1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::ZeroOrMore, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 159 static cl::opt<bool> VerifySCEV( 160 "verify-scev", cl::Hidden, 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 static cl::opt<bool> UseExpensiveRangeSharpening( 230 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 231 cl::init(false), 232 cl::desc("Use more powerful methods of sharpening expression ranges. May " 233 "be costly in terms of compile time")); 234 235 //===----------------------------------------------------------------------===// 236 // SCEV class definitions 237 //===----------------------------------------------------------------------===// 238 239 //===----------------------------------------------------------------------===// 240 // Implementation of the SCEV class. 241 // 242 243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 244 LLVM_DUMP_METHOD void SCEV::dump() const { 245 print(dbgs()); 246 dbgs() << '\n'; 247 } 248 #endif 249 250 void SCEV::print(raw_ostream &OS) const { 251 switch (getSCEVType()) { 252 case scConstant: 253 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 254 return; 255 case scPtrToInt: { 256 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 257 const SCEV *Op = PtrToInt->getOperand(); 258 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 259 << *PtrToInt->getType() << ")"; 260 return; 261 } 262 case scTruncate: { 263 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 264 const SCEV *Op = Trunc->getOperand(); 265 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 266 << *Trunc->getType() << ")"; 267 return; 268 } 269 case scZeroExtend: { 270 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 271 const SCEV *Op = ZExt->getOperand(); 272 OS << "(zext " << *Op->getType() << " " << *Op << " to " 273 << *ZExt->getType() << ")"; 274 return; 275 } 276 case scSignExtend: { 277 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 278 const SCEV *Op = SExt->getOperand(); 279 OS << "(sext " << *Op->getType() << " " << *Op << " to " 280 << *SExt->getType() << ")"; 281 return; 282 } 283 case scAddRecExpr: { 284 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 285 OS << "{" << *AR->getOperand(0); 286 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 287 OS << ",+," << *AR->getOperand(i); 288 OS << "}<"; 289 if (AR->hasNoUnsignedWrap()) 290 OS << "nuw><"; 291 if (AR->hasNoSignedWrap()) 292 OS << "nsw><"; 293 if (AR->hasNoSelfWrap() && 294 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 295 OS << "nw><"; 296 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 297 OS << ">"; 298 return; 299 } 300 case scAddExpr: 301 case scMulExpr: 302 case scUMaxExpr: 303 case scSMaxExpr: 304 case scUMinExpr: 305 case scSMinExpr: { 306 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 307 const char *OpStr = nullptr; 308 switch (NAry->getSCEVType()) { 309 case scAddExpr: OpStr = " + "; break; 310 case scMulExpr: OpStr = " * "; break; 311 case scUMaxExpr: OpStr = " umax "; break; 312 case scSMaxExpr: OpStr = " smax "; break; 313 case scUMinExpr: 314 OpStr = " umin "; 315 break; 316 case scSMinExpr: 317 OpStr = " smin "; 318 break; 319 default: 320 llvm_unreachable("There are no other nary expression types."); 321 } 322 OS << "("; 323 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 324 I != E; ++I) { 325 OS << **I; 326 if (std::next(I) != E) 327 OS << OpStr; 328 } 329 OS << ")"; 330 switch (NAry->getSCEVType()) { 331 case scAddExpr: 332 case scMulExpr: 333 if (NAry->hasNoUnsignedWrap()) 334 OS << "<nuw>"; 335 if (NAry->hasNoSignedWrap()) 336 OS << "<nsw>"; 337 break; 338 default: 339 // Nothing to print for other nary expressions. 340 break; 341 } 342 return; 343 } 344 case scUDivExpr: { 345 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 346 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 347 return; 348 } 349 case scUnknown: { 350 const SCEVUnknown *U = cast<SCEVUnknown>(this); 351 Type *AllocTy; 352 if (U->isSizeOf(AllocTy)) { 353 OS << "sizeof(" << *AllocTy << ")"; 354 return; 355 } 356 if (U->isAlignOf(AllocTy)) { 357 OS << "alignof(" << *AllocTy << ")"; 358 return; 359 } 360 361 Type *CTy; 362 Constant *FieldNo; 363 if (U->isOffsetOf(CTy, FieldNo)) { 364 OS << "offsetof(" << *CTy << ", "; 365 FieldNo->printAsOperand(OS, false); 366 OS << ")"; 367 return; 368 } 369 370 // Otherwise just print it normally. 371 U->getValue()->printAsOperand(OS, false); 372 return; 373 } 374 case scCouldNotCompute: 375 OS << "***COULDNOTCOMPUTE***"; 376 return; 377 } 378 llvm_unreachable("Unknown SCEV kind!"); 379 } 380 381 Type *SCEV::getType() const { 382 switch (getSCEVType()) { 383 case scConstant: 384 return cast<SCEVConstant>(this)->getType(); 385 case scPtrToInt: 386 case scTruncate: 387 case scZeroExtend: 388 case scSignExtend: 389 return cast<SCEVCastExpr>(this)->getType(); 390 case scAddRecExpr: 391 case scMulExpr: 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVNAryExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 537 ->getElementType(); 538 return true; 539 } 540 541 return false; 542 } 543 544 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 546 if (VCE->getOpcode() == Instruction::PtrToInt) 547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 548 if (CE->getOpcode() == Instruction::GetElementPtr && 549 CE->getOperand(0)->isNullValue()) { 550 Type *Ty = 551 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 552 if (StructType *STy = dyn_cast<StructType>(Ty)) 553 if (!STy->isPacked() && 554 CE->getNumOperands() == 3 && 555 CE->getOperand(1)->isNullValue()) { 556 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 557 if (CI->isOne() && 558 STy->getNumElements() == 2 && 559 STy->getElementType(0)->isIntegerTy(1)) { 560 AllocTy = STy->getElementType(1); 561 return true; 562 } 563 } 564 } 565 566 return false; 567 } 568 569 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 570 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 571 if (VCE->getOpcode() == Instruction::PtrToInt) 572 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 573 if (CE->getOpcode() == Instruction::GetElementPtr && 574 CE->getNumOperands() == 3 && 575 CE->getOperand(0)->isNullValue() && 576 CE->getOperand(1)->isNullValue()) { 577 Type *Ty = 578 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 579 // Ignore vector types here so that ScalarEvolutionExpander doesn't 580 // emit getelementptrs that index into vectors. 581 if (Ty->isStructTy() || Ty->isArrayTy()) { 582 CTy = Ty; 583 FieldNo = CE->getOperand(2); 584 return true; 585 } 586 } 587 588 return false; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SCEV Utilities 593 //===----------------------------------------------------------------------===// 594 595 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 596 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 597 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 598 /// have been previously deemed to be "equally complex" by this routine. It is 599 /// intended to avoid exponential time complexity in cases like: 600 /// 601 /// %a = f(%x, %y) 602 /// %b = f(%a, %a) 603 /// %c = f(%b, %b) 604 /// 605 /// %d = f(%x, %y) 606 /// %e = f(%d, %d) 607 /// %f = f(%e, %e) 608 /// 609 /// CompareValueComplexity(%f, %c) 610 /// 611 /// Since we do not continue running this routine on expression trees once we 612 /// have seen unequal values, there is no need to track them in the cache. 613 static int 614 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 615 const LoopInfo *const LI, Value *LV, Value *RV, 616 unsigned Depth) { 617 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 618 return 0; 619 620 // Order pointer values after integer values. This helps SCEVExpander form 621 // GEPs. 622 bool LIsPointer = LV->getType()->isPointerTy(), 623 RIsPointer = RV->getType()->isPointerTy(); 624 if (LIsPointer != RIsPointer) 625 return (int)LIsPointer - (int)RIsPointer; 626 627 // Compare getValueID values. 628 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 629 if (LID != RID) 630 return (int)LID - (int)RID; 631 632 // Sort arguments by their position. 633 if (const auto *LA = dyn_cast<Argument>(LV)) { 634 const auto *RA = cast<Argument>(RV); 635 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 636 return (int)LArgNo - (int)RArgNo; 637 } 638 639 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 640 const auto *RGV = cast<GlobalValue>(RV); 641 642 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 643 auto LT = GV->getLinkage(); 644 return !(GlobalValue::isPrivateLinkage(LT) || 645 GlobalValue::isInternalLinkage(LT)); 646 }; 647 648 // Use the names to distinguish the two values, but only if the 649 // names are semantically important. 650 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 651 return LGV->getName().compare(RGV->getName()); 652 } 653 654 // For instructions, compare their loop depth, and their operand count. This 655 // is pretty loose. 656 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 657 const auto *RInst = cast<Instruction>(RV); 658 659 // Compare loop depths. 660 const BasicBlock *LParent = LInst->getParent(), 661 *RParent = RInst->getParent(); 662 if (LParent != RParent) { 663 unsigned LDepth = LI->getLoopDepth(LParent), 664 RDepth = LI->getLoopDepth(RParent); 665 if (LDepth != RDepth) 666 return (int)LDepth - (int)RDepth; 667 } 668 669 // Compare the number of operands. 670 unsigned LNumOps = LInst->getNumOperands(), 671 RNumOps = RInst->getNumOperands(); 672 if (LNumOps != RNumOps) 673 return (int)LNumOps - (int)RNumOps; 674 675 for (unsigned Idx : seq(0u, LNumOps)) { 676 int Result = 677 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 678 RInst->getOperand(Idx), Depth + 1); 679 if (Result != 0) 680 return Result; 681 } 682 } 683 684 EqCacheValue.unionSets(LV, RV); 685 return 0; 686 } 687 688 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 689 // than RHS, respectively. A three-way result allows recursive comparisons to be 690 // more efficient. 691 static int CompareSCEVComplexity( 692 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 693 EquivalenceClasses<const Value *> &EqCacheValue, 694 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 695 DominatorTree &DT, unsigned Depth = 0) { 696 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 697 if (LHS == RHS) 698 return 0; 699 700 // Primarily, sort the SCEVs by their getSCEVType(). 701 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 702 if (LType != RType) 703 return (int)LType - (int)RType; 704 705 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 706 return 0; 707 // Aside from the getSCEVType() ordering, the particular ordering 708 // isn't very important except that it's beneficial to be consistent, 709 // so that (a + b) and (b + a) don't end up as different expressions. 710 switch (LType) { 711 case scUnknown: { 712 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 713 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 714 715 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 716 RU->getValue(), Depth + 1); 717 if (X == 0) 718 EqCacheSCEV.unionSets(LHS, RHS); 719 return X; 720 } 721 722 case scConstant: { 723 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 724 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 725 726 // Compare constant values. 727 const APInt &LA = LC->getAPInt(); 728 const APInt &RA = RC->getAPInt(); 729 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 730 if (LBitWidth != RBitWidth) 731 return (int)LBitWidth - (int)RBitWidth; 732 return LA.ult(RA) ? -1 : 1; 733 } 734 735 case scAddRecExpr: { 736 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 737 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 738 739 // There is always a dominance between two recs that are used by one SCEV, 740 // so we can safely sort recs by loop header dominance. We require such 741 // order in getAddExpr. 742 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 743 if (LLoop != RLoop) { 744 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 745 assert(LHead != RHead && "Two loops share the same header?"); 746 if (DT.dominates(LHead, RHead)) 747 return 1; 748 else 749 assert(DT.dominates(RHead, LHead) && 750 "No dominance between recurrences used by one SCEV?"); 751 return -1; 752 } 753 754 // Addrec complexity grows with operand count. 755 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 756 if (LNumOps != RNumOps) 757 return (int)LNumOps - (int)RNumOps; 758 759 // Lexicographically compare. 760 for (unsigned i = 0; i != LNumOps; ++i) { 761 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 762 LA->getOperand(i), RA->getOperand(i), DT, 763 Depth + 1); 764 if (X != 0) 765 return X; 766 } 767 EqCacheSCEV.unionSets(LHS, RHS); 768 return 0; 769 } 770 771 case scAddExpr: 772 case scMulExpr: 773 case scSMaxExpr: 774 case scUMaxExpr: 775 case scSMinExpr: 776 case scUMinExpr: { 777 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 778 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 779 780 // Lexicographically compare n-ary expressions. 781 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 782 if (LNumOps != RNumOps) 783 return (int)LNumOps - (int)RNumOps; 784 785 for (unsigned i = 0; i != LNumOps; ++i) { 786 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 787 LC->getOperand(i), RC->getOperand(i), DT, 788 Depth + 1); 789 if (X != 0) 790 return X; 791 } 792 EqCacheSCEV.unionSets(LHS, RHS); 793 return 0; 794 } 795 796 case scUDivExpr: { 797 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 798 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 799 800 // Lexicographically compare udiv expressions. 801 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 802 RC->getLHS(), DT, Depth + 1); 803 if (X != 0) 804 return X; 805 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 806 RC->getRHS(), DT, Depth + 1); 807 if (X == 0) 808 EqCacheSCEV.unionSets(LHS, RHS); 809 return X; 810 } 811 812 case scPtrToInt: 813 case scTruncate: 814 case scZeroExtend: 815 case scSignExtend: { 816 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 817 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 818 819 // Compare cast expressions by operand. 820 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 821 LC->getOperand(), RC->getOperand(), DT, 822 Depth + 1); 823 if (X == 0) 824 EqCacheSCEV.unionSets(LHS, RHS); 825 return X; 826 } 827 828 case scCouldNotCompute: 829 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 830 } 831 llvm_unreachable("Unknown SCEV kind!"); 832 } 833 834 /// Given a list of SCEV objects, order them by their complexity, and group 835 /// objects of the same complexity together by value. When this routine is 836 /// finished, we know that any duplicates in the vector are consecutive and that 837 /// complexity is monotonically increasing. 838 /// 839 /// Note that we go take special precautions to ensure that we get deterministic 840 /// results from this routine. In other words, we don't want the results of 841 /// this to depend on where the addresses of various SCEV objects happened to 842 /// land in memory. 843 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 844 LoopInfo *LI, DominatorTree &DT) { 845 if (Ops.size() < 2) return; // Noop 846 847 EquivalenceClasses<const SCEV *> EqCacheSCEV; 848 EquivalenceClasses<const Value *> EqCacheValue; 849 if (Ops.size() == 2) { 850 // This is the common case, which also happens to be trivially simple. 851 // Special case it. 852 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 853 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 854 std::swap(LHS, RHS); 855 return; 856 } 857 858 // Do the rough sort by complexity. 859 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 860 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < 861 0; 862 }); 863 864 // Now that we are sorted by complexity, group elements of the same 865 // complexity. Note that this is, at worst, N^2, but the vector is likely to 866 // be extremely short in practice. Note that we take this approach because we 867 // do not want to depend on the addresses of the objects we are grouping. 868 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 869 const SCEV *S = Ops[i]; 870 unsigned Complexity = S->getSCEVType(); 871 872 // If there are any objects of the same complexity and same value as this 873 // one, group them. 874 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 875 if (Ops[j] == S) { // Found a duplicate. 876 // Move it to immediately after i'th element. 877 std::swap(Ops[i+1], Ops[j]); 878 ++i; // no need to rescan it. 879 if (i == e-2) return; // Done! 880 } 881 } 882 } 883 } 884 885 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 886 /// least HugeExprThreshold nodes). 887 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 888 return any_of(Ops, [](const SCEV *S) { 889 return S->getExpressionSize() >= HugeExprThreshold; 890 }); 891 } 892 893 //===----------------------------------------------------------------------===// 894 // Simple SCEV method implementations 895 //===----------------------------------------------------------------------===// 896 897 /// Compute BC(It, K). The result has width W. Assume, K > 0. 898 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 899 ScalarEvolution &SE, 900 Type *ResultTy) { 901 // Handle the simplest case efficiently. 902 if (K == 1) 903 return SE.getTruncateOrZeroExtend(It, ResultTy); 904 905 // We are using the following formula for BC(It, K): 906 // 907 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 908 // 909 // Suppose, W is the bitwidth of the return value. We must be prepared for 910 // overflow. Hence, we must assure that the result of our computation is 911 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 912 // safe in modular arithmetic. 913 // 914 // However, this code doesn't use exactly that formula; the formula it uses 915 // is something like the following, where T is the number of factors of 2 in 916 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 917 // exponentiation: 918 // 919 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 920 // 921 // This formula is trivially equivalent to the previous formula. However, 922 // this formula can be implemented much more efficiently. The trick is that 923 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 924 // arithmetic. To do exact division in modular arithmetic, all we have 925 // to do is multiply by the inverse. Therefore, this step can be done at 926 // width W. 927 // 928 // The next issue is how to safely do the division by 2^T. The way this 929 // is done is by doing the multiplication step at a width of at least W + T 930 // bits. This way, the bottom W+T bits of the product are accurate. Then, 931 // when we perform the division by 2^T (which is equivalent to a right shift 932 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 933 // truncated out after the division by 2^T. 934 // 935 // In comparison to just directly using the first formula, this technique 936 // is much more efficient; using the first formula requires W * K bits, 937 // but this formula less than W + K bits. Also, the first formula requires 938 // a division step, whereas this formula only requires multiplies and shifts. 939 // 940 // It doesn't matter whether the subtraction step is done in the calculation 941 // width or the input iteration count's width; if the subtraction overflows, 942 // the result must be zero anyway. We prefer here to do it in the width of 943 // the induction variable because it helps a lot for certain cases; CodeGen 944 // isn't smart enough to ignore the overflow, which leads to much less 945 // efficient code if the width of the subtraction is wider than the native 946 // register width. 947 // 948 // (It's possible to not widen at all by pulling out factors of 2 before 949 // the multiplication; for example, K=2 can be calculated as 950 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 951 // extra arithmetic, so it's not an obvious win, and it gets 952 // much more complicated for K > 3.) 953 954 // Protection from insane SCEVs; this bound is conservative, 955 // but it probably doesn't matter. 956 if (K > 1000) 957 return SE.getCouldNotCompute(); 958 959 unsigned W = SE.getTypeSizeInBits(ResultTy); 960 961 // Calculate K! / 2^T and T; we divide out the factors of two before 962 // multiplying for calculating K! / 2^T to avoid overflow. 963 // Other overflow doesn't matter because we only care about the bottom 964 // W bits of the result. 965 APInt OddFactorial(W, 1); 966 unsigned T = 1; 967 for (unsigned i = 3; i <= K; ++i) { 968 APInt Mult(W, i); 969 unsigned TwoFactors = Mult.countTrailingZeros(); 970 T += TwoFactors; 971 Mult.lshrInPlace(TwoFactors); 972 OddFactorial *= Mult; 973 } 974 975 // We need at least W + T bits for the multiplication step 976 unsigned CalculationBits = W + T; 977 978 // Calculate 2^T, at width T+W. 979 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 980 981 // Calculate the multiplicative inverse of K! / 2^T; 982 // this multiplication factor will perform the exact division by 983 // K! / 2^T. 984 APInt Mod = APInt::getSignedMinValue(W+1); 985 APInt MultiplyFactor = OddFactorial.zext(W+1); 986 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 987 MultiplyFactor = MultiplyFactor.trunc(W); 988 989 // Calculate the product, at width T+W 990 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 991 CalculationBits); 992 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 993 for (unsigned i = 1; i != K; ++i) { 994 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 995 Dividend = SE.getMulExpr(Dividend, 996 SE.getTruncateOrZeroExtend(S, CalculationTy)); 997 } 998 999 // Divide by 2^T 1000 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1001 1002 // Truncate the result, and divide by K! / 2^T. 1003 1004 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1005 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1006 } 1007 1008 /// Return the value of this chain of recurrences at the specified iteration 1009 /// number. We can evaluate this recurrence by multiplying each element in the 1010 /// chain by the binomial coefficient corresponding to it. In other words, we 1011 /// can evaluate {A,+,B,+,C,+,D} as: 1012 /// 1013 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1014 /// 1015 /// where BC(It, k) stands for binomial coefficient. 1016 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1017 ScalarEvolution &SE) const { 1018 const SCEV *Result = getStart(); 1019 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1020 // The computation is correct in the face of overflow provided that the 1021 // multiplication is performed _after_ the evaluation of the binomial 1022 // coefficient. 1023 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1024 if (isa<SCEVCouldNotCompute>(Coeff)) 1025 return Coeff; 1026 1027 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1028 } 1029 return Result; 1030 } 1031 1032 //===----------------------------------------------------------------------===// 1033 // SCEV Expression folder implementations 1034 //===----------------------------------------------------------------------===// 1035 1036 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty, 1037 unsigned Depth) { 1038 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1039 assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once."); 1040 1041 // We could be called with an integer-typed operands during SCEV rewrites. 1042 // Since the operand is an integer already, just perform zext/trunc/self cast. 1043 if (!Op->getType()->isPointerTy()) 1044 return getTruncateOrZeroExtend(Op, Ty); 1045 1046 // What would be an ID for such a SCEV cast expression? 1047 FoldingSetNodeID ID; 1048 ID.AddInteger(scPtrToInt); 1049 ID.AddPointer(Op); 1050 1051 void *IP = nullptr; 1052 1053 // Is there already an expression for such a cast? 1054 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1055 return getTruncateOrZeroExtend(S, Ty); 1056 1057 // If not, is this expression something we can't reduce any further? 1058 if (isa<SCEVUnknown>(Op)) { 1059 // Create an explicit cast node. 1060 // We can reuse the existing insert position since if we get here, 1061 // we won't have made any changes which would invalidate it. 1062 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1063 assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType( 1064 Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) && 1065 "We can only model ptrtoint if SCEV's effective (integer) type is " 1066 "sufficiently wide to represent all possible pointer values."); 1067 SCEV *S = new (SCEVAllocator) 1068 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1069 UniqueSCEVs.InsertNode(S, IP); 1070 addToLoopUseLists(S); 1071 return getTruncateOrZeroExtend(S, Ty); 1072 } 1073 1074 assert(Depth == 0 && 1075 "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's."); 1076 1077 // Otherwise, we've got some expression that is more complex than just a 1078 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1079 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1080 // only, and the expressions must otherwise be integer-typed. 1081 // So sink the cast down to the SCEVUnknown's. 1082 1083 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1084 /// which computes a pointer-typed value, and rewrites the whole expression 1085 /// tree so that *all* the computations are done on integers, and the only 1086 /// pointer-typed operands in the expression are SCEVUnknown. 1087 class SCEVPtrToIntSinkingRewriter 1088 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1089 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1090 1091 public: 1092 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1093 1094 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1095 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1096 return Rewriter.visit(Scev); 1097 } 1098 1099 const SCEV *visit(const SCEV *S) { 1100 Type *STy = S->getType(); 1101 // If the expression is not pointer-typed, just keep it as-is. 1102 if (!STy->isPointerTy()) 1103 return S; 1104 // Else, recursively sink the cast down into it. 1105 return Base::visit(S); 1106 } 1107 1108 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1109 SmallVector<const SCEV *, 2> Operands; 1110 bool Changed = false; 1111 for (auto *Op : Expr->operands()) { 1112 Operands.push_back(visit(Op)); 1113 Changed |= Op != Operands.back(); 1114 } 1115 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1116 } 1117 1118 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1119 SmallVector<const SCEV *, 2> Operands; 1120 bool Changed = false; 1121 for (auto *Op : Expr->operands()) { 1122 Operands.push_back(visit(Op)); 1123 Changed |= Op != Operands.back(); 1124 } 1125 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1126 } 1127 1128 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1129 Type *ExprPtrTy = Expr->getType(); 1130 assert(ExprPtrTy->isPointerTy() && 1131 "Should only reach pointer-typed SCEVUnknown's."); 1132 Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy); 1133 return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1); 1134 } 1135 }; 1136 1137 // And actually perform the cast sinking. 1138 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1139 assert(IntOp->getType()->isIntegerTy() && 1140 "We must have succeeded in sinking the cast, " 1141 "and ending up with an integer-typed expression!"); 1142 return getTruncateOrZeroExtend(IntOp, Ty); 1143 } 1144 1145 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1146 unsigned Depth) { 1147 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1148 "This is not a truncating conversion!"); 1149 assert(isSCEVable(Ty) && 1150 "This is not a conversion to a SCEVable type!"); 1151 Ty = getEffectiveSCEVType(Ty); 1152 1153 FoldingSetNodeID ID; 1154 ID.AddInteger(scTruncate); 1155 ID.AddPointer(Op); 1156 ID.AddPointer(Ty); 1157 void *IP = nullptr; 1158 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1159 1160 // Fold if the operand is constant. 1161 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1162 return getConstant( 1163 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1164 1165 // trunc(trunc(x)) --> trunc(x) 1166 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1167 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1168 1169 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1170 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1171 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1172 1173 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1174 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1175 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1176 1177 if (Depth > MaxCastDepth) { 1178 SCEV *S = 1179 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1180 UniqueSCEVs.InsertNode(S, IP); 1181 addToLoopUseLists(S); 1182 return S; 1183 } 1184 1185 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1186 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1187 // if after transforming we have at most one truncate, not counting truncates 1188 // that replace other casts. 1189 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1190 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1191 SmallVector<const SCEV *, 4> Operands; 1192 unsigned numTruncs = 0; 1193 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1194 ++i) { 1195 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1196 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1197 isa<SCEVTruncateExpr>(S)) 1198 numTruncs++; 1199 Operands.push_back(S); 1200 } 1201 if (numTruncs < 2) { 1202 if (isa<SCEVAddExpr>(Op)) 1203 return getAddExpr(Operands); 1204 else if (isa<SCEVMulExpr>(Op)) 1205 return getMulExpr(Operands); 1206 else 1207 llvm_unreachable("Unexpected SCEV type for Op."); 1208 } 1209 // Although we checked in the beginning that ID is not in the cache, it is 1210 // possible that during recursion and different modification ID was inserted 1211 // into the cache. So if we find it, just return it. 1212 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1213 return S; 1214 } 1215 1216 // If the input value is a chrec scev, truncate the chrec's operands. 1217 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1218 SmallVector<const SCEV *, 4> Operands; 1219 for (const SCEV *Op : AddRec->operands()) 1220 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1221 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1222 } 1223 1224 // The cast wasn't folded; create an explicit cast node. We can reuse 1225 // the existing insert position since if we get here, we won't have 1226 // made any changes which would invalidate it. 1227 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1228 Op, Ty); 1229 UniqueSCEVs.InsertNode(S, IP); 1230 addToLoopUseLists(S); 1231 return S; 1232 } 1233 1234 // Get the limit of a recurrence such that incrementing by Step cannot cause 1235 // signed overflow as long as the value of the recurrence within the 1236 // loop does not exceed this limit before incrementing. 1237 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1238 ICmpInst::Predicate *Pred, 1239 ScalarEvolution *SE) { 1240 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1241 if (SE->isKnownPositive(Step)) { 1242 *Pred = ICmpInst::ICMP_SLT; 1243 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1244 SE->getSignedRangeMax(Step)); 1245 } 1246 if (SE->isKnownNegative(Step)) { 1247 *Pred = ICmpInst::ICMP_SGT; 1248 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1249 SE->getSignedRangeMin(Step)); 1250 } 1251 return nullptr; 1252 } 1253 1254 // Get the limit of a recurrence such that incrementing by Step cannot cause 1255 // unsigned overflow as long as the value of the recurrence within the loop does 1256 // not exceed this limit before incrementing. 1257 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1258 ICmpInst::Predicate *Pred, 1259 ScalarEvolution *SE) { 1260 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1261 *Pred = ICmpInst::ICMP_ULT; 1262 1263 return SE->getConstant(APInt::getMinValue(BitWidth) - 1264 SE->getUnsignedRangeMax(Step)); 1265 } 1266 1267 namespace { 1268 1269 struct ExtendOpTraitsBase { 1270 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1271 unsigned); 1272 }; 1273 1274 // Used to make code generic over signed and unsigned overflow. 1275 template <typename ExtendOp> struct ExtendOpTraits { 1276 // Members present: 1277 // 1278 // static const SCEV::NoWrapFlags WrapType; 1279 // 1280 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1281 // 1282 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1283 // ICmpInst::Predicate *Pred, 1284 // ScalarEvolution *SE); 1285 }; 1286 1287 template <> 1288 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1289 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1290 1291 static const GetExtendExprTy GetExtendExpr; 1292 1293 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1294 ICmpInst::Predicate *Pred, 1295 ScalarEvolution *SE) { 1296 return getSignedOverflowLimitForStep(Step, Pred, SE); 1297 } 1298 }; 1299 1300 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1301 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1302 1303 template <> 1304 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1305 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1306 1307 static const GetExtendExprTy GetExtendExpr; 1308 1309 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1310 ICmpInst::Predicate *Pred, 1311 ScalarEvolution *SE) { 1312 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1313 } 1314 }; 1315 1316 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1317 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1318 1319 } // end anonymous namespace 1320 1321 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1322 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1323 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1324 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1325 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1326 // expression "Step + sext/zext(PreIncAR)" is congruent with 1327 // "sext/zext(PostIncAR)" 1328 template <typename ExtendOpTy> 1329 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1330 ScalarEvolution *SE, unsigned Depth) { 1331 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1332 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1333 1334 const Loop *L = AR->getLoop(); 1335 const SCEV *Start = AR->getStart(); 1336 const SCEV *Step = AR->getStepRecurrence(*SE); 1337 1338 // Check for a simple looking step prior to loop entry. 1339 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1340 if (!SA) 1341 return nullptr; 1342 1343 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1344 // subtraction is expensive. For this purpose, perform a quick and dirty 1345 // difference, by checking for Step in the operand list. 1346 SmallVector<const SCEV *, 4> DiffOps; 1347 for (const SCEV *Op : SA->operands()) 1348 if (Op != Step) 1349 DiffOps.push_back(Op); 1350 1351 if (DiffOps.size() == SA->getNumOperands()) 1352 return nullptr; 1353 1354 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1355 // `Step`: 1356 1357 // 1. NSW/NUW flags on the step increment. 1358 auto PreStartFlags = 1359 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1360 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1361 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1362 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1363 1364 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1365 // "S+X does not sign/unsign-overflow". 1366 // 1367 1368 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1369 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1370 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1371 return PreStart; 1372 1373 // 2. Direct overflow check on the step operation's expression. 1374 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1375 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1376 const SCEV *OperandExtendedStart = 1377 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1378 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1379 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1380 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1381 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1382 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1383 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1384 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1385 } 1386 return PreStart; 1387 } 1388 1389 // 3. Loop precondition. 1390 ICmpInst::Predicate Pred; 1391 const SCEV *OverflowLimit = 1392 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1393 1394 if (OverflowLimit && 1395 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1396 return PreStart; 1397 1398 return nullptr; 1399 } 1400 1401 // Get the normalized zero or sign extended expression for this AddRec's Start. 1402 template <typename ExtendOpTy> 1403 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1404 ScalarEvolution *SE, 1405 unsigned Depth) { 1406 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1407 1408 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1409 if (!PreStart) 1410 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1411 1412 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1413 Depth), 1414 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1415 } 1416 1417 // Try to prove away overflow by looking at "nearby" add recurrences. A 1418 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1419 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1420 // 1421 // Formally: 1422 // 1423 // {S,+,X} == {S-T,+,X} + T 1424 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1425 // 1426 // If ({S-T,+,X} + T) does not overflow ... (1) 1427 // 1428 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1429 // 1430 // If {S-T,+,X} does not overflow ... (2) 1431 // 1432 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1433 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1434 // 1435 // If (S-T)+T does not overflow ... (3) 1436 // 1437 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1438 // == {Ext(S),+,Ext(X)} == LHS 1439 // 1440 // Thus, if (1), (2) and (3) are true for some T, then 1441 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1442 // 1443 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1444 // does not overflow" restricted to the 0th iteration. Therefore we only need 1445 // to check for (1) and (2). 1446 // 1447 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1448 // is `Delta` (defined below). 1449 template <typename ExtendOpTy> 1450 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1451 const SCEV *Step, 1452 const Loop *L) { 1453 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1454 1455 // We restrict `Start` to a constant to prevent SCEV from spending too much 1456 // time here. It is correct (but more expensive) to continue with a 1457 // non-constant `Start` and do a general SCEV subtraction to compute 1458 // `PreStart` below. 1459 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1460 if (!StartC) 1461 return false; 1462 1463 APInt StartAI = StartC->getAPInt(); 1464 1465 for (unsigned Delta : {-2, -1, 1, 2}) { 1466 const SCEV *PreStart = getConstant(StartAI - Delta); 1467 1468 FoldingSetNodeID ID; 1469 ID.AddInteger(scAddRecExpr); 1470 ID.AddPointer(PreStart); 1471 ID.AddPointer(Step); 1472 ID.AddPointer(L); 1473 void *IP = nullptr; 1474 const auto *PreAR = 1475 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1476 1477 // Give up if we don't already have the add recurrence we need because 1478 // actually constructing an add recurrence is relatively expensive. 1479 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1480 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1481 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1482 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1483 DeltaS, &Pred, this); 1484 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1485 return true; 1486 } 1487 } 1488 1489 return false; 1490 } 1491 1492 // Finds an integer D for an expression (C + x + y + ...) such that the top 1493 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1494 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1495 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1496 // the (C + x + y + ...) expression is \p WholeAddExpr. 1497 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1498 const SCEVConstant *ConstantTerm, 1499 const SCEVAddExpr *WholeAddExpr) { 1500 const APInt &C = ConstantTerm->getAPInt(); 1501 const unsigned BitWidth = C.getBitWidth(); 1502 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1503 uint32_t TZ = BitWidth; 1504 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1505 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1506 if (TZ) { 1507 // Set D to be as many least significant bits of C as possible while still 1508 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1509 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1510 } 1511 return APInt(BitWidth, 0); 1512 } 1513 1514 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1515 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1516 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1517 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1518 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1519 const APInt &ConstantStart, 1520 const SCEV *Step) { 1521 const unsigned BitWidth = ConstantStart.getBitWidth(); 1522 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1523 if (TZ) 1524 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1525 : ConstantStart; 1526 return APInt(BitWidth, 0); 1527 } 1528 1529 const SCEV * 1530 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1531 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1532 "This is not an extending conversion!"); 1533 assert(isSCEVable(Ty) && 1534 "This is not a conversion to a SCEVable type!"); 1535 Ty = getEffectiveSCEVType(Ty); 1536 1537 // Fold if the operand is constant. 1538 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1539 return getConstant( 1540 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1541 1542 // zext(zext(x)) --> zext(x) 1543 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1544 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1545 1546 // Before doing any expensive analysis, check to see if we've already 1547 // computed a SCEV for this Op and Ty. 1548 FoldingSetNodeID ID; 1549 ID.AddInteger(scZeroExtend); 1550 ID.AddPointer(Op); 1551 ID.AddPointer(Ty); 1552 void *IP = nullptr; 1553 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1554 if (Depth > MaxCastDepth) { 1555 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1556 Op, Ty); 1557 UniqueSCEVs.InsertNode(S, IP); 1558 addToLoopUseLists(S); 1559 return S; 1560 } 1561 1562 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1563 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1564 // It's possible the bits taken off by the truncate were all zero bits. If 1565 // so, we should be able to simplify this further. 1566 const SCEV *X = ST->getOperand(); 1567 ConstantRange CR = getUnsignedRange(X); 1568 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1569 unsigned NewBits = getTypeSizeInBits(Ty); 1570 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1571 CR.zextOrTrunc(NewBits))) 1572 return getTruncateOrZeroExtend(X, Ty, Depth); 1573 } 1574 1575 // If the input value is a chrec scev, and we can prove that the value 1576 // did not overflow the old, smaller, value, we can zero extend all of the 1577 // operands (often constants). This allows analysis of something like 1578 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1579 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1580 if (AR->isAffine()) { 1581 const SCEV *Start = AR->getStart(); 1582 const SCEV *Step = AR->getStepRecurrence(*this); 1583 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1584 const Loop *L = AR->getLoop(); 1585 1586 if (!AR->hasNoUnsignedWrap()) { 1587 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1588 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1589 } 1590 1591 // If we have special knowledge that this addrec won't overflow, 1592 // we don't need to do any further analysis. 1593 if (AR->hasNoUnsignedWrap()) 1594 return getAddRecExpr( 1595 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1596 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1597 1598 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1599 // Note that this serves two purposes: It filters out loops that are 1600 // simply not analyzable, and it covers the case where this code is 1601 // being called from within backedge-taken count analysis, such that 1602 // attempting to ask for the backedge-taken count would likely result 1603 // in infinite recursion. In the later case, the analysis code will 1604 // cope with a conservative value, and it will take care to purge 1605 // that value once it has finished. 1606 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1607 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1608 // Manually compute the final value for AR, checking for 1609 // overflow. 1610 1611 // Check whether the backedge-taken count can be losslessly casted to 1612 // the addrec's type. The count is always unsigned. 1613 const SCEV *CastedMaxBECount = 1614 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1615 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1616 CastedMaxBECount, MaxBECount->getType(), Depth); 1617 if (MaxBECount == RecastedMaxBECount) { 1618 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1619 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1620 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1621 SCEV::FlagAnyWrap, Depth + 1); 1622 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1623 SCEV::FlagAnyWrap, 1624 Depth + 1), 1625 WideTy, Depth + 1); 1626 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1627 const SCEV *WideMaxBECount = 1628 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1629 const SCEV *OperandExtendedAdd = 1630 getAddExpr(WideStart, 1631 getMulExpr(WideMaxBECount, 1632 getZeroExtendExpr(Step, WideTy, Depth + 1), 1633 SCEV::FlagAnyWrap, Depth + 1), 1634 SCEV::FlagAnyWrap, Depth + 1); 1635 if (ZAdd == OperandExtendedAdd) { 1636 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1637 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1638 // Return the expression with the addrec on the outside. 1639 return getAddRecExpr( 1640 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1641 Depth + 1), 1642 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1643 AR->getNoWrapFlags()); 1644 } 1645 // Similar to above, only this time treat the step value as signed. 1646 // This covers loops that count down. 1647 OperandExtendedAdd = 1648 getAddExpr(WideStart, 1649 getMulExpr(WideMaxBECount, 1650 getSignExtendExpr(Step, WideTy, Depth + 1), 1651 SCEV::FlagAnyWrap, Depth + 1), 1652 SCEV::FlagAnyWrap, Depth + 1); 1653 if (ZAdd == OperandExtendedAdd) { 1654 // Cache knowledge of AR NW, which is propagated to this AddRec. 1655 // Negative step causes unsigned wrap, but it still can't self-wrap. 1656 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1657 // Return the expression with the addrec on the outside. 1658 return getAddRecExpr( 1659 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1660 Depth + 1), 1661 getSignExtendExpr(Step, Ty, Depth + 1), L, 1662 AR->getNoWrapFlags()); 1663 } 1664 } 1665 } 1666 1667 // Normally, in the cases we can prove no-overflow via a 1668 // backedge guarding condition, we can also compute a backedge 1669 // taken count for the loop. The exceptions are assumptions and 1670 // guards present in the loop -- SCEV is not great at exploiting 1671 // these to compute max backedge taken counts, but can still use 1672 // these to prove lack of overflow. Use this fact to avoid 1673 // doing extra work that may not pay off. 1674 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1675 !AC.assumptions().empty()) { 1676 // If the backedge is guarded by a comparison with the pre-inc 1677 // value the addrec is safe. Also, if the entry is guarded by 1678 // a comparison with the start value and the backedge is 1679 // guarded by a comparison with the post-inc value, the addrec 1680 // is safe. 1681 if (isKnownPositive(Step)) { 1682 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1683 getUnsignedRangeMax(Step)); 1684 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1685 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1686 // Cache knowledge of AR NUW, which is propagated to this 1687 // AddRec. 1688 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1689 // Return the expression with the addrec on the outside. 1690 return getAddRecExpr( 1691 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1692 Depth + 1), 1693 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1694 AR->getNoWrapFlags()); 1695 } 1696 } else if (isKnownNegative(Step)) { 1697 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1698 getSignedRangeMin(Step)); 1699 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1700 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1701 // Cache knowledge of AR NW, which is propagated to this 1702 // AddRec. Negative step causes unsigned wrap, but it 1703 // still can't self-wrap. 1704 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1705 // Return the expression with the addrec on the outside. 1706 return getAddRecExpr( 1707 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1708 Depth + 1), 1709 getSignExtendExpr(Step, Ty, Depth + 1), L, 1710 AR->getNoWrapFlags()); 1711 } 1712 } 1713 } 1714 1715 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1716 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1717 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1718 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1719 const APInt &C = SC->getAPInt(); 1720 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1721 if (D != 0) { 1722 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1723 const SCEV *SResidual = 1724 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1725 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1726 return getAddExpr(SZExtD, SZExtR, 1727 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1728 Depth + 1); 1729 } 1730 } 1731 1732 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1733 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1734 return getAddRecExpr( 1735 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1736 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1737 } 1738 } 1739 1740 // zext(A % B) --> zext(A) % zext(B) 1741 { 1742 const SCEV *LHS; 1743 const SCEV *RHS; 1744 if (matchURem(Op, LHS, RHS)) 1745 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1746 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1747 } 1748 1749 // zext(A / B) --> zext(A) / zext(B). 1750 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1751 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1752 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1753 1754 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1755 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1756 if (SA->hasNoUnsignedWrap()) { 1757 // If the addition does not unsign overflow then we can, by definition, 1758 // commute the zero extension with the addition operation. 1759 SmallVector<const SCEV *, 4> Ops; 1760 for (const auto *Op : SA->operands()) 1761 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1762 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1763 } 1764 1765 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1766 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1767 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1768 // 1769 // Often address arithmetics contain expressions like 1770 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1771 // This transformation is useful while proving that such expressions are 1772 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1773 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1774 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1775 if (D != 0) { 1776 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1777 const SCEV *SResidual = 1778 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1779 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1780 return getAddExpr(SZExtD, SZExtR, 1781 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1782 Depth + 1); 1783 } 1784 } 1785 } 1786 1787 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1788 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1789 if (SM->hasNoUnsignedWrap()) { 1790 // If the multiply does not unsign overflow then we can, by definition, 1791 // commute the zero extension with the multiply operation. 1792 SmallVector<const SCEV *, 4> Ops; 1793 for (const auto *Op : SM->operands()) 1794 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1795 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1796 } 1797 1798 // zext(2^K * (trunc X to iN)) to iM -> 1799 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1800 // 1801 // Proof: 1802 // 1803 // zext(2^K * (trunc X to iN)) to iM 1804 // = zext((trunc X to iN) << K) to iM 1805 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1806 // (because shl removes the top K bits) 1807 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1808 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1809 // 1810 if (SM->getNumOperands() == 2) 1811 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1812 if (MulLHS->getAPInt().isPowerOf2()) 1813 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1814 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1815 MulLHS->getAPInt().logBase2(); 1816 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1817 return getMulExpr( 1818 getZeroExtendExpr(MulLHS, Ty), 1819 getZeroExtendExpr( 1820 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1821 SCEV::FlagNUW, Depth + 1); 1822 } 1823 } 1824 1825 // The cast wasn't folded; create an explicit cast node. 1826 // Recompute the insert position, as it may have been invalidated. 1827 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1828 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1829 Op, Ty); 1830 UniqueSCEVs.InsertNode(S, IP); 1831 addToLoopUseLists(S); 1832 return S; 1833 } 1834 1835 const SCEV * 1836 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1837 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1838 "This is not an extending conversion!"); 1839 assert(isSCEVable(Ty) && 1840 "This is not a conversion to a SCEVable type!"); 1841 Ty = getEffectiveSCEVType(Ty); 1842 1843 // Fold if the operand is constant. 1844 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1845 return getConstant( 1846 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1847 1848 // sext(sext(x)) --> sext(x) 1849 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1850 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1851 1852 // sext(zext(x)) --> zext(x) 1853 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1854 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1855 1856 // Before doing any expensive analysis, check to see if we've already 1857 // computed a SCEV for this Op and Ty. 1858 FoldingSetNodeID ID; 1859 ID.AddInteger(scSignExtend); 1860 ID.AddPointer(Op); 1861 ID.AddPointer(Ty); 1862 void *IP = nullptr; 1863 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1864 // Limit recursion depth. 1865 if (Depth > MaxCastDepth) { 1866 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1867 Op, Ty); 1868 UniqueSCEVs.InsertNode(S, IP); 1869 addToLoopUseLists(S); 1870 return S; 1871 } 1872 1873 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1874 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1875 // It's possible the bits taken off by the truncate were all sign bits. If 1876 // so, we should be able to simplify this further. 1877 const SCEV *X = ST->getOperand(); 1878 ConstantRange CR = getSignedRange(X); 1879 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1880 unsigned NewBits = getTypeSizeInBits(Ty); 1881 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1882 CR.sextOrTrunc(NewBits))) 1883 return getTruncateOrSignExtend(X, Ty, Depth); 1884 } 1885 1886 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1887 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1888 if (SA->hasNoSignedWrap()) { 1889 // If the addition does not sign overflow then we can, by definition, 1890 // commute the sign extension with the addition operation. 1891 SmallVector<const SCEV *, 4> Ops; 1892 for (const auto *Op : SA->operands()) 1893 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1894 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1895 } 1896 1897 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1898 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1899 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1900 // 1901 // For instance, this will bring two seemingly different expressions: 1902 // 1 + sext(5 + 20 * %x + 24 * %y) and 1903 // sext(6 + 20 * %x + 24 * %y) 1904 // to the same form: 1905 // 2 + sext(4 + 20 * %x + 24 * %y) 1906 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1907 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1908 if (D != 0) { 1909 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1910 const SCEV *SResidual = 1911 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1912 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1913 return getAddExpr(SSExtD, SSExtR, 1914 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1915 Depth + 1); 1916 } 1917 } 1918 } 1919 // If the input value is a chrec scev, and we can prove that the value 1920 // did not overflow the old, smaller, value, we can sign extend all of the 1921 // operands (often constants). This allows analysis of something like 1922 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1924 if (AR->isAffine()) { 1925 const SCEV *Start = AR->getStart(); 1926 const SCEV *Step = AR->getStepRecurrence(*this); 1927 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1928 const Loop *L = AR->getLoop(); 1929 1930 if (!AR->hasNoSignedWrap()) { 1931 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1932 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1933 } 1934 1935 // If we have special knowledge that this addrec won't overflow, 1936 // we don't need to do any further analysis. 1937 if (AR->hasNoSignedWrap()) 1938 return getAddRecExpr( 1939 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1940 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1941 1942 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1943 // Note that this serves two purposes: It filters out loops that are 1944 // simply not analyzable, and it covers the case where this code is 1945 // being called from within backedge-taken count analysis, such that 1946 // attempting to ask for the backedge-taken count would likely result 1947 // in infinite recursion. In the later case, the analysis code will 1948 // cope with a conservative value, and it will take care to purge 1949 // that value once it has finished. 1950 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1951 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1952 // Manually compute the final value for AR, checking for 1953 // overflow. 1954 1955 // Check whether the backedge-taken count can be losslessly casted to 1956 // the addrec's type. The count is always unsigned. 1957 const SCEV *CastedMaxBECount = 1958 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1959 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1960 CastedMaxBECount, MaxBECount->getType(), Depth); 1961 if (MaxBECount == RecastedMaxBECount) { 1962 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1963 // Check whether Start+Step*MaxBECount has no signed overflow. 