1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148 
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151                         cl::ZeroOrMore,
152                         cl::desc("Maximum number of iterations SCEV will "
153                                  "symbolically execute a constant "
154                                  "derived loop"),
155                         cl::init(100));
156 
157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
158 static cl::opt<bool> VerifySCEV(
159     "verify-scev", cl::Hidden,
160     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
161 static cl::opt<bool> VerifySCEVStrict(
162     "verify-scev-strict", cl::Hidden,
163     cl::desc("Enable stricter verification with -verify-scev is passed"));
164 static cl::opt<bool>
165     VerifySCEVMap("verify-scev-maps", cl::Hidden,
166                   cl::desc("Verify no dangling value in ScalarEvolution's "
167                            "ExprValueMap (slow)"));
168 
169 static cl::opt<bool> VerifyIR(
170     "scev-verify-ir", cl::Hidden,
171     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
172     cl::init(false));
173 
174 static cl::opt<unsigned> MulOpsInlineThreshold(
175     "scev-mulops-inline-threshold", cl::Hidden,
176     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
177     cl::init(32));
178 
179 static cl::opt<unsigned> AddOpsInlineThreshold(
180     "scev-addops-inline-threshold", cl::Hidden,
181     cl::desc("Threshold for inlining addition operands into a SCEV"),
182     cl::init(500));
183 
184 static cl::opt<unsigned> MaxSCEVCompareDepth(
185     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
186     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
187     cl::init(32));
188 
189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
190     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
191     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
192     cl::init(2));
193 
194 static cl::opt<unsigned> MaxValueCompareDepth(
195     "scalar-evolution-max-value-compare-depth", cl::Hidden,
196     cl::desc("Maximum depth of recursive value complexity comparisons"),
197     cl::init(2));
198 
199 static cl::opt<unsigned>
200     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
201                   cl::desc("Maximum depth of recursive arithmetics"),
202                   cl::init(32));
203 
204 static cl::opt<unsigned> MaxConstantEvolvingDepth(
205     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
206     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
207 
208 static cl::opt<unsigned>
209     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
210                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
211                  cl::init(8));
212 
213 static cl::opt<unsigned>
214     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
215                   cl::desc("Max coefficients in AddRec during evolving"),
216                   cl::init(8));
217 
218 static cl::opt<unsigned>
219     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
220                   cl::desc("Size of the expression which is considered huge"),
221                   cl::init(4096));
222 
223 static cl::opt<bool>
224 ClassifyExpressions("scalar-evolution-classify-expressions",
225     cl::Hidden, cl::init(true),
226     cl::desc("When printing analysis, include information on every instruction"));
227 
228 static cl::opt<bool> UseExpensiveRangeSharpening(
229     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
230     cl::init(false),
231     cl::desc("Use more powerful methods of sharpening expression ranges. May "
232              "be costly in terms of compile time"));
233 
234 //===----------------------------------------------------------------------===//
235 //                           SCEV class definitions
236 //===----------------------------------------------------------------------===//
237 
238 //===----------------------------------------------------------------------===//
239 // Implementation of the SCEV class.
240 //
241 
242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
243 LLVM_DUMP_METHOD void SCEV::dump() const {
244   print(dbgs());
245   dbgs() << '\n';
246 }
247 #endif
248 
249 void SCEV::print(raw_ostream &OS) const {
250   switch (getSCEVType()) {
251   case scConstant:
252     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
253     return;
254   case scPtrToInt: {
255     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
256     const SCEV *Op = PtrToInt->getOperand();
257     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
258        << *PtrToInt->getType() << ")";
259     return;
260   }
261   case scTruncate: {
262     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
263     const SCEV *Op = Trunc->getOperand();
264     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
265        << *Trunc->getType() << ")";
266     return;
267   }
268   case scZeroExtend: {
269     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
270     const SCEV *Op = ZExt->getOperand();
271     OS << "(zext " << *Op->getType() << " " << *Op << " to "
272        << *ZExt->getType() << ")";
273     return;
274   }
275   case scSignExtend: {
276     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
277     const SCEV *Op = SExt->getOperand();
278     OS << "(sext " << *Op->getType() << " " << *Op << " to "
279        << *SExt->getType() << ")";
280     return;
281   }
282   case scAddRecExpr: {
283     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
284     OS << "{" << *AR->getOperand(0);
285     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
286       OS << ",+," << *AR->getOperand(i);
287     OS << "}<";
288     if (AR->hasNoUnsignedWrap())
289       OS << "nuw><";
290     if (AR->hasNoSignedWrap())
291       OS << "nsw><";
292     if (AR->hasNoSelfWrap() &&
293         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
294       OS << "nw><";
295     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
296     OS << ">";
297     return;
298   }
299   case scAddExpr:
300   case scMulExpr:
301   case scUMaxExpr:
302   case scSMaxExpr:
303   case scUMinExpr:
304   case scSMinExpr: {
305     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
306     const char *OpStr = nullptr;
307     switch (NAry->getSCEVType()) {
308     case scAddExpr: OpStr = " + "; break;
309     case scMulExpr: OpStr = " * "; break;
310     case scUMaxExpr: OpStr = " umax "; break;
311     case scSMaxExpr: OpStr = " smax "; break;
312     case scUMinExpr:
313       OpStr = " umin ";
314       break;
315     case scSMinExpr:
316       OpStr = " smin ";
317       break;
318     default:
319       llvm_unreachable("There are no other nary expression types.");
320     }
321     OS << "(";
322     ListSeparator LS(OpStr);
323     for (const SCEV *Op : NAry->operands())
324       OS << LS << *Op;
325     OS << ")";
326     switch (NAry->getSCEVType()) {
327     case scAddExpr:
328     case scMulExpr:
329       if (NAry->hasNoUnsignedWrap())
330         OS << "<nuw>";
331       if (NAry->hasNoSignedWrap())
332         OS << "<nsw>";
333       break;
334     default:
335       // Nothing to print for other nary expressions.
336       break;
337     }
338     return;
339   }
340   case scUDivExpr: {
341     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
342     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
343     return;
344   }
345   case scUnknown: {
346     const SCEVUnknown *U = cast<SCEVUnknown>(this);
347     Type *AllocTy;
348     if (U->isSizeOf(AllocTy)) {
349       OS << "sizeof(" << *AllocTy << ")";
350       return;
351     }
352     if (U->isAlignOf(AllocTy)) {
353       OS << "alignof(" << *AllocTy << ")";
354       return;
355     }
356 
357     Type *CTy;
358     Constant *FieldNo;
359     if (U->isOffsetOf(CTy, FieldNo)) {
360       OS << "offsetof(" << *CTy << ", ";
361       FieldNo->printAsOperand(OS, false);
362       OS << ")";
363       return;
364     }
365 
366     // Otherwise just print it normally.
367     U->getValue()->printAsOperand(OS, false);
368     return;
369   }
370   case scCouldNotCompute:
371     OS << "***COULDNOTCOMPUTE***";
372     return;
373   }
374   llvm_unreachable("Unknown SCEV kind!");
375 }
376 
377 Type *SCEV::getType() const {
378   switch (getSCEVType()) {
379   case scConstant:
380     return cast<SCEVConstant>(this)->getType();
381   case scPtrToInt:
382   case scTruncate:
383   case scZeroExtend:
384   case scSignExtend:
385     return cast<SCEVCastExpr>(this)->getType();
386   case scAddRecExpr:
387     return cast<SCEVAddRecExpr>(this)->getType();
388   case scMulExpr:
389     return cast<SCEVMulExpr>(this)->getType();
390   case scUMaxExpr:
391   case scSMaxExpr:
392   case scUMinExpr:
393   case scSMinExpr:
394     return cast<SCEVMinMaxExpr>(this)->getType();
395   case scAddExpr:
396     return cast<SCEVAddExpr>(this)->getType();
397   case scUDivExpr:
398     return cast<SCEVUDivExpr>(this)->getType();
399   case scUnknown:
400     return cast<SCEVUnknown>(this)->getType();
401   case scCouldNotCompute:
402     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
403   }
404   llvm_unreachable("Unknown SCEV kind!");
405 }
406 
407 bool SCEV::isZero() const {
408   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
409     return SC->getValue()->isZero();
410   return false;
411 }
412 
413 bool SCEV::isOne() const {
414   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
415     return SC->getValue()->isOne();
416   return false;
417 }
418 
419 bool SCEV::isAllOnesValue() const {
420   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
421     return SC->getValue()->isMinusOne();
422   return false;
423 }
424 
425 bool SCEV::isNonConstantNegative() const {
426   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
427   if (!Mul) return false;
428 
429   // If there is a constant factor, it will be first.
430   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
431   if (!SC) return false;
432 
433   // Return true if the value is negative, this matches things like (-42 * V).
434   return SC->getAPInt().isNegative();
435 }
436 
437 SCEVCouldNotCompute::SCEVCouldNotCompute() :
438   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
439 
440 bool SCEVCouldNotCompute::classof(const SCEV *S) {
441   return S->getSCEVType() == scCouldNotCompute;
442 }
443 
444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
445   FoldingSetNodeID ID;
446   ID.AddInteger(scConstant);
447   ID.AddPointer(V);
448   void *IP = nullptr;
449   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
450   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
451   UniqueSCEVs.InsertNode(S, IP);
452   return S;
453 }
454 
455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
456   return getConstant(ConstantInt::get(getContext(), Val));
457 }
458 
459 const SCEV *
460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
461   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
462   return getConstant(ConstantInt::get(ITy, V, isSigned));
463 }
464 
465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
466                            const SCEV *op, Type *ty)
467     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
468   Operands[0] = op;
469 }
470 
471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
472                                    Type *ITy)
473     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
474   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
475          "Must be a non-bit-width-changing pointer-to-integer cast!");
476 }
477 
478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
479                                            SCEVTypes SCEVTy, const SCEV *op,
480                                            Type *ty)
481     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
482 
483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
484                                    Type *ty)
485     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
486   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
487          "Cannot truncate non-integer value!");
488 }
489 
490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
491                                        const SCEV *op, Type *ty)
492     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
493   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
494          "Cannot zero extend non-integer value!");
495 }
496 
497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
498                                        const SCEV *op, Type *ty)
499     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
500   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
501          "Cannot sign extend non-integer value!");
502 }
503 
504 void SCEVUnknown::deleted() {
505   // Clear this SCEVUnknown from various maps.
506   SE->forgetMemoizedResults(this);
507 
508   // Remove this SCEVUnknown from the uniquing map.
509   SE->UniqueSCEVs.RemoveNode(this);
510 
511   // Release the value.
512   setValPtr(nullptr);
513 }
514 
515 void SCEVUnknown::allUsesReplacedWith(Value *New) {
516   // Remove this SCEVUnknown from the uniquing map.
517   SE->UniqueSCEVs.RemoveNode(this);
518 
519   // Update this SCEVUnknown to point to the new value. This is needed
520   // because there may still be outstanding SCEVs which still point to
521   // this SCEVUnknown.
522   setValPtr(New);
523 }
524 
525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
526   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
527     if (VCE->getOpcode() == Instruction::PtrToInt)
528       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
529         if (CE->getOpcode() == Instruction::GetElementPtr &&
530             CE->getOperand(0)->isNullValue() &&
531             CE->getNumOperands() == 2)
532           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
533             if (CI->isOne()) {
534               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
535               return true;
536             }
537 
538   return false;
539 }
540 
541 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
542   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
543     if (VCE->getOpcode() == Instruction::PtrToInt)
544       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
545         if (CE->getOpcode() == Instruction::GetElementPtr &&
546             CE->getOperand(0)->isNullValue()) {
547           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
548           if (StructType *STy = dyn_cast<StructType>(Ty))
549             if (!STy->isPacked() &&
550                 CE->getNumOperands() == 3 &&
551                 CE->getOperand(1)->isNullValue()) {
552               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
553                 if (CI->isOne() &&
554                     STy->getNumElements() == 2 &&
555                     STy->getElementType(0)->isIntegerTy(1)) {
556                   AllocTy = STy->getElementType(1);
557                   return true;
558                 }
559             }
560         }
561 
562   return false;
563 }
564 
565 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
566   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
567     if (VCE->getOpcode() == Instruction::PtrToInt)
568       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
569         if (CE->getOpcode() == Instruction::GetElementPtr &&
570             CE->getNumOperands() == 3 &&
571             CE->getOperand(0)->isNullValue() &&
572             CE->getOperand(1)->isNullValue()) {
573           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
574           // Ignore vector types here so that ScalarEvolutionExpander doesn't
575           // emit getelementptrs that index into vectors.
576           if (Ty->isStructTy() || Ty->isArrayTy()) {
577             CTy = Ty;
578             FieldNo = CE->getOperand(2);
579             return true;
580           }
581         }
582 
583   return false;
584 }
585 
586 //===----------------------------------------------------------------------===//
587 //                               SCEV Utilities
588 //===----------------------------------------------------------------------===//
589 
590 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
591 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
592 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
593 /// have been previously deemed to be "equally complex" by this routine.  It is
594 /// intended to avoid exponential time complexity in cases like:
595 ///
596 ///   %a = f(%x, %y)
597 ///   %b = f(%a, %a)
598 ///   %c = f(%b, %b)
599 ///
600 ///   %d = f(%x, %y)
601 ///   %e = f(%d, %d)
602 ///   %f = f(%e, %e)
603 ///
604 ///   CompareValueComplexity(%f, %c)
605 ///
606 /// Since we do not continue running this routine on expression trees once we
607 /// have seen unequal values, there is no need to track them in the cache.
608 static int
609 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
610                        const LoopInfo *const LI, Value *LV, Value *RV,
611                        unsigned Depth) {
612   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
613     return 0;
614 
615   // Order pointer values after integer values. This helps SCEVExpander form
616   // GEPs.
617   bool LIsPointer = LV->getType()->isPointerTy(),
618        RIsPointer = RV->getType()->isPointerTy();
619   if (LIsPointer != RIsPointer)
620     return (int)LIsPointer - (int)RIsPointer;
621 
622   // Compare getValueID values.
623   unsigned LID = LV->getValueID(), RID = RV->getValueID();
624   if (LID != RID)
625     return (int)LID - (int)RID;
626 
627   // Sort arguments by their position.
628   if (const auto *LA = dyn_cast<Argument>(LV)) {
629     const auto *RA = cast<Argument>(RV);
630     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
631     return (int)LArgNo - (int)RArgNo;
632   }
633 
634   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
635     const auto *RGV = cast<GlobalValue>(RV);
636 
637     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
638       auto LT = GV->getLinkage();
639       return !(GlobalValue::isPrivateLinkage(LT) ||
640                GlobalValue::isInternalLinkage(LT));
641     };
642 
643     // Use the names to distinguish the two values, but only if the
644     // names are semantically important.
645     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
646       return LGV->getName().compare(RGV->getName());
647   }
648 
649   // For instructions, compare their loop depth, and their operand count.  This
650   // is pretty loose.
651   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
652     const auto *RInst = cast<Instruction>(RV);
653 
654     // Compare loop depths.
655     const BasicBlock *LParent = LInst->getParent(),
656                      *RParent = RInst->getParent();
657     if (LParent != RParent) {
658       unsigned LDepth = LI->getLoopDepth(LParent),
659                RDepth = LI->getLoopDepth(RParent);
660       if (LDepth != RDepth)
661         return (int)LDepth - (int)RDepth;
662     }
663 
664     // Compare the number of operands.
665     unsigned LNumOps = LInst->getNumOperands(),
666              RNumOps = RInst->getNumOperands();
667     if (LNumOps != RNumOps)
668       return (int)LNumOps - (int)RNumOps;
669 
670     for (unsigned Idx : seq(0u, LNumOps)) {
671       int Result =
672           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
673                                  RInst->getOperand(Idx), Depth + 1);
674       if (Result != 0)
675         return Result;
676     }
677   }
678 
679   EqCacheValue.unionSets(LV, RV);
680   return 0;
681 }
682 
683 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
684 // than RHS, respectively. A three-way result allows recursive comparisons to be
685 // more efficient.
686 // If the max analysis depth was reached, return None, assuming we do not know
687 // if they are equivalent for sure.
688 static Optional<int>
689 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
690                       EquivalenceClasses<const Value *> &EqCacheValue,
691                       const LoopInfo *const LI, const SCEV *LHS,
692                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
693   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
694   if (LHS == RHS)
695     return 0;
696 
697   // Primarily, sort the SCEVs by their getSCEVType().
698   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
699   if (LType != RType)
700     return (int)LType - (int)RType;
701 
702   if (EqCacheSCEV.isEquivalent(LHS, RHS))
703     return 0;
704 
705   if (Depth > MaxSCEVCompareDepth)
706     return None;
707 
708   // Aside from the getSCEVType() ordering, the particular ordering
709   // isn't very important except that it's beneficial to be consistent,
710   // so that (a + b) and (b + a) don't end up as different expressions.
711   switch (LType) {
712   case scUnknown: {
713     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
714     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
715 
716     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
717                                    RU->getValue(), Depth + 1);
718     if (X == 0)
719       EqCacheSCEV.unionSets(LHS, RHS);
720     return X;
721   }
722 
723   case scConstant: {
724     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
725     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
726 
727     // Compare constant values.
728     const APInt &LA = LC->getAPInt();
729     const APInt &RA = RC->getAPInt();
730     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
731     if (LBitWidth != RBitWidth)
732       return (int)LBitWidth - (int)RBitWidth;
733     return LA.ult(RA) ? -1 : 1;
734   }
735 
736   case scAddRecExpr: {
737     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
738     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
739 
740     // There is always a dominance between two recs that are used by one SCEV,
741     // so we can safely sort recs by loop header dominance. We require such
742     // order in getAddExpr.
743     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
744     if (LLoop != RLoop) {
745       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
746       assert(LHead != RHead && "Two loops share the same header?");
747       if (DT.dominates(LHead, RHead))
748         return 1;
749       else
750         assert(DT.dominates(RHead, LHead) &&
751                "No dominance between recurrences used by one SCEV?");
752       return -1;
753     }
754 
755     // Addrec complexity grows with operand count.
756     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
757     if (LNumOps != RNumOps)
758       return (int)LNumOps - (int)RNumOps;
759 
760     // Lexicographically compare.
761     for (unsigned i = 0; i != LNumOps; ++i) {
762       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
763                                      LA->getOperand(i), RA->getOperand(i), DT,
764                                      Depth + 1);
765       if (X != 0)
766         return X;
767     }
768     EqCacheSCEV.unionSets(LHS, RHS);
769     return 0;
770   }
771 
772   case scAddExpr:
773   case scMulExpr:
774   case scSMaxExpr:
775   case scUMaxExpr:
776   case scSMinExpr:
777   case scUMinExpr: {
778     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
779     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
780 
781     // Lexicographically compare n-ary expressions.
782     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
783     if (LNumOps != RNumOps)
784       return (int)LNumOps - (int)RNumOps;
785 
786     for (unsigned i = 0; i != LNumOps; ++i) {
787       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
788                                      LC->getOperand(i), RC->getOperand(i), DT,
789                                      Depth + 1);
790       if (X != 0)
791         return X;
792     }
793     EqCacheSCEV.unionSets(LHS, RHS);
794     return 0;
795   }
796 
797   case scUDivExpr: {
798     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
799     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
800 
801     // Lexicographically compare udiv expressions.
802     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
803                                    RC->getLHS(), DT, Depth + 1);
804     if (X != 0)
805       return X;
806     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
807                               RC->getRHS(), DT, Depth + 1);
808     if (X == 0)
809       EqCacheSCEV.unionSets(LHS, RHS);
810     return X;
811   }
812 
813   case scPtrToInt:
814   case scTruncate:
815   case scZeroExtend:
816   case scSignExtend: {
817     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
818     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
819 
820     // Compare cast expressions by operand.
821     auto X =
822         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
823                               RC->getOperand(), DT, Depth + 1);
824     if (X == 0)
825       EqCacheSCEV.unionSets(LHS, RHS);
826     return X;
827   }
828 
829   case scCouldNotCompute:
830     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
831   }
832   llvm_unreachable("Unknown SCEV kind!");
833 }
834 
835 /// Given a list of SCEV objects, order them by their complexity, and group
836 /// objects of the same complexity together by value.  When this routine is
837 /// finished, we know that any duplicates in the vector are consecutive and that
838 /// complexity is monotonically increasing.
839 ///
840 /// Note that we go take special precautions to ensure that we get deterministic
841 /// results from this routine.  In other words, we don't want the results of
842 /// this to depend on where the addresses of various SCEV objects happened to
843 /// land in memory.
844 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
845                               LoopInfo *LI, DominatorTree &DT) {
846   if (Ops.size() < 2) return;  // Noop
847 
848   EquivalenceClasses<const SCEV *> EqCacheSCEV;
849   EquivalenceClasses<const Value *> EqCacheValue;
850 
851   // Whether LHS has provably less complexity than RHS.
852   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
853     auto Complexity =
854         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
855     return Complexity && *Complexity < 0;
856   };
857   if (Ops.size() == 2) {
858     // This is the common case, which also happens to be trivially simple.
859     // Special case it.
860     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
861     if (IsLessComplex(RHS, LHS))
862       std::swap(LHS, RHS);
863     return;
864   }
865 
866   // Do the rough sort by complexity.
867   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
868     return IsLessComplex(LHS, RHS);
869   });
870 
871   // Now that we are sorted by complexity, group elements of the same
872   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
873   // be extremely short in practice.  Note that we take this approach because we
874   // do not want to depend on the addresses of the objects we are grouping.
875   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
876     const SCEV *S = Ops[i];
877     unsigned Complexity = S->getSCEVType();
878 
879     // If there are any objects of the same complexity and same value as this
880     // one, group them.
881     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
882       if (Ops[j] == S) { // Found a duplicate.
883         // Move it to immediately after i'th element.
884         std::swap(Ops[i+1], Ops[j]);
885         ++i;   // no need to rescan it.
886         if (i == e-2) return;  // Done!
887       }
888     }
889   }
890 }
891 
892 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
893 /// least HugeExprThreshold nodes).
894 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
895   return any_of(Ops, [](const SCEV *S) {
896     return S->getExpressionSize() >= HugeExprThreshold;
897   });
898 }
899 
900 //===----------------------------------------------------------------------===//
901 //                      Simple SCEV method implementations
902 //===----------------------------------------------------------------------===//
903 
904 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
905 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
906                                        ScalarEvolution &SE,
907                                        Type *ResultTy) {
908   // Handle the simplest case efficiently.
909   if (K == 1)
910     return SE.getTruncateOrZeroExtend(It, ResultTy);
911 
912   // We are using the following formula for BC(It, K):
913   //
914   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
915   //
916   // Suppose, W is the bitwidth of the return value.  We must be prepared for
917   // overflow.  Hence, we must assure that the result of our computation is
918   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
919   // safe in modular arithmetic.
920   //
921   // However, this code doesn't use exactly that formula; the formula it uses
922   // is something like the following, where T is the number of factors of 2 in
923   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
924   // exponentiation:
925   //
926   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
927   //
928   // This formula is trivially equivalent to the previous formula.  However,
929   // this formula can be implemented much more efficiently.  The trick is that
930   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
931   // arithmetic.  To do exact division in modular arithmetic, all we have
932   // to do is multiply by the inverse.  Therefore, this step can be done at
933   // width W.
934   //
935   // The next issue is how to safely do the division by 2^T.  The way this
936   // is done is by doing the multiplication step at a width of at least W + T
937   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
938   // when we perform the division by 2^T (which is equivalent to a right shift
939   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
940   // truncated out after the division by 2^T.
941   //
942   // In comparison to just directly using the first formula, this technique
943   // is much more efficient; using the first formula requires W * K bits,
944   // but this formula less than W + K bits. Also, the first formula requires
945   // a division step, whereas this formula only requires multiplies and shifts.
946   //
947   // It doesn't matter whether the subtraction step is done in the calculation
948   // width or the input iteration count's width; if the subtraction overflows,
949   // the result must be zero anyway.  We prefer here to do it in the width of
950   // the induction variable because it helps a lot for certain cases; CodeGen
951   // isn't smart enough to ignore the overflow, which leads to much less
952   // efficient code if the width of the subtraction is wider than the native
953   // register width.
954   //
955   // (It's possible to not widen at all by pulling out factors of 2 before
956   // the multiplication; for example, K=2 can be calculated as
957   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
958   // extra arithmetic, so it's not an obvious win, and it gets
959   // much more complicated for K > 3.)
960 
961   // Protection from insane SCEVs; this bound is conservative,
962   // but it probably doesn't matter.
963   if (K > 1000)
964     return SE.getCouldNotCompute();
965 
966   unsigned W = SE.getTypeSizeInBits(ResultTy);
967 
968   // Calculate K! / 2^T and T; we divide out the factors of two before
969   // multiplying for calculating K! / 2^T to avoid overflow.
970   // Other overflow doesn't matter because we only care about the bottom
971   // W bits of the result.
972   APInt OddFactorial(W, 1);
973   unsigned T = 1;
974   for (unsigned i = 3; i <= K; ++i) {
975     APInt Mult(W, i);
976     unsigned TwoFactors = Mult.countTrailingZeros();
977     T += TwoFactors;
978     Mult.lshrInPlace(TwoFactors);
979     OddFactorial *= Mult;
980   }
981 
982   // We need at least W + T bits for the multiplication step
983   unsigned CalculationBits = W + T;
984 
985   // Calculate 2^T, at width T+W.
986   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
987 
988   // Calculate the multiplicative inverse of K! / 2^T;
989   // this multiplication factor will perform the exact division by
990   // K! / 2^T.
991   APInt Mod = APInt::getSignedMinValue(W+1);
992   APInt MultiplyFactor = OddFactorial.zext(W+1);
993   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
994   MultiplyFactor = MultiplyFactor.trunc(W);
995 
996   // Calculate the product, at width T+W
997   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
998                                                       CalculationBits);
999   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1000   for (unsigned i = 1; i != K; ++i) {
1001     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1002     Dividend = SE.getMulExpr(Dividend,
1003                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1004   }
1005 
1006   // Divide by 2^T
1007   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1008 
1009   // Truncate the result, and divide by K! / 2^T.
1010 
1011   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1012                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1013 }
1014 
1015 /// Return the value of this chain of recurrences at the specified iteration
1016 /// number.  We can evaluate this recurrence by multiplying each element in the
1017 /// chain by the binomial coefficient corresponding to it.  In other words, we
1018 /// can evaluate {A,+,B,+,C,+,D} as:
1019 ///
1020 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1021 ///
1022 /// where BC(It, k) stands for binomial coefficient.
1023 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1024                                                 ScalarEvolution &SE) const {
1025   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1026 }
1027 
1028 const SCEV *
1029 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1030                                     const SCEV *It, ScalarEvolution &SE) {
1031   assert(Operands.size() > 0);
1032   const SCEV *Result = Operands[0];
1033   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1034     // The computation is correct in the face of overflow provided that the
1035     // multiplication is performed _after_ the evaluation of the binomial
1036     // coefficient.
1037     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1038     if (isa<SCEVCouldNotCompute>(Coeff))
1039       return Coeff;
1040 
1041     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1042   }
1043   return Result;
1044 }
1045 
1046 //===----------------------------------------------------------------------===//
1047 //                    SCEV Expression folder implementations
1048 //===----------------------------------------------------------------------===//
1049 
1050 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1051                                                      unsigned Depth) {
1052   assert(Depth <= 1 &&
1053          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1054 
1055   // We could be called with an integer-typed operands during SCEV rewrites.
1056   // Since the operand is an integer already, just perform zext/trunc/self cast.
1057   if (!Op->getType()->isPointerTy())
1058     return Op;
1059 
1060   // What would be an ID for such a SCEV cast expression?
1061   FoldingSetNodeID ID;
1062   ID.AddInteger(scPtrToInt);
1063   ID.AddPointer(Op);
1064 
1065   void *IP = nullptr;
1066 
1067   // Is there already an expression for such a cast?
1068   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1069     return S;
1070 
1071   // It isn't legal for optimizations to construct new ptrtoint expressions
1072   // for non-integral pointers.
1073   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1074     return getCouldNotCompute();
1075 
1076   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1077 
1078   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1079   // is sufficiently wide to represent all possible pointer values.
1080   // We could theoretically teach SCEV to truncate wider pointers, but
1081   // that isn't implemented for now.
1082   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1083       getDataLayout().getTypeSizeInBits(IntPtrTy))
1084     return getCouldNotCompute();
1085 
1086   // If not, is this expression something we can't reduce any further?
1087   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1088     // Perform some basic constant folding. If the operand of the ptr2int cast
1089     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1090     // left as-is), but produce a zero constant.
1091     // NOTE: We could handle a more general case, but lack motivational cases.
1092     if (isa<ConstantPointerNull>(U->getValue()))
1093       return getZero(IntPtrTy);
1094 
1095     // Create an explicit cast node.
1096     // We can reuse the existing insert position since if we get here,
1097     // we won't have made any changes which would invalidate it.
1098     SCEV *S = new (SCEVAllocator)
1099         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1100     UniqueSCEVs.InsertNode(S, IP);
1101     addToLoopUseLists(S);
1102     registerUser(S, Op);
1103     return S;
1104   }
1105 
1106   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1107                        "non-SCEVUnknown's.");
1108 
1109   // Otherwise, we've got some expression that is more complex than just a
1110   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1111   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1112   // only, and the expressions must otherwise be integer-typed.
1113   // So sink the cast down to the SCEVUnknown's.
1114 
1115   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1116   /// which computes a pointer-typed value, and rewrites the whole expression
1117   /// tree so that *all* the computations are done on integers, and the only
1118   /// pointer-typed operands in the expression are SCEVUnknown.
1119   class SCEVPtrToIntSinkingRewriter
1120       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1121     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1122 
1123   public:
1124     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1125 
1126     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1127       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1128       return Rewriter.visit(Scev);
1129     }
1130 
1131     const SCEV *visit(const SCEV *S) {
1132       Type *STy = S->getType();
1133       // If the expression is not pointer-typed, just keep it as-is.
1134       if (!STy->isPointerTy())
1135         return S;
1136       // Else, recursively sink the cast down into it.
1137       return Base::visit(S);
1138     }
1139 
1140     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1141       SmallVector<const SCEV *, 2> Operands;
1142       bool Changed = false;
1143       for (auto *Op : Expr->operands()) {
1144         Operands.push_back(visit(Op));
1145         Changed |= Op != Operands.back();
1146       }
1147       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1148     }
1149 
1150     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1151       SmallVector<const SCEV *, 2> Operands;
1152       bool Changed = false;
1153       for (auto *Op : Expr->operands()) {
1154         Operands.push_back(visit(Op));
1155         Changed |= Op != Operands.back();
1156       }
1157       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1158     }
1159 
1160     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1161       assert(Expr->getType()->isPointerTy() &&
1162              "Should only reach pointer-typed SCEVUnknown's.");
1163       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1164     }
1165   };
1166 
1167   // And actually perform the cast sinking.
1168   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1169   assert(IntOp->getType()->isIntegerTy() &&
1170          "We must have succeeded in sinking the cast, "
1171          "and ending up with an integer-typed expression!");
1172   return IntOp;
1173 }
1174 
1175 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1176   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1177 
1178   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1179   if (isa<SCEVCouldNotCompute>(IntOp))
1180     return IntOp;
1181 
1182   return getTruncateOrZeroExtend(IntOp, Ty);
1183 }
1184 
1185 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1186                                              unsigned Depth) {
1187   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1188          "This is not a truncating conversion!");
1189   assert(isSCEVable(Ty) &&
1190          "This is not a conversion to a SCEVable type!");
1191   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1192   Ty = getEffectiveSCEVType(Ty);
1193 
1194   FoldingSetNodeID ID;
1195   ID.AddInteger(scTruncate);
1196   ID.AddPointer(Op);
1197   ID.AddPointer(Ty);
1198   void *IP = nullptr;
1199   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1200 
1201   // Fold if the operand is constant.
1202   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1203     return getConstant(
1204       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1205 
1206   // trunc(trunc(x)) --> trunc(x)
1207   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1208     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1209 
1210   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1211   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1212     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1213 
1214   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1215   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1216     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1217 
1218   if (Depth > MaxCastDepth) {
1219     SCEV *S =
1220         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1221     UniqueSCEVs.InsertNode(S, IP);
1222     addToLoopUseLists(S);
1223     registerUser(S, Op);
1224     return S;
1225   }
1226 
1227   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1228   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1229   // if after transforming we have at most one truncate, not counting truncates
1230   // that replace other casts.
1231   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1232     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1233     SmallVector<const SCEV *, 4> Operands;
1234     unsigned numTruncs = 0;
1235     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1236          ++i) {
1237       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1238       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1239           isa<SCEVTruncateExpr>(S))
1240         numTruncs++;
1241       Operands.push_back(S);
1242     }
1243     if (numTruncs < 2) {
1244       if (isa<SCEVAddExpr>(Op))
1245         return getAddExpr(Operands);
1246       else if (isa<SCEVMulExpr>(Op))
1247         return getMulExpr(Operands);
1248       else
1249         llvm_unreachable("Unexpected SCEV type for Op.");
1250     }
1251     // Although we checked in the beginning that ID is not in the cache, it is
1252     // possible that during recursion and different modification ID was inserted
1253     // into the cache. So if we find it, just return it.
1254     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1255       return S;
1256   }
1257 
1258   // If the input value is a chrec scev, truncate the chrec's operands.
1259   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1260     SmallVector<const SCEV *, 4> Operands;
1261     for (const SCEV *Op : AddRec->operands())
1262       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1263     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1264   }
1265 
1266   // Return zero if truncating to known zeros.
1267   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1268   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1269     return getZero(Ty);
1270 
1271   // The cast wasn't folded; create an explicit cast node. We can reuse
1272   // the existing insert position since if we get here, we won't have
1273   // made any changes which would invalidate it.
1274   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1275                                                  Op, Ty);
1276   UniqueSCEVs.InsertNode(S, IP);
1277   addToLoopUseLists(S);
1278   registerUser(S, Op);
1279   return S;
1280 }
1281 
1282 // Get the limit of a recurrence such that incrementing by Step cannot cause
1283 // signed overflow as long as the value of the recurrence within the
1284 // loop does not exceed this limit before incrementing.
1285 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1286                                                  ICmpInst::Predicate *Pred,
1287                                                  ScalarEvolution *SE) {
1288   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1289   if (SE->isKnownPositive(Step)) {
1290     *Pred = ICmpInst::ICMP_SLT;
1291     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1292                            SE->getSignedRangeMax(Step));
1293   }
1294   if (SE->isKnownNegative(Step)) {
1295     *Pred = ICmpInst::ICMP_SGT;
1296     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1297                            SE->getSignedRangeMin(Step));
1298   }
1299   return nullptr;
1300 }
1301 
1302 // Get the limit of a recurrence such that incrementing by Step cannot cause
1303 // unsigned overflow as long as the value of the recurrence within the loop does
1304 // not exceed this limit before incrementing.
1305 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1306                                                    ICmpInst::Predicate *Pred,
1307                                                    ScalarEvolution *SE) {
1308   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1309   *Pred = ICmpInst::ICMP_ULT;
1310 
1311   return SE->getConstant(APInt::getMinValue(BitWidth) -
1312                          SE->getUnsignedRangeMax(Step));
1313 }
1314 
1315 namespace {
1316 
1317 struct ExtendOpTraitsBase {
1318   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1319                                                           unsigned);
1320 };
1321 
1322 // Used to make code generic over signed and unsigned overflow.
1323 template <typename ExtendOp> struct ExtendOpTraits {
1324   // Members present:
1325   //
1326   // static const SCEV::NoWrapFlags WrapType;
1327   //
1328   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1329   //
1330   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1331   //                                           ICmpInst::Predicate *Pred,
1332   //                                           ScalarEvolution *SE);
1333 };
1334 
1335 template <>
1336 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1337   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1338 
1339   static const GetExtendExprTy GetExtendExpr;
1340 
1341   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1342                                              ICmpInst::Predicate *Pred,
1343                                              ScalarEvolution *SE) {
1344     return getSignedOverflowLimitForStep(Step, Pred, SE);
1345   }
1346 };
1347 
1348 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1349     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1350 
1351 template <>
1352 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1353   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1354 
1355   static const GetExtendExprTy GetExtendExpr;
1356 
1357   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1358                                              ICmpInst::Predicate *Pred,
1359                                              ScalarEvolution *SE) {
1360     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1361   }
1362 };
1363 
1364 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1365     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1366 
1367 } // end anonymous namespace
1368 
1369 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1370 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1371 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1372 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1373 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1374 // expression "Step + sext/zext(PreIncAR)" is congruent with
1375 // "sext/zext(PostIncAR)"
1376 template <typename ExtendOpTy>
1377 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1378                                         ScalarEvolution *SE, unsigned Depth) {
1379   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1380   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1381 
1382   const Loop *L = AR->getLoop();
1383   const SCEV *Start = AR->getStart();
1384   const SCEV *Step = AR->getStepRecurrence(*SE);
1385 
1386   // Check for a simple looking step prior to loop entry.
1387   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1388   if (!SA)
1389     return nullptr;
1390 
1391   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1392   // subtraction is expensive. For this purpose, perform a quick and dirty
1393   // difference, by checking for Step in the operand list.
1394   SmallVector<const SCEV *, 4> DiffOps;
1395   for (const SCEV *Op : SA->operands())
1396     if (Op != Step)
1397       DiffOps.push_back(Op);
1398 
1399   if (DiffOps.size() == SA->getNumOperands())
1400     return nullptr;
1401 
1402   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1403   // `Step`:
1404 
1405   // 1. NSW/NUW flags on the step increment.
1406   auto PreStartFlags =
1407     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1408   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1409   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1410       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1411 
1412   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1413   // "S+X does not sign/unsign-overflow".
1414   //
1415 
1416   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1417   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1418       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1419     return PreStart;
1420 
1421   // 2. Direct overflow check on the step operation's expression.
1422   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1423   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1424   const SCEV *OperandExtendedStart =
1425       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1426                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1427   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1428     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1429       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1430       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1431       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1432       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1433     }
1434     return PreStart;
1435   }
1436 
1437   // 3. Loop precondition.
