10505 10506 // Record the access function for the current subscript. 10507 Subscripts.push_back(R); 10508 } 10509 10510 // Also push in last position the remainder of the last division: it will be 10511 // the access function of the innermost dimension. 10512 Subscripts.push_back(Res); 10513 10514 std::reverse(Subscripts.begin(), Subscripts.end()); 10515 10516 DEBUG({ 10517 dbgs() << "Subscripts:\n"; 10518 for (const SCEV *S : Subscripts) 10519 dbgs() << *S << "\n"; 10520 }); 10521 } 10522 10523 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 10524 /// sizes of an array access. Returns the remainder of the delinearization that 10525 /// is the offset start of the array. The SCEV->delinearize algorithm computes 10526 /// the multiples of SCEV coefficients: that is a pattern matching of sub 10527 /// expressions in the stride and base of a SCEV corresponding to the 10528 /// computation of a GCD (greatest common divisor) of base and stride. When 10529 /// SCEV->delinearize fails, it returns the SCEV unchanged. 10530 /// 10531 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 10532 /// 10533 /// void foo(long n, long m, long o, double A[n][m][o]) { 10534 /// 10535 /// for (long i = 0; i < n; i++) 10536 /// for (long j = 0; j < m; j++) 10537 /// for (long k = 0; k < o; k++) 10538 /// A[i][j][k] = 1.0; 10539 /// } 10540 /// 10541 /// the delinearization input is the following AddRec SCEV: 10542 /// 10543 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 10544 /// 10545 /// From this SCEV, we are able to say that the base offset of the access is %A 10546 /// because it appears as an offset that does not divide any of the strides in 10547 /// the loops: 10548 /// 10549 /// CHECK: Base offset: %A 10550 /// 10551 /// and then SCEV->delinearize determines the size of some of the dimensions of 10552 /// the array as these are the multiples by which the strides are happening: 10553 /// 10554 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 10555 /// 10556 /// Note that the outermost dimension remains of UnknownSize because there are 10557 /// no strides that would help identifying the size of the last dimension: when 10558 /// the array has been statically allocated, one could compute the size of that 10559 /// dimension by dividing the overall size of the array by the size of the known 10560 /// dimensions: %m * %o * 8. 10561 /// 10562 /// Finally delinearize provides the access functions for the array reference 10563 /// that does correspond to A[i][j][k] of the above C testcase: 10564 /// 10565 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 10566 /// 10567 /// The testcases are checking the output of a function pass: 10568 /// DelinearizationPass that walks through all loads and stores of a function 10569 /// asking for the SCEV of the memory access with respect to all enclosing 10570 /// loops, calling SCEV->delinearize on that and printing the results. 10571 void ScalarEvolution::delinearize(const SCEV *Expr, 10572 SmallVectorImpl<const SCEV *> &Subscripts, 10573 SmallVectorImpl<const SCEV *> &Sizes, 10574 const SCEV *ElementSize) { 10575 // First step: collect parametric terms. 10576 SmallVector<const SCEV *, 4> Terms; 10577 collectParametricTerms(Expr, Terms); 10578 10579 if (Terms.empty()) 10580 return; 10581 10582 // Second step: find subscript sizes. 10583 findArrayDimensions(Terms, Sizes, ElementSize); 10584 10585 if (Sizes.empty()) 10586 return; 10587 10588 // Third step: compute the access functions for each subscript. 10589 computeAccessFunctions(Expr, Subscripts, Sizes); 10590 10591 if (Subscripts.empty()) 10592 return; 10593 10594 DEBUG({ 10595 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 10596 dbgs() << "ArrayDecl[UnknownSize]"; 10597 for (const SCEV *S : Sizes) 10598 dbgs() << "[" << *S << "]"; 10599 10600 dbgs() << "\nArrayRef"; 10601 for (const SCEV *S : Subscripts) 10602 dbgs() << "[" << *S << "]"; 10603 dbgs() << "\n"; 10604 }); 10605 } 10606 10607 //===----------------------------------------------------------------------===// 10608 // SCEVCallbackVH Class Implementation 10609 //===----------------------------------------------------------------------===// 10610 10611 void ScalarEvolution::SCEVCallbackVH::deleted() { 10612 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 10613 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 10614 SE->ConstantEvolutionLoopExitValue.erase(PN); 10615 SE->eraseValueFromMap(getValPtr()); 10616 // this now dangles! 10617 } 10618 10619 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 10620 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 10621 10622 // Forget all the expressions associated with users of the old value, 10623 // so that future queries will recompute the expressions using the new 10624 // value. 10625 Value *Old = getValPtr(); 10626 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 10627 SmallPtrSet<User *, 8> Visited; 10628 while (!Worklist.empty()) { 10629 User *U = Worklist.pop_back_val(); 10630 // Deleting the Old value will cause this to dangle. Postpone 10631 // that until everything else is done. 10632 if (U == Old) 10633 continue; 10634 if (!Visited.insert(U).second) 10635 continue; 10636 if (PHINode *PN = dyn_cast<PHINode>(U)) 10637 SE->ConstantEvolutionLoopExitValue.erase(PN); 10638 SE->eraseValueFromMap(U); 10639 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 10640 } 10641 // Delete the Old value. 