1964 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1965 SCEV::FlagAnyWrap, Depth + 1); 1966 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1967 SCEV::FlagAnyWrap, 1968 Depth + 1), 1969 WideTy, Depth + 1); 1970 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1971 const SCEV *WideMaxBECount = 1972 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1973 const SCEV *OperandExtendedAdd = 1974 getAddExpr(WideStart, 1975 getMulExpr(WideMaxBECount, 1976 getSignExtendExpr(Step, WideTy, Depth + 1), 1977 SCEV::FlagAnyWrap, Depth + 1), 1978 SCEV::FlagAnyWrap, Depth + 1); 1979 if (SAdd == OperandExtendedAdd) { 1980 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1981 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 1982 // Return the expression with the addrec on the outside. 1983 return getAddRecExpr( 1984 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1985 Depth + 1), 1986 getSignExtendExpr(Step, Ty, Depth + 1), L, 1987 AR->getNoWrapFlags()); 1988 } 1989 // Similar to above, only this time treat the step value as unsigned. 1990 // This covers loops that count up with an unsigned step. 1991 OperandExtendedAdd = 1992 getAddExpr(WideStart, 1993 getMulExpr(WideMaxBECount, 1994 getZeroExtendExpr(Step, WideTy, Depth + 1), 1995 SCEV::FlagAnyWrap, Depth + 1), 1996 SCEV::FlagAnyWrap, Depth + 1); 1997 if (SAdd == OperandExtendedAdd) { 1998 // If AR wraps around then 1999 // 2000 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2001 // => SAdd != OperandExtendedAdd 2002 // 2003 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2004 // (SAdd == OperandExtendedAdd => AR is NW) 2005 2006 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2007 2008 // Return the expression with the addrec on the outside. 2009 return getAddRecExpr( 2010 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2011 Depth + 1), 2012 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2013 AR->getNoWrapFlags()); 2014 } 2015 } 2016 } 2017 2018 // Normally, in the cases we can prove no-overflow via a 2019 // backedge guarding condition, we can also compute a backedge 2020 // taken count for the loop. The exceptions are assumptions and 2021 // guards present in the loop -- SCEV is not great at exploiting 2022 // these to compute max backedge taken counts, but can still use 2023 // these to prove lack of overflow. Use this fact to avoid 2024 // doing extra work that may not pay off. 2025 2026 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 2027 !AC.assumptions().empty()) { 2028 // If the backedge is guarded by a comparison with the pre-inc 2029 // value the addrec is safe. Also, if the entry is guarded by 2030 // a comparison with the start value and the backedge is 2031 // guarded by a comparison with the post-inc value, the addrec 2032 // is safe. 2033 ICmpInst::Predicate Pred; 2034 const SCEV *OverflowLimit = 2035 getSignedOverflowLimitForStep(Step, &Pred, this); 2036 if (OverflowLimit && 2037 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 2038 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 2039 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 2040 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2041 return getAddRecExpr( 2042 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2043 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2044 } 2045 } 2046 2047 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2048 // if D + (C - D + Step * n) could be proven to not signed wrap 2049 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2050 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2051 const APInt &C = SC->getAPInt(); 2052 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2053 if (D != 0) { 2054 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2055 const SCEV *SResidual = 2056 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2057 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2058 return getAddExpr(SSExtD, SSExtR, 2059 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2060 Depth + 1); 2061 } 2062 } 2063 2064 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2065 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2066 return getAddRecExpr( 2067 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2068 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2069 } 2070 } 2071 2072 // If the input value is provably positive and we could not simplify 2073 // away the sext build a zext instead. 2074 if (isKnownNonNegative(Op)) 2075 return getZeroExtendExpr(Op, Ty, Depth + 1); 2076 2077 // The cast wasn't folded; create an explicit cast node. 2078 // Recompute the insert position, as it may have been invalidated. 2079 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2080 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2081 Op, Ty); 2082 UniqueSCEVs.InsertNode(S, IP); 2083 addToLoopUseLists(S); 2084 return S; 2085 } 2086 2087 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2088 /// unspecified bits out to the given type. 2089 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2090 Type *Ty) { 2091 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2092 "This is not an extending conversion!"); 2093 assert(isSCEVable(Ty) && 2094 "This is not a conversion to a SCEVable type!"); 2095 Ty = getEffectiveSCEVType(Ty); 2096 2097 // Sign-extend negative constants. 2098 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2099 if (SC->getAPInt().isNegative()) 2100 return getSignExtendExpr(Op, Ty); 2101 2102 // Peel off a truncate cast. 2103 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2104 const SCEV *NewOp = T->getOperand(); 2105 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2106 return getAnyExtendExpr(NewOp, Ty); 2107 return getTruncateOrNoop(NewOp, Ty); 2108 } 2109 2110 // Next try a zext cast. If the cast is folded, use it. 2111 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2112 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2113 return ZExt; 2114 2115 // Next try a sext cast. If the cast is folded, use it. 2116 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2117 if (!isa<SCEVSignExtendExpr>(SExt)) 2118 return SExt; 2119 2120 // Force the cast to be folded into the operands of an addrec. 2121 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2122 SmallVector<const SCEV *, 4> Ops; 2123 for (const SCEV *Op : AR->operands()) 2124 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2125 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2126 } 2127 2128 // If the expression is obviously signed, use the sext cast value. 2129 if (isa<SCEVSMaxExpr>(Op)) 2130 return SExt; 2131 2132 // Absent any other information, use the zext cast value. 2133 return ZExt; 2134 } 2135 2136 /// Process the given Ops list, which is a list of operands to be added under 2137 /// the given scale, update the given map. This is a helper function for 2138 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2139 /// that would form an add expression like this: 2140 /// 2141 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2142 /// 2143 /// where A and B are constants, update the map with these values: 2144 /// 2145 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2146 /// 2147 /// and add 13 + A*B*29 to AccumulatedConstant. 2148 /// This will allow getAddRecExpr to produce this: 2149 /// 2150 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2151 /// 2152 /// This form often exposes folding opportunities that are hidden in 2153 /// the original operand list. 2154 /// 2155 /// Return true iff it appears that any interesting folding opportunities 2156 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2157 /// the common case where no interesting opportunities are present, and 2158 /// is also used as a check to avoid infinite recursion. 2159 static bool 2160 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2161 SmallVectorImpl<const SCEV *> &NewOps, 2162 APInt &AccumulatedConstant, 2163 const SCEV *const *Ops, size_t NumOperands, 2164 const APInt &Scale, 2165 ScalarEvolution &SE) { 2166 bool Interesting = false; 2167 2168 // Iterate over the add operands. They are sorted, with constants first. 2169 unsigned i = 0; 2170 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2171 ++i; 2172 // Pull a buried constant out to the outside. 2173 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2174 Interesting = true; 2175 AccumulatedConstant += Scale * C->getAPInt(); 2176 } 2177 2178 // Next comes everything else. We're especially interested in multiplies 2179 // here, but they're in the middle, so just visit the rest with one loop. 2180 for (; i != NumOperands; ++i) { 2181 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2182 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2183 APInt NewScale = 2184 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2185 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2186 // A multiplication of a constant with another add; recurse. 2187 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2188 Interesting |= 2189 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2190 Add->op_begin(), Add->getNumOperands(), 2191 NewScale, SE); 2192 } else { 2193 // A multiplication of a constant with some other value. Update 2194 // the map. 2195 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2196 const SCEV *Key = SE.getMulExpr(MulOps); 2197 auto Pair = M.insert({Key, NewScale}); 2198 if (Pair.second) { 2199 NewOps.push_back(Pair.first->first); 2200 } else { 2201 Pair.first->second += NewScale; 2202 // The map already had an entry for this value, which may indicate 2203 // a folding opportunity. 2204 Interesting = true; 2205 } 2206 } 2207 } else { 2208 // An ordinary operand. Update the map. 2209 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2210 M.insert({Ops[i], Scale}); 2211 if (Pair.second) { 2212 NewOps.push_back(Pair.first->first); 2213 } else { 2214 Pair.first->second += Scale; 2215 // The map already had an entry for this value, which may indicate 2216 // a folding opportunity. 2217 Interesting = true; 2218 } 2219 } 2220 } 2221 2222 return Interesting; 2223 } 2224 2225 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2226 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2227 // can't-overflow flags for the operation if possible. 2228 static SCEV::NoWrapFlags 2229 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2230 const ArrayRef<const SCEV *> Ops, 2231 SCEV::NoWrapFlags Flags) { 2232 using namespace std::placeholders; 2233 2234 using OBO = OverflowingBinaryOperator; 2235 2236 bool CanAnalyze = 2237 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2238 (void)CanAnalyze; 2239 assert(CanAnalyze && "don't call from other places!"); 2240 2241 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2242 SCEV::NoWrapFlags SignOrUnsignWrap = 2243 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2244 2245 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2246 auto IsKnownNonNegative = [&](const SCEV *S) { 2247 return SE->isKnownNonNegative(S); 2248 }; 2249 2250 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2251 Flags = 2252 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2253 2254 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2255 2256 if (SignOrUnsignWrap != SignOrUnsignMask && 2257 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2258 isa<SCEVConstant>(Ops[0])) { 2259 2260 auto Opcode = [&] { 2261 switch (Type) { 2262 case scAddExpr: 2263 return Instruction::Add; 2264 case scMulExpr: 2265 return Instruction::Mul; 2266 default: 2267 llvm_unreachable("Unexpected SCEV op."); 2268 } 2269 }(); 2270 2271 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2272 2273 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2274 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2275 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2276 Opcode, C, OBO::NoSignedWrap); 2277 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2278 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2279 } 2280 2281 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2282 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2283 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2284 Opcode, C, OBO::NoUnsignedWrap); 2285 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2286 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2287 } 2288 } 2289 2290 return Flags; 2291 } 2292 2293 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2294 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2295 } 2296 2297 /// Get a canonical add expression, or something simpler if possible. 2298 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2299 SCEV::NoWrapFlags OrigFlags, 2300 unsigned Depth) { 2301 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2302 "only nuw or nsw allowed"); 2303 assert(!Ops.empty() && "Cannot get empty add!"); 2304 if (Ops.size() == 1) return Ops[0]; 2305 #ifndef NDEBUG 2306 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2307 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2308 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2309 "SCEVAddExpr operand types don't match!"); 2310 #endif 2311 2312 // Sort by complexity, this groups all similar expression types together. 2313 GroupByComplexity(Ops, &LI, DT); 2314 2315 // If there are any constants, fold them together. 2316 unsigned Idx = 0; 2317 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2318 ++Idx; 2319 assert(Idx < Ops.size()); 2320 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2321 // We found two constants, fold them together! 2322 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2323 if (Ops.size() == 2) return Ops[0]; 2324 Ops.erase(Ops.begin()+1); // Erase the folded element 2325 LHSC = cast<SCEVConstant>(Ops[0]); 2326 } 2327 2328 // If we are left with a constant zero being added, strip it off. 2329 if (LHSC->getValue()->isZero()) { 2330 Ops.erase(Ops.begin()); 2331 --Idx; 2332 } 2333 2334 if (Ops.size() == 1) return Ops[0]; 2335 } 2336 2337 // Delay expensive flag strengthening until necessary. 2338 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2339 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2340 }; 2341 2342 // Limit recursion calls depth. 2343 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2344 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2345 2346 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2347 // Don't strengthen flags if we have no new information. 2348 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2349 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2350 Add->setNoWrapFlags(ComputeFlags(Ops)); 2351 return S; 2352 } 2353 2354 // Okay, check to see if the same value occurs in the operand list more than 2355 // once. If so, merge them together into an multiply expression. Since we 2356 // sorted the list, these values are required to be adjacent. 2357 Type *Ty = Ops[0]->getType(); 2358 bool FoundMatch = false; 2359 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2360 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2361 // Scan ahead to count how many equal operands there are. 2362 unsigned Count = 2; 2363 while (i+Count != e && Ops[i+Count] == Ops[i]) 2364 ++Count; 2365 // Merge the values into a multiply. 2366 const SCEV *Scale = getConstant(Ty, Count); 2367 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2368 if (Ops.size() == Count) 2369 return Mul; 2370 Ops[i] = Mul; 2371 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2372 --i; e -= Count - 1; 2373 FoundMatch = true; 2374 } 2375 if (FoundMatch) 2376 return getAddExpr(Ops, OrigFlags, Depth + 1); 2377 2378 // Check for truncates. If all the operands are truncated from the same 2379 // type, see if factoring out the truncate would permit the result to be 2380 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2381 // if the contents of the resulting outer trunc fold to something simple. 2382 auto FindTruncSrcType = [&]() -> Type * { 2383 // We're ultimately looking to fold an addrec of truncs and muls of only 2384 // constants and truncs, so if we find any other types of SCEV 2385 // as operands of the addrec then we bail and return nullptr here. 2386 // Otherwise, we return the type of the operand of a trunc that we find. 2387 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2388 return T->getOperand()->getType(); 2389 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2390 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2391 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2392 return T->getOperand()->getType(); 2393 } 2394 return nullptr; 2395 }; 2396 if (auto *SrcType = FindTruncSrcType()) { 2397 SmallVector<const SCEV *, 8> LargeOps; 2398 bool Ok = true; 2399 // Check all the operands to see if they can be represented in the 2400 // source type of the truncate. 2401 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2402 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2403 if (T->getOperand()->getType() != SrcType) { 2404 Ok = false; 2405 break; 2406 } 2407 LargeOps.push_back(T->getOperand()); 2408 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2409 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2410 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2411 SmallVector<const SCEV *, 8> LargeMulOps; 2412 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2413 if (const SCEVTruncateExpr *T = 2414 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2415 if (T->getOperand()->getType() != SrcType) { 2416 Ok = false; 2417 break; 2418 } 2419 LargeMulOps.push_back(T->getOperand()); 2420 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2421 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2422 } else { 2423 Ok = false; 2424 break; 2425 } 2426 } 2427 if (Ok) 2428 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2429 } else { 2430 Ok = false; 2431 break; 2432 } 2433 } 2434 if (Ok) { 2435 // Evaluate the expression in the larger type. 2436 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2437 // If it folds to something simple, use it. Otherwise, don't. 2438 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2439 return getTruncateExpr(Fold, Ty); 2440 } 2441 } 2442 2443 // Skip past any other cast SCEVs. 2444 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2445 ++Idx; 2446 2447 // If there are add operands they would be next. 2448 if (Idx < Ops.size()) { 2449 bool DeletedAdd = false; 2450 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2451 if (Ops.size() > AddOpsInlineThreshold || 2452 Add->getNumOperands() > AddOpsInlineThreshold) 2453 break; 2454 // If we have an add, expand the add operands onto the end of the operands 2455 // list. 2456 Ops.erase(Ops.begin()+Idx); 2457 Ops.append(Add->op_begin(), Add->op_end()); 2458 DeletedAdd = true; 2459 } 2460 2461 // If we deleted at least one add, we added operands to the end of the list, 2462 // and they are not necessarily sorted. Recurse to resort and resimplify 2463 // any operands we just acquired. 2464 if (DeletedAdd) 2465 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2466 } 2467 2468 // Skip over the add expression until we get to a multiply. 2469 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2470 ++Idx; 2471 2472 // Check to see if there are any folding opportunities present with 2473 // operands multiplied by constant values. 2474 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2475 uint64_t BitWidth = getTypeSizeInBits(Ty); 2476 DenseMap<const SCEV *, APInt> M; 2477 SmallVector<const SCEV *, 8> NewOps; 2478 APInt AccumulatedConstant(BitWidth, 0); 2479 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2480 Ops.data(), Ops.size(), 2481 APInt(BitWidth, 1), *this)) { 2482 struct APIntCompare { 2483 bool operator()(const APInt &LHS, const APInt &RHS) const { 2484 return LHS.ult(RHS); 2485 } 2486 }; 2487 2488 // Some interesting folding opportunity is present, so its worthwhile to 2489 // re-generate the operands list. Group the operands by constant scale, 2490 // to avoid multiplying by the same constant scale multiple times. 2491 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2492 for (const SCEV *NewOp : NewOps) 2493 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2494 // Re-generate the operands list. 2495 Ops.clear(); 2496 if (AccumulatedConstant != 0) 2497 Ops.push_back(getConstant(AccumulatedConstant)); 2498 for (auto &MulOp : MulOpLists) 2499 if (MulOp.first != 0) 2500 Ops.push_back(getMulExpr( 2501 getConstant(MulOp.first), 2502 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2503 SCEV::FlagAnyWrap, Depth + 1)); 2504 if (Ops.empty()) 2505 return getZero(Ty); 2506 if (Ops.size() == 1) 2507 return Ops[0]; 2508 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2509 } 2510 } 2511 2512 // If we are adding something to a multiply expression, make sure the 2513 // something is not already an operand of the multiply. If so, merge it into 2514 // the multiply. 2515 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2516 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2517 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2518 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2519 if (isa<SCEVConstant>(MulOpSCEV)) 2520 continue; 2521 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2522 if (MulOpSCEV == Ops[AddOp]) { 2523 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2524 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2525 if (Mul->getNumOperands() != 2) { 2526 // If the multiply has more than two operands, we must get the 2527 // Y*Z term. 2528 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2529 Mul->op_begin()+MulOp); 2530 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2531 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2532 } 2533 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2534 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2535 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2536 SCEV::FlagAnyWrap, Depth + 1); 2537 if (Ops.size() == 2) return OuterMul; 2538 if (AddOp < Idx) { 2539 Ops.erase(Ops.begin()+AddOp); 2540 Ops.erase(Ops.begin()+Idx-1); 2541 } else { 2542 Ops.erase(Ops.begin()+Idx); 2543 Ops.erase(Ops.begin()+AddOp-1); 2544 } 2545 Ops.push_back(OuterMul); 2546 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2547 } 2548 2549 // Check this multiply against other multiplies being added together. 2550 for (unsigned OtherMulIdx = Idx+1; 2551 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2552 ++OtherMulIdx) { 2553 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2554 // If MulOp occurs in OtherMul, we can fold the two multiplies 2555 // together. 2556 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2557 OMulOp != e; ++OMulOp) 2558 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2559 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2560 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2561 if (Mul->getNumOperands() != 2) { 2562 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2563 Mul->op_begin()+MulOp); 2564 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2565 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2566 } 2567 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2568 if (OtherMul->getNumOperands() != 2) { 2569 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2570 OtherMul->op_begin()+OMulOp); 2571 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2572 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2573 } 2574 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2575 const SCEV *InnerMulSum = 2576 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2577 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2578 SCEV::FlagAnyWrap, Depth + 1); 2579 if (Ops.size() == 2) return OuterMul; 2580 Ops.erase(Ops.begin()+Idx); 2581 Ops.erase(Ops.begin()+OtherMulIdx-1); 2582 Ops.push_back(OuterMul); 2583 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2584 } 2585 } 2586 } 2587 } 2588 2589 // If there are any add recurrences in the operands list, see if any other 2590 // added values are loop invariant. If so, we can fold them into the 2591 // recurrence. 2592 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2593 ++Idx; 2594 2595 // Scan over all recurrences, trying to fold loop invariants into them. 2596 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2597 // Scan all of the other operands to this add and add them to the vector if 2598 // they are loop invariant w.r.t. the recurrence. 2599 SmallVector<const SCEV *, 8> LIOps; 2600 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2601 const Loop *AddRecLoop = AddRec->getLoop(); 2602 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2603 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2604 LIOps.push_back(Ops[i]); 2605 Ops.erase(Ops.begin()+i); 2606 --i; --e; 2607 } 2608 2609 // If we found some loop invariants, fold them into the recurrence. 2610 if (!LIOps.empty()) { 2611 // Compute nowrap flags for the addition of the loop-invariant ops and 2612 // the addrec. Temporarily push it as an operand for that purpose. 2613 LIOps.push_back(AddRec); 2614 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2615 LIOps.pop_back(); 2616 2617 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2618 LIOps.push_back(AddRec->getStart()); 2619 2620 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2621 AddRec->op_end()); 2622 // This follows from the fact that the no-wrap flags on the outer add 2623 // expression are applicable on the 0th iteration, when the add recurrence 2624 // will be equal to its start value. 2625 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2626 2627 // Build the new addrec. Propagate the NUW and NSW flags if both the 2628 // outer add and the inner addrec are guaranteed to have no overflow. 2629 // Always propagate NW. 2630 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2631 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2632 2633 // If all of the other operands were loop invariant, we are done. 2634 if (Ops.size() == 1) return NewRec; 2635 2636 // Otherwise, add the folded AddRec by the non-invariant parts. 2637 for (unsigned i = 0;; ++i) 2638 if (Ops[i] == AddRec) { 2639 Ops[i] = NewRec; 2640 break; 2641 } 2642 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2643 } 2644 2645 // Okay, if there weren't any loop invariants to be folded, check to see if 2646 // there are multiple AddRec's with the same loop induction variable being 2647 // added together. If so, we can fold them. 2648 for (unsigned OtherIdx = Idx+1; 2649 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2650 ++OtherIdx) { 2651 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2652 // so that the 1st found AddRecExpr is dominated by all others. 2653 assert(DT.dominates( 2654 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2655 AddRec->getLoop()->getHeader()) && 2656 "AddRecExprs are not sorted in reverse dominance order?"); 2657 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2658 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2659 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2660 AddRec->op_end()); 2661 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2662 ++OtherIdx) { 2663 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2664 if (OtherAddRec->getLoop() == AddRecLoop) { 2665 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2666 i != e; ++i) { 2667 if (i >= AddRecOps.size()) { 2668 AddRecOps.append(OtherAddRec->op_begin()+i, 2669 OtherAddRec->op_end()); 2670 break; 2671 } 2672 SmallVector<const SCEV *, 2> TwoOps = { 2673 AddRecOps[i], OtherAddRec->getOperand(i)}; 2674 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2675 } 2676 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2677 } 2678 } 2679 // Step size has changed, so we cannot guarantee no self-wraparound. 2680 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2681 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2682 } 2683 } 2684 2685 // Otherwise couldn't fold anything into this recurrence. Move onto the 2686 // next one. 2687 } 2688 2689 // Okay, it looks like we really DO need an add expr. Check to see if we 2690 // already have one, otherwise create a new one. 2691 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2692 } 2693 2694 const SCEV * 2695 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2696 SCEV::NoWrapFlags Flags) { 2697 FoldingSetNodeID ID; 2698 ID.AddInteger(scAddExpr); 2699 for (const SCEV *Op : Ops) 2700 ID.AddPointer(Op); 2701 void *IP = nullptr; 2702 SCEVAddExpr *S = 2703 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2704 if (!S) { 2705 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2706 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2707 S = new (SCEVAllocator) 2708 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2709 UniqueSCEVs.InsertNode(S, IP); 2710 addToLoopUseLists(S); 2711 } 2712 S->setNoWrapFlags(Flags); 2713 return S; 2714 } 2715 2716 const SCEV * 2717 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2718 const Loop *L, SCEV::NoWrapFlags Flags) { 2719 FoldingSetNodeID ID; 2720 ID.AddInteger(scAddRecExpr); 2721 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2722 ID.AddPointer(Ops[i]); 2723 ID.AddPointer(L); 2724 void *IP = nullptr; 2725 SCEVAddRecExpr *S = 2726 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2727 if (!S) { 2728 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2729 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2730 S = new (SCEVAllocator) 2731 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2732 UniqueSCEVs.InsertNode(S, IP); 2733 addToLoopUseLists(S); 2734 } 2735 setNoWrapFlags(S, Flags); 2736 return S; 2737 } 2738 2739 const SCEV * 2740 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2741 SCEV::NoWrapFlags Flags) { 2742 FoldingSetNodeID ID; 2743 ID.AddInteger(scMulExpr); 2744 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2745 ID.AddPointer(Ops[i]); 2746 void *IP = nullptr; 2747 SCEVMulExpr *S = 2748 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2749 if (!S) { 2750 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2751 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2752 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2753 O, Ops.size()); 2754 UniqueSCEVs.InsertNode(S, IP); 2755 addToLoopUseLists(S); 2756 } 2757 S->setNoWrapFlags(Flags); 2758 return S; 2759 } 2760 2761 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2762 uint64_t k = i*j; 2763 if (j > 1 && k / j != i) Overflow = true; 2764 return k; 2765 } 2766 2767 /// Compute the result of "n choose k", the binomial coefficient. If an 2768 /// intermediate computation overflows, Overflow will be set and the return will 2769 /// be garbage. Overflow is not cleared on absence of overflow. 2770 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2771 // We use the multiplicative formula: 2772 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2773 // At each iteration, we take the n-th term of the numeral and divide by the 2774 // (k-n)th term of the denominator. This division will always produce an 2775 // integral result, and helps reduce the chance of overflow in the 2776 // intermediate computations. However, we can still overflow even when the 2777 // final result would fit. 2778 2779 if (n == 0 || n == k) return 1; 2780 if (k > n) return 0; 2781 2782 if (k > n/2) 2783 k = n-k; 2784 2785 uint64_t r = 1; 2786 for (uint64_t i = 1; i <= k; ++i) { 2787 r = umul_ov(r, n-(i-1), Overflow); 2788 r /= i; 2789 } 2790 return r; 2791 } 2792 2793 /// Determine if any of the operands in this SCEV are a constant or if 2794 /// any of the add or multiply expressions in this SCEV contain a constant. 2795 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2796 struct FindConstantInAddMulChain { 2797 bool FoundConstant = false; 2798 2799 bool follow(const SCEV *S) { 2800 FoundConstant |= isa<SCEVConstant>(S); 2801 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2802 } 2803 2804 bool isDone() const { 2805 return FoundConstant; 2806 } 2807 }; 2808 2809 FindConstantInAddMulChain F; 2810 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2811 ST.visitAll(StartExpr); 2812 return F.FoundConstant; 2813 } 2814 2815 /// Get a canonical multiply expression, or something simpler if possible. 2816 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2817 SCEV::NoWrapFlags OrigFlags, 2818 unsigned Depth) { 2819 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2820 "only nuw or nsw allowed"); 2821 assert(!Ops.empty() && "Cannot get empty mul!"); 2822 if (Ops.size() == 1) return Ops[0]; 2823 #ifndef NDEBUG 2824 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2825 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2826 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2827 "SCEVMulExpr operand types don't match!"); 2828 #endif 2829 2830 // Sort by complexity, this groups all similar expression types together. 2831 GroupByComplexity(Ops, &LI, DT); 2832 2833 // If there are any constants, fold them together. 2834 unsigned Idx = 0; 2835 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2836 ++Idx; 2837 assert(Idx < Ops.size()); 2838 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2839 // We found two constants, fold them together! 2840 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 2841 if (Ops.size() == 2) return Ops[0]; 2842 Ops.erase(Ops.begin()+1); // Erase the folded element 2843 LHSC = cast<SCEVConstant>(Ops[0]); 2844 } 2845 2846 // If we have a multiply of zero, it will always be zero. 2847 if (LHSC->getValue()->isZero()) 2848 return LHSC; 2849 2850 // If we are left with a constant one being multiplied, strip it off. 2851 if (LHSC->getValue()->isOne()) { 2852 Ops.erase(Ops.begin()); 2853 --Idx; 2854 } 2855 2856 if (Ops.size() == 1) 2857 return Ops[0]; 2858 } 2859 2860 // Delay expensive flag strengthening until necessary. 2861 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2862 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 2863 }; 2864 2865 // Limit recursion calls depth. 2866 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2867 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 2868 2869 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2870 // Don't strengthen flags if we have no new information. 2871 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 2872 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 2873 Mul->setNoWrapFlags(ComputeFlags(Ops)); 2874 return S; 2875 } 2876 2877 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2878 if (Ops.size() == 2) { 2879 // C1*(C2+V) -> C1*C2 + C1*V 2880 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2881 // If any of Add's ops are Adds or Muls with a constant, apply this 2882 // transformation as well. 2883 // 2884 // TODO: There are some cases where this transformation is not 2885 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2886 // this transformation should be narrowed down. 2887 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2888 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2889 SCEV::FlagAnyWrap, Depth + 1), 2890 getMulExpr(LHSC, Add->getOperand(1), 2891 SCEV::FlagAnyWrap, Depth + 1), 2892 SCEV::FlagAnyWrap, Depth + 1); 2893 2894 if (Ops[0]->isAllOnesValue()) { 2895 // If we have a mul by -1 of an add, try distributing the -1 among the 2896 // add operands. 2897 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2898 SmallVector<const SCEV *, 4> NewOps; 2899 bool AnyFolded = false; 2900 for (const SCEV *AddOp : Add->operands()) { 2901 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2902 Depth + 1); 2903 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2904 NewOps.push_back(Mul); 2905 } 2906 if (AnyFolded) 2907 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2908 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2909 // Negation preserves a recurrence's no self-wrap property. 2910 SmallVector<const SCEV *, 4> Operands; 2911 for (const SCEV *AddRecOp : AddRec->operands()) 2912 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2913 Depth + 1)); 2914 2915 return getAddRecExpr(Operands, AddRec->getLoop(), 2916 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2917 } 2918 } 2919 } 2920 } 2921 2922 // Skip over the add expression until we get to a multiply. 2923 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2924 ++Idx; 2925 2926 // If there are mul operands inline them all into this expression. 2927 if (Idx < Ops.size()) { 2928 bool DeletedMul = false; 2929 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2930 if (Ops.size() > MulOpsInlineThreshold) 2931 break; 2932 // If we have an mul, expand the mul operands onto the end of the 2933 // operands list. 2934 Ops.erase(Ops.begin()+Idx); 2935 Ops.append(Mul->op_begin(), Mul->op_end()); 2936 DeletedMul = true; 2937 } 2938 2939 // If we deleted at least one mul, we added operands to the end of the 2940 // list, and they are not necessarily sorted. Recurse to resort and 2941 // resimplify any operands we just acquired. 2942 if (DeletedMul) 2943 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2944 } 2945 2946 // If there are any add recurrences in the operands list, see if any other 2947 // added values are loop invariant. If so, we can fold them into the 2948 // recurrence. 2949 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2950 ++Idx; 2951 2952 // Scan over all recurrences, trying to fold loop invariants into them. 2953 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2954 // Scan all of the other operands to this mul and add them to the vector 2955 // if they are loop invariant w.r.t. the recurrence. 2956 SmallVector<const SCEV *, 8> LIOps; 2957 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2958 const Loop *AddRecLoop = AddRec->getLoop(); 2959 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2960 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2961 LIOps.push_back(Ops[i]); 2962 Ops.erase(Ops.begin()+i); 2963 --i; --e; 2964 } 2965 2966 // If we found some loop invariants, fold them into the recurrence. 2967 if (!LIOps.empty()) { 2968 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2969 SmallVector<const SCEV *, 4> NewOps; 2970 NewOps.reserve(AddRec->getNumOperands()); 2971 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2972 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2973 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2974 SCEV::FlagAnyWrap, Depth + 1)); 2975 2976 // Build the new addrec. Propagate the NUW and NSW flags if both the 2977 // outer mul and the inner addrec are guaranteed to have no overflow. 2978 // 2979 // No self-wrap cannot be guaranteed after changing the step size, but 2980 // will be inferred if either NUW or NSW is true. 2981 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 2982 const SCEV *NewRec = getAddRecExpr( 2983 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 2984 2985 // If all of the other operands were loop invariant, we are done. 2986 if (Ops.size() == 1) return NewRec; 2987 2988 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2989 for (unsigned i = 0;; ++i) 2990 if (Ops[i] == AddRec) { 2991 Ops[i] = NewRec; 2992 break; 2993 } 2994 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2995 } 2996 2997 // Okay, if there weren't any loop invariants to be folded, check to see 2998 // if there are multiple AddRec's with the same loop induction variable 2999 // being multiplied together. If so, we can fold them. 3000 3001 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3002 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3003 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3004 // ]]],+,...up to x=2n}. 3005 // Note that the arguments to choose() are always integers with values 3006 // known at compile time, never SCEV objects. 3007 // 3008 // The implementation avoids pointless extra computations when the two 3009 // addrec's are of different length (mathematically, it's equivalent to 3010 // an infinite stream of zeros on the right). 3011 bool OpsModified = false; 3012 for (unsigned OtherIdx = Idx+1; 3013 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3014 ++OtherIdx) { 3015 const SCEVAddRecExpr *OtherAddRec = 3016 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3017 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3018 continue; 3019 3020 // Limit max number of arguments to avoid creation of unreasonably big 3021 // SCEVAddRecs with very complex operands. 3022 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3023 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3024 continue; 3025 3026 bool Overflow = false; 3027 Type *Ty = AddRec->getType(); 3028 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3029 SmallVector<const SCEV*, 7> AddRecOps; 3030 for (int x = 0, xe = AddRec->getNumOperands() + 3031 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3032 SmallVector <const SCEV *, 7> SumOps; 3033 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3034 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3035 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3036 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3037 z < ze && !Overflow; ++z) { 3038 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3039 uint64_t Coeff; 3040 if (LargerThan64Bits) 3041 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3042 else 3043 Coeff = Coeff1*Coeff2; 3044 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3045 const SCEV *Term1 = AddRec->getOperand(y-z); 3046 const SCEV *Term2 = OtherAddRec->getOperand(z); 3047 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3048 SCEV::FlagAnyWrap, Depth + 1)); 3049 } 3050 } 3051 if (SumOps.empty()) 3052 SumOps.push_back(getZero(Ty)); 3053 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3054 } 3055 if (!Overflow) { 3056 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3057 SCEV::FlagAnyWrap); 3058 if (Ops.size() == 2) return NewAddRec; 3059 Ops[Idx] = NewAddRec; 3060 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3061 OpsModified = true; 3062 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3063 if (!AddRec) 3064 break; 3065 } 3066 } 3067 if (OpsModified) 3068 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3069 3070 // Otherwise couldn't fold anything into this recurrence. Move onto the 3071 // next one. 3072 } 3073 3074 // Okay, it looks like we really DO need an mul expr. Check to see if we 3075 // already have one, otherwise create a new one. 3076 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3077 } 3078 3079 /// Represents an unsigned remainder expression based on unsigned division. 3080 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3081 const SCEV *RHS) { 3082 assert(getEffectiveSCEVType(LHS->getType()) == 3083 getEffectiveSCEVType(RHS->getType()) && 3084 "SCEVURemExpr operand types don't match!"); 3085 3086 // Short-circuit easy cases 3087 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3088 // If constant is one, the result is trivial 3089 if (RHSC->getValue()->isOne()) 3090 return getZero(LHS->getType()); // X urem 1 --> 0 3091 3092 // If constant is a power of two, fold into a zext(trunc(LHS)). 3093 if (RHSC->getAPInt().isPowerOf2()) { 3094 Type *FullTy = LHS->getType(); 3095 Type *TruncTy = 3096 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3097 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3098 } 3099 } 3100 3101 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3102 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3103 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3104 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3105 } 3106 3107 /// Get a canonical unsigned division expression, or something simpler if 3108 /// possible. 3109 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3110 const SCEV *RHS) { 3111 assert(getEffectiveSCEVType(LHS->getType()) == 3112 getEffectiveSCEVType(RHS->getType()) && 3113 "SCEVUDivExpr operand types don't match!"); 3114 3115 FoldingSetNodeID ID; 3116 ID.AddInteger(scUDivExpr); 3117 ID.AddPointer(LHS); 3118 ID.AddPointer(RHS); 3119 void *IP = nullptr; 3120 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3121 return S; 3122 3123 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3124 if (RHSC->getValue()->isOne()) 3125 return LHS; // X udiv 1 --> x 3126 // If the denominator is zero, the result of the udiv is undefined. Don't 3127 // try to analyze it, because the resolution chosen here may differ from 3128 // the resolution chosen in other parts of the compiler. 3129 if (!RHSC->getValue()->isZero()) { 3130 // Determine if the division can be folded into the operands of 3131 // its operands. 3132 // TODO: Generalize this to non-constants by using known-bits information. 3133 Type *Ty = LHS->getType(); 3134 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3135 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3136 // For non-power-of-two values, effectively round the value up to the 3137 // nearest power of two. 3138 if (!RHSC->getAPInt().isPowerOf2()) 3139 ++MaxShiftAmt; 3140 IntegerType *ExtTy = 3141 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3142 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3143 if (const SCEVConstant *Step = 3144 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3145 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3146 const APInt &StepInt = Step->getAPInt(); 3147 const APInt &DivInt = RHSC->getAPInt(); 3148 if (!StepInt.urem(DivInt) && 3149 getZeroExtendExpr(AR, ExtTy) == 3150 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3151 getZeroExtendExpr(Step, ExtTy), 3152 AR->getLoop(), SCEV::FlagAnyWrap)) { 3153 SmallVector<const SCEV *, 4> Operands; 3154 for (const SCEV *Op : AR->operands()) 3155 Operands.push_back(getUDivExpr(Op, RHS)); 3156 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3157 } 3158 /// Get a canonical UDivExpr for a recurrence. 3159 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3160 // We can currently only fold X%N if X is constant. 3161 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3162 if (StartC && !DivInt.urem(StepInt) && 3163 getZeroExtendExpr(AR, ExtTy) == 3164 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3165 getZeroExtendExpr(Step, ExtTy), 3166 AR->getLoop(), SCEV::FlagAnyWrap)) { 3167 const APInt &StartInt = StartC->getAPInt(); 3168 const APInt &StartRem = StartInt.urem(StepInt); 3169 if (StartRem != 0) { 3170 const SCEV *NewLHS = 3171 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3172 AR->getLoop(), SCEV::FlagNW); 3173 if (LHS != NewLHS) { 3174 LHS = NewLHS; 3175 3176 // Reset the ID to include the new LHS, and check if it is 3177 // already cached. 3178 ID.clear(); 3179 ID.AddInteger(scUDivExpr); 3180 ID.AddPointer(LHS); 3181 ID.AddPointer(RHS); 3182 IP = nullptr; 3183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3184 return S; 3185 } 3186 } 3187 } 3188 } 3189 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3190 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3191 SmallVector<const SCEV *, 4> Operands; 3192 for (const SCEV *Op : M->operands()) 3193 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3194 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3195 // Find an operand that's safely divisible. 3196 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3197 const SCEV *Op = M->getOperand(i); 3198 const SCEV *Div = getUDivExpr(Op, RHSC); 3199 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3200 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3201 M->op_end()); 3202 Operands[i] = Div; 3203 return getMulExpr(Operands); 3204 } 3205 } 3206 } 3207 3208 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3209 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3210 if (auto *DivisorConstant = 3211 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3212 bool Overflow = false; 3213 APInt NewRHS = 3214 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3215 if (Overflow) { 3216 return getConstant(RHSC->getType(), 0, false); 3217 } 3218 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3219 } 3220 } 3221 3222 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3223 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3224 SmallVector<const SCEV *, 4> Operands; 3225 for (const SCEV *Op : A->operands()) 3226 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3227 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3228 Operands.clear(); 3229 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3230 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3231 if (isa<SCEVUDivExpr>(Op) || 3232 getMulExpr(Op, RHS) != A->getOperand(i)) 3233 break; 3234 Operands.push_back(Op); 3235 } 3236 if (Operands.size() == A->getNumOperands()) 3237 return getAddExpr(Operands); 3238 } 3239 } 3240 3241 // Fold if both operands are constant. 3242 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3243 Constant *LHSCV = LHSC->getValue(); 3244 Constant *RHSCV = RHSC->getValue(); 3245 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3246 RHSCV))); 3247 } 3248 } 3249 } 3250 3251 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3252 // changes). Make sure we get a new one. 3253 IP = nullptr; 3254 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3255 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3256 LHS, RHS); 3257 UniqueSCEVs.InsertNode(S, IP); 3258 addToLoopUseLists(S); 3259 return S; 3260 } 3261 3262 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3263 APInt A = C1->getAPInt().abs(); 3264 APInt B = C2->getAPInt().abs(); 3265 uint32_t ABW = A.getBitWidth(); 3266 uint32_t BBW = B.getBitWidth(); 3267 3268 if (ABW > BBW) 3269 B = B.zext(ABW); 3270 else if (ABW < BBW) 3271 A = A.zext(BBW); 3272 3273 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3274 } 3275 3276 /// Get a canonical unsigned division expression, or something simpler if 3277 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3278 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3279 /// it's not exact because the udiv may be clearing bits. 3280 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3281 const SCEV *RHS) { 3282 // TODO: we could try to find factors in all sorts of things, but for now we 3283 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3284 // end of this file for inspiration. 3285 3286 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3287 if (!Mul || !Mul->hasNoUnsignedWrap()) 3288 return getUDivExpr(LHS, RHS); 3289 3290 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3291 // If the mulexpr multiplies by a constant, then that constant must be the 3292 // first element of the mulexpr. 3293 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3294 if (LHSCst == RHSCst) { 3295 SmallVector<const SCEV *, 2> Operands; 3296 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3297 return getMulExpr(Operands); 3298 } 3299 3300 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3301 // that there's a factor provided by one of the other terms. We need to 3302 // check. 3303 APInt Factor = gcd(LHSCst, RHSCst); 3304 if (!Factor.isIntN(1)) { 3305 LHSCst = 3306 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3307 RHSCst = 3308 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3309 SmallVector<const SCEV *, 2> Operands; 3310 Operands.push_back(LHSCst); 3311 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3312 LHS = getMulExpr(Operands); 3313 RHS = RHSCst; 3314 Mul = dyn_cast<SCEVMulExpr>(LHS); 3315 if (!Mul) 3316 return getUDivExactExpr(LHS, RHS); 3317 } 3318 } 3319 } 3320 3321 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3322 if (Mul->getOperand(i) == RHS) { 3323 SmallVector<const SCEV *, 2> Operands; 3324 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3325 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3326 return getMulExpr(Operands); 3327 } 3328 } 3329 3330 return getUDivExpr(LHS, RHS); 3331 } 3332 3333 /// Get an add recurrence expression for the specified loop. Simplify the 3334 /// expression as much as possible. 3335 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3336 const Loop *L, 3337 SCEV::NoWrapFlags Flags) { 3338 SmallVector<const SCEV *, 4> Operands; 3339 Operands.push_back(Start); 3340 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3341 if (StepChrec->getLoop() == L) { 3342 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3343 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3344 } 3345 3346 Operands.push_back(Step); 3347 return getAddRecExpr(Operands, L, Flags); 3348 } 3349 3350 /// Get an add recurrence expression for the specified loop. Simplify the 3351 /// expression as much as possible. 3352 const SCEV * 3353 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3354 const Loop *L, SCEV::NoWrapFlags Flags) { 3355 if (Operands.size() == 1) return Operands[0]; 3356 #ifndef NDEBUG 3357 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3358 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3359 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3360 "SCEVAddRecExpr operand types don't match!"); 3361 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3362 assert(isLoopInvariant(Operands[i], L) && 3363 "SCEVAddRecExpr operand is not loop-invariant!"); 3364 #endif 3365 3366 if (Operands.back()->isZero()) { 3367 Operands.pop_back(); 3368 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3369 } 3370 3371 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3372 // use that information to infer NUW and NSW flags. However, computing a 3373 // BE count requires calling getAddRecExpr, so we may not yet have a 3374 // meaningful BE count at this point (and if we don't, we'd be stuck 3375 // with a SCEVCouldNotCompute as the cached BE count). 3376 3377 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3378 3379 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3380 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3381 const Loop *NestedLoop = NestedAR->getLoop(); 3382 if (L->contains(NestedLoop) 3383 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3384 : (!NestedLoop->contains(L) && 3385 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3386 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3387 NestedAR->op_end()); 3388 Operands[0] = NestedAR->getStart(); 3389 // AddRecs require their operands be loop-invariant with respect to their 3390 // loops. Don't perform this transformation if it would break this 3391 // requirement. 3392 bool AllInvariant = all_of( 3393 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3394 3395 if (AllInvariant) { 3396 // Create a recurrence for the outer loop with the same step size. 3397 // 3398 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3399 // inner recurrence has the same property. 3400 SCEV::NoWrapFlags OuterFlags = 3401 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3402 3403 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3404 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3405 return isLoopInvariant(Op, NestedLoop); 3406 }); 3407 3408 if (AllInvariant) { 3409 // Ok, both add recurrences are valid after the transformation. 3410 // 3411 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3412 // the outer recurrence has the same property. 3413 SCEV::NoWrapFlags InnerFlags = 3414 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3415 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3416 } 3417 } 3418 // Reset Operands to its original state. 3419 Operands[0] = NestedAR; 3420 } 3421 } 3422 3423 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3424 // already have one, otherwise create a new one. 3425 return getOrCreateAddRecExpr(Operands, L, Flags); 3426 } 3427 3428 const SCEV * 3429 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3430 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3431 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3432 // getSCEV(Base)->getType() has the same address space as Base->getType() 3433 // because SCEV::getType() preserves the address space. 3434 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3435 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3436 // instruction to its SCEV, because the Instruction may be guarded by control 3437 // flow and the no-overflow bits may not be valid for the expression in any 3438 // context. This can be fixed similarly to how these flags are handled for 3439 // adds. 3440 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3441 : SCEV::FlagAnyWrap; 3442 3443 Type *CurTy = GEP->getType(); 3444 bool FirstIter = true; 3445 SmallVector<const SCEV *, 4> AddOps{BaseExpr}; 3446 for (const SCEV *IndexExpr : IndexExprs) { 3447 // Compute the (potentially symbolic) offset in bytes for this index. 3448 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3449 // For a struct, add the member offset. 3450 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3451 unsigned FieldNo = Index->getZExtValue(); 3452 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3453 AddOps.push_back(FieldOffset); 3454 3455 // Update CurTy to the type of the field at Index. 3456 CurTy = STy->getTypeAtIndex(Index); 3457 } else { 3458 // Update CurTy to its element type. 3459 if (FirstIter) { 3460 assert(isa<PointerType>(CurTy) && 3461 "The first index of a GEP indexes a pointer"); 3462 CurTy = GEP->getSourceElementType(); 3463 FirstIter = false; 3464 } else { 3465 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3466 } 3467 // For an array, add the element offset, explicitly scaled. 3468 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3469 // Getelementptr indices are signed. 3470 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3471 3472 // Multiply the index by the element size to compute the element offset. 3473 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3474 AddOps.push_back(LocalOffset); 3475 } 3476 } 3477 3478 // Add the base and all the offsets together. 3479 return getAddExpr(AddOps, Wrap); 3480 } 3481 3482 std::tuple<SCEV *, FoldingSetNodeID, void *> 3483 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3484 ArrayRef<const SCEV *> Ops) { 3485 FoldingSetNodeID ID; 3486 void *IP = nullptr; 3487 ID.AddInteger(SCEVType); 3488 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3489 ID.AddPointer(Ops[i]); 3490 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3491 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3492 } 3493 3494 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3495 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3496 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3497 } 3498 3499 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) { 3500 Type *Ty = Op->getType(); 3501 return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty)); 3502 } 3503 3504 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3505 SmallVectorImpl<const SCEV *> &Ops) { 3506 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3507 if (Ops.size() == 1) return Ops[0]; 3508 #ifndef NDEBUG 3509 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3510 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3511 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3512 "Operand types don't match!"); 3513 #endif 3514 3515 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3516 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3517 3518 // Sort by complexity, this groups all similar expression types together. 3519 GroupByComplexity(Ops, &LI, DT); 3520 3521 // Check if we have created the same expression before. 3522 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3523 return S; 3524 } 3525 3526 // If there are any constants, fold them together. 