1438   ICmpInst::Predicate Pred;
1439   const SCEV *OverflowLimit =
1440       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1441 
1442   if (OverflowLimit &&
1443       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1444     return PreStart;
1445 
1446   return nullptr;
1447 }
1448 
1449 // Get the normalized zero or sign extended expression for this AddRec's Start.
1450 template <typename ExtendOpTy>
1451 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1452                                         ScalarEvolution *SE,
1453                                         unsigned Depth) {
1454   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1455 
1456   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1457   if (!PreStart)
1458     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1459 
1460   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1461                                              Depth),
1462                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1463 }
1464 
1465 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1466 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1467 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1468 //
1469 // Formally:
1470 //
1471 //     {S,+,X} == {S-T,+,X} + T
1472 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1473 //
1474 // If ({S-T,+,X} + T) does not overflow  ... (1)
1475 //
1476 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1477 //
1478 // If {S-T,+,X} does not overflow  ... (2)
1479 //
1480 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1481 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1482 //
1483 // If (S-T)+T does not overflow  ... (3)
1484 //
1485 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1486 //      == {Ext(S),+,Ext(X)} == LHS
1487 //
1488 // Thus, if (1), (2) and (3) are true for some T, then
1489 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1490 //
1491 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1492 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1493 // to check for (1) and (2).
1494 //
1495 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1496 // is `Delta` (defined below).
1497 template <typename ExtendOpTy>
1498 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1499                                                 const SCEV *Step,
1500                                                 const Loop *L) {
1501   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1502 
1503   // We restrict `Start` to a constant to prevent SCEV from spending too much
1504   // time here.  It is correct (but more expensive) to continue with a
1505   // non-constant `Start` and do a general SCEV subtraction to compute
1506   // `PreStart` below.
1507   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1508   if (!StartC)
1509     return false;
1510 
1511   APInt StartAI = StartC->getAPInt();
1512 
1513   for (unsigned Delta : {-2, -1, 1, 2}) {
1514     const SCEV *PreStart = getConstant(StartAI - Delta);
1515 
1516     FoldingSetNodeID ID;
1517     ID.AddInteger(scAddRecExpr);
1518     ID.AddPointer(PreStart);
1519     ID.AddPointer(Step);
1520     ID.AddPointer(L);
1521     void *IP = nullptr;
1522     const auto *PreAR =
1523       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1524 
1525     // Give up if we don't already have the add recurrence we need because
1526     // actually constructing an add recurrence is relatively expensive.
1527     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1528       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1529       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1530       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1531           DeltaS, &Pred, this);
1532       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1533         return true;
1534     }
1535   }
1536 
1537   return false;
1538 }
1539 
1540 // Finds an integer D for an expression (C + x + y + ...) such that the top
1541 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1542 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1543 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1544 // the (C + x + y + ...) expression is \p WholeAddExpr.
1545 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1546                                             const SCEVConstant *ConstantTerm,
1547                                             const SCEVAddExpr *WholeAddExpr) {
1548   const APInt &C = ConstantTerm->getAPInt();
1549   const unsigned BitWidth = C.getBitWidth();
1550   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1551   uint32_t TZ = BitWidth;
1552   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1553     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1554   if (TZ) {
1555     // Set D to be as many least significant bits of C as possible while still
1556     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1557     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1558   }
1559   return APInt(BitWidth, 0);
1560 }
1561 
1562 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1563 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1564 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1565 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1566 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1567                                             const APInt &ConstantStart,
1568                                             const SCEV *Step) {
1569   const unsigned BitWidth = ConstantStart.getBitWidth();
1570   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1571   if (TZ)
1572     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1573                          : ConstantStart;
1574   return APInt(BitWidth, 0);
1575 }
1576 
1577 const SCEV *
1578 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1579   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1580          "This is not an extending conversion!");
1581   assert(isSCEVable(Ty) &&
1582          "This is not a conversion to a SCEVable type!");
1583   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1584   Ty = getEffectiveSCEVType(Ty);
1585 
1586   // Fold if the operand is constant.
1587   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1588     return getConstant(
1589       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1590 
1591   // zext(zext(x)) --> zext(x)
1592   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1593     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1594 
1595   // Before doing any expensive analysis, check to see if we've already
1596   // computed a SCEV for this Op and Ty.
1597   FoldingSetNodeID ID;
1598   ID.AddInteger(scZeroExtend);
1599   ID.AddPointer(Op);
1600   ID.AddPointer(Ty);
1601   void *IP = nullptr;
1602   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1603   if (Depth > MaxCastDepth) {
1604     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1605                                                      Op, Ty);
1606     UniqueSCEVs.InsertNode(S, IP);
1607     addToLoopUseLists(S);
1608     registerUser(S, Op);
1609     return S;
1610   }
1611 
1612   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1613   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1614     // It's possible the bits taken off by the truncate were all zero bits. If
1615     // so, we should be able to simplify this further.
1616     const SCEV *X = ST->getOperand();
1617     ConstantRange CR = getUnsignedRange(X);
1618     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1619     unsigned NewBits = getTypeSizeInBits(Ty);
1620     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1621             CR.zextOrTrunc(NewBits)))
1622       return getTruncateOrZeroExtend(X, Ty, Depth);
1623   }
1624 
1625   // If the input value is a chrec scev, and we can prove that the value
1626   // did not overflow the old, smaller, value, we can zero extend all of the
1627   // operands (often constants).  This allows analysis of something like
1628   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1629   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1630     if (AR->isAffine()) {
1631       const SCEV *Start = AR->getStart();
1632       const SCEV *Step = AR->getStepRecurrence(*this);
1633       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1634       const Loop *L = AR->getLoop();
1635 
1636       if (!AR->hasNoUnsignedWrap()) {
1637         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1638         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1639       }
1640 
1641       // If we have special knowledge that this addrec won't overflow,
1642       // we don't need to do any further analysis.
1643       if (AR->hasNoUnsignedWrap())
1644         return getAddRecExpr(
1645             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1646             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1647 
1648       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1649       // Note that this serves two purposes: It filters out loops that are
1650       // simply not analyzable, and it covers the case where this code is
1651       // being called from within backedge-taken count analysis, such that
1652       // attempting to ask for the backedge-taken count would likely result
1653       // in infinite recursion. In the later case, the analysis code will
1654       // cope with a conservative value, and it will take care to purge
1655       // that value once it has finished.
1656       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1657       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1658         // Manually compute the final value for AR, checking for overflow.
1659 
1660         // Check whether the backedge-taken count can be losslessly casted to
1661         // the addrec's type. The count is always unsigned.
1662         const SCEV *CastedMaxBECount =
1663             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1664         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1665             CastedMaxBECount, MaxBECount->getType(), Depth);
1666         if (MaxBECount == RecastedMaxBECount) {
1667           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1668           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1669           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1670                                         SCEV::FlagAnyWrap, Depth + 1);
1671           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1672                                                           SCEV::FlagAnyWrap,
1673                                                           Depth + 1),
1674                                                WideTy, Depth + 1);
1675           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1676           const SCEV *WideMaxBECount =
1677             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1678           const SCEV *OperandExtendedAdd =
1679             getAddExpr(WideStart,
1680                        getMulExpr(WideMaxBECount,
1681                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1682                                   SCEV::FlagAnyWrap, Depth + 1),
1683                        SCEV::FlagAnyWrap, Depth + 1);
1684           if (ZAdd == OperandExtendedAdd) {
1685             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1686             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1687             // Return the expression with the addrec on the outside.
1688             return getAddRecExpr(
1689                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1690                                                          Depth + 1),
1691                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1692                 AR->getNoWrapFlags());
1693           }
1694           // Similar to above, only this time treat the step value as signed.
1695           // This covers loops that count down.
1696           OperandExtendedAdd =
1697             getAddExpr(WideStart,
1698                        getMulExpr(WideMaxBECount,
1699                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1700                                   SCEV::FlagAnyWrap, Depth + 1),
1701                        SCEV::FlagAnyWrap, Depth + 1);
1702           if (ZAdd == OperandExtendedAdd) {
1703             // Cache knowledge of AR NW, which is propagated to this AddRec.
1704             // Negative step causes unsigned wrap, but it still can't self-wrap.
1705             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1706             // Return the expression with the addrec on the outside.
1707             return getAddRecExpr(
1708                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1709                                                          Depth + 1),
1710                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1711                 AR->getNoWrapFlags());
1712           }
1713         }
1714       }
1715 
1716       // Normally, in the cases we can prove no-overflow via a
1717       // backedge guarding condition, we can also compute a backedge
1718       // taken count for the loop.  The exceptions are assumptions and
1719       // guards present in the loop -- SCEV is not great at exploiting
1720       // these to compute max backedge taken counts, but can still use
1721       // these to prove lack of overflow.  Use this fact to avoid
1722       // doing extra work that may not pay off.
1723       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1724           !AC.assumptions().empty()) {
1725 
1726         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1727         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1728         if (AR->hasNoUnsignedWrap()) {
1729           // Same as nuw case above - duplicated here to avoid a compile time
1730           // issue.  It's not clear that the order of checks does matter, but
1731           // it's one of two issue possible causes for a change which was
1732           // reverted.  Be conservative for the moment.
1733           return getAddRecExpr(
1734                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1735                                                          Depth + 1),
1736                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1737                 AR->getNoWrapFlags());
1738         }
1739 
1740         // For a negative step, we can extend the operands iff doing so only
1741         // traverses values in the range zext([0,UINT_MAX]).
1742         if (isKnownNegative(Step)) {
1743           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1744                                       getSignedRangeMin(Step));
1745           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1746               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1747             // Cache knowledge of AR NW, which is propagated to this
1748             // AddRec.  Negative step causes unsigned wrap, but it
1749             // still can't self-wrap.
1750             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1751             // Return the expression with the addrec on the outside.
1752             return getAddRecExpr(
1753                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1754                                                          Depth + 1),
1755                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1756                 AR->getNoWrapFlags());
1757           }
1758         }
1759       }
1760 
1761       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1762       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1763       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1764       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1765         const APInt &C = SC->getAPInt();
1766         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1767         if (D != 0) {
1768           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1769           const SCEV *SResidual =
1770               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1771           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1772           return getAddExpr(SZExtD, SZExtR,
1773                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1774                             Depth + 1);
1775         }
1776       }
1777 
1778       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1779         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1780         return getAddRecExpr(
1781             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1782             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1783       }
1784     }
1785 
1786   // zext(A % B) --> zext(A) % zext(B)
1787   {
1788     const SCEV *LHS;
1789     const SCEV *RHS;
1790     if (matchURem(Op, LHS, RHS))
1791       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1792                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1793   }
1794 
1795   // zext(A / B) --> zext(A) / zext(B).
1796   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1797     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1798                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1799 
1800   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1801     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1802     if (SA->hasNoUnsignedWrap()) {
1803       // If the addition does not unsign overflow then we can, by definition,
1804       // commute the zero extension with the addition operation.
1805       SmallVector<const SCEV *, 4> Ops;
1806       for (const auto *Op : SA->operands())
1807         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1808       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1809     }
1810 
1811     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1812     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1813     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1814     //
1815     // Often address arithmetics contain expressions like
1816     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1817     // This transformation is useful while proving that such expressions are
1818     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1819     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1820       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1821       if (D != 0) {
1822         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1823         const SCEV *SResidual =
1824             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1825         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1826         return getAddExpr(SZExtD, SZExtR,
1827                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1828                           Depth + 1);
1829       }
1830     }
1831   }
1832 
1833   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1834     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1835     if (SM->hasNoUnsignedWrap()) {
1836       // If the multiply does not unsign overflow then we can, by definition,
1837       // commute the zero extension with the multiply operation.
1838       SmallVector<const SCEV *, 4> Ops;
1839       for (const auto *Op : SM->operands())
1840         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1841       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1842     }
1843 
1844     // zext(2^K * (trunc X to iN)) to iM ->
1845     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1846     //
1847     // Proof:
1848     //
1849     //     zext(2^K * (trunc X to iN)) to iM
1850     //   = zext((trunc X to iN) << K) to iM
1851     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1852     //     (because shl removes the top K bits)
1853     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1854     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1855     //
1856     if (SM->getNumOperands() == 2)
1857       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1858         if (MulLHS->getAPInt().isPowerOf2())
1859           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1860             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1861                                MulLHS->getAPInt().logBase2();
1862             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1863             return getMulExpr(
1864                 getZeroExtendExpr(MulLHS, Ty),
1865                 getZeroExtendExpr(
1866                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1867                 SCEV::FlagNUW, Depth + 1);
1868           }
1869   }
1870 
1871   // The cast wasn't folded; create an explicit cast node.
1872   // Recompute the insert position, as it may have been invalidated.
1873   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1874   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1875                                                    Op, Ty);
1876   UniqueSCEVs.InsertNode(S, IP);
1877   addToLoopUseLists(S);
1878   registerUser(S, Op);
1879   return S;
1880 }
1881 
1882 const SCEV *
1883 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1884   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1885          "This is not an extending conversion!");
1886   assert(isSCEVable(Ty) &&
1887          "This is not a conversion to a SCEVable type!");
1888   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1889   Ty = getEffectiveSCEVType(Ty);
1890 
1891   // Fold if the operand is constant.
1892   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1893     return getConstant(
1894       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1895 
1896   // sext(sext(x)) --> sext(x)
1897   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1898     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1899 
1900   // sext(zext(x)) --> zext(x)
1901   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1902     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1903 
1904   // Before doing any expensive analysis, check to see if we've already
1905   // computed a SCEV for this Op and Ty.
1906   FoldingSetNodeID ID;
1907   ID.AddInteger(scSignExtend);
1908   ID.AddPointer(Op);
1909   ID.AddPointer(Ty);
1910   void *IP = nullptr;
1911   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1912   // Limit recursion depth.
1913   if (Depth > MaxCastDepth) {
1914     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1915                                                      Op, Ty);
1916     UniqueSCEVs.InsertNode(S, IP);
1917     addToLoopUseLists(S);
1918     registerUser(S, Op);
1919     return S;
1920   }
1921 
1922   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1923   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1924     // It's possible the bits taken off by the truncate were all sign bits. If
1925     // so, we should be able to simplify this further.
1926     const SCEV *X = ST->getOperand();
1927     ConstantRange CR = getSignedRange(X);
1928     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1929     unsigned NewBits = getTypeSizeInBits(Ty);
1930     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1931             CR.sextOrTrunc(NewBits)))
1932       return getTruncateOrSignExtend(X, Ty, Depth);
1933   }
1934 
1935   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1936     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1937     if (SA->hasNoSignedWrap()) {
1938       // If the addition does not sign overflow then we can, by definition,
1939       // commute the sign extension with the addition operation.
1940       SmallVector<const SCEV *, 4> Ops;
1941       for (const auto *Op : SA->operands())
1942         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1943       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1944     }
1945 
1946     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1947     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1948     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1949     //
1950     // For instance, this will bring two seemingly different expressions:
1951     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1952     //         sext(6 + 20 * %x + 24 * %y)
1953     // to the same form:
1954     //     2 + sext(4 + 20 * %x + 24 * %y)
1955     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1956       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1957       if (D != 0) {
1958         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1959         const SCEV *SResidual =
1960             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1961         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1962         return getAddExpr(SSExtD, SSExtR,
1963                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1964                           Depth + 1);
1965       }
1966     }
1967   }
1968   // If the input value is a chrec scev, and we can prove that the value
1969   // did not overflow the old, smaller, value, we can sign extend all of the
1970   // operands (often constants).  This allows analysis of something like
1971   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1972   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1973     if (AR->isAffine()) {
1974       const SCEV *Start = AR->getStart();
1975       const SCEV *Step = AR->getStepRecurrence(*this);
1976       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1977       const Loop *L = AR->getLoop();
1978 
1979       if (!AR->hasNoSignedWrap()) {
1980         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1981         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1982       }
1983 
1984       // If we have special knowledge that this addrec won't overflow,
1985       // we don't need to do any further analysis.
1986       if (AR->hasNoSignedWrap())
1987         return getAddRecExpr(
1988             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1989             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1990 
1991       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1992       // Note that this serves two purposes: It filters out loops that are
1993       // simply not analyzable, and it covers the case where this code is
1994       // being called from within backedge-taken count analysis, such that
1995       // attempting to ask for the backedge-taken count would likely result
1996       // in infinite recursion. In the later case, the analysis code will
1997       // cope with a conservative value, and it will take care to purge
1998       // that value once it has finished.
1999       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2000       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2001         // Manually compute the final value for AR, checking for
2002         // overflow.
2003 
2004         // Check whether the backedge-taken count can be losslessly casted to
2005         // the addrec's type. The count is always unsigned.
2006         const SCEV *CastedMaxBECount =
2007             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2008         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2009             CastedMaxBECount, MaxBECount->getType(), Depth);
2010         if (MaxBECount == RecastedMaxBECount) {
2011           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2012           // Check whether Start+Step*MaxBECount has no signed overflow.
2013           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2014                                         SCEV::FlagAnyWrap, Depth + 1);
2015           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2016                                                           SCEV::FlagAnyWrap,
2017                                                           Depth + 1),
2018                                                WideTy, Depth + 1);
2019           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2020           const SCEV *WideMaxBECount =
2021             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2022           const SCEV *OperandExtendedAdd =
2023             getAddExpr(WideStart,
2024                        getMulExpr(WideMaxBECount,
2025                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2026                                   SCEV::FlagAnyWrap, Depth + 1),
2027                        SCEV::FlagAnyWrap, Depth + 1);
2028           if (SAdd == OperandExtendedAdd) {
2029             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2030             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2031             // Return the expression with the addrec on the outside.
2032             return getAddRecExpr(
2033                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2034                                                          Depth + 1),
2035                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2036                 AR->getNoWrapFlags());
2037           }
2038           // Similar to above, only this time treat the step value as unsigned.
2039           // This covers loops that count up with an unsigned step.
2040           OperandExtendedAdd =
2041             getAddExpr(WideStart,
2042                        getMulExpr(WideMaxBECount,
2043                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2044                                   SCEV::FlagAnyWrap, Depth + 1),
2045                        SCEV::FlagAnyWrap, Depth + 1);
2046           if (SAdd == OperandExtendedAdd) {
2047             // If AR wraps around then
2048             //
2049             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2050             // => SAdd != OperandExtendedAdd
2051             //
2052             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2053             // (SAdd == OperandExtendedAdd => AR is NW)
2054 
2055             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2056 
2057             // Return the expression with the addrec on the outside.
2058             return getAddRecExpr(
2059                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2060                                                          Depth + 1),
2061                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2062                 AR->getNoWrapFlags());
2063           }
2064         }
2065       }
2066 
2067       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2068       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2069       if (AR->hasNoSignedWrap()) {
2070         // Same as nsw case above - duplicated here to avoid a compile time
2071         // issue.  It's not clear that the order of checks does matter, but
2072         // it's one of two issue possible causes for a change which was
2073         // reverted.  Be conservative for the moment.
2074         return getAddRecExpr(
2075             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2076             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2077       }
2078 
2079       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2080       // if D + (C - D + Step * n) could be proven to not signed wrap
2081       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2082       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2083         const APInt &C = SC->getAPInt();
2084         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2085         if (D != 0) {
2086           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2087           const SCEV *SResidual =
2088               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2089           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2090           return getAddExpr(SSExtD, SSExtR,
2091                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2092                             Depth + 1);
2093         }
2094       }
2095 
2096       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2097         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2098         return getAddRecExpr(
2099             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2100             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2101       }
2102     }
2103 
2104   // If the input value is provably positive and we could not simplify
2105   // away the sext build a zext instead.
2106   if (isKnownNonNegative(Op))
2107     return getZeroExtendExpr(Op, Ty, Depth + 1);
2108 
2109   // The cast wasn't folded; create an explicit cast node.
2110   // Recompute the insert position, as it may have been invalidated.
2111   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2112   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2113                                                    Op, Ty);
2114   UniqueSCEVs.InsertNode(S, IP);
2115   addToLoopUseLists(S);
2116   registerUser(S, { Op });
2117   return S;
2118 }
2119 
2120 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2121 /// unspecified bits out to the given type.
2122 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2123                                               Type *Ty) {
2124   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2125          "This is not an extending conversion!");
2126   assert(isSCEVable(Ty) &&
2127          "This is not a conversion to a SCEVable type!");
2128   Ty = getEffectiveSCEVType(Ty);
2129 
2130   // Sign-extend negative constants.
2131   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2132     if (SC->getAPInt().isNegative())
2133       return getSignExtendExpr(Op, Ty);
2134 
2135   // Peel off a truncate cast.
2136   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2137     const SCEV *NewOp = T->getOperand();
2138     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2139       return getAnyExtendExpr(NewOp, Ty);
2140     return getTruncateOrNoop(NewOp, Ty);
2141   }
2142 
2143   // Next try a zext cast. If the cast is folded, use it.
2144   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2145   if (!isa<SCEVZeroExtendExpr>(ZExt))
2146     return ZExt;
2147 
2148   // Next try a sext cast. If the cast is folded, use it.
2149   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2150   if (!isa<SCEVSignExtendExpr>(SExt))
2151     return SExt;
2152 
2153   // Force the cast to be folded into the operands of an addrec.
2154   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2155     SmallVector<const SCEV *, 4> Ops;
2156     for (const SCEV *Op : AR->operands())
2157       Ops.push_back(getAnyExtendExpr(Op, Ty));
2158     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2159   }
2160 
2161   // If the expression is obviously signed, use the sext cast value.
2162   if (isa<SCEVSMaxExpr>(Op))
2163     return SExt;
2164 
2165   // Absent any other information, use the zext cast value.
2166   return ZExt;
2167 }
2168 
2169 /// Process the given Ops list, which is a list of operands to be added under
2170 /// the given scale, update the given map. This is a helper function for
2171 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2172 /// that would form an add expression like this:
2173 ///
2174 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2175 ///
2176 /// where A and B are constants, update the map with these values:
2177 ///
2178 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2179 ///
2180 /// and add 13 + A*B*29 to AccumulatedConstant.
2181 /// This will allow getAddRecExpr to produce this:
2182 ///
2183 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2184 ///
2185 /// This form often exposes folding opportunities that are hidden in
2186 /// the original operand list.
2187 ///
2188 /// Return true iff it appears that any interesting folding opportunities
2189 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2190 /// the common case where no interesting opportunities are present, and
2191 /// is also used as a check to avoid infinite recursion.
2192 static bool
2193 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2194                              SmallVectorImpl<const SCEV *> &NewOps,
2195                              APInt &AccumulatedConstant,
2196                              const SCEV *const *Ops, size_t NumOperands,
2197                              const APInt &Scale,
2198                              ScalarEvolution &SE) {
2199   bool Interesting = false;
2200 
2201   // Iterate over the add operands. They are sorted, with constants first.
2202   unsigned i = 0;
2203   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2204     ++i;
2205     // Pull a buried constant out to the outside.
2206     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2207       Interesting = true;
2208     AccumulatedConstant += Scale * C->getAPInt();
2209   }
2210 
2211   // Next comes everything else. We're especially interested in multiplies
2212   // here, but they're in the middle, so just visit the rest with one loop.
2213   for (; i != NumOperands; ++i) {
2214     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2215     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2216       APInt NewScale =
2217           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2218       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2219         // A multiplication of a constant with another add; recurse.
2220         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2221         Interesting |=
2222           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2223                                        Add->op_begin(), Add->getNumOperands(),
2224                                        NewScale, SE);
2225       } else {
2226         // A multiplication of a constant with some other value. Update
2227         // the map.
2228         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2229         const SCEV *Key = SE.getMulExpr(MulOps);
2230         auto Pair = M.insert({Key, NewScale});
2231         if (Pair.second) {
2232           NewOps.push_back(Pair.first->first);
2233         } else {
2234           Pair.first->second += NewScale;
2235           // The map already had an entry for this value, which may indicate
2236           // a folding opportunity.
2237           Interesting = true;
2238         }
2239       }
2240     } else {
2241       // An ordinary operand. Update the map.
2242       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2243           M.insert({Ops[i], Scale});
2244       if (Pair.second) {
2245         NewOps.push_back(Pair.first->first);
2246       } else {
2247         Pair.first->second += Scale;
2248         // The map already had an entry for this value, which may indicate
2249         // a folding opportunity.
2250         Interesting = true;
2251       }
2252     }
2253   }
2254 
2255   return Interesting;
2256 }
2257 
2258 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2259                                       const SCEV *LHS, const SCEV *RHS) {
2260   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2261                                             SCEV::NoWrapFlags, unsigned);
2262   switch (BinOp) {
2263   default:
2264     llvm_unreachable("Unsupported binary op");
2265   case Instruction::Add:
2266     Operation = &ScalarEvolution::getAddExpr;
2267     break;
2268   case Instruction::Sub:
2269     Operation = &ScalarEvolution::getMinusSCEV;
2270     break;
2271   case Instruction::Mul:
2272     Operation = &ScalarEvolution::getMulExpr;
2273     break;
2274   }
2275 
2276   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2277       Signed ? &ScalarEvolution::getSignExtendExpr
2278              : &ScalarEvolution::getZeroExtendExpr;
2279 
2280   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2281   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2282   auto *WideTy =
2283       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2284 
2285   const SCEV *A = (this->*Extension)(
2286       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2287   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2288                                      (this->*Extension)(RHS, WideTy, 0),
2289                                      SCEV::FlagAnyWrap, 0);
2290   return A == B;
2291 }
2292 
2293 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2294 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2295     const OverflowingBinaryOperator *OBO) {
2296   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2297 
2298   if (OBO->hasNoUnsignedWrap())
2299     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2300   if (OBO->hasNoSignedWrap())
2301     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2302 
2303   bool Deduced = false;
2304 
2305   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2306     return {Flags, Deduced};
2307 
2308   if (OBO->getOpcode() != Instruction::Add &&
2309       OBO->getOpcode() != Instruction::Sub &&
2310       OBO->getOpcode() != Instruction::Mul)
2311     return {Flags, Deduced};
2312 
2313   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2314   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2315 
2316   if (!OBO->hasNoUnsignedWrap() &&
2317       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2318                       /* Signed */ false, LHS, RHS)) {
2319     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2320     Deduced = true;
2321   }
2322 
2323   if (!OBO->hasNoSignedWrap() &&
2324       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2325                       /* Signed */ true, LHS, RHS)) {
2326     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2327     Deduced = true;
2328   }
2329 
2330   return {Flags, Deduced};
2331 }
2332 
2333 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2334 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2335 // can't-overflow flags for the operation if possible.
2336 static SCEV::NoWrapFlags
2337 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2338                       const ArrayRef<const SCEV *> Ops,
2339                       SCEV::NoWrapFlags Flags) {
2340   using namespace std::placeholders;
2341 
2342   using OBO = OverflowingBinaryOperator;
2343 
2344   bool CanAnalyze =
2345       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2346   (void)CanAnalyze;
2347   assert(CanAnalyze && "don't call from other places!");
2348 
2349   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2350   SCEV::NoWrapFlags SignOrUnsignWrap =
2351       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2352 
2353   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2354   auto IsKnownNonNegative = [&](const SCEV *S) {
2355     return SE->isKnownNonNegative(S);
2356   };
2357 
2358   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2359     Flags =
2360         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2361 
2362   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2363 
2364   if (SignOrUnsignWrap != SignOrUnsignMask &&
2365       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2366       isa<SCEVConstant>(Ops[0])) {
2367 
2368     auto Opcode = [&] {
2369       switch (Type) {
2370       case scAddExpr:
2371         return Instruction::Add;
2372       case scMulExpr:
2373         return Instruction::Mul;
2374       default:
2375         llvm_unreachable("Unexpected SCEV op.");
2376       }
2377     }();
2378 
2379     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2380 
2381     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2382     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2383       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2384           Opcode, C, OBO::NoSignedWrap);
2385       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2386         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2387     }
2388 
2389     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2390     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2391       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2392           Opcode, C, OBO::NoUnsignedWrap);
2393       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2394         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2395     }
2396   }
2397 
2398   // <0,+,nonnegative><nw> is also nuw
2399   // TODO: Add corresponding nsw case
2400   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2401       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2402       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2403     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2404 
2405   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2406   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2407       Ops.size() == 2) {
2408     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2409       if (UDiv->getOperand(1) == Ops[1])
2410         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2411     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2412       if (UDiv->getOperand(1) == Ops[0])
2413         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2414   }
2415 
2416   return Flags;
2417 }
2418 
2419 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2420   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2421 }
2422 
2423 /// Get a canonical add expression, or something simpler if possible.
2424 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2425                                         SCEV::NoWrapFlags OrigFlags,
2426                                         unsigned Depth) {
2427   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2428          "only nuw or nsw allowed");
2429   assert(!Ops.empty() && "Cannot get empty add!");
2430   if (Ops.size() == 1) return Ops[0];
2431 #ifndef NDEBUG
2432   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2433   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2434     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2435            "SCEVAddExpr operand types don't match!");
2436   unsigned NumPtrs = count_if(
2437       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2438   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2439 #endif
2440 
2441   // Sort by complexity, this groups all similar expression types together.
2442   GroupByComplexity(Ops, &LI, DT);
2443 
2444   // If there are any constants, fold them together.
2445   unsigned Idx = 0;
2446   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2447     ++Idx;
2448     assert(Idx < Ops.size());
2449     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2450       // We found two constants, fold them together!
2451       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2452       if (Ops.size() == 2) return Ops[0];
2453       Ops.erase(Ops.begin()+1);  // Erase the folded element
2454       LHSC = cast<SCEVConstant>(Ops[0]);
2455     }
2456 
2457     // If we are left with a constant zero being added, strip it off.
2458     if (LHSC->getValue()->isZero()) {
2459       Ops.erase(Ops.begin());
2460       --Idx;
2461     }
2462 
2463     if (Ops.size() == 1) return Ops[0];
2464   }
2465 
2466   // Delay expensive flag strengthening until necessary.
2467   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2468     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2469   };
2470 
2471   // Limit recursion calls depth.
2472   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2473     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2474 
2475   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2476     // Don't strengthen flags if we have no new information.
2477     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2478     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2479       Add->setNoWrapFlags(ComputeFlags(Ops));
2480     return S;
2481   }
2482 
2483   // Okay, check to see if the same value occurs in the operand list more than
2484   // once.  If so, merge them together into an multiply expression.  Since we
2485   // sorted the list, these values are required to be adjacent.
2486   Type *Ty = Ops[0]->getType();
2487   bool FoundMatch = false;
2488   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2489     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2490       // Scan ahead to count how many equal operands there are.
2491       unsigned Count = 2;
2492       while (i+Count != e && Ops[i+Count] == Ops[i])
2493         ++Count;
2494       // Merge the values into a multiply.
2495       const SCEV *Scale = getConstant(Ty, Count);
2496       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2497       if (Ops.size() == Count)
2498         return Mul;
2499       Ops[i] = Mul;
2500       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2501       --i; e -= Count - 1;
2502       FoundMatch = true;
2503     }
2504   if (FoundMatch)
2505     return getAddExpr(Ops, OrigFlags, Depth + 1);
2506 
2507   // Check for truncates. If all the operands are truncated from the same
2508   // type, see if factoring out the truncate would permit the result to be
2509   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2510   // if the contents of the resulting outer trunc fold to something simple.
2511   auto FindTruncSrcType = [&]() -> Type * {
2512     // We're ultimately looking to fold an addrec of truncs and muls of only
2513     // constants and truncs, so if we find any other types of SCEV
2514     // as operands of the addrec then we bail and return nullptr here.
2515     // Otherwise, we return the type of the operand of a trunc that we find.
2516     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2517       return T->getOperand()->getType();
2518     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2519       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2520       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2521         return T->getOperand()->getType();
2522     }
2523     return nullptr;
2524   };
2525   if (auto *SrcType = FindTruncSrcType()) {
2526     SmallVector<const SCEV *, 8> LargeOps;
2527     bool Ok = true;
2528     // Check all the operands to see if they can be represented in the
2529     // source type of the truncate.
2530     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2531       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2532         if (T->getOperand()->getType() != SrcType) {
2533           Ok = false;
2534           break;
2535         }
2536         LargeOps.push_back(T->getOperand());
2537       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2538         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2539       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2540         SmallVector<const SCEV *, 8> LargeMulOps;
2541         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2542           if (const SCEVTruncateExpr *T =
2543                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2544             if (T->getOperand()->getType() != SrcType) {
2545               Ok = false;
2546               break;
2547             }
2548             LargeMulOps.push_back(T->getOperand());
2549           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2550             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2551           } else {
2552             Ok = false;
2553             break;
2554           }
2555         }
2556         if (Ok)
2557           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2558       } else {
2559         Ok = false;
2560         break;
2561       }
2562     }
2563     if (Ok) {
2564       // Evaluate the expression in the larger type.
2565       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2566       // If it folds to something simple, use it. Otherwise, don't.
2567       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2568         return getTruncateExpr(Fold, Ty);
2569     }
2570   }
2571 
2572   if (Ops.size() == 2) {
2573     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2574     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2575     // C1).
2576     const SCEV *A = Ops[0];
2577     const SCEV *B = Ops[1];
2578     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2579     auto *C = dyn_cast<SCEVConstant>(A);
2580     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2581       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2582       auto C2 = C->getAPInt();
2583       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2584 
2585       APInt ConstAdd = C1 + C2;
2586       auto AddFlags = AddExpr->getNoWrapFlags();
2587       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2588       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2589           ConstAdd.ule(C1)) {
2590         PreservedFlags =
2591             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2592       }
2593 
2594       // Adding a constant with the same sign and small magnitude is NSW, if the
2595       // original AddExpr was NSW.
2596       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2597           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2598           ConstAdd.abs().ule(C1.abs())) {
2599         PreservedFlags =
2600             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2601       }
2602 
2603       if (PreservedFlags != SCEV::FlagAnyWrap) {
2604         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2605         NewOps[0] = getConstant(ConstAdd);
2606         return getAddExpr(NewOps, PreservedFlags);
2607       }
2608     }
2609   }
2610 
2611   // Skip past any other cast SCEVs.
2612   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2613     ++Idx;
2614 
2615   // If there are add operands they would be next.
2616   if (Idx < Ops.size()) {
2617     bool DeletedAdd = false;
2618     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2619     // common NUW flag for expression after inlining. Other flags cannot be
2620     // preserved, because they may depend on the original order of operations.
2621     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2622     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2623       if (Ops.size() > AddOpsInlineThreshold ||
2624           Add->getNumOperands() > AddOpsInlineThreshold)
2625         break;
2626       // If we have an add, expand the add operands onto the end of the operands
2627       // list.
2628       Ops.erase(Ops.begin()+Idx);
2629       Ops.append(Add->op_begin(), Add->op_end());
2630       DeletedAdd = true;
2631       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2632     }
2633 
2634     // If we deleted at least one add, we added operands to the end of the list,
2635     // and they are not necessarily sorted.  Recurse to resort and resimplify
2636     // any operands we just acquired.
2637     if (DeletedAdd)
2638       return getAddExpr(Ops, CommonFlags, Depth + 1);
2639   }
2640 
2641   // Skip over the add expression until we get to a multiply.
2642   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2643     ++Idx;
2644 
2645   // Check to see if there are any folding opportunities present with
2646   // operands multiplied by constant values.
2647   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2648     uint64_t BitWidth = getTypeSizeInBits(Ty);
2649     DenseMap<const SCEV *, APInt> M;
2650     SmallVector<const SCEV *, 8> NewOps;
2651     APInt AccumulatedConstant(BitWidth, 0);
2652     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2653                                      Ops.data(), Ops.size(),
2654                                      APInt(BitWidth, 1), *this)) {
2655       struct APIntCompare {
2656         bool operator()(const APInt &LHS, const APInt &RHS) const {
2657           return LHS.ult(RHS);
2658         }
2659       };
2660 
2661       // Some interesting folding opportunity is present, so its worthwhile to
2662       // re-generate the operands list. Group the operands by constant scale,
2663       // to avoid multiplying by the same constant scale multiple times.
2664       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2665       for (const SCEV *NewOp : NewOps)
2666         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2667       // Re-generate the operands list.
2668       Ops.clear();
2669       if (AccumulatedConstant != 0)
2670         Ops.push_back(getConstant(AccumulatedConstant));
2671       for (auto &MulOp : MulOpLists) {
2672         if (MulOp.first == 1) {
2673           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2674         } else if (MulOp.first != 0) {
2675           Ops.push_back(getMulExpr(
2676               getConstant(MulOp.first),
2677               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2678               SCEV::FlagAnyWrap, Depth + 1));
2679         }
2680       }
2681       if (Ops.empty())
2682         return getZero(Ty);
2683       if (Ops.size() == 1)
2684         return Ops[0];
2685       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2686     }
2687   }
2688 
2689   // If we are adding something to a multiply expression, make sure the
2690   // something is not already an operand of the multiply.  If so, merge it into
2691   // the multiply.
2692   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2693     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2694     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2695       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2696       if (isa<SCEVConstant>(MulOpSCEV))
2697         continue;
2698       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2699         if (MulOpSCEV == Ops[AddOp]) {
2700           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2701           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2702           if (Mul->getNumOperands() != 2) {
2703             // If the multiply has more than two operands, we must get the
2704             // Y*Z term.
2705             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2706                                                 Mul->op_begin()+MulOp);
2707             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2708             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2709           }
2710           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2711           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2712           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2713                                             SCEV::FlagAnyWrap, Depth + 1);
2714           if (Ops.size() == 2) return OuterMul;
2715           if (AddOp < Idx) {
2716             Ops.erase(Ops.begin()+AddOp);
2717             Ops.erase(Ops.begin()+Idx-1);
2718           } else {
2719             Ops.erase(Ops.begin()+Idx);
2720             Ops.erase(Ops.begin()+AddOp-1);
2721           }
2722           Ops.push_back(OuterMul);
2723           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2724         }
2725 
2726       // Check this multiply against other multiplies being added together.
2727       for (unsigned OtherMulIdx = Idx+1;
2728            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2729            ++OtherMulIdx) {
2730         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2731         // If MulOp occurs in OtherMul, we can fold the two multiplies
2732         // together.