10642 if (PHINode *PN = dyn_cast<PHINode>(Old)) 10643 SE->ConstantEvolutionLoopExitValue.erase(PN); 10644 SE->eraseValueFromMap(Old); 10645 // this now dangles! 10646 } 10647 10648 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 10649 : CallbackVH(V), SE(se) {} 10650 10651 //===----------------------------------------------------------------------===// 10652 // ScalarEvolution Class Implementation 10653 //===----------------------------------------------------------------------===// 10654 10655 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 10656 AssumptionCache &AC, DominatorTree &DT, 10657 LoopInfo &LI) 10658 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 10659 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 10660 LoopDispositions(64), BlockDispositions(64) { 10661 // To use guards for proving predicates, we need to scan every instruction in 10662 // relevant basic blocks, and not just terminators. Doing this is a waste of 10663 // time if the IR does not actually contain any calls to 10664 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 10665 // 10666 // This pessimizes the case where a pass that preserves ScalarEvolution wants 10667 // to _add_ guards to the module when there weren't any before, and wants 10668 // ScalarEvolution to optimize based on those guards. For now we prefer to be 10669 // efficient in lieu of being smart in that rather obscure case. 10670 10671 auto *GuardDecl = F.getParent()->getFunction( 10672 Intrinsic::getName(Intrinsic::experimental_guard)); 10673 HasGuards = GuardDecl && !GuardDecl->use_empty(); 10674 } 10675 10676 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 10677 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 10678 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 10679 ValueExprMap(std::move(Arg.ValueExprMap)), 10680 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 10681 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 10682 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 10683 PredicatedBackedgeTakenCounts( 10684 std::move(Arg.PredicatedBackedgeTakenCounts)), 10685 ExitLimits(std::move(Arg.ExitLimits)), 10686 ConstantEvolutionLoopExitValue( 10687 std::move(Arg.ConstantEvolutionLoopExitValue)), 10688 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 10689 LoopDispositions(std::move(Arg.LoopDispositions)), 10690 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 10691 BlockDispositions(std::move(Arg.BlockDispositions)), 10692 UnsignedRanges(std::move(Arg.UnsignedRanges)), 10693 SignedRanges(std::move(Arg.SignedRanges)), 10694 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 10695 UniquePreds(std::move(Arg.UniquePreds)), 10696 SCEVAllocator(std::move(Arg.SCEVAllocator)), 10697 LoopUsers(std::move(Arg.LoopUsers)), 10698 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 10699 FirstUnknown(Arg.FirstUnknown) { 10700 Arg.FirstUnknown = nullptr; 10701 } 10702 10703 ScalarEvolution::~ScalarEvolution() { 10704 // Iterate through all the SCEVUnknown instances and call their 10705 // destructors, so that they release their references to their values. 10706 for (SCEVUnknown *U = FirstUnknown; U;) { 10707 SCEVUnknown *Tmp = U; 10708 U = U->Next; 10709 Tmp->~SCEVUnknown(); 10710 } 10711 FirstUnknown = nullptr; 10712 10713 ExprValueMap.clear(); 10714 ValueExprMap.clear(); 10715 HasRecMap.clear(); 10716 10717 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 10718 // that a loop had multiple computable exits. 10719 for (auto &BTCI : BackedgeTakenCounts) 10720 BTCI.second.clear(); 10721 for (auto &BTCI : PredicatedBackedgeTakenCounts) 10722 BTCI.second.clear(); 10723 10724 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 10725 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 10726 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 10727 } 10728 10729 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 10730 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 10731 } 10732 10733 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 10734 const Loop *L) { 10735 // Print all inner loops first 10736 for (Loop *I : *L) 10737 PrintLoopInfo(OS, SE, I); 10738 10739 OS << "Loop "; 10740 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10741 OS << ": "; 10742 10743 SmallVector<BasicBlock *, 8> ExitBlocks; 10744 L->getExitBlocks(ExitBlocks); 10745 if (ExitBlocks.size() != 1) 10746 OS << "<multiple exits> "; 10747 10748 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 10749 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 10750 } else { 10751 OS << "Unpredictable backedge-taken count. "; 10752 } 10753 10754 OS << "\n" 10755 "Loop "; 10756 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10757 OS << ": "; 10758 10759 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 10760 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 10761 if (SE->isBackedgeTakenCountMaxOrZero(L)) 10762 OS << ", actual taken count either this or zero."; 10763 } else { 10764 OS << "Unpredictable max backedge-taken count. "; 10765 } 10766 10767 OS << "\n" 10768 "Loop "; 10769 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10770 OS << ": "; 10771 10772 SCEVUnionPredicate Pred; 10773 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 10774 if (!isa<SCEVCouldNotCompute>(PBT)) { 10775 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 10776 OS << " Predicates:\n"; 10777 Pred.print(OS, 4); 10778 } else { 10779 OS << "Unpredictable predicated backedge-taken count. "; 10780 } 10781 OS << "\n"; 10782 