3527 unsigned Idx = 0; 3528 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3529 ++Idx; 3530 assert(Idx < Ops.size()); 3531 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3532 if (Kind == scSMaxExpr) 3533 return APIntOps::smax(LHS, RHS); 3534 else if (Kind == scSMinExpr) 3535 return APIntOps::smin(LHS, RHS); 3536 else if (Kind == scUMaxExpr) 3537 return APIntOps::umax(LHS, RHS); 3538 else if (Kind == scUMinExpr) 3539 return APIntOps::umin(LHS, RHS); 3540 llvm_unreachable("Unknown SCEV min/max opcode"); 3541 }; 3542 3543 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3544 // We found two constants, fold them together! 3545 ConstantInt *Fold = ConstantInt::get( 3546 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3547 Ops[0] = getConstant(Fold); 3548 Ops.erase(Ops.begin()+1); // Erase the folded element 3549 if (Ops.size() == 1) return Ops[0]; 3550 LHSC = cast<SCEVConstant>(Ops[0]); 3551 } 3552 3553 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3554 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3555 3556 if (IsMax ? IsMinV : IsMaxV) { 3557 // If we are left with a constant minimum(/maximum)-int, strip it off. 3558 Ops.erase(Ops.begin()); 3559 --Idx; 3560 } else if (IsMax ? IsMaxV : IsMinV) { 3561 // If we have a max(/min) with a constant maximum(/minimum)-int, 3562 // it will always be the extremum. 3563 return LHSC; 3564 } 3565 3566 if (Ops.size() == 1) return Ops[0]; 3567 } 3568 3569 // Find the first operation of the same kind 3570 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3571 ++Idx; 3572 3573 // Check to see if one of the operands is of the same kind. If so, expand its 3574 // operands onto our operand list, and recurse to simplify. 3575 if (Idx < Ops.size()) { 3576 bool DeletedAny = false; 3577 while (Ops[Idx]->getSCEVType() == Kind) { 3578 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3579 Ops.erase(Ops.begin()+Idx); 3580 Ops.append(SMME->op_begin(), SMME->op_end()); 3581 DeletedAny = true; 3582 } 3583 3584 if (DeletedAny) 3585 return getMinMaxExpr(Kind, Ops); 3586 } 3587 3588 // Okay, check to see if the same value occurs in the operand list twice. If 3589 // so, delete one. Since we sorted the list, these values are required to 3590 // be adjacent. 3591 llvm::CmpInst::Predicate GEPred = 3592 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3593 llvm::CmpInst::Predicate LEPred = 3594 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3595 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3596 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3597 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3598 if (Ops[i] == Ops[i + 1] || 3599 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3600 // X op Y op Y --> X op Y 3601 // X op Y --> X, if we know X, Y are ordered appropriately 3602 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3603 --i; 3604 --e; 3605 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3606 Ops[i + 1])) { 3607 // X op Y --> Y, if we know X, Y are ordered appropriately 3608 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3609 --i; 3610 --e; 3611 } 3612 } 3613 3614 if (Ops.size() == 1) return Ops[0]; 3615 3616 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3617 3618 // Okay, it looks like we really DO need an expr. Check to see if we 3619 // already have one, otherwise create a new one. 3620 const SCEV *ExistingSCEV; 3621 FoldingSetNodeID ID; 3622 void *IP; 3623 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3624 if (ExistingSCEV) 3625 return ExistingSCEV; 3626 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3627 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3628 SCEV *S = new (SCEVAllocator) 3629 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3630 3631 UniqueSCEVs.InsertNode(S, IP); 3632 addToLoopUseLists(S); 3633 return S; 3634 } 3635 3636 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3637 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3638 return getSMaxExpr(Ops); 3639 } 3640 3641 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3642 return getMinMaxExpr(scSMaxExpr, Ops); 3643 } 3644 3645 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3646 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3647 return getUMaxExpr(Ops); 3648 } 3649 3650 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3651 return getMinMaxExpr(scUMaxExpr, Ops); 3652 } 3653 3654 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3655 const SCEV *RHS) { 3656 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3657 return getSMinExpr(Ops); 3658 } 3659 3660 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3661 return getMinMaxExpr(scSMinExpr, Ops); 3662 } 3663 3664 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3665 const SCEV *RHS) { 3666 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3667 return getUMinExpr(Ops); 3668 } 3669 3670 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3671 return getMinMaxExpr(scUMinExpr, Ops); 3672 } 3673 3674 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3675 if (isa<ScalableVectorType>(AllocTy)) { 3676 Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo()); 3677 Constant *One = ConstantInt::get(IntTy, 1); 3678 Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One); 3679 // Note that the expression we created is the final expression, we don't 3680 // want to simplify it any further Also, if we call a normal getSCEV(), 3681 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3682 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3683 } 3684 // We can bypass creating a target-independent 3685 // constant expression and then folding it back into a ConstantInt. 3686 // This is just a compile-time optimization. 3687 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3688 } 3689 3690 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3691 StructType *STy, 3692 unsigned FieldNo) { 3693 // We can bypass creating a target-independent 3694 // constant expression and then folding it back into a ConstantInt. 3695 // This is just a compile-time optimization. 3696 return getConstant( 3697 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3698 } 3699 3700 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3701 // Don't attempt to do anything other than create a SCEVUnknown object 3702 // here. createSCEV only calls getUnknown after checking for all other 3703 // interesting possibilities, and any other code that calls getUnknown 3704 // is doing so in order to hide a value from SCEV canonicalization. 3705 3706 FoldingSetNodeID ID; 3707 ID.AddInteger(scUnknown); 3708 ID.AddPointer(V); 3709 void *IP = nullptr; 3710 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3711 assert(cast<SCEVUnknown>(S)->getValue() == V && 3712 "Stale SCEVUnknown in uniquing map!"); 3713 return S; 3714 } 3715 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3716 FirstUnknown); 3717 FirstUnknown = cast<SCEVUnknown>(S); 3718 UniqueSCEVs.InsertNode(S, IP); 3719 return S; 3720 } 3721 3722 //===----------------------------------------------------------------------===// 3723 // Basic SCEV Analysis and PHI Idiom Recognition Code 3724 // 3725 3726 /// Test if values of the given type are analyzable within the SCEV 3727 /// framework. This primarily includes integer types, and it can optionally 3728 /// include pointer types if the ScalarEvolution class has access to 3729 /// target-specific information. 3730 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3731 // Integers and pointers are always SCEVable. 3732 return Ty->isIntOrPtrTy(); 3733 } 3734 3735 /// Return the size in bits of the specified type, for which isSCEVable must 3736 /// return true. 3737 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3738 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3739 if (Ty->isPointerTy()) 3740 return getDataLayout().getIndexTypeSizeInBits(Ty); 3741 return getDataLayout().getTypeSizeInBits(Ty); 3742 } 3743 3744 /// Return a type with the same bitwidth as the given type and which represents 3745 /// how SCEV will treat the given type, for which isSCEVable must return 3746 /// true. For pointer types, this is the pointer index sized integer type. 3747 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3748 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3749 3750 if (Ty->isIntegerTy()) 3751 return Ty; 3752 3753 // The only other support type is pointer. 3754 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3755 return getDataLayout().getIndexType(Ty); 3756 } 3757 3758 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3759 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3760 } 3761 3762 const SCEV *ScalarEvolution::getCouldNotCompute() { 3763 return CouldNotCompute.get(); 3764 } 3765 3766 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3767 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3768 auto *SU = dyn_cast<SCEVUnknown>(S); 3769 return SU && SU->getValue() == nullptr; 3770 }); 3771 3772 return !ContainsNulls; 3773 } 3774 3775 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3776 HasRecMapType::iterator I = HasRecMap.find(S); 3777 if (I != HasRecMap.end()) 3778 return I->second; 3779 3780 bool FoundAddRec = 3781 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3782 HasRecMap.insert({S, FoundAddRec}); 3783 return FoundAddRec; 3784 } 3785 3786 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3787 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3788 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3789 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3790 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3791 if (!Add) 3792 return {S, nullptr}; 3793 3794 if (Add->getNumOperands() != 2) 3795 return {S, nullptr}; 3796 3797 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3798 if (!ConstOp) 3799 return {S, nullptr}; 3800 3801 return {Add->getOperand(1), ConstOp->getValue()}; 3802 } 3803 3804 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3805 /// by the value and offset from any ValueOffsetPair in the set. 3806 SetVector<ScalarEvolution::ValueOffsetPair> * 3807 ScalarEvolution::getSCEVValues(const SCEV *S) { 3808 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3809 if (SI == ExprValueMap.end()) 3810 return nullptr; 3811 #ifndef NDEBUG 3812 if (VerifySCEVMap) { 3813 // Check there is no dangling Value in the set returned. 3814 for (const auto &VE : SI->second) 3815 assert(ValueExprMap.count(VE.first)); 3816 } 3817 #endif 3818 return &SI->second; 3819 } 3820 3821 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3822 /// cannot be used separately. eraseValueFromMap should be used to remove 3823 /// V from ValueExprMap and ExprValueMap at the same time. 3824 void ScalarEvolution::eraseValueFromMap(Value *V) { 3825 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3826 if (I != ValueExprMap.end()) { 3827 const SCEV *S = I->second; 3828 // Remove {V, 0} from the set of ExprValueMap[S] 3829 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3830 SV->remove({V, nullptr}); 3831 3832 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3833 const SCEV *Stripped; 3834 ConstantInt *Offset; 3835 std::tie(Stripped, Offset) = splitAddExpr(S); 3836 if (Offset != nullptr) { 3837 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3838 SV->remove({V, Offset}); 3839 } 3840 ValueExprMap.erase(V); 3841 } 3842 } 3843 3844 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3845 /// TODO: In reality it is better to check the poison recursively 3846 /// but this is better than nothing. 3847 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3848 if (auto *I = dyn_cast<Instruction>(V)) { 3849 if (isa<OverflowingBinaryOperator>(I)) { 3850 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3851 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3852 return true; 3853 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3854 return true; 3855 } 3856 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3857 return true; 3858 } 3859 return false; 3860 } 3861 3862 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3863 /// create a new one. 3864 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3865 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3866 3867 const SCEV *S = getExistingSCEV(V); 3868 if (S == nullptr) { 3869 S = createSCEV(V); 3870 // During PHI resolution, it is possible to create two SCEVs for the same 3871 // V, so it is needed to double check whether V->S is inserted into 3872 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3873 std::pair<ValueExprMapType::iterator, bool> Pair = 3874 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3875 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3876 ExprValueMap[S].insert({V, nullptr}); 3877 3878 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3879 // ExprValueMap. 3880 const SCEV *Stripped = S; 3881 ConstantInt *Offset = nullptr; 3882 std::tie(Stripped, Offset) = splitAddExpr(S); 3883 // If stripped is SCEVUnknown, don't bother to save 3884 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3885 // increase the complexity of the expansion code. 3886 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3887 // because it may generate add/sub instead of GEP in SCEV expansion. 3888 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3889 !isa<GetElementPtrInst>(V)) 3890 ExprValueMap[Stripped].insert({V, Offset}); 3891 } 3892 } 3893 return S; 3894 } 3895 3896 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3897 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3898 3899 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3900 if (I != ValueExprMap.end()) { 3901 const SCEV *S = I->second; 3902 if (checkValidity(S)) 3903 return S; 3904 eraseValueFromMap(V); 3905 forgetMemoizedResults(S); 3906 } 3907 return nullptr; 3908 } 3909 3910 /// Return a SCEV corresponding to -V = -1*V 3911 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3912 SCEV::NoWrapFlags Flags) { 3913 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3914 return getConstant( 3915 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3916 3917 Type *Ty = V->getType(); 3918 Ty = getEffectiveSCEVType(Ty); 3919 return getMulExpr(V, getMinusOne(Ty), Flags); 3920 } 3921 3922 /// If Expr computes ~A, return A else return nullptr 3923 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3924 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3925 if (!Add || Add->getNumOperands() != 2 || 3926 !Add->getOperand(0)->isAllOnesValue()) 3927 return nullptr; 3928 3929 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3930 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3931 !AddRHS->getOperand(0)->isAllOnesValue()) 3932 return nullptr; 3933 3934 return AddRHS->getOperand(1); 3935 } 3936 3937 /// Return a SCEV corresponding to ~V = -1-V 3938 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3939 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3940 return getConstant( 3941 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3942 3943 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3944 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3945 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3946 SmallVector<const SCEV *, 2> MatchedOperands; 3947 for (const SCEV *Operand : MME->operands()) { 3948 const SCEV *Matched = MatchNotExpr(Operand); 3949 if (!Matched) 3950 return (const SCEV *)nullptr; 3951 MatchedOperands.push_back(Matched); 3952 } 3953 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 3954 MatchedOperands); 3955 }; 3956 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3957 return Replaced; 3958 } 3959 3960 Type *Ty = V->getType(); 3961 Ty = getEffectiveSCEVType(Ty); 3962 return getMinusSCEV(getMinusOne(Ty), V); 3963 } 3964 3965 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3966 SCEV::NoWrapFlags Flags, 3967 unsigned Depth) { 3968 // Fast path: X - X --> 0. 3969 if (LHS == RHS) 3970 return getZero(LHS->getType()); 3971 3972 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3973 // makes it so that we cannot make much use of NUW. 3974 auto AddFlags = SCEV::FlagAnyWrap; 3975 const bool RHSIsNotMinSigned = 3976 !getSignedRangeMin(RHS).isMinSignedValue(); 3977 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3978 // Let M be the minimum representable signed value. Then (-1)*RHS 3979 // signed-wraps if and only if RHS is M. That can happen even for 3980 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3981 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3982 // (-1)*RHS, we need to prove that RHS != M. 3983 // 3984 // If LHS is non-negative and we know that LHS - RHS does not 3985 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3986 // either by proving that RHS > M or that LHS >= 0. 3987 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3988 AddFlags = SCEV::FlagNSW; 3989 } 3990 } 3991 3992 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3993 // RHS is NSW and LHS >= 0. 3994 // 3995 // The difficulty here is that the NSW flag may have been proven 3996 // relative to a loop that is to be found in a recurrence in LHS and 3997 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3998 // larger scope than intended. 3999 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4000 4001 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4002 } 4003 4004 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4005 unsigned Depth) { 4006 Type *SrcTy = V->getType(); 4007 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4008 "Cannot truncate or zero extend with non-integer arguments!"); 4009 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4010 return V; // No conversion 4011 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4012 return getTruncateExpr(V, Ty, Depth); 4013 return getZeroExtendExpr(V, Ty, Depth); 4014 } 4015 4016 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4017 unsigned Depth) { 4018 Type *SrcTy = V->getType(); 4019 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4020 "Cannot truncate or zero extend with non-integer arguments!"); 4021 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4022 return V; // No conversion 4023 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4024 return getTruncateExpr(V, Ty, Depth); 4025 return getSignExtendExpr(V, Ty, Depth); 4026 } 4027 4028 const SCEV * 4029 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4030 Type *SrcTy = V->getType(); 4031 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4032 "Cannot noop or zero extend with non-integer arguments!"); 4033 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4034 "getNoopOrZeroExtend cannot truncate!"); 4035 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4036 return V; // No conversion 4037 return getZeroExtendExpr(V, Ty); 4038 } 4039 4040 const SCEV * 4041 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4042 Type *SrcTy = V->getType(); 4043 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4044 "Cannot noop or sign extend with non-integer arguments!"); 4045 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4046 "getNoopOrSignExtend cannot truncate!"); 4047 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4048 return V; // No conversion 4049 return getSignExtendExpr(V, Ty); 4050 } 4051 4052 const SCEV * 4053 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4054 Type *SrcTy = V->getType(); 4055 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4056 "Cannot noop or any extend with non-integer arguments!"); 4057 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4058 "getNoopOrAnyExtend cannot truncate!"); 4059 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4060 return V; // No conversion 4061 return getAnyExtendExpr(V, Ty); 4062 } 4063 4064 const SCEV * 4065 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4066 Type *SrcTy = V->getType(); 4067 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4068 "Cannot truncate or noop with non-integer arguments!"); 4069 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4070 "getTruncateOrNoop cannot extend!"); 4071 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4072 return V; // No conversion 4073 return getTruncateExpr(V, Ty); 4074 } 4075 4076 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4077 const SCEV *RHS) { 4078 const SCEV *PromotedLHS = LHS; 4079 const SCEV *PromotedRHS = RHS; 4080 4081 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4082 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4083 else 4084 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4085 4086 return getUMaxExpr(PromotedLHS, PromotedRHS); 4087 } 4088 4089 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4090 const SCEV *RHS) { 4091 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4092 return getUMinFromMismatchedTypes(Ops); 4093 } 4094 4095 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4096 SmallVectorImpl<const SCEV *> &Ops) { 4097 assert(!Ops.empty() && "At least one operand must be!"); 4098 // Trivial case. 4099 if (Ops.size() == 1) 4100 return Ops[0]; 4101 4102 // Find the max type first. 4103 Type *MaxType = nullptr; 4104 for (auto *S : Ops) 4105 if (MaxType) 4106 MaxType = getWiderType(MaxType, S->getType()); 4107 else 4108 MaxType = S->getType(); 4109 assert(MaxType && "Failed to find maximum type!"); 4110 4111 // Extend all ops to max type. 4112 SmallVector<const SCEV *, 2> PromotedOps; 4113 for (auto *S : Ops) 4114 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4115 4116 // Generate umin. 4117 return getUMinExpr(PromotedOps); 4118 } 4119 4120 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4121 // A pointer operand may evaluate to a nonpointer expression, such as null. 4122 if (!V->getType()->isPointerTy()) 4123 return V; 4124 4125 while (true) { 4126 if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) { 4127 V = Cast->getOperand(); 4128 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4129 const SCEV *PtrOp = nullptr; 4130 for (const SCEV *NAryOp : NAry->operands()) { 4131 if (NAryOp->getType()->isPointerTy()) { 4132 // Cannot find the base of an expression with multiple pointer ops. 4133 if (PtrOp) 4134 return V; 4135 PtrOp = NAryOp; 4136 } 4137 } 4138 if (!PtrOp) // All operands were non-pointer. 4139 return V; 4140 V = PtrOp; 4141 } else // Not something we can look further into. 4142 return V; 4143 } 4144 } 4145 4146 /// Push users of the given Instruction onto the given Worklist. 4147 static void 4148 PushDefUseChildren(Instruction *I, 4149 SmallVectorImpl<Instruction *> &Worklist) { 4150 // Push the def-use children onto the Worklist stack. 4151 for (User *U : I->users()) 4152 Worklist.push_back(cast<Instruction>(U)); 4153 } 4154 4155 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4156 SmallVector<Instruction *, 16> Worklist; 4157 PushDefUseChildren(PN, Worklist); 4158 4159 SmallPtrSet<Instruction *, 8> Visited; 4160 Visited.insert(PN); 4161 while (!Worklist.empty()) { 4162 Instruction *I = Worklist.pop_back_val(); 4163 if (!Visited.insert(I).second) 4164 continue; 4165 4166 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4167 if (It != ValueExprMap.end()) { 4168 const SCEV *Old = It->second; 4169 4170 // Short-circuit the def-use traversal if the symbolic name 4171 // ceases to appear in expressions. 4172 if (Old != SymName && !hasOperand(Old, SymName)) 4173 continue; 4174 4175 // SCEVUnknown for a PHI either means that it has an unrecognized 4176 // structure, it's a PHI that's in the progress of being computed 4177 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4178 // additional loop trip count information isn't going to change anything. 4179 // In the second case, createNodeForPHI will perform the necessary 4180 // updates on its own when it gets to that point. In the third, we do 4181 // want to forget the SCEVUnknown. 4182 if (!isa<PHINode>(I) || 4183 !isa<SCEVUnknown>(Old) || 4184 (I != PN && Old == SymName)) { 4185 eraseValueFromMap(It->first); 4186 forgetMemoizedResults(Old); 4187 } 4188 } 4189 4190 PushDefUseChildren(I, Worklist); 4191 } 4192 } 4193 4194 namespace { 4195 4196 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4197 /// expression in case its Loop is L. If it is not L then 4198 /// if IgnoreOtherLoops is true then use AddRec itself 4199 /// otherwise rewrite cannot be done. 4200 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4201 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4202 public: 4203 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4204 bool IgnoreOtherLoops = true) { 4205 SCEVInitRewriter Rewriter(L, SE); 4206 const SCEV *Result = Rewriter.visit(S); 4207 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4208 return SE.getCouldNotCompute(); 4209 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4210 ? SE.getCouldNotCompute() 4211 : Result; 4212 } 4213 4214 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4215 if (!SE.isLoopInvariant(Expr, L)) 4216 SeenLoopVariantSCEVUnknown = true; 4217 return Expr; 4218 } 4219 4220 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4221 // Only re-write AddRecExprs for this loop. 4222 if (Expr->getLoop() == L) 4223 return Expr->getStart(); 4224 SeenOtherLoops = true; 4225 return Expr; 4226 } 4227 4228 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4229 4230 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4231 4232 private: 4233 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4234 : SCEVRewriteVisitor(SE), L(L) {} 4235 4236 const Loop *L; 4237 bool SeenLoopVariantSCEVUnknown = false; 4238 bool SeenOtherLoops = false; 4239 }; 4240 4241 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4242 /// increment expression in case its Loop is L. If it is not L then 4243 /// use AddRec itself. 4244 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4245 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4246 public: 4247 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4248 SCEVPostIncRewriter Rewriter(L, SE); 4249 const SCEV *Result = Rewriter.visit(S); 4250 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4251 ? SE.getCouldNotCompute() 4252 : Result; 4253 } 4254 4255 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4256 if (!SE.isLoopInvariant(Expr, L)) 4257 SeenLoopVariantSCEVUnknown = true; 4258 return Expr; 4259 } 4260 4261 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4262 // Only re-write AddRecExprs for this loop. 4263 if (Expr->getLoop() == L) 4264 return Expr->getPostIncExpr(SE); 4265 SeenOtherLoops = true; 4266 return Expr; 4267 } 4268 4269 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4270 4271 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4272 4273 private: 4274 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4275 : SCEVRewriteVisitor(SE), L(L) {} 4276 4277 const Loop *L; 4278 bool SeenLoopVariantSCEVUnknown = false; 4279 bool SeenOtherLoops = false; 4280 }; 4281 4282 /// This class evaluates the compare condition by matching it against the 4283 /// condition of loop latch. If there is a match we assume a true value 4284 /// for the condition while building SCEV nodes. 4285 class SCEVBackedgeConditionFolder 4286 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4287 public: 4288 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4289 ScalarEvolution &SE) { 4290 bool IsPosBECond = false; 4291 Value *BECond = nullptr; 4292 if (BasicBlock *Latch = L->getLoopLatch()) { 4293 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4294 if (BI && BI->isConditional()) { 4295 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4296 "Both outgoing branches should not target same header!"); 4297 BECond = BI->getCondition(); 4298 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4299 } else { 4300 return S; 4301 } 4302 } 4303 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4304 return Rewriter.visit(S); 4305 } 4306 4307 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4308 const SCEV *Result = Expr; 4309 bool InvariantF = SE.isLoopInvariant(Expr, L); 4310 4311 if (!InvariantF) { 4312 Instruction *I = cast<Instruction>(Expr->getValue()); 4313 switch (I->getOpcode()) { 4314 case Instruction::Select: { 4315 SelectInst *SI = cast<SelectInst>(I); 4316 Optional<const SCEV *> Res = 4317 compareWithBackedgeCondition(SI->getCondition()); 4318 if (Res.hasValue()) { 4319 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4320 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4321 } 4322 break; 4323 } 4324 default: { 4325 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4326 if (Res.hasValue()) 4327 Result = Res.getValue(); 4328 break; 4329 } 4330 } 4331 } 4332 return Result; 4333 } 4334 4335 private: 4336 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4337 bool IsPosBECond, ScalarEvolution &SE) 4338 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4339 IsPositiveBECond(IsPosBECond) {} 4340 4341 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4342 4343 const Loop *L; 4344 /// Loop back condition. 4345 Value *BackedgeCond = nullptr; 4346 /// Set to true if loop back is on positive branch condition. 4347 bool IsPositiveBECond; 4348 }; 4349 4350 Optional<const SCEV *> 4351 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4352 4353 // If value matches the backedge condition for loop latch, 4354 // then return a constant evolution node based on loopback 4355 // branch taken. 4356 if (BackedgeCond == IC) 4357 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4358 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4359 return None; 4360 } 4361 4362 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4363 public: 4364 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4365 ScalarEvolution &SE) { 4366 SCEVShiftRewriter Rewriter(L, SE); 4367 const SCEV *Result = Rewriter.visit(S); 4368 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4369 } 4370 4371 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4372 // Only allow AddRecExprs for this loop. 4373 if (!SE.isLoopInvariant(Expr, L)) 4374 Valid = false; 4375 return Expr; 4376 } 4377 4378 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4379 if (Expr->getLoop() == L && Expr->isAffine()) 4380 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4381 Valid = false; 4382 return Expr; 4383 } 4384 4385 bool isValid() { return Valid; } 4386 4387 private: 4388 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4389 : SCEVRewriteVisitor(SE), L(L) {} 4390 4391 const Loop *L; 4392 bool Valid = true; 4393 }; 4394 4395 } // end anonymous namespace 4396 4397 SCEV::NoWrapFlags 4398 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4399 if (!AR->isAffine()) 4400 return SCEV::FlagAnyWrap; 4401 4402 using OBO = OverflowingBinaryOperator; 4403 4404 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4405 4406 if (!AR->hasNoSignedWrap()) { 4407 ConstantRange AddRecRange = getSignedRange(AR); 4408 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4409 4410 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4411 Instruction::Add, IncRange, OBO::NoSignedWrap); 4412 if (NSWRegion.contains(AddRecRange)) 4413 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4414 } 4415 4416 if (!AR->hasNoUnsignedWrap()) { 4417 ConstantRange AddRecRange = getUnsignedRange(AR); 4418 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4419 4420 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4421 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4422 if (NUWRegion.contains(AddRecRange)) 4423 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4424 } 4425 4426 return Result; 4427 } 4428 4429 namespace { 4430 4431 /// Represents an abstract binary operation. This may exist as a 4432 /// normal instruction or constant expression, or may have been 4433 /// derived from an expression tree. 4434 struct BinaryOp { 4435 unsigned Opcode; 4436 Value *LHS; 4437 Value *RHS; 4438 bool IsNSW = false; 4439 bool IsNUW = false; 4440 bool IsExact = false; 4441 4442 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4443 /// constant expression. 4444 Operator *Op = nullptr; 4445 4446 explicit BinaryOp(Operator *Op) 4447 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4448 Op(Op) { 4449 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4450 IsNSW = OBO->hasNoSignedWrap(); 4451 IsNUW = OBO->hasNoUnsignedWrap(); 4452 } 4453 if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op)) 4454 IsExact = PEO->isExact(); 4455 } 4456 4457 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4458 bool IsNUW = false, bool IsExact = false) 4459 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 4460 IsExact(IsExact) {} 4461 }; 4462 4463 } // end anonymous namespace 4464 4465 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4466 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4467 auto *Op = dyn_cast<Operator>(V); 4468 if (!Op) 4469 return None; 4470 4471 // Implementation detail: all the cleverness here should happen without 4472 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4473 // SCEV expressions when possible, and we should not break that. 4474 4475 switch (Op->getOpcode()) { 4476 case Instruction::Add: 4477 case Instruction::Sub: 4478 case Instruction::Mul: 4479 case Instruction::UDiv: 4480 case Instruction::URem: 4481 case Instruction::And: 4482 case Instruction::Or: 4483 case Instruction::AShr: 4484 case Instruction::Shl: 4485 return BinaryOp(Op); 4486 4487 case Instruction::Xor: 4488 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4489 // If the RHS of the xor is a signmask, then this is just an add. 4490 // Instcombine turns add of signmask into xor as a strength reduction step. 4491 if (RHSC->getValue().isSignMask()) 4492 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4493 return BinaryOp(Op); 4494 4495 case Instruction::LShr: 4496 // Turn logical shift right of a constant into a unsigned divide. 4497 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4498 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4499 4500 // If the shift count is not less than the bitwidth, the result of 4501 // the shift is undefined. Don't try to analyze it, because the 4502 // resolution chosen here may differ from the resolution chosen in 4503 // other parts of the compiler. 4504 if (SA->getValue().ult(BitWidth)) { 4505 Constant *X = 4506 ConstantInt::get(SA->getContext(), 4507 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4508 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4509 } 4510 } 4511 return BinaryOp(Op); 4512 4513 case Instruction::ExtractValue: { 4514 auto *EVI = cast<ExtractValueInst>(Op); 4515 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4516 break; 4517 4518 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4519 if (!WO) 4520 break; 4521 4522 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4523 bool Signed = WO->isSigned(); 4524 // TODO: Should add nuw/nsw flags for mul as well. 4525 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4526 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4527 4528 // Now that we know that all uses of the arithmetic-result component of 4529 // CI are guarded by the overflow check, we can go ahead and pretend 4530 // that the arithmetic is non-overflowing. 4531 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4532 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4533 } 4534 4535 default: 4536 break; 4537 } 4538 4539 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4540 // semantics as a Sub, return a binary sub expression. 4541 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4542 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4543 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4544 4545 return None; 4546 } 4547 4548 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4549 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4550 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4551 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4552 /// follows one of the following patterns: 4553 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4554 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4555 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4556 /// we return the type of the truncation operation, and indicate whether the 4557 /// truncated type should be treated as signed/unsigned by setting 4558 /// \p Signed to true/false, respectively. 4559 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4560 bool &Signed, ScalarEvolution &SE) { 4561 // The case where Op == SymbolicPHI (that is, with no type conversions on 4562 // the way) is handled by the regular add recurrence creating logic and 4563 // would have already been triggered in createAddRecForPHI. Reaching it here 4564 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4565 // because one of the other operands of the SCEVAddExpr updating this PHI is 4566 // not invariant). 4567 // 4568 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4569 // this case predicates that allow us to prove that Op == SymbolicPHI will 4570 // be added. 4571 if (Op == SymbolicPHI) 4572 return nullptr; 4573 4574 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4575 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4576 if (SourceBits != NewBits) 4577 return nullptr; 4578 4579 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4580 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4581 if (!SExt && !ZExt) 4582 return nullptr; 4583 const SCEVTruncateExpr *Trunc = 4584 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4585 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4586 if (!Trunc) 4587 return nullptr; 4588 const SCEV *X = Trunc->getOperand(); 4589 if (X != SymbolicPHI) 4590 return nullptr; 4591 Signed = SExt != nullptr; 4592 return Trunc->getType(); 4593 } 4594 4595 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4596 if (!PN->getType()->isIntegerTy()) 4597 return nullptr; 4598 const Loop *L = LI.getLoopFor(PN->getParent()); 4599 if (!L || L->getHeader() != PN->getParent()) 4600 return nullptr; 4601 return L; 4602 } 4603 4604 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4605 // computation that updates the phi follows the following pattern: 4606 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4607 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4608 // If so, try to see if it can be rewritten as an AddRecExpr under some 4609 // Predicates. If successful, return them as a pair. Also cache the results 4610 // of the analysis. 4611 // 4612 // Example usage scenario: 4613 // Say the Rewriter is called for the following SCEV: 4614 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4615 // where: 4616 // %X = phi i64 (%Start, %BEValue) 4617 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4618 // and call this function with %SymbolicPHI = %X. 4619 // 4620 // The analysis will find that the value coming around the backedge has 4621 // the following SCEV: 4622 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4623 // Upon concluding that this matches the desired pattern, the function 4624 // will return the pair {NewAddRec, SmallPredsVec} where: 4625 // NewAddRec = {%Start,+,%Step} 4626 // SmallPredsVec = {P1, P2, P3} as follows: 4627 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4628 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4629 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4630 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4631 // under the predicates {P1,P2,P3}. 4632 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4633 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4634 // 4635 // TODO's: 4636 // 4637 // 1) Extend the Induction descriptor to also support inductions that involve 4638 // casts: When needed (namely, when we are called in the context of the 4639 // vectorizer induction analysis), a Set of cast instructions will be 4640 // populated by this method, and provided back to isInductionPHI. This is 4641 // needed to allow the vectorizer to properly record them to be ignored by 4642 // the cost model and to avoid vectorizing them (otherwise these casts, 4643 // which are redundant under the runtime overflow checks, will be 4644 // vectorized, which can be costly). 4645 // 4646 // 2) Support additional induction/PHISCEV patterns: We also want to support 4647 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4648 // after the induction update operation (the induction increment): 4649 // 4650 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4651 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4652 // 4653 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4654 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4655 // 4656 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4657 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4658 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4659 SmallVector<const SCEVPredicate *, 3> Predicates; 4660 4661 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4662 // return an AddRec expression under some predicate. 4663 4664 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4665 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4666 assert(L && "Expecting an integer loop header phi"); 4667 4668 // The loop may have multiple entrances or multiple exits; we can analyze 4669 // this phi as an addrec if it has a unique entry value and a unique 4670 // backedge value. 4671 Value *BEValueV = nullptr, *StartValueV = nullptr; 4672 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4673 Value *V = PN->getIncomingValue(i); 4674 if (L->contains(PN->getIncomingBlock(i))) { 4675 if (!BEValueV) { 4676 BEValueV = V; 4677 } else if (BEValueV != V) { 4678 BEValueV = nullptr; 4679 break; 4680 } 4681 } else if (!StartValueV) { 4682 StartValueV = V; 4683 } else if (StartValueV != V) { 4684 StartValueV = nullptr; 4685 break; 4686 } 4687 } 4688 if (!BEValueV || !StartValueV) 4689 return None; 4690 4691 const SCEV *BEValue = getSCEV(BEValueV); 4692 4693 // If the value coming around the backedge is an add with the symbolic 4694 // value we just inserted, possibly with casts that we can ignore under 4695 // an appropriate runtime guard, then we found a simple induction variable! 4696 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4697 if (!Add) 4698 return None; 4699 4700 // If there is a single occurrence of the symbolic value, possibly 4701 // casted, replace it with a recurrence. 4702 unsigned FoundIndex = Add->getNumOperands(); 4703 Type *TruncTy = nullptr; 4704 bool Signed; 4705 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4706 if ((TruncTy = 4707 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4708 if (FoundIndex == e) { 4709 FoundIndex = i; 4710 break; 4711 } 4712 4713 if (FoundIndex == Add->getNumOperands()) 4714 return None; 4715 4716 // Create an add with everything but the specified operand. 4717 SmallVector<const SCEV *, 8> Ops; 4718 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4719 if (i != FoundIndex) 4720 Ops.push_back(Add->getOperand(i)); 4721 const SCEV *Accum = getAddExpr(Ops); 4722 4723 // The runtime checks will not be valid if the step amount is 4724 // varying inside the loop. 4725 if (!isLoopInvariant(Accum, L)) 4726 return None; 4727 4728 // *** Part2: Create the predicates 4729 4730 // Analysis was successful: we have a phi-with-cast pattern for which we 4731 // can return an AddRec expression under the following predicates: 4732 // 4733 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4734 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4735 // P2: An Equal predicate that guarantees that 4736 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4737 // P3: An Equal predicate that guarantees that 4738 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4739 // 4740 // As we next prove, the above predicates guarantee that: 4741 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4742 // 4743 // 4744 // More formally, we want to prove that: 4745 // Expr(i+1) = Start + (i+1) * Accum 4746 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4747 // 4748 // Given that: 4749 // 1) Expr(0) = Start 4750 // 2) Expr(1) = Start + Accum 4751 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4752 // 3) Induction hypothesis (step i): 4753 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4754 // 4755 // Proof: 4756 // Expr(i+1) = 4757 // = Start + (i+1)*Accum 4758 // = (Start + i*Accum) + Accum 4759 // = Expr(i) + Accum 4760 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4761 // :: from step i 4762 // 4763 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4764 // 4765 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4766 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4767 // + Accum :: from P3 4768 // 4769 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4770 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4771 // 4772 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4773 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4774 // 4775 // By induction, the same applies to all iterations 1<=i<n: 4776 // 4777 4778 // Create a truncated addrec for which we will add a no overflow check (P1). 4779 const SCEV *StartVal = getSCEV(StartValueV); 4780 const SCEV *PHISCEV = 4781 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4782 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4783 4784 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4785 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4786 // will be constant. 4787 // 4788 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4789 // add P1. 4790 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4791 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4792 Signed ? SCEVWrapPredicate::IncrementNSSW 4793 : SCEVWrapPredicate::IncrementNUSW; 4794 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4795 Predicates.push_back(AddRecPred); 4796 } 4797 4798 // Create the Equal Predicates P2,P3: 4799 4800 // It is possible that the predicates P2 and/or P3 are computable at 4801 // compile time due to StartVal and/or Accum being constants. 4802 // If either one is, then we can check that now and escape if either P2 4803 // or P3 is false. 4804 4805 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4806 // for each of StartVal and Accum 4807 auto getExtendedExpr = [&](const SCEV *Expr, 4808 bool CreateSignExtend) -> const SCEV * { 4809 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4810 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4811 const SCEV *ExtendedExpr = 4812 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4813 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4814 return ExtendedExpr; 4815 }; 4816 4817 // Given: 4818 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4819 // = getExtendedExpr(Expr) 4820 // Determine whether the predicate P: Expr == ExtendedExpr 4821 // is known to be false at compile time 4822 auto PredIsKnownFalse = [&](const SCEV *Expr, 4823 const SCEV *ExtendedExpr) -> bool { 4824 return Expr != ExtendedExpr && 4825 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4826 }; 4827 4828 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4829 if (PredIsKnownFalse(StartVal, StartExtended)) { 4830 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4831 return None; 4832 } 4833 4834 // The Step is always Signed (because the overflow checks are either 4835 // NSSW or NUSW) 4836 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4837 if (PredIsKnownFalse(Accum, AccumExtended)) { 4838 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4839 return None; 4840 } 4841 4842 auto AppendPredicate = [&](const SCEV *Expr, 4843 const SCEV *ExtendedExpr) -> void { 4844 if (Expr != ExtendedExpr && 4845 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4846 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4847 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4848 Predicates.push_back(Pred); 4849 } 4850 }; 4851 4852 AppendPredicate(StartVal, StartExtended); 4853 AppendPredicate(Accum, AccumExtended); 4854 4855 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4856 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4857 // into NewAR if it will also add the runtime overflow checks specified in 4858 // Predicates. 4859 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4860 4861 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4862 std::make_pair(NewAR, Predicates); 4863 // Remember the result of the analysis for this SCEV at this locayyytion. 4864 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4865 return PredRewrite; 4866 } 4867 4868 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4869 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4870 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4871 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4872 if (!L) 4873 return None; 4874 4875 // Check to see if we already analyzed this PHI. 4876 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4877 if (I != PredicatedSCEVRewrites.end()) { 4878 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4879 I->second; 4880 // Analysis was done before and failed to create an AddRec: 4881 if (Rewrite.first == SymbolicPHI) 4882 return None; 4883 // Analysis was done before and succeeded to create an AddRec under 4884 // a predicate: 4885 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4886 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4887 return Rewrite; 4888 } 4889 4890 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4891 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4892 4893 // Record in the cache that the analysis failed 4894 if (!Rewrite) { 4895 SmallVector<const SCEVPredicate *, 3> Predicates; 4896 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4897 return None; 4898 } 4899 4900 return Rewrite; 4901 } 4902 4903 // FIXME: This utility is currently required because the Rewriter currently 4904 // does not rewrite this expression: 4905 // {0, +, (sext ix (trunc iy to ix) to iy)} 4906 // into {0, +, %step}, 4907 // even when the following Equal predicate exists: 4908 // "%step == (sext ix (trunc iy to ix) to iy)". 4909 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4910 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4911 if (AR1 == AR2) 4912 return true; 4913 4914 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4915 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4916 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4917 return false; 4918 return true; 4919 }; 4920 4921 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4922 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4923 return false; 4924 return true; 4925 } 4926 4927 /// A helper function for createAddRecFromPHI to handle simple cases. 4928 /// 4929 /// This function tries to find an AddRec expression for the simplest (yet most 4930 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4931 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4932 /// technique for finding the AddRec expression. 4933 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4934 Value *BEValueV, 4935 Value *StartValueV) { 4936 const Loop *L = LI.getLoopFor(PN->getParent()); 4937 assert(L && L->getHeader() == PN->getParent()); 4938 assert(BEValueV && StartValueV); 4939 4940 auto BO = MatchBinaryOp(BEValueV, DT); 4941 if (!BO) 4942 return nullptr; 4943 4944 if (BO->Opcode != Instruction::Add) 4945 return nullptr; 4946 4947 const SCEV *Accum = nullptr; 4948 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4949 Accum = getSCEV(BO->RHS); 4950 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4951 Accum = getSCEV(BO->LHS); 4952 4953 if (!Accum) 4954 return nullptr; 4955 4956 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4957 if (BO->IsNUW) 4958 Flags = setFlags(Flags, SCEV::FlagNUW); 4959 if (BO->IsNSW) 4960 Flags = setFlags(Flags, SCEV::FlagNSW); 4961 4962 const SCEV *StartVal = getSCEV(StartValueV); 4963 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4964 4965 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4966 4967 // We can add Flags to the post-inc expression only if we 4968 // know that it is *undefined behavior* for BEValueV to 4969 // overflow. 4970 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4971 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4972 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4973 4974 return PHISCEV; 4975 } 4976 4977 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4978 const Loop *L = LI.getLoopFor(PN->getParent()); 4979 if (!L || L->getHeader() != PN->getParent()) 4980 return nullptr; 4981 4982 // The loop may have multiple entrances or multiple exits; we can analyze 4983 // this phi as an addrec if it has a unique entry value and a unique 4984 // backedge value. 4985 Value *BEValueV = nullptr, *StartValueV = nullptr; 4986 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4987 Value *V = PN->getIncomingValue(i); 4988 if (L->contains(PN->getIncomingBlock(i))) { 4989 if (!BEValueV) { 4990 BEValueV = V; 4991 } else if (BEValueV != V) { 4992 BEValueV = nullptr; 4993 break; 4994 } 4995 } else if (!StartValueV) { 4996 StartValueV = V; 4997 } else if (StartValueV != V) { 4998 StartValueV = nullptr; 4999 break; 5000 } 5001 } 5002 if (!BEValueV || !StartValueV) 5003 return nullptr; 5004 5005 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5006 "PHI node already processed?"); 5007 5008 // First, try to find AddRec expression without creating a fictituos symbolic 5009 // value for PN. 5010 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5011 return S; 5012 5013 // Handle PHI node value symbolically. 5014 const SCEV *SymbolicName = getUnknown(PN); 5015 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5016 5017 // Using this symbolic name for the PHI, analyze the value coming around 5018 // the back-edge. 5019 const SCEV *BEValue = getSCEV(BEValueV); 5020 5021 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5022 // has a special value for the first iteration of the loop. 5023 5024 // If the value coming around the backedge is an add with the symbolic 5025 // value we just inserted, then we found a simple induction variable! 5026 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5027 // If there is a single occurrence of the symbolic value, replace it 5028 // with a recurrence. 5029 unsigned FoundIndex = Add->getNumOperands(); 5030 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5031 if (Add->getOperand(i) == SymbolicName) 5032 if (FoundIndex == e) { 5033 FoundIndex = i; 5034 break; 5035 } 5036 5037 if (FoundIndex != Add->getNumOperands()) { 5038 // Create an add with everything but the specified operand. 5039 SmallVector<const SCEV *, 8> Ops; 5040 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5041 if (i != FoundIndex) 5042 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5043 L, *this)); 5044 const SCEV *Accum = getAddExpr(Ops); 5045 5046 // This is not a valid addrec if the step amount is varying each 5047 // loop iteration, but is not itself an addrec in this loop. 5048 if (isLoopInvariant(Accum, L) || 5049 (isa<SCEVAddRecExpr>(Accum) && 5050 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5051 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5052 5053 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5054 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5055 if (BO->IsNUW) 5056 Flags = setFlags(Flags, SCEV::FlagNUW); 5057 if (BO->IsNSW) 5058 Flags = setFlags(Flags, SCEV::FlagNSW); 5059 } 5060 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5061 // If the increment is an inbounds GEP, then we know the address 5062 // space cannot be wrapped around. We cannot make any guarantee 5063 // about signed or unsigned overflow because pointers are 5064 // unsigned but we may have a negative index from the base 5065 // pointer. We can guarantee that no unsigned wrap occurs if the 5066 // indices form a positive value. 5067 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5068 Flags = setFlags(Flags, SCEV::FlagNW); 5069 5070 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5071 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5072 Flags = setFlags(Flags, SCEV::FlagNUW); 5073 } 5074 5075 // We cannot transfer nuw and nsw flags from subtraction 5076 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5077 // for instance. 5078 } 5079 5080 const SCEV *StartVal = getSCEV(StartValueV); 5081 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5082 5083 // Okay, for the entire analysis of this edge we assumed the PHI 5084 // to be symbolic. We now need to go back and purge all of the 5085 // entries for the scalars that use the symbolic expression. 5086 forgetSymbolicName(PN, SymbolicName); 5087 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5088 5089 // We can add Flags to the post-inc expression only if we 5090 // know that it is *undefined behavior* for BEValueV to 5091 // overflow. 5092 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5093 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5094 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5095 5096 return PHISCEV; 5097 } 5098 } 5099 } else { 5100 // Otherwise, this could be a loop like this: 5101 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5102 // In this case, j = {1,+,1} and BEValue is j. 5103 // Because the other in-value of i (0) fits the evolution of BEValue 5104 // i really is an addrec evolution. 5105 // 5106 // We can generalize this saying that i is the shifted value of BEValue 5107 // by one iteration: 5108 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5109 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5110 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5111 if (Shifted != getCouldNotCompute() && 5112 Start != getCouldNotCompute()) { 5113 const SCEV *StartVal = getSCEV(StartValueV); 5114 if (Start == StartVal) { 5115 // Okay, for the entire analysis of this edge we assumed the PHI 5116 // to be symbolic. We now need to go back and purge all of the 5117 // entries for the scalars that use the symbolic expression. 5118 forgetSymbolicName(PN, SymbolicName); 5119 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5120 return Shifted; 5121 } 5122 } 5123 } 5124 5125 // Remove the temporary PHI node SCEV that has been inserted while intending 5126 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5127 // as it will prevent later (possibly simpler) SCEV expressions to be added 5128 // to the ValueExprMap. 5129 eraseValueFromMap(PN); 5130 5131 return nullptr; 5132 } 5133 5134 // Checks if the SCEV S is available at BB. S is considered available at BB 5135 // if S can be materialized at BB without introducing a fault. 5136 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5137 BasicBlock *BB) { 5138 struct CheckAvailable { 5139 bool TraversalDone = false; 5140 bool Available = true; 5141 5142 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5143 BasicBlock *BB = nullptr; 5144 DominatorTree &DT; 5145 5146 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5147 : L(L), BB(BB), DT(DT) {} 5148 5149 bool setUnavailable() { 5150 TraversalDone = true; 5151 Available = false; 5152 return false; 5153 } 5154 5155 bool follow(const SCEV *S) { 5156 switch (S->getSCEVType()) { 5157 case scConstant: 5158 case scPtrToInt: 5159 case scTruncate: 5160 case scZeroExtend: 5161 case scSignExtend: 5162 case scAddExpr: 5163 case scMulExpr: 5164 case scUMaxExpr: 5165 case scSMaxExpr: 5166 case scUMinExpr: 5167 case scSMinExpr: 5168 // These expressions are available if their operand(s) is/are. 5169 return true; 5170 5171 case scAddRecExpr: { 5172 // We allow add recurrences that are on the loop BB is in, or some 5173 // outer loop. This guarantees availability because the value of the 5174 // add recurrence at BB is simply the "current" value of the induction 5175 // variable. We can relax this in the future; for instance an add 5176 // recurrence on a sibling dominating loop is also available at BB. 5177 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5178 if (L && (ARLoop == L || ARLoop->contains(L))) 5179 return true; 5180 5181 return setUnavailable(); 5182 } 5183 5184 case scUnknown: { 5185 // For SCEVUnknown, we check for simple dominance. 