2733         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2734              OMulOp != e; ++OMulOp)
2735           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2736             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2737             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2738             if (Mul->getNumOperands() != 2) {
2739               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2740                                                   Mul->op_begin()+MulOp);
2741               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2742               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2743             }
2744             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2745             if (OtherMul->getNumOperands() != 2) {
2746               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2747                                                   OtherMul->op_begin()+OMulOp);
2748               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2749               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2750             }
2751             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2752             const SCEV *InnerMulSum =
2753                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2754             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2755                                               SCEV::FlagAnyWrap, Depth + 1);
2756             if (Ops.size() == 2) return OuterMul;
2757             Ops.erase(Ops.begin()+Idx);
2758             Ops.erase(Ops.begin()+OtherMulIdx-1);
2759             Ops.push_back(OuterMul);
2760             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2761           }
2762       }
2763     }
2764   }
2765 
2766   // If there are any add recurrences in the operands list, see if any other
2767   // added values are loop invariant.  If so, we can fold them into the
2768   // recurrence.
2769   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2770     ++Idx;
2771 
2772   // Scan over all recurrences, trying to fold loop invariants into them.
2773   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2774     // Scan all of the other operands to this add and add them to the vector if
2775     // they are loop invariant w.r.t. the recurrence.
2776     SmallVector<const SCEV *, 8> LIOps;
2777     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2778     const Loop *AddRecLoop = AddRec->getLoop();
2779     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2780       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2781         LIOps.push_back(Ops[i]);
2782         Ops.erase(Ops.begin()+i);
2783         --i; --e;
2784       }
2785 
2786     // If we found some loop invariants, fold them into the recurrence.
2787     if (!LIOps.empty()) {
2788       // Compute nowrap flags for the addition of the loop-invariant ops and
2789       // the addrec. Temporarily push it as an operand for that purpose. These
2790       // flags are valid in the scope of the addrec only.
2791       LIOps.push_back(AddRec);
2792       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2793       LIOps.pop_back();
2794 
2795       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2796       LIOps.push_back(AddRec->getStart());
2797 
2798       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2799 
2800       // It is not in general safe to propagate flags valid on an add within
2801       // the addrec scope to one outside it.  We must prove that the inner
2802       // scope is guaranteed to execute if the outer one does to be able to
2803       // safely propagate.  We know the program is undefined if poison is
2804       // produced on the inner scoped addrec.  We also know that *for this use*
2805       // the outer scoped add can't overflow (because of the flags we just
2806       // computed for the inner scoped add) without the program being undefined.
2807       // Proving that entry to the outer scope neccesitates entry to the inner
2808       // scope, thus proves the program undefined if the flags would be violated
2809       // in the outer scope.
2810       SCEV::NoWrapFlags AddFlags = Flags;
2811       if (AddFlags != SCEV::FlagAnyWrap) {
2812         auto *DefI = getDefiningScopeBound(LIOps);
2813         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2814         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2815           AddFlags = SCEV::FlagAnyWrap;
2816       }
2817       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2818 
2819       // Build the new addrec. Propagate the NUW and NSW flags if both the
2820       // outer add and the inner addrec are guaranteed to have no overflow.
2821       // Always propagate NW.
2822       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2823       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2824 
2825       // If all of the other operands were loop invariant, we are done.
2826       if (Ops.size() == 1) return NewRec;
2827 
2828       // Otherwise, add the folded AddRec by the non-invariant parts.
2829       for (unsigned i = 0;; ++i)
2830         if (Ops[i] == AddRec) {
2831           Ops[i] = NewRec;
2832           break;
2833         }
2834       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2835     }
2836 
2837     // Okay, if there weren't any loop invariants to be folded, check to see if
2838     // there are multiple AddRec's with the same loop induction variable being
2839     // added together.  If so, we can fold them.
2840     for (unsigned OtherIdx = Idx+1;
2841          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2842          ++OtherIdx) {
2843       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2844       // so that the 1st found AddRecExpr is dominated by all others.
2845       assert(DT.dominates(
2846            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2847            AddRec->getLoop()->getHeader()) &&
2848         "AddRecExprs are not sorted in reverse dominance order?");
2849       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2850         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2851         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2852         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2853              ++OtherIdx) {
2854           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2855           if (OtherAddRec->getLoop() == AddRecLoop) {
2856             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2857                  i != e; ++i) {
2858               if (i >= AddRecOps.size()) {
2859                 AddRecOps.append(OtherAddRec->op_begin()+i,
2860                                  OtherAddRec->op_end());
2861                 break;
2862               }
2863               SmallVector<const SCEV *, 2> TwoOps = {
2864                   AddRecOps[i], OtherAddRec->getOperand(i)};
2865               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2866             }
2867             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2868           }
2869         }
2870         // Step size has changed, so we cannot guarantee no self-wraparound.
2871         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2872         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2873       }
2874     }
2875 
2876     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2877     // next one.
2878   }
2879 
2880   // Okay, it looks like we really DO need an add expr.  Check to see if we
2881   // already have one, otherwise create a new one.
2882   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2883 }
2884 
2885 const SCEV *
2886 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2887                                     SCEV::NoWrapFlags Flags) {
2888   FoldingSetNodeID ID;
2889   ID.AddInteger(scAddExpr);
2890   for (const SCEV *Op : Ops)
2891     ID.AddPointer(Op);
2892   void *IP = nullptr;
2893   SCEVAddExpr *S =
2894       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2895   if (!S) {
2896     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2897     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2898     S = new (SCEVAllocator)
2899         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2900     UniqueSCEVs.InsertNode(S, IP);
2901     addToLoopUseLists(S);
2902     registerUser(S, Ops);
2903   }
2904   S->setNoWrapFlags(Flags);
2905   return S;
2906 }
2907 
2908 const SCEV *
2909 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2910                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2911   FoldingSetNodeID ID;
2912   ID.AddInteger(scAddRecExpr);
2913   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2914     ID.AddPointer(Ops[i]);
2915   ID.AddPointer(L);
2916   void *IP = nullptr;
2917   SCEVAddRecExpr *S =
2918       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2919   if (!S) {
2920     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2921     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2922     S = new (SCEVAllocator)
2923         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2924     UniqueSCEVs.InsertNode(S, IP);
2925     addToLoopUseLists(S);
2926     registerUser(S, Ops);
2927   }
2928   setNoWrapFlags(S, Flags);
2929   return S;
2930 }
2931 
2932 const SCEV *
2933 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2934                                     SCEV::NoWrapFlags Flags) {
2935   FoldingSetNodeID ID;
2936   ID.AddInteger(scMulExpr);
2937   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2938     ID.AddPointer(Ops[i]);
2939   void *IP = nullptr;
2940   SCEVMulExpr *S =
2941     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2942   if (!S) {
2943     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2944     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2945     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2946                                         O, Ops.size());
2947     UniqueSCEVs.InsertNode(S, IP);
2948     addToLoopUseLists(S);
2949     registerUser(S, Ops);
2950   }
2951   S->setNoWrapFlags(Flags);
2952   return S;
2953 }
2954 
2955 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2956   uint64_t k = i*j;
2957   if (j > 1 && k / j != i) Overflow = true;
2958   return k;
2959 }
2960 
2961 /// Compute the result of "n choose k", the binomial coefficient.  If an
2962 /// intermediate computation overflows, Overflow will be set and the return will
2963 /// be garbage. Overflow is not cleared on absence of overflow.
2964 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2965   // We use the multiplicative formula:
2966   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2967   // At each iteration, we take the n-th term of the numeral and divide by the
2968   // (k-n)th term of the denominator.  This division will always produce an
2969   // integral result, and helps reduce the chance of overflow in the
2970   // intermediate computations. However, we can still overflow even when the
2971   // final result would fit.
2972 
2973   if (n == 0 || n == k) return 1;
2974   if (k > n) return 0;
2975 
2976   if (k > n/2)
2977     k = n-k;
2978 
2979   uint64_t r = 1;
2980   for (uint64_t i = 1; i <= k; ++i) {
2981     r = umul_ov(r, n-(i-1), Overflow);
2982     r /= i;
2983   }
2984   return r;
2985 }
2986 
2987 /// Determine if any of the operands in this SCEV are a constant or if
2988 /// any of the add or multiply expressions in this SCEV contain a constant.
2989 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2990   struct FindConstantInAddMulChain {
2991     bool FoundConstant = false;
2992 
2993     bool follow(const SCEV *S) {
2994       FoundConstant |= isa<SCEVConstant>(S);
2995       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2996     }
2997 
2998     bool isDone() const {
2999       return FoundConstant;
3000     }
3001   };
3002 
3003   FindConstantInAddMulChain F;
3004   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3005   ST.visitAll(StartExpr);
3006   return F.FoundConstant;
3007 }
3008 
3009 /// Get a canonical multiply expression, or something simpler if possible.
3010 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3011                                         SCEV::NoWrapFlags OrigFlags,
3012                                         unsigned Depth) {
3013   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3014          "only nuw or nsw allowed");
3015   assert(!Ops.empty() && "Cannot get empty mul!");
3016   if (Ops.size() == 1) return Ops[0];
3017 #ifndef NDEBUG
3018   Type *ETy = Ops[0]->getType();
3019   assert(!ETy->isPointerTy());
3020   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3021     assert(Ops[i]->getType() == ETy &&
3022            "SCEVMulExpr operand types don't match!");
3023 #endif
3024 
3025   // Sort by complexity, this groups all similar expression types together.
3026   GroupByComplexity(Ops, &LI, DT);
3027 
3028   // If there are any constants, fold them together.
3029   unsigned Idx = 0;
3030   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3031     ++Idx;
3032     assert(Idx < Ops.size());
3033     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3034       // We found two constants, fold them together!
3035       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3036       if (Ops.size() == 2) return Ops[0];
3037       Ops.erase(Ops.begin()+1);  // Erase the folded element
3038       LHSC = cast<SCEVConstant>(Ops[0]);
3039     }
3040 
3041     // If we have a multiply of zero, it will always be zero.
3042     if (LHSC->getValue()->isZero())
3043       return LHSC;
3044 
3045     // If we are left with a constant one being multiplied, strip it off.
3046     if (LHSC->getValue()->isOne()) {
3047       Ops.erase(Ops.begin());
3048       --Idx;
3049     }
3050 
3051     if (Ops.size() == 1)
3052       return Ops[0];
3053   }
3054 
3055   // Delay expensive flag strengthening until necessary.
3056   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3057     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3058   };
3059 
3060   // Limit recursion calls depth.
3061   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3062     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3063 
3064   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3065     // Don't strengthen flags if we have no new information.
3066     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3067     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3068       Mul->setNoWrapFlags(ComputeFlags(Ops));
3069     return S;
3070   }
3071 
3072   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3073     if (Ops.size() == 2) {
3074       // C1*(C2+V) -> C1*C2 + C1*V
3075       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3076         // If any of Add's ops are Adds or Muls with a constant, apply this
3077         // transformation as well.
3078         //
3079         // TODO: There are some cases where this transformation is not
3080         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3081         // this transformation should be narrowed down.
3082         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3083           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3084                                        SCEV::FlagAnyWrap, Depth + 1),
3085                             getMulExpr(LHSC, Add->getOperand(1),
3086                                        SCEV::FlagAnyWrap, Depth + 1),
3087                             SCEV::FlagAnyWrap, Depth + 1);
3088 
3089       if (Ops[0]->isAllOnesValue()) {
3090         // If we have a mul by -1 of an add, try distributing the -1 among the
3091         // add operands.
3092         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3093           SmallVector<const SCEV *, 4> NewOps;
3094           bool AnyFolded = false;
3095           for (const SCEV *AddOp : Add->operands()) {
3096             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3097                                          Depth + 1);
3098             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3099             NewOps.push_back(Mul);
3100           }
3101           if (AnyFolded)
3102             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3103         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3104           // Negation preserves a recurrence's no self-wrap property.
3105           SmallVector<const SCEV *, 4> Operands;
3106           for (const SCEV *AddRecOp : AddRec->operands())
3107             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3108                                           Depth + 1));
3109 
3110           return getAddRecExpr(Operands, AddRec->getLoop(),
3111                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3112         }
3113       }
3114     }
3115   }
3116 
3117   // Skip over the add expression until we get to a multiply.
3118   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3119     ++Idx;
3120 
3121   // If there are mul operands inline them all into this expression.
3122   if (Idx < Ops.size()) {
3123     bool DeletedMul = false;
3124     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3125       if (Ops.size() > MulOpsInlineThreshold)
3126         break;
3127       // If we have an mul, expand the mul operands onto the end of the
3128       // operands list.
3129       Ops.erase(Ops.begin()+Idx);
3130       Ops.append(Mul->op_begin(), Mul->op_end());
3131       DeletedMul = true;
3132     }
3133 
3134     // If we deleted at least one mul, we added operands to the end of the
3135     // list, and they are not necessarily sorted.  Recurse to resort and
3136     // resimplify any operands we just acquired.
3137     if (DeletedMul)
3138       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3139   }
3140 
3141   // If there are any add recurrences in the operands list, see if any other
3142   // added values are loop invariant.  If so, we can fold them into the
3143   // recurrence.
3144   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3145     ++Idx;
3146 
3147   // Scan over all recurrences, trying to fold loop invariants into them.
3148   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3149     // Scan all of the other operands to this mul and add them to the vector
3150     // if they are loop invariant w.r.t. the recurrence.
3151     SmallVector<const SCEV *, 8> LIOps;
3152     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3153     const Loop *AddRecLoop = AddRec->getLoop();
3154     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3155       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3156         LIOps.push_back(Ops[i]);
3157         Ops.erase(Ops.begin()+i);
3158         --i; --e;
3159       }
3160 
3161     // If we found some loop invariants, fold them into the recurrence.
3162     if (!LIOps.empty()) {
3163       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3164       SmallVector<const SCEV *, 4> NewOps;
3165       NewOps.reserve(AddRec->getNumOperands());
3166       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3167       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3168         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3169                                     SCEV::FlagAnyWrap, Depth + 1));
3170 
3171       // Build the new addrec. Propagate the NUW and NSW flags if both the
3172       // outer mul and the inner addrec are guaranteed to have no overflow.
3173       //
3174       // No self-wrap cannot be guaranteed after changing the step size, but
3175       // will be inferred if either NUW or NSW is true.
3176       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3177       const SCEV *NewRec = getAddRecExpr(
3178           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3179 
3180       // If all of the other operands were loop invariant, we are done.
3181       if (Ops.size() == 1) return NewRec;
3182 
3183       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3184       for (unsigned i = 0;; ++i)
3185         if (Ops[i] == AddRec) {
3186           Ops[i] = NewRec;
3187           break;
3188         }
3189       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3190     }
3191 
3192     // Okay, if there weren't any loop invariants to be folded, check to see
3193     // if there are multiple AddRec's with the same loop induction variable
3194     // being multiplied together.  If so, we can fold them.
3195 
3196     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3197     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3198     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3199     //   ]]],+,...up to x=2n}.
3200     // Note that the arguments to choose() are always integers with values
3201     // known at compile time, never SCEV objects.
3202     //
3203     // The implementation avoids pointless extra computations when the two
3204     // addrec's are of different length (mathematically, it's equivalent to
3205     // an infinite stream of zeros on the right).
3206     bool OpsModified = false;
3207     for (unsigned OtherIdx = Idx+1;
3208          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3209          ++OtherIdx) {
3210       const SCEVAddRecExpr *OtherAddRec =
3211         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3212       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3213         continue;
3214 
3215       // Limit max number of arguments to avoid creation of unreasonably big
3216       // SCEVAddRecs with very complex operands.
3217       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3218           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3219         continue;
3220 
3221       bool Overflow = false;
3222       Type *Ty = AddRec->getType();
3223       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3224       SmallVector<const SCEV*, 7> AddRecOps;
3225       for (int x = 0, xe = AddRec->getNumOperands() +
3226              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3227         SmallVector <const SCEV *, 7> SumOps;
3228         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3229           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3230           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3231                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3232                z < ze && !Overflow; ++z) {
3233             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3234             uint64_t Coeff;
3235             if (LargerThan64Bits)
3236               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3237             else
3238               Coeff = Coeff1*Coeff2;
3239             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3240             const SCEV *Term1 = AddRec->getOperand(y-z);
3241             const SCEV *Term2 = OtherAddRec->getOperand(z);
3242             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3243                                         SCEV::FlagAnyWrap, Depth + 1));
3244           }
3245         }
3246         if (SumOps.empty())
3247           SumOps.push_back(getZero(Ty));
3248         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3249       }
3250       if (!Overflow) {
3251         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3252                                               SCEV::FlagAnyWrap);
3253         if (Ops.size() == 2) return NewAddRec;
3254         Ops[Idx] = NewAddRec;
3255         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3256         OpsModified = true;
3257         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3258         if (!AddRec)
3259           break;
3260       }
3261     }
3262     if (OpsModified)
3263       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3264 
3265     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3266     // next one.
3267   }
3268 
3269   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3270   // already have one, otherwise create a new one.
3271   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3272 }
3273 
3274 /// Represents an unsigned remainder expression based on unsigned division.
3275 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3276                                          const SCEV *RHS) {
3277   assert(getEffectiveSCEVType(LHS->getType()) ==
3278          getEffectiveSCEVType(RHS->getType()) &&
3279          "SCEVURemExpr operand types don't match!");
3280 
3281   // Short-circuit easy cases
3282   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3283     // If constant is one, the result is trivial
3284     if (RHSC->getValue()->isOne())
3285       return getZero(LHS->getType()); // X urem 1 --> 0
3286 
3287     // If constant is a power of two, fold into a zext(trunc(LHS)).
3288     if (RHSC->getAPInt().isPowerOf2()) {
3289       Type *FullTy = LHS->getType();
3290       Type *TruncTy =
3291           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3292       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3293     }
3294   }
3295 
3296   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3297   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3298   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3299   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3300 }
3301 
3302 /// Get a canonical unsigned division expression, or something simpler if
3303 /// possible.
3304 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3305                                          const SCEV *RHS) {
3306   assert(!LHS->getType()->isPointerTy() &&
3307          "SCEVUDivExpr operand can't be pointer!");
3308   assert(LHS->getType() == RHS->getType() &&
3309          "SCEVUDivExpr operand types don't match!");
3310 
3311   FoldingSetNodeID ID;
3312   ID.AddInteger(scUDivExpr);
3313   ID.AddPointer(LHS);
3314   ID.AddPointer(RHS);
3315   void *IP = nullptr;
3316   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3317     return S;
3318 
3319   // 0 udiv Y == 0
3320   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3321     if (LHSC->getValue()->isZero())
3322       return LHS;
3323 
3324   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3325     if (RHSC->getValue()->isOne())
3326       return LHS;                               // X udiv 1 --> x
3327     // If the denominator is zero, the result of the udiv is undefined. Don't
3328     // try to analyze it, because the resolution chosen here may differ from
3329     // the resolution chosen in other parts of the compiler.
3330     if (!RHSC->getValue()->isZero()) {
3331       // Determine if the division can be folded into the operands of
3332       // its operands.
3333       // TODO: Generalize this to non-constants by using known-bits information.
3334       Type *Ty = LHS->getType();
3335       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3336       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3337       // For non-power-of-two values, effectively round the value up to the
3338       // nearest power of two.
3339       if (!RHSC->getAPInt().isPowerOf2())
3340         ++MaxShiftAmt;
3341       IntegerType *ExtTy =
3342         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3343       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3344         if (const SCEVConstant *Step =
3345             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3346           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3347           const APInt &StepInt = Step->getAPInt();
3348           const APInt &DivInt = RHSC->getAPInt();
3349           if (!StepInt.urem(DivInt) &&
3350               getZeroExtendExpr(AR, ExtTy) ==
3351               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3352                             getZeroExtendExpr(Step, ExtTy),
3353                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3354             SmallVector<const SCEV *, 4> Operands;
3355             for (const SCEV *Op : AR->operands())
3356               Operands.push_back(getUDivExpr(Op, RHS));
3357             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3358           }
3359           /// Get a canonical UDivExpr for a recurrence.
3360           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3361           // We can currently only fold X%N if X is constant.
3362           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3363           if (StartC && !DivInt.urem(StepInt) &&
3364               getZeroExtendExpr(AR, ExtTy) ==
3365               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3366                             getZeroExtendExpr(Step, ExtTy),
3367                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3368             const APInt &StartInt = StartC->getAPInt();
3369             const APInt &StartRem = StartInt.urem(StepInt);
3370             if (StartRem != 0) {
3371               const SCEV *NewLHS =
3372                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3373                                 AR->getLoop(), SCEV::FlagNW);
3374               if (LHS != NewLHS) {
3375                 LHS = NewLHS;
3376 
3377                 // Reset the ID to include the new LHS, and check if it is
3378                 // already cached.
3379                 ID.clear();
3380                 ID.AddInteger(scUDivExpr);
3381                 ID.AddPointer(LHS);
3382                 ID.AddPointer(RHS);
3383                 IP = nullptr;
3384                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3385                   return S;
3386               }
3387             }
3388           }
3389         }
3390       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3391       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3392         SmallVector<const SCEV *, 4> Operands;
3393         for (const SCEV *Op : M->operands())
3394           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3395         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3396           // Find an operand that's safely divisible.
3397           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3398             const SCEV *Op = M->getOperand(i);
3399             const SCEV *Div = getUDivExpr(Op, RHSC);
3400             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3401               Operands = SmallVector<const SCEV *, 4>(M->operands());
3402               Operands[i] = Div;
3403               return getMulExpr(Operands);
3404             }
3405           }
3406       }
3407 
3408       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3409       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3410         if (auto *DivisorConstant =
3411                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3412           bool Overflow = false;
3413           APInt NewRHS =
3414               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3415           if (Overflow) {
3416             return getConstant(RHSC->getType(), 0, false);
3417           }
3418           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3419         }
3420       }
3421 
3422       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3423       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3424         SmallVector<const SCEV *, 4> Operands;
3425         for (const SCEV *Op : A->operands())
3426           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3427         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3428           Operands.clear();
3429           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3430             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3431             if (isa<SCEVUDivExpr>(Op) ||
3432                 getMulExpr(Op, RHS) != A->getOperand(i))
3433               break;
3434             Operands.push_back(Op);
3435           }
3436           if (Operands.size() == A->getNumOperands())
3437             return getAddExpr(Operands);
3438         }
3439       }
3440 
3441       // Fold if both operands are constant.
3442       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3443         Constant *LHSCV = LHSC->getValue();
3444         Constant *RHSCV = RHSC->getValue();
3445         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3446                                                                    RHSCV)));
3447       }
3448     }
3449   }
3450 
3451   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3452   // changes). Make sure we get a new one.
3453   IP = nullptr;
3454   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3455   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3456                                              LHS, RHS);
3457   UniqueSCEVs.InsertNode(S, IP);
3458   addToLoopUseLists(S);
3459   registerUser(S, {LHS, RHS});
3460   return S;
3461 }
3462 
3463 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3464   APInt A = C1->getAPInt().abs();
3465   APInt B = C2->getAPInt().abs();
3466   uint32_t ABW = A.getBitWidth();
3467   uint32_t BBW = B.getBitWidth();
3468 
3469   if (ABW > BBW)
3470     B = B.zext(ABW);
3471   else if (ABW < BBW)
3472     A = A.zext(BBW);
3473 
3474   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3475 }
3476 
3477 /// Get a canonical unsigned division expression, or something simpler if
3478 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3479 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3480 /// it's not exact because the udiv may be clearing bits.
3481 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3482                                               const SCEV *RHS) {
3483   // TODO: we could try to find factors in all sorts of things, but for now we
3484   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3485   // end of this file for inspiration.
3486 
3487   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3488   if (!Mul || !Mul->hasNoUnsignedWrap())
3489     return getUDivExpr(LHS, RHS);
3490 
3491   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3492     // If the mulexpr multiplies by a constant, then that constant must be the
3493     // first element of the mulexpr.
3494     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3495       if (LHSCst == RHSCst) {
3496         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3497         return getMulExpr(Operands);
3498       }
3499 
3500       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3501       // that there's a factor provided by one of the other terms. We need to
3502       // check.
3503       APInt Factor = gcd(LHSCst, RHSCst);
3504       if (!Factor.isIntN(1)) {
3505         LHSCst =
3506             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3507         RHSCst =
3508             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3509         SmallVector<const SCEV *, 2> Operands;
3510         Operands.push_back(LHSCst);
3511         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3512         LHS = getMulExpr(Operands);
3513         RHS = RHSCst;
3514         Mul = dyn_cast<SCEVMulExpr>(LHS);
3515         if (!Mul)
3516           return getUDivExactExpr(LHS, RHS);
3517       }
3518     }
3519   }
3520 
3521   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3522     if (Mul->getOperand(i) == RHS) {
3523       SmallVector<const SCEV *, 2> Operands;
3524       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3525       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3526       return getMulExpr(Operands);
3527     }
3528   }
3529 
3530   return getUDivExpr(LHS, RHS);
3531 }
3532 
3533 /// Get an add recurrence expression for the specified loop.  Simplify the
3534 /// expression as much as possible.
3535 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3536                                            const Loop *L,
3537                                            SCEV::NoWrapFlags Flags) {
3538   SmallVector<const SCEV *, 4> Operands;
3539   Operands.push_back(Start);
3540   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3541     if (StepChrec->getLoop() == L) {
3542       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3543       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3544     }
3545 
3546   Operands.push_back(Step);
3547   return getAddRecExpr(Operands, L, Flags);
3548 }
3549 
3550 /// Get an add recurrence expression for the specified loop.  Simplify the
3551 /// expression as much as possible.
3552 const SCEV *
3553 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3554                                const Loop *L, SCEV::NoWrapFlags Flags) {
3555   if (Operands.size() == 1) return Operands[0];
3556 #ifndef NDEBUG
3557   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3558   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3559     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3560            "SCEVAddRecExpr operand types don't match!");
3561     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3562   }
3563   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3564     assert(isLoopInvariant(Operands[i], L) &&
3565            "SCEVAddRecExpr operand is not loop-invariant!");
3566 #endif
3567 
3568   if (Operands.back()->isZero()) {
3569     Operands.pop_back();
3570     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3571   }
3572 
3573   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3574   // use that information to infer NUW and NSW flags. However, computing a
3575   // BE count requires calling getAddRecExpr, so we may not yet have a
3576   // meaningful BE count at this point (and if we don't, we'd be stuck
3577   // with a SCEVCouldNotCompute as the cached BE count).
3578 
3579   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3580 
3581   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3582   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3583     const Loop *NestedLoop = NestedAR->getLoop();
3584     if (L->contains(NestedLoop)
3585             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3586             : (!NestedLoop->contains(L) &&
3587                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3588       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3589       Operands[0] = NestedAR->getStart();
3590       // AddRecs require their operands be loop-invariant with respect to their
3591       // loops. Don't perform this transformation if it would break this
3592       // requirement.
3593       bool AllInvariant = all_of(
3594           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3595 
3596       if (AllInvariant) {
3597         // Create a recurrence for the outer loop with the same step size.
3598         //
3599         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3600         // inner recurrence has the same property.
3601         SCEV::NoWrapFlags OuterFlags =
3602           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3603 
3604         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3605         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3606           return isLoopInvariant(Op, NestedLoop);
3607         });
3608 
3609         if (AllInvariant) {
3610           // Ok, both add recurrences are valid after the transformation.
3611           //
3612           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3613           // the outer recurrence has the same property.
3614           SCEV::NoWrapFlags InnerFlags =
3615             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3616           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3617         }
3618       }
3619       // Reset Operands to its original state.
3620       Operands[0] = NestedAR;
3621     }
3622   }
3623 
3624   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3625   // already have one, otherwise create a new one.
3626   return getOrCreateAddRecExpr(Operands, L, Flags);
3627 }
3628 
3629 const SCEV *
3630 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3631                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3632   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3633   // getSCEV(Base)->getType() has the same address space as Base->getType()
3634   // because SCEV::getType() preserves the address space.
3635   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3636   const bool AssumeInBoundsFlags = [&]() {
3637     if (!GEP->isInBounds())
3638       return false;
3639 
3640     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3641     // but to do that, we have to ensure that said flag is valid in the entire
3642     // defined scope of the SCEV.
3643     auto *GEPI = dyn_cast<Instruction>(GEP);
3644     // TODO: non-instructions have global scope.  We might be able to prove
3645     // some global scope cases
3646     return GEPI && isSCEVExprNeverPoison(GEPI);
3647   }();
3648 
3649   SCEV::NoWrapFlags OffsetWrap =
3650     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3651 
3652   Type *CurTy = GEP->getType();
3653   bool FirstIter = true;
3654   SmallVector<const SCEV *, 4> Offsets;
3655   for (const SCEV *IndexExpr : IndexExprs) {
3656     // Compute the (potentially symbolic) offset in bytes for this index.
3657     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3658       // For a struct, add the member offset.
3659       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3660       unsigned FieldNo = Index->getZExtValue();
3661       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3662       Offsets.push_back(FieldOffset);
3663 
3664       // Update CurTy to the type of the field at Index.
3665       CurTy = STy->getTypeAtIndex(Index);
3666     } else {
3667       // Update CurTy to its element type.
3668       if (FirstIter) {
3669         assert(isa<PointerType>(CurTy) &&
3670                "The first index of a GEP indexes a pointer");
3671         CurTy = GEP->getSourceElementType();
3672         FirstIter = false;
3673       } else {
3674         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3675       }
3676       // For an array, add the element offset, explicitly scaled.
3677       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3678       // Getelementptr indices are signed.
3679       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3680 
3681       // Multiply the index by the element size to compute the element offset.
3682       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3683       Offsets.push_back(LocalOffset);
3684     }
3685   }
3686 
3687   // Handle degenerate case of GEP without offsets.
3688   if (Offsets.empty())
3689     return BaseExpr;
3690 
3691   // Add the offsets together, assuming nsw if inbounds.
3692   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3693   // Add the base address and the offset. We cannot use the nsw flag, as the
3694   // base address is unsigned. However, if we know that the offset is
3695   // non-negative, we can use nuw.
3696   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3697                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3698   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3699   assert(BaseExpr->getType() == GEPExpr->getType() &&
3700          "GEP should not change type mid-flight.");
3701   return GEPExpr;
3702 }
3703 
3704 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3705                                                ArrayRef<const SCEV *> Ops) {
3706   FoldingSetNodeID ID;
3707   ID.AddInteger(SCEVType);
3708   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3709     ID.AddPointer(Ops[i]);
3710   void *IP = nullptr;
3711   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3712 }
3713 
3714 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3715   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3716   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3717 }
3718 
3719 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3720                                            SmallVectorImpl<const SCEV *> &Ops) {
3721   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3722   if (Ops.size() == 1) return Ops[0];
3723 #ifndef NDEBUG
3724   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3725   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3726     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3727            "Operand types don't match!");
3728     assert(Ops[0]->getType()->isPointerTy() ==
3729                Ops[i]->getType()->isPointerTy() &&
3730            "min/max should be consistently pointerish");
3731   }
3732 #endif
3733 
3734   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3735   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3736 
3737   // Sort by complexity, this groups all similar expression types together.
3738   GroupByComplexity(Ops, &LI, DT);
3739 
3740   // Check if we have created the same expression before.
3741   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3742     return S;
3743   }
3744 
3745   // If there are any constants, fold them together.
3746   unsigned Idx = 0;
3747   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3748     ++Idx;
3749     assert(Idx < Ops.size());
3750     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3751       if (Kind == scSMaxExpr)
3752         return APIntOps::smax(LHS, RHS);
3753       else if (Kind == scSMinExpr)
3754         return APIntOps::smin(LHS, RHS);
3755       else if (Kind == scUMaxExpr)
3756         return APIntOps::umax(LHS, RHS);
3757       else if (Kind == scUMinExpr)
3758         return APIntOps::umin(LHS, RHS);
3759       llvm_unreachable("Unknown SCEV min/max opcode");
3760     };
3761 
3762     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3763       // We found two constants, fold them together!
3764       ConstantInt *Fold = ConstantInt::get(
3765           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3766       Ops[0] = getConstant(Fold);
3767       Ops.erase(Ops.begin()+1);  // Erase the folded element
3768       if (Ops.size() == 1) return Ops[0];
3769       LHSC = cast<SCEVConstant>(Ops[0]);
3770     }
3771 
3772     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3773     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3774 
3775     if (IsMax ? IsMinV : IsMaxV) {
3776       // If we are left with a constant minimum(/maximum)-int, strip it off.
3777       Ops.erase(Ops.begin());
3778       --Idx;
3779     } else if (IsMax ? IsMaxV : IsMinV) {
3780       // If we have a max(/min) with a constant maximum(/minimum)-int,
3781       // it will always be the extremum.
3782       return LHSC;
3783     }
3784 
3785     if (Ops.size() == 1) return Ops[0];
3786   }
3787 
3788   // Find the first operation of the same kind
3789   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3790     ++Idx;
3791 
3792   // Check to see if one of the operands is of the same kind. If so, expand its
3793   // operands onto our operand list, and recurse to simplify.
3794   if (Idx < Ops.size()) {
3795     bool DeletedAny = false;
3796     while (Ops[Idx]->getSCEVType() == Kind) {
3797       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3798       Ops.erase(Ops.begin()+Idx);
3799       Ops.append(SMME->op_begin(), SMME->op_end());
3800       DeletedAny = true;
3801     }
3802 
3803     if (DeletedAny)
3804       return getMinMaxExpr(Kind, Ops);
3805   }
3806 
3807   // Okay, check to see if the same value occurs in the operand list twice.  If
3808   // so, delete one.  Since we sorted the list, these values are required to
3809   // be adjacent.
3810   llvm::CmpInst::Predicate GEPred =
3811       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3812   llvm::CmpInst::Predicate LEPred =
3813       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3814   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3815   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3816   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3817     if (Ops[i] == Ops[i + 1] ||
3818         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3819       //  X op Y op Y  -->  X op Y
3820       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3821       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3822       --i;
3823       --e;
3824     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3825                                                Ops[i + 1])) {
3826       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3827       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3828       --i;
3829       --e;
3830     }
3831   }
3832 
3833   if (Ops.size() == 1) return Ops[0];
3834 
3835   assert(!Ops.empty() && "Reduced smax down to nothing!");
3836 
3837   // Okay, it looks like we really DO need an expr.  Check to see if we
3838   // already have one, otherwise create a new one.
3839   FoldingSetNodeID ID;
3840   ID.AddInteger(Kind);
3841   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3842     ID.AddPointer(Ops[i]);
3843   void *IP = nullptr;
3844   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3845   if (ExistingSCEV)
3846     return ExistingSCEV;
3847   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3848   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3849   SCEV *S = new (SCEVAllocator)
3850       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3851 
3852   UniqueSCEVs.InsertNode(S, IP);
3853   addToLoopUseLists(S);
3854   registerUser(S, Ops);
3855   return S;
3856 }
3857 
3858 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3859   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3860   return getSMaxExpr(Ops);
3861 }
3862 
3863 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3864   return getMinMaxExpr(scSMaxExpr, Ops);
3865 }
3866 
3867 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3868   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3869   return getUMaxExpr(Ops);
3870 }
3871 
3872 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3873   return getMinMaxExpr(scUMaxExpr, Ops);
3874 }
3875 
3876 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3877                                          const SCEV *RHS) {
3878   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3879   return getSMinExpr(Ops);
3880 }
3881 
3882 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3883   return getMinMaxExpr(scSMinExpr, Ops);
3884 }
3885 
3886 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3887                                          const SCEV *RHS) {
3888   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3889   return getUMinExpr(Ops);
3890 }
3891 
3892 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3893   return getMinMaxExpr(scUMinExpr, Ops);
3894 }
3895 
3896 const SCEV *
3897 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3898                                              ScalableVectorType *ScalableTy) {
3899   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3900   Constant *One = ConstantInt::get(IntTy, 1);
3901   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3902   // Note that the expression we created is the final expression, we don't
3903   // want to simplify it any further Also, if we call a normal getSCEV(),
3904   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3905   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3906 }
3907 
3908 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3909   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3910     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3911   // We can bypass creating a target-independent constant expression and then
3912   // folding it back into a ConstantInt. This is just a compile-time
3913   // optimization.
3914   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3915 }
3916 
3917 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3918   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3919     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3920   // We can bypass creating a target-independent constant expression and then
3921   // folding it back into a ConstantInt. This is just a compile-time
3922   // optimization.
3923   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3924 }
3925 
3926 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3927                                              StructType *STy,
3928                                              unsigned FieldNo) {
3929   // We can bypass creating a target-independent constant expression and then
3930   // folding it back into a ConstantInt. This is just a compile-time
3931   // optimization.
3932   return getConstant(
3933       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3934 }
3935 
3936 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3937   // Don't attempt to do anything other than create a SCEVUnknown object
3938   // here.  createSCEV only calls getUnknown after checking for all other
3939   // interesting possibilities, and any other code that calls getUnknown
3940   // is doing so in order to hide a value from SCEV canonicalization.
3941 
3942   FoldingSetNodeID ID;
3943   ID.AddInteger(scUnknown);
3944   ID.AddPointer(V);
3945   void *IP = nullptr;
3946   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3947     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3948            "Stale SCEVUnknown in uniquing map!");
3949     return S;
3950   }
3951   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3952                                             FirstUnknown);
3953   FirstUnknown = cast<SCEVUnknown>(S);
3954   UniqueSCEVs.InsertNode(S, IP);
3955   return S;
3956 }
3957 
3958 //===----------------------------------------------------------------------===//
3959 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3960 //
3961 
3962 /// Test if values of the given type are analyzable within the SCEV
3963 /// framework. This primarily includes integer types, and it can optionally
3964 /// include pointer types if the ScalarEvolution class has access to
3965 /// target-specific information.
3966 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3967   // Integers and pointers are always SCEVable.
3968   return Ty->isIntOrPtrTy();
3969 }
3970 
3971 /// Return the size in bits of the specified type, for which isSCEVable must
3972 /// return true.