10783 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 10784 OS << "Loop "; 10785 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10786 OS << ": "; 10787 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 10788 } 10789 } 10790 10791 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 10792 switch (LD) { 10793 case ScalarEvolution::LoopVariant: 10794 return "Variant"; 10795 case ScalarEvolution::LoopInvariant: 10796 return "Invariant"; 10797 case ScalarEvolution::LoopComputable: 10798 return "Computable"; 10799 } 10800 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 10801 } 10802 10803 void ScalarEvolution::print(raw_ostream &OS) const { 10804 // ScalarEvolution's implementation of the print method is to print 10805 // out SCEV values of all instructions that are interesting. Doing 10806 // this potentially causes it to create new SCEV objects though, 10807 // which technically conflicts with the const qualifier. This isn't 10808 // observable from outside the class though, so casting away the 10809 // const isn't dangerous. 10810 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10811 10812 OS << "Classifying expressions for: "; 10813 F.printAsOperand(OS, /*PrintType=*/false); 10814 OS << "\n"; 10815 for (Instruction &I : instructions(F)) 10816 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 10817 OS << I << '\n'; 10818 OS << " --> "; 10819 const SCEV *SV = SE.getSCEV(&I); 10820 SV->print(OS); 10821 if (!isa<SCEVCouldNotCompute>(SV)) { 10822 OS << " U: "; 10823 SE.getUnsignedRange(SV).print(OS); 10824 OS << " S: "; 10825 SE.getSignedRange(SV).print(OS); 10826 } 10827 10828 const Loop *L = LI.getLoopFor(I.getParent()); 10829 10830 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 10831 if (AtUse != SV) { 10832 OS << " --> "; 10833 AtUse->print(OS); 10834 if (!isa<SCEVCouldNotCompute>(AtUse)) { 10835 OS << " U: "; 10836 SE.getUnsignedRange(AtUse).print(OS); 10837 OS << " S: "; 10838 SE.getSignedRange(AtUse).print(OS); 10839 } 10840 } 10841 10842 if (L) { 10843 OS << "\t\t" "Exits: "; 10844 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 10845 if (!SE.isLoopInvariant(ExitValue, L)) { 10846 OS << "<<Unknown>>"; 10847 } else { 10848 OS << *ExitValue; 10849 } 10850 10851 bool First = true; 10852 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 10853 if (First) { 10854 OS << "\t\t" "LoopDispositions: { "; 10855 First = false; 10856 } else { 10857 OS << ", "; 10858 } 10859 10860 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10861 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 10862 } 10863 10864 for (auto *InnerL : depth_first(L)) { 10865 if (InnerL == L) 10866 continue; 10867 if (First) { 10868 OS << "\t\t" "LoopDispositions: { "; 10869 First = false; 10870 } else { 10871 OS << ", "; 10872 } 10873 10874 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10875 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 10876 } 10877 10878 OS << " }"; 10879 } 10880 10881 OS << "\n"; 10882 } 10883 10884 OS << "Determining loop execution counts for: "; 10885 F.printAsOperand(OS, /*PrintType=*/false); 10886 OS << "\n"; 10887 for (Loop *I : LI) 10888 PrintLoopInfo(OS, &SE, I); 10889 } 10890 10891 ScalarEvolution::LoopDisposition 10892 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 10893 auto &Values = LoopDispositions[S]; 10894 for (auto &V : Values) { 10895 if (V.getPointer() == L) 10896 return V.getInt(); 10897 } 10898 Values.emplace_back(L, LoopVariant); 10899 LoopDisposition D = computeLoopDisposition(S, L); 10900 auto &Values2 = LoopDispositions[S]; 10901 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 10902 if (V.getPointer() == L) { 10903 V.setInt(D); 10904 break; 10905 } 10906 } 10907 return D; 10908 } 10909 10910 ScalarEvolution::LoopDisposition 10911 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 10912 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 10913 case scConstant: 10914 return LoopInvariant; 10915 case scTruncate: 10916 case scZeroExtend: 10917 case scSignExtend: 10918 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 10919 case scAddRecExpr: { 10920 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 10921 10922 // If L is the addrec's loop, it's computable. 10923 if (AR->getLoop() == L) 10924 return LoopComputable; 10925 10926 // Add recurrences are never invariant in the function-body (null loop). 10927 if (!L) 10928 return LoopVariant; 10929 10930 // This recurrence is variant w.r.t. L if L contains AR's loop. 10931 if (L->contains(AR->getLoop())) 10932 return LoopVariant; 10933 10934 // This recurrence is invariant w.r.t. L if AR's loop contains L. 10935 if (AR->getLoop()->contains(L)) 10936 return LoopInvariant; 10937 10938 // This recurrence is variant w.r.t. L if any of its operands 10939 // are variant. 10940 for (auto *Op : AR->operands()) 10941 if (!isLoopInvariant(Op, L)) 10942 return LoopVariant; 10943 10944 // Otherwise it's loop-invariant. 10945 return LoopInvariant; 10946 } 10947 case scAddExpr: 10948 case scMulExpr: 10949 case scUMaxExpr: 10950 case scSMaxExpr: { 10951 bool HasVarying = false; 10952 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 10953 LoopDisposition D = getLoopDisposition(Op, L); 10954 if (D == LoopVariant) 10955 return LoopVariant; 10956 if (D == LoopComputable) 10957 HasVarying = true; 10958 } 10959 return HasVarying ? LoopComputable : LoopInvariant; 10960 } 10961 case scUDivExpr: { 10962 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 10963 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 10964 if (LD == LoopVariant) 10965 return LoopVariant; 10966 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 10967 if (RD == LoopVariant) 10968 return LoopVariant; 10969 return (LD == LoopInvariant && RD == LoopInvariant) ? 