5186 const auto *SU = cast<SCEVUnknown>(S); 5187 Value *V = SU->getValue(); 5188 5189 if (isa<Argument>(V)) 5190 return false; 5191 5192 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5193 return false; 5194 5195 return setUnavailable(); 5196 } 5197 5198 case scUDivExpr: 5199 case scCouldNotCompute: 5200 // We do not try to smart about these at all. 5201 return setUnavailable(); 5202 } 5203 llvm_unreachable("Unknown SCEV kind!"); 5204 } 5205 5206 bool isDone() { return TraversalDone; } 5207 }; 5208 5209 CheckAvailable CA(L, BB, DT); 5210 SCEVTraversal<CheckAvailable> ST(CA); 5211 5212 ST.visitAll(S); 5213 return CA.Available; 5214 } 5215 5216 // Try to match a control flow sequence that branches out at BI and merges back 5217 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5218 // match. 5219 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5220 Value *&C, Value *&LHS, Value *&RHS) { 5221 C = BI->getCondition(); 5222 5223 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5224 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5225 5226 if (!LeftEdge.isSingleEdge()) 5227 return false; 5228 5229 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5230 5231 Use &LeftUse = Merge->getOperandUse(0); 5232 Use &RightUse = Merge->getOperandUse(1); 5233 5234 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5235 LHS = LeftUse; 5236 RHS = RightUse; 5237 return true; 5238 } 5239 5240 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5241 LHS = RightUse; 5242 RHS = LeftUse; 5243 return true; 5244 } 5245 5246 return false; 5247 } 5248 5249 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5250 auto IsReachable = 5251 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5252 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5253 const Loop *L = LI.getLoopFor(PN->getParent()); 5254 5255 // We don't want to break LCSSA, even in a SCEV expression tree. 5256 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5257 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5258 return nullptr; 5259 5260 // Try to match 5261 // 5262 // br %cond, label %left, label %right 5263 // left: 5264 // br label %merge 5265 // right: 5266 // br label %merge 5267 // merge: 5268 // V = phi [ %x, %left ], [ %y, %right ] 5269 // 5270 // as "select %cond, %x, %y" 5271 5272 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5273 assert(IDom && "At least the entry block should dominate PN"); 5274 5275 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5276 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5277 5278 if (BI && BI->isConditional() && 5279 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5280 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5281 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5282 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5283 } 5284 5285 return nullptr; 5286 } 5287 5288 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5289 if (const SCEV *S = createAddRecFromPHI(PN)) 5290 return S; 5291 5292 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5293 return S; 5294 5295 // If the PHI has a single incoming value, follow that value, unless the 5296 // PHI's incoming blocks are in a different loop, in which case doing so 5297 // risks breaking LCSSA form. Instcombine would normally zap these, but 5298 // it doesn't have DominatorTree information, so it may miss cases. 5299 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5300 if (LI.replacementPreservesLCSSAForm(PN, V)) 5301 return getSCEV(V); 5302 5303 // If it's not a loop phi, we can't handle it yet. 5304 return getUnknown(PN); 5305 } 5306 5307 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5308 Value *Cond, 5309 Value *TrueVal, 5310 Value *FalseVal) { 5311 // Handle "constant" branch or select. This can occur for instance when a 5312 // loop pass transforms an inner loop and moves on to process the outer loop. 5313 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5314 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5315 5316 // Try to match some simple smax or umax patterns. 5317 auto *ICI = dyn_cast<ICmpInst>(Cond); 5318 if (!ICI) 5319 return getUnknown(I); 5320 5321 Value *LHS = ICI->getOperand(0); 5322 Value *RHS = ICI->getOperand(1); 5323 5324 switch (ICI->getPredicate()) { 5325 case ICmpInst::ICMP_SLT: 5326 case ICmpInst::ICMP_SLE: 5327 std::swap(LHS, RHS); 5328 LLVM_FALLTHROUGH; 5329 case ICmpInst::ICMP_SGT: 5330 case ICmpInst::ICMP_SGE: 5331 // a >s b ? a+x : b+x -> smax(a, b)+x 5332 // a >s b ? b+x : a+x -> smin(a, b)+x 5333 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5334 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5335 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5336 const SCEV *LA = getSCEV(TrueVal); 5337 const SCEV *RA = getSCEV(FalseVal); 5338 const SCEV *LDiff = getMinusSCEV(LA, LS); 5339 const SCEV *RDiff = getMinusSCEV(RA, RS); 5340 if (LDiff == RDiff) 5341 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5342 LDiff = getMinusSCEV(LA, RS); 5343 RDiff = getMinusSCEV(RA, LS); 5344 if (LDiff == RDiff) 5345 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5346 } 5347 break; 5348 case ICmpInst::ICMP_ULT: 5349 case ICmpInst::ICMP_ULE: 5350 std::swap(LHS, RHS); 5351 LLVM_FALLTHROUGH; 5352 case ICmpInst::ICMP_UGT: 5353 case ICmpInst::ICMP_UGE: 5354 // a >u b ? a+x : b+x -> umax(a, b)+x 5355 // a >u b ? b+x : a+x -> umin(a, b)+x 5356 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5357 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5358 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5359 const SCEV *LA = getSCEV(TrueVal); 5360 const SCEV *RA = getSCEV(FalseVal); 5361 const SCEV *LDiff = getMinusSCEV(LA, LS); 5362 const SCEV *RDiff = getMinusSCEV(RA, RS); 5363 if (LDiff == RDiff) 5364 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5365 LDiff = getMinusSCEV(LA, RS); 5366 RDiff = getMinusSCEV(RA, LS); 5367 if (LDiff == RDiff) 5368 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5369 } 5370 break; 5371 case ICmpInst::ICMP_NE: 5372 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5373 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5374 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5375 const SCEV *One = getOne(I->getType()); 5376 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5377 const SCEV *LA = getSCEV(TrueVal); 5378 const SCEV *RA = getSCEV(FalseVal); 5379 const SCEV *LDiff = getMinusSCEV(LA, LS); 5380 const SCEV *RDiff = getMinusSCEV(RA, One); 5381 if (LDiff == RDiff) 5382 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5383 } 5384 break; 5385 case ICmpInst::ICMP_EQ: 5386 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5387 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5388 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5389 const SCEV *One = getOne(I->getType()); 5390 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5391 const SCEV *LA = getSCEV(TrueVal); 5392 const SCEV *RA = getSCEV(FalseVal); 5393 const SCEV *LDiff = getMinusSCEV(LA, One); 5394 const SCEV *RDiff = getMinusSCEV(RA, LS); 5395 if (LDiff == RDiff) 5396 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5397 } 5398 break; 5399 default: 5400 break; 5401 } 5402 5403 return getUnknown(I); 5404 } 5405 5406 /// Expand GEP instructions into add and multiply operations. This allows them 5407 /// to be analyzed by regular SCEV code. 5408 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5409 // Don't attempt to analyze GEPs over unsized objects. 5410 if (!GEP->getSourceElementType()->isSized()) 5411 return getUnknown(GEP); 5412 5413 SmallVector<const SCEV *, 4> IndexExprs; 5414 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5415 IndexExprs.push_back(getSCEV(*Index)); 5416 return getGEPExpr(GEP, IndexExprs); 5417 } 5418 5419 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5420 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5421 return C->getAPInt().countTrailingZeros(); 5422 5423 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5424 return GetMinTrailingZeros(I->getOperand()); 5425 5426 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5427 return std::min(GetMinTrailingZeros(T->getOperand()), 5428 (uint32_t)getTypeSizeInBits(T->getType())); 5429 5430 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5431 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5432 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5433 ? getTypeSizeInBits(E->getType()) 5434 : OpRes; 5435 } 5436 5437 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5438 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5439 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5440 ? getTypeSizeInBits(E->getType()) 5441 : OpRes; 5442 } 5443 5444 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5445 // The result is the min of all operands results. 5446 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5447 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5448 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5449 return MinOpRes; 5450 } 5451 5452 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5453 // The result is the sum of all operands results. 5454 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5455 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5456 for (unsigned i = 1, e = M->getNumOperands(); 5457 SumOpRes != BitWidth && i != e; ++i) 5458 SumOpRes = 5459 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5460 return SumOpRes; 5461 } 5462 5463 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5464 // The result is the min of all operands results. 5465 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5466 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5467 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5468 return MinOpRes; 5469 } 5470 5471 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5472 // The result is the min of all operands results. 5473 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5474 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5475 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5476 return MinOpRes; 5477 } 5478 5479 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5480 // The result is the min of all operands results. 5481 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5482 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5483 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5484 return MinOpRes; 5485 } 5486 5487 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5488 // For a SCEVUnknown, ask ValueTracking. 5489 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5490 return Known.countMinTrailingZeros(); 5491 } 5492 5493 // SCEVUDivExpr 5494 return 0; 5495 } 5496 5497 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5498 auto I = MinTrailingZerosCache.find(S); 5499 if (I != MinTrailingZerosCache.end()) 5500 return I->second; 5501 5502 uint32_t Result = GetMinTrailingZerosImpl(S); 5503 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5504 assert(InsertPair.second && "Should insert a new key"); 5505 return InsertPair.first->second; 5506 } 5507 5508 /// Helper method to assign a range to V from metadata present in the IR. 5509 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5510 if (Instruction *I = dyn_cast<Instruction>(V)) 5511 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5512 return getConstantRangeFromMetadata(*MD); 5513 5514 return None; 5515 } 5516 5517 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5518 SCEV::NoWrapFlags Flags) { 5519 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5520 AddRec->setNoWrapFlags(Flags); 5521 UnsignedRanges.erase(AddRec); 5522 SignedRanges.erase(AddRec); 5523 } 5524 } 5525 5526 /// Determine the range for a particular SCEV. If SignHint is 5527 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5528 /// with a "cleaner" unsigned (resp. signed) representation. 5529 const ConstantRange & 5530 ScalarEvolution::getRangeRef(const SCEV *S, 5531 ScalarEvolution::RangeSignHint SignHint) { 5532 DenseMap<const SCEV *, ConstantRange> &Cache = 5533 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5534 : SignedRanges; 5535 ConstantRange::PreferredRangeType RangeType = 5536 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5537 ? ConstantRange::Unsigned : ConstantRange::Signed; 5538 5539 // See if we've computed this range already. 5540 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5541 if (I != Cache.end()) 5542 return I->second; 5543 5544 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5545 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5546 5547 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5548 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5549 using OBO = OverflowingBinaryOperator; 5550 5551 // If the value has known zeros, the maximum value will have those known zeros 5552 // as well. 5553 uint32_t TZ = GetMinTrailingZeros(S); 5554 if (TZ != 0) { 5555 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5556 ConservativeResult = 5557 ConstantRange(APInt::getMinValue(BitWidth), 5558 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5559 else 5560 ConservativeResult = ConstantRange( 5561 APInt::getSignedMinValue(BitWidth), 5562 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5563 } 5564 5565 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5566 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5567 unsigned WrapType = OBO::AnyWrap; 5568 if (Add->hasNoSignedWrap()) 5569 WrapType |= OBO::NoSignedWrap; 5570 if (Add->hasNoUnsignedWrap()) 5571 WrapType |= OBO::NoUnsignedWrap; 5572 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5573 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5574 WrapType, RangeType); 5575 return setRange(Add, SignHint, 5576 ConservativeResult.intersectWith(X, RangeType)); 5577 } 5578 5579 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5580 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5581 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5582 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5583 return setRange(Mul, SignHint, 5584 ConservativeResult.intersectWith(X, RangeType)); 5585 } 5586 5587 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5588 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5589 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5590 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5591 return setRange(SMax, SignHint, 5592 ConservativeResult.intersectWith(X, RangeType)); 5593 } 5594 5595 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5596 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5597 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5598 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5599 return setRange(UMax, SignHint, 5600 ConservativeResult.intersectWith(X, RangeType)); 5601 } 5602 5603 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5604 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5605 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5606 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5607 return setRange(SMin, SignHint, 5608 ConservativeResult.intersectWith(X, RangeType)); 5609 } 5610 5611 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5612 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5613 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5614 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5615 return setRange(UMin, SignHint, 5616 ConservativeResult.intersectWith(X, RangeType)); 5617 } 5618 5619 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5620 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5621 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5622 return setRange(UDiv, SignHint, 5623 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5624 } 5625 5626 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5627 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5628 return setRange(ZExt, SignHint, 5629 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5630 RangeType)); 5631 } 5632 5633 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5634 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5635 return setRange(SExt, SignHint, 5636 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5637 RangeType)); 5638 } 5639 5640 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 5641 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 5642 return setRange(PtrToInt, SignHint, X); 5643 } 5644 5645 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5646 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5647 return setRange(Trunc, SignHint, 5648 ConservativeResult.intersectWith(X.truncate(BitWidth), 5649 RangeType)); 5650 } 5651 5652 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5653 // If there's no unsigned wrap, the value will never be less than its 5654 // initial value. 5655 if (AddRec->hasNoUnsignedWrap()) { 5656 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5657 if (!UnsignedMinValue.isNullValue()) 5658 ConservativeResult = ConservativeResult.intersectWith( 5659 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5660 } 5661 5662 // If there's no signed wrap, and all the operands except initial value have 5663 // the same sign or zero, the value won't ever be: 5664 // 1: smaller than initial value if operands are non negative, 5665 // 2: bigger than initial value if operands are non positive. 5666 // For both cases, value can not cross signed min/max boundary. 5667 if (AddRec->hasNoSignedWrap()) { 5668 bool AllNonNeg = true; 5669 bool AllNonPos = true; 5670 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5671 if (!isKnownNonNegative(AddRec->getOperand(i))) 5672 AllNonNeg = false; 5673 if (!isKnownNonPositive(AddRec->getOperand(i))) 5674 AllNonPos = false; 5675 } 5676 if (AllNonNeg) 5677 ConservativeResult = ConservativeResult.intersectWith( 5678 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5679 APInt::getSignedMinValue(BitWidth)), 5680 RangeType); 5681 else if (AllNonPos) 5682 ConservativeResult = ConservativeResult.intersectWith( 5683 ConstantRange::getNonEmpty( 5684 APInt::getSignedMinValue(BitWidth), 5685 getSignedRangeMax(AddRec->getStart()) + 1), 5686 RangeType); 5687 } 5688 5689 // TODO: non-affine addrec 5690 if (AddRec->isAffine()) { 5691 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5692 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5693 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5694 auto RangeFromAffine = getRangeForAffineAR( 5695 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5696 BitWidth); 5697 ConservativeResult = 5698 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5699 5700 auto RangeFromFactoring = getRangeViaFactoring( 5701 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5702 BitWidth); 5703 ConservativeResult = 5704 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5705 } 5706 5707 // Now try symbolic BE count and more powerful methods. 5708 if (UseExpensiveRangeSharpening) { 5709 const SCEV *SymbolicMaxBECount = 5710 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 5711 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 5712 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5713 AddRec->hasNoSelfWrap()) { 5714 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 5715 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 5716 ConservativeResult = 5717 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 5718 } 5719 } 5720 } 5721 5722 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5723 } 5724 5725 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5726 // Check if the IR explicitly contains !range metadata. 5727 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5728 if (MDRange.hasValue()) 5729 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5730 RangeType); 5731 5732 // Split here to avoid paying the compile-time cost of calling both 5733 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5734 // if needed. 5735 const DataLayout &DL = getDataLayout(); 5736 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5737 // For a SCEVUnknown, ask ValueTracking. 5738 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5739 if (Known.getBitWidth() != BitWidth) 5740 Known = Known.zextOrTrunc(BitWidth); 5741 // If Known does not result in full-set, intersect with it. 5742 if (Known.getMinValue() != Known.getMaxValue() + 1) 5743 ConservativeResult = ConservativeResult.intersectWith( 5744 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5745 RangeType); 5746 } else { 5747 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5748 "generalize as needed!"); 5749 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5750 // If the pointer size is larger than the index size type, this can cause 5751 // NS to be larger than BitWidth. So compensate for this. 5752 if (U->getType()->isPointerTy()) { 5753 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5754 int ptrIdxDiff = ptrSize - BitWidth; 5755 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5756 NS -= ptrIdxDiff; 5757 } 5758 5759 if (NS > 1) 5760 ConservativeResult = ConservativeResult.intersectWith( 5761 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5762 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5763 RangeType); 5764 } 5765 5766 // A range of Phi is a subset of union of all ranges of its input. 5767 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5768 // Make sure that we do not run over cycled Phis. 5769 if (PendingPhiRanges.insert(Phi).second) { 5770 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5771 for (auto &Op : Phi->operands()) { 5772 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5773 RangeFromOps = RangeFromOps.unionWith(OpRange); 5774 // No point to continue if we already have a full set. 5775 if (RangeFromOps.isFullSet()) 5776 break; 5777 } 5778 ConservativeResult = 5779 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5780 bool Erased = PendingPhiRanges.erase(Phi); 5781 assert(Erased && "Failed to erase Phi properly?"); 5782 (void) Erased; 5783 } 5784 } 5785 5786 return setRange(U, SignHint, std::move(ConservativeResult)); 5787 } 5788 5789 return setRange(S, SignHint, std::move(ConservativeResult)); 5790 } 5791 5792 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5793 // values that the expression can take. Initially, the expression has a value 5794 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5795 // argument defines if we treat Step as signed or unsigned. 5796 static ConstantRange getRangeForAffineARHelper(APInt Step, 5797 const ConstantRange &StartRange, 5798 const APInt &MaxBECount, 5799 unsigned BitWidth, bool Signed) { 5800 // If either Step or MaxBECount is 0, then the expression won't change, and we 5801 // just need to return the initial range. 5802 if (Step == 0 || MaxBECount == 0) 5803 return StartRange; 5804 5805 // If we don't know anything about the initial value (i.e. StartRange is 5806 // FullRange), then we don't know anything about the final range either. 5807 // Return FullRange. 5808 if (StartRange.isFullSet()) 5809 return ConstantRange::getFull(BitWidth); 5810 5811 // If Step is signed and negative, then we use its absolute value, but we also 5812 // note that we're moving in the opposite direction. 5813 bool Descending = Signed && Step.isNegative(); 5814 5815 if (Signed) 5816 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5817 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5818 // This equations hold true due to the well-defined wrap-around behavior of 5819 // APInt. 5820 Step = Step.abs(); 5821 5822 // Check if Offset is more than full span of BitWidth. If it is, the 5823 // expression is guaranteed to overflow. 5824 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5825 return ConstantRange::getFull(BitWidth); 5826 5827 // Offset is by how much the expression can change. Checks above guarantee no 5828 // overflow here. 5829 APInt Offset = Step * MaxBECount; 5830 5831 // Minimum value of the final range will match the minimal value of StartRange 5832 // if the expression is increasing and will be decreased by Offset otherwise. 5833 // Maximum value of the final range will match the maximal value of StartRange 5834 // if the expression is decreasing and will be increased by Offset otherwise. 5835 APInt StartLower = StartRange.getLower(); 5836 APInt StartUpper = StartRange.getUpper() - 1; 5837 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5838 : (StartUpper + std::move(Offset)); 5839 5840 // It's possible that the new minimum/maximum value will fall into the initial 5841 // range (due to wrap around). This means that the expression can take any 5842 // value in this bitwidth, and we have to return full range. 5843 if (StartRange.contains(MovedBoundary)) 5844 return ConstantRange::getFull(BitWidth); 5845 5846 APInt NewLower = 5847 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5848 APInt NewUpper = 5849 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5850 NewUpper += 1; 5851 5852 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5853 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5854 } 5855 5856 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5857 const SCEV *Step, 5858 const SCEV *MaxBECount, 5859 unsigned BitWidth) { 5860 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5861 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5862 "Precondition!"); 5863 5864 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5865 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5866 5867 // First, consider step signed. 5868 ConstantRange StartSRange = getSignedRange(Start); 5869 ConstantRange StepSRange = getSignedRange(Step); 5870 5871 // If Step can be both positive and negative, we need to find ranges for the 5872 // maximum absolute step values in both directions and union them. 5873 ConstantRange SR = 5874 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5875 MaxBECountValue, BitWidth, /* Signed = */ true); 5876 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5877 StartSRange, MaxBECountValue, 5878 BitWidth, /* Signed = */ true)); 5879 5880 // Next, consider step unsigned. 5881 ConstantRange UR = getRangeForAffineARHelper( 5882 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5883 MaxBECountValue, BitWidth, /* Signed = */ false); 5884 5885 // Finally, intersect signed and unsigned ranges. 5886 return SR.intersectWith(UR, ConstantRange::Smallest); 5887 } 5888 5889 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 5890 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 5891 ScalarEvolution::RangeSignHint SignHint) { 5892 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 5893 assert(AddRec->hasNoSelfWrap() && 5894 "This only works for non-self-wrapping AddRecs!"); 5895 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 5896 const SCEV *Step = AddRec->getStepRecurrence(*this); 5897 // Only deal with constant step to save compile time. 5898 if (!isa<SCEVConstant>(Step)) 5899 return ConstantRange::getFull(BitWidth); 5900 // Let's make sure that we can prove that we do not self-wrap during 5901 // MaxBECount iterations. We need this because MaxBECount is a maximum 5902 // iteration count estimate, and we might infer nw from some exit for which we 5903 // do not know max exit count (or any other side reasoning). 5904 // TODO: Turn into assert at some point. 5905 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 5906 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 5907 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 5908 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 5909 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 5910 MaxItersWithoutWrap)) 5911 return ConstantRange::getFull(BitWidth); 5912 5913 ICmpInst::Predicate LEPred = 5914 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 5915 ICmpInst::Predicate GEPred = 5916 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 5917 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 5918 5919 // We know that there is no self-wrap. Let's take Start and End values and 5920 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 5921 // the iteration. They either lie inside the range [Min(Start, End), 5922 // Max(Start, End)] or outside it: 5923 // 5924 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 5925 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 5926 // 5927 // No self wrap flag guarantees that the intermediate values cannot be BOTH 5928 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 5929 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 5930 // Start <= End and step is positive, or Start >= End and step is negative. 5931 const SCEV *Start = AddRec->getStart(); 5932 ConstantRange StartRange = getRangeRef(Start, SignHint); 5933 ConstantRange EndRange = getRangeRef(End, SignHint); 5934 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 5935 // If they already cover full iteration space, we will know nothing useful 5936 // even if we prove what we want to prove. 5937 if (RangeBetween.isFullSet()) 5938 return RangeBetween; 5939 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 5940 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 5941 : RangeBetween.isWrappedSet(); 5942 if (IsWrappedSet) 5943 return ConstantRange::getFull(BitWidth); 5944 5945 if (isKnownPositive(Step) && 5946 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 5947 return RangeBetween; 5948 else if (isKnownNegative(Step) && 5949 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 5950 return RangeBetween; 5951 return ConstantRange::getFull(BitWidth); 5952 } 5953 5954 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5955 const SCEV *Step, 5956 const SCEV *MaxBECount, 5957 unsigned BitWidth) { 5958 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5959 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5960 5961 struct SelectPattern { 5962 Value *Condition = nullptr; 5963 APInt TrueValue; 5964 APInt FalseValue; 5965 5966 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5967 const SCEV *S) { 5968 Optional<unsigned> CastOp; 5969 APInt Offset(BitWidth, 0); 5970 5971 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5972 "Should be!"); 5973 5974 // Peel off a constant offset: 5975 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5976 // In the future we could consider being smarter here and handle 5977 // {Start+Step,+,Step} too. 5978 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5979 return; 5980 5981 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5982 S = SA->getOperand(1); 5983 } 5984 5985 // Peel off a cast operation 5986 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 5987 CastOp = SCast->getSCEVType(); 5988 S = SCast->getOperand(); 5989 } 5990 5991 using namespace llvm::PatternMatch; 5992 5993 auto *SU = dyn_cast<SCEVUnknown>(S); 5994 const APInt *TrueVal, *FalseVal; 5995 if (!SU || 5996 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5997 m_APInt(FalseVal)))) { 5998 Condition = nullptr; 5999 return; 6000 } 6001 6002 TrueValue = *TrueVal; 6003 FalseValue = *FalseVal; 6004 6005 // Re-apply the cast we peeled off earlier 6006 if (CastOp.hasValue()) 6007 switch (*CastOp) { 6008 default: 6009 llvm_unreachable("Unknown SCEV cast type!"); 6010 6011 case scTruncate: 6012 TrueValue = TrueValue.trunc(BitWidth); 6013 FalseValue = FalseValue.trunc(BitWidth); 6014 break; 6015 case scZeroExtend: 6016 TrueValue = TrueValue.zext(BitWidth); 6017 FalseValue = FalseValue.zext(BitWidth); 6018 break; 6019 case scSignExtend: 6020 TrueValue = TrueValue.sext(BitWidth); 6021 FalseValue = FalseValue.sext(BitWidth); 6022 break; 6023 } 6024 6025 // Re-apply the constant offset we peeled off earlier 6026 TrueValue += Offset; 6027 FalseValue += Offset; 6028 } 6029 6030 bool isRecognized() { return Condition != nullptr; } 6031 }; 6032 6033 SelectPattern StartPattern(*this, BitWidth, Start); 6034 if (!StartPattern.isRecognized()) 6035 return ConstantRange::getFull(BitWidth); 6036 6037 SelectPattern StepPattern(*this, BitWidth, Step); 6038 if (!StepPattern.isRecognized()) 6039 return ConstantRange::getFull(BitWidth); 6040 6041 if (StartPattern.Condition != StepPattern.Condition) { 6042 // We don't handle this case today; but we could, by considering four 6043 // possibilities below instead of two. I'm not sure if there are cases where 6044 // that will help over what getRange already does, though. 6045 return ConstantRange::getFull(BitWidth); 6046 } 6047 6048 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6049 // construct arbitrary general SCEV expressions here. This function is called 6050 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6051 // say) can end up caching a suboptimal value. 6052 6053 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6054 // C2352 and C2512 (otherwise it isn't needed). 6055 6056 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6057 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6058 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6059 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6060 6061 ConstantRange TrueRange = 6062 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6063 ConstantRange FalseRange = 6064 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6065 6066 return TrueRange.unionWith(FalseRange); 6067 } 6068 6069 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6070 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6071 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6072 6073 // Return early if there are no flags to propagate to the SCEV. 6074 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6075 if (BinOp->hasNoUnsignedWrap()) 6076 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6077 if (BinOp->hasNoSignedWrap()) 6078 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6079 if (Flags == SCEV::FlagAnyWrap) 6080 return SCEV::FlagAnyWrap; 6081 6082 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6083 } 6084 6085 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6086 // Here we check that I is in the header of the innermost loop containing I, 6087 // since we only deal with instructions in the loop header. The actual loop we 6088 // need to check later will come from an add recurrence, but getting that 6089 // requires computing the SCEV of the operands, which can be expensive. This 6090 // check we can do cheaply to rule out some cases early. 6091 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6092 if (InnermostContainingLoop == nullptr || 6093 InnermostContainingLoop->getHeader() != I->getParent()) 6094 return false; 6095 6096 // Only proceed if we can prove that I does not yield poison. 6097 if (!programUndefinedIfPoison(I)) 6098 return false; 6099 6100 // At this point we know that if I is executed, then it does not wrap 6101 // according to at least one of NSW or NUW. If I is not executed, then we do 6102 // not know if the calculation that I represents would wrap. Multiple 6103 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6104 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6105 // derived from other instructions that map to the same SCEV. We cannot make 6106 // that guarantee for cases where I is not executed. So we need to find the 6107 // loop that I is considered in relation to and prove that I is executed for 6108 // every iteration of that loop. That implies that the value that I 6109 // calculates does not wrap anywhere in the loop, so then we can apply the 6110 // flags to the SCEV. 6111 // 6112 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6113 // from different loops, so that we know which loop to prove that I is 6114 // executed in. 6115 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6116 // I could be an extractvalue from a call to an overflow intrinsic. 6117 // TODO: We can do better here in some cases. 6118 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6119 return false; 6120 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6121 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6122 bool AllOtherOpsLoopInvariant = true; 6123 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6124 ++OtherOpIndex) { 6125 if (OtherOpIndex != OpIndex) { 6126 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6127 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6128 AllOtherOpsLoopInvariant = false; 6129 break; 6130 } 6131 } 6132 } 6133 if (AllOtherOpsLoopInvariant && 6134 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6135 return true; 6136 } 6137 } 6138 return false; 6139 } 6140 6141 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6142 // If we know that \c I can never be poison period, then that's enough. 6143 if (isSCEVExprNeverPoison(I)) 6144 return true; 6145 6146 // For an add recurrence specifically, we assume that infinite loops without 6147 // side effects are undefined behavior, and then reason as follows: 6148 // 6149 // If the add recurrence is poison in any iteration, it is poison on all 6150 // future iterations (since incrementing poison yields poison). If the result 6151 // of the add recurrence is fed into the loop latch condition and the loop 6152 // does not contain any throws or exiting blocks other than the latch, we now 6153 // have the ability to "choose" whether the backedge is taken or not (by 6154 // choosing a sufficiently evil value for the poison feeding into the branch) 6155 // for every iteration including and after the one in which \p I first became 6156 // poison. There are two possibilities (let's call the iteration in which \p 6157 // I first became poison as K): 6158 // 6159 // 1. In the set of iterations including and after K, the loop body executes 6160 // no side effects. In this case executing the backege an infinte number 6161 // of times will yield undefined behavior. 6162 // 6163 // 2. In the set of iterations including and after K, the loop body executes 6164 // at least one side effect. In this case, that specific instance of side 6165 // effect is control dependent on poison, which also yields undefined 6166 // behavior. 6167 6168 auto *ExitingBB = L->getExitingBlock(); 6169 auto *LatchBB = L->getLoopLatch(); 6170 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6171 return false; 6172 6173 SmallPtrSet<const Instruction *, 16> Pushed; 6174 SmallVector<const Instruction *, 8> PoisonStack; 6175 6176 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6177 // things that are known to be poison under that assumption go on the 6178 // PoisonStack. 6179 Pushed.insert(I); 6180 PoisonStack.push_back(I); 6181 6182 bool LatchControlDependentOnPoison = false; 6183 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6184 const Instruction *Poison = PoisonStack.pop_back_val(); 6185 6186 for (auto *PoisonUser : Poison->users()) { 6187 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6188 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6189 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6190 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6191 assert(BI->isConditional() && "Only possibility!"); 6192 if (BI->getParent() == LatchBB) { 6193 LatchControlDependentOnPoison = true; 6194 break; 6195 } 6196 } 6197 } 6198 } 6199 6200 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6201 } 6202 6203 ScalarEvolution::LoopProperties 6204 ScalarEvolution::getLoopProperties(const Loop *L) { 6205 using LoopProperties = ScalarEvolution::LoopProperties; 6206 6207 auto Itr = LoopPropertiesCache.find(L); 6208 if (Itr == LoopPropertiesCache.end()) { 6209 auto HasSideEffects = [](Instruction *I) { 6210 if (auto *SI = dyn_cast<StoreInst>(I)) 6211 return !SI->isSimple(); 6212 6213 return I->mayHaveSideEffects(); 6214 }; 6215 6216 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6217 /*HasNoSideEffects*/ true}; 6218 6219 for (auto *BB : L->getBlocks()) 6220 for (auto &I : *BB) { 6221 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6222 LP.HasNoAbnormalExits = false; 6223 if (HasSideEffects(&I)) 6224 LP.HasNoSideEffects = false; 6225 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6226 break; // We're already as pessimistic as we can get. 6227 } 6228 6229 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6230 assert(InsertPair.second && "We just checked!"); 6231 Itr = InsertPair.first; 6232 } 6233 6234 return Itr->second; 6235 } 6236 6237 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6238 if (!isSCEVable(V->getType())) 6239 return getUnknown(V); 6240 6241 if (Instruction *I = dyn_cast<Instruction>(V)) { 6242 // Don't attempt to analyze instructions in blocks that aren't 6243 // reachable. Such instructions don't matter, and they aren't required 6244 // to obey basic rules for definitions dominating uses which this 6245 // analysis depends on. 6246 if (!DT.isReachableFromEntry(I->getParent())) 6247 return getUnknown(UndefValue::get(V->getType())); 6248 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6249 return getConstant(CI); 6250 else if (isa<ConstantPointerNull>(V)) 6251 // FIXME: we shouldn't special-case null pointer constant. 6252 return getZero(V->getType()); 6253 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6254 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6255 else if (!isa<ConstantExpr>(V)) 6256 return getUnknown(V); 6257 6258 Operator *U = cast<Operator>(V); 6259 if (auto BO = MatchBinaryOp(U, DT)) { 6260 switch (BO->Opcode) { 6261 case Instruction::Add: { 6262 // The simple thing to do would be to just call getSCEV on both operands 6263 // and call getAddExpr with the result. However if we're looking at a 6264 // bunch of things all added together, this can be quite inefficient, 6265 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6266 // Instead, gather up all the operands and make a single getAddExpr call. 6267 // LLVM IR canonical form means we need only traverse the left operands. 6268 SmallVector<const SCEV *, 4> AddOps; 6269 do { 6270 if (BO->Op) { 6271 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6272 AddOps.push_back(OpSCEV); 6273 break; 6274 } 6275 6276 // If a NUW or NSW flag can be applied to the SCEV for this 6277 // addition, then compute the SCEV for this addition by itself 6278 // with a separate call to getAddExpr. We need to do that 6279 // instead of pushing the operands of the addition onto AddOps, 6280 // since the flags are only known to apply to this particular 6281 // addition - they may not apply to other additions that can be 6282 // formed with operands from AddOps. 6283 const SCEV *RHS = getSCEV(BO->RHS); 6284 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6285 if (Flags != SCEV::FlagAnyWrap) { 6286 const SCEV *LHS = getSCEV(BO->LHS); 6287 if (BO->Opcode == Instruction::Sub) 6288 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6289 else 6290 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6291 break; 6292 } 6293 } 6294 6295 if (BO->Opcode == Instruction::Sub) 6296 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6297 else 6298 AddOps.push_back(getSCEV(BO->RHS)); 6299 6300 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6301 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6302 NewBO->Opcode != Instruction::Sub)) { 6303 AddOps.push_back(getSCEV(BO->LHS)); 6304 break; 6305 } 6306 BO = NewBO; 6307 } while (true); 6308 6309 return getAddExpr(AddOps); 6310 } 6311 6312 case Instruction::Mul: { 6313 SmallVector<const SCEV *, 4> MulOps; 6314 do { 6315 if (BO->Op) { 6316 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6317 MulOps.push_back(OpSCEV); 6318 break; 6319 } 6320 6321 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6322 if (Flags != SCEV::FlagAnyWrap) { 6323 MulOps.push_back( 6324 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6325 break; 6326 } 6327 } 6328 6329 MulOps.push_back(getSCEV(BO->RHS)); 6330 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6331 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6332 MulOps.push_back(getSCEV(BO->LHS)); 6333 break; 6334 } 6335 BO = NewBO; 6336 } while (true); 6337 6338 return getMulExpr(MulOps); 6339 } 6340 case Instruction::UDiv: 6341 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6342 case Instruction::URem: 6343 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6344 case Instruction::Sub: { 6345 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6346 if (BO->Op) 6347 Flags = getNoWrapFlagsFromUB(BO->Op); 6348 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6349 } 6350 case Instruction::And: 6351 // For an expression like x&255 that merely masks off the high bits, 6352 // use zext(trunc(x)) as the SCEV expression. 6353 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6354 if (CI->isZero()) 6355 return getSCEV(BO->RHS); 6356 if (CI->isMinusOne()) 6357 return getSCEV(BO->LHS); 6358 const APInt &A = CI->getValue(); 6359 6360 // Instcombine's ShrinkDemandedConstant may strip bits out of 6361 // constants, obscuring what would otherwise be a low-bits mask. 6362 // Use computeKnownBits to compute what ShrinkDemandedConstant 6363 // knew about to reconstruct a low-bits mask value. 6364 unsigned LZ = A.countLeadingZeros(); 6365 unsigned TZ = A.countTrailingZeros(); 6366 unsigned BitWidth = A.getBitWidth(); 6367 KnownBits Known(BitWidth); 6368 computeKnownBits(BO->LHS, Known, getDataLayout(), 6369 0, &AC, nullptr, &DT); 6370 6371 APInt EffectiveMask = 6372 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6373 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6374 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6375 const SCEV *LHS = getSCEV(BO->LHS); 6376 const SCEV *ShiftedLHS = nullptr; 6377 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6378 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6379 // For an expression like (x * 8) & 8, simplify the multiply. 6380 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6381 unsigned GCD = std::min(MulZeros, TZ); 6382 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6383 SmallVector<const SCEV*, 4> MulOps; 6384 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6385 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6386 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6387 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6388 } 6389 } 6390 if (!ShiftedLHS) 6391 ShiftedLHS = getUDivExpr(LHS, MulCount); 6392 return getMulExpr( 6393 getZeroExtendExpr( 6394 getTruncateExpr(ShiftedLHS, 6395 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6396 BO->LHS->getType()), 6397 MulCount); 6398 } 6399 } 6400 break; 6401 6402 case Instruction::Or: 6403 // If the RHS of the Or is a constant, we may have something like: 6404 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6405 // optimizations will transparently handle this case. 6406 // 6407 // In order for this transformation to be safe, the LHS must be of the 6408 // form X*(2^n) and the Or constant must be less than 2^n. 6409 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6410 const SCEV *LHS = getSCEV(BO->LHS); 6411 const APInt &CIVal = CI->getValue(); 6412 if (GetMinTrailingZeros(LHS) >= 6413 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6414 // Build a plain add SCEV. 6415 return getAddExpr(LHS, getSCEV(CI), 6416 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6417 } 6418 } 6419 break; 6420 6421 case Instruction::Xor: 6422 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6423 // If the RHS of xor is -1, then this is a not operation. 6424 if (CI->isMinusOne()) 6425 return getNotSCEV(getSCEV(BO->LHS)); 6426 6427 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6428 // This is a variant of the check for xor with -1, and it handles 6429 // the case where instcombine has trimmed non-demanded bits out 6430 // of an xor with -1. 6431 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6432 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6433 if (LBO->getOpcode() == Instruction::And && 6434 LCI->getValue() == CI->getValue()) 6435 if (const SCEVZeroExtendExpr *Z = 6436 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6437 Type *UTy = BO->LHS->getType(); 6438 const SCEV *Z0 = Z->getOperand(); 6439 Type *Z0Ty = Z0->getType(); 6440 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6441 6442 // If C is a low-bits mask, the zero extend is serving to 6443 // mask off the high bits. Complement the operand and 6444 // re-apply the zext. 6445 if (CI->getValue().isMask(Z0TySize)) 6446 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6447 6448 // If C is a single bit, it may be in the sign-bit position 6449 // before the zero-extend. In this case, represent the xor 6450 // using an add, which is equivalent, and re-apply the zext. 6451 APInt Trunc = CI->getValue().trunc(Z0TySize); 6452 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6453 Trunc.isSignMask()) 6454 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6455 UTy); 6456 } 6457 } 6458 break; 6459 6460 case Instruction::Shl: 6461 // Turn shift left of a constant amount into a multiply. 6462 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6463 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6464 6465 // If the shift count is not less than the bitwidth, the result of 6466 // the shift is undefined. Don't try to analyze it, because the 6467 // resolution chosen here may differ from the resolution chosen in 6468 // other parts of the compiler. 6469 if (SA->getValue().uge(BitWidth)) 6470 break; 6471 6472 // We can safely preserve the nuw flag in all cases. It's also safe to 6473 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6474 // requires special handling. It can be preserved as long as we're not 6475 // left shifting by bitwidth - 1. 6476 auto Flags = SCEV::FlagAnyWrap; 6477 if (BO->Op) { 6478 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6479 if ((MulFlags & SCEV::FlagNSW) && 6480 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6481 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6482 if (MulFlags & SCEV::FlagNUW) 6483 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6484 } 6485 6486 Constant *X = ConstantInt::get( 6487 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6488 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6489 } 6490 break; 6491 6492 case Instruction::AShr: { 6493 // AShr X, C, where C is a constant. 6494 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6495 if (!CI) 6496 break; 6497 6498 Type *OuterTy = BO->LHS->getType(); 6499 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6500 // If the shift count is not less than the bitwidth, the result of 6501 // the shift is undefined. Don't try to analyze it, because the 6502 // resolution chosen here may differ from the resolution chosen in 6503 // other parts of the compiler. 6504 if (CI->getValue().uge(BitWidth)) 6505 break; 6506 6507 if (CI->isZero()) 6508 return getSCEV(BO->LHS); // shift by zero --> noop 6509 6510 uint64_t AShrAmt = CI->getZExtValue(); 6511 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6512 6513 Operator *L = dyn_cast<Operator>(BO->LHS); 6514 if (L && L->getOpcode() == Instruction::Shl) { 6515 // X = Shl A, n 6516 // Y = AShr X, m 6517 // Both n and m are constant. 6518 6519 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6520 if (L->getOperand(1) == BO->RHS) 6521 // For a two-shift sext-inreg, i.e. n = m, 6522 // use sext(trunc(x)) as the SCEV expression. 6523 return getSignExtendExpr( 6524 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6525 6526 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6527 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6528 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6529 if (ShlAmt > AShrAmt) { 6530 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6531 // expression. We already checked that ShlAmt < BitWidth, so 6532 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6533 // ShlAmt - AShrAmt < Amt. 6534 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6535 ShlAmt - AShrAmt); 6536 return getSignExtendExpr( 6537 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6538 getConstant(Mul)), OuterTy); 6539 } 6540 } 6541 } 6542 if (BO->IsExact) { 6543 // Given exact arithmetic in-bounds right-shift by a constant, 6544 // we can lower it into: (abs(x) EXACT/u (1<<C)) * signum(x) 6545 const SCEV *X = getSCEV(BO->LHS); 6546 const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false); 6547 APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt); 6548 const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult)); 6549 return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW); 6550 } 6551 break; 6552 } 6553 } 6554 } 6555 6556 switch (U->getOpcode()) { 6557 case Instruction::Trunc: 6558 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6559 6560 case Instruction::ZExt: 6561 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6562 6563 case Instruction::SExt: 6564 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6565 // The NSW flag of a subtract does not always survive the conversion to 6566 // A + (-1)*B. By pushing sign extension onto its operands we are much 6567 // more likely to preserve NSW and allow later AddRec optimisations. 6568 // 6569 // NOTE: This is effectively duplicating this logic from getSignExtend: 6570 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6571 // but by that point the NSW information has potentially been lost. 6572 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6573 Type *Ty = U->getType(); 6574 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6575 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6576 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6577 } 6578 } 6579 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6580 6581 case Instruction::BitCast: 6582 // BitCasts are no-op casts so we just eliminate the cast. 6583 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6584 return getSCEV(U->getOperand(0)); 6585 break; 6586 6587 case Instruction::PtrToInt: { 6588 // Pointer to integer cast is straight-forward, so do model it. 6589 Value *Ptr = U->getOperand(0); 6590 const SCEV *Op = getSCEV(Ptr); 6591 Type *DstIntTy = U->getType(); 6592 // SCEV doesn't have constant pointer expression type, but it supports 6593 // nullptr constant (and only that one), which is modelled in SCEV as a 6594 // zero integer constant. So just skip the ptrtoint cast for constants. 6595 if (isa<SCEVConstant>(Op)) 6596 return getTruncateOrZeroExtend(Op, DstIntTy); 6597 Type *PtrTy = Ptr->getType(); 6598 Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy); 6599 // But only if effective SCEV (integer) type is wide enough to represent 6600 // all possible pointer values. 6601 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) != 6602 getDataLayout().getTypeSizeInBits(IntPtrTy)) 6603 return getUnknown(V); 6604 return getPtrToIntExpr(Op, DstIntTy); 6605 } 6606 case Instruction::IntToPtr: 6607 // Just don't deal with inttoptr casts. 6608 return getUnknown(V); 6609 6610 case Instruction::SDiv: 6611 // If both operands are non-negative, this is just an udiv. 6612 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6613 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6614 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6615 break; 6616 6617 case Instruction::SRem: 6618 // If both operands are non-negative, this is just an urem. 6619 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6620 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6621 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6622 break; 6623 6624 case Instruction::GetElementPtr: 6625 return createNodeForGEP(cast<GEPOperator>(U)); 6626 6627 case Instruction::PHI: 6628 return createNodeForPHI(cast<PHINode>(U)); 6629 6630 case Instruction::Select: 6631 // U can also be a select constant expr, which let fall through. Since 6632 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6633 // constant expressions cannot have instructions as operands, we'd have 6634 // returned getUnknown for a select constant expressions anyway. 6635 if (isa<Instruction>(U)) 6636 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6637 U->getOperand(1), U->getOperand(2)); 6638 break; 6639 6640 case Instruction::Call: 6641 case Instruction::Invoke: 6642 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6643 return getSCEV(RV); 6644 6645 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 6646 switch (II->getIntrinsicID()) { 6647 case Intrinsic::abs: 6648 return getAbsExpr( 6649 getSCEV(II->getArgOperand(0)), 6650 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 6651 case Intrinsic::umax: 6652 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 6653 getSCEV(II->getArgOperand(1))); 6654 case Intrinsic::umin: 6655 return getUMinExpr(getSCEV(II->getArgOperand(0)), 6656 getSCEV(II->getArgOperand(1))); 6657 case Intrinsic::smax: 6658 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 6659 getSCEV(II->getArgOperand(1))); 6660 case Intrinsic::smin: 6661 return getSMinExpr(getSCEV(II->getArgOperand(0)), 6662 getSCEV(II->getArgOperand(1))); 6663 case Intrinsic::usub_sat: { 6664 const SCEV *X = getSCEV(II->getArgOperand(0)); 6665 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6666 const SCEV *ClampedY = getUMinExpr(X, Y); 6667 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 6668 } 6669 case Intrinsic::uadd_sat: { 6670 const SCEV *X = getSCEV(II->getArgOperand(0)); 6671 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6672 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 6673 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 6674 } 6675 case Intrinsic::start_loop_iterations: 6676 // A start_loop_iterations is just equivalent to the first operand for 6677 // SCEV purposes. 6678 return getSCEV(II->getArgOperand(0)); 6679 default: 6680 break; 6681 } 6682 } 6683 break; 6684 } 6685 6686 return getUnknown(V); 6687 } 6688 6689 //===----------------------------------------------------------------------===// 6690 // Iteration Count Computation Code 6691 // 6692 6693 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6694 if (!ExitCount) 6695 return 0; 6696 6697 ConstantInt *ExitConst = ExitCount->getValue(); 6698 6699 // Guard against huge trip counts. 6700 if (ExitConst->getValue().getActiveBits() > 32) 6701 return 0; 6702 6703 // In case of integer overflow, this returns 0, which is correct. 6704 return ((unsigned)ExitConst->getZExtValue()) + 1; 6705 } 6706 6707 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6708 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6709 return getSmallConstantTripCount(L, ExitingBB); 6710 6711 // No trip count information for multiple exits. 6712 return 0; 6713 } 6714 6715 unsigned 6716 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6717 const BasicBlock *ExitingBlock) { 6718 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6719 assert(L->isLoopExiting(ExitingBlock) && 6720 "Exiting block must actually branch out of the loop!"); 6721 const SCEVConstant *ExitCount = 6722 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6723 return getConstantTripCount(ExitCount); 6724 } 6725 6726 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6727 const auto *MaxExitCount = 6728 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6729 return getConstantTripCount(MaxExitCount); 6730 } 6731 6732 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6733 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6734 return getSmallConstantTripMultiple(L, ExitingBB); 6735 6736 // No trip multiple information for multiple exits. 6737 return 0; 6738 } 6739 6740 /// Returns the largest constant divisor of the trip count of this loop as a 6741 /// normal unsigned value, if possible. This means that the actual trip count is 6742 /// always a multiple of the returned value (don't forget the trip count could 6743 /// very well be zero as well!). 6744 /// 6745 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6746 /// multiple of a constant (which is also the case if the trip count is simply 6747 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6748 /// if the trip count is very large (>= 2^32). 