3973 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3974   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3975   if (Ty->isPointerTy())
3976     return getDataLayout().getIndexTypeSizeInBits(Ty);
3977   return getDataLayout().getTypeSizeInBits(Ty);
3978 }
3979 
3980 /// Return a type with the same bitwidth as the given type and which represents
3981 /// how SCEV will treat the given type, for which isSCEVable must return
3982 /// true. For pointer types, this is the pointer index sized integer type.
3983 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3984   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3985 
3986   if (Ty->isIntegerTy())
3987     return Ty;
3988 
3989   // The only other support type is pointer.
3990   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3991   return getDataLayout().getIndexType(Ty);
3992 }
3993 
3994 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3995   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3996 }
3997 
3998 const SCEV *ScalarEvolution::getCouldNotCompute() {
3999   return CouldNotCompute.get();
4000 }
4001 
4002 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4003   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4004     auto *SU = dyn_cast<SCEVUnknown>(S);
4005     return SU && SU->getValue() == nullptr;
4006   });
4007 
4008   return !ContainsNulls;
4009 }
4010 
4011 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4012   HasRecMapType::iterator I = HasRecMap.find(S);
4013   if (I != HasRecMap.end())
4014     return I->second;
4015 
4016   bool FoundAddRec =
4017       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4018   HasRecMap.insert({S, FoundAddRec});
4019   return FoundAddRec;
4020 }
4021 
4022 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
4023 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
4024 /// offset I, then return {S', I}, else return {\p S, nullptr}.
4025 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
4026   const auto *Add = dyn_cast<SCEVAddExpr>(S);
4027   if (!Add)
4028     return {S, nullptr};
4029 
4030   if (Add->getNumOperands() != 2)
4031     return {S, nullptr};
4032 
4033   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
4034   if (!ConstOp)
4035     return {S, nullptr};
4036 
4037   return {Add->getOperand(1), ConstOp->getValue()};
4038 }
4039 
4040 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4041 /// by the value and offset from any ValueOffsetPair in the set.
4042 ScalarEvolution::ValueOffsetPairSetVector *
4043 ScalarEvolution::getSCEVValues(const SCEV *S) {
4044   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4045   if (SI == ExprValueMap.end())
4046     return nullptr;
4047 #ifndef NDEBUG
4048   if (VerifySCEVMap) {
4049     // Check there is no dangling Value in the set returned.
4050     for (const auto &VE : SI->second)
4051       assert(ValueExprMap.count(VE.first));
4052   }
4053 #endif
4054   return &SI->second;
4055 }
4056 
4057 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4058 /// cannot be used separately. eraseValueFromMap should be used to remove
4059 /// V from ValueExprMap and ExprValueMap at the same time.
4060 void ScalarEvolution::eraseValueFromMap(Value *V) {
4061   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4062   if (I != ValueExprMap.end()) {
4063     const SCEV *S = I->second;
4064     // Remove {V, 0} from the set of ExprValueMap[S]
4065     if (auto *SV = getSCEVValues(S))
4066       SV->remove({V, nullptr});
4067 
4068     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4069     const SCEV *Stripped;
4070     ConstantInt *Offset;
4071     std::tie(Stripped, Offset) = splitAddExpr(S);
4072     if (Offset != nullptr) {
4073       if (auto *SV = getSCEVValues(Stripped))
4074         SV->remove({V, Offset});
4075     }
4076     ValueExprMap.erase(V);
4077   }
4078 }
4079 
4080 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4081 /// create a new one.
4082 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4083   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4084 
4085   const SCEV *S = getExistingSCEV(V);
4086   if (S == nullptr) {
4087     S = createSCEV(V);
4088     // During PHI resolution, it is possible to create two SCEVs for the same
4089     // V, so it is needed to double check whether V->S is inserted into
4090     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4091     std::pair<ValueExprMapType::iterator, bool> Pair =
4092         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4093     if (Pair.second) {
4094       ExprValueMap[S].insert({V, nullptr});
4095 
4096       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4097       // ExprValueMap.
4098       const SCEV *Stripped = S;
4099       ConstantInt *Offset = nullptr;
4100       std::tie(Stripped, Offset) = splitAddExpr(S);
4101       // If stripped is SCEVUnknown, don't bother to save
4102       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4103       // increase the complexity of the expansion code.
4104       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4105       // because it may generate add/sub instead of GEP in SCEV expansion.
4106       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4107           !isa<GetElementPtrInst>(V))
4108         ExprValueMap[Stripped].insert({V, Offset});
4109     }
4110   }
4111   return S;
4112 }
4113 
4114 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4115   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4116 
4117   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4118   if (I != ValueExprMap.end()) {
4119     const SCEV *S = I->second;
4120     if (checkValidity(S))
4121       return S;
4122     eraseValueFromMap(V);
4123     forgetMemoizedResults(S);
4124   }
4125   return nullptr;
4126 }
4127 
4128 /// Return a SCEV corresponding to -V = -1*V
4129 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4130                                              SCEV::NoWrapFlags Flags) {
4131   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4132     return getConstant(
4133                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4134 
4135   Type *Ty = V->getType();
4136   Ty = getEffectiveSCEVType(Ty);
4137   return getMulExpr(V, getMinusOne(Ty), Flags);
4138 }
4139 
4140 /// If Expr computes ~A, return A else return nullptr
4141 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4142   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4143   if (!Add || Add->getNumOperands() != 2 ||
4144       !Add->getOperand(0)->isAllOnesValue())
4145     return nullptr;
4146 
4147   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4148   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4149       !AddRHS->getOperand(0)->isAllOnesValue())
4150     return nullptr;
4151 
4152   return AddRHS->getOperand(1);
4153 }
4154 
4155 /// Return a SCEV corresponding to ~V = -1-V
4156 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4157   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4158 
4159   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4160     return getConstant(
4161                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4162 
4163   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4164   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4165     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4166       SmallVector<const SCEV *, 2> MatchedOperands;
4167       for (const SCEV *Operand : MME->operands()) {
4168         const SCEV *Matched = MatchNotExpr(Operand);
4169         if (!Matched)
4170           return (const SCEV *)nullptr;
4171         MatchedOperands.push_back(Matched);
4172       }
4173       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4174                            MatchedOperands);
4175     };
4176     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4177       return Replaced;
4178   }
4179 
4180   Type *Ty = V->getType();
4181   Ty = getEffectiveSCEVType(Ty);
4182   return getMinusSCEV(getMinusOne(Ty), V);
4183 }
4184 
4185 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4186   assert(P->getType()->isPointerTy());
4187 
4188   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4189     // The base of an AddRec is the first operand.
4190     SmallVector<const SCEV *> Ops{AddRec->operands()};
4191     Ops[0] = removePointerBase(Ops[0]);
4192     // Don't try to transfer nowrap flags for now. We could in some cases
4193     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4194     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4195   }
4196   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4197     // The base of an Add is the pointer operand.
4198     SmallVector<const SCEV *> Ops{Add->operands()};
4199     const SCEV **PtrOp = nullptr;
4200     for (const SCEV *&AddOp : Ops) {
4201       if (AddOp->getType()->isPointerTy()) {
4202         assert(!PtrOp && "Cannot have multiple pointer ops");
4203         PtrOp = &AddOp;
4204       }
4205     }
4206     *PtrOp = removePointerBase(*PtrOp);
4207     // Don't try to transfer nowrap flags for now. We could in some cases
4208     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4209     return getAddExpr(Ops);
4210   }
4211   // Any other expression must be a pointer base.
4212   return getZero(P->getType());
4213 }
4214 
4215 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4216                                           SCEV::NoWrapFlags Flags,
4217                                           unsigned Depth) {
4218   // Fast path: X - X --> 0.
4219   if (LHS == RHS)
4220     return getZero(LHS->getType());
4221 
4222   // If we subtract two pointers with different pointer bases, bail.
4223   // Eventually, we're going to add an assertion to getMulExpr that we
4224   // can't multiply by a pointer.
4225   if (RHS->getType()->isPointerTy()) {
4226     if (!LHS->getType()->isPointerTy() ||
4227         getPointerBase(LHS) != getPointerBase(RHS))
4228       return getCouldNotCompute();
4229     LHS = removePointerBase(LHS);
4230     RHS = removePointerBase(RHS);
4231   }
4232 
4233   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4234   // makes it so that we cannot make much use of NUW.
4235   auto AddFlags = SCEV::FlagAnyWrap;
4236   const bool RHSIsNotMinSigned =
4237       !getSignedRangeMin(RHS).isMinSignedValue();
4238   if (hasFlags(Flags, SCEV::FlagNSW)) {
4239     // Let M be the minimum representable signed value. Then (-1)*RHS
4240     // signed-wraps if and only if RHS is M. That can happen even for
4241     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4242     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4243     // (-1)*RHS, we need to prove that RHS != M.
4244     //
4245     // If LHS is non-negative and we know that LHS - RHS does not
4246     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4247     // either by proving that RHS > M or that LHS >= 0.
4248     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4249       AddFlags = SCEV::FlagNSW;
4250     }
4251   }
4252 
4253   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4254   // RHS is NSW and LHS >= 0.
4255   //
4256   // The difficulty here is that the NSW flag may have been proven
4257   // relative to a loop that is to be found in a recurrence in LHS and
4258   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4259   // larger scope than intended.
4260   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4261 
4262   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4263 }
4264 
4265 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4266                                                      unsigned Depth) {
4267   Type *SrcTy = V->getType();
4268   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4269          "Cannot truncate or zero extend with non-integer arguments!");
4270   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4271     return V;  // No conversion
4272   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4273     return getTruncateExpr(V, Ty, Depth);
4274   return getZeroExtendExpr(V, Ty, Depth);
4275 }
4276 
4277 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4278                                                      unsigned Depth) {
4279   Type *SrcTy = V->getType();
4280   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4281          "Cannot truncate or zero extend with non-integer arguments!");
4282   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4283     return V;  // No conversion
4284   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4285     return getTruncateExpr(V, Ty, Depth);
4286   return getSignExtendExpr(V, Ty, Depth);
4287 }
4288 
4289 const SCEV *
4290 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4291   Type *SrcTy = V->getType();
4292   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4293          "Cannot noop or zero extend with non-integer arguments!");
4294   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4295          "getNoopOrZeroExtend cannot truncate!");
4296   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4297     return V;  // No conversion
4298   return getZeroExtendExpr(V, Ty);
4299 }
4300 
4301 const SCEV *
4302 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4303   Type *SrcTy = V->getType();
4304   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4305          "Cannot noop or sign extend with non-integer arguments!");
4306   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4307          "getNoopOrSignExtend cannot truncate!");
4308   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4309     return V;  // No conversion
4310   return getSignExtendExpr(V, Ty);
4311 }
4312 
4313 const SCEV *
4314 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4315   Type *SrcTy = V->getType();
4316   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4317          "Cannot noop or any extend with non-integer arguments!");
4318   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4319          "getNoopOrAnyExtend cannot truncate!");
4320   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4321     return V;  // No conversion
4322   return getAnyExtendExpr(V, Ty);
4323 }
4324 
4325 const SCEV *
4326 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4327   Type *SrcTy = V->getType();
4328   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4329          "Cannot truncate or noop with non-integer arguments!");
4330   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4331          "getTruncateOrNoop cannot extend!");
4332   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4333     return V;  // No conversion
4334   return getTruncateExpr(V, Ty);
4335 }
4336 
4337 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4338                                                         const SCEV *RHS) {
4339   const SCEV *PromotedLHS = LHS;
4340   const SCEV *PromotedRHS = RHS;
4341 
4342   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4343     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4344   else
4345     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4346 
4347   return getUMaxExpr(PromotedLHS, PromotedRHS);
4348 }
4349 
4350 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4351                                                         const SCEV *RHS) {
4352   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4353   return getUMinFromMismatchedTypes(Ops);
4354 }
4355 
4356 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4357     SmallVectorImpl<const SCEV *> &Ops) {
4358   assert(!Ops.empty() && "At least one operand must be!");
4359   // Trivial case.
4360   if (Ops.size() == 1)
4361     return Ops[0];
4362 
4363   // Find the max type first.
4364   Type *MaxType = nullptr;
4365   for (auto *S : Ops)
4366     if (MaxType)
4367       MaxType = getWiderType(MaxType, S->getType());
4368     else
4369       MaxType = S->getType();
4370   assert(MaxType && "Failed to find maximum type!");
4371 
4372   // Extend all ops to max type.
4373   SmallVector<const SCEV *, 2> PromotedOps;
4374   for (auto *S : Ops)
4375     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4376 
4377   // Generate umin.
4378   return getUMinExpr(PromotedOps);
4379 }
4380 
4381 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4382   // A pointer operand may evaluate to a nonpointer expression, such as null.
4383   if (!V->getType()->isPointerTy())
4384     return V;
4385 
4386   while (true) {
4387     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4388       V = AddRec->getStart();
4389     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4390       const SCEV *PtrOp = nullptr;
4391       for (const SCEV *AddOp : Add->operands()) {
4392         if (AddOp->getType()->isPointerTy()) {
4393           assert(!PtrOp && "Cannot have multiple pointer ops");
4394           PtrOp = AddOp;
4395         }
4396       }
4397       assert(PtrOp && "Must have pointer op");
4398       V = PtrOp;
4399     } else // Not something we can look further into.
4400       return V;
4401   }
4402 }
4403 
4404 /// Push users of the given Instruction onto the given Worklist.
4405 static void PushDefUseChildren(Instruction *I,
4406                                SmallVectorImpl<Instruction *> &Worklist,
4407                                SmallPtrSetImpl<Instruction *> &Visited) {
4408   // Push the def-use children onto the Worklist stack.
4409   for (User *U : I->users()) {
4410     auto *UserInsn = cast<Instruction>(U);
4411     if (Visited.insert(UserInsn).second)
4412       Worklist.push_back(UserInsn);
4413   }
4414 }
4415 
4416 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4417   SmallVector<Instruction *, 16> Worklist;
4418   SmallPtrSet<Instruction *, 8> Visited;
4419   SmallVector<const SCEV *, 8> ToForget;
4420   Visited.insert(PN);
4421   Worklist.push_back(PN);
4422   while (!Worklist.empty()) {
4423     Instruction *I = Worklist.pop_back_val();
4424 
4425     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4426     if (It != ValueExprMap.end()) {
4427       const SCEV *Old = It->second;
4428 
4429       // Short-circuit the def-use traversal if the symbolic name
4430       // ceases to appear in expressions.
4431       if (Old != SymName && !hasOperand(Old, SymName))
4432         continue;
4433 
4434       // SCEVUnknown for a PHI either means that it has an unrecognized
4435       // structure, it's a PHI that's in the progress of being computed
4436       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4437       // additional loop trip count information isn't going to change anything.
4438       // In the second case, createNodeForPHI will perform the necessary
4439       // updates on its own when it gets to that point. In the third, we do
4440       // want to forget the SCEVUnknown.
4441       if (!isa<PHINode>(I) ||
4442           !isa<SCEVUnknown>(Old) ||
4443           (I != PN && Old == SymName)) {
4444         eraseValueFromMap(It->first);
4445         ToForget.push_back(Old);
4446       }
4447     }
4448 
4449     PushDefUseChildren(I, Worklist, Visited);
4450   }
4451   forgetMemoizedResults(ToForget);
4452 }
4453 
4454 namespace {
4455 
4456 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4457 /// expression in case its Loop is L. If it is not L then
4458 /// if IgnoreOtherLoops is true then use AddRec itself
4459 /// otherwise rewrite cannot be done.
4460 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4461 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4462 public:
4463   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4464                              bool IgnoreOtherLoops = true) {
4465     SCEVInitRewriter Rewriter(L, SE);
4466     const SCEV *Result = Rewriter.visit(S);
4467     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4468       return SE.getCouldNotCompute();
4469     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4470                ? SE.getCouldNotCompute()
4471                : Result;
4472   }
4473 
4474   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4475     if (!SE.isLoopInvariant(Expr, L))
4476       SeenLoopVariantSCEVUnknown = true;
4477     return Expr;
4478   }
4479 
4480   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4481     // Only re-write AddRecExprs for this loop.
4482     if (Expr->getLoop() == L)
4483       return Expr->getStart();
4484     SeenOtherLoops = true;
4485     return Expr;
4486   }
4487 
4488   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4489 
4490   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4491 
4492 private:
4493   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4494       : SCEVRewriteVisitor(SE), L(L) {}
4495 
4496   const Loop *L;
4497   bool SeenLoopVariantSCEVUnknown = false;
4498   bool SeenOtherLoops = false;
4499 };
4500 
4501 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4502 /// increment expression in case its Loop is L. If it is not L then
4503 /// use AddRec itself.
4504 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4505 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4506 public:
4507   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4508     SCEVPostIncRewriter Rewriter(L, SE);
4509     const SCEV *Result = Rewriter.visit(S);
4510     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4511         ? SE.getCouldNotCompute()
4512         : Result;
4513   }
4514 
4515   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4516     if (!SE.isLoopInvariant(Expr, L))
4517       SeenLoopVariantSCEVUnknown = true;
4518     return Expr;
4519   }
4520 
4521   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4522     // Only re-write AddRecExprs for this loop.
4523     if (Expr->getLoop() == L)
4524       return Expr->getPostIncExpr(SE);
4525     SeenOtherLoops = true;
4526     return Expr;
4527   }
4528 
4529   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4530 
4531   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4532 
4533 private:
4534   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4535       : SCEVRewriteVisitor(SE), L(L) {}
4536 
4537   const Loop *L;
4538   bool SeenLoopVariantSCEVUnknown = false;
4539   bool SeenOtherLoops = false;
4540 };
4541 
4542 /// This class evaluates the compare condition by matching it against the
4543 /// condition of loop latch. If there is a match we assume a true value
4544 /// for the condition while building SCEV nodes.
4545 class SCEVBackedgeConditionFolder
4546     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4547 public:
4548   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4549                              ScalarEvolution &SE) {
4550     bool IsPosBECond = false;
4551     Value *BECond = nullptr;
4552     if (BasicBlock *Latch = L->getLoopLatch()) {
4553       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4554       if (BI && BI->isConditional()) {
4555         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4556                "Both outgoing branches should not target same header!");
4557         BECond = BI->getCondition();
4558         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4559       } else {
4560         return S;
4561       }
4562     }
4563     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4564     return Rewriter.visit(S);
4565   }
4566 
4567   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4568     const SCEV *Result = Expr;
4569     bool InvariantF = SE.isLoopInvariant(Expr, L);
4570 
4571     if (!InvariantF) {
4572       Instruction *I = cast<Instruction>(Expr->getValue());
4573       switch (I->getOpcode()) {
4574       case Instruction::Select: {
4575         SelectInst *SI = cast<SelectInst>(I);
4576         Optional<const SCEV *> Res =
4577             compareWithBackedgeCondition(SI->getCondition());
4578         if (Res.hasValue()) {
4579           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4580           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4581         }
4582         break;
4583       }
4584       default: {
4585         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4586         if (Res.hasValue())
4587           Result = Res.getValue();
4588         break;
4589       }
4590       }
4591     }
4592     return Result;
4593   }
4594 
4595 private:
4596   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4597                                        bool IsPosBECond, ScalarEvolution &SE)
4598       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4599         IsPositiveBECond(IsPosBECond) {}
4600 
4601   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4602 
4603   const Loop *L;
4604   /// Loop back condition.
4605   Value *BackedgeCond = nullptr;
4606   /// Set to true if loop back is on positive branch condition.
4607   bool IsPositiveBECond;
4608 };
4609 
4610 Optional<const SCEV *>
4611 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4612 
4613   // If value matches the backedge condition for loop latch,
4614   // then return a constant evolution node based on loopback
4615   // branch taken.
4616   if (BackedgeCond == IC)
4617     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4618                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4619   return None;
4620 }
4621 
4622 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4623 public:
4624   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4625                              ScalarEvolution &SE) {
4626     SCEVShiftRewriter Rewriter(L, SE);
4627     const SCEV *Result = Rewriter.visit(S);
4628     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4629   }
4630 
4631   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4632     // Only allow AddRecExprs for this loop.
4633     if (!SE.isLoopInvariant(Expr, L))
4634       Valid = false;
4635     return Expr;
4636   }
4637 
4638   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4639     if (Expr->getLoop() == L && Expr->isAffine())
4640       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4641     Valid = false;
4642     return Expr;
4643   }
4644 
4645   bool isValid() { return Valid; }
4646 
4647 private:
4648   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4649       : SCEVRewriteVisitor(SE), L(L) {}
4650 
4651   const Loop *L;
4652   bool Valid = true;
4653 };
4654 
4655 } // end anonymous namespace
4656 
4657 SCEV::NoWrapFlags
4658 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4659   if (!AR->isAffine())
4660     return SCEV::FlagAnyWrap;
4661 
4662   using OBO = OverflowingBinaryOperator;
4663 
4664   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4665 
4666   if (!AR->hasNoSignedWrap()) {
4667     ConstantRange AddRecRange = getSignedRange(AR);
4668     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4669 
4670     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4671         Instruction::Add, IncRange, OBO::NoSignedWrap);
4672     if (NSWRegion.contains(AddRecRange))
4673       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4674   }
4675 
4676   if (!AR->hasNoUnsignedWrap()) {
4677     ConstantRange AddRecRange = getUnsignedRange(AR);
4678     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4679 
4680     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4681         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4682     if (NUWRegion.contains(AddRecRange))
4683       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4684   }
4685 
4686   return Result;
4687 }
4688 
4689 SCEV::NoWrapFlags
4690 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4691   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4692 
4693   if (AR->hasNoSignedWrap())
4694     return Result;
4695 
4696   if (!AR->isAffine())
4697     return Result;
4698 
4699   const SCEV *Step = AR->getStepRecurrence(*this);
4700   const Loop *L = AR->getLoop();
4701 
4702   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4703   // Note that this serves two purposes: It filters out loops that are
4704   // simply not analyzable, and it covers the case where this code is
4705   // being called from within backedge-taken count analysis, such that
4706   // attempting to ask for the backedge-taken count would likely result
4707   // in infinite recursion. In the later case, the analysis code will
4708   // cope with a conservative value, and it will take care to purge
4709   // that value once it has finished.
4710   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4711 
4712   // Normally, in the cases we can prove no-overflow via a
4713   // backedge guarding condition, we can also compute a backedge
4714   // taken count for the loop.  The exceptions are assumptions and
4715   // guards present in the loop -- SCEV is not great at exploiting
4716   // these to compute max backedge taken counts, but can still use
4717   // these to prove lack of overflow.  Use this fact to avoid
4718   // doing extra work that may not pay off.
4719 
4720   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4721       AC.assumptions().empty())
4722     return Result;
4723 
4724   // If the backedge is guarded by a comparison with the pre-inc  value the
4725   // addrec is safe. Also, if the entry is guarded by a comparison with the
4726   // start value and the backedge is guarded by a comparison with the post-inc
4727   // value, the addrec is safe.
4728   ICmpInst::Predicate Pred;
4729   const SCEV *OverflowLimit =
4730     getSignedOverflowLimitForStep(Step, &Pred, this);
4731   if (OverflowLimit &&
4732       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4733        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4734     Result = setFlags(Result, SCEV::FlagNSW);
4735   }
4736   return Result;
4737 }
4738 SCEV::NoWrapFlags
4739 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4740   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4741 
4742   if (AR->hasNoUnsignedWrap())
4743     return Result;
4744 
4745   if (!AR->isAffine())
4746     return Result;
4747 
4748   const SCEV *Step = AR->getStepRecurrence(*this);
4749   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4750   const Loop *L = AR->getLoop();
4751 
4752   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4753   // Note that this serves two purposes: It filters out loops that are
4754   // simply not analyzable, and it covers the case where this code is
4755   // being called from within backedge-taken count analysis, such that
4756   // attempting to ask for the backedge-taken count would likely result
4757   // in infinite recursion. In the later case, the analysis code will
4758   // cope with a conservative value, and it will take care to purge
4759   // that value once it has finished.
4760   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4761 
4762   // Normally, in the cases we can prove no-overflow via a
4763   // backedge guarding condition, we can also compute a backedge
4764   // taken count for the loop.  The exceptions are assumptions and
4765   // guards present in the loop -- SCEV is not great at exploiting
4766   // these to compute max backedge taken counts, but can still use
4767   // these to prove lack of overflow.  Use this fact to avoid
4768   // doing extra work that may not pay off.
4769 
4770   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4771       AC.assumptions().empty())
4772     return Result;
4773 
4774   // If the backedge is guarded by a comparison with the pre-inc  value the
4775   // addrec is safe. Also, if the entry is guarded by a comparison with the
4776   // start value and the backedge is guarded by a comparison with the post-inc
4777   // value, the addrec is safe.
4778   if (isKnownPositive(Step)) {
4779     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4780                                 getUnsignedRangeMax(Step));
4781     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4782         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4783       Result = setFlags(Result, SCEV::FlagNUW);
4784     }
4785   }
4786 
4787   return Result;
4788 }
4789 
4790 namespace {
4791 
4792 /// Represents an abstract binary operation.  This may exist as a
4793 /// normal instruction or constant expression, or may have been
4794 /// derived from an expression tree.
4795 struct BinaryOp {
4796   unsigned Opcode;
4797   Value *LHS;
4798   Value *RHS;
4799   bool IsNSW = false;
4800   bool IsNUW = false;
4801 
4802   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4803   /// constant expression.
4804   Operator *Op = nullptr;
4805 
4806   explicit BinaryOp(Operator *Op)
4807       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4808         Op(Op) {
4809     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4810       IsNSW = OBO->hasNoSignedWrap();
4811       IsNUW = OBO->hasNoUnsignedWrap();
4812     }
4813   }
4814 
4815   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4816                     bool IsNUW = false)
4817       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4818 };
4819 
4820 } // end anonymous namespace
4821 
4822 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4823 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4824   auto *Op = dyn_cast<Operator>(V);
4825   if (!Op)
4826     return None;
4827 
4828   // Implementation detail: all the cleverness here should happen without
4829   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4830   // SCEV expressions when possible, and we should not break that.
4831 
4832   switch (Op->getOpcode()) {
4833   case Instruction::Add:
4834   case Instruction::Sub:
4835   case Instruction::Mul:
4836   case Instruction::UDiv:
4837   case Instruction::URem:
4838   case Instruction::And:
4839   case Instruction::Or:
4840   case Instruction::AShr:
4841   case Instruction::Shl:
4842     return BinaryOp(Op);
4843 
4844   case Instruction::Xor:
4845     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4846       // If the RHS of the xor is a signmask, then this is just an add.
4847       // Instcombine turns add of signmask into xor as a strength reduction step.
4848       if (RHSC->getValue().isSignMask())
4849         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4850     return BinaryOp(Op);
4851 
4852   case Instruction::LShr:
4853     // Turn logical shift right of a constant into a unsigned divide.
4854     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4855       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4856 
4857       // If the shift count is not less than the bitwidth, the result of
4858       // the shift is undefined. Don't try to analyze it, because the
4859       // resolution chosen here may differ from the resolution chosen in
4860       // other parts of the compiler.
4861       if (SA->getValue().ult(BitWidth)) {
4862         Constant *X =
4863             ConstantInt::get(SA->getContext(),
4864                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4865         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4866       }
4867     }
4868     return BinaryOp(Op);
4869 
4870   case Instruction::ExtractValue: {
4871     auto *EVI = cast<ExtractValueInst>(Op);
4872     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4873       break;
4874 
4875     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4876     if (!WO)
4877       break;
4878 
4879     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4880     bool Signed = WO->isSigned();
4881     // TODO: Should add nuw/nsw flags for mul as well.
4882     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4883       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4884 
4885     // Now that we know that all uses of the arithmetic-result component of
4886     // CI are guarded by the overflow check, we can go ahead and pretend
4887     // that the arithmetic is non-overflowing.
4888     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4889                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4890   }
4891 
4892   default:
4893     break;
4894   }
4895 
4896   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4897   // semantics as a Sub, return a binary sub expression.
4898   if (auto *II = dyn_cast<IntrinsicInst>(V))
4899     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4900       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4901 
4902   return None;
4903 }
4904 
4905 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4906 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4907 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4908 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4909 /// follows one of the following patterns:
4910 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4911 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4912 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4913 /// we return the type of the truncation operation, and indicate whether the
4914 /// truncated type should be treated as signed/unsigned by setting
4915 /// \p Signed to true/false, respectively.
4916 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4917                                bool &Signed, ScalarEvolution &SE) {
4918   // The case where Op == SymbolicPHI (that is, with no type conversions on
4919   // the way) is handled by the regular add recurrence creating logic and
4920   // would have already been triggered in createAddRecForPHI. Reaching it here
4921   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4922   // because one of the other operands of the SCEVAddExpr updating this PHI is
4923   // not invariant).
4924   //
4925   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4926   // this case predicates that allow us to prove that Op == SymbolicPHI will
4927   // be added.
4928   if (Op == SymbolicPHI)
4929     return nullptr;
4930 
4931   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4932   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4933   if (SourceBits != NewBits)
4934     return nullptr;
4935 
4936   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4937   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4938   if (!SExt && !ZExt)
4939     return nullptr;
4940   const SCEVTruncateExpr *Trunc =
4941       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4942            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4943   if (!Trunc)
4944     return nullptr;
4945   const SCEV *X = Trunc->getOperand();
4946   if (X != SymbolicPHI)
4947     return nullptr;
4948   Signed = SExt != nullptr;
4949   return Trunc->getType();
4950 }
4951 
4952 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4953   if (!PN->getType()->isIntegerTy())
4954     return nullptr;
4955   const Loop *L = LI.getLoopFor(PN->getParent());
4956   if (!L || L->getHeader() != PN->getParent())
4957     return nullptr;
4958   return L;
4959 }
4960 
4961 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4962 // computation that updates the phi follows the following pattern:
4963 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4964 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4965 // If so, try to see if it can be rewritten as an AddRecExpr under some
4966 // Predicates. If successful, return them as a pair. Also cache the results
4967 // of the analysis.
4968 //
4969 // Example usage scenario:
4970 //    Say the Rewriter is called for the following SCEV:
4971 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4972 //    where:
4973 //         %X = phi i64 (%Start, %BEValue)
4974 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4975 //    and call this function with %SymbolicPHI = %X.
4976 //
4977 //    The analysis will find that the value coming around the backedge has
4978 //    the following SCEV:
4979 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4980 //    Upon concluding that this matches the desired pattern, the function
4981 //    will return the pair {NewAddRec, SmallPredsVec} where:
4982 //         NewAddRec = {%Start,+,%Step}
4983 //         SmallPredsVec = {P1, P2, P3} as follows:
4984 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4985 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4986 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4987 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4988 //    under the predicates {P1,P2,P3}.
4989 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4990 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4991 //
4992 // TODO's:
4993 //
4994 // 1) Extend the Induction descriptor to also support inductions that involve
4995 //    casts: When needed (namely, when we are called in the context of the
4996 //    vectorizer induction analysis), a Set of cast instructions will be
4997 //    populated by this method, and provided back to isInductionPHI. This is
4998 //    needed to allow the vectorizer to properly record them to be ignored by
4999 //    the cost model and to avoid vectorizing them (otherwise these casts,
5000 //    which are redundant under the runtime overflow checks, will be
5001 //    vectorized, which can be costly).
5002 //
5003 // 2) Support additional induction/PHISCEV patterns: We also want to support
5004 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5005 //    after the induction update operation (the induction increment):
5006 //
5007 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5008 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5009 //
5010 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5011 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5012 //
5013 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5014 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5015 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5016   SmallVector<const SCEVPredicate *, 3> Predicates;
5017 
5018   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5019   // return an AddRec expression under some predicate.
5020 
5021   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5022   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5023   assert(L && "Expecting an integer loop header phi");
5024 
5025   // The loop may have multiple entrances or multiple exits; we can analyze
5026   // this phi as an addrec if it has a unique entry value and a unique
5027   // backedge value.
5028   Value *BEValueV = nullptr, *StartValueV = nullptr;
5029   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5030     Value *V = PN->getIncomingValue(i);
5031     if (L->contains(PN->getIncomingBlock(i))) {
5032       if (!BEValueV) {
5033         BEValueV = V;
5034       } else if (BEValueV != V) {
5035         BEValueV = nullptr;
5036         break;
5037       }
5038     } else if (!StartValueV) {
5039       StartValueV = V;
5040     } else if (StartValueV != V) {
5041       StartValueV = nullptr;
5042       break;
5043     }
5044   }
5045   if (!BEValueV || !StartValueV)
5046     return None;
5047 
5048   const SCEV *BEValue = getSCEV(BEValueV);
5049 
5050   // If the value coming around the backedge is an add with the symbolic
5051   // value we just inserted, possibly with casts that we can ignore under
5052   // an appropriate runtime guard, then we found a simple induction variable!
5053   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5054   if (!Add)
5055     return None;
5056 
5057   // If there is a single occurrence of the symbolic value, possibly
5058   // casted, replace it with a recurrence.
5059   unsigned FoundIndex = Add->getNumOperands();
5060   Type *TruncTy = nullptr;
5061   bool Signed;
5062   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5063     if ((TruncTy =
5064              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5065       if (FoundIndex == e) {
5066         FoundIndex = i;
5067         break;
5068       }
5069 
5070   if (FoundIndex == Add->getNumOperands())
5071     return None;
5072 
5073   // Create an add with everything but the specified operand.
5074   SmallVector<const SCEV *, 8> Ops;
5075   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5076     if (i != FoundIndex)
5077       Ops.push_back(Add->getOperand(i));
5078   const SCEV *Accum = getAddExpr(Ops);
5079 
5080   // The runtime checks will not be valid if the step amount is
5081   // varying inside the loop.
5082   if (!isLoopInvariant(Accum, L))
5083     return None;
5084 
5085   // *** Part2: Create the predicates
5086 
5087   // Analysis was successful: we have a phi-with-cast pattern for which we
5088   // can return an AddRec expression under the following predicates:
5089   //
5090   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5091   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5092   // P2: An Equal predicate that guarantees that
5093   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5094   // P3: An Equal predicate that guarantees that
5095   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5096   //
5097   // As we next prove, the above predicates guarantee that:
5098   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5099   //
5100   //
5101   // More formally, we want to prove that:
5102   //     Expr(i+1) = Start + (i+1) * Accum
5103   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5104   //
5105   // Given that:
5106   // 1) Expr(0) = Start
5107   // 2) Expr(1) = Start + Accum
5108   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5109   // 3) Induction hypothesis (step i):
5110   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5111   //
5112   // Proof:
5113   //  Expr(i+1) =
5114   //   = Start + (i+1)*Accum
5115   //   = (Start + i*Accum) + Accum
5116   //   = Expr(i) + Accum
5117   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5118   //                                                             :: from step i
5119   //
5120   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5121   //
5122   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5123   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5124   //     + Accum                                                     :: from P3
5125   //
5126   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5127   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5128   //
5129   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5130   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5131   //
5132   // By induction, the same applies to all iterations 1<=i<n:
5133   //
5134 
5135   // Create a truncated addrec for which we will add a no overflow check (P1).
5136   const SCEV *StartVal = getSCEV(StartValueV);
5137   const SCEV *PHISCEV =
5138       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5139                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5140 
5141   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5142   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5143   // will be constant.
5144   //
5145   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5146   // add P1.
5147   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5148     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5149         Signed ? SCEVWrapPredicate::IncrementNSSW
5150                : SCEVWrapPredicate::IncrementNUSW;
5151     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5152     Predicates.push_back(AddRecPred);
5153   }
5154 
5155   // Create the Equal Predicates P2,P3:
5156 
5157   // It is possible that the predicates P2 and/or P3 are computable at
5158   // compile time due to StartVal and/or Accum being constants.
5159   // If either one is, then we can check that now and escape if either P2
5160   // or P3 is false.
5161 
5162   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5163   // for each of StartVal and Accum
5164   auto getExtendedExpr = [&](const SCEV *Expr,
5165                              bool CreateSignExtend) -> const SCEV * {
5166     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5167     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5168     const SCEV *ExtendedExpr =
5169         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5170                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5171     return ExtendedExpr;
5172   };
5173 
5174   // Given:
5175   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5176   //               = getExtendedExpr(Expr)
5177   // Determine whether the predicate P: Expr == ExtendedExpr
5178   // is known to be false at compile time
5179   auto PredIsKnownFalse = [&](const SCEV *Expr,
5180                               const SCEV *ExtendedExpr) -> bool {
5181     return Expr != ExtendedExpr &&
5182            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5183   };
5184 
5185   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5186   if (PredIsKnownFalse(StartVal, StartExtended)) {
5187     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5188     return None;
5189   }
5190 
5191   // The Step is always Signed (because the overflow checks are either
5192   // NSSW or NUSW)
5193   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5194   if (PredIsKnownFalse(Accum, AccumExtended)) {
5195     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5196     return None;
5197   }
5198 
5199   auto AppendPredicate = [&](const SCEV *Expr,
5200                              const SCEV *ExtendedExpr) -> void {
5201     if (Expr != ExtendedExpr &&
5202         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5203       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5204       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5205       Predicates.push_back(Pred);
5206     }
5207   };
5208 
5209   AppendPredicate(StartVal, StartExtended);
5210   AppendPredicate(Accum, AccumExtended);
5211 
5212   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5213   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5214   // into NewAR if it will also add the runtime overflow checks specified in
5215   // Predicates.
5216   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5217 
5218   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5219       std::make_pair(NewAR, Predicates);
5220   // Remember the result of the analysis for this SCEV at this locayyytion.
5221   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5222   return PredRewrite;
5223 }
5224 
5225 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5226 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5227   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5228   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5229   if (!L)
5230     return None;
5231 
5232   // Check to see if we already analyzed this PHI.