10970 LoopInvariant : LoopComputable; 10971 } 10972 case scUnknown: 10973 // All non-instruction values are loop invariant. All instructions are loop 10974 // invariant if they are not contained in the specified loop. 10975 // Instructions are never considered invariant in the function body 10976 // (null loop) because they are defined within the "loop". 10977 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 10978 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 10979 return LoopInvariant; 10980 case scCouldNotCompute: 10981 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10982 } 10983 llvm_unreachable("Unknown SCEV kind!"); 10984 } 10985 10986 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 10987 return getLoopDisposition(S, L) == LoopInvariant; 10988 } 10989 10990 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 10991 return getLoopDisposition(S, L) == LoopComputable; 10992 } 10993 10994 ScalarEvolution::BlockDisposition 10995 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 10996 auto &Values = BlockDispositions[S]; 10997 for (auto &V : Values) { 10998 if (V.getPointer() == BB) 10999 return V.getInt(); 11000 } 11001 Values.emplace_back(BB, DoesNotDominateBlock); 11002 BlockDisposition D = computeBlockDisposition(S, BB); 11003 auto &Values2 = BlockDispositions[S]; 11004 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11005 if (V.getPointer() == BB) { 11006 V.setInt(D); 11007 break; 11008 } 11009 } 11010 return D; 11011 } 11012 11013 ScalarEvolution::BlockDisposition 11014 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11015 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11016 case scConstant: 11017 return ProperlyDominatesBlock; 11018 case scTruncate: 11019 case scZeroExtend: 11020 case scSignExtend: 11021 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11022 case scAddRecExpr: { 11023 // This uses a "dominates" query instead of "properly dominates" query 11024 // to test for proper dominance too, because the instruction which 11025 // produces the addrec's value is a PHI, and a PHI effectively properly 11026 // dominates its entire containing block. 11027 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11028 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11029 return DoesNotDominateBlock; 11030 11031 // Fall through into SCEVNAryExpr handling. 11032 LLVM_FALLTHROUGH; 11033 } 11034 case scAddExpr: 11035 case scMulExpr: 11036 case scUMaxExpr: 11037 case scSMaxExpr: { 11038 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11039 bool Proper = true; 11040 for (const SCEV *NAryOp : NAry->operands()) { 11041 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11042 if (D == DoesNotDominateBlock) 11043 return DoesNotDominateBlock; 11044 if (D == DominatesBlock) 11045 Proper = false; 11046 } 11047 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11048 } 11049 case scUDivExpr: { 11050 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11051 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11052 BlockDisposition LD = getBlockDisposition(LHS, BB); 11053 if (LD == DoesNotDominateBlock) 11054 return DoesNotDominateBlock; 11055 BlockDisposition RD = getBlockDisposition(RHS, BB); 11056 if (RD == DoesNotDominateBlock) 11057 return DoesNotDominateBlock; 11058 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11059 ProperlyDominatesBlock : DominatesBlock; 11060 } 11061 case scUnknown: 11062 if (Instruction *I = 11063 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11064 if (I->getParent() == BB) 11065 return DominatesBlock; 11066 if (DT.properlyDominates(I->getParent(), BB)) 11067 return ProperlyDominatesBlock; 11068 return DoesNotDominateBlock; 11069 } 11070 return ProperlyDominatesBlock; 11071 case scCouldNotCompute: 11072 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11073 } 11074 llvm_unreachable("Unknown SCEV kind!"); 11075 } 11076 11077 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11078 return getBlockDisposition(S, BB) >= DominatesBlock; 11079 } 11080 11081 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11082 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11083 } 11084 11085 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11086 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11087 } 11088 11089 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 11090 auto IsS = [&](const SCEV *X) { return S == X; }; 11091 auto ContainsS = [&](const SCEV *X) { 11092 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 11093 }; 11094 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 11095 } 11096 11097 void 11098 ScalarEvolution::forgetMemoizedResults(const SCEV *S, bool EraseExitLimit) { 11099 ValuesAtScopes.erase(S); 11100 LoopDispositions.erase(S); 11101 BlockDispositions.erase(S); 11102 UnsignedRanges.erase(S); 11103 SignedRanges.erase(S); 11104 ExprValueMap.erase(S); 11105 HasRecMap.erase(S); 11106 MinTrailingZerosCache.erase(S); 11107 11108 for (auto I = PredicatedSCEVRewrites.begin(); 11109 I != PredicatedSCEVRewrites.end();) { 11110 std::pair<const SCEV *, const Loop *> Entry = I->first; 11111 if (Entry.first == S) 11112 PredicatedSCEVRewrites.erase(I++); 11113 else 