6749 /// 6750 /// As explained in the comments for getSmallConstantTripCount, this assumes 6751 /// that control exits the loop via ExitingBlock. 6752 unsigned 6753 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6754 const BasicBlock *ExitingBlock) { 6755 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6756 assert(L->isLoopExiting(ExitingBlock) && 6757 "Exiting block must actually branch out of the loop!"); 6758 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6759 if (ExitCount == getCouldNotCompute()) 6760 return 1; 6761 6762 // Get the trip count from the BE count by adding 1. 6763 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6764 6765 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6766 if (!TC) 6767 // Attempt to factor more general cases. Returns the greatest power of 6768 // two divisor. If overflow happens, the trip count expression is still 6769 // divisible by the greatest power of 2 divisor returned. 6770 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6771 6772 ConstantInt *Result = TC->getValue(); 6773 6774 // Guard against huge trip counts (this requires checking 6775 // for zero to handle the case where the trip count == -1 and the 6776 // addition wraps). 6777 if (!Result || Result->getValue().getActiveBits() > 32 || 6778 Result->getValue().getActiveBits() == 0) 6779 return 1; 6780 6781 return (unsigned)Result->getZExtValue(); 6782 } 6783 6784 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6785 const BasicBlock *ExitingBlock, 6786 ExitCountKind Kind) { 6787 switch (Kind) { 6788 case Exact: 6789 case SymbolicMaximum: 6790 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6791 case ConstantMaximum: 6792 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 6793 }; 6794 llvm_unreachable("Invalid ExitCountKind!"); 6795 } 6796 6797 const SCEV * 6798 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6799 SCEVUnionPredicate &Preds) { 6800 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6801 } 6802 6803 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6804 ExitCountKind Kind) { 6805 switch (Kind) { 6806 case Exact: 6807 return getBackedgeTakenInfo(L).getExact(L, this); 6808 case ConstantMaximum: 6809 return getBackedgeTakenInfo(L).getConstantMax(this); 6810 case SymbolicMaximum: 6811 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 6812 }; 6813 llvm_unreachable("Invalid ExitCountKind!"); 6814 } 6815 6816 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6817 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 6818 } 6819 6820 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6821 static void 6822 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6823 BasicBlock *Header = L->getHeader(); 6824 6825 // Push all Loop-header PHIs onto the Worklist stack. 6826 for (PHINode &PN : Header->phis()) 6827 Worklist.push_back(&PN); 6828 } 6829 6830 const ScalarEvolution::BackedgeTakenInfo & 6831 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6832 auto &BTI = getBackedgeTakenInfo(L); 6833 if (BTI.hasFullInfo()) 6834 return BTI; 6835 6836 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6837 6838 if (!Pair.second) 6839 return Pair.first->second; 6840 6841 BackedgeTakenInfo Result = 6842 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6843 6844 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6845 } 6846 6847 ScalarEvolution::BackedgeTakenInfo & 6848 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6849 // Initially insert an invalid entry for this loop. If the insertion 6850 // succeeds, proceed to actually compute a backedge-taken count and 6851 // update the value. The temporary CouldNotCompute value tells SCEV 6852 // code elsewhere that it shouldn't attempt to request a new 6853 // backedge-taken count, which could result in infinite recursion. 6854 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6855 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6856 if (!Pair.second) 6857 return Pair.first->second; 6858 6859 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6860 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6861 // must be cleared in this scope. 6862 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6863 6864 // In product build, there are no usage of statistic. 6865 (void)NumTripCountsComputed; 6866 (void)NumTripCountsNotComputed; 6867 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6868 const SCEV *BEExact = Result.getExact(L, this); 6869 if (BEExact != getCouldNotCompute()) { 6870 assert(isLoopInvariant(BEExact, L) && 6871 isLoopInvariant(Result.getConstantMax(this), L) && 6872 "Computed backedge-taken count isn't loop invariant for loop!"); 6873 ++NumTripCountsComputed; 6874 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 6875 isa<PHINode>(L->getHeader()->begin())) { 6876 // Only count loops that have phi nodes as not being computable. 6877 ++NumTripCountsNotComputed; 6878 } 6879 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6880 6881 // Now that we know more about the trip count for this loop, forget any 6882 // existing SCEV values for PHI nodes in this loop since they are only 6883 // conservative estimates made without the benefit of trip count 6884 // information. This is similar to the code in forgetLoop, except that 6885 // it handles SCEVUnknown PHI nodes specially. 6886 if (Result.hasAnyInfo()) { 6887 SmallVector<Instruction *, 16> Worklist; 6888 PushLoopPHIs(L, Worklist); 6889 6890 SmallPtrSet<Instruction *, 8> Discovered; 6891 while (!Worklist.empty()) { 6892 Instruction *I = Worklist.pop_back_val(); 6893 6894 ValueExprMapType::iterator It = 6895 ValueExprMap.find_as(static_cast<Value *>(I)); 6896 if (It != ValueExprMap.end()) { 6897 const SCEV *Old = It->second; 6898 6899 // SCEVUnknown for a PHI either means that it has an unrecognized 6900 // structure, or it's a PHI that's in the progress of being computed 6901 // by createNodeForPHI. In the former case, additional loop trip 6902 // count information isn't going to change anything. In the later 6903 // case, createNodeForPHI will perform the necessary updates on its 6904 // own when it gets to that point. 6905 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6906 eraseValueFromMap(It->first); 6907 forgetMemoizedResults(Old); 6908 } 6909 if (PHINode *PN = dyn_cast<PHINode>(I)) 6910 ConstantEvolutionLoopExitValue.erase(PN); 6911 } 6912 6913 // Since we don't need to invalidate anything for correctness and we're 6914 // only invalidating to make SCEV's results more precise, we get to stop 6915 // early to avoid invalidating too much. This is especially important in 6916 // cases like: 6917 // 6918 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6919 // loop0: 6920 // %pn0 = phi 6921 // ... 6922 // loop1: 6923 // %pn1 = phi 6924 // ... 6925 // 6926 // where both loop0 and loop1's backedge taken count uses the SCEV 6927 // expression for %v. If we don't have the early stop below then in cases 6928 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6929 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6930 // count for loop1, effectively nullifying SCEV's trip count cache. 6931 for (auto *U : I->users()) 6932 if (auto *I = dyn_cast<Instruction>(U)) { 6933 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6934 if (LoopForUser && L->contains(LoopForUser) && 6935 Discovered.insert(I).second) 6936 Worklist.push_back(I); 6937 } 6938 } 6939 } 6940 6941 // Re-lookup the insert position, since the call to 6942 // computeBackedgeTakenCount above could result in a 6943 // recusive call to getBackedgeTakenInfo (on a different 6944 // loop), which would invalidate the iterator computed 6945 // earlier. 6946 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6947 } 6948 6949 void ScalarEvolution::forgetAllLoops() { 6950 // This method is intended to forget all info about loops. It should 6951 // invalidate caches as if the following happened: 6952 // - The trip counts of all loops have changed arbitrarily 6953 // - Every llvm::Value has been updated in place to produce a different 6954 // result. 6955 BackedgeTakenCounts.clear(); 6956 PredicatedBackedgeTakenCounts.clear(); 6957 LoopPropertiesCache.clear(); 6958 ConstantEvolutionLoopExitValue.clear(); 6959 ValueExprMap.clear(); 6960 ValuesAtScopes.clear(); 6961 LoopDispositions.clear(); 6962 BlockDispositions.clear(); 6963 UnsignedRanges.clear(); 6964 SignedRanges.clear(); 6965 ExprValueMap.clear(); 6966 HasRecMap.clear(); 6967 MinTrailingZerosCache.clear(); 6968 PredicatedSCEVRewrites.clear(); 6969 } 6970 6971 void ScalarEvolution::forgetLoop(const Loop *L) { 6972 // Drop any stored trip count value. 6973 auto RemoveLoopFromBackedgeMap = 6974 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6975 auto BTCPos = Map.find(L); 6976 if (BTCPos != Map.end()) { 6977 BTCPos->second.clear(); 6978 Map.erase(BTCPos); 6979 } 6980 }; 6981 6982 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6983 SmallVector<Instruction *, 32> Worklist; 6984 SmallPtrSet<Instruction *, 16> Visited; 6985 6986 // Iterate over all the loops and sub-loops to drop SCEV information. 6987 while (!LoopWorklist.empty()) { 6988 auto *CurrL = LoopWorklist.pop_back_val(); 6989 6990 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6991 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6992 6993 // Drop information about predicated SCEV rewrites for this loop. 6994 for (auto I = PredicatedSCEVRewrites.begin(); 6995 I != PredicatedSCEVRewrites.end();) { 6996 std::pair<const SCEV *, const Loop *> Entry = I->first; 6997 if (Entry.second == CurrL) 6998 PredicatedSCEVRewrites.erase(I++); 6999 else 7000 ++I; 7001 } 7002 7003 auto LoopUsersItr = LoopUsers.find(CurrL); 7004 if (LoopUsersItr != LoopUsers.end()) { 7005 for (auto *S : LoopUsersItr->second) 7006 forgetMemoizedResults(S); 7007 LoopUsers.erase(LoopUsersItr); 7008 } 7009 7010 // Drop information about expressions based on loop-header PHIs. 7011 PushLoopPHIs(CurrL, Worklist); 7012 7013 while (!Worklist.empty()) { 7014 Instruction *I = Worklist.pop_back_val(); 7015 if (!Visited.insert(I).second) 7016 continue; 7017 7018 ValueExprMapType::iterator It = 7019 ValueExprMap.find_as(static_cast<Value *>(I)); 7020 if (It != ValueExprMap.end()) { 7021 eraseValueFromMap(It->first); 7022 forgetMemoizedResults(It->second); 7023 if (PHINode *PN = dyn_cast<PHINode>(I)) 7024 ConstantEvolutionLoopExitValue.erase(PN); 7025 } 7026 7027 PushDefUseChildren(I, Worklist); 7028 } 7029 7030 LoopPropertiesCache.erase(CurrL); 7031 // Forget all contained loops too, to avoid dangling entries in the 7032 // ValuesAtScopes map. 7033 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7034 } 7035 } 7036 7037 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7038 while (Loop *Parent = L->getParentLoop()) 7039 L = Parent; 7040 forgetLoop(L); 7041 } 7042 7043 void ScalarEvolution::forgetValue(Value *V) { 7044 Instruction *I = dyn_cast<Instruction>(V); 7045 if (!I) return; 7046 7047 // Drop information about expressions based on loop-header PHIs. 7048 SmallVector<Instruction *, 16> Worklist; 7049 Worklist.push_back(I); 7050 7051 SmallPtrSet<Instruction *, 8> Visited; 7052 while (!Worklist.empty()) { 7053 I = Worklist.pop_back_val(); 7054 if (!Visited.insert(I).second) 7055 continue; 7056 7057 ValueExprMapType::iterator It = 7058 ValueExprMap.find_as(static_cast<Value *>(I)); 7059 if (It != ValueExprMap.end()) { 7060 eraseValueFromMap(It->first); 7061 forgetMemoizedResults(It->second); 7062 if (PHINode *PN = dyn_cast<PHINode>(I)) 7063 ConstantEvolutionLoopExitValue.erase(PN); 7064 } 7065 7066 PushDefUseChildren(I, Worklist); 7067 } 7068 } 7069 7070 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7071 LoopDispositions.clear(); 7072 } 7073 7074 /// Get the exact loop backedge taken count considering all loop exits. A 7075 /// computable result can only be returned for loops with all exiting blocks 7076 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7077 /// is never skipped. This is a valid assumption as long as the loop exits via 7078 /// that test. For precise results, it is the caller's responsibility to specify 7079 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7080 const SCEV * 7081 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7082 SCEVUnionPredicate *Preds) const { 7083 // If any exits were not computable, the loop is not computable. 7084 if (!isComplete() || ExitNotTaken.empty()) 7085 return SE->getCouldNotCompute(); 7086 7087 const BasicBlock *Latch = L->getLoopLatch(); 7088 // All exiting blocks we have collected must dominate the only backedge. 7089 if (!Latch) 7090 return SE->getCouldNotCompute(); 7091 7092 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7093 // count is simply a minimum out of all these calculated exit counts. 7094 SmallVector<const SCEV *, 2> Ops; 7095 for (auto &ENT : ExitNotTaken) { 7096 const SCEV *BECount = ENT.ExactNotTaken; 7097 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7098 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7099 "We should only have known counts for exiting blocks that dominate " 7100 "latch!"); 7101 7102 Ops.push_back(BECount); 7103 7104 if (Preds && !ENT.hasAlwaysTruePredicate()) 7105 Preds->add(ENT.Predicate.get()); 7106 7107 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7108 "Predicate should be always true!"); 7109 } 7110 7111 return SE->getUMinFromMismatchedTypes(Ops); 7112 } 7113 7114 /// Get the exact not taken count for this loop exit. 7115 const SCEV * 7116 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7117 ScalarEvolution *SE) const { 7118 for (auto &ENT : ExitNotTaken) 7119 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7120 return ENT.ExactNotTaken; 7121 7122 return SE->getCouldNotCompute(); 7123 } 7124 7125 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7126 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7127 for (auto &ENT : ExitNotTaken) 7128 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7129 return ENT.MaxNotTaken; 7130 7131 return SE->getCouldNotCompute(); 7132 } 7133 7134 /// getConstantMax - Get the constant max backedge taken count for the loop. 7135 const SCEV * 7136 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7137 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7138 return !ENT.hasAlwaysTruePredicate(); 7139 }; 7140 7141 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7142 return SE->getCouldNotCompute(); 7143 7144 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7145 isa<SCEVConstant>(getConstantMax())) && 7146 "No point in having a non-constant max backedge taken count!"); 7147 return getConstantMax(); 7148 } 7149 7150 const SCEV * 7151 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7152 ScalarEvolution *SE) { 7153 if (!SymbolicMax) 7154 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7155 return SymbolicMax; 7156 } 7157 7158 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7159 ScalarEvolution *SE) const { 7160 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7161 return !ENT.hasAlwaysTruePredicate(); 7162 }; 7163 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7164 } 7165 7166 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 7167 ScalarEvolution *SE) const { 7168 if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() && 7169 SE->hasOperand(getConstantMax(), S)) 7170 return true; 7171 7172 for (auto &ENT : ExitNotTaken) 7173 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 7174 SE->hasOperand(ENT.ExactNotTaken, S)) 7175 return true; 7176 7177 return false; 7178 } 7179 7180 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7181 : ExactNotTaken(E), MaxNotTaken(E) { 7182 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7183 isa<SCEVConstant>(MaxNotTaken)) && 7184 "No point in having a non-constant max backedge taken count!"); 7185 } 7186 7187 ScalarEvolution::ExitLimit::ExitLimit( 7188 const SCEV *E, const SCEV *M, bool MaxOrZero, 7189 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7190 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7191 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7192 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7193 "Exact is not allowed to be less precise than Max"); 7194 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7195 isa<SCEVConstant>(MaxNotTaken)) && 7196 "No point in having a non-constant max backedge taken count!"); 7197 for (auto *PredSet : PredSetList) 7198 for (auto *P : *PredSet) 7199 addPredicate(P); 7200 } 7201 7202 ScalarEvolution::ExitLimit::ExitLimit( 7203 const SCEV *E, const SCEV *M, bool MaxOrZero, 7204 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7205 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7206 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7207 isa<SCEVConstant>(MaxNotTaken)) && 7208 "No point in having a non-constant max backedge taken count!"); 7209 } 7210 7211 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7212 bool MaxOrZero) 7213 : ExitLimit(E, M, MaxOrZero, None) { 7214 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7215 isa<SCEVConstant>(MaxNotTaken)) && 7216 "No point in having a non-constant max backedge taken count!"); 7217 } 7218 7219 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7220 /// computable exit into a persistent ExitNotTakenInfo array. 7221 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7222 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7223 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7224 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7225 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7226 7227 ExitNotTaken.reserve(ExitCounts.size()); 7228 std::transform( 7229 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7230 [&](const EdgeExitInfo &EEI) { 7231 BasicBlock *ExitBB = EEI.first; 7232 const ExitLimit &EL = EEI.second; 7233 if (EL.Predicates.empty()) 7234 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7235 nullptr); 7236 7237 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7238 for (auto *Pred : EL.Predicates) 7239 Predicate->add(Pred); 7240 7241 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7242 std::move(Predicate)); 7243 }); 7244 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7245 isa<SCEVConstant>(ConstantMax)) && 7246 "No point in having a non-constant max backedge taken count!"); 7247 } 7248 7249 /// Invalidate this result and free the ExitNotTakenInfo array. 7250 void ScalarEvolution::BackedgeTakenInfo::clear() { 7251 ExitNotTaken.clear(); 7252 } 7253 7254 /// Compute the number of times the backedge of the specified loop will execute. 7255 ScalarEvolution::BackedgeTakenInfo 7256 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7257 bool AllowPredicates) { 7258 SmallVector<BasicBlock *, 8> ExitingBlocks; 7259 L->getExitingBlocks(ExitingBlocks); 7260 7261 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7262 7263 SmallVector<EdgeExitInfo, 4> ExitCounts; 7264 bool CouldComputeBECount = true; 7265 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7266 const SCEV *MustExitMaxBECount = nullptr; 7267 const SCEV *MayExitMaxBECount = nullptr; 7268 bool MustExitMaxOrZero = false; 7269 7270 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7271 // and compute maxBECount. 7272 // Do a union of all the predicates here. 7273 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7274 BasicBlock *ExitBB = ExitingBlocks[i]; 7275 7276 // We canonicalize untaken exits to br (constant), ignore them so that 7277 // proving an exit untaken doesn't negatively impact our ability to reason 7278 // about the loop as whole. 7279 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7280 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7281 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7282 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7283 continue; 7284 } 7285 7286 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7287 7288 assert((AllowPredicates || EL.Predicates.empty()) && 7289 "Predicated exit limit when predicates are not allowed!"); 7290 7291 // 1. For each exit that can be computed, add an entry to ExitCounts. 7292 // CouldComputeBECount is true only if all exits can be computed. 7293 if (EL.ExactNotTaken == getCouldNotCompute()) 7294 // We couldn't compute an exact value for this exit, so 7295 // we won't be able to compute an exact value for the loop. 7296 CouldComputeBECount = false; 7297 else 7298 ExitCounts.emplace_back(ExitBB, EL); 7299 7300 // 2. Derive the loop's MaxBECount from each exit's max number of 7301 // non-exiting iterations. Partition the loop exits into two kinds: 7302 // LoopMustExits and LoopMayExits. 7303 // 7304 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7305 // is a LoopMayExit. If any computable LoopMustExit is found, then 7306 // MaxBECount is the minimum EL.MaxNotTaken of computable 7307 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7308 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7309 // computable EL.MaxNotTaken. 7310 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7311 DT.dominates(ExitBB, Latch)) { 7312 if (!MustExitMaxBECount) { 7313 MustExitMaxBECount = EL.MaxNotTaken; 7314 MustExitMaxOrZero = EL.MaxOrZero; 7315 } else { 7316 MustExitMaxBECount = 7317 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7318 } 7319 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7320 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7321 MayExitMaxBECount = EL.MaxNotTaken; 7322 else { 7323 MayExitMaxBECount = 7324 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7325 } 7326 } 7327 } 7328 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7329 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7330 // The loop backedge will be taken the maximum or zero times if there's 7331 // a single exit that must be taken the maximum or zero times. 7332 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7333 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7334 MaxBECount, MaxOrZero); 7335 } 7336 7337 ScalarEvolution::ExitLimit 7338 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7339 bool AllowPredicates) { 7340 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7341 // If our exiting block does not dominate the latch, then its connection with 7342 // loop's exit limit may be far from trivial. 7343 const BasicBlock *Latch = L->getLoopLatch(); 7344 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7345 return getCouldNotCompute(); 7346 7347 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7348 Instruction *Term = ExitingBlock->getTerminator(); 7349 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7350 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7351 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7352 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7353 "It should have one successor in loop and one exit block!"); 7354 // Proceed to the next level to examine the exit condition expression. 7355 return computeExitLimitFromCond( 7356 L, BI->getCondition(), ExitIfTrue, 7357 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7358 } 7359 7360 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7361 // For switch, make sure that there is a single exit from the loop. 7362 BasicBlock *Exit = nullptr; 7363 for (auto *SBB : successors(ExitingBlock)) 7364 if (!L->contains(SBB)) { 7365 if (Exit) // Multiple exit successors. 7366 return getCouldNotCompute(); 7367 Exit = SBB; 7368 } 7369 assert(Exit && "Exiting block must have at least one exit"); 7370 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7371 /*ControlsExit=*/IsOnlyExit); 7372 } 7373 7374 return getCouldNotCompute(); 7375 } 7376 7377 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7378 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7379 bool ControlsExit, bool AllowPredicates) { 7380 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7381 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7382 ControlsExit, AllowPredicates); 7383 } 7384 7385 Optional<ScalarEvolution::ExitLimit> 7386 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7387 bool ExitIfTrue, bool ControlsExit, 7388 bool AllowPredicates) { 7389 (void)this->L; 7390 (void)this->ExitIfTrue; 7391 (void)this->AllowPredicates; 7392 7393 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7394 this->AllowPredicates == AllowPredicates && 7395 "Variance in assumed invariant key components!"); 7396 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7397 if (Itr == TripCountMap.end()) 7398 return None; 7399 return Itr->second; 7400 } 7401 7402 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7403 bool ExitIfTrue, 7404 bool ControlsExit, 7405 bool AllowPredicates, 7406 const ExitLimit &EL) { 7407 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7408 this->AllowPredicates == AllowPredicates && 7409 "Variance in assumed invariant key components!"); 7410 7411 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7412 assert(InsertResult.second && "Expected successful insertion!"); 7413 (void)InsertResult; 7414 (void)ExitIfTrue; 7415 } 7416 7417 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7418 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7419 bool ControlsExit, bool AllowPredicates) { 7420 7421 if (auto MaybeEL = 7422 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7423 return *MaybeEL; 7424 7425 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7426 ControlsExit, AllowPredicates); 7427 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7428 return EL; 7429 } 7430 7431 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7432 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7433 bool ControlsExit, bool AllowPredicates) { 7434 // Check if the controlling expression for this loop is an And or Or. 7435 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7436 if (BO->getOpcode() == Instruction::And) { 7437 // Recurse on the operands of the and. 7438 bool EitherMayExit = !ExitIfTrue; 7439 ExitLimit EL0 = computeExitLimitFromCondCached( 7440 Cache, L, BO->getOperand(0), ExitIfTrue, 7441 ControlsExit && !EitherMayExit, AllowPredicates); 7442 ExitLimit EL1 = computeExitLimitFromCondCached( 7443 Cache, L, BO->getOperand(1), ExitIfTrue, 7444 ControlsExit && !EitherMayExit, AllowPredicates); 7445 // Be robust against unsimplified IR for the form "and i1 X, true" 7446 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7447 return CI->isOne() ? EL0 : EL1; 7448 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7449 return CI->isOne() ? EL1 : EL0; 7450 const SCEV *BECount = getCouldNotCompute(); 7451 const SCEV *MaxBECount = getCouldNotCompute(); 7452 if (EitherMayExit) { 7453 // Both conditions must be true for the loop to continue executing. 7454 // Choose the less conservative count. 7455 if (EL0.ExactNotTaken == getCouldNotCompute() || 7456 EL1.ExactNotTaken == getCouldNotCompute()) 7457 BECount = getCouldNotCompute(); 7458 else 7459 BECount = 7460 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7461 if (EL0.MaxNotTaken == getCouldNotCompute()) 7462 MaxBECount = EL1.MaxNotTaken; 7463 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7464 MaxBECount = EL0.MaxNotTaken; 7465 else 7466 MaxBECount = 7467 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7468 } else { 7469 // Both conditions must be true at the same time for the loop to exit. 7470 // For now, be conservative. 7471 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7472 MaxBECount = EL0.MaxNotTaken; 7473 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7474 BECount = EL0.ExactNotTaken; 7475 } 7476 7477 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7478 // to be more aggressive when computing BECount than when computing 7479 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7480 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7481 // to not. 7482 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7483 !isa<SCEVCouldNotCompute>(BECount)) 7484 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7485 7486 return ExitLimit(BECount, MaxBECount, false, 7487 {&EL0.Predicates, &EL1.Predicates}); 7488 } 7489 if (BO->getOpcode() == Instruction::Or) { 7490 // Recurse on the operands of the or. 7491 bool EitherMayExit = ExitIfTrue; 7492 ExitLimit EL0 = computeExitLimitFromCondCached( 7493 Cache, L, BO->getOperand(0), ExitIfTrue, 7494 ControlsExit && !EitherMayExit, AllowPredicates); 7495 ExitLimit EL1 = computeExitLimitFromCondCached( 7496 Cache, L, BO->getOperand(1), ExitIfTrue, 7497 ControlsExit && !EitherMayExit, AllowPredicates); 7498 // Be robust against unsimplified IR for the form "or i1 X, true" 7499 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7500 return CI->isZero() ? EL0 : EL1; 7501 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7502 return CI->isZero() ? EL1 : EL0; 7503 const SCEV *BECount = getCouldNotCompute(); 7504 const SCEV *MaxBECount = getCouldNotCompute(); 7505 if (EitherMayExit) { 7506 // Both conditions must be false for the loop to continue executing. 7507 // Choose the less conservative count. 7508 if (EL0.ExactNotTaken == getCouldNotCompute() || 7509 EL1.ExactNotTaken == getCouldNotCompute()) 7510 BECount = getCouldNotCompute(); 7511 else 7512 BECount = 7513 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7514 if (EL0.MaxNotTaken == getCouldNotCompute()) 7515 MaxBECount = EL1.MaxNotTaken; 7516 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7517 MaxBECount = EL0.MaxNotTaken; 7518 else 7519 MaxBECount = 7520 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7521 } else { 7522 // Both conditions must be false at the same time for the loop to exit. 7523 // For now, be conservative. 7524 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7525 MaxBECount = EL0.MaxNotTaken; 7526 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7527 BECount = EL0.ExactNotTaken; 7528 } 7529 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7530 // to be more aggressive when computing BECount than when computing 7531 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7532 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7533 // to not. 7534 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7535 !isa<SCEVCouldNotCompute>(BECount)) 7536 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7537 7538 return ExitLimit(BECount, MaxBECount, false, 7539 {&EL0.Predicates, &EL1.Predicates}); 7540 } 7541 } 7542 7543 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7544 // Proceed to the next level to examine the icmp. 7545 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7546 ExitLimit EL = 7547 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7548 if (EL.hasFullInfo() || !AllowPredicates) 7549 return EL; 7550 7551 // Try again, but use SCEV predicates this time. 7552 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7553 /*AllowPredicates=*/true); 7554 } 7555 7556 // Check for a constant condition. These are normally stripped out by 7557 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7558 // preserve the CFG and is temporarily leaving constant conditions 7559 // in place. 7560 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7561 if (ExitIfTrue == !CI->getZExtValue()) 7562 // The backedge is always taken. 7563 return getCouldNotCompute(); 7564 else 7565 // The backedge is never taken. 7566 return getZero(CI->getType()); 7567 } 7568 7569 // If it's not an integer or pointer comparison then compute it the hard way. 7570 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7571 } 7572 7573 ScalarEvolution::ExitLimit 7574 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7575 ICmpInst *ExitCond, 7576 bool ExitIfTrue, 7577 bool ControlsExit, 7578 bool AllowPredicates) { 7579 // If the condition was exit on true, convert the condition to exit on false 7580 ICmpInst::Predicate Pred; 7581 if (!ExitIfTrue) 7582 Pred = ExitCond->getPredicate(); 7583 else 7584 Pred = ExitCond->getInversePredicate(); 7585 const ICmpInst::Predicate OriginalPred = Pred; 7586 7587 // Handle common loops like: for (X = "string"; *X; ++X) 7588 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7589 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7590 ExitLimit ItCnt = 7591 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7592 if (ItCnt.hasAnyInfo()) 7593 return ItCnt; 7594 } 7595 7596 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7597 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7598 7599 // Try to evaluate any dependencies out of the loop. 7600 LHS = getSCEVAtScope(LHS, L); 7601 RHS = getSCEVAtScope(RHS, L); 7602 7603 // At this point, we would like to compute how many iterations of the 7604 // loop the predicate will return true for these inputs. 7605 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7606 // If there is a loop-invariant, force it into the RHS. 7607 std::swap(LHS, RHS); 7608 Pred = ICmpInst::getSwappedPredicate(Pred); 7609 } 7610 7611 // Simplify the operands before analyzing them. 7612 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7613 7614 // If we have a comparison of a chrec against a constant, try to use value 7615 // ranges to answer this query. 7616 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7617 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7618 if (AddRec->getLoop() == L) { 7619 // Form the constant range. 7620 ConstantRange CompRange = 7621 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7622 7623 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7624 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7625 } 7626 7627 switch (Pred) { 7628 case ICmpInst::ICMP_NE: { // while (X != Y) 7629 // Convert to: while (X-Y != 0) 7630 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7631 AllowPredicates); 7632 if (EL.hasAnyInfo()) return EL; 7633 break; 7634 } 7635 case ICmpInst::ICMP_EQ: { // while (X == Y) 7636 // Convert to: while (X-Y == 0) 7637 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7638 if (EL.hasAnyInfo()) return EL; 7639 break; 7640 } 7641 case ICmpInst::ICMP_SLT: 7642 case ICmpInst::ICMP_ULT: { // while (X < Y) 7643 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7644 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7645 AllowPredicates); 7646 if (EL.hasAnyInfo()) return EL; 7647 break; 7648 } 7649 case ICmpInst::ICMP_SGT: 7650 case ICmpInst::ICMP_UGT: { // while (X > Y) 7651 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7652 ExitLimit EL = 7653 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7654 AllowPredicates); 7655 if (EL.hasAnyInfo()) return EL; 7656 break; 7657 } 7658 default: 7659 break; 7660 } 7661 7662 auto *ExhaustiveCount = 7663 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7664 7665 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7666 return ExhaustiveCount; 7667 7668 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7669 ExitCond->getOperand(1), L, OriginalPred); 7670 } 7671 7672 ScalarEvolution::ExitLimit 7673 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7674 SwitchInst *Switch, 7675 BasicBlock *ExitingBlock, 7676 bool ControlsExit) { 7677 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7678 7679 // Give up if the exit is the default dest of a switch. 7680 if (Switch->getDefaultDest() == ExitingBlock) 7681 return getCouldNotCompute(); 7682 7683 assert(L->contains(Switch->getDefaultDest()) && 7684 "Default case must not exit the loop!"); 7685 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7686 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7687 7688 // while (X != Y) --> while (X-Y != 0) 7689 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7690 if (EL.hasAnyInfo()) 7691 return EL; 7692 7693 return getCouldNotCompute(); 7694 } 7695 7696 static ConstantInt * 7697 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7698 ScalarEvolution &SE) { 7699 const SCEV *InVal = SE.getConstant(C); 7700 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7701 assert(isa<SCEVConstant>(Val) && 7702 "Evaluation of SCEV at constant didn't fold correctly?"); 7703 return cast<SCEVConstant>(Val)->getValue(); 7704 } 7705 7706 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7707 /// compute the backedge execution count. 7708 ScalarEvolution::ExitLimit 7709 ScalarEvolution::computeLoadConstantCompareExitLimit( 7710 LoadInst *LI, 7711 Constant *RHS, 7712 const Loop *L, 7713 ICmpInst::Predicate predicate) { 7714 if (LI->isVolatile()) return getCouldNotCompute(); 7715 7716 // Check to see if the loaded pointer is a getelementptr of a global. 7717 // TODO: Use SCEV instead of manually grubbing with GEPs. 7718 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7719 if (!GEP) return getCouldNotCompute(); 7720 7721 // Make sure that it is really a constant global we are gepping, with an 7722 // initializer, and make sure the first IDX is really 0. 7723 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7724 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7725 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7726 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7727 return getCouldNotCompute(); 7728 7729 // Okay, we allow one non-constant index into the GEP instruction. 7730 Value *VarIdx = nullptr; 7731 std::vector<Constant*> Indexes; 7732 unsigned VarIdxNum = 0; 7733 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7734 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7735 Indexes.push_back(CI); 7736 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7737 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7738 VarIdx = GEP->getOperand(i); 7739 VarIdxNum = i-2; 7740 Indexes.push_back(nullptr); 7741 } 7742 7743 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7744 if (!VarIdx) 7745 return getCouldNotCompute(); 7746 7747 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7748 // Check to see if X is a loop variant variable value now. 7749 const SCEV *Idx = getSCEV(VarIdx); 7750 Idx = getSCEVAtScope(Idx, L); 7751 7752 // We can only recognize very limited forms of loop index expressions, in 7753 // particular, only affine AddRec's like {C1,+,C2}. 7754 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7755 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7756 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7757 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7758 return getCouldNotCompute(); 7759 7760 unsigned MaxSteps = MaxBruteForceIterations; 7761 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7762 ConstantInt *ItCst = ConstantInt::get( 7763 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7764 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7765 7766 // Form the GEP offset. 7767 Indexes[VarIdxNum] = Val; 7768 7769 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7770 Indexes); 7771 if (!Result) break; // Cannot compute! 7772 7773 // Evaluate the condition for this iteration. 7774 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7775 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7776 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7777 ++NumArrayLenItCounts; 7778 return getConstant(ItCst); // Found terminating iteration! 7779 } 7780 } 7781 return getCouldNotCompute(); 7782 } 7783 7784 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7785 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7786 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7787 if (!RHS) 7788 return getCouldNotCompute(); 7789 7790 const BasicBlock *Latch = L->getLoopLatch(); 7791 if (!Latch) 7792 return getCouldNotCompute(); 7793 7794 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7795 if (!Predecessor) 7796 return getCouldNotCompute(); 7797 7798 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7799 // Return LHS in OutLHS and shift_opt in OutOpCode. 7800 auto MatchPositiveShift = 7801 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7802 7803 using namespace PatternMatch; 7804 7805 ConstantInt *ShiftAmt; 7806 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7807 OutOpCode = Instruction::LShr; 7808 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7809 OutOpCode = Instruction::AShr; 7810 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7811 OutOpCode = Instruction::Shl; 7812 else 7813 return false; 7814 7815 return ShiftAmt->getValue().isStrictlyPositive(); 7816 }; 7817 7818 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7819 // 7820 // loop: 7821 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7822 // %iv.shifted = lshr i32 %iv, <positive constant> 7823 // 7824 // Return true on a successful match. Return the corresponding PHI node (%iv 7825 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7826 auto MatchShiftRecurrence = 7827 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7828 Optional<Instruction::BinaryOps> PostShiftOpCode; 7829 7830 { 7831 Instruction::BinaryOps OpC; 7832 Value *V; 7833 7834 // If we encounter a shift instruction, "peel off" the shift operation, 7835 // and remember that we did so. Later when we inspect %iv's backedge 7836 // value, we will make sure that the backedge value uses the same 7837 // operation. 7838 // 7839 // Note: the peeled shift operation does not have to be the same 7840 // instruction as the one feeding into the PHI's backedge value. We only 7841 // really care about it being the same *kind* of shift instruction -- 7842 // that's all that is required for our later inferences to hold. 7843 if (MatchPositiveShift(LHS, V, OpC)) { 7844 PostShiftOpCode = OpC; 7845 LHS = V; 7846 } 7847 } 7848 7849 PNOut = dyn_cast<PHINode>(LHS); 7850 if (!PNOut || PNOut->getParent() != L->getHeader()) 7851 return false; 7852 7853 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7854 Value *OpLHS; 7855 7856 return 7857 // The backedge value for the PHI node must be a shift by a positive 7858 // amount 7859 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7860 7861 // of the PHI node itself 7862 OpLHS == PNOut && 7863 7864 // and the kind of shift should be match the kind of shift we peeled 7865 // off, if any. 7866 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7867 }; 7868 7869 PHINode *PN; 7870 Instruction::BinaryOps OpCode; 7871 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7872 return getCouldNotCompute(); 7873 7874 const DataLayout &DL = getDataLayout(); 7875 7876 // The key rationale for this optimization is that for some kinds of shift 7877 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7878 // within a finite number of iterations. If the condition guarding the 7879 // backedge (in the sense that the backedge is taken if the condition is true) 7880 // is false for the value the shift recurrence stabilizes to, then we know 7881 // that the backedge is taken only a finite number of times. 7882 7883 ConstantInt *StableValue = nullptr; 7884 switch (OpCode) { 7885 default: 7886 llvm_unreachable("Impossible case!"); 7887 7888 case Instruction::AShr: { 7889 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7890 // bitwidth(K) iterations. 7891 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7892 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7893 Predecessor->getTerminator(), &DT); 7894 auto *Ty = cast<IntegerType>(RHS->getType()); 7895 if (Known.isNonNegative()) 7896 StableValue = ConstantInt::get(Ty, 0); 7897 else if (Known.isNegative()) 7898 StableValue = ConstantInt::get(Ty, -1, true); 7899 else 7900 return getCouldNotCompute(); 7901 7902 break; 7903 } 7904 case Instruction::LShr: 7905 case Instruction::Shl: 7906 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7907 // stabilize to 0 in at most bitwidth(K) iterations. 7908 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7909 break; 7910 } 7911 7912 auto *Result = 7913 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7914 assert(Result->getType()->isIntegerTy(1) && 7915 "Otherwise cannot be an operand to a branch instruction"); 7916 7917 if (Result->isZeroValue()) { 7918 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7919 const SCEV *UpperBound = 7920 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7921 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7922 } 7923 7924 return getCouldNotCompute(); 7925 } 7926 7927 /// Return true if we can constant fold an instruction of the specified type, 7928 /// assuming that all operands were constants. 7929 static bool CanConstantFold(const Instruction *I) { 7930 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7931 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7932 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 7933 return true; 7934 7935 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7936 if (const Function *F = CI->getCalledFunction()) 7937 return canConstantFoldCallTo(CI, F); 7938 return false; 7939 } 7940 7941 /// Determine whether this instruction can constant evolve within this loop 7942 /// assuming its operands can all constant evolve. 7943 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7944 // An instruction outside of the loop can't be derived from a loop PHI. 7945 if (!L->contains(I)) return false; 7946 7947 if (isa<PHINode>(I)) { 7948 // We don't currently keep track of the control flow needed to evaluate 7949 // PHIs, so we cannot handle PHIs inside of loops. 7950 return L->getHeader() == I->getParent(); 7951 } 7952 7953 // If we won't be able to constant fold this expression even if the operands 7954 // are constants, bail early. 7955 return CanConstantFold(I); 7956 } 7957 7958 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7959 /// recursing through each instruction operand until reaching a loop header phi. 7960 static PHINode * 7961 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7962 DenseMap<Instruction *, PHINode *> &PHIMap, 7963 unsigned Depth) { 7964 if (Depth > MaxConstantEvolvingDepth) 7965 return nullptr; 7966 7967 // Otherwise, we can evaluate this instruction if all of its operands are 7968 // constant or derived from a PHI node themselves. 7969 PHINode *PHI = nullptr; 7970 for (Value *Op : UseInst->operands()) { 7971 if (isa<Constant>(Op)) continue; 7972 7973 Instruction *OpInst = dyn_cast<Instruction>(Op); 7974 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7975 7976 PHINode *P = dyn_cast<PHINode>(OpInst); 7977 if (!P) 7978 // If this operand is already visited, reuse the prior result. 7979 // We may have P != PHI if this is the deepest point at which the 7980 // inconsistent paths meet. 7981 P = PHIMap.lookup(OpInst); 7982 if (!P) { 7983 // Recurse and memoize the results, whether a phi is found or not. 7984 // This recursive call invalidates pointers into PHIMap. 7985 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7986 PHIMap[OpInst] = P; 7987 } 7988 if (!P) 7989 return nullptr; // Not evolving from PHI 7990 if (PHI && PHI != P) 7991 return nullptr; // Evolving from multiple different PHIs. 7992 PHI = P; 7993 } 7994 // This is a expression evolving from a constant PHI! 7995 return PHI; 7996 } 7997 7998 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7999 /// in the loop that V is derived from. We allow arbitrary operations along the 8000 /// way, but the operands of an operation must either be constants or a value 8001 /// derived from a constant PHI. If this expression does not fit with these 8002 /// constraints, return null. 8003 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8004 Instruction *I = dyn_cast<Instruction>(V); 8005 if (!I || !canConstantEvolve(I, L)) return nullptr; 8006 8007 if (PHINode *PN = dyn_cast<PHINode>(I)) 8008 return PN; 8009 8010 // Record non-constant instructions contained by the loop. 8011 DenseMap<Instruction *, PHINode *> PHIMap; 8012 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8013 } 8014 8015 /// EvaluateExpression - Given an expression that passes the 8016 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8017 /// in the loop has the value PHIVal. If we can't fold this expression for some 8018 /// reason, return null. 8019 static Constant *EvaluateExpression(Value *V, const Loop *L, 8020 DenseMap<Instruction *, Constant *> &Vals, 8021 const DataLayout &DL, 8022 const TargetLibraryInfo *TLI) { 8023 // Convenient constant check, but redundant for recursive calls. 8024 if (Constant *C = dyn_cast<Constant>(V)) return C; 8025 Instruction *I = dyn_cast<Instruction>(V); 8026 if (!I) return nullptr; 8027 8028 if (Constant *C = Vals.lookup(I)) return C; 8029 8030 // An instruction inside the loop depends on a value outside the loop that we 8031 // weren't given a mapping for, or a value such as a call inside the loop. 8032 if (!canConstantEvolve(I, L)) return nullptr; 8033 8034 // An unmapped PHI can be due to a branch or another loop inside this loop, 8035 // or due to this not being the initial iteration through a loop where we 8036 // couldn't compute the evolution of this particular PHI last time. 8037 if (isa<PHINode>(I)) return nullptr; 8038 8039 std::vector<Constant*> Operands(I->getNumOperands()); 8040 8041 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8042 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8043 if (!Operand) { 8044 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8045 if (!Operands[i]) return nullptr; 8046 continue; 8047 } 8048 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8049 Vals[Operand] = C; 8050 if (!C) return nullptr; 8051 Operands[i] = C; 8052 } 8053 8054 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8055 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8056 Operands[1], DL, TLI); 8057 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8058 if (!LI->isVolatile()) 8059 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8060 } 8061 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8062 } 8063 8064 8065 // If every incoming value to PN except the one for BB is a specific Constant, 8066 // return that, else return nullptr. 8067 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8068 Constant *IncomingVal = nullptr; 8069 8070 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8071 if (PN->getIncomingBlock(i) == BB) 8072 continue; 8073 8074 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8075 if (!CurrentVal) 8076 return nullptr; 8077 8078 if (IncomingVal != CurrentVal) { 8079 if (IncomingVal) 8080 return nullptr; 8081 IncomingVal = CurrentVal; 8082 } 8083 } 8084 8085 return IncomingVal; 8086 } 8087 8088 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8089 /// in the header of its containing loop, we know the loop executes a 8090 /// constant number of times, and the PHI node is just a recurrence 8091 /// involving constants, fold it. 8092 Constant * 8093 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8094 const APInt &BEs, 8095 const Loop *L) { 8096 auto I = ConstantEvolutionLoopExitValue.find(PN); 8097 if (I != ConstantEvolutionLoopExitValue.end()) 8098 return I->second; 8099 8100 if (BEs.ugt(MaxBruteForceIterations)) 8101 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8102 8103 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8104 8105 DenseMap<Instruction *, Constant *> CurrentIterVals; 8106 BasicBlock *Header = L->getHeader(); 8107 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8108 8109 BasicBlock *Latch = L->getLoopLatch(); 8110 if (!Latch) 8111 return nullptr; 8112 8113 for (PHINode &PHI : Header->phis()) { 8114 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8115 CurrentIterVals[&PHI] = StartCST; 8116 } 8117 if (!CurrentIterVals.count(PN)) 8118 return RetVal = nullptr; 8119 8120 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8121 8122 // Execute the loop symbolically to determine the exit value. 8123 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8124 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8125 8126 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8127 unsigned IterationNum = 0; 8128 const DataLayout &DL = getDataLayout(); 8129 for (; ; ++IterationNum) { 8130 if (IterationNum == NumIterations) 8131 return RetVal = CurrentIterVals[PN]; // Got exit value! 8132 8133 // Compute the value of the PHIs for the next iteration. 8134 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8135 DenseMap<Instruction *, Constant *> NextIterVals; 8136 Constant *NextPHI = 8137 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8138 if (!NextPHI) 8139 return nullptr; // Couldn't evaluate! 8140 NextIterVals[PN] = NextPHI; 8141 8142 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8143 8144 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8145 // cease to be able to evaluate one of them or if they stop evolving, 8146 // because that doesn't necessarily prevent us from computing PN. 8147 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8148 for (const auto &I : CurrentIterVals) { 8149 PHINode *PHI = dyn_cast<PHINode>(I.first); 8150 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8151 PHIsToCompute.emplace_back(PHI, I.second); 8152 } 8153 // We use two distinct loops because EvaluateExpression may invalidate any 8154 // iterators into CurrentIterVals. 8155 for (const auto &I : PHIsToCompute) { 8156 PHINode *PHI = I.first; 8157 Constant *&NextPHI = NextIterVals[PHI]; 8158 if (!NextPHI) { // Not already computed. 8159 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8160 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8161 } 8162 if (NextPHI != I.second) 8163 StoppedEvolving = false; 8164 } 8165 8166 // If all entries in CurrentIterVals == NextIterVals then we can stop 8167 // iterating, the loop can't continue to change. 8168 if (StoppedEvolving) 8169 return RetVal = CurrentIterVals[PN]; 8170 8171 CurrentIterVals.swap(NextIterVals); 8172 } 8173 } 8174 8175 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8176 Value *Cond, 8177 bool ExitWhen) { 8178 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8179 if (!PN) return getCouldNotCompute(); 8180 8181 // If the loop is canonicalized, the PHI will have exactly two entries. 8182 // That's the only form we support here. 8183 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8184 8185 DenseMap<Instruction *, Constant *> CurrentIterVals; 8186 BasicBlock *Header = L->getHeader(); 8187 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8188 8189 BasicBlock *Latch = L->getLoopLatch(); 8190 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8191 8192 for (PHINode &PHI : Header->phis()) { 8193 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8194 CurrentIterVals[&PHI] = StartCST; 8195 } 8196 if (!CurrentIterVals.count(PN)) 8197 return getCouldNotCompute(); 8198 8199 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8200 // the loop symbolically to determine when the condition gets a value of 8201 // "ExitWhen". 8202 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8203 const DataLayout &DL = getDataLayout(); 8204 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8205 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8206 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8207 8208 // Couldn't symbolically evaluate. 8209 if (!CondVal) return getCouldNotCompute(); 8210 8211 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8212 ++NumBruteForceTripCountsComputed; 8213 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8214 } 8215 8216 // Update all the PHI nodes for the next iteration. 8217 DenseMap<Instruction *, Constant *> NextIterVals; 8218 8219 // Create a list of which PHIs we need to compute. We want to do this before 8220 // calling EvaluateExpression on them because that may invalidate iterators 8221 // into CurrentIterVals. 8222 SmallVector<PHINode *, 8> PHIsToCompute; 8223 for (const auto &I : CurrentIterVals) { 8224 PHINode *PHI = dyn_cast<PHINode>(I.first); 8225 if (!PHI || PHI->getParent() != Header) continue; 8226 PHIsToCompute.push_back(PHI); 8227 } 8228 for (PHINode *PHI : PHIsToCompute) { 8229 Constant *&NextPHI = NextIterVals[PHI]; 8230 if (NextPHI) continue; // Already computed! 8231 8232 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8233 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8234 } 8235 CurrentIterVals.swap(NextIterVals); 8236 } 8237 8238 // Too many iterations were needed to evaluate. 8239 return getCouldNotCompute(); 8240 } 8241 8242 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8243 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8244 ValuesAtScopes[V]; 8245 // Check to see if we've folded this expression at this loop before. 8246 for (auto &LS : Values) 8247 if (LS.first == L) 8248 return LS.second ? LS.second : V; 8249 8250 Values.emplace_back(L, nullptr); 8251 8252 // Otherwise compute it. 8253 const SCEV *C = computeSCEVAtScope(V, L); 8254 for (auto &LS : reverse(ValuesAtScopes[V])) 8255 if (LS.first == L) { 8256 LS.second = C; 8257 break; 8258 } 8259 return C; 8260 } 8261 8262 /// This builds up a Constant using the ConstantExpr interface. That way, we 8263 /// will return Constants for objects which aren't represented by a 8264 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8265 /// Returns NULL if the SCEV isn't representable as a Constant. 8266 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8267 switch (V->getSCEVType()) { 8268 case scCouldNotCompute: 8269 case scAddRecExpr: 8270 return nullptr; 8271 case scConstant: 8272 return cast<SCEVConstant>(V)->getValue(); 8273 case scUnknown: 8274 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8275 case scSignExtend: { 8276 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8277 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8278 return ConstantExpr::getSExt(CastOp, SS->getType()); 8279 return nullptr; 8280 } 8281 case scZeroExtend: { 8282 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8283 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8284 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8285 return nullptr; 8286 } 8287 case scPtrToInt: { 8288 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8289 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8290 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8291 8292 return nullptr; 8293 } 8294 case scTruncate: { 8295 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8296 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8297 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8298 return nullptr; 8299 } 8300 case scAddExpr: { 8301 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8302 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8303 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8304 unsigned AS = PTy->getAddressSpace(); 8305 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8306 C = ConstantExpr::getBitCast(C, DestPtrTy); 8307 } 8308 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8309 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8310 if (!C2) 8311 return nullptr; 8312 8313 // First pointer! 8314 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8315 unsigned AS = C2->getType()->getPointerAddressSpace(); 8316 std::swap(C, C2); 8317 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8318 // The offsets have been converted to bytes. We can add bytes to an 8319 // i8* by GEP with the byte count in the first index. 8320 C = ConstantExpr::getBitCast(C, DestPtrTy); 8321 } 8322 8323 // Don't bother trying to sum two pointers. We probably can't 8324 // statically compute a load that results from it anyway. 