5233   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5234   if (I != PredicatedSCEVRewrites.end()) {
5235     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5236         I->second;
5237     // Analysis was done before and failed to create an AddRec:
5238     if (Rewrite.first == SymbolicPHI)
5239       return None;
5240     // Analysis was done before and succeeded to create an AddRec under
5241     // a predicate:
5242     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5243     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5244     return Rewrite;
5245   }
5246 
5247   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5248     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5249 
5250   // Record in the cache that the analysis failed
5251   if (!Rewrite) {
5252     SmallVector<const SCEVPredicate *, 3> Predicates;
5253     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5254     return None;
5255   }
5256 
5257   return Rewrite;
5258 }
5259 
5260 // FIXME: This utility is currently required because the Rewriter currently
5261 // does not rewrite this expression:
5262 // {0, +, (sext ix (trunc iy to ix) to iy)}
5263 // into {0, +, %step},
5264 // even when the following Equal predicate exists:
5265 // "%step == (sext ix (trunc iy to ix) to iy)".
5266 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5267     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5268   if (AR1 == AR2)
5269     return true;
5270 
5271   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5272     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5273         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5274       return false;
5275     return true;
5276   };
5277 
5278   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5279       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5280     return false;
5281   return true;
5282 }
5283 
5284 /// A helper function for createAddRecFromPHI to handle simple cases.
5285 ///
5286 /// This function tries to find an AddRec expression for the simplest (yet most
5287 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5288 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5289 /// technique for finding the AddRec expression.
5290 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5291                                                       Value *BEValueV,
5292                                                       Value *StartValueV) {
5293   const Loop *L = LI.getLoopFor(PN->getParent());
5294   assert(L && L->getHeader() == PN->getParent());
5295   assert(BEValueV && StartValueV);
5296 
5297   auto BO = MatchBinaryOp(BEValueV, DT);
5298   if (!BO)
5299     return nullptr;
5300 
5301   if (BO->Opcode != Instruction::Add)
5302     return nullptr;
5303 
5304   const SCEV *Accum = nullptr;
5305   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5306     Accum = getSCEV(BO->RHS);
5307   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5308     Accum = getSCEV(BO->LHS);
5309 
5310   if (!Accum)
5311     return nullptr;
5312 
5313   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5314   if (BO->IsNUW)
5315     Flags = setFlags(Flags, SCEV::FlagNUW);
5316   if (BO->IsNSW)
5317     Flags = setFlags(Flags, SCEV::FlagNSW);
5318 
5319   const SCEV *StartVal = getSCEV(StartValueV);
5320   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5321 
5322   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5323 
5324   // We can add Flags to the post-inc expression only if we
5325   // know that it is *undefined behavior* for BEValueV to
5326   // overflow.
5327   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5328     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5329       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5330 
5331   return PHISCEV;
5332 }
5333 
5334 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5335   const Loop *L = LI.getLoopFor(PN->getParent());
5336   if (!L || L->getHeader() != PN->getParent())
5337     return nullptr;
5338 
5339   // The loop may have multiple entrances or multiple exits; we can analyze
5340   // this phi as an addrec if it has a unique entry value and a unique
5341   // backedge value.
5342   Value *BEValueV = nullptr, *StartValueV = nullptr;
5343   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5344     Value *V = PN->getIncomingValue(i);
5345     if (L->contains(PN->getIncomingBlock(i))) {
5346       if (!BEValueV) {
5347         BEValueV = V;
5348       } else if (BEValueV != V) {
5349         BEValueV = nullptr;
5350         break;
5351       }
5352     } else if (!StartValueV) {
5353       StartValueV = V;
5354     } else if (StartValueV != V) {
5355       StartValueV = nullptr;
5356       break;
5357     }
5358   }
5359   if (!BEValueV || !StartValueV)
5360     return nullptr;
5361 
5362   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5363          "PHI node already processed?");
5364 
5365   // First, try to find AddRec expression without creating a fictituos symbolic
5366   // value for PN.
5367   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5368     return S;
5369 
5370   // Handle PHI node value symbolically.
5371   const SCEV *SymbolicName = getUnknown(PN);
5372   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5373 
5374   // Using this symbolic name for the PHI, analyze the value coming around
5375   // the back-edge.
5376   const SCEV *BEValue = getSCEV(BEValueV);
5377 
5378   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5379   // has a special value for the first iteration of the loop.
5380 
5381   // If the value coming around the backedge is an add with the symbolic
5382   // value we just inserted, then we found a simple induction variable!
5383   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5384     // If there is a single occurrence of the symbolic value, replace it
5385     // with a recurrence.
5386     unsigned FoundIndex = Add->getNumOperands();
5387     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5388       if (Add->getOperand(i) == SymbolicName)
5389         if (FoundIndex == e) {
5390           FoundIndex = i;
5391           break;
5392         }
5393 
5394     if (FoundIndex != Add->getNumOperands()) {
5395       // Create an add with everything but the specified operand.
5396       SmallVector<const SCEV *, 8> Ops;
5397       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5398         if (i != FoundIndex)
5399           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5400                                                              L, *this));
5401       const SCEV *Accum = getAddExpr(Ops);
5402 
5403       // This is not a valid addrec if the step amount is varying each
5404       // loop iteration, but is not itself an addrec in this loop.
5405       if (isLoopInvariant(Accum, L) ||
5406           (isa<SCEVAddRecExpr>(Accum) &&
5407            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5408         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5409 
5410         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5411           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5412             if (BO->IsNUW)
5413               Flags = setFlags(Flags, SCEV::FlagNUW);
5414             if (BO->IsNSW)
5415               Flags = setFlags(Flags, SCEV::FlagNSW);
5416           }
5417         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5418           // If the increment is an inbounds GEP, then we know the address
5419           // space cannot be wrapped around. We cannot make any guarantee
5420           // about signed or unsigned overflow because pointers are
5421           // unsigned but we may have a negative index from the base
5422           // pointer. We can guarantee that no unsigned wrap occurs if the
5423           // indices form a positive value.
5424           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5425             Flags = setFlags(Flags, SCEV::FlagNW);
5426 
5427             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5428             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5429               Flags = setFlags(Flags, SCEV::FlagNUW);
5430           }
5431 
5432           // We cannot transfer nuw and nsw flags from subtraction
5433           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5434           // for instance.
5435         }
5436 
5437         const SCEV *StartVal = getSCEV(StartValueV);
5438         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5439 
5440         // Okay, for the entire analysis of this edge we assumed the PHI
5441         // to be symbolic.  We now need to go back and purge all of the
5442         // entries for the scalars that use the symbolic expression.
5443         forgetSymbolicName(PN, SymbolicName);
5444         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5445 
5446         // We can add Flags to the post-inc expression only if we
5447         // know that it is *undefined behavior* for BEValueV to
5448         // overflow.
5449         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5450           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5451             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5452 
5453         return PHISCEV;
5454       }
5455     }
5456   } else {
5457     // Otherwise, this could be a loop like this:
5458     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5459     // In this case, j = {1,+,1}  and BEValue is j.
5460     // Because the other in-value of i (0) fits the evolution of BEValue
5461     // i really is an addrec evolution.
5462     //
5463     // We can generalize this saying that i is the shifted value of BEValue
5464     // by one iteration:
5465     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5466     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5467     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5468     if (Shifted != getCouldNotCompute() &&
5469         Start != getCouldNotCompute()) {
5470       const SCEV *StartVal = getSCEV(StartValueV);
5471       if (Start == StartVal) {
5472         // Okay, for the entire analysis of this edge we assumed the PHI
5473         // to be symbolic.  We now need to go back and purge all of the
5474         // entries for the scalars that use the symbolic expression.
5475         forgetSymbolicName(PN, SymbolicName);
5476         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5477         return Shifted;
5478       }
5479     }
5480   }
5481 
5482   // Remove the temporary PHI node SCEV that has been inserted while intending
5483   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5484   // as it will prevent later (possibly simpler) SCEV expressions to be added
5485   // to the ValueExprMap.
5486   eraseValueFromMap(PN);
5487 
5488   return nullptr;
5489 }
5490 
5491 // Checks if the SCEV S is available at BB.  S is considered available at BB
5492 // if S can be materialized at BB without introducing a fault.
5493 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5494                                BasicBlock *BB) {
5495   struct CheckAvailable {
5496     bool TraversalDone = false;
5497     bool Available = true;
5498 
5499     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5500     BasicBlock *BB = nullptr;
5501     DominatorTree &DT;
5502 
5503     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5504       : L(L), BB(BB), DT(DT) {}
5505 
5506     bool setUnavailable() {
5507       TraversalDone = true;
5508       Available = false;
5509       return false;
5510     }
5511 
5512     bool follow(const SCEV *S) {
5513       switch (S->getSCEVType()) {
5514       case scConstant:
5515       case scPtrToInt:
5516       case scTruncate:
5517       case scZeroExtend:
5518       case scSignExtend:
5519       case scAddExpr:
5520       case scMulExpr:
5521       case scUMaxExpr:
5522       case scSMaxExpr:
5523       case scUMinExpr:
5524       case scSMinExpr:
5525         // These expressions are available if their operand(s) is/are.
5526         return true;
5527 
5528       case scAddRecExpr: {
5529         // We allow add recurrences that are on the loop BB is in, or some
5530         // outer loop.  This guarantees availability because the value of the
5531         // add recurrence at BB is simply the "current" value of the induction
5532         // variable.  We can relax this in the future; for instance an add
5533         // recurrence on a sibling dominating loop is also available at BB.
5534         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5535         if (L && (ARLoop == L || ARLoop->contains(L)))
5536           return true;
5537 
5538         return setUnavailable();
5539       }
5540 
5541       case scUnknown: {
5542         // For SCEVUnknown, we check for simple dominance.
5543         const auto *SU = cast<SCEVUnknown>(S);
5544         Value *V = SU->getValue();
5545 
5546         if (isa<Argument>(V))
5547           return false;
5548 
5549         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5550           return false;
5551 
5552         return setUnavailable();
5553       }
5554 
5555       case scUDivExpr:
5556       case scCouldNotCompute:
5557         // We do not try to smart about these at all.
5558         return setUnavailable();
5559       }
5560       llvm_unreachable("Unknown SCEV kind!");
5561     }
5562 
5563     bool isDone() { return TraversalDone; }
5564   };
5565 
5566   CheckAvailable CA(L, BB, DT);
5567   SCEVTraversal<CheckAvailable> ST(CA);
5568 
5569   ST.visitAll(S);
5570   return CA.Available;
5571 }
5572 
5573 // Try to match a control flow sequence that branches out at BI and merges back
5574 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5575 // match.
5576 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5577                           Value *&C, Value *&LHS, Value *&RHS) {
5578   C = BI->getCondition();
5579 
5580   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5581   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5582 
5583   if (!LeftEdge.isSingleEdge())
5584     return false;
5585 
5586   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5587 
5588   Use &LeftUse = Merge->getOperandUse(0);
5589   Use &RightUse = Merge->getOperandUse(1);
5590 
5591   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5592     LHS = LeftUse;
5593     RHS = RightUse;
5594     return true;
5595   }
5596 
5597   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5598     LHS = RightUse;
5599     RHS = LeftUse;
5600     return true;
5601   }
5602 
5603   return false;
5604 }
5605 
5606 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5607   auto IsReachable =
5608       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5609   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5610     const Loop *L = LI.getLoopFor(PN->getParent());
5611 
5612     // We don't want to break LCSSA, even in a SCEV expression tree.
5613     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5614       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5615         return nullptr;
5616 
5617     // Try to match
5618     //
5619     //  br %cond, label %left, label %right
5620     // left:
5621     //  br label %merge
5622     // right:
5623     //  br label %merge
5624     // merge:
5625     //  V = phi [ %x, %left ], [ %y, %right ]
5626     //
5627     // as "select %cond, %x, %y"
5628 
5629     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5630     assert(IDom && "At least the entry block should dominate PN");
5631 
5632     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5633     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5634 
5635     if (BI && BI->isConditional() &&
5636         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5637         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5638         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5639       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5640   }
5641 
5642   return nullptr;
5643 }
5644 
5645 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5646   if (const SCEV *S = createAddRecFromPHI(PN))
5647     return S;
5648 
5649   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5650     return S;
5651 
5652   // If the PHI has a single incoming value, follow that value, unless the
5653   // PHI's incoming blocks are in a different loop, in which case doing so
5654   // risks breaking LCSSA form. Instcombine would normally zap these, but
5655   // it doesn't have DominatorTree information, so it may miss cases.
5656   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5657     if (LI.replacementPreservesLCSSAForm(PN, V))
5658       return getSCEV(V);
5659 
5660   // If it's not a loop phi, we can't handle it yet.
5661   return getUnknown(PN);
5662 }
5663 
5664 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5665                                                       Value *Cond,
5666                                                       Value *TrueVal,
5667                                                       Value *FalseVal) {
5668   // Handle "constant" branch or select. This can occur for instance when a
5669   // loop pass transforms an inner loop and moves on to process the outer loop.
5670   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5671     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5672 
5673   // Try to match some simple smax or umax patterns.
5674   auto *ICI = dyn_cast<ICmpInst>(Cond);
5675   if (!ICI)
5676     return getUnknown(I);
5677 
5678   Value *LHS = ICI->getOperand(0);
5679   Value *RHS = ICI->getOperand(1);
5680 
5681   switch (ICI->getPredicate()) {
5682   case ICmpInst::ICMP_SLT:
5683   case ICmpInst::ICMP_SLE:
5684   case ICmpInst::ICMP_ULT:
5685   case ICmpInst::ICMP_ULE:
5686     std::swap(LHS, RHS);
5687     LLVM_FALLTHROUGH;
5688   case ICmpInst::ICMP_SGT:
5689   case ICmpInst::ICMP_SGE:
5690   case ICmpInst::ICMP_UGT:
5691   case ICmpInst::ICMP_UGE:
5692     // a > b ? a+x : b+x  ->  max(a, b)+x
5693     // a > b ? b+x : a+x  ->  min(a, b)+x
5694     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5695       bool Signed = ICI->isSigned();
5696       const SCEV *LA = getSCEV(TrueVal);
5697       const SCEV *RA = getSCEV(FalseVal);
5698       const SCEV *LS = getSCEV(LHS);
5699       const SCEV *RS = getSCEV(RHS);
5700       if (LA->getType()->isPointerTy()) {
5701         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5702         // Need to make sure we can't produce weird expressions involving
5703         // negated pointers.
5704         if (LA == LS && RA == RS)
5705           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5706         if (LA == RS && RA == LS)
5707           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5708       }
5709       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5710         if (Op->getType()->isPointerTy()) {
5711           Op = getLosslessPtrToIntExpr(Op);
5712           if (isa<SCEVCouldNotCompute>(Op))
5713             return Op;
5714         }
5715         if (Signed)
5716           Op = getNoopOrSignExtend(Op, I->getType());
5717         else
5718           Op = getNoopOrZeroExtend(Op, I->getType());
5719         return Op;
5720       };
5721       LS = CoerceOperand(LS);
5722       RS = CoerceOperand(RS);
5723       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5724         break;
5725       const SCEV *LDiff = getMinusSCEV(LA, LS);
5726       const SCEV *RDiff = getMinusSCEV(RA, RS);
5727       if (LDiff == RDiff)
5728         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5729                           LDiff);
5730       LDiff = getMinusSCEV(LA, RS);
5731       RDiff = getMinusSCEV(RA, LS);
5732       if (LDiff == RDiff)
5733         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5734                           LDiff);
5735     }
5736     break;
5737   case ICmpInst::ICMP_NE:
5738     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5739     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5740         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5741       const SCEV *One = getOne(I->getType());
5742       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5743       const SCEV *LA = getSCEV(TrueVal);
5744       const SCEV *RA = getSCEV(FalseVal);
5745       const SCEV *LDiff = getMinusSCEV(LA, LS);
5746       const SCEV *RDiff = getMinusSCEV(RA, One);
5747       if (LDiff == RDiff)
5748         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5749     }
5750     break;
5751   case ICmpInst::ICMP_EQ:
5752     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5753     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5754         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5755       const SCEV *One = getOne(I->getType());
5756       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5757       const SCEV *LA = getSCEV(TrueVal);
5758       const SCEV *RA = getSCEV(FalseVal);
5759       const SCEV *LDiff = getMinusSCEV(LA, One);
5760       const SCEV *RDiff = getMinusSCEV(RA, LS);
5761       if (LDiff == RDiff)
5762         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5763     }
5764     break;
5765   default:
5766     break;
5767   }
5768 
5769   return getUnknown(I);
5770 }
5771 
5772 /// Expand GEP instructions into add and multiply operations. This allows them
5773 /// to be analyzed by regular SCEV code.
5774 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5775   // Don't attempt to analyze GEPs over unsized objects.
5776   if (!GEP->getSourceElementType()->isSized())
5777     return getUnknown(GEP);
5778 
5779   SmallVector<const SCEV *, 4> IndexExprs;
5780   for (Value *Index : GEP->indices())
5781     IndexExprs.push_back(getSCEV(Index));
5782   return getGEPExpr(GEP, IndexExprs);
5783 }
5784 
5785 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5786   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5787     return C->getAPInt().countTrailingZeros();
5788 
5789   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5790     return GetMinTrailingZeros(I->getOperand());
5791 
5792   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5793     return std::min(GetMinTrailingZeros(T->getOperand()),
5794                     (uint32_t)getTypeSizeInBits(T->getType()));
5795 
5796   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5797     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5798     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5799                ? getTypeSizeInBits(E->getType())
5800                : OpRes;
5801   }
5802 
5803   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5804     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5805     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5806                ? getTypeSizeInBits(E->getType())
5807                : OpRes;
5808   }
5809 
5810   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5811     // The result is the min of all operands results.
5812     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5813     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5814       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5815     return MinOpRes;
5816   }
5817 
5818   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5819     // The result is the sum of all operands results.
5820     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5821     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5822     for (unsigned i = 1, e = M->getNumOperands();
5823          SumOpRes != BitWidth && i != e; ++i)
5824       SumOpRes =
5825           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5826     return SumOpRes;
5827   }
5828 
5829   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5830     // The result is the min of all operands results.
5831     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5832     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5833       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5834     return MinOpRes;
5835   }
5836 
5837   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5838     // The result is the min of all operands results.
5839     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5840     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5841       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5842     return MinOpRes;
5843   }
5844 
5845   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5846     // The result is the min of all operands results.
5847     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5848     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5849       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5850     return MinOpRes;
5851   }
5852 
5853   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5854     // For a SCEVUnknown, ask ValueTracking.
5855     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5856     return Known.countMinTrailingZeros();
5857   }
5858 
5859   // SCEVUDivExpr
5860   return 0;
5861 }
5862 
5863 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5864   auto I = MinTrailingZerosCache.find(S);
5865   if (I != MinTrailingZerosCache.end())
5866     return I->second;
5867 
5868   uint32_t Result = GetMinTrailingZerosImpl(S);
5869   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5870   assert(InsertPair.second && "Should insert a new key");
5871   return InsertPair.first->second;
5872 }
5873 
5874 /// Helper method to assign a range to V from metadata present in the IR.
5875 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5876   if (Instruction *I = dyn_cast<Instruction>(V))
5877     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5878       return getConstantRangeFromMetadata(*MD);
5879 
5880   return None;
5881 }
5882 
5883 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5884                                      SCEV::NoWrapFlags Flags) {
5885   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5886     AddRec->setNoWrapFlags(Flags);
5887     UnsignedRanges.erase(AddRec);
5888     SignedRanges.erase(AddRec);
5889   }
5890 }
5891 
5892 ConstantRange ScalarEvolution::
5893 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5894   const DataLayout &DL = getDataLayout();
5895 
5896   unsigned BitWidth = getTypeSizeInBits(U->getType());
5897   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5898 
5899   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5900   // use information about the trip count to improve our available range.  Note
5901   // that the trip count independent cases are already handled by known bits.
5902   // WARNING: The definition of recurrence used here is subtly different than
5903   // the one used by AddRec (and thus most of this file).  Step is allowed to
5904   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5905   // and other addrecs in the same loop (for non-affine addrecs).  The code
5906   // below intentionally handles the case where step is not loop invariant.
5907   auto *P = dyn_cast<PHINode>(U->getValue());
5908   if (!P)
5909     return FullSet;
5910 
5911   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5912   // even the values that are not available in these blocks may come from them,
5913   // and this leads to false-positive recurrence test.
5914   for (auto *Pred : predecessors(P->getParent()))
5915     if (!DT.isReachableFromEntry(Pred))
5916       return FullSet;
5917 
5918   BinaryOperator *BO;
5919   Value *Start, *Step;
5920   if (!matchSimpleRecurrence(P, BO, Start, Step))
5921     return FullSet;
5922 
5923   // If we found a recurrence in reachable code, we must be in a loop. Note
5924   // that BO might be in some subloop of L, and that's completely okay.
5925   auto *L = LI.getLoopFor(P->getParent());
5926   assert(L && L->getHeader() == P->getParent());
5927   if (!L->contains(BO->getParent()))
5928     // NOTE: This bailout should be an assert instead.  However, asserting
5929     // the condition here exposes a case where LoopFusion is querying SCEV
5930     // with malformed loop information during the midst of the transform.
5931     // There doesn't appear to be an obvious fix, so for the moment bailout
5932     // until the caller issue can be fixed.  PR49566 tracks the bug.
5933     return FullSet;
5934 
5935   // TODO: Extend to other opcodes such as mul, and div
5936   switch (BO->getOpcode()) {
5937   default:
5938     return FullSet;
5939   case Instruction::AShr:
5940   case Instruction::LShr:
5941   case Instruction::Shl:
5942     break;
5943   };
5944 
5945   if (BO->getOperand(0) != P)
5946     // TODO: Handle the power function forms some day.
5947     return FullSet;
5948 
5949   unsigned TC = getSmallConstantMaxTripCount(L);
5950   if (!TC || TC >= BitWidth)
5951     return FullSet;
5952 
5953   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5954   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5955   assert(KnownStart.getBitWidth() == BitWidth &&
5956          KnownStep.getBitWidth() == BitWidth);
5957 
5958   // Compute total shift amount, being careful of overflow and bitwidths.
5959   auto MaxShiftAmt = KnownStep.getMaxValue();
5960   APInt TCAP(BitWidth, TC-1);
5961   bool Overflow = false;
5962   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5963   if (Overflow)
5964     return FullSet;
5965 
5966   switch (BO->getOpcode()) {
5967   default:
5968     llvm_unreachable("filtered out above");
5969   case Instruction::AShr: {
5970     // For each ashr, three cases:
5971     //   shift = 0 => unchanged value
5972     //   saturation => 0 or -1
5973     //   other => a value closer to zero (of the same sign)
5974     // Thus, the end value is closer to zero than the start.
5975     auto KnownEnd = KnownBits::ashr(KnownStart,
5976                                     KnownBits::makeConstant(TotalShift));
5977     if (KnownStart.isNonNegative())
5978       // Analogous to lshr (simply not yet canonicalized)
5979       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5980                                         KnownStart.getMaxValue() + 1);
5981     if (KnownStart.isNegative())
5982       // End >=u Start && End <=s Start
5983       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5984                                         KnownEnd.getMaxValue() + 1);
5985     break;
5986   }
5987   case Instruction::LShr: {
5988     // For each lshr, three cases:
5989     //   shift = 0 => unchanged value
5990     //   saturation => 0
5991     //   other => a smaller positive number
5992     // Thus, the low end of the unsigned range is the last value produced.
5993     auto KnownEnd = KnownBits::lshr(KnownStart,
5994                                     KnownBits::makeConstant(TotalShift));
5995     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5996                                       KnownStart.getMaxValue() + 1);
5997   }
5998   case Instruction::Shl: {
5999     // Iff no bits are shifted out, value increases on every shift.
6000     auto KnownEnd = KnownBits::shl(KnownStart,
6001                                    KnownBits::makeConstant(TotalShift));
6002     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6003       return ConstantRange(KnownStart.getMinValue(),
6004                            KnownEnd.getMaxValue() + 1);
6005     break;
6006   }
6007   };
6008   return FullSet;
6009 }
6010 
6011 /// Determine the range for a particular SCEV.  If SignHint is
6012 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6013 /// with a "cleaner" unsigned (resp. signed) representation.
6014 const ConstantRange &
6015 ScalarEvolution::getRangeRef(const SCEV *S,
6016                              ScalarEvolution::RangeSignHint SignHint) {
6017   DenseMap<const SCEV *, ConstantRange> &Cache =
6018       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6019                                                        : SignedRanges;
6020   ConstantRange::PreferredRangeType RangeType =
6021       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6022           ? ConstantRange::Unsigned : ConstantRange::Signed;
6023 
6024   // See if we've computed this range already.
6025   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6026   if (I != Cache.end())
6027     return I->second;
6028 
6029   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6030     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6031 
6032   unsigned BitWidth = getTypeSizeInBits(S->getType());
6033   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6034   using OBO = OverflowingBinaryOperator;
6035 
6036   // If the value has known zeros, the maximum value will have those known zeros
6037   // as well.
6038   uint32_t TZ = GetMinTrailingZeros(S);
6039   if (TZ != 0) {
6040     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6041       ConservativeResult =
6042           ConstantRange(APInt::getMinValue(BitWidth),
6043                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6044     else
6045       ConservativeResult = ConstantRange(
6046           APInt::getSignedMinValue(BitWidth),
6047           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6048   }
6049 
6050   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6051     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6052     unsigned WrapType = OBO::AnyWrap;
6053     if (Add->hasNoSignedWrap())
6054       WrapType |= OBO::NoSignedWrap;
6055     if (Add->hasNoUnsignedWrap())
6056       WrapType |= OBO::NoUnsignedWrap;
6057     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6058       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6059                           WrapType, RangeType);
6060     return setRange(Add, SignHint,
6061                     ConservativeResult.intersectWith(X, RangeType));
6062   }
6063 
6064   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6065     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6066     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6067       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6068     return setRange(Mul, SignHint,
6069                     ConservativeResult.intersectWith(X, RangeType));
6070   }
6071 
6072   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
6073     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
6074     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
6075       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
6076     return setRange(SMax, SignHint,
6077                     ConservativeResult.intersectWith(X, RangeType));
6078   }
6079 
6080   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
6081     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
6082     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
6083       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
6084     return setRange(UMax, SignHint,
6085                     ConservativeResult.intersectWith(X, RangeType));
6086   }
6087 
6088   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
6089     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
6090     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
6091       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
6092     return setRange(SMin, SignHint,
6093                     ConservativeResult.intersectWith(X, RangeType));
6094   }
6095 
6096   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
6097     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
6098     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
6099       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
6100     return setRange(UMin, SignHint,
6101                     ConservativeResult.intersectWith(X, RangeType));
6102   }
6103 
6104   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6105     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6106     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6107     return setRange(UDiv, SignHint,
6108                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6109   }
6110 
6111   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6112     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6113     return setRange(ZExt, SignHint,
6114                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6115                                                      RangeType));
6116   }
6117 
6118   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6119     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6120     return setRange(SExt, SignHint,
6121                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6122                                                      RangeType));
6123   }
6124 
6125   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6126     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6127     return setRange(PtrToInt, SignHint, X);
6128   }
6129 
6130   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6131     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6132     return setRange(Trunc, SignHint,
6133                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6134                                                      RangeType));
6135   }
6136 
6137   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6138     // If there's no unsigned wrap, the value will never be less than its
6139     // initial value.
6140     if (AddRec->hasNoUnsignedWrap()) {
6141       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6142       if (!UnsignedMinValue.isZero())
6143         ConservativeResult = ConservativeResult.intersectWith(
6144             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6145     }
6146 
6147     // If there's no signed wrap, and all the operands except initial value have
6148     // the same sign or zero, the value won't ever be:
6149     // 1: smaller than initial value if operands are non negative,
6150     // 2: bigger than initial value if operands are non positive.
6151     // For both cases, value can not cross signed min/max boundary.
6152     if (AddRec->hasNoSignedWrap()) {
6153       bool AllNonNeg = true;
6154       bool AllNonPos = true;
6155       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6156         if (!isKnownNonNegative(AddRec->getOperand(i)))
6157           AllNonNeg = false;
6158         if (!isKnownNonPositive(AddRec->getOperand(i)))
6159           AllNonPos = false;
6160       }
6161       if (AllNonNeg)
6162         ConservativeResult = ConservativeResult.intersectWith(
6163             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6164                                        APInt::getSignedMinValue(BitWidth)),
6165             RangeType);
6166       else if (AllNonPos)
6167         ConservativeResult = ConservativeResult.intersectWith(
6168             ConstantRange::getNonEmpty(
6169                 APInt::getSignedMinValue(BitWidth),
6170                 getSignedRangeMax(AddRec->getStart()) + 1),
6171             RangeType);
6172     }
6173 
6174     // TODO: non-affine addrec
6175     if (AddRec->isAffine()) {
6176       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6177       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6178           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6179         auto RangeFromAffine = getRangeForAffineAR(
6180             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6181             BitWidth);
6182         ConservativeResult =
6183             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6184 
6185         auto RangeFromFactoring = getRangeViaFactoring(
6186             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6187             BitWidth);
6188         ConservativeResult =
6189             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6190       }
6191 
6192       // Now try symbolic BE count and more powerful methods.
6193       if (UseExpensiveRangeSharpening) {
6194         const SCEV *SymbolicMaxBECount =
6195             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6196         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6197             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6198             AddRec->hasNoSelfWrap()) {
6199           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6200               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6201           ConservativeResult =
6202               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6203         }
6204       }
6205     }
6206 
6207     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6208   }
6209 
6210   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6211 
6212     // Check if the IR explicitly contains !range metadata.
6213     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6214     if (MDRange.hasValue())
6215       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6216                                                             RangeType);
6217 
6218     // Use facts about recurrences in the underlying IR.  Note that add
6219     // recurrences are AddRecExprs and thus don't hit this path.  This
6220     // primarily handles shift recurrences.
6221     auto CR = getRangeForUnknownRecurrence(U);
6222     ConservativeResult = ConservativeResult.intersectWith(CR);
6223 
6224     // See if ValueTracking can give us a useful range.
6225     const DataLayout &DL = getDataLayout();
6226     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6227     if (Known.getBitWidth() != BitWidth)
6228       Known = Known.zextOrTrunc(BitWidth);
6229 
6230     // ValueTracking may be able to compute a tighter result for the number of
6231     // sign bits than for the value of those sign bits.
6232     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6233     if (U->getType()->isPointerTy()) {
6234       // If the pointer size is larger than the index size type, this can cause
6235       // NS to be larger than BitWidth. So compensate for this.
6236       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6237       int ptrIdxDiff = ptrSize - BitWidth;
6238       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6239         NS -= ptrIdxDiff;
6240     }
6241 
6242     if (NS > 1) {
6243       // If we know any of the sign bits, we know all of the sign bits.
6244       if (!Known.Zero.getHiBits(NS).isZero())
6245         Known.Zero.setHighBits(NS);
6246       if (!Known.One.getHiBits(NS).isZero())
6247         Known.One.setHighBits(NS);
6248     }
6249 
6250     if (Known.getMinValue() != Known.getMaxValue() + 1)
6251       ConservativeResult = ConservativeResult.intersectWith(
6252           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6253           RangeType);
6254     if (NS > 1)
6255       ConservativeResult = ConservativeResult.intersectWith(
6256           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6257                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6258           RangeType);
6259 
6260     // A range of Phi is a subset of union of all ranges of its input.
6261     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6262       // Make sure that we do not run over cycled Phis.
6263       if (PendingPhiRanges.insert(Phi).second) {
6264         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6265         for (auto &Op : Phi->operands()) {
6266           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6267           RangeFromOps = RangeFromOps.unionWith(OpRange);
6268           // No point to continue if we already have a full set.
6269           if (RangeFromOps.isFullSet())
6270             break;
6271         }
6272         ConservativeResult =
6273             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6274         bool Erased = PendingPhiRanges.erase(Phi);
6275         assert(Erased && "Failed to erase Phi properly?");
6276         (void) Erased;
6277       }
6278     }
6279 
6280     return setRange(U, SignHint, std::move(ConservativeResult));
6281   }
6282 
6283   return setRange(S, SignHint, std::move(ConservativeResult));
6284 }
6285 
6286 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6287 // values that the expression can take. Initially, the expression has a value
6288 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6289 // argument defines if we treat Step as signed or unsigned.
6290 static ConstantRange getRangeForAffineARHelper(APInt Step,
6291                                                const ConstantRange &StartRange,
6292                                                const APInt &MaxBECount,
6293                                                unsigned BitWidth, bool Signed) {
6294   // If either Step or MaxBECount is 0, then the expression won't change, and we
6295   // just need to return the initial range.
6296   if (Step == 0 || MaxBECount == 0)
6297     return StartRange;
6298 
6299   // If we don't know anything about the initial value (i.e. StartRange is
6300   // FullRange), then we don't know anything about the final range either.
6301   // Return FullRange.
6302   if (StartRange.isFullSet())
6303     return ConstantRange::getFull(BitWidth);
6304 
6305   // If Step is signed and negative, then we use its absolute value, but we also
6306   // note that we're moving in the opposite direction.
6307   bool Descending = Signed && Step.isNegative();
6308 
6309   if (Signed)
6310     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6311     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6312     // This equations hold true due to the well-defined wrap-around behavior of
6313     // APInt.
6314     Step = Step.abs();
6315 
6316   // Check if Offset is more than full span of BitWidth. If it is, the
6317   // expression is guaranteed to overflow.
6318   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6319     return ConstantRange::getFull(BitWidth);
6320 
6321   // Offset is by how much the expression can change. Checks above guarantee no
6322   // overflow here.
6323   APInt Offset = Step * MaxBECount;
6324 
6325   // Minimum value of the final range will match the minimal value of StartRange
6326   // if the expression is increasing and will be decreased by Offset otherwise.
6327   // Maximum value of the final range will match the maximal value of StartRange
6328   // if the expression is decreasing and will be increased by Offset otherwise.
6329   APInt StartLower = StartRange.getLower();
6330   APInt StartUpper = StartRange.getUpper() - 1;
6331   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6332                                    : (StartUpper + std::move(Offset));
6333 
6334   // It's possible that the new minimum/maximum value will fall into the initial
6335   // range (due to wrap around). This means that the expression can take any
6336   // value in this bitwidth, and we have to return full range.
6337   if (StartRange.contains(MovedBoundary))
6338     return ConstantRange::getFull(BitWidth);
6339 
6340   APInt NewLower =
6341       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6342   APInt NewUpper =
6343       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6344   NewUpper += 1;
6345 
6346   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6347   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6348 }
6349 
6350 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6351                                                    const SCEV *Step,
6352                                                    const SCEV *MaxBECount,
6353                                                    unsigned BitWidth) {
6354   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6355          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6356          "Precondition!");
6357 
6358   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6359   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6360 
6361   // First, consider step signed.
6362   ConstantRange StartSRange = getSignedRange(Start);
6363   ConstantRange StepSRange = getSignedRange(Step);
6364 
6365   // If Step can be both positive and negative, we need to find ranges for the
6366   // maximum absolute step values in both directions and union them.
6367   ConstantRange SR =
6368       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6369                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6370   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6371                                               StartSRange, MaxBECountValue,
6372                                               BitWidth, /* Signed = */ true));
6373 
6374   // Next, consider step unsigned.
6375   ConstantRange UR = getRangeForAffineARHelper(
6376       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6377       MaxBECountValue, BitWidth, /* Signed = */ false);
6378 
6379   // Finally, intersect signed and unsigned ranges.
6380   return SR.intersectWith(UR, ConstantRange::Smallest);
6381 }
6382 
6383 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6384     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6385     ScalarEvolution::RangeSignHint SignHint) {
6386   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6387   assert(AddRec->hasNoSelfWrap() &&
6388          "This only works for non-self-wrapping AddRecs!");
6389   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6390   const SCEV *Step = AddRec->getStepRecurrence(*this);
6391   // Only deal with constant step to save compile time.
6392   if (!isa<SCEVConstant>(Step))
6393     return ConstantRange::getFull(BitWidth);
6394   // Let's make sure that we can prove that we do not self-wrap during
6395   // MaxBECount iterations. We need this because MaxBECount is a maximum
6396   // iteration count estimate, and we might infer nw from some exit for which we
6397   // do not know max exit count (or any other side reasoning).
6398   // TODO: Turn into assert at some point.
6399   if (getTypeSizeInBits(MaxBECount->getType()) >
6400       getTypeSizeInBits(AddRec->getType()))
6401     return ConstantRange::getFull(BitWidth);
6402   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6403   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6404   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6405   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6406   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6407                                          MaxItersWithoutWrap))
6408     return ConstantRange::getFull(BitWidth);
6409 
6410   ICmpInst::Predicate LEPred =
6411       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6412   ICmpInst::Predicate GEPred =
6413       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6414   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6415 
6416   // We know that there is no self-wrap. Let's take Start and End values and
6417   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6418   // the iteration. They either lie inside the range [Min(Start, End),
6419   // Max(Start, End)] or outside it:
6420   //
6421   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6422   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6423   //
6424   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6425   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6426   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6427   // Start <= End and step is positive, or Start >= End and step is negative.
6428   const SCEV *Start = AddRec->getStart();
6429   ConstantRange StartRange = getRangeRef(Start, SignHint);
6430   ConstantRange EndRange = getRangeRef(End, SignHint);
6431   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6432   // If they already cover full iteration space, we will know nothing useful
6433   // even if we prove what we want to prove.
6434   if (RangeBetween.isFullSet())
6435     return RangeBetween;
6436   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6437   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6438                                : RangeBetween.isWrappedSet();
6439   if (IsWrappedSet)
6440     return ConstantRange::getFull(BitWidth);
6441 
6442   if (isKnownPositive(Step) &&
6443       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6444     return RangeBetween;
6445   else if (isKnownNegative(Step) &&
6446            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6447     return RangeBetween;
6448   return ConstantRange::getFull(BitWidth);
6449 }
6450 
6451 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6452                                                     const SCEV *Step,
6453                                                     const SCEV *MaxBECount,
6454                                                     unsigned BitWidth) {
6455   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6456   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6457 
6458   struct SelectPattern {
6459     Value *Condition = nullptr;
6460     APInt TrueValue;
6461     APInt FalseValue;
6462 
6463     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6464                            const SCEV *S) {
6465       Optional<unsigned> CastOp;
6466       APInt Offset(BitWidth, 0);
6467 
6468       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6469              "Should be!");
6470 
6471       // Peel off a constant offset:
6472       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6473         // In the future we could consider being smarter here and handle
6474         // {Start+Step,+,Step} too.