11114 ++I; 11115 } 11116 11117 auto RemoveSCEVFromBackedgeMap = 11118 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 11119 for (auto I = Map.begin(), E = Map.end(); I != E;) { 11120 BackedgeTakenInfo &BEInfo = I->second; 11121 if (BEInfo.hasOperand(S, this)) { 11122 BEInfo.clear(); 11123 Map.erase(I++); 11124 } else 11125 ++I; 11126 } 11127 }; 11128 11129 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 11130 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 11131 11132 // TODO: There is a suspicion that we only need to do it when there is a 11133 // SCEVUnknown somewhere inside S. Need to check this. 11134 if (EraseExitLimit) 11135 for (auto I = ExitLimits.begin(), E = ExitLimits.end(); I != E; ++I) 11136 if (I->second.hasOperand(S)) 11137 ExitLimits.erase(I); 11138 } 11139 11140 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 11141 struct FindUsedLoops { 11142 SmallPtrSet<const Loop *, 8> LoopsUsed; 11143 bool follow(const SCEV *S) { 11144 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 11145 LoopsUsed.insert(AR->getLoop()); 11146 return true; 11147 } 11148 11149 bool isDone() const { return false; } 11150 }; 11151 11152 FindUsedLoops F; 11153 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 11154 11155 for (auto *L : F.LoopsUsed) 11156 LoopUsers[L].push_back(S); 11157 } 11158 11159 void ScalarEvolution::verify() const { 11160 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11161 ScalarEvolution SE2(F, TLI, AC, DT, LI); 11162 11163 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 11164 11165 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 11166 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 11167 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 11168 11169 const SCEV *visitConstant(const SCEVConstant *Constant) { 11170 return SE.getConstant(Constant->getAPInt()); 11171 } 11172 11173 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11174 return SE.getUnknown(Expr->getValue()); 11175 } 11176 11177 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 11178 return SE.getCouldNotCompute(); 11179 } 11180 }; 11181 11182 SCEVMapper SCM(SE2); 11183 11184 while (!LoopStack.empty()) { 11185 auto *L = LoopStack.pop_back_val(); 11186 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 11187 11188 auto *CurBECount = SCM.visit( 11189 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 11190 auto *NewBECount = SE2.getBackedgeTakenCount(L); 11191 11192 if (CurBECount == SE2.getCouldNotCompute() || 11193 NewBECount == SE2.getCouldNotCompute()) { 11194 // NB! This situation is legal, but is very suspicious -- whatever pass 11195 // change the loop to make a trip count go from could not compute to 11196 // computable or vice-versa *should have* invalidated SCEV. However, we 11197 // choose not to assert here (for now) since we don't want false 11198 // positives. 11199 continue; 11200 } 11201 11202 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 11203 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 11204 // not propagate undef aggressively). This means we can (and do) fail 11205 // verification in cases where a transform makes the trip count of a loop 11206 // go from "undef" to "undef+1" (say). The transform is fine, since in 11207 // both cases the loop iterates "undef" times, but SCEV thinks we 11208 // increased the trip count of the loop by 1 incorrectly. 11209 continue; 11210 } 11211 11212 if (SE.getTypeSizeInBits(CurBECount->getType()) > 11213 SE.getTypeSizeInBits(NewBECount->getType())) 11214 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 11215 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 11216 SE.getTypeSizeInBits(NewBECount->getType())) 11217 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 11218 11219 auto *ConstantDelta = 11220 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount)); 11221 11222 if (ConstantDelta && ConstantDelta->getAPInt() != 0) { 11223 dbgs() << "Trip Count Changed!\n"; 11224 dbgs() << "Old: " << *CurBECount << "\n"; 11225 dbgs() << "New: " << *NewBECount << "\n"; 11226 dbgs() << "Delta: " << *ConstantDelta << "\n"; 11227 std::abort(); 11228 } 11229 } 11230 } 11231 11232 bool ScalarEvolution::invalidate( 11233 Function &F, const PreservedAnalyses &PA, 11234 FunctionAnalysisManager::Invalidator &Inv) { 11235 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 11236 // of its dependencies is invalidated. 11237 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 11238 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 11239 Inv.invalidate<AssumptionAnalysis>(F, PA) || 11240 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 11241 Inv.invalidate<LoopAnalysis>(F, PA); 11242 } 11243 11244 AnalysisKey ScalarEvolutionAnalysis::Key; 11245 11246 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 11247 FunctionAnalysisManager &AM) { 11248 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 11249 AM.getResult<AssumptionAnalysis>(F), 11250 AM.getResult<DominatorTreeAnalysis>(F), 11251 AM.getResult<LoopAnalysis>(F)); 11252 } 11253 11254 PreservedAnalyses 11255 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 11256 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 11257 return PreservedAnalyses::all(); 11258 } 11259 11260 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 11261 "Scalar Evolution Analysis", false, true) 11262 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11263 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 