8325 if (C2->getType()->isPointerTy()) 8326 return nullptr; 8327 8328 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8329 if (PTy->getElementType()->isStructTy()) 8330 C2 = ConstantExpr::getIntegerCast( 8331 C2, Type::getInt32Ty(C->getContext()), true); 8332 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8333 } else 8334 C = ConstantExpr::getAdd(C, C2); 8335 } 8336 return C; 8337 } 8338 return nullptr; 8339 } 8340 case scMulExpr: { 8341 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8342 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8343 // Don't bother with pointers at all. 8344 if (C->getType()->isPointerTy()) 8345 return nullptr; 8346 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8347 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8348 if (!C2 || C2->getType()->isPointerTy()) 8349 return nullptr; 8350 C = ConstantExpr::getMul(C, C2); 8351 } 8352 return C; 8353 } 8354 return nullptr; 8355 } 8356 case scUDivExpr: { 8357 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8358 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8359 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8360 if (LHS->getType() == RHS->getType()) 8361 return ConstantExpr::getUDiv(LHS, RHS); 8362 return nullptr; 8363 } 8364 case scSMaxExpr: 8365 case scUMaxExpr: 8366 case scSMinExpr: 8367 case scUMinExpr: 8368 return nullptr; // TODO: smax, umax, smin, umax. 8369 } 8370 llvm_unreachable("Unknown SCEV kind!"); 8371 } 8372 8373 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8374 if (isa<SCEVConstant>(V)) return V; 8375 8376 // If this instruction is evolved from a constant-evolving PHI, compute the 8377 // exit value from the loop without using SCEVs. 8378 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8379 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8380 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8381 const Loop *CurrLoop = this->LI[I->getParent()]; 8382 // Looking for loop exit value. 8383 if (CurrLoop && CurrLoop->getParentLoop() == L && 8384 PN->getParent() == CurrLoop->getHeader()) { 8385 // Okay, there is no closed form solution for the PHI node. Check 8386 // to see if the loop that contains it has a known backedge-taken 8387 // count. If so, we may be able to force computation of the exit 8388 // value. 8389 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8390 // This trivial case can show up in some degenerate cases where 8391 // the incoming IR has not yet been fully simplified. 8392 if (BackedgeTakenCount->isZero()) { 8393 Value *InitValue = nullptr; 8394 bool MultipleInitValues = false; 8395 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8396 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8397 if (!InitValue) 8398 InitValue = PN->getIncomingValue(i); 8399 else if (InitValue != PN->getIncomingValue(i)) { 8400 MultipleInitValues = true; 8401 break; 8402 } 8403 } 8404 } 8405 if (!MultipleInitValues && InitValue) 8406 return getSCEV(InitValue); 8407 } 8408 // Do we have a loop invariant value flowing around the backedge 8409 // for a loop which must execute the backedge? 8410 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8411 isKnownPositive(BackedgeTakenCount) && 8412 PN->getNumIncomingValues() == 2) { 8413 8414 unsigned InLoopPred = 8415 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8416 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8417 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8418 return getSCEV(BackedgeVal); 8419 } 8420 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8421 // Okay, we know how many times the containing loop executes. If 8422 // this is a constant evolving PHI node, get the final value at 8423 // the specified iteration number. 8424 Constant *RV = getConstantEvolutionLoopExitValue( 8425 PN, BTCC->getAPInt(), CurrLoop); 8426 if (RV) return getSCEV(RV); 8427 } 8428 } 8429 8430 // If there is a single-input Phi, evaluate it at our scope. If we can 8431 // prove that this replacement does not break LCSSA form, use new value. 8432 if (PN->getNumOperands() == 1) { 8433 const SCEV *Input = getSCEV(PN->getOperand(0)); 8434 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8435 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8436 // for the simplest case just support constants. 8437 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8438 } 8439 } 8440 8441 // Okay, this is an expression that we cannot symbolically evaluate 8442 // into a SCEV. Check to see if it's possible to symbolically evaluate 8443 // the arguments into constants, and if so, try to constant propagate the 8444 // result. This is particularly useful for computing loop exit values. 8445 if (CanConstantFold(I)) { 8446 SmallVector<Constant *, 4> Operands; 8447 bool MadeImprovement = false; 8448 for (Value *Op : I->operands()) { 8449 if (Constant *C = dyn_cast<Constant>(Op)) { 8450 Operands.push_back(C); 8451 continue; 8452 } 8453 8454 // If any of the operands is non-constant and if they are 8455 // non-integer and non-pointer, don't even try to analyze them 8456 // with scev techniques. 8457 if (!isSCEVable(Op->getType())) 8458 return V; 8459 8460 const SCEV *OrigV = getSCEV(Op); 8461 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8462 MadeImprovement |= OrigV != OpV; 8463 8464 Constant *C = BuildConstantFromSCEV(OpV); 8465 if (!C) return V; 8466 if (C->getType() != Op->getType()) 8467 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8468 Op->getType(), 8469 false), 8470 C, Op->getType()); 8471 Operands.push_back(C); 8472 } 8473 8474 // Check to see if getSCEVAtScope actually made an improvement. 8475 if (MadeImprovement) { 8476 Constant *C = nullptr; 8477 const DataLayout &DL = getDataLayout(); 8478 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8479 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8480 Operands[1], DL, &TLI); 8481 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8482 if (!Load->isVolatile()) 8483 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8484 DL); 8485 } else 8486 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8487 if (!C) return V; 8488 return getSCEV(C); 8489 } 8490 } 8491 } 8492 8493 // This is some other type of SCEVUnknown, just return it. 8494 return V; 8495 } 8496 8497 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8498 // Avoid performing the look-up in the common case where the specified 8499 // expression has no loop-variant portions. 8500 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8501 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8502 if (OpAtScope != Comm->getOperand(i)) { 8503 // Okay, at least one of these operands is loop variant but might be 8504 // foldable. Build a new instance of the folded commutative expression. 8505 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8506 Comm->op_begin()+i); 8507 NewOps.push_back(OpAtScope); 8508 8509 for (++i; i != e; ++i) { 8510 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8511 NewOps.push_back(OpAtScope); 8512 } 8513 if (isa<SCEVAddExpr>(Comm)) 8514 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8515 if (isa<SCEVMulExpr>(Comm)) 8516 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8517 if (isa<SCEVMinMaxExpr>(Comm)) 8518 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8519 llvm_unreachable("Unknown commutative SCEV type!"); 8520 } 8521 } 8522 // If we got here, all operands are loop invariant. 8523 return Comm; 8524 } 8525 8526 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8527 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8528 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8529 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8530 return Div; // must be loop invariant 8531 return getUDivExpr(LHS, RHS); 8532 } 8533 8534 // If this is a loop recurrence for a loop that does not contain L, then we 8535 // are dealing with the final value computed by the loop. 8536 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8537 // First, attempt to evaluate each operand. 8538 // Avoid performing the look-up in the common case where the specified 8539 // expression has no loop-variant portions. 8540 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8541 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8542 if (OpAtScope == AddRec->getOperand(i)) 8543 continue; 8544 8545 // Okay, at least one of these operands is loop variant but might be 8546 // foldable. Build a new instance of the folded commutative expression. 8547 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8548 AddRec->op_begin()+i); 8549 NewOps.push_back(OpAtScope); 8550 for (++i; i != e; ++i) 8551 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8552 8553 const SCEV *FoldedRec = 8554 getAddRecExpr(NewOps, AddRec->getLoop(), 8555 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8556 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8557 // The addrec may be folded to a nonrecurrence, for example, if the 8558 // induction variable is multiplied by zero after constant folding. Go 8559 // ahead and return the folded value. 8560 if (!AddRec) 8561 return FoldedRec; 8562 break; 8563 } 8564 8565 // If the scope is outside the addrec's loop, evaluate it by using the 8566 // loop exit value of the addrec. 8567 if (!AddRec->getLoop()->contains(L)) { 8568 // To evaluate this recurrence, we need to know how many times the AddRec 8569 // loop iterates. Compute this now. 8570 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8571 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8572 8573 // Then, evaluate the AddRec. 8574 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8575 } 8576 8577 return AddRec; 8578 } 8579 8580 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8581 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8582 if (Op == Cast->getOperand()) 8583 return Cast; // must be loop invariant 8584 return getZeroExtendExpr(Op, Cast->getType()); 8585 } 8586 8587 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8588 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8589 if (Op == Cast->getOperand()) 8590 return Cast; // must be loop invariant 8591 return getSignExtendExpr(Op, Cast->getType()); 8592 } 8593 8594 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8595 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8596 if (Op == Cast->getOperand()) 8597 return Cast; // must be loop invariant 8598 return getTruncateExpr(Op, Cast->getType()); 8599 } 8600 8601 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 8602 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8603 if (Op == Cast->getOperand()) 8604 return Cast; // must be loop invariant 8605 return getPtrToIntExpr(Op, Cast->getType()); 8606 } 8607 8608 llvm_unreachable("Unknown SCEV type!"); 8609 } 8610 8611 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8612 return getSCEVAtScope(getSCEV(V), L); 8613 } 8614 8615 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8616 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8617 return stripInjectiveFunctions(ZExt->getOperand()); 8618 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8619 return stripInjectiveFunctions(SExt->getOperand()); 8620 return S; 8621 } 8622 8623 /// Finds the minimum unsigned root of the following equation: 8624 /// 8625 /// A * X = B (mod N) 8626 /// 8627 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8628 /// A and B isn't important. 8629 /// 8630 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8631 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8632 ScalarEvolution &SE) { 8633 uint32_t BW = A.getBitWidth(); 8634 assert(BW == SE.getTypeSizeInBits(B->getType())); 8635 assert(A != 0 && "A must be non-zero."); 8636 8637 // 1. D = gcd(A, N) 8638 // 8639 // The gcd of A and N may have only one prime factor: 2. The number of 8640 // trailing zeros in A is its multiplicity 8641 uint32_t Mult2 = A.countTrailingZeros(); 8642 // D = 2^Mult2 8643 8644 // 2. Check if B is divisible by D. 8645 // 8646 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8647 // is not less than multiplicity of this prime factor for D. 8648 if (SE.GetMinTrailingZeros(B) < Mult2) 8649 return SE.getCouldNotCompute(); 8650 8651 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8652 // modulo (N / D). 8653 // 8654 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8655 // (N / D) in general. The inverse itself always fits into BW bits, though, 8656 // so we immediately truncate it. 8657 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8658 APInt Mod(BW + 1, 0); 8659 Mod.setBit(BW - Mult2); // Mod = N / D 8660 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8661 8662 // 4. Compute the minimum unsigned root of the equation: 8663 // I * (B / D) mod (N / D) 8664 // To simplify the computation, we factor out the divide by D: 8665 // (I * B mod N) / D 8666 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8667 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8668 } 8669 8670 /// For a given quadratic addrec, generate coefficients of the corresponding 8671 /// quadratic equation, multiplied by a common value to ensure that they are 8672 /// integers. 8673 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8674 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8675 /// were multiplied by, and BitWidth is the bit width of the original addrec 8676 /// coefficients. 8677 /// This function returns None if the addrec coefficients are not compile- 8678 /// time constants. 8679 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8680 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8681 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8682 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8683 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8684 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8685 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8686 << *AddRec << '\n'); 8687 8688 // We currently can only solve this if the coefficients are constants. 8689 if (!LC || !MC || !NC) { 8690 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8691 return None; 8692 } 8693 8694 APInt L = LC->getAPInt(); 8695 APInt M = MC->getAPInt(); 8696 APInt N = NC->getAPInt(); 8697 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8698 8699 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8700 unsigned NewWidth = BitWidth + 1; 8701 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8702 << BitWidth << '\n'); 8703 // The sign-extension (as opposed to a zero-extension) here matches the 8704 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8705 N = N.sext(NewWidth); 8706 M = M.sext(NewWidth); 8707 L = L.sext(NewWidth); 8708 8709 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8710 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8711 // L+M, L+2M+N, L+3M+3N, ... 8712 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8713 // 8714 // The equation Acc = 0 is then 8715 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8716 // In a quadratic form it becomes: 8717 // N n^2 + (2M-N) n + 2L = 0. 8718 8719 APInt A = N; 8720 APInt B = 2 * M - A; 8721 APInt C = 2 * L; 8722 APInt T = APInt(NewWidth, 2); 8723 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8724 << "x + " << C << ", coeff bw: " << NewWidth 8725 << ", multiplied by " << T << '\n'); 8726 return std::make_tuple(A, B, C, T, BitWidth); 8727 } 8728 8729 /// Helper function to compare optional APInts: 8730 /// (a) if X and Y both exist, return min(X, Y), 8731 /// (b) if neither X nor Y exist, return None, 8732 /// (c) if exactly one of X and Y exists, return that value. 8733 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8734 if (X.hasValue() && Y.hasValue()) { 8735 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8736 APInt XW = X->sextOrSelf(W); 8737 APInt YW = Y->sextOrSelf(W); 8738 return XW.slt(YW) ? *X : *Y; 8739 } 8740 if (!X.hasValue() && !Y.hasValue()) 8741 return None; 8742 return X.hasValue() ? *X : *Y; 8743 } 8744 8745 /// Helper function to truncate an optional APInt to a given BitWidth. 8746 /// When solving addrec-related equations, it is preferable to return a value 8747 /// that has the same bit width as the original addrec's coefficients. If the 8748 /// solution fits in the original bit width, truncate it (except for i1). 8749 /// Returning a value of a different bit width may inhibit some optimizations. 8750 /// 8751 /// In general, a solution to a quadratic equation generated from an addrec 8752 /// may require BW+1 bits, where BW is the bit width of the addrec's 8753 /// coefficients. The reason is that the coefficients of the quadratic 8754 /// equation are BW+1 bits wide (to avoid truncation when converting from 8755 /// the addrec to the equation). 8756 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8757 if (!X.hasValue()) 8758 return None; 8759 unsigned W = X->getBitWidth(); 8760 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8761 return X->trunc(BitWidth); 8762 return X; 8763 } 8764 8765 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8766 /// iterations. The values L, M, N are assumed to be signed, and they 8767 /// should all have the same bit widths. 8768 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8769 /// where BW is the bit width of the addrec's coefficients. 8770 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8771 /// returned as such, otherwise the bit width of the returned value may 8772 /// be greater than BW. 8773 /// 8774 /// This function returns None if 8775 /// (a) the addrec coefficients are not constant, or 8776 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8777 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8778 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8779 static Optional<APInt> 8780 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8781 APInt A, B, C, M; 8782 unsigned BitWidth; 8783 auto T = GetQuadraticEquation(AddRec); 8784 if (!T.hasValue()) 8785 return None; 8786 8787 std::tie(A, B, C, M, BitWidth) = *T; 8788 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8789 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8790 if (!X.hasValue()) 8791 return None; 8792 8793 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8794 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8795 if (!V->isZero()) 8796 return None; 8797 8798 return TruncIfPossible(X, BitWidth); 8799 } 8800 8801 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8802 /// iterations. The values M, N are assumed to be signed, and they 8803 /// should all have the same bit widths. 8804 /// Find the least n such that c(n) does not belong to the given range, 8805 /// while c(n-1) does. 8806 /// 8807 /// This function returns None if 8808 /// (a) the addrec coefficients are not constant, or 8809 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8810 /// bounds of the range. 8811 static Optional<APInt> 8812 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8813 const ConstantRange &Range, ScalarEvolution &SE) { 8814 assert(AddRec->getOperand(0)->isZero() && 8815 "Starting value of addrec should be 0"); 8816 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8817 << Range << ", addrec " << *AddRec << '\n'); 8818 // This case is handled in getNumIterationsInRange. Here we can assume that 8819 // we start in the range. 8820 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8821 "Addrec's initial value should be in range"); 8822 8823 APInt A, B, C, M; 8824 unsigned BitWidth; 8825 auto T = GetQuadraticEquation(AddRec); 8826 if (!T.hasValue()) 8827 return None; 8828 8829 // Be careful about the return value: there can be two reasons for not 8830 // returning an actual number. First, if no solutions to the equations 8831 // were found, and second, if the solutions don't leave the given range. 8832 // The first case means that the actual solution is "unknown", the second 8833 // means that it's known, but not valid. If the solution is unknown, we 8834 // cannot make any conclusions. 8835 // Return a pair: the optional solution and a flag indicating if the 8836 // solution was found. 8837 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8838 // Solve for signed overflow and unsigned overflow, pick the lower 8839 // solution. 8840 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8841 << Bound << " (before multiplying by " << M << ")\n"); 8842 Bound *= M; // The quadratic equation multiplier. 8843 8844 Optional<APInt> SO = None; 8845 if (BitWidth > 1) { 8846 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8847 "signed overflow\n"); 8848 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8849 } 8850 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8851 "unsigned overflow\n"); 8852 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8853 BitWidth+1); 8854 8855 auto LeavesRange = [&] (const APInt &X) { 8856 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8857 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8858 if (Range.contains(V0->getValue())) 8859 return false; 8860 // X should be at least 1, so X-1 is non-negative. 8861 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8862 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8863 if (Range.contains(V1->getValue())) 8864 return true; 8865 return false; 8866 }; 8867 8868 // If SolveQuadraticEquationWrap returns None, it means that there can 8869 // be a solution, but the function failed to find it. We cannot treat it 8870 // as "no solution". 8871 if (!SO.hasValue() || !UO.hasValue()) 8872 return { None, false }; 8873 8874 // Check the smaller value first to see if it leaves the range. 8875 // At this point, both SO and UO must have values. 8876 Optional<APInt> Min = MinOptional(SO, UO); 8877 if (LeavesRange(*Min)) 8878 return { Min, true }; 8879 Optional<APInt> Max = Min == SO ? UO : SO; 8880 if (LeavesRange(*Max)) 8881 return { Max, true }; 8882 8883 // Solutions were found, but were eliminated, hence the "true". 8884 return { None, true }; 8885 }; 8886 8887 std::tie(A, B, C, M, BitWidth) = *T; 8888 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8889 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8890 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8891 auto SL = SolveForBoundary(Lower); 8892 auto SU = SolveForBoundary(Upper); 8893 // If any of the solutions was unknown, no meaninigful conclusions can 8894 // be made. 8895 if (!SL.second || !SU.second) 8896 return None; 8897 8898 // Claim: The correct solution is not some value between Min and Max. 8899 // 8900 // Justification: Assuming that Min and Max are different values, one of 8901 // them is when the first signed overflow happens, the other is when the 8902 // first unsigned overflow happens. Crossing the range boundary is only 8903 // possible via an overflow (treating 0 as a special case of it, modeling 8904 // an overflow as crossing k*2^W for some k). 8905 // 8906 // The interesting case here is when Min was eliminated as an invalid 8907 // solution, but Max was not. The argument is that if there was another 8908 // overflow between Min and Max, it would also have been eliminated if 8909 // it was considered. 8910 // 8911 // For a given boundary, it is possible to have two overflows of the same 8912 // type (signed/unsigned) without having the other type in between: this 8913 // can happen when the vertex of the parabola is between the iterations 8914 // corresponding to the overflows. This is only possible when the two 8915 // overflows cross k*2^W for the same k. In such case, if the second one 8916 // left the range (and was the first one to do so), the first overflow 8917 // would have to enter the range, which would mean that either we had left 8918 // the range before or that we started outside of it. Both of these cases 8919 // are contradictions. 8920 // 8921 // Claim: In the case where SolveForBoundary returns None, the correct 8922 // solution is not some value between the Max for this boundary and the 8923 // Min of the other boundary. 8924 // 8925 // Justification: Assume that we had such Max_A and Min_B corresponding 8926 // to range boundaries A and B and such that Max_A < Min_B. If there was 8927 // a solution between Max_A and Min_B, it would have to be caused by an 8928 // overflow corresponding to either A or B. It cannot correspond to B, 8929 // since Min_B is the first occurrence of such an overflow. If it 8930 // corresponded to A, it would have to be either a signed or an unsigned 8931 // overflow that is larger than both eliminated overflows for A. But 8932 // between the eliminated overflows and this overflow, the values would 8933 // cover the entire value space, thus crossing the other boundary, which 8934 // is a contradiction. 8935 8936 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8937 } 8938 8939 ScalarEvolution::ExitLimit 8940 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8941 bool AllowPredicates) { 8942 8943 // This is only used for loops with a "x != y" exit test. The exit condition 8944 // is now expressed as a single expression, V = x-y. So the exit test is 8945 // effectively V != 0. We know and take advantage of the fact that this 8946 // expression only being used in a comparison by zero context. 8947 8948 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8949 // If the value is a constant 8950 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8951 // If the value is already zero, the branch will execute zero times. 8952 if (C->getValue()->isZero()) return C; 8953 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8954 } 8955 8956 const SCEVAddRecExpr *AddRec = 8957 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8958 8959 if (!AddRec && AllowPredicates) 8960 // Try to make this an AddRec using runtime tests, in the first X 8961 // iterations of this loop, where X is the SCEV expression found by the 8962 // algorithm below. 8963 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8964 8965 if (!AddRec || AddRec->getLoop() != L) 8966 return getCouldNotCompute(); 8967 8968 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8969 // the quadratic equation to solve it. 8970 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8971 // We can only use this value if the chrec ends up with an exact zero 8972 // value at this index. When solving for "X*X != 5", for example, we 8973 // should not accept a root of 2. 8974 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 8975 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 8976 return ExitLimit(R, R, false, Predicates); 8977 } 8978 return getCouldNotCompute(); 8979 } 8980 8981 // Otherwise we can only handle this if it is affine. 8982 if (!AddRec->isAffine()) 8983 return getCouldNotCompute(); 8984 8985 // If this is an affine expression, the execution count of this branch is 8986 // the minimum unsigned root of the following equation: 8987 // 8988 // Start + Step*N = 0 (mod 2^BW) 8989 // 8990 // equivalent to: 8991 // 8992 // Step*N = -Start (mod 2^BW) 8993 // 8994 // where BW is the common bit width of Start and Step. 8995 8996 // Get the initial value for the loop. 8997 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8998 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8999 9000 // For now we handle only constant steps. 9001 // 9002 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9003 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9004 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9005 // We have not yet seen any such cases. 9006 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9007 if (!StepC || StepC->getValue()->isZero()) 9008 return getCouldNotCompute(); 9009 9010 // For positive steps (counting up until unsigned overflow): 9011 // N = -Start/Step (as unsigned) 9012 // For negative steps (counting down to zero): 9013 // N = Start/-Step 9014 // First compute the unsigned distance from zero in the direction of Step. 9015 bool CountDown = StepC->getAPInt().isNegative(); 9016 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9017 9018 // Handle unitary steps, which cannot wraparound. 9019 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9020 // N = Distance (as unsigned) 9021 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9022 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9023 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9024 if (MaxBECountBase.ult(MaxBECount)) 9025 MaxBECount = MaxBECountBase; 9026 9027 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9028 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9029 // case, and see if we can improve the bound. 9030 // 9031 // Explicitly handling this here is necessary because getUnsignedRange 9032 // isn't context-sensitive; it doesn't know that we only care about the 9033 // range inside the loop. 9034 const SCEV *Zero = getZero(Distance->getType()); 9035 const SCEV *One = getOne(Distance->getType()); 9036 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9037 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9038 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9039 // as "unsigned_max(Distance + 1) - 1". 9040 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9041 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9042 } 9043 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9044 } 9045 9046 // If the condition controls loop exit (the loop exits only if the expression 9047 // is true) and the addition is no-wrap we can use unsigned divide to 9048 // compute the backedge count. In this case, the step may not divide the 9049 // distance, but we don't care because if the condition is "missed" the loop 9050 // will have undefined behavior due to wrapping. 9051 if (ControlsExit && AddRec->hasNoSelfWrap() && 9052 loopHasNoAbnormalExits(AddRec->getLoop())) { 9053 const SCEV *Exact = 9054 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9055 const SCEV *Max = 9056 Exact == getCouldNotCompute() 9057 ? Exact 9058 : getConstant(getUnsignedRangeMax(Exact)); 9059 return ExitLimit(Exact, Max, false, Predicates); 9060 } 9061 9062 // Solve the general equation. 9063 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9064 getNegativeSCEV(Start), *this); 9065 const SCEV *M = E == getCouldNotCompute() 9066 ? E 9067 : getConstant(getUnsignedRangeMax(E)); 9068 return ExitLimit(E, M, false, Predicates); 9069 } 9070 9071 ScalarEvolution::ExitLimit 9072 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9073 // Loops that look like: while (X == 0) are very strange indeed. We don't 9074 // handle them yet except for the trivial case. This could be expanded in the 9075 // future as needed. 9076 9077 // If the value is a constant, check to see if it is known to be non-zero 9078 // already. If so, the backedge will execute zero times. 9079 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9080 if (!C->getValue()->isZero()) 9081 return getZero(C->getType()); 9082 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9083 } 9084 9085 // We could implement others, but I really doubt anyone writes loops like 9086 // this, and if they did, they would already be constant folded. 9087 return getCouldNotCompute(); 9088 } 9089 9090 std::pair<const BasicBlock *, const BasicBlock *> 9091 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9092 const { 9093 // If the block has a unique predecessor, then there is no path from the 9094 // predecessor to the block that does not go through the direct edge 9095 // from the predecessor to the block. 9096 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9097 return {Pred, BB}; 9098 9099 // A loop's header is defined to be a block that dominates the loop. 9100 // If the header has a unique predecessor outside the loop, it must be 9101 // a block that has exactly one successor that can reach the loop. 9102 if (const Loop *L = LI.getLoopFor(BB)) 9103 return {L->getLoopPredecessor(), L->getHeader()}; 9104 9105 return {nullptr, nullptr}; 9106 } 9107 9108 /// SCEV structural equivalence is usually sufficient for testing whether two 9109 /// expressions are equal, however for the purposes of looking for a condition 9110 /// guarding a loop, it can be useful to be a little more general, since a 9111 /// front-end may have replicated the controlling expression. 9112 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9113 // Quick check to see if they are the same SCEV. 9114 if (A == B) return true; 9115 9116 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9117 // Not all instructions that are "identical" compute the same value. For 9118 // instance, two distinct alloca instructions allocating the same type are 9119 // identical and do not read memory; but compute distinct values. 9120 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9121 }; 9122 9123 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9124 // two different instructions with the same value. Check for this case. 9125 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9126 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9127 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9128 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9129 if (ComputesEqualValues(AI, BI)) 9130 return true; 9131 9132 // Otherwise assume they may have a different value. 9133 return false; 9134 } 9135 9136 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9137 const SCEV *&LHS, const SCEV *&RHS, 9138 unsigned Depth) { 9139 bool Changed = false; 9140 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9141 // '0 != 0'. 9142 auto TrivialCase = [&](bool TriviallyTrue) { 9143 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9144 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9145 return true; 9146 }; 9147 // If we hit the max recursion limit bail out. 9148 if (Depth >= 3) 9149 return false; 9150 9151 // Canonicalize a constant to the right side. 9152 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9153 // Check for both operands constant. 9154 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9155 if (ConstantExpr::getICmp(Pred, 9156 LHSC->getValue(), 9157 RHSC->getValue())->isNullValue()) 9158 return TrivialCase(false); 9159 else 9160 return TrivialCase(true); 9161 } 9162 // Otherwise swap the operands to put the constant on the right. 9163 std::swap(LHS, RHS); 9164 Pred = ICmpInst::getSwappedPredicate(Pred); 9165 Changed = true; 9166 } 9167 9168 // If we're comparing an addrec with a value which is loop-invariant in the 9169 // addrec's loop, put the addrec on the left. Also make a dominance check, 9170 // as both operands could be addrecs loop-invariant in each other's loop. 9171 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9172 const Loop *L = AR->getLoop(); 9173 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9174 std::swap(LHS, RHS); 9175 Pred = ICmpInst::getSwappedPredicate(Pred); 9176 Changed = true; 9177 } 9178 } 9179 9180 // If there's a constant operand, canonicalize comparisons with boundary 9181 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9182 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9183 const APInt &RA = RC->getAPInt(); 9184 9185 bool SimplifiedByConstantRange = false; 9186 9187 if (!ICmpInst::isEquality(Pred)) { 9188 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9189 if (ExactCR.isFullSet()) 9190 return TrivialCase(true); 9191 else if (ExactCR.isEmptySet()) 9192 return TrivialCase(false); 9193 9194 APInt NewRHS; 9195 CmpInst::Predicate NewPred; 9196 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9197 ICmpInst::isEquality(NewPred)) { 9198 // We were able to convert an inequality to an equality. 9199 Pred = NewPred; 9200 RHS = getConstant(NewRHS); 9201 Changed = SimplifiedByConstantRange = true; 9202 } 9203 } 9204 9205 if (!SimplifiedByConstantRange) { 9206 switch (Pred) { 9207 default: 9208 break; 9209 case ICmpInst::ICMP_EQ: 9210 case ICmpInst::ICMP_NE: 9211 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9212 if (!RA) 9213 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9214 if (const SCEVMulExpr *ME = 9215 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9216 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9217 ME->getOperand(0)->isAllOnesValue()) { 9218 RHS = AE->getOperand(1); 9219 LHS = ME->getOperand(1); 9220 Changed = true; 9221 } 9222 break; 9223 9224 9225 // The "Should have been caught earlier!" messages refer to the fact 9226 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9227 // should have fired on the corresponding cases, and canonicalized the 9228 // check to trivial case. 9229 9230 case ICmpInst::ICMP_UGE: 9231 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9232 Pred = ICmpInst::ICMP_UGT; 9233 RHS = getConstant(RA - 1); 9234 Changed = true; 9235 break; 9236 case ICmpInst::ICMP_ULE: 9237 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9238 Pred = ICmpInst::ICMP_ULT; 9239 RHS = getConstant(RA + 1); 9240 Changed = true; 9241 break; 9242 case ICmpInst::ICMP_SGE: 9243 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9244 Pred = ICmpInst::ICMP_SGT; 9245 RHS = getConstant(RA - 1); 9246 Changed = true; 9247 break; 9248 case ICmpInst::ICMP_SLE: 9249 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9250 Pred = ICmpInst::ICMP_SLT; 9251 RHS = getConstant(RA + 1); 9252 Changed = true; 9253 break; 9254 } 9255 } 9256 } 9257 9258 // Check for obvious equality. 9259 if (HasSameValue(LHS, RHS)) { 9260 if (ICmpInst::isTrueWhenEqual(Pred)) 9261 return TrivialCase(true); 9262 if (ICmpInst::isFalseWhenEqual(Pred)) 9263 return TrivialCase(false); 9264 } 9265 9266 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9267 // adding or subtracting 1 from one of the operands. 9268 switch (Pred) { 9269 case ICmpInst::ICMP_SLE: 9270 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9271 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9272 SCEV::FlagNSW); 9273 Pred = ICmpInst::ICMP_SLT; 9274 Changed = true; 9275 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9276 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9277 SCEV::FlagNSW); 9278 Pred = ICmpInst::ICMP_SLT; 9279 Changed = true; 9280 } 9281 break; 9282 case ICmpInst::ICMP_SGE: 9283 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9284 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9285 SCEV::FlagNSW); 9286 Pred = ICmpInst::ICMP_SGT; 9287 Changed = true; 9288 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9289 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9290 SCEV::FlagNSW); 9291 Pred = ICmpInst::ICMP_SGT; 9292 Changed = true; 9293 } 9294 break; 9295 case ICmpInst::ICMP_ULE: 9296 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9297 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9298 SCEV::FlagNUW); 9299 Pred = ICmpInst::ICMP_ULT; 9300 Changed = true; 9301 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9302 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9303 Pred = ICmpInst::ICMP_ULT; 9304 Changed = true; 9305 } 9306 break; 9307 case ICmpInst::ICMP_UGE: 9308 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9309 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9310 Pred = ICmpInst::ICMP_UGT; 9311 Changed = true; 9312 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9313 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9314 SCEV::FlagNUW); 9315 Pred = ICmpInst::ICMP_UGT; 9316 Changed = true; 9317 } 9318 break; 9319 default: 9320 break; 9321 } 9322 9323 // TODO: More simplifications are possible here. 9324 9325 // Recursively simplify until we either hit a recursion limit or nothing 9326 // changes. 9327 if (Changed) 9328 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9329 9330 return Changed; 9331 } 9332 9333 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9334 return getSignedRangeMax(S).isNegative(); 9335 } 9336 9337 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9338 return getSignedRangeMin(S).isStrictlyPositive(); 9339 } 9340 9341 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9342 return !getSignedRangeMin(S).isNegative(); 9343 } 9344 9345 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9346 return !getSignedRangeMax(S).isStrictlyPositive(); 9347 } 9348 9349 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9350 return isKnownNegative(S) || isKnownPositive(S); 9351 } 9352 9353 std::pair<const SCEV *, const SCEV *> 9354 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9355 // Compute SCEV on entry of loop L. 9356 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9357 if (Start == getCouldNotCompute()) 9358 return { Start, Start }; 9359 // Compute post increment SCEV for loop L. 9360 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9361 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9362 return { Start, PostInc }; 9363 } 9364 9365 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9366 const SCEV *LHS, const SCEV *RHS) { 9367 // First collect all loops. 9368 SmallPtrSet<const Loop *, 8> LoopsUsed; 9369 getUsedLoops(LHS, LoopsUsed); 9370 getUsedLoops(RHS, LoopsUsed); 9371 9372 if (LoopsUsed.empty()) 9373 return false; 9374 9375 // Domination relationship must be a linear order on collected loops. 9376 #ifndef NDEBUG 9377 for (auto *L1 : LoopsUsed) 9378 for (auto *L2 : LoopsUsed) 9379 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9380 DT.dominates(L2->getHeader(), L1->getHeader())) && 9381 "Domination relationship is not a linear order"); 9382 #endif 9383 9384 const Loop *MDL = 9385 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9386 [&](const Loop *L1, const Loop *L2) { 9387 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9388 }); 9389 9390 // Get init and post increment value for LHS. 9391 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9392 // if LHS contains unknown non-invariant SCEV then bail out. 9393 if (SplitLHS.first == getCouldNotCompute()) 9394 return false; 9395 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9396 // Get init and post increment value for RHS. 9397 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9398 // if RHS contains unknown non-invariant SCEV then bail out. 9399 if (SplitRHS.first == getCouldNotCompute()) 9400 return false; 9401 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9402 // It is possible that init SCEV contains an invariant load but it does 9403 // not dominate MDL and is not available at MDL loop entry, so we should 9404 // check it here. 9405 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9406 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9407 return false; 9408 9409 // It seems backedge guard check is faster than entry one so in some cases 9410 // it can speed up whole estimation by short circuit 9411 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9412 SplitRHS.second) && 9413 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9414 } 9415 9416 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9417 const SCEV *LHS, const SCEV *RHS) { 9418 // Canonicalize the inputs first. 9419 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9420 9421 if (isKnownViaInduction(Pred, LHS, RHS)) 9422 return true; 9423 9424 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9425 return true; 9426 9427 // Otherwise see what can be done with some simple reasoning. 9428 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9429 } 9430 9431 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9432 const SCEV *LHS, const SCEV *RHS, 9433 const Instruction *Context) { 9434 // TODO: Analyze guards and assumes from Context's block. 9435 return isKnownPredicate(Pred, LHS, RHS) || 9436 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9437 } 9438 9439 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9440 const SCEVAddRecExpr *LHS, 9441 const SCEV *RHS) { 9442 const Loop *L = LHS->getLoop(); 9443 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9444 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9445 } 9446 9447 Optional<ScalarEvolution::MonotonicPredicateType> 9448 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9449 ICmpInst::Predicate Pred) { 9450 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9451 9452 #ifndef NDEBUG 9453 // Verify an invariant: inverting the predicate should turn a monotonically 9454 // increasing change to a monotonically decreasing one, and vice versa. 9455 if (Result) { 9456 auto ResultSwapped = 9457 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9458 9459 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9460 assert(ResultSwapped.getValue() != Result.getValue() && 9461 "monotonicity should flip as we flip the predicate"); 9462 } 9463 #endif 9464 9465 return Result; 9466 } 9467 9468 Optional<ScalarEvolution::MonotonicPredicateType> 9469 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9470 ICmpInst::Predicate Pred) { 9471 // A zero step value for LHS means the induction variable is essentially a 9472 // loop invariant value. We don't really depend on the predicate actually 9473 // flipping from false to true (for increasing predicates, and the other way 9474 // around for decreasing predicates), all we care about is that *if* the 9475 // predicate changes then it only changes from false to true. 9476 // 9477 // A zero step value in itself is not very useful, but there may be places 9478 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9479 // as general as possible. 9480 9481 // Only handle LE/LT/GE/GT predicates. 9482 if (!ICmpInst::isRelational(Pred)) 9483 return None; 9484 9485 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9486 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9487 "Should be greater or less!"); 9488 9489 // Check that AR does not wrap. 9490 if (ICmpInst::isUnsigned(Pred)) { 9491 if (!LHS->hasNoUnsignedWrap()) 9492 return None; 9493 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9494 } else { 9495 assert(ICmpInst::isSigned(Pred) && 9496 "Relational predicate is either signed or unsigned!"); 9497 if (!LHS->hasNoSignedWrap()) 9498 return None; 9499 9500 const SCEV *Step = LHS->getStepRecurrence(*this); 9501 9502 if (isKnownNonNegative(Step)) 9503 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9504 9505 if (isKnownNonPositive(Step)) 9506 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9507 9508 return None; 9509 } 9510 } 9511 9512 bool ScalarEvolution::isLoopInvariantPredicate( 9513 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9514 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9515 const SCEV *&InvariantRHS) { 9516 9517 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9518 if (!isLoopInvariant(RHS, L)) { 9519 if (!isLoopInvariant(LHS, L)) 9520 return false; 9521 9522 std::swap(LHS, RHS); 9523 Pred = ICmpInst::getSwappedPredicate(Pred); 9524 } 9525 9526 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9527 if (!ArLHS || ArLHS->getLoop() != L) 9528 return false; 9529 9530 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 9531 if (!MonotonicType) 9532 return false; 9533 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9534 // true as the loop iterates, and the backedge is control dependent on 9535 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9536 // 9537 // * if the predicate was false in the first iteration then the predicate 9538 // is never evaluated again, since the loop exits without taking the 9539 // backedge. 9540 // * if the predicate was true in the first iteration then it will 9541 // continue to be true for all future iterations since it is 9542 // monotonically increasing. 9543 // 9544 // For both the above possibilities, we can replace the loop varying 9545 // predicate with its value on the first iteration of the loop (which is 9546 // loop invariant). 9547 // 9548 // A similar reasoning applies for a monotonically decreasing predicate, by 9549 // replacing true with false and false with true in the above two bullets. 9550 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 9551 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9552 9553 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9554 return false; 9555 9556 InvariantPred = Pred; 9557 InvariantLHS = ArLHS->getStart(); 9558 InvariantRHS = RHS; 9559 return true; 9560 } 9561 9562 bool ScalarEvolution::isLoopInvariantExitCondDuringFirstIterations( 9563 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9564 const Instruction *Context, const SCEV *MaxIter, 9565 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9566 const SCEV *&InvariantRHS) { 9567 // Try to prove the following set of facts: 9568 // - The predicate is monotonic. 9569 // - If the check does not fail on the 1st iteration: 9570 // - No overflow will happen during first MaxIter iterations; 9571 // - It will not fail on the MaxIter'th iteration. 9572 // If the check does fail on the 1st iteration, we leave the loop and no 9573 // other checks matter. 9574 9575 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9576 if (!isLoopInvariant(RHS, L)) { 9577 if (!isLoopInvariant(LHS, L)) 9578 return false; 9579 9580 std::swap(LHS, RHS); 9581 Pred = ICmpInst::getSwappedPredicate(Pred); 9582 } 9583 9584 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 9585 if (!AR || AR->getLoop() != L) 9586 return false; 9587 9588 // The predicate must be relational (i.e. <, <=, >=, >). 9589 if (!ICmpInst::isRelational(Pred)) 9590 return false; 9591 9592 const SCEV *Step = AR->getStepRecurrence(*this); 9593 bool IsStepNonPositive = isKnownNonPositive(Step); 9594 if (!IsStepNonPositive && !isKnownNonNegative(Step)) 9595 return false; 9596 bool HasNoSelfWrap = AR->hasNoSelfWrap(); 9597 if (!HasNoSelfWrap) 9598 // If num iter has same type as the AddRec, and step is +/- 1, even max 9599 // possible number of iterations is not enough to self-wrap. 9600 if (MaxIter->getType() == AR->getType()) 9601 if (Step == getOne(AR->getType()) || Step == getMinusOne(AR->getType())) 9602 HasNoSelfWrap = true; 9603 // Only proceed with non-self-wrapping ARs. 9604 if (!HasNoSelfWrap) 9605 return false; 9606 9607 // Value of IV on suggested last iteration. 9608 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 9609 // Does it still meet the requirement? 9610 if (!isKnownPredicateAt(Pred, Last, RHS, Context)) 9611 return false; 9612 // We know that the addrec does not have a self-wrap. To prove that there is 9613 // no signed/unsigned wrap, we need to check that 9614 // Start <= Last for positive step or Start >= Last for negative step. Either 9615 // works for zero step. 9616 ICmpInst::Predicate NoOverflowPred = 9617 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 9618 if (IsStepNonPositive) 9619 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 9620 const SCEV *Start = AR->getStart(); 9621 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 9622 return false; 9623 9624 // Everything is fine. 9625 InvariantPred = Pred; 9626 InvariantLHS = Start; 9627 InvariantRHS = RHS; 9628 return true; 9629 } 9630 9631 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9632 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9633 if (HasSameValue(LHS, RHS)) 9634 return ICmpInst::isTrueWhenEqual(Pred); 9635 9636 // This code is split out from isKnownPredicate because it is called from 9637 // within isLoopEntryGuardedByCond. 9638 9639 auto CheckRanges = 9640 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9641 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9642 .contains(RangeLHS); 9643 }; 9644 9645 // The check at the top of the function catches the case where the values are 9646 // known to be equal. 9647 if (Pred == CmpInst::ICMP_EQ) 9648 return false; 9649 9650 if (Pred == CmpInst::ICMP_NE) 9651 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9652 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9653 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9654 9655 if (CmpInst::isSigned(Pred)) 9656 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9657 9658 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9659 } 9660 9661 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9662 const SCEV *LHS, 9663 const SCEV *RHS) { 9664 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9665 // Return Y via OutY. 9666 auto MatchBinaryAddToConst = 9667 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9668 SCEV::NoWrapFlags ExpectedFlags) { 9669 const SCEV *NonConstOp, *ConstOp; 9670 SCEV::NoWrapFlags FlagsPresent; 9671 9672 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9673 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9674 return false; 9675 9676 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9677 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9678 }; 9679 9680 APInt C; 9681 9682 switch (Pred) { 9683 default: 9684 break; 9685 9686 case ICmpInst::ICMP_SGE: 9687 std::swap(LHS, RHS); 9688 LLVM_FALLTHROUGH; 9689 case ICmpInst::ICMP_SLE: 9690 // X s<= (X + C)<nsw> if C >= 0 9691 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9692 return true; 9693 9694 // (X + C)<nsw> s<= X if C <= 0 9695 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9696 !C.isStrictlyPositive()) 9697 return true; 9698 break; 9699 9700 case ICmpInst::ICMP_SGT: 9701 std::swap(LHS, RHS); 9702 LLVM_FALLTHROUGH; 9703 case ICmpInst::ICMP_SLT: 9704 // X s< (X + C)<nsw> if C > 0 9705 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9706 C.isStrictlyPositive()) 9707 return true; 9708 9709 // (X + C)<nsw> s< X if C < 0 9710 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9711 return true; 9712 break; 9713 9714 case ICmpInst::ICMP_UGE: 9715 std::swap(LHS, RHS); 9716 LLVM_FALLTHROUGH; 9717 case ICmpInst::ICMP_ULE: 9718 // X u<= (X + C)<nuw> for any C 9719 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW)) 9720 return true; 9721 break; 9722 9723 case ICmpInst::ICMP_UGT: 9724 std::swap(LHS, RHS); 9725 LLVM_FALLTHROUGH; 9726 case ICmpInst::ICMP_ULT: 9727 // X u< (X + C)<nuw> if C != 0 9728 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue()) 9729 return true; 9730 break; 9731 } 9732 9733 return false; 9734 } 9735 9736 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9737 const SCEV *LHS, 9738 const SCEV *RHS) { 9739 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9740 return false; 9741 9742 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9743 // the stack can result in exponential time complexity. 9744 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9745 9746 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9747 // 9748 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9749 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9750 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9751 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9752 // use isKnownPredicate later if needed. 9753 return isKnownNonNegative(RHS) && 9754 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9755 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9756 } 9757 9758 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 9759 ICmpInst::Predicate Pred, 9760 const SCEV *LHS, const SCEV *RHS) { 9761 // No need to even try if we know the module has no guards. 9762 if (!HasGuards) 9763 return false; 9764 9765 return any_of(*BB, [&](const Instruction &I) { 9766 using namespace llvm::PatternMatch; 9767 9768 Value *Condition; 9769 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9770 m_Value(Condition))) && 9771 isImpliedCond(Pred, LHS, RHS, Condition, false); 9772 }); 9773 } 9774 9775 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9776 /// protected by a conditional between LHS and RHS. This is used to 9777 /// to eliminate casts. 9778 bool 9779 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9780 ICmpInst::Predicate Pred, 9781 const SCEV *LHS, const SCEV *RHS) { 9782 // Interpret a null as meaning no loop, where there is obviously no guard 9783 // (interprocedural conditions notwithstanding). 9784 if (!L) return true; 9785 9786 if (VerifyIR) 9787 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9788 "This cannot be done on broken IR!"); 9789 9790 9791 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9792 return true; 9793 9794 BasicBlock *Latch = L->getLoopLatch(); 9795 if (!Latch) 9796 return false; 9797 9798 BranchInst *LoopContinuePredicate = 9799 dyn_cast<BranchInst>(Latch->getTerminator()); 9800 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9801 isImpliedCond(Pred, LHS, RHS, 9802 LoopContinuePredicate->getCondition(), 9803 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9804 return true; 9805 9806 // We don't want more than one activation of the following loops on the stack 9807 // -- that can lead to O(n!) time complexity. 9808 if (WalkingBEDominatingConds) 9809 return false; 9810 9811 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9812 9813 // See if we can exploit a trip count to prove the predicate. 9814 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9815 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9816 if (LatchBECount != getCouldNotCompute()) { 9817 // We know that Latch branches back to the loop header exactly 9818 // LatchBECount times. This means the backdege condition at Latch is 9819 // equivalent to "{0,+,1} u< LatchBECount". 9820 Type *Ty = LatchBECount->getType(); 9821 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9822 const SCEV *LoopCounter = 9823 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9824 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9825 LatchBECount)) 9826 return true; 9827 } 9828 9829 // Check conditions due to any @llvm.assume intrinsics. 9830 for (auto &AssumeVH : AC.assumptions()) { 9831 if (!AssumeVH) 9832 continue; 9833 auto *CI = cast<CallInst>(AssumeVH); 9834 if (!DT.dominates(CI, Latch->getTerminator())) 9835 continue; 9836 9837 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9838 return true; 9839 } 9840 9841 // If the loop is not reachable from the entry block, we risk running into an 9842 // infinite loop as we walk up into the dom tree. These loops do not matter 9843 // anyway, so we just return a conservative answer when we see them. 9844 if (!DT.isReachableFromEntry(L->getHeader())) 9845 return false; 9846 9847 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9848 return true; 9849 9850 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9851 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9852 assert(DTN && "should reach the loop header before reaching the root!"); 9853 9854 BasicBlock *BB = DTN->getBlock(); 9855 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9856 return true; 9857 9858 BasicBlock *PBB = BB->getSinglePredecessor(); 9859 if (!PBB) 9860 continue; 9861 9862 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9863 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9864 continue; 9865 9866 Value *Condition = ContinuePredicate->getCondition(); 9867 9868 // If we have an edge `E` within the loop body that dominates the only 9869 // latch, the condition guarding `E` also guards the backedge. This 9870 // reasoning works only for loops with a single latch. 9871 9872 BasicBlockEdge DominatingEdge(PBB, BB); 9873 if (DominatingEdge.isSingleEdge()) { 9874 // We're constructively (and conservatively) enumerating edges within the 9875 // loop body that dominate the latch. The dominator tree better agree 9876 // with us on this: 9877 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9878 9879 if (isImpliedCond(Pred, LHS, RHS, Condition, 9880 BB != ContinuePredicate->getSuccessor(0))) 9881 return true; 9882 } 9883 } 9884 9885 return false; 9886 } 9887 9888 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 9889 ICmpInst::Predicate Pred, 9890 const SCEV *LHS, 9891 const SCEV *RHS) { 9892 if (VerifyIR) 9893 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 9894 "This cannot be done on broken IR!"); 9895 9896 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9897 return true; 9898 9899 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9900 // the facts (a >= b && a != b) separately. A typical situation is when the 9901 // non-strict comparison is known from ranges and non-equality is known from 9902 // dominating predicates. If we are proving strict comparison, we always try 9903 // to prove non-equality and non-strict comparison separately. 