6475         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6476           return;
6477 
6478         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6479         S = SA->getOperand(1);
6480       }
6481 
6482       // Peel off a cast operation
6483       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6484         CastOp = SCast->getSCEVType();
6485         S = SCast->getOperand();
6486       }
6487 
6488       using namespace llvm::PatternMatch;
6489 
6490       auto *SU = dyn_cast<SCEVUnknown>(S);
6491       const APInt *TrueVal, *FalseVal;
6492       if (!SU ||
6493           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6494                                           m_APInt(FalseVal)))) {
6495         Condition = nullptr;
6496         return;
6497       }
6498 
6499       TrueValue = *TrueVal;
6500       FalseValue = *FalseVal;
6501 
6502       // Re-apply the cast we peeled off earlier
6503       if (CastOp.hasValue())
6504         switch (*CastOp) {
6505         default:
6506           llvm_unreachable("Unknown SCEV cast type!");
6507 
6508         case scTruncate:
6509           TrueValue = TrueValue.trunc(BitWidth);
6510           FalseValue = FalseValue.trunc(BitWidth);
6511           break;
6512         case scZeroExtend:
6513           TrueValue = TrueValue.zext(BitWidth);
6514           FalseValue = FalseValue.zext(BitWidth);
6515           break;
6516         case scSignExtend:
6517           TrueValue = TrueValue.sext(BitWidth);
6518           FalseValue = FalseValue.sext(BitWidth);
6519           break;
6520         }
6521 
6522       // Re-apply the constant offset we peeled off earlier
6523       TrueValue += Offset;
6524       FalseValue += Offset;
6525     }
6526 
6527     bool isRecognized() { return Condition != nullptr; }
6528   };
6529 
6530   SelectPattern StartPattern(*this, BitWidth, Start);
6531   if (!StartPattern.isRecognized())
6532     return ConstantRange::getFull(BitWidth);
6533 
6534   SelectPattern StepPattern(*this, BitWidth, Step);
6535   if (!StepPattern.isRecognized())
6536     return ConstantRange::getFull(BitWidth);
6537 
6538   if (StartPattern.Condition != StepPattern.Condition) {
6539     // We don't handle this case today; but we could, by considering four
6540     // possibilities below instead of two. I'm not sure if there are cases where
6541     // that will help over what getRange already does, though.
6542     return ConstantRange::getFull(BitWidth);
6543   }
6544 
6545   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6546   // construct arbitrary general SCEV expressions here.  This function is called
6547   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6548   // say) can end up caching a suboptimal value.
6549 
6550   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6551   // C2352 and C2512 (otherwise it isn't needed).
6552 
6553   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6554   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6555   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6556   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6557 
6558   ConstantRange TrueRange =
6559       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6560   ConstantRange FalseRange =
6561       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6562 
6563   return TrueRange.unionWith(FalseRange);
6564 }
6565 
6566 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6567   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6568   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6569 
6570   // Return early if there are no flags to propagate to the SCEV.
6571   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6572   if (BinOp->hasNoUnsignedWrap())
6573     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6574   if (BinOp->hasNoSignedWrap())
6575     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6576   if (Flags == SCEV::FlagAnyWrap)
6577     return SCEV::FlagAnyWrap;
6578 
6579   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6580 }
6581 
6582 const Instruction *
6583 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
6584   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
6585     return &*AddRec->getLoop()->getHeader()->begin();
6586   if (auto *U = dyn_cast<SCEVUnknown>(S))
6587     if (auto *I = dyn_cast<Instruction>(U->getValue()))
6588       return I;
6589   return nullptr;
6590 }
6591 
6592 const Instruction *
6593 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
6594   // Do a bounded search of the def relation of the requested SCEVs.
6595   SmallSet<const SCEV *, 16> Visited;
6596   SmallVector<const SCEV *> Worklist;
6597   auto pushOp = [&](const SCEV *S) {
6598     if (!Visited.insert(S).second)
6599       return;
6600     // Threshold of 30 here is arbitrary.
6601     if (Visited.size() > 30)
6602       return;
6603     Worklist.push_back(S);
6604   };
6605 
6606   for (auto *S : Ops)
6607     pushOp(S);
6608 
6609   const Instruction *Bound = nullptr;
6610   while (!Worklist.empty()) {
6611     auto *S = Worklist.pop_back_val();
6612     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
6613       if (!Bound || DT.dominates(Bound, DefI))
6614         Bound = DefI;
6615     } else if (auto *S2 = dyn_cast<SCEVCastExpr>(S))
6616       for (auto *Op : S2->operands())
6617         pushOp(Op);
6618     else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S))
6619       for (auto *Op : S2->operands())
6620         pushOp(Op);
6621     else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S))
6622       for (auto *Op : S2->operands())
6623         pushOp(Op);
6624   }
6625   return Bound ? Bound : &*F.getEntryBlock().begin();
6626 }
6627 
6628 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
6629                                                         const Instruction *B) {
6630   if (A->getParent() == B->getParent() &&
6631       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6632                                                  B->getIterator()))
6633     return true;
6634 
6635   auto *BLoop = LI.getLoopFor(B->getParent());
6636   if (BLoop && BLoop->getHeader() == B->getParent() &&
6637       BLoop->getLoopPreheader() == A->getParent() &&
6638       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6639                                                  A->getParent()->end()) &&
6640       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
6641                                                  B->getIterator()))
6642     return true;
6643   return false;
6644 }
6645 
6646 
6647 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6648   // Only proceed if we can prove that I does not yield poison.
6649   if (!programUndefinedIfPoison(I))
6650     return false;
6651 
6652   // At this point we know that if I is executed, then it does not wrap
6653   // according to at least one of NSW or NUW. If I is not executed, then we do
6654   // not know if the calculation that I represents would wrap. Multiple
6655   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6656   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6657   // derived from other instructions that map to the same SCEV. We cannot make
6658   // that guarantee for cases where I is not executed. So we need to find a
6659   // upper bound on the defining scope for the SCEV, and prove that I is
6660   // executed every time we enter that scope.  When the bounding scope is a
6661   // loop (the common case), this is equivalent to proving I executes on every
6662   // iteration of that loop.
6663   SmallVector<const SCEV *> SCEVOps;
6664   for (const Use &Op : I->operands()) {
6665     // I could be an extractvalue from a call to an overflow intrinsic.
6666     // TODO: We can do better here in some cases.
6667     if (isSCEVable(Op->getType()))
6668       SCEVOps.push_back(getSCEV(Op));
6669   }
6670   auto *DefI = getDefiningScopeBound(SCEVOps);
6671   return isGuaranteedToTransferExecutionTo(DefI, I);
6672 }
6673 
6674 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6675   // If we know that \c I can never be poison period, then that's enough.
6676   if (isSCEVExprNeverPoison(I))
6677     return true;
6678 
6679   // For an add recurrence specifically, we assume that infinite loops without
6680   // side effects are undefined behavior, and then reason as follows:
6681   //
6682   // If the add recurrence is poison in any iteration, it is poison on all
6683   // future iterations (since incrementing poison yields poison). If the result
6684   // of the add recurrence is fed into the loop latch condition and the loop
6685   // does not contain any throws or exiting blocks other than the latch, we now
6686   // have the ability to "choose" whether the backedge is taken or not (by
6687   // choosing a sufficiently evil value for the poison feeding into the branch)
6688   // for every iteration including and after the one in which \p I first became
6689   // poison.  There are two possibilities (let's call the iteration in which \p
6690   // I first became poison as K):
6691   //
6692   //  1. In the set of iterations including and after K, the loop body executes
6693   //     no side effects.  In this case executing the backege an infinte number
6694   //     of times will yield undefined behavior.
6695   //
6696   //  2. In the set of iterations including and after K, the loop body executes
6697   //     at least one side effect.  In this case, that specific instance of side
6698   //     effect is control dependent on poison, which also yields undefined
6699   //     behavior.
6700 
6701   auto *ExitingBB = L->getExitingBlock();
6702   auto *LatchBB = L->getLoopLatch();
6703   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6704     return false;
6705 
6706   SmallPtrSet<const Instruction *, 16> Pushed;
6707   SmallVector<const Instruction *, 8> PoisonStack;
6708 
6709   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6710   // things that are known to be poison under that assumption go on the
6711   // PoisonStack.
6712   Pushed.insert(I);
6713   PoisonStack.push_back(I);
6714 
6715   bool LatchControlDependentOnPoison = false;
6716   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6717     const Instruction *Poison = PoisonStack.pop_back_val();
6718 
6719     for (auto *PoisonUser : Poison->users()) {
6720       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6721         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6722           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6723       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6724         assert(BI->isConditional() && "Only possibility!");
6725         if (BI->getParent() == LatchBB) {
6726           LatchControlDependentOnPoison = true;
6727           break;
6728         }
6729       }
6730     }
6731   }
6732 
6733   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6734 }
6735 
6736 ScalarEvolution::LoopProperties
6737 ScalarEvolution::getLoopProperties(const Loop *L) {
6738   using LoopProperties = ScalarEvolution::LoopProperties;
6739 
6740   auto Itr = LoopPropertiesCache.find(L);
6741   if (Itr == LoopPropertiesCache.end()) {
6742     auto HasSideEffects = [](Instruction *I) {
6743       if (auto *SI = dyn_cast<StoreInst>(I))
6744         return !SI->isSimple();
6745 
6746       return I->mayThrow() || I->mayWriteToMemory();
6747     };
6748 
6749     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6750                          /*HasNoSideEffects*/ true};
6751 
6752     for (auto *BB : L->getBlocks())
6753       for (auto &I : *BB) {
6754         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6755           LP.HasNoAbnormalExits = false;
6756         if (HasSideEffects(&I))
6757           LP.HasNoSideEffects = false;
6758         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6759           break; // We're already as pessimistic as we can get.
6760       }
6761 
6762     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6763     assert(InsertPair.second && "We just checked!");
6764     Itr = InsertPair.first;
6765   }
6766 
6767   return Itr->second;
6768 }
6769 
6770 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6771   // A mustprogress loop without side effects must be finite.
6772   // TODO: The check used here is very conservative.  It's only *specific*
6773   // side effects which are well defined in infinite loops.
6774   return isMustProgress(L) && loopHasNoSideEffects(L);
6775 }
6776 
6777 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6778   if (!isSCEVable(V->getType()))
6779     return getUnknown(V);
6780 
6781   if (Instruction *I = dyn_cast<Instruction>(V)) {
6782     // Don't attempt to analyze instructions in blocks that aren't
6783     // reachable. Such instructions don't matter, and they aren't required
6784     // to obey basic rules for definitions dominating uses which this
6785     // analysis depends on.
6786     if (!DT.isReachableFromEntry(I->getParent()))
6787       return getUnknown(UndefValue::get(V->getType()));
6788   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6789     return getConstant(CI);
6790   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6791     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6792   else if (!isa<ConstantExpr>(V))
6793     return getUnknown(V);
6794 
6795   Operator *U = cast<Operator>(V);
6796   if (auto BO = MatchBinaryOp(U, DT)) {
6797     switch (BO->Opcode) {
6798     case Instruction::Add: {
6799       // The simple thing to do would be to just call getSCEV on both operands
6800       // and call getAddExpr with the result. However if we're looking at a
6801       // bunch of things all added together, this can be quite inefficient,
6802       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6803       // Instead, gather up all the operands and make a single getAddExpr call.
6804       // LLVM IR canonical form means we need only traverse the left operands.
6805       SmallVector<const SCEV *, 4> AddOps;
6806       do {
6807         if (BO->Op) {
6808           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6809             AddOps.push_back(OpSCEV);
6810             break;
6811           }
6812 
6813           // If a NUW or NSW flag can be applied to the SCEV for this
6814           // addition, then compute the SCEV for this addition by itself
6815           // with a separate call to getAddExpr. We need to do that
6816           // instead of pushing the operands of the addition onto AddOps,
6817           // since the flags are only known to apply to this particular
6818           // addition - they may not apply to other additions that can be
6819           // formed with operands from AddOps.
6820           const SCEV *RHS = getSCEV(BO->RHS);
6821           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6822           if (Flags != SCEV::FlagAnyWrap) {
6823             const SCEV *LHS = getSCEV(BO->LHS);
6824             if (BO->Opcode == Instruction::Sub)
6825               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6826             else
6827               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6828             break;
6829           }
6830         }
6831 
6832         if (BO->Opcode == Instruction::Sub)
6833           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6834         else
6835           AddOps.push_back(getSCEV(BO->RHS));
6836 
6837         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6838         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6839                        NewBO->Opcode != Instruction::Sub)) {
6840           AddOps.push_back(getSCEV(BO->LHS));
6841           break;
6842         }
6843         BO = NewBO;
6844       } while (true);
6845 
6846       return getAddExpr(AddOps);
6847     }
6848 
6849     case Instruction::Mul: {
6850       SmallVector<const SCEV *, 4> MulOps;
6851       do {
6852         if (BO->Op) {
6853           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6854             MulOps.push_back(OpSCEV);
6855             break;
6856           }
6857 
6858           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6859           if (Flags != SCEV::FlagAnyWrap) {
6860             MulOps.push_back(
6861                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6862             break;
6863           }
6864         }
6865 
6866         MulOps.push_back(getSCEV(BO->RHS));
6867         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6868         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6869           MulOps.push_back(getSCEV(BO->LHS));
6870           break;
6871         }
6872         BO = NewBO;
6873       } while (true);
6874 
6875       return getMulExpr(MulOps);
6876     }
6877     case Instruction::UDiv:
6878       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6879     case Instruction::URem:
6880       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6881     case Instruction::Sub: {
6882       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6883       if (BO->Op)
6884         Flags = getNoWrapFlagsFromUB(BO->Op);
6885       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6886     }
6887     case Instruction::And:
6888       // For an expression like x&255 that merely masks off the high bits,
6889       // use zext(trunc(x)) as the SCEV expression.
6890       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6891         if (CI->isZero())
6892           return getSCEV(BO->RHS);
6893         if (CI->isMinusOne())
6894           return getSCEV(BO->LHS);
6895         const APInt &A = CI->getValue();
6896 
6897         // Instcombine's ShrinkDemandedConstant may strip bits out of
6898         // constants, obscuring what would otherwise be a low-bits mask.
6899         // Use computeKnownBits to compute what ShrinkDemandedConstant
6900         // knew about to reconstruct a low-bits mask value.
6901         unsigned LZ = A.countLeadingZeros();
6902         unsigned TZ = A.countTrailingZeros();
6903         unsigned BitWidth = A.getBitWidth();
6904         KnownBits Known(BitWidth);
6905         computeKnownBits(BO->LHS, Known, getDataLayout(),
6906                          0, &AC, nullptr, &DT);
6907 
6908         APInt EffectiveMask =
6909             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6910         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6911           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6912           const SCEV *LHS = getSCEV(BO->LHS);
6913           const SCEV *ShiftedLHS = nullptr;
6914           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6915             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6916               // For an expression like (x * 8) & 8, simplify the multiply.
6917               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6918               unsigned GCD = std::min(MulZeros, TZ);
6919               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6920               SmallVector<const SCEV*, 4> MulOps;
6921               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6922               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6923               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6924               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6925             }
6926           }
6927           if (!ShiftedLHS)
6928             ShiftedLHS = getUDivExpr(LHS, MulCount);
6929           return getMulExpr(
6930               getZeroExtendExpr(
6931                   getTruncateExpr(ShiftedLHS,
6932                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6933                   BO->LHS->getType()),
6934               MulCount);
6935         }
6936       }
6937       break;
6938 
6939     case Instruction::Or:
6940       // If the RHS of the Or is a constant, we may have something like:
6941       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6942       // optimizations will transparently handle this case.
6943       //
6944       // In order for this transformation to be safe, the LHS must be of the
6945       // form X*(2^n) and the Or constant must be less than 2^n.
6946       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6947         const SCEV *LHS = getSCEV(BO->LHS);
6948         const APInt &CIVal = CI->getValue();
6949         if (GetMinTrailingZeros(LHS) >=
6950             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6951           // Build a plain add SCEV.
6952           return getAddExpr(LHS, getSCEV(CI),
6953                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6954         }
6955       }
6956       break;
6957 
6958     case Instruction::Xor:
6959       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6960         // If the RHS of xor is -1, then this is a not operation.
6961         if (CI->isMinusOne())
6962           return getNotSCEV(getSCEV(BO->LHS));
6963 
6964         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6965         // This is a variant of the check for xor with -1, and it handles
6966         // the case where instcombine has trimmed non-demanded bits out
6967         // of an xor with -1.
6968         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6969           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6970             if (LBO->getOpcode() == Instruction::And &&
6971                 LCI->getValue() == CI->getValue())
6972               if (const SCEVZeroExtendExpr *Z =
6973                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6974                 Type *UTy = BO->LHS->getType();
6975                 const SCEV *Z0 = Z->getOperand();
6976                 Type *Z0Ty = Z0->getType();
6977                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6978 
6979                 // If C is a low-bits mask, the zero extend is serving to
6980                 // mask off the high bits. Complement the operand and
6981                 // re-apply the zext.
6982                 if (CI->getValue().isMask(Z0TySize))
6983                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6984 
6985                 // If C is a single bit, it may be in the sign-bit position
6986                 // before the zero-extend. In this case, represent the xor
6987                 // using an add, which is equivalent, and re-apply the zext.
6988                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6989                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6990                     Trunc.isSignMask())
6991                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6992                                            UTy);
6993               }
6994       }
6995       break;
6996 
6997     case Instruction::Shl:
6998       // Turn shift left of a constant amount into a multiply.
6999       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7000         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7001 
7002         // If the shift count is not less than the bitwidth, the result of
7003         // the shift is undefined. Don't try to analyze it, because the
7004         // resolution chosen here may differ from the resolution chosen in
7005         // other parts of the compiler.
7006         if (SA->getValue().uge(BitWidth))
7007           break;
7008 
7009         // We can safely preserve the nuw flag in all cases. It's also safe to
7010         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7011         // requires special handling. It can be preserved as long as we're not
7012         // left shifting by bitwidth - 1.
7013         auto Flags = SCEV::FlagAnyWrap;
7014         if (BO->Op) {
7015           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7016           if ((MulFlags & SCEV::FlagNSW) &&
7017               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7018             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7019           if (MulFlags & SCEV::FlagNUW)
7020             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7021         }
7022 
7023         Constant *X = ConstantInt::get(
7024             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7025         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
7026       }
7027       break;
7028 
7029     case Instruction::AShr: {
7030       // AShr X, C, where C is a constant.
7031       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7032       if (!CI)
7033         break;
7034 
7035       Type *OuterTy = BO->LHS->getType();
7036       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7037       // If the shift count is not less than the bitwidth, the result of
7038       // the shift is undefined. Don't try to analyze it, because the
7039       // resolution chosen here may differ from the resolution chosen in
7040       // other parts of the compiler.
7041       if (CI->getValue().uge(BitWidth))
7042         break;
7043 
7044       if (CI->isZero())
7045         return getSCEV(BO->LHS); // shift by zero --> noop
7046 
7047       uint64_t AShrAmt = CI->getZExtValue();
7048       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7049 
7050       Operator *L = dyn_cast<Operator>(BO->LHS);
7051       if (L && L->getOpcode() == Instruction::Shl) {
7052         // X = Shl A, n
7053         // Y = AShr X, m
7054         // Both n and m are constant.
7055 
7056         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7057         if (L->getOperand(1) == BO->RHS)
7058           // For a two-shift sext-inreg, i.e. n = m,
7059           // use sext(trunc(x)) as the SCEV expression.
7060           return getSignExtendExpr(
7061               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7062 
7063         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7064         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7065           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7066           if (ShlAmt > AShrAmt) {
7067             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7068             // expression. We already checked that ShlAmt < BitWidth, so
7069             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7070             // ShlAmt - AShrAmt < Amt.
7071             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7072                                             ShlAmt - AShrAmt);
7073             return getSignExtendExpr(
7074                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7075                 getConstant(Mul)), OuterTy);
7076           }
7077         }
7078       }
7079       break;
7080     }
7081     }
7082   }
7083 
7084   switch (U->getOpcode()) {
7085   case Instruction::Trunc:
7086     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7087 
7088   case Instruction::ZExt:
7089     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7090 
7091   case Instruction::SExt:
7092     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7093       // The NSW flag of a subtract does not always survive the conversion to
7094       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7095       // more likely to preserve NSW and allow later AddRec optimisations.
7096       //
7097       // NOTE: This is effectively duplicating this logic from getSignExtend:
7098       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7099       // but by that point the NSW information has potentially been lost.
7100       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7101         Type *Ty = U->getType();
7102         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7103         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7104         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7105       }
7106     }
7107     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7108 
7109   case Instruction::BitCast:
7110     // BitCasts are no-op casts so we just eliminate the cast.
7111     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7112       return getSCEV(U->getOperand(0));
7113     break;
7114 
7115   case Instruction::PtrToInt: {
7116     // Pointer to integer cast is straight-forward, so do model it.
7117     const SCEV *Op = getSCEV(U->getOperand(0));
7118     Type *DstIntTy = U->getType();
7119     // But only if effective SCEV (integer) type is wide enough to represent
7120     // all possible pointer values.
7121     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7122     if (isa<SCEVCouldNotCompute>(IntOp))
7123       return getUnknown(V);
7124     return IntOp;
7125   }
7126   case Instruction::IntToPtr:
7127     // Just don't deal with inttoptr casts.
7128     return getUnknown(V);
7129 
7130   case Instruction::SDiv:
7131     // If both operands are non-negative, this is just an udiv.
7132     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7133         isKnownNonNegative(getSCEV(U->getOperand(1))))
7134       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7135     break;
7136 
7137   case Instruction::SRem:
7138     // If both operands are non-negative, this is just an urem.
7139     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7140         isKnownNonNegative(getSCEV(U->getOperand(1))))
7141       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7142     break;
7143 
7144   case Instruction::GetElementPtr:
7145     return createNodeForGEP(cast<GEPOperator>(U));
7146 
7147   case Instruction::PHI:
7148     return createNodeForPHI(cast<PHINode>(U));
7149 
7150   case Instruction::Select:
7151     // U can also be a select constant expr, which let fall through.  Since
7152     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7153     // constant expressions cannot have instructions as operands, we'd have
7154     // returned getUnknown for a select constant expressions anyway.
7155     if (isa<Instruction>(U))
7156       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7157                                       U->getOperand(1), U->getOperand(2));
7158     break;
7159 
7160   case Instruction::Call:
7161   case Instruction::Invoke:
7162     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7163       return getSCEV(RV);
7164 
7165     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7166       switch (II->getIntrinsicID()) {
7167       case Intrinsic::abs:
7168         return getAbsExpr(
7169             getSCEV(II->getArgOperand(0)),
7170             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7171       case Intrinsic::umax:
7172         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7173                            getSCEV(II->getArgOperand(1)));
7174       case Intrinsic::umin:
7175         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7176                            getSCEV(II->getArgOperand(1)));
7177       case Intrinsic::smax:
7178         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7179                            getSCEV(II->getArgOperand(1)));
7180       case Intrinsic::smin:
7181         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7182                            getSCEV(II->getArgOperand(1)));
7183       case Intrinsic::usub_sat: {
7184         const SCEV *X = getSCEV(II->getArgOperand(0));
7185         const SCEV *Y = getSCEV(II->getArgOperand(1));
7186         const SCEV *ClampedY = getUMinExpr(X, Y);
7187         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7188       }
7189       case Intrinsic::uadd_sat: {
7190         const SCEV *X = getSCEV(II->getArgOperand(0));
7191         const SCEV *Y = getSCEV(II->getArgOperand(1));
7192         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7193         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7194       }
7195       case Intrinsic::start_loop_iterations:
7196         // A start_loop_iterations is just equivalent to the first operand for
7197         // SCEV purposes.
7198         return getSCEV(II->getArgOperand(0));
7199       default:
7200         break;
7201       }
7202     }
7203     break;
7204   }
7205 
7206   return getUnknown(V);
7207 }
7208 
7209 //===----------------------------------------------------------------------===//
7210 //                   Iteration Count Computation Code
7211 //
7212 
7213 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
7214                                                        bool Extend) {
7215   if (isa<SCEVCouldNotCompute>(ExitCount))
7216     return getCouldNotCompute();
7217 
7218   auto *ExitCountType = ExitCount->getType();
7219   assert(ExitCountType->isIntegerTy());
7220 
7221   if (!Extend)
7222     return getAddExpr(ExitCount, getOne(ExitCountType));
7223 
7224   auto *WiderType = Type::getIntNTy(ExitCountType->getContext(),
7225                                     1 + ExitCountType->getScalarSizeInBits());
7226   return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType),
7227                     getOne(WiderType));
7228 }
7229 
7230 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7231   if (!ExitCount)
7232     return 0;
7233 
7234   ConstantInt *ExitConst = ExitCount->getValue();
7235 
7236   // Guard against huge trip counts.
7237   if (ExitConst->getValue().getActiveBits() > 32)
7238     return 0;
7239 
7240   // In case of integer overflow, this returns 0, which is correct.
7241   return ((unsigned)ExitConst->getZExtValue()) + 1;
7242 }
7243 
7244 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7245   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7246   return getConstantTripCount(ExitCount);
7247 }
7248 
7249 unsigned
7250 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7251                                            const BasicBlock *ExitingBlock) {
7252   assert(ExitingBlock && "Must pass a non-null exiting block!");
7253   assert(L->isLoopExiting(ExitingBlock) &&
7254          "Exiting block must actually branch out of the loop!");
7255   const SCEVConstant *ExitCount =
7256       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7257   return getConstantTripCount(ExitCount);
7258 }
7259 
7260 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7261   const auto *MaxExitCount =
7262       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7263   return getConstantTripCount(MaxExitCount);
7264 }
7265 
7266 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7267   SmallVector<BasicBlock *, 8> ExitingBlocks;
7268   L->getExitingBlocks(ExitingBlocks);
7269 
7270   Optional<unsigned> Res = None;
7271   for (auto *ExitingBB : ExitingBlocks) {
7272     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7273     if (!Res)
7274       Res = Multiple;
7275     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7276   }
7277   return Res.getValueOr(1);
7278 }
7279 
7280 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7281                                                        const SCEV *ExitCount) {
7282   if (ExitCount == getCouldNotCompute())
7283     return 1;
7284 
7285   // Get the trip count
7286   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7287 
7288   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7289   if (!TC)
7290     // Attempt to factor more general cases. Returns the greatest power of
7291     // two divisor. If overflow happens, the trip count expression is still
7292     // divisible by the greatest power of 2 divisor returned.
7293     return 1U << std::min((uint32_t)31,
7294                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7295 
7296   ConstantInt *Result = TC->getValue();
7297 
7298   // Guard against huge trip counts (this requires checking
7299   // for zero to handle the case where the trip count == -1 and the
7300   // addition wraps).
7301   if (!Result || Result->getValue().getActiveBits() > 32 ||
7302       Result->getValue().getActiveBits() == 0)
7303     return 1;
7304 
7305   return (unsigned)Result->getZExtValue();
7306 }
7307 
7308 /// Returns the largest constant divisor of the trip count of this loop as a
7309 /// normal unsigned value, if possible. This means that the actual trip count is
7310 /// always a multiple of the returned value (don't forget the trip count could
7311 /// very well be zero as well!).
7312 ///
7313 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7314 /// multiple of a constant (which is also the case if the trip count is simply
7315 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7316 /// if the trip count is very large (>= 2^32).
7317 ///
7318 /// As explained in the comments for getSmallConstantTripCount, this assumes
7319 /// that control exits the loop via ExitingBlock.
7320 unsigned
7321 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7322                                               const BasicBlock *ExitingBlock) {
7323   assert(ExitingBlock && "Must pass a non-null exiting block!");
7324   assert(L->isLoopExiting(ExitingBlock) &&
7325          "Exiting block must actually branch out of the loop!");
7326   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7327   return getSmallConstantTripMultiple(L, ExitCount);
7328 }
7329 
7330 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7331                                           const BasicBlock *ExitingBlock,
7332                                           ExitCountKind Kind) {
7333   switch (Kind) {
7334   case Exact:
7335   case SymbolicMaximum:
7336     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7337   case ConstantMaximum:
7338     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7339   };
7340   llvm_unreachable("Invalid ExitCountKind!");
7341 }
7342 
7343 const SCEV *
7344 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7345                                                  SCEVUnionPredicate &Preds) {
7346   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7347 }
7348 
7349 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7350                                                    ExitCountKind Kind) {
7351   switch (Kind) {
7352   case Exact:
7353     return getBackedgeTakenInfo(L).getExact(L, this);
7354   case ConstantMaximum:
7355     return getBackedgeTakenInfo(L).getConstantMax(this);
7356   case SymbolicMaximum:
7357     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7358   };
7359   llvm_unreachable("Invalid ExitCountKind!");
7360 }
7361 
7362 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7363   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7364 }
7365 
7366 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7367 static void PushLoopPHIs(const Loop *L,
7368                          SmallVectorImpl<Instruction *> &Worklist,
7369                          SmallPtrSetImpl<Instruction *> &Visited) {
7370   BasicBlock *Header = L->getHeader();
7371 
7372   // Push all Loop-header PHIs onto the Worklist stack.
7373   for (PHINode &PN : Header->phis())
7374     if (Visited.insert(&PN).second)
7375       Worklist.push_back(&PN);
7376 }
7377 
7378 const ScalarEvolution::BackedgeTakenInfo &
7379 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7380   auto &BTI = getBackedgeTakenInfo(L);
7381   if (BTI.hasFullInfo())
7382     return BTI;
7383 
7384   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7385 
7386   if (!Pair.second)
7387     return Pair.first->second;
7388 
7389   BackedgeTakenInfo Result =
7390       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7391 
7392   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7393 }
7394 
7395 ScalarEvolution::BackedgeTakenInfo &
7396 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7397   // Initially insert an invalid entry for this loop. If the insertion
7398   // succeeds, proceed to actually compute a backedge-taken count and
7399   // update the value. The temporary CouldNotCompute value tells SCEV
7400   // code elsewhere that it shouldn't attempt to request a new
7401   // backedge-taken count, which could result in infinite recursion.
7402   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7403       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7404   if (!Pair.second)
7405     return Pair.first->second;
7406 
7407   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7408   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7409   // must be cleared in this scope.
7410   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7411 
7412   // In product build, there are no usage of statistic.
7413   (void)NumTripCountsComputed;
7414   (void)NumTripCountsNotComputed;
7415 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7416   const SCEV *BEExact = Result.getExact(L, this);
7417   if (BEExact != getCouldNotCompute()) {
7418     assert(isLoopInvariant(BEExact, L) &&
7419            isLoopInvariant(Result.getConstantMax(this), L) &&
7420            "Computed backedge-taken count isn't loop invariant for loop!");
7421     ++NumTripCountsComputed;
7422   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7423              isa<PHINode>(L->getHeader()->begin())) {
7424     // Only count loops that have phi nodes as not being computable.
7425     ++NumTripCountsNotComputed;
7426   }
7427 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7428 
7429   // Now that we know more about the trip count for this loop, forget any
7430   // existing SCEV values for PHI nodes in this loop since they are only
7431   // conservative estimates made without the benefit of trip count
7432   // information. This is similar to the code in forgetLoop, except that
7433   // it handles SCEVUnknown PHI nodes specially.
7434   if (Result.hasAnyInfo()) {
7435     SmallVector<Instruction *, 16> Worklist;
7436     SmallPtrSet<Instruction *, 8> Discovered;
7437     SmallVector<const SCEV *, 8> ToForget;
7438     PushLoopPHIs(L, Worklist, Discovered);
7439     while (!Worklist.empty()) {
7440       Instruction *I = Worklist.pop_back_val();
7441 
7442       ValueExprMapType::iterator It =
7443         ValueExprMap.find_as(static_cast<Value *>(I));
7444       if (It != ValueExprMap.end()) {
7445         const SCEV *Old = It->second;
7446 
7447         // SCEVUnknown for a PHI either means that it has an unrecognized
7448         // structure, or it's a PHI that's in the progress of being computed
7449         // by createNodeForPHI.  In the former case, additional loop trip
7450         // count information isn't going to change anything. In the later
7451         // case, createNodeForPHI will perform the necessary updates on its
7452         // own when it gets to that point.
7453         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7454           eraseValueFromMap(It->first);
7455           ToForget.push_back(Old);
7456         }
7457         if (PHINode *PN = dyn_cast<PHINode>(I))
7458           ConstantEvolutionLoopExitValue.erase(PN);
7459       }
7460 
7461       // Since we don't need to invalidate anything for correctness and we're
7462       // only invalidating to make SCEV's results more precise, we get to stop
7463       // early to avoid invalidating too much.  This is especially important in
7464       // cases like:
7465       //
7466       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7467       // loop0:
7468       //   %pn0 = phi
7469       //   ...
7470       // loop1:
7471       //   %pn1 = phi
7472       //   ...
7473       //
7474       // where both loop0 and loop1's backedge taken count uses the SCEV
7475       // expression for %v.  If we don't have the early stop below then in cases
7476       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7477       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7478       // count for loop1, effectively nullifying SCEV's trip count cache.
7479       for (auto *U : I->users())
7480         if (auto *I = dyn_cast<Instruction>(U)) {
7481           auto *LoopForUser = LI.getLoopFor(I->getParent());
7482           if (LoopForUser && L->contains(LoopForUser) &&
7483               Discovered.insert(I).second)
7484             Worklist.push_back(I);
7485         }
7486     }
7487     forgetMemoizedResults(ToForget);
7488   }
7489 
7490   // Re-lookup the insert position, since the call to
7491   // computeBackedgeTakenCount above could result in a
7492   // recusive call to getBackedgeTakenInfo (on a different
7493   // loop), which would invalidate the iterator computed
7494   // earlier.
7495   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7496 }
7497 
7498 void ScalarEvolution::forgetAllLoops() {
7499   // This method is intended to forget all info about loops. It should
7500   // invalidate caches as if the following happened:
7501   // - The trip counts of all loops have changed arbitrarily
7502   // - Every llvm::Value has been updated in place to produce a different
7503   // result.
7504   BackedgeTakenCounts.clear();
7505   PredicatedBackedgeTakenCounts.clear();
7506   LoopPropertiesCache.clear();
7507   ConstantEvolutionLoopExitValue.clear();
7508   ValueExprMap.clear();
7509   ValuesAtScopes.clear();
7510   LoopDispositions.clear();
7511   BlockDispositions.clear();
7512   UnsignedRanges.clear();
7513   SignedRanges.clear();
7514   ExprValueMap.clear();
7515   HasRecMap.clear();
7516   MinTrailingZerosCache.clear();
7517   PredicatedSCEVRewrites.clear();
7518 }
7519 
7520 void ScalarEvolution::forgetLoop(const Loop *L) {
7521   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7522   SmallVector<Instruction *, 32> Worklist;
7523   SmallPtrSet<Instruction *, 16> Visited;
7524   SmallVector<const SCEV *, 16> ToForget;
7525 
7526   // Iterate over all the loops and sub-loops to drop SCEV information.
7527   while (!LoopWorklist.empty()) {
7528     auto *CurrL = LoopWorklist.pop_back_val();
7529 
7530     // Drop any stored trip count value.
7531     BackedgeTakenCounts.erase(CurrL);
7532     PredicatedBackedgeTakenCounts.erase(CurrL);
7533 
7534     // Drop information about predicated SCEV rewrites for this loop.
7535     for (auto I = PredicatedSCEVRewrites.begin();
7536          I != PredicatedSCEVRewrites.end();) {
7537       std::pair<const SCEV *, const Loop *> Entry = I->first;
7538       if (Entry.second == CurrL)
7539         PredicatedSCEVRewrites.erase(I++);
7540       else
7541         ++I;
7542     }
7543 
7544     auto LoopUsersItr = LoopUsers.find(CurrL);
7545     if (LoopUsersItr != LoopUsers.end()) {
7546       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
7547                 LoopUsersItr->second.end());
7548       LoopUsers.erase(LoopUsersItr);
7549     }
7550 
7551     // Drop information about expressions based on loop-header PHIs.
7552     PushLoopPHIs(CurrL, Worklist, Visited);
7553 
7554     while (!Worklist.empty()) {
7555       Instruction *I = Worklist.pop_back_val();
7556 
7557       ValueExprMapType::iterator It =
7558           ValueExprMap.find_as(static_cast<Value *>(I));
7559       if (It != ValueExprMap.end()) {
7560         eraseValueFromMap(It->first);
7561         ToForget.push_back(It->second);
7562         if (PHINode *PN = dyn_cast<PHINode>(I))
7563           ConstantEvolutionLoopExitValue.erase(PN);
7564       }
7565 
7566       PushDefUseChildren(I, Worklist, Visited);
7567     }
7568 
7569     LoopPropertiesCache.erase(CurrL);
7570     // Forget all contained loops too, to avoid dangling entries in the
7571     // ValuesAtScopes map.
7572     LoopWorklist.append(CurrL->begin(), CurrL->end());
7573   }
7574   forgetMemoizedResults(ToForget);
7575 }
7576 
7577 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7578   while (Loop *Parent = L->getParentLoop())
7579     L = Parent;
7580   forgetLoop(L);
7581 }
7582 
7583 void ScalarEvolution::forgetValue(Value *V) {
7584   Instruction *I = dyn_cast<Instruction>(V);
7585   if (!I) return;
7586 
7587   // Drop information about expressions based on loop-header PHIs.