11264 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 11265 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 11266 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 11267 "Scalar Evolution Analysis", false, true) 11268 11269 char ScalarEvolutionWrapperPass::ID = 0; 11270 11271 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 11272 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 11273 } 11274 11275 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 11276 SE.reset(new ScalarEvolution( 11277 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 11278 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 11279 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 11280 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 11281 return false; 11282 } 11283 11284 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 11285 11286 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 11287 SE->print(OS); 11288 } 11289 11290 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 11291 if (!VerifySCEV) 11292 return; 11293 11294 SE->verify(); 11295 } 11296 11297 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 11298 AU.setPreservesAll(); 11299 AU.addRequiredTransitive<AssumptionCacheTracker>(); 11300 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 11301 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 11302 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 11303 } 11304 11305 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 11306 const SCEV *RHS) { 11307 FoldingSetNodeID ID; 11308 assert(LHS->getType() == RHS->getType() && 11309 "Type mismatch between LHS and RHS"); 11310 // Unique this node based on the arguments 11311 ID.AddInteger(SCEVPredicate::P_Equal); 11312 ID.AddPointer(LHS); 11313 ID.AddPointer(RHS); 11314 void *IP = nullptr; 11315 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11316 return S; 11317 SCEVEqualPredicate *Eq = new (SCEVAllocator) 11318 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 11319 UniquePreds.InsertNode(Eq, IP); 11320 return Eq; 11321 } 11322 11323 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 11324 const SCEVAddRecExpr *AR, 11325 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11326 FoldingSetNodeID ID; 11327 // Unique this node based on the arguments 11328 ID.AddInteger(SCEVPredicate::P_Wrap); 11329 ID.AddPointer(AR); 11330 ID.AddInteger(AddedFlags); 11331 void *IP = nullptr; 11332 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11333 return S; 11334 auto *OF = new (SCEVAllocator) 11335 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 11336 UniquePreds.InsertNode(OF, IP); 11337 return OF; 11338 } 11339 11340 namespace { 11341 11342 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 11343 public: 11344 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 11345 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 11346 SCEVUnionPredicate *Pred) 11347 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 11348 11349 /// Rewrites \p S in the context of a loop L and the SCEV predication 11350 /// infrastructure. 11351 /// 11352 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 11353 /// equivalences present in \p Pred. 11354 /// 11355 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 11356 /// \p NewPreds such that the result will be an AddRecExpr. 11357 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 11358 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 11359 SCEVUnionPredicate *Pred) { 11360 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 11361 return Rewriter.visit(S); 11362 } 11363 11364 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11365 if (Pred) { 11366 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 11367 for (auto *Pred : ExprPreds) 11368 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 11369 if (IPred->getLHS() == Expr) 11370 return IPred->getRHS(); 11371 } 11372 return convertToAddRecWithPreds(Expr); 11373 } 11374 11375 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 11376 const SCEV *Operand = visit(Expr->getOperand()); 11377 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 11378 if (AR && AR->getLoop() == L && AR->isAffine()) { 11379 // This couldn't be folded because the operand didn't have the nuw 11380 // flag. Add the nusw flag as an assumption that we could make. 11381 const SCEV *Step = AR->getStepRecurrence(SE); 11382 Type *Ty = Expr->getType(); 11383 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 11384 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 11385 SE.getSignExtendExpr(Step, Ty), L, 11386 AR->getNoWrapFlags()); 11387 } 11388 return SE.getZeroExtendExpr(Operand, Expr->getType()); 11389 } 11390 11391 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 11392 const SCEV *Operand = visit(Expr->getOperand()); 11393 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 11394 if (AR && AR->getLoop() == L && AR->isAffine()) { 11395 // This couldn't be folded because the operand didn't have the nsw 11396 // flag. Add the nssw flag as an assumption that we could make. 11397 const SCEV *Step = AR->getStepRecurrence(SE); 11398 Type *Ty = Expr->getType(); 11399 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 11400 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 11401 SE.getSignExtendExpr(Step, Ty), L, 11402 AR->getNoWrapFlags()); 11403 } 11404 return SE.getSignExtendExpr(Operand, Expr->getType()); 11405 } 11406 11407 private: 11408 bool addOverflowAssumption(const SCEVPredicate *P) { 11409 if (!NewPreds) { 11410 // Check if we've already made this assumption. 