9904 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9905 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9906 bool ProvedNonStrictComparison = false; 9907 bool ProvedNonEquality = false; 9908 9909 if (ProvingStrictComparison) { 9910 ProvedNonStrictComparison = 9911 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9912 ProvedNonEquality = 9913 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9914 if (ProvedNonStrictComparison && ProvedNonEquality) 9915 return true; 9916 } 9917 9918 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9919 auto ProveViaGuard = [&](const BasicBlock *Block) { 9920 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9921 return true; 9922 if (ProvingStrictComparison) { 9923 if (!ProvedNonStrictComparison) 9924 ProvedNonStrictComparison = 9925 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9926 if (!ProvedNonEquality) 9927 ProvedNonEquality = 9928 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9929 if (ProvedNonStrictComparison && ProvedNonEquality) 9930 return true; 9931 } 9932 return false; 9933 }; 9934 9935 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9936 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 9937 const Instruction *Context = &BB->front(); 9938 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 9939 return true; 9940 if (ProvingStrictComparison) { 9941 if (!ProvedNonStrictComparison) 9942 ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS, 9943 Condition, Inverse, Context); 9944 if (!ProvedNonEquality) 9945 ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, 9946 Condition, Inverse, Context); 9947 if (ProvedNonStrictComparison && ProvedNonEquality) 9948 return true; 9949 } 9950 return false; 9951 }; 9952 9953 // Starting at the block's predecessor, climb up the predecessor chain, as long 9954 // as there are predecessors that can be found that have unique successors 9955 // leading to the original block. 9956 const Loop *ContainingLoop = LI.getLoopFor(BB); 9957 const BasicBlock *PredBB; 9958 if (ContainingLoop && ContainingLoop->getHeader() == BB) 9959 PredBB = ContainingLoop->getLoopPredecessor(); 9960 else 9961 PredBB = BB->getSinglePredecessor(); 9962 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 9963 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9964 if (ProveViaGuard(Pair.first)) 9965 return true; 9966 9967 const BranchInst *LoopEntryPredicate = 9968 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9969 if (!LoopEntryPredicate || 9970 LoopEntryPredicate->isUnconditional()) 9971 continue; 9972 9973 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9974 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9975 return true; 9976 } 9977 9978 // Check conditions due to any @llvm.assume intrinsics. 9979 for (auto &AssumeVH : AC.assumptions()) { 9980 if (!AssumeVH) 9981 continue; 9982 auto *CI = cast<CallInst>(AssumeVH); 9983 if (!DT.dominates(CI, BB)) 9984 continue; 9985 9986 if (ProveViaCond(CI->getArgOperand(0), false)) 9987 return true; 9988 } 9989 9990 return false; 9991 } 9992 9993 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9994 ICmpInst::Predicate Pred, 9995 const SCEV *LHS, 9996 const SCEV *RHS) { 9997 // Interpret a null as meaning no loop, where there is obviously no guard 9998 // (interprocedural conditions notwithstanding). 9999 if (!L) 10000 return false; 10001 10002 // Both LHS and RHS must be available at loop entry. 10003 assert(isAvailableAtLoopEntry(LHS, L) && 10004 "LHS is not available at Loop Entry"); 10005 assert(isAvailableAtLoopEntry(RHS, L) && 10006 "RHS is not available at Loop Entry"); 10007 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10008 } 10009 10010 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10011 const SCEV *RHS, 10012 const Value *FoundCondValue, bool Inverse, 10013 const Instruction *Context) { 10014 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10015 return false; 10016 10017 auto ClearOnExit = 10018 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10019 10020 // Recursively handle And and Or conditions. 10021 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 10022 if (BO->getOpcode() == Instruction::And) { 10023 if (!Inverse) 10024 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 10025 Context) || 10026 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 10027 Context); 10028 } else if (BO->getOpcode() == Instruction::Or) { 10029 if (Inverse) 10030 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 10031 Context) || 10032 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 10033 Context); 10034 } 10035 } 10036 10037 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10038 if (!ICI) return false; 10039 10040 // Now that we found a conditional branch that dominates the loop or controls 10041 // the loop latch. Check to see if it is the comparison we are looking for. 10042 ICmpInst::Predicate FoundPred; 10043 if (Inverse) 10044 FoundPred = ICI->getInversePredicate(); 10045 else 10046 FoundPred = ICI->getPredicate(); 10047 10048 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10049 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10050 10051 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 10052 } 10053 10054 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10055 const SCEV *RHS, 10056 ICmpInst::Predicate FoundPred, 10057 const SCEV *FoundLHS, const SCEV *FoundRHS, 10058 const Instruction *Context) { 10059 // Balance the types. 10060 if (getTypeSizeInBits(LHS->getType()) < 10061 getTypeSizeInBits(FoundLHS->getType())) { 10062 // For unsigned and equality predicates, try to prove that both found 10063 // operands fit into narrow unsigned range. If so, try to prove facts in 10064 // narrow types. 10065 if (!CmpInst::isSigned(FoundPred)) { 10066 auto *NarrowType = LHS->getType(); 10067 auto *WideType = FoundLHS->getType(); 10068 auto BitWidth = getTypeSizeInBits(NarrowType); 10069 const SCEV *MaxValue = getZeroExtendExpr( 10070 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10071 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10072 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10073 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10074 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10075 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10076 TruncFoundRHS, Context)) 10077 return true; 10078 } 10079 } 10080 10081 if (CmpInst::isSigned(Pred)) { 10082 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10083 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10084 } else { 10085 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10086 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10087 } 10088 } else if (getTypeSizeInBits(LHS->getType()) > 10089 getTypeSizeInBits(FoundLHS->getType())) { 10090 if (CmpInst::isSigned(FoundPred)) { 10091 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10092 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10093 } else { 10094 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10095 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10096 } 10097 } 10098 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10099 FoundRHS, Context); 10100 } 10101 10102 bool ScalarEvolution::isImpliedCondBalancedTypes( 10103 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10104 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10105 const Instruction *Context) { 10106 assert(getTypeSizeInBits(LHS->getType()) == 10107 getTypeSizeInBits(FoundLHS->getType()) && 10108 "Types should be balanced!"); 10109 // Canonicalize the query to match the way instcombine will have 10110 // canonicalized the comparison. 10111 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10112 if (LHS == RHS) 10113 return CmpInst::isTrueWhenEqual(Pred); 10114 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10115 if (FoundLHS == FoundRHS) 10116 return CmpInst::isFalseWhenEqual(FoundPred); 10117 10118 // Check to see if we can make the LHS or RHS match. 10119 if (LHS == FoundRHS || RHS == FoundLHS) { 10120 if (isa<SCEVConstant>(RHS)) { 10121 std::swap(FoundLHS, FoundRHS); 10122 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10123 } else { 10124 std::swap(LHS, RHS); 10125 Pred = ICmpInst::getSwappedPredicate(Pred); 10126 } 10127 } 10128 10129 // Check whether the found predicate is the same as the desired predicate. 10130 if (FoundPred == Pred) 10131 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10132 10133 // Check whether swapping the found predicate makes it the same as the 10134 // desired predicate. 10135 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10136 if (isa<SCEVConstant>(RHS)) 10137 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10138 else 10139 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS, 10140 LHS, FoundLHS, FoundRHS, Context); 10141 } 10142 10143 // Unsigned comparison is the same as signed comparison when both the operands 10144 // are non-negative. 10145 if (CmpInst::isUnsigned(FoundPred) && 10146 CmpInst::getSignedPredicate(FoundPred) == Pred && 10147 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10148 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10149 10150 // Check if we can make progress by sharpening ranges. 10151 if (FoundPred == ICmpInst::ICMP_NE && 10152 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10153 10154 const SCEVConstant *C = nullptr; 10155 const SCEV *V = nullptr; 10156 10157 if (isa<SCEVConstant>(FoundLHS)) { 10158 C = cast<SCEVConstant>(FoundLHS); 10159 V = FoundRHS; 10160 } else { 10161 C = cast<SCEVConstant>(FoundRHS); 10162 V = FoundLHS; 10163 } 10164 10165 // The guarding predicate tells us that C != V. If the known range 10166 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10167 // range we consider has to correspond to same signedness as the 10168 // predicate we're interested in folding. 10169 10170 APInt Min = ICmpInst::isSigned(Pred) ? 10171 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10172 10173 if (Min == C->getAPInt()) { 10174 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10175 // This is true even if (Min + 1) wraps around -- in case of 10176 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10177 10178 APInt SharperMin = Min + 1; 10179 10180 switch (Pred) { 10181 case ICmpInst::ICMP_SGE: 10182 case ICmpInst::ICMP_UGE: 10183 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10184 // RHS, we're done. 10185 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10186 Context)) 10187 return true; 10188 LLVM_FALLTHROUGH; 10189 10190 case ICmpInst::ICMP_SGT: 10191 case ICmpInst::ICMP_UGT: 10192 // We know from the range information that (V `Pred` Min || 10193 // V == Min). We know from the guarding condition that !(V 10194 // == Min). This gives us 10195 // 10196 // V `Pred` Min || V == Min && !(V == Min) 10197 // => V `Pred` Min 10198 // 10199 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10200 10201 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10202 Context)) 10203 return true; 10204 break; 10205 10206 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10207 case ICmpInst::ICMP_SLE: 10208 case ICmpInst::ICMP_ULE: 10209 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10210 LHS, V, getConstant(SharperMin), Context)) 10211 return true; 10212 LLVM_FALLTHROUGH; 10213 10214 case ICmpInst::ICMP_SLT: 10215 case ICmpInst::ICMP_ULT: 10216 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10217 LHS, V, getConstant(Min), Context)) 10218 return true; 10219 break; 10220 10221 default: 10222 // No change 10223 break; 10224 } 10225 } 10226 } 10227 10228 // Check whether the actual condition is beyond sufficient. 10229 if (FoundPred == ICmpInst::ICMP_EQ) 10230 if (ICmpInst::isTrueWhenEqual(Pred)) 10231 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10232 return true; 10233 if (Pred == ICmpInst::ICMP_NE) 10234 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10235 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10236 Context)) 10237 return true; 10238 10239 // Otherwise assume the worst. 10240 return false; 10241 } 10242 10243 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10244 const SCEV *&L, const SCEV *&R, 10245 SCEV::NoWrapFlags &Flags) { 10246 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10247 if (!AE || AE->getNumOperands() != 2) 10248 return false; 10249 10250 L = AE->getOperand(0); 10251 R = AE->getOperand(1); 10252 Flags = AE->getNoWrapFlags(); 10253 return true; 10254 } 10255 10256 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10257 const SCEV *Less) { 10258 // We avoid subtracting expressions here because this function is usually 10259 // fairly deep in the call stack (i.e. is called many times). 10260 10261 // X - X = 0. 10262 if (More == Less) 10263 return APInt(getTypeSizeInBits(More->getType()), 0); 10264 10265 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10266 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10267 const auto *MAR = cast<SCEVAddRecExpr>(More); 10268 10269 if (LAR->getLoop() != MAR->getLoop()) 10270 return None; 10271 10272 // We look at affine expressions only; not for correctness but to keep 10273 // getStepRecurrence cheap. 10274 if (!LAR->isAffine() || !MAR->isAffine()) 10275 return None; 10276 10277 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10278 return None; 10279 10280 Less = LAR->getStart(); 10281 More = MAR->getStart(); 10282 10283 // fall through 10284 } 10285 10286 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10287 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10288 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10289 return M - L; 10290 } 10291 10292 SCEV::NoWrapFlags Flags; 10293 const SCEV *LLess = nullptr, *RLess = nullptr; 10294 const SCEV *LMore = nullptr, *RMore = nullptr; 10295 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10296 // Compare (X + C1) vs X. 10297 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10298 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10299 if (RLess == More) 10300 return -(C1->getAPInt()); 10301 10302 // Compare X vs (X + C2). 10303 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10304 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10305 if (RMore == Less) 10306 return C2->getAPInt(); 10307 10308 // Compare (X + C1) vs (X + C2). 10309 if (C1 && C2 && RLess == RMore) 10310 return C2->getAPInt() - C1->getAPInt(); 10311 10312 return None; 10313 } 10314 10315 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10316 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10317 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10318 // Try to recognize the following pattern: 10319 // 10320 // FoundRHS = ... 10321 // ... 10322 // loop: 10323 // FoundLHS = {Start,+,W} 10324 // context_bb: // Basic block from the same loop 10325 // known(Pred, FoundLHS, FoundRHS) 10326 // 10327 // If some predicate is known in the context of a loop, it is also known on 10328 // each iteration of this loop, including the first iteration. Therefore, in 10329 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10330 // prove the original pred using this fact. 10331 if (!Context) 10332 return false; 10333 const BasicBlock *ContextBB = Context->getParent(); 10334 // Make sure AR varies in the context block. 10335 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10336 const Loop *L = AR->getLoop(); 10337 // Make sure that context belongs to the loop and executes on 1st iteration 10338 // (if it ever executes at all). 10339 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10340 return false; 10341 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10342 return false; 10343 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10344 } 10345 10346 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10347 const Loop *L = AR->getLoop(); 10348 // Make sure that context belongs to the loop and executes on 1st iteration 10349 // (if it ever executes at all). 10350 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10351 return false; 10352 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10353 return false; 10354 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10355 } 10356 10357 return false; 10358 } 10359 10360 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10361 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10362 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10363 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10364 return false; 10365 10366 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10367 if (!AddRecLHS) 10368 return false; 10369 10370 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10371 if (!AddRecFoundLHS) 10372 return false; 10373 10374 // We'd like to let SCEV reason about control dependencies, so we constrain 10375 // both the inequalities to be about add recurrences on the same loop. This 10376 // way we can use isLoopEntryGuardedByCond later. 10377 10378 const Loop *L = AddRecFoundLHS->getLoop(); 10379 if (L != AddRecLHS->getLoop()) 10380 return false; 10381 10382 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10383 // 10384 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10385 // ... (2) 10386 // 10387 // Informal proof for (2), assuming (1) [*]: 10388 // 10389 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10390 // 10391 // Then 10392 // 10393 // FoundLHS s< FoundRHS s< INT_MIN - C 10394 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10395 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10396 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10397 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10398 // <=> FoundLHS + C s< FoundRHS + C 10399 // 10400 // [*]: (1) can be proved by ruling out overflow. 10401 // 10402 // [**]: This can be proved by analyzing all the four possibilities: 10403 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10404 // (A s>= 0, B s>= 0). 10405 // 10406 // Note: 10407 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10408 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10409 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10410 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10411 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10412 // C)". 10413 10414 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10415 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10416 if (!LDiff || !RDiff || *LDiff != *RDiff) 10417 return false; 10418 10419 if (LDiff->isMinValue()) 10420 return true; 10421 10422 APInt FoundRHSLimit; 10423 10424 if (Pred == CmpInst::ICMP_ULT) { 10425 FoundRHSLimit = -(*RDiff); 10426 } else { 10427 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10428 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10429 } 10430 10431 // Try to prove (1) or (2), as needed. 10432 return isAvailableAtLoopEntry(FoundRHS, L) && 10433 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10434 getConstant(FoundRHSLimit)); 10435 } 10436 10437 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10438 const SCEV *LHS, const SCEV *RHS, 10439 const SCEV *FoundLHS, 10440 const SCEV *FoundRHS, unsigned Depth) { 10441 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10442 10443 auto ClearOnExit = make_scope_exit([&]() { 10444 if (LPhi) { 10445 bool Erased = PendingMerges.erase(LPhi); 10446 assert(Erased && "Failed to erase LPhi!"); 10447 (void)Erased; 10448 } 10449 if (RPhi) { 10450 bool Erased = PendingMerges.erase(RPhi); 10451 assert(Erased && "Failed to erase RPhi!"); 10452 (void)Erased; 10453 } 10454 }); 10455 10456 // Find respective Phis and check that they are not being pending. 10457 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10458 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10459 if (!PendingMerges.insert(Phi).second) 10460 return false; 10461 LPhi = Phi; 10462 } 10463 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10464 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10465 // If we detect a loop of Phi nodes being processed by this method, for 10466 // example: 10467 // 10468 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10469 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10470 // 10471 // we don't want to deal with a case that complex, so return conservative 10472 // answer false. 10473 if (!PendingMerges.insert(Phi).second) 10474 return false; 10475 RPhi = Phi; 10476 } 10477 10478 // If none of LHS, RHS is a Phi, nothing to do here. 10479 if (!LPhi && !RPhi) 10480 return false; 10481 10482 // If there is a SCEVUnknown Phi we are interested in, make it left. 10483 if (!LPhi) { 10484 std::swap(LHS, RHS); 10485 std::swap(FoundLHS, FoundRHS); 10486 std::swap(LPhi, RPhi); 10487 Pred = ICmpInst::getSwappedPredicate(Pred); 10488 } 10489 10490 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10491 const BasicBlock *LBB = LPhi->getParent(); 10492 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10493 10494 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10495 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10496 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10497 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10498 }; 10499 10500 if (RPhi && RPhi->getParent() == LBB) { 10501 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10502 // If we compare two Phis from the same block, and for each entry block 10503 // the predicate is true for incoming values from this block, then the 10504 // predicate is also true for the Phis. 10505 for (const BasicBlock *IncBB : predecessors(LBB)) { 10506 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10507 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10508 if (!ProvedEasily(L, R)) 10509 return false; 10510 } 10511 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10512 // Case two: RHS is also a Phi from the same basic block, and it is an 10513 // AddRec. It means that there is a loop which has both AddRec and Unknown 10514 // PHIs, for it we can compare incoming values of AddRec from above the loop 10515 // and latch with their respective incoming values of LPhi. 10516 // TODO: Generalize to handle loops with many inputs in a header. 10517 if (LPhi->getNumIncomingValues() != 2) return false; 10518 10519 auto *RLoop = RAR->getLoop(); 10520 auto *Predecessor = RLoop->getLoopPredecessor(); 10521 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10522 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10523 if (!ProvedEasily(L1, RAR->getStart())) 10524 return false; 10525 auto *Latch = RLoop->getLoopLatch(); 10526 assert(Latch && "Loop with AddRec with no latch?"); 10527 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10528 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10529 return false; 10530 } else { 10531 // In all other cases go over inputs of LHS and compare each of them to RHS, 10532 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10533 // At this point RHS is either a non-Phi, or it is a Phi from some block 10534 // different from LBB. 10535 for (const BasicBlock *IncBB : predecessors(LBB)) { 10536 // Check that RHS is available in this block. 10537 if (!dominates(RHS, IncBB)) 10538 return false; 10539 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10540 if (!ProvedEasily(L, RHS)) 10541 return false; 10542 } 10543 } 10544 return true; 10545 } 10546 10547 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10548 const SCEV *LHS, const SCEV *RHS, 10549 const SCEV *FoundLHS, 10550 const SCEV *FoundRHS, 10551 const Instruction *Context) { 10552 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10553 return true; 10554 10555 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10556 return true; 10557 10558 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 10559 Context)) 10560 return true; 10561 10562 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10563 FoundLHS, FoundRHS) || 10564 // ~x < ~y --> x > y 10565 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10566 getNotSCEV(FoundRHS), 10567 getNotSCEV(FoundLHS)); 10568 } 10569 10570 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10571 template <typename MinMaxExprType> 10572 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10573 const SCEV *Candidate) { 10574 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10575 if (!MinMaxExpr) 10576 return false; 10577 10578 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); 10579 } 10580 10581 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10582 ICmpInst::Predicate Pred, 10583 const SCEV *LHS, const SCEV *RHS) { 10584 // If both sides are affine addrecs for the same loop, with equal 10585 // steps, and we know the recurrences don't wrap, then we only 10586 // need to check the predicate on the starting values. 10587 10588 if (!ICmpInst::isRelational(Pred)) 10589 return false; 10590 10591 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10592 if (!LAR) 10593 return false; 10594 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10595 if (!RAR) 10596 return false; 10597 if (LAR->getLoop() != RAR->getLoop()) 10598 return false; 10599 if (!LAR->isAffine() || !RAR->isAffine()) 10600 return false; 10601 10602 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10603 return false; 10604 10605 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10606 SCEV::FlagNSW : SCEV::FlagNUW; 10607 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10608 return false; 10609 10610 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10611 } 10612 10613 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10614 /// expression? 10615 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10616 ICmpInst::Predicate Pred, 10617 const SCEV *LHS, const SCEV *RHS) { 10618 switch (Pred) { 10619 default: 10620 return false; 10621 10622 case ICmpInst::ICMP_SGE: 10623 std::swap(LHS, RHS); 10624 LLVM_FALLTHROUGH; 10625 case ICmpInst::ICMP_SLE: 10626 return 10627 // min(A, ...) <= A 10628 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10629 // A <= max(A, ...) 10630 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10631 10632 case ICmpInst::ICMP_UGE: 10633 std::swap(LHS, RHS); 10634 LLVM_FALLTHROUGH; 10635 case ICmpInst::ICMP_ULE: 10636 return 10637 // min(A, ...) <= A 10638 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10639 // A <= max(A, ...) 10640 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10641 } 10642 10643 llvm_unreachable("covered switch fell through?!"); 10644 } 10645 10646 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10647 const SCEV *LHS, const SCEV *RHS, 10648 const SCEV *FoundLHS, 10649 const SCEV *FoundRHS, 10650 unsigned Depth) { 10651 assert(getTypeSizeInBits(LHS->getType()) == 10652 getTypeSizeInBits(RHS->getType()) && 10653 "LHS and RHS have different sizes?"); 10654 assert(getTypeSizeInBits(FoundLHS->getType()) == 10655 getTypeSizeInBits(FoundRHS->getType()) && 10656 "FoundLHS and FoundRHS have different sizes?"); 10657 // We want to avoid hurting the compile time with analysis of too big trees. 10658 if (Depth > MaxSCEVOperationsImplicationDepth) 10659 return false; 10660 10661 // We only want to work with GT comparison so far. 10662 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 10663 Pred = CmpInst::getSwappedPredicate(Pred); 10664 std::swap(LHS, RHS); 10665 std::swap(FoundLHS, FoundRHS); 10666 } 10667 10668 // For unsigned, try to reduce it to corresponding signed comparison. 10669 if (Pred == ICmpInst::ICMP_UGT) 10670 // We can replace unsigned predicate with its signed counterpart if all 10671 // involved values are non-negative. 10672 // TODO: We could have better support for unsigned. 10673 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 10674 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 10675 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 10676 // use this fact to prove that LHS and RHS are non-negative. 10677 const SCEV *MinusOne = getMinusOne(LHS->getType()); 10678 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 10679 FoundRHS) && 10680 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 10681 FoundRHS)) 10682 Pred = ICmpInst::ICMP_SGT; 10683 } 10684 10685 if (Pred != ICmpInst::ICMP_SGT) 10686 return false; 10687 10688 auto GetOpFromSExt = [&](const SCEV *S) { 10689 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10690 return Ext->getOperand(); 10691 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10692 // the constant in some cases. 10693 return S; 10694 }; 10695 10696 // Acquire values from extensions. 10697 auto *OrigLHS = LHS; 10698 auto *OrigFoundLHS = FoundLHS; 10699 LHS = GetOpFromSExt(LHS); 10700 FoundLHS = GetOpFromSExt(FoundLHS); 10701 10702 // Is the SGT predicate can be proved trivially or using the found context. 10703 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10704 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10705 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10706 FoundRHS, Depth + 1); 10707 }; 10708 10709 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10710 // We want to avoid creation of any new non-constant SCEV. Since we are 10711 // going to compare the operands to RHS, we should be certain that we don't 10712 // need any size extensions for this. So let's decline all cases when the 10713 // sizes of types of LHS and RHS do not match. 10714 // TODO: Maybe try to get RHS from sext to catch more cases? 10715 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10716 return false; 10717 10718 // Should not overflow. 10719 if (!LHSAddExpr->hasNoSignedWrap()) 10720 return false; 10721 10722 auto *LL = LHSAddExpr->getOperand(0); 10723 auto *LR = LHSAddExpr->getOperand(1); 10724 auto *MinusOne = getMinusOne(RHS->getType()); 10725 10726 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10727 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10728 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10729 }; 10730 // Try to prove the following rule: 10731 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10732 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10733 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10734 return true; 10735 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10736 Value *LL, *LR; 10737 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10738 10739 using namespace llvm::PatternMatch; 10740 10741 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10742 // Rules for division. 10743 // We are going to perform some comparisons with Denominator and its 10744 // derivative expressions. In general case, creating a SCEV for it may 10745 // lead to a complex analysis of the entire graph, and in particular it 10746 // can request trip count recalculation for the same loop. This would 10747 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10748 // this, we only want to create SCEVs that are constants in this section. 10749 // So we bail if Denominator is not a constant. 10750 if (!isa<ConstantInt>(LR)) 10751 return false; 10752 10753 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10754 10755 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10756 // then a SCEV for the numerator already exists and matches with FoundLHS. 10757 auto *Numerator = getExistingSCEV(LL); 10758 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10759 return false; 10760 10761 // Make sure that the numerator matches with FoundLHS and the denominator 10762 // is positive. 10763 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10764 return false; 10765 10766 auto *DTy = Denominator->getType(); 10767 auto *FRHSTy = FoundRHS->getType(); 10768 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10769 // One of types is a pointer and another one is not. We cannot extend 10770 // them properly to a wider type, so let us just reject this case. 10771 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10772 // to avoid this check. 10773 return false; 10774 10775 // Given that: 10776 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10777 auto *WTy = getWiderType(DTy, FRHSTy); 10778 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10779 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10780 10781 // Try to prove the following rule: 10782 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10783 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10784 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10785 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10786 if (isKnownNonPositive(RHS) && 10787 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10788 return true; 10789 10790 // Try to prove the following rule: 10791 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10792 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10793 // If we divide it by Denominator > 2, then: 10794 // 1. If FoundLHS is negative, then the result is 0. 10795 // 2. If FoundLHS is non-negative, then the result is non-negative. 10796 // Anyways, the result is non-negative. 10797 auto *MinusOne = getMinusOne(WTy); 10798 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10799 if (isKnownNegative(RHS) && 10800 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10801 return true; 10802 } 10803 } 10804 10805 // If our expression contained SCEVUnknown Phis, and we split it down and now 10806 // need to prove something for them, try to prove the predicate for every 10807 // possible incoming values of those Phis. 10808 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10809 return true; 10810 10811 return false; 10812 } 10813 10814 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10815 const SCEV *LHS, const SCEV *RHS) { 10816 // zext x u<= sext x, sext x s<= zext x 10817 switch (Pred) { 10818 case ICmpInst::ICMP_SGE: 10819 std::swap(LHS, RHS); 10820 LLVM_FALLTHROUGH; 10821 case ICmpInst::ICMP_SLE: { 10822 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10823 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10824 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10825 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10826 return true; 10827 break; 10828 } 10829 case ICmpInst::ICMP_UGE: 10830 std::swap(LHS, RHS); 10831 LLVM_FALLTHROUGH; 10832 case ICmpInst::ICMP_ULE: { 10833 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10834 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10835 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10836 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10837 return true; 10838 break; 10839 } 10840 default: 10841 break; 10842 }; 10843 return false; 10844 } 10845 10846 bool 10847 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10848 const SCEV *LHS, const SCEV *RHS) { 10849 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10850 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10851 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10852 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10853 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10854 } 10855 10856 bool 10857 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10858 const SCEV *LHS, const SCEV *RHS, 10859 const SCEV *FoundLHS, 10860 const SCEV *FoundRHS) { 10861 switch (Pred) { 10862 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10863 case ICmpInst::ICMP_EQ: 10864 case ICmpInst::ICMP_NE: 10865 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10866 return true; 10867 break; 10868 case ICmpInst::ICMP_SLT: 10869 case ICmpInst::ICMP_SLE: 10870 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10871 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10872 return true; 10873 break; 10874 case ICmpInst::ICMP_SGT: 10875 case ICmpInst::ICMP_SGE: 10876 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10877 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10878 return true; 10879 break; 10880 case ICmpInst::ICMP_ULT: 10881 case ICmpInst::ICMP_ULE: 10882 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10883 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10884 return true; 10885 break; 10886 case ICmpInst::ICMP_UGT: 10887 case ICmpInst::ICMP_UGE: 10888 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10889 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10890 return true; 10891 break; 10892 } 10893 10894 // Maybe it can be proved via operations? 10895 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10896 return true; 10897 10898 return false; 10899 } 10900 10901 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10902 const SCEV *LHS, 10903 const SCEV *RHS, 10904 const SCEV *FoundLHS, 10905 const SCEV *FoundRHS) { 10906 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10907 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10908 // reduce the compile time impact of this optimization. 10909 return false; 10910 10911 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10912 if (!Addend) 10913 return false; 10914 10915 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10916 10917 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10918 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10919 ConstantRange FoundLHSRange = 10920 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10921 10922 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10923 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10924 10925 // We can also compute the range of values for `LHS` that satisfy the 10926 // consequent, "`LHS` `Pred` `RHS`": 10927 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10928 ConstantRange SatisfyingLHSRange = 10929 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10930 10931 // The antecedent implies the consequent if every value of `LHS` that 10932 // satisfies the antecedent also satisfies the consequent. 10933 return SatisfyingLHSRange.contains(LHSRange); 10934 } 10935 10936 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10937 bool IsSigned, bool NoWrap) { 10938 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10939 10940 if (NoWrap) return false; 10941 10942 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10943 const SCEV *One = getOne(Stride->getType()); 10944 10945 if (IsSigned) { 10946 APInt MaxRHS = getSignedRangeMax(RHS); 10947 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10948 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10949 10950 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10951 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10952 } 10953 10954 APInt MaxRHS = getUnsignedRangeMax(RHS); 10955 APInt MaxValue = APInt::getMaxValue(BitWidth); 10956 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10957 10958 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10959 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10960 } 10961 10962 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10963 bool IsSigned, bool NoWrap) { 10964 if (NoWrap) return false; 10965 10966 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10967 const SCEV *One = getOne(Stride->getType()); 10968 10969 if (IsSigned) { 10970 APInt MinRHS = getSignedRangeMin(RHS); 10971 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10972 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10973 10974 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10975 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10976 } 10977 10978 APInt MinRHS = getUnsignedRangeMin(RHS); 10979 APInt MinValue = APInt::getMinValue(BitWidth); 10980 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10981 10982 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10983 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10984 } 10985 10986 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10987 bool Equality) { 10988 const SCEV *One = getOne(Step->getType()); 10989 Delta = Equality ? getAddExpr(Delta, Step) 10990 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10991 return getUDivExpr(Delta, Step); 10992 } 10993 10994 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10995 const SCEV *Stride, 10996 const SCEV *End, 10997 unsigned BitWidth, 10998 bool IsSigned) { 10999 11000 assert(!isKnownNonPositive(Stride) && 11001 "Stride is expected strictly positive!"); 11002 // Calculate the maximum backedge count based on the range of values 11003 // permitted by Start, End, and Stride. 11004 const SCEV *MaxBECount; 11005 APInt MinStart = 11006 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11007 11008 APInt StrideForMaxBECount = 11009 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11010 11011 // We already know that the stride is positive, so we paper over conservatism 11012 // in our range computation by forcing StrideForMaxBECount to be at least one. 11013 // In theory this is unnecessary, but we expect MaxBECount to be a 11014 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 11015 // is nothing to constant fold it to). 11016 APInt One(BitWidth, 1, IsSigned); 11017 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 11018 11019 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11020 : APInt::getMaxValue(BitWidth); 11021 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11022 11023 // Although End can be a MAX expression we estimate MaxEnd considering only 11024 // the case End = RHS of the loop termination condition. This is safe because 11025 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11026 // taken count. 11027 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11028 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11029 11030 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 11031 getConstant(StrideForMaxBECount) /* Step */, 11032 false /* Equality */); 11033 11034 return MaxBECount; 11035 } 11036 11037 ScalarEvolution::ExitLimit 11038 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11039 const Loop *L, bool IsSigned, 11040 bool ControlsExit, bool AllowPredicates) { 11041 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11042 11043 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11044 bool PredicatedIV = false; 11045 11046 if (!IV && AllowPredicates) { 11047 // Try to make this an AddRec using runtime tests, in the first X 11048 // iterations of this loop, where X is the SCEV expression found by the 11049 // algorithm below. 11050 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11051 PredicatedIV = true; 11052 } 11053 11054 // Avoid weird loops 11055 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11056 return getCouldNotCompute(); 11057 11058 bool NoWrap = ControlsExit && 11059 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11060 11061 const SCEV *Stride = IV->getStepRecurrence(*this); 11062 11063 bool PositiveStride = isKnownPositive(Stride); 11064 11065 // Avoid negative or zero stride values. 11066 if (!PositiveStride) { 11067 // We can compute the correct backedge taken count for loops with unknown 11068 // strides if we can prove that the loop is not an infinite loop with side 11069 // effects. Here's the loop structure we are trying to handle - 11070 // 11071 // i = start 11072 // do { 11073 // A[i] = i; 11074 // i += s; 11075 // } while (i < end); 11076 // 11077 // The backedge taken count for such loops is evaluated as - 11078 // (max(end, start + stride) - start - 1) /u stride 11079 // 11080 // The additional preconditions that we need to check to prove correctness 11081 // of the above formula is as follows - 11082 // 11083 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11084 // NoWrap flag). 11085 // b) loop is single exit with no side effects. 11086 // 11087 // 11088 // Precondition a) implies that if the stride is negative, this is a single 11089 // trip loop. The backedge taken count formula reduces to zero in this case. 11090 // 11091 // Precondition b) implies that the unknown stride cannot be zero otherwise 11092 // we have UB. 11093 // 11094 // The positive stride case is the same as isKnownPositive(Stride) returning 11095 // true (original behavior of the function). 11096 // 11097 // We want to make sure that the stride is truly unknown as there are edge 11098 // cases where ScalarEvolution propagates no wrap flags to the 11099 // post-increment/decrement IV even though the increment/decrement operation 11100 // itself is wrapping. The computed backedge taken count may be wrong in 11101 // such cases. This is prevented by checking that the stride is not known to 11102 // be either positive or non-positive. For example, no wrap flags are 11103 // propagated to the post-increment IV of this loop with a trip count of 2 - 11104 // 11105 // unsigned char i; 11106 // for(i=127; i<128; i+=129) 11107 // A[i] = i; 11108 // 11109 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11110 !loopHasNoSideEffects(L)) 11111 return getCouldNotCompute(); 11112 } else if (!Stride->isOne() && 11113 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 11114 // Avoid proven overflow cases: this will ensure that the backedge taken 11115 // count will not generate any unsigned overflow. Relaxed no-overflow 11116 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11117 // undefined behaviors like the case of C language. 11118 return getCouldNotCompute(); 11119 11120 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 11121 : ICmpInst::ICMP_ULT; 11122 const SCEV *Start = IV->getStart(); 11123 const SCEV *End = RHS; 11124 // When the RHS is not invariant, we do not know the end bound of the loop and 11125 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11126 // calculate the MaxBECount, given the start, stride and max value for the end 11127 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11128 // checked above). 11129 if (!isLoopInvariant(RHS, L)) { 11130 const SCEV *MaxBECount = computeMaxBECountForLT( 11131 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11132 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11133 false /*MaxOrZero*/, Predicates); 11134 } 11135 // If the backedge is taken at least once, then it will be taken 11136 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 11137 // is the LHS value of the less-than comparison the first time it is evaluated 11138 // and End is the RHS. 11139 const SCEV *BECountIfBackedgeTaken = 11140 computeBECount(getMinusSCEV(End, Start), Stride, false); 11141 // If the loop entry is guarded by the result of the backedge test of the 11142 // first loop iteration, then we know the backedge will be taken at least 11143 // once and so the backedge taken count is as above. If not then we use the 11144 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 11145 // as if the backedge is taken at least once max(End,Start) is End and so the 11146 // result is as above, and if not max(End,Start) is Start so we get a backedge 11147 // count of zero. 11148 const SCEV *BECount; 11149 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 11150 BECount = BECountIfBackedgeTaken; 11151 else { 11152 // If we know that RHS >= Start in the context of loop, then we know that 11153 // max(RHS, Start) = RHS at this point. 11154 if (isLoopEntryGuardedByCond( 11155 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start)) 11156 End = RHS; 11157 else 11158 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11159 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 11160 } 11161 11162 const SCEV *MaxBECount; 11163 bool MaxOrZero = false; 11164 if (isa<SCEVConstant>(BECount)) 11165 MaxBECount = BECount; 11166 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11167 // If we know exactly how many times the backedge will be taken if it's 11168 // taken at least once, then the backedge count will either be that or 11169 // zero. 11170 MaxBECount = BECountIfBackedgeTaken; 11171 MaxOrZero = true; 11172 } else { 11173 MaxBECount = computeMaxBECountForLT( 11174 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11175 } 11176 11177 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11178 !isa<SCEVCouldNotCompute>(BECount)) 11179 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11180 11181 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11182 } 11183 11184 ScalarEvolution::ExitLimit 11185 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11186 const Loop *L, bool IsSigned, 11187 bool ControlsExit, bool AllowPredicates) { 11188 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11189 // We handle only IV > Invariant 11190 if (!isLoopInvariant(RHS, L)) 11191 return getCouldNotCompute(); 11192 11193 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11194 if (!IV && AllowPredicates) 11195 // Try to make this an AddRec using runtime tests, in the first X 11196 // iterations of this loop, where X is the SCEV expression found by the 11197 // algorithm below. 11198 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11199 11200 // Avoid weird loops 11201 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11202 return getCouldNotCompute(); 11203 11204 bool NoWrap = ControlsExit && 11205 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11206 11207 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11208 11209 // Avoid negative or zero stride values 11210 if (!isKnownPositive(Stride)) 11211 return getCouldNotCompute(); 11212 11213 // Avoid proven overflow cases: this will ensure that the backedge taken count 11214 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11215 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11216 // behaviors like the case of C language. 11217 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 11218 return getCouldNotCompute(); 11219 11220 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 11221 : ICmpInst::ICMP_UGT; 11222 11223 const SCEV *Start = IV->getStart(); 11224 const SCEV *End = RHS; 11225 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 11226 // If we know that Start >= RHS in the context of loop, then we know that 11227 // min(RHS, Start) = RHS at this point. 11228 if (isLoopEntryGuardedByCond( 11229 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 11230 End = RHS; 11231 else 11232 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 11233 } 11234 11235 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 11236 11237 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 11238 : getUnsignedRangeMax(Start); 11239 11240 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 11241 : getUnsignedRangeMin(Stride); 11242 11243 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 11244 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 11245 : APInt::getMinValue(BitWidth) + (MinStride - 1); 11246 11247 // Although End can be a MIN expression we estimate MinEnd considering only 11248 // the case End = RHS. This is safe because in the other case (Start - End) 11249 // is zero, leading to a zero maximum backedge taken count. 11250 APInt MinEnd = 11251 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 11252 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 11253 11254 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 11255 ? BECount 11256 : computeBECount(getConstant(MaxStart - MinEnd), 11257 getConstant(MinStride), false); 11258 11259 if (isa<SCEVCouldNotCompute>(MaxBECount)) 11260 MaxBECount = BECount; 11261 11262 return ExitLimit(BECount, MaxBECount, false, Predicates); 11263 } 11264 11265 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 11266 ScalarEvolution &SE) const { 11267 if (Range.isFullSet()) // Infinite loop. 11268 return SE.getCouldNotCompute(); 11269 11270 // If the start is a non-zero constant, shift the range to simplify things. 11271 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 11272 if (!SC->getValue()->isZero()) { 11273 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 11274 Operands[0] = SE.getZero(SC->getType()); 11275 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 11276 getNoWrapFlags(FlagNW)); 11277 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 11278 return ShiftedAddRec->getNumIterationsInRange( 11279 Range.subtract(SC->getAPInt()), SE); 11280 // This is strange and shouldn't happen. 11281 return SE.getCouldNotCompute(); 11282 } 11283 11284 // The only time we can solve this is when we have all constant indices. 11285 // Otherwise, we cannot determine the overflow conditions. 11286 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 11287 return SE.getCouldNotCompute(); 11288 11289 // Okay at this point we know that all elements of the chrec are constants and 11290 // that the start element is zero. 11291 11292 // First check to see if the range contains zero. If not, the first 11293 // iteration exits. 11294 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 11295 if (!Range.contains(APInt(BitWidth, 0))) 11296 return SE.getZero(getType()); 11297 11298 if (isAffine()) { 11299 // If this is an affine expression then we have this situation: 11300 // Solve {0,+,A} in Range === Ax in Range 11301 11302 // We know that zero is in the range. If A is positive then we know that 11303 // the upper value of the range must be the first possible exit value. 11304 // If A is negative then the lower of the range is the last possible loop 11305 // value. Also note that we already checked for a full range. 11306 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 11307 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 11308 11309 // The exit value should be (End+A)/A. 11310 APInt ExitVal = (End + A).udiv(A); 11311 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 11312 11313 // Evaluate at the exit value. If we really did fall out of the valid 11314 // range, then we computed our trip count, otherwise wrap around or other 11315 // things must have happened. 11316 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 11317 if (Range.contains(Val->getValue())) 11318 return SE.getCouldNotCompute(); // Something strange happened 11319 11320 // Ensure that the previous value is in the range. This is a sanity check. 11321 assert(Range.contains( 11322 EvaluateConstantChrecAtConstant(this, 11323 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 11324 "Linear scev computation is off in a bad way!"); 11325 return SE.getConstant(ExitValue); 11326 } 11327 11328 if (isQuadratic()) { 11329 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 11330 return SE.getConstant(S.getValue()); 11331 } 11332 11333 return SE.getCouldNotCompute(); 11334 } 11335 11336 const SCEVAddRecExpr * 11337 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 11338 assert(getNumOperands() > 1 && "AddRec with zero step?"); 11339 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 11340 // but in this case we cannot guarantee that the value returned will be an 11341 // AddRec because SCEV does not have a fixed point where it stops 11342 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 11343 // may happen if we reach arithmetic depth limit while simplifying. So we 11344 // construct the returned value explicitly. 11345 SmallVector<const SCEV *, 3> Ops; 11346 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 11347 // (this + Step) is {A+B,+,B+C,+...,+,N}. 11348 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 11349 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 11350 // We know that the last operand is not a constant zero (otherwise it would 11351 // have been popped out earlier). This guarantees us that if the result has 11352 // the same last operand, then it will also not be popped out, meaning that 11353 // the returned value will be an AddRec. 11354 const SCEV *Last = getOperand(getNumOperands() - 1); 11355 assert(!Last->isZero() && "Recurrency with zero step?"); 11356 Ops.push_back(Last); 11357 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 11358 SCEV::FlagAnyWrap)); 11359 } 11360 11361 // Return true when S contains at least an undef value. 11362 static inline bool containsUndefs(const SCEV *S) { 11363 return SCEVExprContains(S, [](const SCEV *S) { 11364 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 11365 return isa<UndefValue>(SU->getValue()); 11366 return false; 11367 }); 11368 } 11369 11370 namespace { 11371 11372 // Collect all steps of SCEV expressions. 11373 struct SCEVCollectStrides { 11374 ScalarEvolution &SE; 11375 SmallVectorImpl<const SCEV *> &Strides; 11376 11377 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 11378 : SE(SE), Strides(S) {} 11379 11380 bool follow(const SCEV *S) { 11381 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 11382 Strides.push_back(AR->getStepRecurrence(SE)); 11383 return true; 11384 } 11385 11386 bool isDone() const { return false; } 11387 }; 11388 11389 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11390 struct SCEVCollectTerms { 11391 SmallVectorImpl<const SCEV *> &Terms; 11392 11393 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11394 11395 bool follow(const SCEV *S) { 11396 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11397 isa<SCEVSignExtendExpr>(S)) { 11398 if (!containsUndefs(S)) 11399 Terms.push_back(S); 11400 11401 // Stop recursion: once we collected a term, do not walk its operands. 11402 return false; 11403 } 11404 11405 // Keep looking. 11406 return true; 11407 } 11408 11409 bool isDone() const { return false; } 11410 }; 11411 11412 // Check if a SCEV contains an AddRecExpr. 11413 struct SCEVHasAddRec { 11414 bool &ContainsAddRec; 11415 11416 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11417 ContainsAddRec = false; 11418 } 11419 11420 bool follow(const SCEV *S) { 11421 if (isa<SCEVAddRecExpr>(S)) { 11422 ContainsAddRec = true; 11423 11424 // Stop recursion: once we collected a term, do not walk its operands. 11425 return false; 11426 } 11427 11428 // Keep looking. 11429 return true; 11430 } 11431 11432 bool isDone() const { return false; } 11433 }; 11434 11435 // Find factors that are multiplied with an expression that (possibly as a 11436 // subexpression) contains an AddRecExpr. In the expression: 11437 // 11438 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 11439 // 11440 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 11441 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 11442 // parameters as they form a product with an induction variable. 11443 // 11444 // This collector expects all array size parameters to be in the same MulExpr. 11445 // It might be necessary to later add support for collecting parameters that are 11446 // spread over different nested MulExpr. 11447 struct SCEVCollectAddRecMultiplies { 11448 SmallVectorImpl<const SCEV *> &Terms; 11449 ScalarEvolution &SE; 11450 11451 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 11452 : Terms(T), SE(SE) {} 11453 11454 bool follow(const SCEV *S) { 11455 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 11456 bool HasAddRec = false; 11457 SmallVector<const SCEV *, 0> Operands; 11458 for (auto Op : Mul->operands()) { 11459 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11460 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11461 Operands.push_back(Op); 11462 } else if (Unknown) { 11463 HasAddRec = true; 11464 } else { 11465 bool ContainsAddRec = false; 11466 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11467 visitAll(Op, ContiansAddRec); 11468 HasAddRec |= ContainsAddRec; 11469 } 11470 } 11471 if (Operands.size() == 0) 11472 return true; 11473 11474 if (!HasAddRec) 11475 return false; 11476 11477 Terms.push_back(SE.getMulExpr(Operands)); 11478 // Stop recursion: once we collected a term, do not walk its operands. 11479 return false; 11480 } 11481 11482 // Keep looking. 11483 return true; 11484 } 11485 11486 bool isDone() const { return false; } 11487 }; 11488 11489 } // end anonymous namespace 11490 11491 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 11492 /// two places: 11493 /// 1) The strides of AddRec expressions. 11494 /// 2) Unknowns that are multiplied with AddRec expressions. 11495 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 11496 SmallVectorImpl<const SCEV *> &Terms) { 11497 SmallVector<const SCEV *, 4> Strides; 11498 SCEVCollectStrides StrideCollector(*this, Strides); 11499 visitAll(Expr, StrideCollector); 11500 11501 LLVM_DEBUG({ 11502 dbgs() << "Strides:\n"; 11503 for (const SCEV *S : Strides) 11504 dbgs() << *S << "\n"; 11505 }); 11506 11507 for (const SCEV *S : Strides) { 11508 SCEVCollectTerms TermCollector(Terms); 11509 visitAll(S, TermCollector); 11510 } 11511 11512 LLVM_DEBUG({ 11513 dbgs() << "Terms:\n"; 11514 for (const SCEV *T : Terms) 11515 dbgs() << *T << "\n"; 11516 }); 11517 11518 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 11519 visitAll(Expr, MulCollector); 11520 } 11521 11522 static bool findArrayDimensionsRec(ScalarEvolution &SE, 11523 SmallVectorImpl<const SCEV *> &Terms, 11524 SmallVectorImpl<const SCEV *> &Sizes) { 11525 int Last = Terms.size() - 1; 11526 const SCEV *Step = Terms[Last]; 11527 11528 // End of recursion. 