7588   SmallVector<Instruction *, 16> Worklist;
7589   SmallPtrSet<Instruction *, 8> Visited;
7590   SmallVector<const SCEV *, 8> ToForget;
7591   Worklist.push_back(I);
7592   Visited.insert(I);
7593 
7594   while (!Worklist.empty()) {
7595     I = Worklist.pop_back_val();
7596     ValueExprMapType::iterator It =
7597       ValueExprMap.find_as(static_cast<Value *>(I));
7598     if (It != ValueExprMap.end()) {
7599       eraseValueFromMap(It->first);
7600       ToForget.push_back(It->second);
7601       if (PHINode *PN = dyn_cast<PHINode>(I))
7602         ConstantEvolutionLoopExitValue.erase(PN);
7603     }
7604 
7605     PushDefUseChildren(I, Worklist, Visited);
7606   }
7607   forgetMemoizedResults(ToForget);
7608 }
7609 
7610 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7611   LoopDispositions.clear();
7612 }
7613 
7614 /// Get the exact loop backedge taken count considering all loop exits. A
7615 /// computable result can only be returned for loops with all exiting blocks
7616 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7617 /// is never skipped. This is a valid assumption as long as the loop exits via
7618 /// that test. For precise results, it is the caller's responsibility to specify
7619 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7620 const SCEV *
7621 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7622                                              SCEVUnionPredicate *Preds) const {
7623   // If any exits were not computable, the loop is not computable.
7624   if (!isComplete() || ExitNotTaken.empty())
7625     return SE->getCouldNotCompute();
7626 
7627   const BasicBlock *Latch = L->getLoopLatch();
7628   // All exiting blocks we have collected must dominate the only backedge.
7629   if (!Latch)
7630     return SE->getCouldNotCompute();
7631 
7632   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7633   // count is simply a minimum out of all these calculated exit counts.
7634   SmallVector<const SCEV *, 2> Ops;
7635   for (auto &ENT : ExitNotTaken) {
7636     const SCEV *BECount = ENT.ExactNotTaken;
7637     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7638     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7639            "We should only have known counts for exiting blocks that dominate "
7640            "latch!");
7641 
7642     Ops.push_back(BECount);
7643 
7644     if (Preds && !ENT.hasAlwaysTruePredicate())
7645       Preds->add(ENT.Predicate.get());
7646 
7647     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7648            "Predicate should be always true!");
7649   }
7650 
7651   return SE->getUMinFromMismatchedTypes(Ops);
7652 }
7653 
7654 /// Get the exact not taken count for this loop exit.
7655 const SCEV *
7656 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7657                                              ScalarEvolution *SE) const {
7658   for (auto &ENT : ExitNotTaken)
7659     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7660       return ENT.ExactNotTaken;
7661 
7662   return SE->getCouldNotCompute();
7663 }
7664 
7665 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7666     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7667   for (auto &ENT : ExitNotTaken)
7668     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7669       return ENT.MaxNotTaken;
7670 
7671   return SE->getCouldNotCompute();
7672 }
7673 
7674 /// getConstantMax - Get the constant max backedge taken count for the loop.
7675 const SCEV *
7676 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7677   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7678     return !ENT.hasAlwaysTruePredicate();
7679   };
7680 
7681   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
7682     return SE->getCouldNotCompute();
7683 
7684   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7685           isa<SCEVConstant>(getConstantMax())) &&
7686          "No point in having a non-constant max backedge taken count!");
7687   return getConstantMax();
7688 }
7689 
7690 const SCEV *
7691 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7692                                                    ScalarEvolution *SE) {
7693   if (!SymbolicMax)
7694     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7695   return SymbolicMax;
7696 }
7697 
7698 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7699     ScalarEvolution *SE) const {
7700   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7701     return !ENT.hasAlwaysTruePredicate();
7702   };
7703   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7704 }
7705 
7706 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const {
7707   return Operands.contains(S);
7708 }
7709 
7710 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7711     : ExitLimit(E, E, false, None) {
7712 }
7713 
7714 ScalarEvolution::ExitLimit::ExitLimit(
7715     const SCEV *E, const SCEV *M, bool MaxOrZero,
7716     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7717     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7718   // If we prove the max count is zero, so is the symbolic bound.  This happens
7719   // in practice due to differences in a) how context sensitive we've chosen
7720   // to be and b) how we reason about bounds impied by UB.
7721   if (MaxNotTaken->isZero())
7722     ExactNotTaken = MaxNotTaken;
7723 
7724   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7725           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7726          "Exact is not allowed to be less precise than Max");
7727   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7728           isa<SCEVConstant>(MaxNotTaken)) &&
7729          "No point in having a non-constant max backedge taken count!");
7730   for (auto *PredSet : PredSetList)
7731     for (auto *P : *PredSet)
7732       addPredicate(P);
7733   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
7734          "Backedge count should be int");
7735   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
7736          "Max backedge count should be int");
7737 }
7738 
7739 ScalarEvolution::ExitLimit::ExitLimit(
7740     const SCEV *E, const SCEV *M, bool MaxOrZero,
7741     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7742     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7743 }
7744 
7745 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7746                                       bool MaxOrZero)
7747     : ExitLimit(E, M, MaxOrZero, None) {
7748 }
7749 
7750 class SCEVRecordOperands {
7751   SmallPtrSetImpl<const SCEV *> &Operands;
7752 
7753 public:
7754   SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands)
7755     : Operands(Operands) {}
7756   bool follow(const SCEV *S) {
7757     Operands.insert(S);
7758     return true;
7759   }
7760   bool isDone() { return false; }
7761 };
7762 
7763 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7764 /// computable exit into a persistent ExitNotTakenInfo array.
7765 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7766     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7767     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7768     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7769   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7770 
7771   ExitNotTaken.reserve(ExitCounts.size());
7772   std::transform(
7773       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7774       [&](const EdgeExitInfo &EEI) {
7775         BasicBlock *ExitBB = EEI.first;
7776         const ExitLimit &EL = EEI.second;
7777         if (EL.Predicates.empty())
7778           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7779                                   nullptr);
7780 
7781         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7782         for (auto *Pred : EL.Predicates)
7783           Predicate->add(Pred);
7784 
7785         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7786                                 std::move(Predicate));
7787       });
7788   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7789           isa<SCEVConstant>(ConstantMax)) &&
7790          "No point in having a non-constant max backedge taken count!");
7791 
7792   SCEVRecordOperands RecordOperands(Operands);
7793   SCEVTraversal<SCEVRecordOperands> ST(RecordOperands);
7794   if (!isa<SCEVCouldNotCompute>(ConstantMax))
7795     ST.visitAll(ConstantMax);
7796   for (auto &ENT : ExitNotTaken)
7797     if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken))
7798       ST.visitAll(ENT.ExactNotTaken);
7799 }
7800 
7801 /// Compute the number of times the backedge of the specified loop will execute.
7802 ScalarEvolution::BackedgeTakenInfo
7803 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7804                                            bool AllowPredicates) {
7805   SmallVector<BasicBlock *, 8> ExitingBlocks;
7806   L->getExitingBlocks(ExitingBlocks);
7807 
7808   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7809 
7810   SmallVector<EdgeExitInfo, 4> ExitCounts;
7811   bool CouldComputeBECount = true;
7812   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7813   const SCEV *MustExitMaxBECount = nullptr;
7814   const SCEV *MayExitMaxBECount = nullptr;
7815   bool MustExitMaxOrZero = false;
7816 
7817   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7818   // and compute maxBECount.
7819   // Do a union of all the predicates here.
7820   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7821     BasicBlock *ExitBB = ExitingBlocks[i];
7822 
7823     // We canonicalize untaken exits to br (constant), ignore them so that
7824     // proving an exit untaken doesn't negatively impact our ability to reason
7825     // about the loop as whole.
7826     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7827       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7828         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7829         if (ExitIfTrue == CI->isZero())
7830           continue;
7831       }
7832 
7833     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7834 
7835     assert((AllowPredicates || EL.Predicates.empty()) &&
7836            "Predicated exit limit when predicates are not allowed!");
7837 
7838     // 1. For each exit that can be computed, add an entry to ExitCounts.
7839     // CouldComputeBECount is true only if all exits can be computed.
7840     if (EL.ExactNotTaken == getCouldNotCompute())
7841       // We couldn't compute an exact value for this exit, so
7842       // we won't be able to compute an exact value for the loop.
7843       CouldComputeBECount = false;
7844     else
7845       ExitCounts.emplace_back(ExitBB, EL);
7846 
7847     // 2. Derive the loop's MaxBECount from each exit's max number of
7848     // non-exiting iterations. Partition the loop exits into two kinds:
7849     // LoopMustExits and LoopMayExits.
7850     //
7851     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7852     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7853     // MaxBECount is the minimum EL.MaxNotTaken of computable
7854     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7855     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7856     // computable EL.MaxNotTaken.
7857     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7858         DT.dominates(ExitBB, Latch)) {
7859       if (!MustExitMaxBECount) {
7860         MustExitMaxBECount = EL.MaxNotTaken;
7861         MustExitMaxOrZero = EL.MaxOrZero;
7862       } else {
7863         MustExitMaxBECount =
7864             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7865       }
7866     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7867       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7868         MayExitMaxBECount = EL.MaxNotTaken;
7869       else {
7870         MayExitMaxBECount =
7871             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7872       }
7873     }
7874   }
7875   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7876     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7877   // The loop backedge will be taken the maximum or zero times if there's
7878   // a single exit that must be taken the maximum or zero times.
7879   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7880   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7881                            MaxBECount, MaxOrZero);
7882 }
7883 
7884 ScalarEvolution::ExitLimit
7885 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7886                                       bool AllowPredicates) {
7887   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7888   // If our exiting block does not dominate the latch, then its connection with
7889   // loop's exit limit may be far from trivial.
7890   const BasicBlock *Latch = L->getLoopLatch();
7891   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7892     return getCouldNotCompute();
7893 
7894   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7895   Instruction *Term = ExitingBlock->getTerminator();
7896   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7897     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7898     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7899     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7900            "It should have one successor in loop and one exit block!");
7901     // Proceed to the next level to examine the exit condition expression.
7902     return computeExitLimitFromCond(
7903         L, BI->getCondition(), ExitIfTrue,
7904         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7905   }
7906 
7907   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7908     // For switch, make sure that there is a single exit from the loop.
7909     BasicBlock *Exit = nullptr;
7910     for (auto *SBB : successors(ExitingBlock))
7911       if (!L->contains(SBB)) {
7912         if (Exit) // Multiple exit successors.
7913           return getCouldNotCompute();
7914         Exit = SBB;
7915       }
7916     assert(Exit && "Exiting block must have at least one exit");
7917     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7918                                                 /*ControlsExit=*/IsOnlyExit);
7919   }
7920 
7921   return getCouldNotCompute();
7922 }
7923 
7924 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7925     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7926     bool ControlsExit, bool AllowPredicates) {
7927   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7928   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7929                                         ControlsExit, AllowPredicates);
7930 }
7931 
7932 Optional<ScalarEvolution::ExitLimit>
7933 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7934                                       bool ExitIfTrue, bool ControlsExit,
7935                                       bool AllowPredicates) {
7936   (void)this->L;
7937   (void)this->ExitIfTrue;
7938   (void)this->AllowPredicates;
7939 
7940   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7941          this->AllowPredicates == AllowPredicates &&
7942          "Variance in assumed invariant key components!");
7943   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7944   if (Itr == TripCountMap.end())
7945     return None;
7946   return Itr->second;
7947 }
7948 
7949 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7950                                              bool ExitIfTrue,
7951                                              bool ControlsExit,
7952                                              bool AllowPredicates,
7953                                              const ExitLimit &EL) {
7954   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7955          this->AllowPredicates == AllowPredicates &&
7956          "Variance in assumed invariant key components!");
7957 
7958   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7959   assert(InsertResult.second && "Expected successful insertion!");
7960   (void)InsertResult;
7961   (void)ExitIfTrue;
7962 }
7963 
7964 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7965     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7966     bool ControlsExit, bool AllowPredicates) {
7967 
7968   if (auto MaybeEL =
7969           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7970     return *MaybeEL;
7971 
7972   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7973                                               ControlsExit, AllowPredicates);
7974   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7975   return EL;
7976 }
7977 
7978 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7979     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7980     bool ControlsExit, bool AllowPredicates) {
7981   // Handle BinOp conditions (And, Or).
7982   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7983           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7984     return *LimitFromBinOp;
7985 
7986   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7987   // Proceed to the next level to examine the icmp.
7988   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7989     ExitLimit EL =
7990         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7991     if (EL.hasFullInfo() || !AllowPredicates)
7992       return EL;
7993 
7994     // Try again, but use SCEV predicates this time.
7995     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7996                                     /*AllowPredicates=*/true);
7997   }
7998 
7999   // Check for a constant condition. These are normally stripped out by
8000   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8001   // preserve the CFG and is temporarily leaving constant conditions
8002   // in place.
8003   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8004     if (ExitIfTrue == !CI->getZExtValue())
8005       // The backedge is always taken.
8006       return getCouldNotCompute();
8007     else
8008       // The backedge is never taken.
8009       return getZero(CI->getType());
8010   }
8011 
8012   // If it's not an integer or pointer comparison then compute it the hard way.
8013   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8014 }
8015 
8016 Optional<ScalarEvolution::ExitLimit>
8017 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8018     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8019     bool ControlsExit, bool AllowPredicates) {
8020   // Check if the controlling expression for this loop is an And or Or.
8021   Value *Op0, *Op1;
8022   bool IsAnd = false;
8023   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8024     IsAnd = true;
8025   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8026     IsAnd = false;
8027   else
8028     return None;
8029 
8030   // EitherMayExit is true in these two cases:
8031   //   br (and Op0 Op1), loop, exit
8032   //   br (or  Op0 Op1), exit, loop
8033   bool EitherMayExit = IsAnd ^ ExitIfTrue;
8034   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
8035                                                  ControlsExit && !EitherMayExit,
8036                                                  AllowPredicates);
8037   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
8038                                                  ControlsExit && !EitherMayExit,
8039                                                  AllowPredicates);
8040 
8041   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8042   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
8043   if (isa<ConstantInt>(Op1))
8044     return Op1 == NeutralElement ? EL0 : EL1;
8045   if (isa<ConstantInt>(Op0))
8046     return Op0 == NeutralElement ? EL1 : EL0;
8047 
8048   const SCEV *BECount = getCouldNotCompute();
8049   const SCEV *MaxBECount = getCouldNotCompute();
8050   if (EitherMayExit) {
8051     // Both conditions must be same for the loop to continue executing.
8052     // Choose the less conservative count.
8053     // If ExitCond is a short-circuit form (select), using
8054     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
8055     // To see the detailed examples, please see
8056     // test/Analysis/ScalarEvolution/exit-count-select.ll
8057     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
8058     if (!PoisonSafe)
8059       // Even if ExitCond is select, we can safely derive BECount using both
8060       // EL0 and EL1 in these cases:
8061       // (1) EL0.ExactNotTaken is non-zero
8062       // (2) EL1.ExactNotTaken is non-poison
8063       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
8064       //     it cannot be umin(0, ..))
8065       // The PoisonSafe assignment below is simplified and the assertion after
8066       // BECount calculation fully guarantees the condition (3).
8067       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
8068                    isa<SCEVConstant>(EL1.ExactNotTaken);
8069     if (EL0.ExactNotTaken != getCouldNotCompute() &&
8070         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
8071       BECount =
8072           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
8073 
8074       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
8075       // it should have been simplified to zero (see the condition (3) above)
8076       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
8077              BECount->isZero());
8078     }
8079     if (EL0.MaxNotTaken == getCouldNotCompute())
8080       MaxBECount = EL1.MaxNotTaken;
8081     else if (EL1.MaxNotTaken == getCouldNotCompute())
8082       MaxBECount = EL0.MaxNotTaken;
8083     else
8084       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8085   } else {
8086     // Both conditions must be same at the same time for the loop to exit.
8087     // For now, be conservative.
8088     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8089       BECount = EL0.ExactNotTaken;
8090   }
8091 
8092   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8093   // to be more aggressive when computing BECount than when computing
8094   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8095   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8096   // to not.
8097   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8098       !isa<SCEVCouldNotCompute>(BECount))
8099     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8100 
8101   return ExitLimit(BECount, MaxBECount, false,
8102                    { &EL0.Predicates, &EL1.Predicates });
8103 }
8104 
8105 ScalarEvolution::ExitLimit
8106 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8107                                           ICmpInst *ExitCond,
8108                                           bool ExitIfTrue,
8109                                           bool ControlsExit,
8110                                           bool AllowPredicates) {
8111   // If the condition was exit on true, convert the condition to exit on false
8112   ICmpInst::Predicate Pred;
8113   if (!ExitIfTrue)
8114     Pred = ExitCond->getPredicate();
8115   else
8116     Pred = ExitCond->getInversePredicate();
8117   const ICmpInst::Predicate OriginalPred = Pred;
8118 
8119   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8120   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8121 
8122   // Try to evaluate any dependencies out of the loop.
8123   LHS = getSCEVAtScope(LHS, L);
8124   RHS = getSCEVAtScope(RHS, L);
8125 
8126   // At this point, we would like to compute how many iterations of the
8127   // loop the predicate will return true for these inputs.
8128   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8129     // If there is a loop-invariant, force it into the RHS.
8130     std::swap(LHS, RHS);
8131     Pred = ICmpInst::getSwappedPredicate(Pred);
8132   }
8133 
8134   // Simplify the operands before analyzing them.
8135   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8136 
8137   // If we have a comparison of a chrec against a constant, try to use value
8138   // ranges to answer this query.
8139   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8140     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8141       if (AddRec->getLoop() == L) {
8142         // Form the constant range.
8143         ConstantRange CompRange =
8144             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8145 
8146         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8147         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8148       }
8149 
8150   switch (Pred) {
8151   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8152     // Convert to: while (X-Y != 0)
8153     if (LHS->getType()->isPointerTy()) {
8154       LHS = getLosslessPtrToIntExpr(LHS);
8155       if (isa<SCEVCouldNotCompute>(LHS))
8156         return LHS;
8157     }
8158     if (RHS->getType()->isPointerTy()) {
8159       RHS = getLosslessPtrToIntExpr(RHS);
8160       if (isa<SCEVCouldNotCompute>(RHS))
8161         return RHS;
8162     }
8163     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8164                                 AllowPredicates);
8165     if (EL.hasAnyInfo()) return EL;
8166     break;
8167   }
8168   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8169     // Convert to: while (X-Y == 0)
8170     if (LHS->getType()->isPointerTy()) {
8171       LHS = getLosslessPtrToIntExpr(LHS);
8172       if (isa<SCEVCouldNotCompute>(LHS))
8173         return LHS;
8174     }
8175     if (RHS->getType()->isPointerTy()) {
8176       RHS = getLosslessPtrToIntExpr(RHS);
8177       if (isa<SCEVCouldNotCompute>(RHS))
8178         return RHS;
8179     }
8180     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8181     if (EL.hasAnyInfo()) return EL;
8182     break;
8183   }
8184   case ICmpInst::ICMP_SLT:
8185   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8186     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8187     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8188                                     AllowPredicates);
8189     if (EL.hasAnyInfo()) return EL;
8190     break;
8191   }
8192   case ICmpInst::ICMP_SGT:
8193   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8194     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8195     ExitLimit EL =
8196         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8197                             AllowPredicates);
8198     if (EL.hasAnyInfo()) return EL;
8199     break;
8200   }
8201   default:
8202     break;
8203   }
8204 
8205   auto *ExhaustiveCount =
8206       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8207 
8208   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8209     return ExhaustiveCount;
8210 
8211   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8212                                       ExitCond->getOperand(1), L, OriginalPred);
8213 }
8214 
8215 ScalarEvolution::ExitLimit
8216 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8217                                                       SwitchInst *Switch,
8218                                                       BasicBlock *ExitingBlock,
8219                                                       bool ControlsExit) {
8220   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8221 
8222   // Give up if the exit is the default dest of a switch.
8223   if (Switch->getDefaultDest() == ExitingBlock)
8224     return getCouldNotCompute();
8225 
8226   assert(L->contains(Switch->getDefaultDest()) &&
8227          "Default case must not exit the loop!");
8228   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8229   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8230 
8231   // while (X != Y) --> while (X-Y != 0)
8232   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8233   if (EL.hasAnyInfo())
8234     return EL;
8235 
8236   return getCouldNotCompute();
8237 }
8238 
8239 static ConstantInt *
8240 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8241                                 ScalarEvolution &SE) {
8242   const SCEV *InVal = SE.getConstant(C);
8243   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8244   assert(isa<SCEVConstant>(Val) &&
8245          "Evaluation of SCEV at constant didn't fold correctly?");
8246   return cast<SCEVConstant>(Val)->getValue();
8247 }
8248 
8249 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8250     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8251   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8252   if (!RHS)
8253     return getCouldNotCompute();
8254 
8255   const BasicBlock *Latch = L->getLoopLatch();
8256   if (!Latch)
8257     return getCouldNotCompute();
8258 
8259   const BasicBlock *Predecessor = L->getLoopPredecessor();
8260   if (!Predecessor)
8261     return getCouldNotCompute();
8262 
8263   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8264   // Return LHS in OutLHS and shift_opt in OutOpCode.
8265   auto MatchPositiveShift =
8266       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8267 
8268     using namespace PatternMatch;
8269 
8270     ConstantInt *ShiftAmt;
8271     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8272       OutOpCode = Instruction::LShr;
8273     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8274       OutOpCode = Instruction::AShr;
8275     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8276       OutOpCode = Instruction::Shl;
8277     else
8278       return false;
8279 
8280     return ShiftAmt->getValue().isStrictlyPositive();
8281   };
8282 
8283   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8284   //
8285   // loop:
8286   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8287   //   %iv.shifted = lshr i32 %iv, <positive constant>
8288   //
8289   // Return true on a successful match.  Return the corresponding PHI node (%iv
8290   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8291   auto MatchShiftRecurrence =
8292       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8293     Optional<Instruction::BinaryOps> PostShiftOpCode;
8294 
8295     {
8296       Instruction::BinaryOps OpC;
8297       Value *V;
8298 
8299       // If we encounter a shift instruction, "peel off" the shift operation,
8300       // and remember that we did so.  Later when we inspect %iv's backedge
8301       // value, we will make sure that the backedge value uses the same
8302       // operation.
8303       //
8304       // Note: the peeled shift operation does not have to be the same
8305       // instruction as the one feeding into the PHI's backedge value.  We only
8306       // really care about it being the same *kind* of shift instruction --
8307       // that's all that is required for our later inferences to hold.
8308       if (MatchPositiveShift(LHS, V, OpC)) {
8309         PostShiftOpCode = OpC;
8310         LHS = V;
8311       }
8312     }
8313 
8314     PNOut = dyn_cast<PHINode>(LHS);
8315     if (!PNOut || PNOut->getParent() != L->getHeader())
8316       return false;
8317 
8318     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8319     Value *OpLHS;
8320 
8321     return
8322         // The backedge value for the PHI node must be a shift by a positive
8323         // amount
8324         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8325 
8326         // of the PHI node itself
8327         OpLHS == PNOut &&
8328 
8329         // and the kind of shift should be match the kind of shift we peeled
8330         // off, if any.
8331         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8332   };
8333 
8334   PHINode *PN;
8335   Instruction::BinaryOps OpCode;
8336   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8337     return getCouldNotCompute();
8338 
8339   const DataLayout &DL = getDataLayout();
8340 
8341   // The key rationale for this optimization is that for some kinds of shift
8342   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8343   // within a finite number of iterations.  If the condition guarding the
8344   // backedge (in the sense that the backedge is taken if the condition is true)
8345   // is false for the value the shift recurrence stabilizes to, then we know
8346   // that the backedge is taken only a finite number of times.
8347 
8348   ConstantInt *StableValue = nullptr;
8349   switch (OpCode) {
8350   default:
8351     llvm_unreachable("Impossible case!");
8352 
8353   case Instruction::AShr: {
8354     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8355     // bitwidth(K) iterations.
8356     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8357     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8358                                        Predecessor->getTerminator(), &DT);
8359     auto *Ty = cast<IntegerType>(RHS->getType());
8360     if (Known.isNonNegative())
8361       StableValue = ConstantInt::get(Ty, 0);
8362     else if (Known.isNegative())
8363       StableValue = ConstantInt::get(Ty, -1, true);
8364     else
8365       return getCouldNotCompute();
8366 
8367     break;
8368   }
8369   case Instruction::LShr:
8370   case Instruction::Shl:
8371     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8372     // stabilize to 0 in at most bitwidth(K) iterations.
8373     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8374     break;
8375   }
8376 
8377   auto *Result =
8378       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8379   assert(Result->getType()->isIntegerTy(1) &&
8380          "Otherwise cannot be an operand to a branch instruction");
8381 
8382   if (Result->isZeroValue()) {
8383     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8384     const SCEV *UpperBound =
8385         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8386     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8387   }
8388 
8389   return getCouldNotCompute();
8390 }
8391 
8392 /// Return true if we can constant fold an instruction of the specified type,
8393 /// assuming that all operands were constants.
8394 static bool CanConstantFold(const Instruction *I) {
8395   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8396       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8397       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8398     return true;
8399 
8400   if (const CallInst *CI = dyn_cast<CallInst>(I))
8401     if (const Function *F = CI->getCalledFunction())
8402       return canConstantFoldCallTo(CI, F);
8403   return false;
8404 }
8405 
8406 /// Determine whether this instruction can constant evolve within this loop
8407 /// assuming its operands can all constant evolve.
8408 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8409   // An instruction outside of the loop can't be derived from a loop PHI.
8410   if (!L->contains(I)) return false;
8411 
8412   if (isa<PHINode>(I)) {
8413     // We don't currently keep track of the control flow needed to evaluate
8414     // PHIs, so we cannot handle PHIs inside of loops.
8415     return L->getHeader() == I->getParent();
8416   }
8417 
8418   // If we won't be able to constant fold this expression even if the operands
8419   // are constants, bail early.
8420   return CanConstantFold(I);
8421 }
8422 
8423 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8424 /// recursing through each instruction operand until reaching a loop header phi.
8425 static PHINode *
8426 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8427                                DenseMap<Instruction *, PHINode *> &PHIMap,
8428                                unsigned Depth) {
8429   if (Depth > MaxConstantEvolvingDepth)
8430     return nullptr;
8431 
8432   // Otherwise, we can evaluate this instruction if all of its operands are
8433   // constant or derived from a PHI node themselves.
8434   PHINode *PHI = nullptr;
8435   for (Value *Op : UseInst->operands()) {
8436     if (isa<Constant>(Op)) continue;
8437 
8438     Instruction *OpInst = dyn_cast<Instruction>(Op);
8439     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8440 
8441     PHINode *P = dyn_cast<PHINode>(OpInst);
8442     if (!P)
8443       // If this operand is already visited, reuse the prior result.
8444       // We may have P != PHI if this is the deepest point at which the
8445       // inconsistent paths meet.
8446       P = PHIMap.lookup(OpInst);
8447     if (!P) {
8448       // Recurse and memoize the results, whether a phi is found or not.
8449       // This recursive call invalidates pointers into PHIMap.
8450       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8451       PHIMap[OpInst] = P;
8452     }
8453     if (!P)
8454       return nullptr;  // Not evolving from PHI
8455     if (PHI && PHI != P)
8456       return nullptr;  // Evolving from multiple different PHIs.
8457     PHI = P;
8458   }
8459   // This is a expression evolving from a constant PHI!
8460   return PHI;
8461 }
8462 
8463 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8464 /// in the loop that V is derived from.  We allow arbitrary operations along the
8465 /// way, but the operands of an operation must either be constants or a value
8466 /// derived from a constant PHI.  If this expression does not fit with these
8467 /// constraints, return null.
8468 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8469   Instruction *I = dyn_cast<Instruction>(V);
8470   if (!I || !canConstantEvolve(I, L)) return nullptr;
8471 
8472   if (PHINode *PN = dyn_cast<PHINode>(I))
8473     return PN;
8474 
8475   // Record non-constant instructions contained by the loop.
8476   DenseMap<Instruction *, PHINode *> PHIMap;
8477   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8478 }
8479 
8480 /// EvaluateExpression - Given an expression that passes the
8481 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8482 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8483 /// reason, return null.
8484 static Constant *EvaluateExpression(Value *V, const Loop *L,
8485                                     DenseMap<Instruction *, Constant *> &Vals,
8486                                     const DataLayout &DL,
8487                                     const TargetLibraryInfo *TLI) {
8488   // Convenient constant check, but redundant for recursive calls.
8489   if (Constant *C = dyn_cast<Constant>(V)) return C;
8490   Instruction *I = dyn_cast<Instruction>(V);
8491   if (!I) return nullptr;
8492 
8493   if (Constant *C = Vals.lookup(I)) return C;
8494 
8495   // An instruction inside the loop depends on a value outside the loop that we
8496   // weren't given a mapping for, or a value such as a call inside the loop.
8497   if (!canConstantEvolve(I, L)) return nullptr;
8498 
8499   // An unmapped PHI can be due to a branch or another loop inside this loop,
8500   // or due to this not being the initial iteration through a loop where we
8501   // couldn't compute the evolution of this particular PHI last time.
8502   if (isa<PHINode>(I)) return nullptr;
8503 
8504   std::vector<Constant*> Operands(I->getNumOperands());
8505 
8506   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8507     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8508     if (!Operand) {
8509       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8510       if (!Operands[i]) return nullptr;
8511       continue;
8512     }
8513     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8514     Vals[Operand] = C;
8515     if (!C) return nullptr;
8516     Operands[i] = C;
8517   }
8518 
8519   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8520     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8521                                            Operands[1], DL, TLI);
8522   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8523     if (!LI->isVolatile())
8524       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8525   }
8526   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8527 }
8528 
8529 
8530 // If every incoming value to PN except the one for BB is a specific Constant,
8531 // return that, else return nullptr.
8532 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8533   Constant *IncomingVal = nullptr;
8534 
8535   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8536     if (PN->getIncomingBlock(i) == BB)
8537       continue;
8538 
8539     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8540     if (!CurrentVal)
8541       return nullptr;
8542 
8543     if (IncomingVal != CurrentVal) {
8544       if (IncomingVal)
8545         return nullptr;
8546       IncomingVal = CurrentVal;
8547     }
8548   }
8549 
8550   return IncomingVal;
8551 }
8552 
8553 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8554 /// in the header of its containing loop, we know the loop executes a
8555 /// constant number of times, and the PHI node is just a recurrence
8556 /// involving constants, fold it.
8557 Constant *
8558 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8559                                                    const APInt &BEs,
8560                                                    const Loop *L) {
8561   auto I = ConstantEvolutionLoopExitValue.find(PN);
8562   if (I != ConstantEvolutionLoopExitValue.end())
8563     return I->second;
8564 
8565   if (BEs.ugt(MaxBruteForceIterations))
8566     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8567 
8568   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8569 
8570   DenseMap<Instruction *, Constant *> CurrentIterVals;
8571   BasicBlock *Header = L->getHeader();
8572   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8573 
8574   BasicBlock *Latch = L->getLoopLatch();
8575   if (!Latch)
8576     return nullptr;
8577 
8578   for (PHINode &PHI : Header->phis()) {
8579     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8580       CurrentIterVals[&PHI] = StartCST;
8581   }
8582   if (!CurrentIterVals.count(PN))
8583     return RetVal = nullptr;
8584 
8585   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8586 
8587   // Execute the loop symbolically to determine the exit value.
8588   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8589          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8590 
8591   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8592   unsigned IterationNum = 0;
8593   const DataLayout &DL = getDataLayout();
8594   for (; ; ++IterationNum) {
8595     if (IterationNum == NumIterations)
8596       return RetVal = CurrentIterVals[PN];  // Got exit value!
8597 
8598     // Compute the value of the PHIs for the next iteration.
8599     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8600     DenseMap<Instruction *, Constant *> NextIterVals;
8601     Constant *NextPHI =
8602         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8603     if (!NextPHI)
8604       return nullptr;        // Couldn't evaluate!
8605     NextIterVals[PN] = NextPHI;
8606 
8607     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8608 
8609     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8610     // cease to be able to evaluate one of them or if they stop evolving,
8611     // because that doesn't necessarily prevent us from computing PN.
8612     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8613     for (const auto &I : CurrentIterVals) {
8614       PHINode *PHI = dyn_cast<PHINode>(I.first);
8615       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8616       PHIsToCompute.emplace_back(PHI, I.second);
8617     }
8618     // We use two distinct loops because EvaluateExpression may invalidate any
8619     // iterators into CurrentIterVals.
8620     for (const auto &I : PHIsToCompute) {
8621       PHINode *PHI = I.first;
8622       Constant *&NextPHI = NextIterVals[PHI];
8623       if (!NextPHI) {   // Not already computed.
8624         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8625         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8626       }
8627       if (NextPHI != I.second)
8628         StoppedEvolving = false;
8629     }
8630 
8631     // If all entries in CurrentIterVals == NextIterVals then we can stop
8632     // iterating, the loop can't continue to change.
8633     if (StoppedEvolving)
8634       return RetVal = CurrentIterVals[PN];
8635 
8636     CurrentIterVals.swap(NextIterVals);
8637   }
8638 }
8639 
8640 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8641                                                           Value *Cond,
8642                                                           bool ExitWhen) {
8643   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8644   if (!PN) return getCouldNotCompute();
8645 
8646   // If the loop is canonicalized, the PHI will have exactly two entries.
8647   // That's the only form we support here.
8648   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8649 
8650   DenseMap<Instruction *, Constant *> CurrentIterVals;
8651   BasicBlock *Header = L->getHeader();
8652   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8653 
8654   BasicBlock *Latch = L->getLoopLatch();
8655   assert(Latch && "Should follow from NumIncomingValues == 2!");
8656 
8657   for (PHINode &PHI : Header->phis()) {
8658     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8659       CurrentIterVals[&PHI] = StartCST;
8660   }
8661   if (!CurrentIterVals.count(PN))
8662     return getCouldNotCompute();
8663 
8664   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8665   // the loop symbolically to determine when the condition gets a value of
8666   // "ExitWhen".
8667   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8668   const DataLayout &DL = getDataLayout();
8669   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8670     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8671         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8672 
8673     // Couldn't symbolically evaluate.
8674     if (!CondVal) return getCouldNotCompute();
8675 
8676     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8677       ++NumBruteForceTripCountsComputed;
8678       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8679     }
8680 
8681     // Update all the PHI nodes for the next iteration.
8682     DenseMap<Instruction *, Constant *> NextIterVals;
8683 
8684     // Create a list of which PHIs we need to compute. We want to do this before
8685     // calling EvaluateExpression on them because that may invalidate iterators
8686     // into CurrentIterVals.
8687     SmallVector<PHINode *, 8> PHIsToCompute;
8688     for (const auto &I : CurrentIterVals) {
8689       PHINode *PHI = dyn_cast<PHINode>(I.first);
8690       if (!PHI || PHI->getParent() != Header) continue;
8691       PHIsToCompute.push_back(PHI);
8692     }
8693     for (PHINode *PHI : PHIsToCompute) {
8694       Constant *&NextPHI = NextIterVals[PHI];
8695       if (NextPHI) continue;    // Already computed!
8696 
8697       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8698       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8699     }
8700     CurrentIterVals.swap(NextIterVals);
8701   }
8702 
8703   // Too many iterations were needed to evaluate.
8704   return getCouldNotCompute();
8705 }
8706 
8707 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8708   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8709       ValuesAtScopes[V];
8710   // Check to see if we've folded this expression at this loop before.
8711   for (auto &LS : Values)
8712     if (LS.first == L)
8713       return LS.second ? LS.second : V;
8714 
8715   Values.emplace_back(L, nullptr);
8716 
8717   // Otherwise compute it.
8718   const SCEV *C = computeSCEVAtScope(V, L);
8719   for (auto &LS : reverse(ValuesAtScopes[V]))
8720     if (LS.first == L) {
8721       LS.second = C;
8722       break;
8723     }
8724   return C;
8725 }
8726 
8727 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8728 /// will return Constants for objects which aren't represented by a
8729 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8730 /// Returns NULL if the SCEV isn't representable as a Constant.
8731 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8732   switch (V->getSCEVType()) {
8733   case scCouldNotCompute:
8734   case scAddRecExpr:
8735     return nullptr;
8736   case scConstant:
8737     return cast<SCEVConstant>(V)->getValue();
8738   case scUnknown:
8739     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8740   case scSignExtend: {
8741     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8742     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8743       return ConstantExpr::getSExt(CastOp, SS->getType());
8744     return nullptr;
8745   }
8746   case scZeroExtend: {
8747     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8748     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8749       return ConstantExpr::getZExt(CastOp, SZ->getType());
8750     return nullptr;
8751   }
8752   case scPtrToInt: {
8753     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8754     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8755       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8756 
8757     return nullptr;
8758   }
8759   case scTruncate: {
8760     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8761     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8762       return ConstantExpr::getTrunc(CastOp, ST->getType());
8763     return nullptr;
8764   }
8765   case scAddExpr: {
8766     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8767     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8768       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8769         unsigned AS = PTy->getAddressSpace();
8770         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8771         C = ConstantExpr::getBitCast(C, DestPtrTy);
8772       }
8773       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8774         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8775         if (!C2)
8776           return nullptr;
8777 
8778         // First pointer!
8779         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8780           unsigned AS = C2->getType()->getPointerAddressSpace();
8781           std::swap(C, C2);
8782           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8783           // The offsets have been converted to bytes.  We can add bytes to an
8784           // i8* by GEP with the byte count in the first index.
8785           C = ConstantExpr::getBitCast(C, DestPtrTy);
8786         }
8787 
8788         // Don't bother trying to sum two pointers. We probably can't
8789         // statically compute a load that results from it anyway.
8790         if (C2->getType()->isPointerTy())
8791           return nullptr;
8792 
8793         if (C->getType()->isPointerTy()) {
8794           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
8795                                              C, C2);
8796         } else {
8797           C = ConstantExpr::getAdd(C, C2);
8798         }
8799       }
8800       return C;
8801     }
8802     return nullptr;
8803   }
8804   case scMulExpr: {
8805     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8806     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8807       // Don't bother with pointers at all.
8808       if (C->getType()->isPointerTy())
8809         return nullptr;
8810       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8811         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8812         if (!C2 || C2->getType()->isPointerTy())
8813           return nullptr;
8814         C = ConstantExpr::getMul(C, C2);
8815       }
8816       return C;
8817     }
8818     return nullptr;
8819   }
8820   case scUDivExpr: {
8821     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8822     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8823       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8824         if (LHS->getType() == RHS->getType())
8825           return ConstantExpr::getUDiv(LHS, RHS);
8826     return nullptr;
8827   }
8828   case scSMaxExpr:
8829   case scUMaxExpr:
8830   case scSMinExpr:
8831   case scUMinExpr:
8832     return nullptr; // TODO: smax, umax, smin, umax.