11411 return Pred && Pred->implies(P); 11412 } 11413 NewPreds->insert(P); 11414 return true; 11415 } 11416 11417 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 11418 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11419 auto *A = SE.getWrapPredicate(AR, AddedFlags); 11420 return addOverflowAssumption(A); 11421 } 11422 11423 // If \p Expr represents a PHINode, we try to see if it can be represented 11424 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 11425 // to add this predicate as a runtime overflow check, we return the AddRec. 11426 // If \p Expr does not meet these conditions (is not a PHI node, or we 11427 // couldn't create an AddRec for it, or couldn't add the predicate), we just 11428 // return \p Expr. 11429 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 11430 if (!isa<PHINode>(Expr->getValue())) 11431 return Expr; 11432 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 11433 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 11434 if (!PredicatedRewrite) 11435 return Expr; 11436 for (auto *P : PredicatedRewrite->second){ 11437 if (!addOverflowAssumption(P)) 11438 return Expr; 11439 } 11440 return PredicatedRewrite->first; 11441 } 11442 11443 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 11444 SCEVUnionPredicate *Pred; 11445 const Loop *L; 11446 }; 11447 11448 } // end anonymous namespace 11449 11450 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 11451 SCEVUnionPredicate &Preds) { 11452 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 11453 } 11454 11455 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 11456 const SCEV *S, const Loop *L, 11457 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 11458 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 11459 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 11460 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 11461 11462 if (!AddRec) 11463 return nullptr; 11464 11465 // Since the transformation was successful, we can now transfer the SCEV 11466 // predicates. 11467 for (auto *P : TransformPreds) 11468 Preds.insert(P); 11469 11470 return AddRec; 11471 } 11472 11473 /// SCEV predicates 11474 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 11475 SCEVPredicateKind Kind) 11476 : FastID(ID), Kind(Kind) {} 11477 11478 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 11479 const SCEV *LHS, const SCEV *RHS) 11480 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 11481 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 11482 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 11483 } 11484 11485 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 11486 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 11487 11488 if (!Op) 11489 return false; 11490 11491 return Op->LHS == LHS && Op->RHS == RHS; 11492 } 11493 11494 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 11495 11496 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 11497 11498 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 11499 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 11500 } 11501 11502 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 11503 const SCEVAddRecExpr *AR, 11504 IncrementWrapFlags Flags) 11505 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 11506 11507 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 11508 11509 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 11510 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 11511 11512 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 11513 } 11514 11515 bool SCEVWrapPredicate::isAlwaysTrue() const { 11516 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 11517 IncrementWrapFlags IFlags = Flags; 11518 11519 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 11520 IFlags = clearFlags(IFlags, IncrementNSSW); 11521 11522 return IFlags == IncrementAnyWrap; 11523 } 11524 11525 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 11526 OS.indent(Depth) << *getExpr() << " Added Flags: "; 11527 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 11528 OS << "<nusw>"; 11529 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 11530 OS << "<nssw>"; 11531 OS << "\n"; 11532 } 11533 11534 SCEVWrapPredicate::IncrementWrapFlags 11535 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 11536 ScalarEvolution &SE) { 11537 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 11538 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 11539 11540 // We can safely transfer the NSW flag as NSSW. 11541 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 11542 ImpliedFlags = IncrementNSSW; 11543 11544 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 11545 // If the increment is positive, the SCEV NUW flag will also imply the 11546 // WrapPredicate NUSW flag. 11547 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 11548 if (Step->getValue()->getValue().isNonNegative()) 11549 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 11550 } 11551 11552 return ImpliedFlags; 11553 } 11554 11555 /// Union predicates don't get cached so create a dummy set ID for it. 11556 SCEVUnionPredicate::SCEVUnionPredicate() 11557 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 11558 11559 bool SCEVUnionPredicate::isAlwaysTrue() const { 11560 return all_of(Preds, 11561 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 11562 } 11563 11564 ArrayRef<const SCEVPredicate *> 