11529 if (Last == 0) { 11530 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11531 SmallVector<const SCEV *, 2> Qs; 11532 for (const SCEV *Op : M->operands()) 11533 if (!isa<SCEVConstant>(Op)) 11534 Qs.push_back(Op); 11535 11536 Step = SE.getMulExpr(Qs); 11537 } 11538 11539 Sizes.push_back(Step); 11540 return true; 11541 } 11542 11543 for (const SCEV *&Term : Terms) { 11544 // Normalize the terms before the next call to findArrayDimensionsRec. 11545 const SCEV *Q, *R; 11546 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11547 11548 // Bail out when GCD does not evenly divide one of the terms. 11549 if (!R->isZero()) 11550 return false; 11551 11552 Term = Q; 11553 } 11554 11555 // Remove all SCEVConstants. 11556 Terms.erase( 11557 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 11558 Terms.end()); 11559 11560 if (Terms.size() > 0) 11561 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11562 return false; 11563 11564 Sizes.push_back(Step); 11565 return true; 11566 } 11567 11568 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11569 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11570 for (const SCEV *T : Terms) 11571 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 11572 return true; 11573 11574 return false; 11575 } 11576 11577 // Return the number of product terms in S. 11578 static inline int numberOfTerms(const SCEV *S) { 11579 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11580 return Expr->getNumOperands(); 11581 return 1; 11582 } 11583 11584 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11585 if (isa<SCEVConstant>(T)) 11586 return nullptr; 11587 11588 if (isa<SCEVUnknown>(T)) 11589 return T; 11590 11591 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11592 SmallVector<const SCEV *, 2> Factors; 11593 for (const SCEV *Op : M->operands()) 11594 if (!isa<SCEVConstant>(Op)) 11595 Factors.push_back(Op); 11596 11597 return SE.getMulExpr(Factors); 11598 } 11599 11600 return T; 11601 } 11602 11603 /// Return the size of an element read or written by Inst. 11604 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11605 Type *Ty; 11606 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11607 Ty = Store->getValueOperand()->getType(); 11608 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11609 Ty = Load->getType(); 11610 else 11611 return nullptr; 11612 11613 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11614 return getSizeOfExpr(ETy, Ty); 11615 } 11616 11617 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11618 SmallVectorImpl<const SCEV *> &Sizes, 11619 const SCEV *ElementSize) { 11620 if (Terms.size() < 1 || !ElementSize) 11621 return; 11622 11623 // Early return when Terms do not contain parameters: we do not delinearize 11624 // non parametric SCEVs. 11625 if (!containsParameters(Terms)) 11626 return; 11627 11628 LLVM_DEBUG({ 11629 dbgs() << "Terms:\n"; 11630 for (const SCEV *T : Terms) 11631 dbgs() << *T << "\n"; 11632 }); 11633 11634 // Remove duplicates. 11635 array_pod_sort(Terms.begin(), Terms.end()); 11636 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11637 11638 // Put larger terms first. 11639 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11640 return numberOfTerms(LHS) > numberOfTerms(RHS); 11641 }); 11642 11643 // Try to divide all terms by the element size. If term is not divisible by 11644 // element size, proceed with the original term. 11645 for (const SCEV *&Term : Terms) { 11646 const SCEV *Q, *R; 11647 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11648 if (!Q->isZero()) 11649 Term = Q; 11650 } 11651 11652 SmallVector<const SCEV *, 4> NewTerms; 11653 11654 // Remove constant factors. 11655 for (const SCEV *T : Terms) 11656 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11657 NewTerms.push_back(NewT); 11658 11659 LLVM_DEBUG({ 11660 dbgs() << "Terms after sorting:\n"; 11661 for (const SCEV *T : NewTerms) 11662 dbgs() << *T << "\n"; 11663 }); 11664 11665 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11666 Sizes.clear(); 11667 return; 11668 } 11669 11670 // The last element to be pushed into Sizes is the size of an element. 11671 Sizes.push_back(ElementSize); 11672 11673 LLVM_DEBUG({ 11674 dbgs() << "Sizes:\n"; 11675 for (const SCEV *S : Sizes) 11676 dbgs() << *S << "\n"; 11677 }); 11678 } 11679 11680 void ScalarEvolution::computeAccessFunctions( 11681 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11682 SmallVectorImpl<const SCEV *> &Sizes) { 11683 // Early exit in case this SCEV is not an affine multivariate function. 11684 if (Sizes.empty()) 11685 return; 11686 11687 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11688 if (!AR->isAffine()) 11689 return; 11690 11691 const SCEV *Res = Expr; 11692 int Last = Sizes.size() - 1; 11693 for (int i = Last; i >= 0; i--) { 11694 const SCEV *Q, *R; 11695 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11696 11697 LLVM_DEBUG({ 11698 dbgs() << "Res: " << *Res << "\n"; 11699 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11700 dbgs() << "Res divided by Sizes[i]:\n"; 11701 dbgs() << "Quotient: " << *Q << "\n"; 11702 dbgs() << "Remainder: " << *R << "\n"; 11703 }); 11704 11705 Res = Q; 11706 11707 // Do not record the last subscript corresponding to the size of elements in 11708 // the array. 11709 if (i == Last) { 11710 11711 // Bail out if the remainder is too complex. 11712 if (isa<SCEVAddRecExpr>(R)) { 11713 Subscripts.clear(); 11714 Sizes.clear(); 11715 return; 11716 } 11717 11718 continue; 11719 } 11720 11721 // Record the access function for the current subscript. 11722 Subscripts.push_back(R); 11723 } 11724 11725 // Also push in last position the remainder of the last division: it will be 11726 // the access function of the innermost dimension. 11727 Subscripts.push_back(Res); 11728 11729 std::reverse(Subscripts.begin(), Subscripts.end()); 11730 11731 LLVM_DEBUG({ 11732 dbgs() << "Subscripts:\n"; 11733 for (const SCEV *S : Subscripts) 11734 dbgs() << *S << "\n"; 11735 }); 11736 } 11737 11738 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11739 /// sizes of an array access. Returns the remainder of the delinearization that 11740 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11741 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11742 /// expressions in the stride and base of a SCEV corresponding to the 11743 /// computation of a GCD (greatest common divisor) of base and stride. When 11744 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11745 /// 11746 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11747 /// 11748 /// void foo(long n, long m, long o, double A[n][m][o]) { 11749 /// 11750 /// for (long i = 0; i < n; i++) 11751 /// for (long j = 0; j < m; j++) 11752 /// for (long k = 0; k < o; k++) 11753 /// A[i][j][k] = 1.0; 11754 /// } 11755 /// 11756 /// the delinearization input is the following AddRec SCEV: 11757 /// 11758 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11759 /// 11760 /// From this SCEV, we are able to say that the base offset of the access is %A 11761 /// because it appears as an offset that does not divide any of the strides in 11762 /// the loops: 11763 /// 11764 /// CHECK: Base offset: %A 11765 /// 11766 /// and then SCEV->delinearize determines the size of some of the dimensions of 11767 /// the array as these are the multiples by which the strides are happening: 11768 /// 11769 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11770 /// 11771 /// Note that the outermost dimension remains of UnknownSize because there are 11772 /// no strides that would help identifying the size of the last dimension: when 11773 /// the array has been statically allocated, one could compute the size of that 11774 /// dimension by dividing the overall size of the array by the size of the known 11775 /// dimensions: %m * %o * 8. 11776 /// 11777 /// Finally delinearize provides the access functions for the array reference 11778 /// that does correspond to A[i][j][k] of the above C testcase: 11779 /// 11780 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11781 /// 11782 /// The testcases are checking the output of a function pass: 11783 /// DelinearizationPass that walks through all loads and stores of a function 11784 /// asking for the SCEV of the memory access with respect to all enclosing 11785 /// loops, calling SCEV->delinearize on that and printing the results. 11786 void ScalarEvolution::delinearize(const SCEV *Expr, 11787 SmallVectorImpl<const SCEV *> &Subscripts, 11788 SmallVectorImpl<const SCEV *> &Sizes, 11789 const SCEV *ElementSize) { 11790 // First step: collect parametric terms. 11791 SmallVector<const SCEV *, 4> Terms; 11792 collectParametricTerms(Expr, Terms); 11793 11794 if (Terms.empty()) 11795 return; 11796 11797 // Second step: find subscript sizes. 11798 findArrayDimensions(Terms, Sizes, ElementSize); 11799 11800 if (Sizes.empty()) 11801 return; 11802 11803 // Third step: compute the access functions for each subscript. 11804 computeAccessFunctions(Expr, Subscripts, Sizes); 11805 11806 if (Subscripts.empty()) 11807 return; 11808 11809 LLVM_DEBUG({ 11810 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11811 dbgs() << "ArrayDecl[UnknownSize]"; 11812 for (const SCEV *S : Sizes) 11813 dbgs() << "[" << *S << "]"; 11814 11815 dbgs() << "\nArrayRef"; 11816 for (const SCEV *S : Subscripts) 11817 dbgs() << "[" << *S << "]"; 11818 dbgs() << "\n"; 11819 }); 11820 } 11821 11822 bool ScalarEvolution::getIndexExpressionsFromGEP( 11823 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 11824 SmallVectorImpl<int> &Sizes) { 11825 assert(Subscripts.empty() && Sizes.empty() && 11826 "Expected output lists to be empty on entry to this function."); 11827 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 11828 Type *Ty = GEP->getPointerOperandType(); 11829 bool DroppedFirstDim = false; 11830 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 11831 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 11832 if (i == 1) { 11833 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 11834 Ty = PtrTy->getElementType(); 11835 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 11836 Ty = ArrayTy->getElementType(); 11837 } else { 11838 Subscripts.clear(); 11839 Sizes.clear(); 11840 return false; 11841 } 11842 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 11843 if (Const->getValue()->isZero()) { 11844 DroppedFirstDim = true; 11845 continue; 11846 } 11847 Subscripts.push_back(Expr); 11848 continue; 11849 } 11850 11851 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 11852 if (!ArrayTy) { 11853 Subscripts.clear(); 11854 Sizes.clear(); 11855 return false; 11856 } 11857 11858 Subscripts.push_back(Expr); 11859 if (!(DroppedFirstDim && i == 2)) 11860 Sizes.push_back(ArrayTy->getNumElements()); 11861 11862 Ty = ArrayTy->getElementType(); 11863 } 11864 return !Subscripts.empty(); 11865 } 11866 11867 //===----------------------------------------------------------------------===// 11868 // SCEVCallbackVH Class Implementation 11869 //===----------------------------------------------------------------------===// 11870 11871 void ScalarEvolution::SCEVCallbackVH::deleted() { 11872 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11873 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11874 SE->ConstantEvolutionLoopExitValue.erase(PN); 11875 SE->eraseValueFromMap(getValPtr()); 11876 // this now dangles! 11877 } 11878 11879 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11880 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11881 11882 // Forget all the expressions associated with users of the old value, 11883 // so that future queries will recompute the expressions using the new 11884 // value. 11885 Value *Old = getValPtr(); 11886 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11887 SmallPtrSet<User *, 8> Visited; 11888 while (!Worklist.empty()) { 11889 User *U = Worklist.pop_back_val(); 11890 // Deleting the Old value will cause this to dangle. Postpone 11891 // that until everything else is done. 11892 if (U == Old) 11893 continue; 11894 if (!Visited.insert(U).second) 11895 continue; 11896 if (PHINode *PN = dyn_cast<PHINode>(U)) 11897 SE->ConstantEvolutionLoopExitValue.erase(PN); 11898 SE->eraseValueFromMap(U); 11899 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11900 } 11901 // Delete the Old value. 11902 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11903 SE->ConstantEvolutionLoopExitValue.erase(PN); 11904 SE->eraseValueFromMap(Old); 11905 // this now dangles! 11906 } 11907 11908 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11909 : CallbackVH(V), SE(se) {} 11910 11911 //===----------------------------------------------------------------------===// 11912 // ScalarEvolution Class Implementation 11913 //===----------------------------------------------------------------------===// 11914 11915 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11916 AssumptionCache &AC, DominatorTree &DT, 11917 LoopInfo &LI) 11918 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11919 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11920 LoopDispositions(64), BlockDispositions(64) { 11921 // To use guards for proving predicates, we need to scan every instruction in 11922 // relevant basic blocks, and not just terminators. Doing this is a waste of 11923 // time if the IR does not actually contain any calls to 11924 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11925 // 11926 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11927 // to _add_ guards to the module when there weren't any before, and wants 11928 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11929 // efficient in lieu of being smart in that rather obscure case. 11930 11931 auto *GuardDecl = F.getParent()->getFunction( 11932 Intrinsic::getName(Intrinsic::experimental_guard)); 11933 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11934 } 11935 11936 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11937 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11938 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11939 ValueExprMap(std::move(Arg.ValueExprMap)), 11940 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11941 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11942 PendingMerges(std::move(Arg.PendingMerges)), 11943 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11944 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11945 PredicatedBackedgeTakenCounts( 11946 std::move(Arg.PredicatedBackedgeTakenCounts)), 11947 ConstantEvolutionLoopExitValue( 11948 std::move(Arg.ConstantEvolutionLoopExitValue)), 11949 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11950 LoopDispositions(std::move(Arg.LoopDispositions)), 11951 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11952 BlockDispositions(std::move(Arg.BlockDispositions)), 11953 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11954 SignedRanges(std::move(Arg.SignedRanges)), 11955 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11956 UniquePreds(std::move(Arg.UniquePreds)), 11957 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11958 LoopUsers(std::move(Arg.LoopUsers)), 11959 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11960 FirstUnknown(Arg.FirstUnknown) { 11961 Arg.FirstUnknown = nullptr; 11962 } 11963 11964 ScalarEvolution::~ScalarEvolution() { 11965 // Iterate through all the SCEVUnknown instances and call their 11966 // destructors, so that they release their references to their values. 11967 for (SCEVUnknown *U = FirstUnknown; U;) { 11968 SCEVUnknown *Tmp = U; 11969 U = U->Next; 11970 Tmp->~SCEVUnknown(); 11971 } 11972 FirstUnknown = nullptr; 11973 11974 ExprValueMap.clear(); 11975 ValueExprMap.clear(); 11976 HasRecMap.clear(); 11977 11978 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11979 // that a loop had multiple computable exits. 11980 for (auto &BTCI : BackedgeTakenCounts) 11981 BTCI.second.clear(); 11982 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11983 BTCI.second.clear(); 11984 11985 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11986 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11987 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11988 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11989 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11990 } 11991 11992 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11993 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11994 } 11995 11996 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11997 const Loop *L) { 11998 // Print all inner loops first 11999 for (Loop *I : *L) 12000 PrintLoopInfo(OS, SE, I); 12001 12002 OS << "Loop "; 12003 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12004 OS << ": "; 12005 12006 SmallVector<BasicBlock *, 8> ExitingBlocks; 12007 L->getExitingBlocks(ExitingBlocks); 12008 if (ExitingBlocks.size() != 1) 12009 OS << "<multiple exits> "; 12010 12011 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12012 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12013 else 12014 OS << "Unpredictable backedge-taken count.\n"; 12015 12016 if (ExitingBlocks.size() > 1) 12017 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12018 OS << " exit count for " << ExitingBlock->getName() << ": " 12019 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12020 } 12021 12022 OS << "Loop "; 12023 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12024 OS << ": "; 12025 12026 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12027 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12028 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12029 OS << ", actual taken count either this or zero."; 12030 } else { 12031 OS << "Unpredictable max backedge-taken count. "; 12032 } 12033 12034 OS << "\n" 12035 "Loop "; 12036 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12037 OS << ": "; 12038 12039 SCEVUnionPredicate Pred; 12040 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12041 if (!isa<SCEVCouldNotCompute>(PBT)) { 12042 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12043 OS << " Predicates:\n"; 12044 Pred.print(OS, 4); 12045 } else { 12046 OS << "Unpredictable predicated backedge-taken count. "; 12047 } 12048 OS << "\n"; 12049 12050 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12051 OS << "Loop "; 12052 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12053 OS << ": "; 12054 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12055 } 12056 } 12057 12058 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12059 switch (LD) { 12060 case ScalarEvolution::LoopVariant: 12061 return "Variant"; 12062 case ScalarEvolution::LoopInvariant: 12063 return "Invariant"; 12064 case ScalarEvolution::LoopComputable: 12065 return "Computable"; 12066 } 12067 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12068 } 12069 12070 void ScalarEvolution::print(raw_ostream &OS) const { 12071 // ScalarEvolution's implementation of the print method is to print 12072 // out SCEV values of all instructions that are interesting. Doing 12073 // this potentially causes it to create new SCEV objects though, 12074 // which technically conflicts with the const qualifier. This isn't 12075 // observable from outside the class though, so casting away the 12076 // const isn't dangerous. 12077 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12078 12079 if (ClassifyExpressions) { 12080 OS << "Classifying expressions for: "; 12081 F.printAsOperand(OS, /*PrintType=*/false); 12082 OS << "\n"; 12083 for (Instruction &I : instructions(F)) 12084 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12085 OS << I << '\n'; 12086 OS << " --> "; 12087 const SCEV *SV = SE.getSCEV(&I); 12088 SV->print(OS); 12089 if (!isa<SCEVCouldNotCompute>(SV)) { 12090 OS << " U: "; 12091 SE.getUnsignedRange(SV).print(OS); 12092 OS << " S: "; 12093 SE.getSignedRange(SV).print(OS); 12094 } 12095 12096 const Loop *L = LI.getLoopFor(I.getParent()); 12097 12098 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12099 if (AtUse != SV) { 12100 OS << " --> "; 12101 AtUse->print(OS); 12102 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12103 OS << " U: "; 12104 SE.getUnsignedRange(AtUse).print(OS); 12105 OS << " S: "; 12106 SE.getSignedRange(AtUse).print(OS); 12107 } 12108 } 12109 12110 if (L) { 12111 OS << "\t\t" "Exits: "; 12112 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12113 if (!SE.isLoopInvariant(ExitValue, L)) { 12114 OS << "<<Unknown>>"; 12115 } else { 12116 OS << *ExitValue; 12117 } 12118 12119 bool First = true; 12120 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12121 if (First) { 12122 OS << "\t\t" "LoopDispositions: { "; 12123 First = false; 12124 } else { 12125 OS << ", "; 12126 } 12127 12128 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12129 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12130 } 12131 12132 for (auto *InnerL : depth_first(L)) { 12133 if (InnerL == L) 12134 continue; 12135 if (First) { 12136 OS << "\t\t" "LoopDispositions: { "; 12137 First = false; 12138 } else { 12139 OS << ", "; 12140 } 12141 12142 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12143 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12144 } 12145 12146 OS << " }"; 12147 } 12148 12149 OS << "\n"; 12150 } 12151 } 12152 12153 OS << "Determining loop execution counts for: "; 12154 F.printAsOperand(OS, /*PrintType=*/false); 12155 OS << "\n"; 12156 for (Loop *I : LI) 12157 PrintLoopInfo(OS, &SE, I); 12158 } 12159 12160 ScalarEvolution::LoopDisposition 12161 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12162 auto &Values = LoopDispositions[S]; 12163 for (auto &V : Values) { 12164 if (V.getPointer() == L) 12165 return V.getInt(); 12166 } 12167 Values.emplace_back(L, LoopVariant); 12168 LoopDisposition D = computeLoopDisposition(S, L); 12169 auto &Values2 = LoopDispositions[S]; 12170 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12171 if (V.getPointer() == L) { 12172 V.setInt(D); 12173 break; 12174 } 12175 } 12176 return D; 12177 } 12178 12179 ScalarEvolution::LoopDisposition 12180 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12181 switch (S->getSCEVType()) { 12182 case scConstant: 12183 return LoopInvariant; 12184 case scPtrToInt: 12185 case scTruncate: 12186 case scZeroExtend: 12187 case scSignExtend: 12188 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12189 case scAddRecExpr: { 12190 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12191 12192 // If L is the addrec's loop, it's computable. 12193 if (AR->getLoop() == L) 12194 return LoopComputable; 12195 12196 // Add recurrences are never invariant in the function-body (null loop). 12197 if (!L) 12198 return LoopVariant; 12199 12200 // Everything that is not defined at loop entry is variant. 12201 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12202 return LoopVariant; 12203 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12204 " dominate the contained loop's header?"); 12205 12206 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12207 if (AR->getLoop()->contains(L)) 12208 return LoopInvariant; 12209 12210 // This recurrence is variant w.r.t. L if any of its operands 12211 // are variant. 12212 for (auto *Op : AR->operands()) 12213 if (!isLoopInvariant(Op, L)) 12214 return LoopVariant; 12215 12216 // Otherwise it's loop-invariant. 12217 return LoopInvariant; 12218 } 12219 case scAddExpr: 12220 case scMulExpr: 12221 case scUMaxExpr: 12222 case scSMaxExpr: 12223 case scUMinExpr: 12224 case scSMinExpr: { 12225 bool HasVarying = false; 12226 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12227 LoopDisposition D = getLoopDisposition(Op, L); 12228 if (D == LoopVariant) 12229 return LoopVariant; 12230 if (D == LoopComputable) 12231 HasVarying = true; 12232 } 12233 return HasVarying ? LoopComputable : LoopInvariant; 12234 } 12235 case scUDivExpr: { 12236 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12237 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12238 if (LD == LoopVariant) 12239 return LoopVariant; 12240 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12241 if (RD == LoopVariant) 12242 return LoopVariant; 12243 return (LD == LoopInvariant && RD == LoopInvariant) ? 12244 LoopInvariant : LoopComputable; 12245 } 12246 case scUnknown: 12247 // All non-instruction values are loop invariant. All instructions are loop 12248 // invariant if they are not contained in the specified loop. 12249 // Instructions are never considered invariant in the function body 12250 // (null loop) because they are defined within the "loop". 12251 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12252 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12253 return LoopInvariant; 12254 case scCouldNotCompute: 12255 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12256 } 12257 llvm_unreachable("Unknown SCEV kind!"); 12258 } 12259 12260 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12261 return getLoopDisposition(S, L) == LoopInvariant; 12262 } 12263 12264 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12265 return getLoopDisposition(S, L) == LoopComputable; 12266 } 12267 12268 ScalarEvolution::BlockDisposition 12269 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12270 auto &Values = BlockDispositions[S]; 12271 for (auto &V : Values) { 12272 if (V.getPointer() == BB) 12273 return V.getInt(); 12274 } 12275 Values.emplace_back(BB, DoesNotDominateBlock); 12276 BlockDisposition D = computeBlockDisposition(S, BB); 12277 auto &Values2 = BlockDispositions[S]; 12278 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12279 if (V.getPointer() == BB) { 12280 V.setInt(D); 12281 break; 12282 } 12283 } 12284 return D; 12285 } 12286 12287 ScalarEvolution::BlockDisposition 12288 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12289 switch (S->getSCEVType()) { 12290 case scConstant: 12291 return ProperlyDominatesBlock; 12292 case scPtrToInt: 12293 case scTruncate: 12294 case scZeroExtend: 12295 case scSignExtend: 12296 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12297 case scAddRecExpr: { 12298 // This uses a "dominates" query instead of "properly dominates" query 12299 // to test for proper dominance too, because the instruction which 12300 // produces the addrec's value is a PHI, and a PHI effectively properly 12301 // dominates its entire containing block. 12302 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12303 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12304 return DoesNotDominateBlock; 12305 12306 // Fall through into SCEVNAryExpr handling. 12307 LLVM_FALLTHROUGH; 12308 } 12309 case scAddExpr: 12310 case scMulExpr: 12311 case scUMaxExpr: 12312 case scSMaxExpr: 12313 case scUMinExpr: 12314 case scSMinExpr: { 12315 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12316 bool Proper = true; 12317 for (const SCEV *NAryOp : NAry->operands()) { 12318 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12319 if (D == DoesNotDominateBlock) 12320 return DoesNotDominateBlock; 12321 if (D == DominatesBlock) 12322 Proper = false; 12323 } 12324 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12325 } 12326 case scUDivExpr: { 12327 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12328 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12329 BlockDisposition LD = getBlockDisposition(LHS, BB); 12330 if (LD == DoesNotDominateBlock) 12331 return DoesNotDominateBlock; 12332 BlockDisposition RD = getBlockDisposition(RHS, BB); 12333 if (RD == DoesNotDominateBlock) 12334 return DoesNotDominateBlock; 12335 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12336 ProperlyDominatesBlock : DominatesBlock; 12337 } 12338 case scUnknown: 12339 if (Instruction *I = 12340 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12341 if (I->getParent() == BB) 12342 return DominatesBlock; 12343 if (DT.properlyDominates(I->getParent(), BB)) 12344 return ProperlyDominatesBlock; 12345 return DoesNotDominateBlock; 12346 } 12347 return ProperlyDominatesBlock; 12348 case scCouldNotCompute: 12349 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12350 } 12351 llvm_unreachable("Unknown SCEV kind!"); 12352 } 12353 12354 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12355 return getBlockDisposition(S, BB) >= DominatesBlock; 12356 } 12357 12358 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12359 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12360 } 12361 12362 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12363 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12364 } 12365 12366 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 12367 auto IsS = [&](const SCEV *X) { return S == X; }; 12368 auto ContainsS = [&](const SCEV *X) { 12369 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 12370 }; 12371 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 12372 } 12373 12374 void 12375 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12376 ValuesAtScopes.erase(S); 12377 LoopDispositions.erase(S); 12378 BlockDispositions.erase(S); 12379 UnsignedRanges.erase(S); 12380 SignedRanges.erase(S); 12381 ExprValueMap.erase(S); 12382 HasRecMap.erase(S); 12383 MinTrailingZerosCache.erase(S); 12384 12385 for (auto I = PredicatedSCEVRewrites.begin(); 12386 I != PredicatedSCEVRewrites.end();) { 12387 std::pair<const SCEV *, const Loop *> Entry = I->first; 12388 if (Entry.first == S) 12389 PredicatedSCEVRewrites.erase(I++); 12390 else 12391 ++I; 12392 } 12393 12394 auto RemoveSCEVFromBackedgeMap = 12395 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12396 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12397 BackedgeTakenInfo &BEInfo = I->second; 12398 if (BEInfo.hasOperand(S, this)) { 12399 BEInfo.clear(); 12400 Map.erase(I++); 12401 } else 12402 ++I; 12403 } 12404 }; 12405 12406 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12407 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12408 } 12409 12410 void 12411 ScalarEvolution::getUsedLoops(const SCEV *S, 12412 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12413 struct FindUsedLoops { 12414 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12415 : LoopsUsed(LoopsUsed) {} 12416 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12417 bool follow(const SCEV *S) { 12418 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12419 LoopsUsed.insert(AR->getLoop()); 12420 return true; 12421 } 12422 12423 bool isDone() const { return false; } 12424 }; 12425 12426 FindUsedLoops F(LoopsUsed); 12427 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12428 } 12429 12430 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12431 SmallPtrSet<const Loop *, 8> LoopsUsed; 12432 getUsedLoops(S, LoopsUsed); 12433 for (auto *L : LoopsUsed) 12434 LoopUsers[L].push_back(S); 12435 } 12436 12437 void ScalarEvolution::verify() const { 12438 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12439 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12440 12441 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12442 12443 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12444 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12445 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12446 12447 const SCEV *visitConstant(const SCEVConstant *Constant) { 12448 return SE.getConstant(Constant->getAPInt()); 12449 } 12450 12451 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12452 return SE.getUnknown(Expr->getValue()); 12453 } 12454 12455 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12456 return SE.getCouldNotCompute(); 12457 } 12458 }; 12459 12460 SCEVMapper SCM(SE2); 12461 12462 while (!LoopStack.empty()) { 12463 auto *L = LoopStack.pop_back_val(); 12464 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 12465 12466 auto *CurBECount = SCM.visit( 12467 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12468 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12469 12470 if (CurBECount == SE2.getCouldNotCompute() || 12471 NewBECount == SE2.getCouldNotCompute()) { 12472 // NB! This situation is legal, but is very suspicious -- whatever pass 12473 // change the loop to make a trip count go from could not compute to 12474 // computable or vice-versa *should have* invalidated SCEV. However, we 12475 // choose not to assert here (for now) since we don't want false 12476 // positives. 12477 continue; 12478 } 12479 12480 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12481 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12482 // not propagate undef aggressively). This means we can (and do) fail 12483 // verification in cases where a transform makes the trip count of a loop 12484 // go from "undef" to "undef+1" (say). The transform is fine, since in 12485 // both cases the loop iterates "undef" times, but SCEV thinks we 12486 // increased the trip count of the loop by 1 incorrectly. 12487 continue; 12488 } 12489 12490 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12491 SE.getTypeSizeInBits(NewBECount->getType())) 12492 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12493 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12494 SE.getTypeSizeInBits(NewBECount->getType())) 12495 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12496 12497 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12498 12499 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12500 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12501 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12502 dbgs() << "Old: " << *CurBECount << "\n"; 12503 dbgs() << "New: " << *NewBECount << "\n"; 12504 dbgs() << "Delta: " << *Delta << "\n"; 12505 std::abort(); 12506 } 12507 } 12508 12509 // Collect all valid loops currently in LoopInfo. 12510 SmallPtrSet<Loop *, 32> ValidLoops; 12511 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12512 while (!Worklist.empty()) { 12513 Loop *L = Worklist.pop_back_val(); 12514 if (ValidLoops.contains(L)) 12515 continue; 12516 ValidLoops.insert(L); 12517 Worklist.append(L->begin(), L->end()); 12518 } 12519 // Check for SCEV expressions referencing invalid/deleted loops. 12520 for (auto &KV : ValueExprMap) { 12521 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12522 if (!AR) 12523 continue; 12524 assert(ValidLoops.contains(AR->getLoop()) && 12525 "AddRec references invalid loop"); 12526 } 12527 } 12528 12529 bool ScalarEvolution::invalidate( 12530 Function &F, const PreservedAnalyses &PA, 12531 FunctionAnalysisManager::Invalidator &Inv) { 12532 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12533 // of its dependencies is invalidated. 12534 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12535 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12536 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12537 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12538 Inv.invalidate<LoopAnalysis>(F, PA); 12539 } 12540 12541 AnalysisKey ScalarEvolutionAnalysis::Key; 12542 12543 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12544 FunctionAnalysisManager &AM) { 12545 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12546 AM.getResult<AssumptionAnalysis>(F), 12547 AM.getResult<DominatorTreeAnalysis>(F), 12548 AM.getResult<LoopAnalysis>(F)); 12549 } 12550 12551 PreservedAnalyses 12552 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12553 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12554 return PreservedAnalyses::all(); 12555 } 12556 12557 PreservedAnalyses 12558 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12559 // For compatibility with opt's -analyze feature under legacy pass manager 12560 // which was not ported to NPM. This keeps tests using 12561 // update_analyze_test_checks.py working. 12562 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 12563 << F.getName() << "':\n"; 12564 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12565 return PreservedAnalyses::all(); 12566 } 12567 12568 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12569 "Scalar Evolution Analysis", false, true) 12570 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12571 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12572 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12573 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12574 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12575 "Scalar Evolution Analysis", false, true) 12576 12577 char ScalarEvolutionWrapperPass::ID = 0; 12578 12579 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12580 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12581 } 12582 12583 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12584 SE.reset(new ScalarEvolution( 12585 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12586 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12587 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12588 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12589 return false; 12590 } 12591 12592 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12593 12594 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12595 SE->print(OS); 12596 } 12597 12598 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12599 if (!VerifySCEV) 12600 return; 12601 12602 SE->verify(); 12603 } 12604 12605 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12606 AU.setPreservesAll(); 12607 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12608 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12609 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12610 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12611 } 12612 12613 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12614 const SCEV *RHS) { 12615 FoldingSetNodeID ID; 12616 assert(LHS->getType() == RHS->getType() && 12617 "Type mismatch between LHS and RHS"); 12618 // Unique this node based on the arguments 12619 ID.AddInteger(SCEVPredicate::P_Equal); 12620 ID.AddPointer(LHS); 12621 ID.AddPointer(RHS); 12622 void *IP = nullptr; 12623 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12624 return S; 12625 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12626 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12627 UniquePreds.InsertNode(Eq, IP); 12628 return Eq; 12629 } 12630 12631 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12632 const SCEVAddRecExpr *AR, 12633 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12634 FoldingSetNodeID ID; 12635 // Unique this node based on the arguments 12636 ID.AddInteger(SCEVPredicate::P_Wrap); 12637 ID.AddPointer(AR); 12638 ID.AddInteger(AddedFlags); 12639 void *IP = nullptr; 12640 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12641 return S; 12642 auto *OF = new (SCEVAllocator) 12643 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12644 UniquePreds.InsertNode(OF, IP); 12645 return OF; 12646 } 12647 12648 namespace { 12649 12650 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12651 public: 12652 12653 /// Rewrites \p S in the context of a loop L and the SCEV predication 12654 /// infrastructure. 12655 /// 12656 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12657 /// equivalences present in \p Pred. 12658 /// 12659 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12660 /// \p NewPreds such that the result will be an AddRecExpr. 12661 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12662 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12663 SCEVUnionPredicate *Pred) { 12664 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12665 return Rewriter.visit(S); 12666 } 12667 12668 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12669 if (Pred) { 12670 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12671 for (auto *Pred : ExprPreds) 12672 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12673 if (IPred->getLHS() == Expr) 12674 return IPred->getRHS(); 12675 } 12676 return convertToAddRecWithPreds(Expr); 12677 } 12678 12679 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12680 const SCEV *Operand = visit(Expr->getOperand()); 12681 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12682 if (AR && AR->getLoop() == L && AR->isAffine()) { 12683 // This couldn't be folded because the operand didn't have the nuw 12684 // flag. Add the nusw flag as an assumption that we could make. 12685 const SCEV *Step = AR->getStepRecurrence(SE); 12686 Type *Ty = Expr->getType(); 12687 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12688 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12689 SE.getSignExtendExpr(Step, Ty), L, 12690 AR->getNoWrapFlags()); 12691 } 12692 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12693 } 12694 12695 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12696 const SCEV *Operand = visit(Expr->getOperand()); 12697 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12698 if (AR && AR->getLoop() == L && AR->isAffine()) { 12699 // This couldn't be folded because the operand didn't have the nsw 12700 // flag. Add the nssw flag as an assumption that we could make. 12701 const SCEV *Step = AR->getStepRecurrence(SE); 12702 Type *Ty = Expr->getType(); 12703 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12704 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12705 SE.getSignExtendExpr(Step, Ty), L, 12706 AR->getNoWrapFlags()); 12707 } 12708 return SE.getSignExtendExpr(Operand, Expr->getType()); 12709 } 12710 12711 private: 12712 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12713 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12714 SCEVUnionPredicate *Pred) 12715 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12716 12717 bool addOverflowAssumption(const SCEVPredicate *P) { 12718 if (!NewPreds) { 12719 // Check if we've already made this assumption. 12720 return Pred && Pred->implies(P); 12721 } 12722 NewPreds->insert(P); 12723 return true; 12724 } 12725 12726 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12727 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12728 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12729 return addOverflowAssumption(A); 12730 } 12731 12732 // If \p Expr represents a PHINode, we try to see if it can be represented 12733 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12734 // to add this predicate as a runtime overflow check, we return the AddRec. 12735 // If \p Expr does not meet these conditions (is not a PHI node, or we 12736 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12737 // return \p Expr. 12738 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12739 if (!isa<PHINode>(Expr->getValue())) 12740 return Expr; 12741 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12742 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12743 if (!PredicatedRewrite) 12744 return Expr; 12745 for (auto *P : PredicatedRewrite->second){ 12746 // Wrap predicates from outer loops are not supported. 12747 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12748 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12749 if (L != AR->getLoop()) 12750 return Expr; 12751 } 12752 if (!addOverflowAssumption(P)) 12753 return Expr; 12754 } 12755 return PredicatedRewrite->first; 12756 } 12757 12758 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12759 SCEVUnionPredicate *Pred; 12760 const Loop *L; 12761 }; 12762 12763 } // end anonymous namespace 12764 12765 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12766 SCEVUnionPredicate &Preds) { 12767 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12768 } 12769 12770 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12771 const SCEV *S, const Loop *L, 12772 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12773 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12774 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12775 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12776 12777 if (!AddRec) 12778 return nullptr; 12779 12780 // Since the transformation was successful, we can now transfer the SCEV 12781 // predicates. 12782 for (auto *P : TransformPreds) 12783 Preds.insert(P); 12784 12785 return AddRec; 12786 } 12787 12788 /// SCEV predicates 12789 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12790 SCEVPredicateKind Kind) 12791 : FastID(ID), Kind(Kind) {} 12792 12793 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12794 const SCEV *LHS, const SCEV *RHS) 12795 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12796 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12797 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12798 } 12799 12800 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12801 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12802 12803 if (!Op) 12804 return false; 12805 12806 return Op->LHS == LHS && Op->RHS == RHS; 12807 } 12808 12809 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12810 12811 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12812 12813 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12814 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12815 } 12816 12817 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12818 const SCEVAddRecExpr *AR, 12819 IncrementWrapFlags Flags) 12820 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12821 12822 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12823 12824 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12825 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12826 12827 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12828 } 12829 12830 bool SCEVWrapPredicate::isAlwaysTrue() const { 12831 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12832 IncrementWrapFlags IFlags = Flags; 12833 12834 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12835 IFlags = clearFlags(IFlags, IncrementNSSW); 12836 12837 return IFlags == IncrementAnyWrap; 12838 } 12839 12840 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12841 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12842 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12843 OS << "<nusw>"; 12844 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12845 OS << "<nssw>"; 12846 OS << "\n"; 12847 } 12848 12849 SCEVWrapPredicate::IncrementWrapFlags 12850 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12851 ScalarEvolution &SE) { 12852 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12853 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12854 12855 // We can safely transfer the NSW flag as NSSW. 12856 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12857 ImpliedFlags = IncrementNSSW; 12858 12859 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12860 // If the increment is positive, the SCEV NUW flag will also imply the 12861 // WrapPredicate NUSW flag. 12862 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12863 if (Step->getValue()->getValue().isNonNegative()) 12864 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12865 } 12866 12867 return ImpliedFlags; 12868 } 12869 12870 /// Union predicates don't get cached so create a dummy set ID for it. 12871 SCEVUnionPredicate::SCEVUnionPredicate() 12872 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12873 12874 bool SCEVUnionPredicate::isAlwaysTrue() const { 12875 return all_of(Preds, 12876 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12877 } 12878 12879 ArrayRef<const SCEVPredicate *> 12880 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12881 auto I = SCEVToPreds.find(Expr); 12882 if (I == SCEVToPreds.end()) 12883 return ArrayRef<const SCEVPredicate *>(); 12884 return I->second; 12885 } 12886 12887 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12888 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12889 return all_of(Set->Preds, 12890 [this](const SCEVPredicate *I) { return this->implies(I); }); 12891 12892 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12893 if (ScevPredsIt == SCEVToPreds.end()) 12894 return false; 12895 auto &SCEVPreds = ScevPredsIt->second; 12896 12897 return any_of(SCEVPreds, 12898 [N](const SCEVPredicate *I) { return I->implies(N); }); 12899 } 12900 12901 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12902 12903 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12904 for (auto Pred : Preds) 12905 Pred->print(OS, Depth); 12906 } 12907 12908 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12909 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12910 for (auto Pred : Set->Preds) 12911 add(Pred); 12912 return; 12913 } 12914 12915 if (implies(N)) 12916 return; 12917 12918 const SCEV *Key = N->getExpr(); 12919 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12920 " associated expression!"); 12921 12922 SCEVToPreds[Key].push_back(N); 12923 Preds.push_back(N); 12924 } 12925 12926 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12927 Loop &L) 12928 : SE(SE), L(L) {} 12929 12930 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12931 const SCEV *Expr = SE.getSCEV(V); 12932 RewriteEntry &Entry = RewriteMap[Expr]; 12933 12934 // If we already have an entry and the version matches, return it. 12935 if (Entry.second && Generation == Entry.first) 12936 return Entry.second; 12937 12938 // We found an entry but it's stale. Rewrite the stale entry 12939 // according to the current predicate. 12940 if (Entry.second) 12941 Expr = Entry.second; 12942 12943 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12944 Entry = {Generation, NewSCEV}; 12945 12946 return NewSCEV; 12947 } 12948 12949 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12950 if (!BackedgeCount) { 12951 SCEVUnionPredicate BackedgePred; 12952 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12953 addPredicate(BackedgePred); 12954 } 12955 return BackedgeCount; 12956 } 12957 12958 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12959 if (Preds.implies(&Pred)) 12960 return; 12961 Preds.add(&Pred); 12962 updateGeneration(); 12963 } 12964 12965 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12966 return Preds; 12967 } 12968 12969 void PredicatedScalarEvolution::updateGeneration() { 12970 // If the generation number wrapped recompute everything. 12971 if (++Generation == 0) { 12972 for (auto &II : RewriteMap) { 12973 const SCEV *Rewritten = II.second.second; 12974 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12975 } 12976 } 12977 } 12978 12979 void PredicatedScalarEvolution::setNoOverflow( 12980 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12981 const SCEV *Expr = getSCEV(V); 12982 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12983 12984 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12985 12986 // Clear the statically implied flags. 12987 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12988 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12989 12990 auto II = FlagsMap.insert({V, Flags}); 12991 if (!II.second) 12992 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12993 } 12994 12995 bool PredicatedScalarEvolution::hasNoOverflow( 12996 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12997 const SCEV *Expr = getSCEV(V); 12998 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12999 13000 Flags = SCEVWrapPredicate::clearFlags( 13001 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13002 13003 auto II = FlagsMap.find(V); 13004 13005 if (II != FlagsMap.end()) 13006 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13007 13008 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13009 } 13010 13011 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13012 const SCEV *Expr = this->getSCEV(V); 13013 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13014 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13015 13016 if (!New) 13017 return nullptr; 13018 13019 for (auto *P : NewPreds) 13020 Preds.add(P); 13021 13022 updateGeneration(); 13023 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13024 return New; 13025 } 13026 13027 PredicatedScalarEvolution::PredicatedScalarEvolution( 13028 const PredicatedScalarEvolution &Init) 13029 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13030 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13031 for (auto I : Init.FlagsMap) 13032 FlagsMap.insert(I); 13033 } 13034 13035 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13036 // For each block. 13037 for (auto *BB : L.getBlocks()) 13038 for (auto &I : *BB) { 13039 if (!SE.isSCEVable(I.getType())) 13040 continue; 13041 13042 auto *Expr = SE.getSCEV(&I); 13043 auto II = RewriteMap.find(Expr); 13044 13045 if (II == RewriteMap.end()) 13046 continue; 13047 13048 // Don't print things that are not interesting. 13049 if (II->second.second == Expr) 13050 continue; 13051 13052 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13053 OS.indent(Depth + 2) << *Expr << "\n"; 13054 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13055 } 13056 } 13057 13058 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13059 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13060 // for URem with constant power-of-2 second operands. 13061 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13062 // 4, A / B becomes X / 8). 13063 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13064 const SCEV *&RHS) { 13065 // Try to match 'zext (trunc A to iB) to iY', which is used 13066 // for URem with constant power-of-2 second operands. Make sure the size of 13067 // the operand A matches the size of the whole expressions. 13068 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13069 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13070 LHS = Trunc->getOperand(); 13071 if (LHS->getType() != Expr->getType()) 13072 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13073 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13074 << getTypeSizeInBits(Trunc->getType())); 13075 return true; 13076 } 13077 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13078 if (Add == nullptr || Add->getNumOperands() != 2) 13079 return false; 13080 13081 const SCEV *A = Add->getOperand(1); 13082 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13083 13084 if (Mul == nullptr) 13085 return false; 13086 13087 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13088 // (SomeExpr + (-(SomeExpr / B) * B)). 13089 if (Expr == getURemExpr(A, B)) { 13090 LHS = A; 13091 RHS = B; 13092 return true; 13093 } 13094 return false; 13095 }; 13096 13097 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13098 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13099 return MatchURemWithDivisor(Mul->getOperand(1)) || 13100 MatchURemWithDivisor(Mul->getOperand(2)); 13101 13102 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13103 if (Mul->getNumOperands() == 2) 13104 return MatchURemWithDivisor(Mul->getOperand(1)) || 13105 MatchURemWithDivisor(Mul->getOperand(0)) || 13106 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13107 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13108 return false; 13109 } 13110 13111 const SCEV * 13112 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13113 SmallVector<BasicBlock*, 16> ExitingBlocks; 13114 L->getExitingBlocks(ExitingBlocks); 13115 13116 // Form an expression for the maximum exit count possible for this loop. We 13117 // merge the max and exact information to approximate a version of 13118 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13119 SmallVector<const SCEV*, 4> ExitCounts; 13120 for (BasicBlock *ExitingBB : ExitingBlocks) { 13121 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13122 if (isa<SCEVCouldNotCompute>(ExitCount)) 13123 ExitCount = getExitCount(L, ExitingBB, 13124 ScalarEvolution::ConstantMaximum); 13125 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13126 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13127 "We should only have known counts for exiting blocks that " 13128 "dominate latch!"); 13129 ExitCounts.push_back(ExitCount); 13130 } 13131 } 13132 if (ExitCounts.empty()) 13133 return getCouldNotCompute(); 13134 return getUMinFromMismatchedTypes(ExitCounts); 13135 } 13136 13137 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13138 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13139 /// we cannot guarantee that the replacement is loop invariant in the loop of 13140 /// the AddRec. 13141 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13142 ValueToSCEVMapTy ⤅ 13143 13144 public: 13145 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13146 : SCEVRewriteVisitor(SE), Map(M) {} 13147 13148 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13149 13150 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13151 auto I = Map.find(Expr->getValue()); 13152 if (I == Map.end()) 13153 return Expr; 13154 return I->second; 13155 } 13156 }; 13157 13158 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13159 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13160 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13161 if (!isa<SCEVUnknown>(LHS)) { 13162 std::swap(LHS, RHS); 13163 Predicate = CmpInst::getSwappedPredicate(Predicate); 13164 } 13165 13166 // For now, limit to conditions that provide information about unknown 13167 // expressions. 13168 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13169 if (!LHSUnknown) 13170 return; 13171 13172 // TODO: use information from more predicates. 13173 switch (Predicate) { 13174 case CmpInst::ICMP_ULT: { 13175 if (!containsAddRecurrence(RHS)) { 13176 const SCEV *Base = LHS; 13177 auto I = RewriteMap.find(LHSUnknown->getValue()); 13178 if (I != RewriteMap.end()) 13179 Base = I->second; 13180 13181 RewriteMap[LHSUnknown->getValue()] = 13182 getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType()))); 13183 } 13184 break; 13185 } 13186 case CmpInst::ICMP_ULE: { 13187 if (!containsAddRecurrence(RHS)) { 13188 const SCEV *Base = LHS; 13189 auto I = RewriteMap.find(LHSUnknown->getValue()); 13190 if (I != RewriteMap.end()) 13191 Base = I->second; 13192 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS); 13193 } 13194 break; 13195 } 13196 case CmpInst::ICMP_EQ: 13197 if (isa<SCEVConstant>(RHS)) 13198 RewriteMap[LHSUnknown->getValue()] = RHS; 13199 break; 13200 case CmpInst::ICMP_NE: 13201 if (isa<SCEVConstant>(RHS) && 13202 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13203 RewriteMap[LHSUnknown->getValue()] = 13204 getUMaxExpr(LHS, getOne(RHS->getType())); 13205 break; 13206 default: 13207 break; 13208 } 13209 }; 13210 // Starting at the loop predecessor, climb up the predecessor chain, as long 13211 // as there are predecessors that can be found that have unique successors 13212 // leading to the original header. 13213 // TODO: share this logic with isLoopEntryGuardedByCond. 13214 ValueToSCEVMapTy RewriteMap; 13215 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13216 L->getLoopPredecessor(), L->getHeader()); 13217 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13218 13219 const BranchInst *LoopEntryPredicate = 13220 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13221 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13222 continue; 13223 13224 // TODO: use information from more complex conditions, e.g. AND expressions. 13225 auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 13226 if (!Cmp) 13227 continue; 13228 13229 auto Predicate = Cmp->getPredicate(); 13230 if (LoopEntryPredicate->getSuccessor(1) == Pair.second) 13231 Predicate = CmpInst::getInversePredicate(Predicate); 13232 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13233 getSCEV(Cmp->getOperand(1)), RewriteMap); 13234 } 13235 13236 // Also collect information from assumptions dominating the loop. 13237 for (auto &AssumeVH : AC.assumptions()) { 13238 if (!AssumeVH) 13239 continue; 13240 auto *AssumeI = cast<CallInst>(AssumeVH); 13241 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13242 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13243 continue; 13244 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13245 getSCEV(Cmp->getOperand(1)), RewriteMap); 13246 } 13247 13248 if (RewriteMap.empty()) 13249 return Expr; 13250 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13251 return Rewriter.visit(Expr); 13252 } 13253