11565 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 11566 auto I = SCEVToPreds.find(Expr); 11567 if (I == SCEVToPreds.end()) 11568 return ArrayRef<const SCEVPredicate *>(); 11569 return I->second; 11570 } 11571 11572 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 11573 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 11574 return all_of(Set->Preds, 11575 [this](const SCEVPredicate *I) { return this->implies(I); }); 11576 11577 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 11578 if (ScevPredsIt == SCEVToPreds.end()) 11579 return false; 11580 auto &SCEVPreds = ScevPredsIt->second; 11581 11582 return any_of(SCEVPreds, 11583 [N](const SCEVPredicate *I) { return I->implies(N); }); 11584 } 11585 11586 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 11587 11588 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 11589 for (auto Pred : Preds) 11590 Pred->print(OS, Depth); 11591 } 11592 11593 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 11594 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 11595 for (auto Pred : Set->Preds) 11596 add(Pred); 11597 return; 11598 } 11599 11600 if (implies(N)) 11601 return; 11602 11603 const SCEV *Key = N->getExpr(); 11604 assert(Key && "Only SCEVUnionPredicate doesn't have an " 11605 " associated expression!"); 11606 11607 SCEVToPreds[Key].push_back(N); 11608 Preds.push_back(N); 11609 } 11610 11611 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 11612 Loop &L) 11613 : SE(SE), L(L) {} 11614 11615 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 11616 const SCEV *Expr = SE.getSCEV(V); 11617 RewriteEntry &Entry = RewriteMap[Expr]; 11618 11619 // If we already have an entry and the version matches, return it. 11620 if (Entry.second && Generation == Entry.first) 11621 return Entry.second; 11622 11623 // We found an entry but it's stale. Rewrite the stale entry 11624 // according to the current predicate. 11625 if (Entry.second) 11626 Expr = Entry.second; 11627 11628 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 11629 Entry = {Generation, NewSCEV}; 11630 11631 return NewSCEV; 11632 } 11633 11634 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 11635 if (!BackedgeCount) { 11636 SCEVUnionPredicate BackedgePred; 11637 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 11638 addPredicate(BackedgePred); 11639 } 11640 return BackedgeCount; 11641 } 11642 11643 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 11644 if (Preds.implies(&Pred)) 11645 return; 11646 Preds.add(&Pred); 11647 updateGeneration(); 11648 } 11649 11650 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 11651 return Preds; 11652 } 11653 11654 void PredicatedScalarEvolution::updateGeneration() { 11655 // If the generation number wrapped recompute everything. 11656 if (++Generation == 0) { 11657 for (auto &II : RewriteMap) { 11658 const SCEV *Rewritten = II.second.second; 11659 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 11660 } 11661 } 11662 } 11663 11664 void PredicatedScalarEvolution::setNoOverflow( 11665 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 11666 const SCEV *Expr = getSCEV(V); 11667 const auto *AR = cast<SCEVAddRecExpr>(Expr); 11668 11669 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 11670 11671 // Clear the statically implied flags. 11672 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 11673 addPredicate(*SE.getWrapPredicate(AR, Flags)); 11674 11675 auto II = FlagsMap.insert({V, Flags}); 11676 if (!II.second) 11677 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 11678 } 11679 11680 bool PredicatedScalarEvolution::hasNoOverflow( 11681 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 11682 const SCEV *Expr = getSCEV(V); 11683 const auto *AR = cast<SCEVAddRecExpr>(Expr); 11684 11685 Flags = SCEVWrapPredicate::clearFlags( 11686 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 11687 11688 auto II = FlagsMap.find(V); 11689 11690 if (II != FlagsMap.end()) 11691 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 11692 11693 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 11694 } 11695 11696 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 11697 const SCEV *Expr = this->getSCEV(V); 11698 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 11699 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 11700 11701 if (!New) 11702 return nullptr; 11703 11704 for (auto *P : NewPreds) 11705 Preds.add(P); 11706 11707 updateGeneration(); 11708 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 11709 return New; 11710 } 11711 11712 PredicatedScalarEvolution::PredicatedScalarEvolution( 11713 const PredicatedScalarEvolution &Init) 11714 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 11715 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 11716 for (const auto &I : Init.FlagsMap) 11717 FlagsMap.insert(I); 11718 } 11719 11720 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 11721 // For each block. 11722 for (auto *BB : L.getBlocks()) 11723 for (auto &I : *BB) { 11724 if (!SE.isSCEVable(I.getType())) 11725 continue; 11726 11727 auto *Expr = SE.getSCEV(&I); 11728 auto II = RewriteMap.find(Expr); 11729 11730 if (II == RewriteMap.end()) 11731 continue; 11732 11733 // Don't print things that are not interesting. 11734 if (II->second.second == Expr) 11735 continue; 11736 11737 OS.indent(Depth) << "[PSE]" << I << ":\n"; 11738 OS.indent(Depth + 2) << *Expr << "\n"; 11739 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 11740 } 11741 } 11742