8833   }
8834   llvm_unreachable("Unknown SCEV kind!");
8835 }
8836 
8837 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8838   if (isa<SCEVConstant>(V)) return V;
8839 
8840   // If this instruction is evolved from a constant-evolving PHI, compute the
8841   // exit value from the loop without using SCEVs.
8842   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8843     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8844       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8845         const Loop *CurrLoop = this->LI[I->getParent()];
8846         // Looking for loop exit value.
8847         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8848             PN->getParent() == CurrLoop->getHeader()) {
8849           // Okay, there is no closed form solution for the PHI node.  Check
8850           // to see if the loop that contains it has a known backedge-taken
8851           // count.  If so, we may be able to force computation of the exit
8852           // value.
8853           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8854           // This trivial case can show up in some degenerate cases where
8855           // the incoming IR has not yet been fully simplified.
8856           if (BackedgeTakenCount->isZero()) {
8857             Value *InitValue = nullptr;
8858             bool MultipleInitValues = false;
8859             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8860               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8861                 if (!InitValue)
8862                   InitValue = PN->getIncomingValue(i);
8863                 else if (InitValue != PN->getIncomingValue(i)) {
8864                   MultipleInitValues = true;
8865                   break;
8866                 }
8867               }
8868             }
8869             if (!MultipleInitValues && InitValue)
8870               return getSCEV(InitValue);
8871           }
8872           // Do we have a loop invariant value flowing around the backedge
8873           // for a loop which must execute the backedge?
8874           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8875               isKnownPositive(BackedgeTakenCount) &&
8876               PN->getNumIncomingValues() == 2) {
8877 
8878             unsigned InLoopPred =
8879                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8880             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8881             if (CurrLoop->isLoopInvariant(BackedgeVal))
8882               return getSCEV(BackedgeVal);
8883           }
8884           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8885             // Okay, we know how many times the containing loop executes.  If
8886             // this is a constant evolving PHI node, get the final value at
8887             // the specified iteration number.
8888             Constant *RV = getConstantEvolutionLoopExitValue(
8889                 PN, BTCC->getAPInt(), CurrLoop);
8890             if (RV) return getSCEV(RV);
8891           }
8892         }
8893 
8894         // If there is a single-input Phi, evaluate it at our scope. If we can
8895         // prove that this replacement does not break LCSSA form, use new value.
8896         if (PN->getNumOperands() == 1) {
8897           const SCEV *Input = getSCEV(PN->getOperand(0));
8898           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8899           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8900           // for the simplest case just support constants.
8901           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8902         }
8903       }
8904 
8905       // Okay, this is an expression that we cannot symbolically evaluate
8906       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8907       // the arguments into constants, and if so, try to constant propagate the
8908       // result.  This is particularly useful for computing loop exit values.
8909       if (CanConstantFold(I)) {
8910         SmallVector<Constant *, 4> Operands;
8911         bool MadeImprovement = false;
8912         for (Value *Op : I->operands()) {
8913           if (Constant *C = dyn_cast<Constant>(Op)) {
8914             Operands.push_back(C);
8915             continue;
8916           }
8917 
8918           // If any of the operands is non-constant and if they are
8919           // non-integer and non-pointer, don't even try to analyze them
8920           // with scev techniques.
8921           if (!isSCEVable(Op->getType()))
8922             return V;
8923 
8924           const SCEV *OrigV = getSCEV(Op);
8925           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8926           MadeImprovement |= OrigV != OpV;
8927 
8928           Constant *C = BuildConstantFromSCEV(OpV);
8929           if (!C) return V;
8930           if (C->getType() != Op->getType())
8931             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8932                                                               Op->getType(),
8933                                                               false),
8934                                       C, Op->getType());
8935           Operands.push_back(C);
8936         }
8937 
8938         // Check to see if getSCEVAtScope actually made an improvement.
8939         if (MadeImprovement) {
8940           Constant *C = nullptr;
8941           const DataLayout &DL = getDataLayout();
8942           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8943             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8944                                                 Operands[1], DL, &TLI);
8945           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8946             if (!Load->isVolatile())
8947               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8948                                                DL);
8949           } else
8950             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8951           if (!C) return V;
8952           return getSCEV(C);
8953         }
8954       }
8955     }
8956 
8957     // This is some other type of SCEVUnknown, just return it.
8958     return V;
8959   }
8960 
8961   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8962     // Avoid performing the look-up in the common case where the specified
8963     // expression has no loop-variant portions.
8964     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8965       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8966       if (OpAtScope != Comm->getOperand(i)) {
8967         // Okay, at least one of these operands is loop variant but might be
8968         // foldable.  Build a new instance of the folded commutative expression.
8969         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8970                                             Comm->op_begin()+i);
8971         NewOps.push_back(OpAtScope);
8972 
8973         for (++i; i != e; ++i) {
8974           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8975           NewOps.push_back(OpAtScope);
8976         }
8977         if (isa<SCEVAddExpr>(Comm))
8978           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8979         if (isa<SCEVMulExpr>(Comm))
8980           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8981         if (isa<SCEVMinMaxExpr>(Comm))
8982           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8983         llvm_unreachable("Unknown commutative SCEV type!");
8984       }
8985     }
8986     // If we got here, all operands are loop invariant.
8987     return Comm;
8988   }
8989 
8990   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8991     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8992     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8993     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8994       return Div;   // must be loop invariant
8995     return getUDivExpr(LHS, RHS);
8996   }
8997 
8998   // If this is a loop recurrence for a loop that does not contain L, then we
8999   // are dealing with the final value computed by the loop.
9000   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9001     // First, attempt to evaluate each operand.
9002     // Avoid performing the look-up in the common case where the specified
9003     // expression has no loop-variant portions.
9004     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9005       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9006       if (OpAtScope == AddRec->getOperand(i))
9007         continue;
9008 
9009       // Okay, at least one of these operands is loop variant but might be
9010       // foldable.  Build a new instance of the folded commutative expression.
9011       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9012                                           AddRec->op_begin()+i);
9013       NewOps.push_back(OpAtScope);
9014       for (++i; i != e; ++i)
9015         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9016 
9017       const SCEV *FoldedRec =
9018         getAddRecExpr(NewOps, AddRec->getLoop(),
9019                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9020       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9021       // The addrec may be folded to a nonrecurrence, for example, if the
9022       // induction variable is multiplied by zero after constant folding. Go
9023       // ahead and return the folded value.
9024       if (!AddRec)
9025         return FoldedRec;
9026       break;
9027     }
9028 
9029     // If the scope is outside the addrec's loop, evaluate it by using the
9030     // loop exit value of the addrec.
9031     if (!AddRec->getLoop()->contains(L)) {
9032       // To evaluate this recurrence, we need to know how many times the AddRec
9033       // loop iterates.  Compute this now.
9034       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9035       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9036 
9037       // Then, evaluate the AddRec.
9038       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9039     }
9040 
9041     return AddRec;
9042   }
9043 
9044   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
9045     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9046     if (Op == Cast->getOperand())
9047       return Cast;  // must be loop invariant
9048     return getZeroExtendExpr(Op, Cast->getType());
9049   }
9050 
9051   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
9052     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9053     if (Op == Cast->getOperand())
9054       return Cast;  // must be loop invariant
9055     return getSignExtendExpr(Op, Cast->getType());
9056   }
9057 
9058   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
9059     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9060     if (Op == Cast->getOperand())
9061       return Cast;  // must be loop invariant
9062     return getTruncateExpr(Op, Cast->getType());
9063   }
9064 
9065   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
9066     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9067     if (Op == Cast->getOperand())
9068       return Cast; // must be loop invariant
9069     return getPtrToIntExpr(Op, Cast->getType());
9070   }
9071 
9072   llvm_unreachable("Unknown SCEV type!");
9073 }
9074 
9075 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9076   return getSCEVAtScope(getSCEV(V), L);
9077 }
9078 
9079 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9080   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9081     return stripInjectiveFunctions(ZExt->getOperand());
9082   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9083     return stripInjectiveFunctions(SExt->getOperand());
9084   return S;
9085 }
9086 
9087 /// Finds the minimum unsigned root of the following equation:
9088 ///
9089 ///     A * X = B (mod N)
9090 ///
9091 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9092 /// A and B isn't important.
9093 ///
9094 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9095 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9096                                                ScalarEvolution &SE) {
9097   uint32_t BW = A.getBitWidth();
9098   assert(BW == SE.getTypeSizeInBits(B->getType()));
9099   assert(A != 0 && "A must be non-zero.");
9100 
9101   // 1. D = gcd(A, N)
9102   //
9103   // The gcd of A and N may have only one prime factor: 2. The number of
9104   // trailing zeros in A is its multiplicity
9105   uint32_t Mult2 = A.countTrailingZeros();
9106   // D = 2^Mult2
9107 
9108   // 2. Check if B is divisible by D.
9109   //
9110   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9111   // is not less than multiplicity of this prime factor for D.
9112   if (SE.GetMinTrailingZeros(B) < Mult2)
9113     return SE.getCouldNotCompute();
9114 
9115   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9116   // modulo (N / D).
9117   //
9118   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9119   // (N / D) in general. The inverse itself always fits into BW bits, though,
9120   // so we immediately truncate it.
9121   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9122   APInt Mod(BW + 1, 0);
9123   Mod.setBit(BW - Mult2);  // Mod = N / D
9124   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9125 
9126   // 4. Compute the minimum unsigned root of the equation:
9127   // I * (B / D) mod (N / D)
9128   // To simplify the computation, we factor out the divide by D:
9129   // (I * B mod N) / D
9130   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9131   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9132 }
9133 
9134 /// For a given quadratic addrec, generate coefficients of the corresponding
9135 /// quadratic equation, multiplied by a common value to ensure that they are
9136 /// integers.
9137 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9138 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9139 /// were multiplied by, and BitWidth is the bit width of the original addrec
9140 /// coefficients.
9141 /// This function returns None if the addrec coefficients are not compile-
9142 /// time constants.
9143 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9144 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9145   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9146   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9147   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9148   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9149   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9150                     << *AddRec << '\n');
9151 
9152   // We currently can only solve this if the coefficients are constants.
9153   if (!LC || !MC || !NC) {
9154     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9155     return None;
9156   }
9157 
9158   APInt L = LC->getAPInt();
9159   APInt M = MC->getAPInt();
9160   APInt N = NC->getAPInt();
9161   assert(!N.isZero() && "This is not a quadratic addrec");
9162 
9163   unsigned BitWidth = LC->getAPInt().getBitWidth();
9164   unsigned NewWidth = BitWidth + 1;
9165   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9166                     << BitWidth << '\n');
9167   // The sign-extension (as opposed to a zero-extension) here matches the
9168   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9169   N = N.sext(NewWidth);
9170   M = M.sext(NewWidth);
9171   L = L.sext(NewWidth);
9172 
9173   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9174   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9175   //   L+M, L+2M+N, L+3M+3N, ...
9176   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9177   //
9178   // The equation Acc = 0 is then
9179   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9180   // In a quadratic form it becomes:
9181   //   N n^2 + (2M-N) n + 2L = 0.
9182 
9183   APInt A = N;
9184   APInt B = 2 * M - A;
9185   APInt C = 2 * L;
9186   APInt T = APInt(NewWidth, 2);
9187   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9188                     << "x + " << C << ", coeff bw: " << NewWidth
9189                     << ", multiplied by " << T << '\n');
9190   return std::make_tuple(A, B, C, T, BitWidth);
9191 }
9192 
9193 /// Helper function to compare optional APInts:
9194 /// (a) if X and Y both exist, return min(X, Y),
9195 /// (b) if neither X nor Y exist, return None,
9196 /// (c) if exactly one of X and Y exists, return that value.
9197 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9198   if (X.hasValue() && Y.hasValue()) {
9199     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9200     APInt XW = X->sextOrSelf(W);
9201     APInt YW = Y->sextOrSelf(W);
9202     return XW.slt(YW) ? *X : *Y;
9203   }
9204   if (!X.hasValue() && !Y.hasValue())
9205     return None;
9206   return X.hasValue() ? *X : *Y;
9207 }
9208 
9209 /// Helper function to truncate an optional APInt to a given BitWidth.
9210 /// When solving addrec-related equations, it is preferable to return a value
9211 /// that has the same bit width as the original addrec's coefficients. If the
9212 /// solution fits in the original bit width, truncate it (except for i1).
9213 /// Returning a value of a different bit width may inhibit some optimizations.
9214 ///
9215 /// In general, a solution to a quadratic equation generated from an addrec
9216 /// may require BW+1 bits, where BW is the bit width of the addrec's
9217 /// coefficients. The reason is that the coefficients of the quadratic
9218 /// equation are BW+1 bits wide (to avoid truncation when converting from
9219 /// the addrec to the equation).
9220 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9221   if (!X.hasValue())
9222     return None;
9223   unsigned W = X->getBitWidth();
9224   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9225     return X->trunc(BitWidth);
9226   return X;
9227 }
9228 
9229 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9230 /// iterations. The values L, M, N are assumed to be signed, and they
9231 /// should all have the same bit widths.
9232 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9233 /// where BW is the bit width of the addrec's coefficients.
9234 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9235 /// returned as such, otherwise the bit width of the returned value may
9236 /// be greater than BW.
9237 ///
9238 /// This function returns None if
9239 /// (a) the addrec coefficients are not constant, or
9240 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9241 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9242 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9243 static Optional<APInt>
9244 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9245   APInt A, B, C, M;
9246   unsigned BitWidth;
9247   auto T = GetQuadraticEquation(AddRec);
9248   if (!T.hasValue())
9249     return None;
9250 
9251   std::tie(A, B, C, M, BitWidth) = *T;
9252   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9253   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9254   if (!X.hasValue())
9255     return None;
9256 
9257   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9258   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9259   if (!V->isZero())
9260     return None;
9261 
9262   return TruncIfPossible(X, BitWidth);
9263 }
9264 
9265 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9266 /// iterations. The values M, N are assumed to be signed, and they
9267 /// should all have the same bit widths.
9268 /// Find the least n such that c(n) does not belong to the given range,
9269 /// while c(n-1) does.
9270 ///
9271 /// This function returns None if
9272 /// (a) the addrec coefficients are not constant, or
9273 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9274 ///     bounds of the range.
9275 static Optional<APInt>
9276 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9277                           const ConstantRange &Range, ScalarEvolution &SE) {
9278   assert(AddRec->getOperand(0)->isZero() &&
9279          "Starting value of addrec should be 0");
9280   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9281                     << Range << ", addrec " << *AddRec << '\n');
9282   // This case is handled in getNumIterationsInRange. Here we can assume that
9283   // we start in the range.
9284   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9285          "Addrec's initial value should be in range");
9286 
9287   APInt A, B, C, M;
9288   unsigned BitWidth;
9289   auto T = GetQuadraticEquation(AddRec);
9290   if (!T.hasValue())
9291     return None;
9292 
9293   // Be careful about the return value: there can be two reasons for not
9294   // returning an actual number. First, if no solutions to the equations
9295   // were found, and second, if the solutions don't leave the given range.
9296   // The first case means that the actual solution is "unknown", the second
9297   // means that it's known, but not valid. If the solution is unknown, we
9298   // cannot make any conclusions.
9299   // Return a pair: the optional solution and a flag indicating if the
9300   // solution was found.
9301   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9302     // Solve for signed overflow and unsigned overflow, pick the lower
9303     // solution.
9304     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9305                       << Bound << " (before multiplying by " << M << ")\n");
9306     Bound *= M; // The quadratic equation multiplier.
9307 
9308     Optional<APInt> SO = None;
9309     if (BitWidth > 1) {
9310       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9311                            "signed overflow\n");
9312       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9313     }
9314     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9315                          "unsigned overflow\n");
9316     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9317                                                               BitWidth+1);
9318 
9319     auto LeavesRange = [&] (const APInt &X) {
9320       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9321       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9322       if (Range.contains(V0->getValue()))
9323         return false;
9324       // X should be at least 1, so X-1 is non-negative.
9325       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9326       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9327       if (Range.contains(V1->getValue()))
9328         return true;
9329       return false;
9330     };
9331 
9332     // If SolveQuadraticEquationWrap returns None, it means that there can
9333     // be a solution, but the function failed to find it. We cannot treat it
9334     // as "no solution".
9335     if (!SO.hasValue() || !UO.hasValue())
9336       return { None, false };
9337 
9338     // Check the smaller value first to see if it leaves the range.
9339     // At this point, both SO and UO must have values.
9340     Optional<APInt> Min = MinOptional(SO, UO);
9341     if (LeavesRange(*Min))
9342       return { Min, true };
9343     Optional<APInt> Max = Min == SO ? UO : SO;
9344     if (LeavesRange(*Max))
9345       return { Max, true };
9346 
9347     // Solutions were found, but were eliminated, hence the "true".
9348     return { None, true };
9349   };
9350 
9351   std::tie(A, B, C, M, BitWidth) = *T;
9352   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9353   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9354   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9355   auto SL = SolveForBoundary(Lower);
9356   auto SU = SolveForBoundary(Upper);
9357   // If any of the solutions was unknown, no meaninigful conclusions can
9358   // be made.
9359   if (!SL.second || !SU.second)
9360     return None;
9361 
9362   // Claim: The correct solution is not some value between Min and Max.
9363   //
9364   // Justification: Assuming that Min and Max are different values, one of
9365   // them is when the first signed overflow happens, the other is when the
9366   // first unsigned overflow happens. Crossing the range boundary is only
9367   // possible via an overflow (treating 0 as a special case of it, modeling
9368   // an overflow as crossing k*2^W for some k).
9369   //
9370   // The interesting case here is when Min was eliminated as an invalid
9371   // solution, but Max was not. The argument is that if there was another
9372   // overflow between Min and Max, it would also have been eliminated if
9373   // it was considered.
9374   //
9375   // For a given boundary, it is possible to have two overflows of the same
9376   // type (signed/unsigned) without having the other type in between: this
9377   // can happen when the vertex of the parabola is between the iterations
9378   // corresponding to the overflows. This is only possible when the two
9379   // overflows cross k*2^W for the same k. In such case, if the second one
9380   // left the range (and was the first one to do so), the first overflow
9381   // would have to enter the range, which would mean that either we had left
9382   // the range before or that we started outside of it. Both of these cases
9383   // are contradictions.
9384   //
9385   // Claim: In the case where SolveForBoundary returns None, the correct
9386   // solution is not some value between the Max for this boundary and the
9387   // Min of the other boundary.
9388   //
9389   // Justification: Assume that we had such Max_A and Min_B corresponding
9390   // to range boundaries A and B and such that Max_A < Min_B. If there was
9391   // a solution between Max_A and Min_B, it would have to be caused by an
9392   // overflow corresponding to either A or B. It cannot correspond to B,
9393   // since Min_B is the first occurrence of such an overflow. If it
9394   // corresponded to A, it would have to be either a signed or an unsigned
9395   // overflow that is larger than both eliminated overflows for A. But
9396   // between the eliminated overflows and this overflow, the values would
9397   // cover the entire value space, thus crossing the other boundary, which
9398   // is a contradiction.
9399 
9400   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9401 }
9402 
9403 ScalarEvolution::ExitLimit
9404 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9405                               bool AllowPredicates) {
9406 
9407   // This is only used for loops with a "x != y" exit test. The exit condition
9408   // is now expressed as a single expression, V = x-y. So the exit test is
9409   // effectively V != 0.  We know and take advantage of the fact that this
9410   // expression only being used in a comparison by zero context.
9411 
9412   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9413   // If the value is a constant
9414   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9415     // If the value is already zero, the branch will execute zero times.
9416     if (C->getValue()->isZero()) return C;
9417     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9418   }
9419 
9420   const SCEVAddRecExpr *AddRec =
9421       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9422 
9423   if (!AddRec && AllowPredicates)
9424     // Try to make this an AddRec using runtime tests, in the first X
9425     // iterations of this loop, where X is the SCEV expression found by the
9426     // algorithm below.
9427     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9428 
9429   if (!AddRec || AddRec->getLoop() != L)
9430     return getCouldNotCompute();
9431 
9432   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9433   // the quadratic equation to solve it.
9434   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9435     // We can only use this value if the chrec ends up with an exact zero
9436     // value at this index.  When solving for "X*X != 5", for example, we
9437     // should not accept a root of 2.
9438     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9439       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9440       return ExitLimit(R, R, false, Predicates);
9441     }
9442     return getCouldNotCompute();
9443   }
9444 
9445   // Otherwise we can only handle this if it is affine.
9446   if (!AddRec->isAffine())
9447     return getCouldNotCompute();
9448 
9449   // If this is an affine expression, the execution count of this branch is
9450   // the minimum unsigned root of the following equation:
9451   //
9452   //     Start + Step*N = 0 (mod 2^BW)
9453   //
9454   // equivalent to:
9455   //
9456   //             Step*N = -Start (mod 2^BW)
9457   //
9458   // where BW is the common bit width of Start and Step.
9459 
9460   // Get the initial value for the loop.
9461   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9462   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9463 
9464   // For now we handle only constant steps.
9465   //
9466   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9467   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9468   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9469   // We have not yet seen any such cases.
9470   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9471   if (!StepC || StepC->getValue()->isZero())
9472     return getCouldNotCompute();
9473 
9474   // For positive steps (counting up until unsigned overflow):
9475   //   N = -Start/Step (as unsigned)
9476   // For negative steps (counting down to zero):
9477   //   N = Start/-Step
9478   // First compute the unsigned distance from zero in the direction of Step.
9479   bool CountDown = StepC->getAPInt().isNegative();
9480   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9481 
9482   // Handle unitary steps, which cannot wraparound.
9483   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9484   //   N = Distance (as unsigned)
9485   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9486     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9487     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9488     if (MaxBECountBase.ult(MaxBECount))
9489       MaxBECount = MaxBECountBase;
9490 
9491     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9492     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9493     // case, and see if we can improve the bound.
9494     //
9495     // Explicitly handling this here is necessary because getUnsignedRange
9496     // isn't context-sensitive; it doesn't know that we only care about the
9497     // range inside the loop.
9498     const SCEV *Zero = getZero(Distance->getType());
9499     const SCEV *One = getOne(Distance->getType());
9500     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9501     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9502       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9503       // as "unsigned_max(Distance + 1) - 1".
9504       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9505       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9506     }
9507     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9508   }
9509 
9510   // If the condition controls loop exit (the loop exits only if the expression
9511   // is true) and the addition is no-wrap we can use unsigned divide to
9512   // compute the backedge count.  In this case, the step may not divide the
9513   // distance, but we don't care because if the condition is "missed" the loop
9514   // will have undefined behavior due to wrapping.
9515   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9516       loopHasNoAbnormalExits(AddRec->getLoop())) {
9517     const SCEV *Exact =
9518         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9519     const SCEV *Max = getCouldNotCompute();
9520     if (Exact != getCouldNotCompute()) {
9521       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9522       APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9523       if (BaseMaxInt.ult(MaxInt))
9524         Max = getConstant(BaseMaxInt);
9525       else
9526         Max = getConstant(MaxInt);
9527     }
9528     return ExitLimit(Exact, Max, false, Predicates);
9529   }
9530 
9531   // Solve the general equation.
9532   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9533                                                getNegativeSCEV(Start), *this);
9534   const SCEV *M = E == getCouldNotCompute()
9535                       ? E
9536                       : getConstant(getUnsignedRangeMax(E));
9537   return ExitLimit(E, M, false, Predicates);
9538 }
9539 
9540 ScalarEvolution::ExitLimit
9541 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9542   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9543   // handle them yet except for the trivial case.  This could be expanded in the
9544   // future as needed.
9545 
9546   // If the value is a constant, check to see if it is known to be non-zero
9547   // already.  If so, the backedge will execute zero times.
9548   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9549     if (!C->getValue()->isZero())
9550       return getZero(C->getType());
9551     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9552   }
9553 
9554   // We could implement others, but I really doubt anyone writes loops like
9555   // this, and if they did, they would already be constant folded.
9556   return getCouldNotCompute();
9557 }
9558 
9559 std::pair<const BasicBlock *, const BasicBlock *>
9560 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9561     const {
9562   // If the block has a unique predecessor, then there is no path from the
9563   // predecessor to the block that does not go through the direct edge
9564   // from the predecessor to the block.
9565   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9566     return {Pred, BB};
9567 
9568   // A loop's header is defined to be a block that dominates the loop.
9569   // If the header has a unique predecessor outside the loop, it must be
9570   // a block that has exactly one successor that can reach the loop.
9571   if (const Loop *L = LI.getLoopFor(BB))
9572     return {L->getLoopPredecessor(), L->getHeader()};
9573 
9574   return {nullptr, nullptr};
9575 }
9576 
9577 /// SCEV structural equivalence is usually sufficient for testing whether two
9578 /// expressions are equal, however for the purposes of looking for a condition
9579 /// guarding a loop, it can be useful to be a little more general, since a
9580 /// front-end may have replicated the controlling expression.
9581 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9582   // Quick check to see if they are the same SCEV.
9583   if (A == B) return true;
9584 
9585   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9586     // Not all instructions that are "identical" compute the same value.  For
9587     // instance, two distinct alloca instructions allocating the same type are
9588     // identical and do not read memory; but compute distinct values.
9589     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9590   };
9591 
9592   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9593   // two different instructions with the same value. Check for this case.
9594   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9595     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9596       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9597         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9598           if (ComputesEqualValues(AI, BI))
9599             return true;
9600 
9601   // Otherwise assume they may have a different value.
9602   return false;
9603 }
9604 
9605 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9606                                            const SCEV *&LHS, const SCEV *&RHS,
9607                                            unsigned Depth) {
9608   bool Changed = false;
9609   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9610   // '0 != 0'.
9611   auto TrivialCase = [&](bool TriviallyTrue) {
9612     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9613     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9614     return true;
9615   };
9616   // If we hit the max recursion limit bail out.
9617   if (Depth >= 3)
9618     return false;
9619 
9620   // Canonicalize a constant to the right side.
9621   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9622     // Check for both operands constant.
9623     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9624       if (ConstantExpr::getICmp(Pred,
9625                                 LHSC->getValue(),
9626                                 RHSC->getValue())->isNullValue())
9627         return TrivialCase(false);
9628       else
9629         return TrivialCase(true);
9630     }
9631     // Otherwise swap the operands to put the constant on the right.
9632     std::swap(LHS, RHS);
9633     Pred = ICmpInst::getSwappedPredicate(Pred);
9634     Changed = true;
9635   }
9636 
9637   // If we're comparing an addrec with a value which is loop-invariant in the
9638   // addrec's loop, put the addrec on the left. Also make a dominance check,
9639   // as both operands could be addrecs loop-invariant in each other's loop.
9640   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9641     const Loop *L = AR->getLoop();
9642     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9643       std::swap(LHS, RHS);
9644       Pred = ICmpInst::getSwappedPredicate(Pred);
9645       Changed = true;
9646     }
9647   }
9648 
9649   // If there's a constant operand, canonicalize comparisons with boundary
9650   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9651   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9652     const APInt &RA = RC->getAPInt();
9653 
9654     bool SimplifiedByConstantRange = false;
9655 
9656     if (!ICmpInst::isEquality(Pred)) {
9657       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9658       if (ExactCR.isFullSet())
9659         return TrivialCase(true);
9660       else if (ExactCR.isEmptySet())
9661         return TrivialCase(false);
9662 
9663       APInt NewRHS;
9664       CmpInst::Predicate NewPred;
9665       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9666           ICmpInst::isEquality(NewPred)) {
9667         // We were able to convert an inequality to an equality.
9668         Pred = NewPred;
9669         RHS = getConstant(NewRHS);
9670         Changed = SimplifiedByConstantRange = true;
9671       }
9672     }
9673 
9674     if (!SimplifiedByConstantRange) {
9675       switch (Pred) {
9676       default:
9677         break;
9678       case ICmpInst::ICMP_EQ:
9679       case ICmpInst::ICMP_NE:
9680         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9681         if (!RA)
9682           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9683             if (const SCEVMulExpr *ME =
9684                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9685               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9686                   ME->getOperand(0)->isAllOnesValue()) {
9687                 RHS = AE->getOperand(1);
9688                 LHS = ME->getOperand(1);
9689                 Changed = true;
9690               }
9691         break;
9692 
9693 
9694         // The "Should have been caught earlier!" messages refer to the fact
9695         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9696         // should have fired on the corresponding cases, and canonicalized the
9697         // check to trivial case.
9698 
9699       case ICmpInst::ICMP_UGE:
9700         assert(!RA.isMinValue() && "Should have been caught earlier!");
9701         Pred = ICmpInst::ICMP_UGT;
9702         RHS = getConstant(RA - 1);
9703         Changed = true;
9704         break;
9705       case ICmpInst::ICMP_ULE:
9706         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9707         Pred = ICmpInst::ICMP_ULT;
9708         RHS = getConstant(RA + 1);
9709         Changed = true;
9710         break;
9711       case ICmpInst::ICMP_SGE:
9712         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9713         Pred = ICmpInst::ICMP_SGT;
9714         RHS = getConstant(RA - 1);
9715         Changed = true;
9716         break;
9717       case ICmpInst::ICMP_SLE:
9718         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9719         Pred = ICmpInst::ICMP_SLT;
9720         RHS = getConstant(RA + 1);
9721         Changed = true;
9722         break;
9723       }
9724     }
9725   }
9726 
9727   // Check for obvious equality.
9728   if (HasSameValue(LHS, RHS)) {
9729     if (ICmpInst::isTrueWhenEqual(Pred))
9730       return TrivialCase(true);
9731     if (ICmpInst::isFalseWhenEqual(Pred))
9732       return TrivialCase(false);
9733   }
9734 
9735   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9736   // adding or subtracting 1 from one of the operands.
9737   switch (Pred) {
9738   case ICmpInst::ICMP_SLE:
9739     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9740       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9741                        SCEV::FlagNSW);
9742       Pred = ICmpInst::ICMP_SLT;
9743       Changed = true;
9744     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9745       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9746                        SCEV::FlagNSW);
9747       Pred = ICmpInst::ICMP_SLT;
9748       Changed = true;
9749     }
9750     break;
9751   case ICmpInst::ICMP_SGE:
9752     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9753       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9754                        SCEV::FlagNSW);
9755       Pred = ICmpInst::ICMP_SGT;
9756       Changed = true;
9757     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9758       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9759                        SCEV::FlagNSW);
9760       Pred = ICmpInst::ICMP_SGT;
9761       Changed = true;
9762     }
9763     break;
9764   case ICmpInst::ICMP_ULE:
9765     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9766       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9767                        SCEV::FlagNUW);
9768       Pred = ICmpInst::ICMP_ULT;
9769       Changed = true;
9770     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9771       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9772       Pred = ICmpInst::ICMP_ULT;
9773       Changed = true;
9774     }
9775     break;
9776   case ICmpInst::ICMP_UGE:
9777     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9778       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9779       Pred = ICmpInst::ICMP_UGT;
9780       Changed = true;
9781     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9782       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9783                        SCEV::FlagNUW);
9784       Pred = ICmpInst::ICMP_UGT;
9785       Changed = true;
9786     }
9787     break;
9788   default:
9789     break;
9790   }
9791 
9792   // TODO: More simplifications are possible here.
9793 
9794   // Recursively simplify until we either hit a recursion limit or nothing
9795   // changes.
9796   if (Changed)
9797     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9798 
9799   return Changed;
9800 }
9801 
9802 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9803   return getSignedRangeMax(S).isNegative();
9804 }
9805 
9806 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9807   return getSignedRangeMin(S).isStrictlyPositive();
9808 }
9809 
9810 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9811   return !getSignedRangeMin(S).isNegative();
9812 }
9813 
9814 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9815   return !getSignedRangeMax(S).isStrictlyPositive();
9816 }
9817 
9818 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9819   return getUnsignedRangeMin(S) != 0;
9820 }
9821 
9822 std::pair<const SCEV *, const SCEV *>
9823 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9824   // Compute SCEV on entry of loop L.
9825   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9826   if (Start == getCouldNotCompute())
9827     return { Start, Start };
9828   // Compute post increment SCEV for loop L.
9829   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9830   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9831   return { Start, PostInc };
9832 }
9833 
9834 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9835                                           const SCEV *LHS, const SCEV *RHS) {
9836   // First collect all loops.
9837   SmallPtrSet<const Loop *, 8> LoopsUsed;
9838   getUsedLoops(LHS, LoopsUsed);
9839   getUsedLoops(RHS, LoopsUsed);
9840 
9841   if (LoopsUsed.empty())
9842     return false;
9843 
9844   // Domination relationship must be a linear order on collected loops.
9845 #ifndef NDEBUG
9846   for (auto *L1 : LoopsUsed)
9847     for (auto *L2 : LoopsUsed)
9848       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9849               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9850              "Domination relationship is not a linear order");
9851 #endif
9852 
9853   const Loop *MDL =
9854       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9855                         [&](const Loop *L1, const Loop *L2) {
9856          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9857        });
9858 
9859   // Get init and post increment value for LHS.
9860   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9861   // if LHS contains unknown non-invariant SCEV then bail out.
9862   if (SplitLHS.first == getCouldNotCompute())
9863     return false;
9864   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9865   // Get init and post increment value for RHS.
9866   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9867   // if RHS contains unknown non-invariant SCEV then bail out.
9868   if (SplitRHS.first == getCouldNotCompute())
9869     return false;
9870   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9871   // It is possible that init SCEV contains an invariant load but it does
9872   // not dominate MDL and is not available at MDL loop entry, so we should
9873   // check it here.
9874   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9875       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9876     return false;
9877 
9878   // It seems backedge guard check is faster than entry one so in some cases
9879   // it can speed up whole estimation by short circuit
9880   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9881                                      SplitRHS.second) &&
9882          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9883 }
9884 
9885 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9886                                        const SCEV *LHS, const SCEV *RHS) {
9887   // Canonicalize the inputs first.
9888   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9889 
9890   if (isKnownViaInduction(Pred, LHS, RHS))
9891     return true;
9892 
9893   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9894     return true;
9895 
9896   // Otherwise see what can be done with some simple reasoning.
9897   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9898 }
9899 
9900 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9901                                                   const SCEV *LHS,
9902                                                   const SCEV *RHS) {
9903   if (isKnownPredicate(Pred, LHS, RHS))
9904     return true;
9905   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9906     return false;
9907   return None;
9908 }
9909 
9910 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9911                                          const SCEV *LHS, const SCEV *RHS,
9912                                          const Instruction *CtxI) {
9913   // TODO: Analyze guards and assumes from Context's block.
9914   return isKnownPredicate(Pred, LHS, RHS) ||
9915          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
9916 }
9917 
9918 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
9919                                                     const SCEV *LHS,
9920                                                     const SCEV *RHS,
9921                                                     const Instruction *CtxI) {
9922   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
9923   if (KnownWithoutContext)
9924     return KnownWithoutContext;
9925 
9926   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
9927     return true;
9928   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
9929                                           ICmpInst::getInversePredicate(Pred),
9930                                           LHS, RHS))
9931     return false;
9932   return None;
9933 }
9934 
9935 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9936                                               const SCEVAddRecExpr *LHS,
9937                                               const SCEV *RHS) {
9938   const Loop *L = LHS->getLoop();
9939   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9940          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9941 }
9942 
9943 Optional<ScalarEvolution::MonotonicPredicateType>
9944 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9945                                            ICmpInst::Predicate Pred) {
9946   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9947 
9948 #ifndef NDEBUG
9949   // Verify an invariant: inverting the predicate should turn a monotonically
9950   // increasing change to a monotonically decreasing one, and vice versa.
9951   if (Result) {
9952     auto ResultSwapped =
9953         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9954 
9955     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9956     assert(ResultSwapped.getValue() != Result.getValue() &&
9957            "monotonicity should flip as we flip the predicate");
9958   }
9959 #endif
9960 
9961   return Result;
9962 }
9963 
9964 Optional<ScalarEvolution::MonotonicPredicateType>
9965 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9966                                                ICmpInst::Predicate Pred) {
9967   // A zero step value for LHS means the induction variable is essentially a
9968   // loop invariant value. We don't really depend on the predicate actually
9969   // flipping from false to true (for increasing predicates, and the other way
9970   // around for decreasing predicates), all we care about is that *if* the
9971   // predicate changes then it only changes from false to true.
9972   //
9973   // A zero step value in itself is not very useful, but there may be places
9974   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9975   // as general as possible.
9976 
9977   // Only handle LE/LT/GE/GT predicates.
9978   if (!ICmpInst::isRelational(Pred))
9979     return None;
9980 
9981   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9982   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9983          "Should be greater or less!");
9984 
9985   // Check that AR does not wrap.
9986   if (ICmpInst::isUnsigned(Pred)) {
9987     if (!LHS->hasNoUnsignedWrap())
9988       return None;
9989     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9990   } else {
9991     assert(ICmpInst::isSigned(Pred) &&
9992            "Relational predicate is either signed or unsigned!");
9993     if (!LHS->hasNoSignedWrap())
9994       return None;
9995 
9996     const SCEV *Step = LHS->getStepRecurrence(*this);
9997 
9998     if (isKnownNonNegative(Step))
9999       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10000 
10001     if (isKnownNonPositive(Step))
10002       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10003 
10004     return None;
10005   }
10006 }
10007 
10008 Optional<ScalarEvolution::LoopInvariantPredicate>
10009 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10010                                            const SCEV *LHS, const SCEV *RHS,
10011                                            const Loop *L) {
10012 
10013   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10014   if (!isLoopInvariant(RHS, L)) {
10015     if (!isLoopInvariant(LHS, L))
10016       return None;
10017 
10018     std::swap(LHS, RHS);
10019     Pred = ICmpInst::getSwappedPredicate(Pred);
10020   }
10021 
10022   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10023   if (!ArLHS || ArLHS->getLoop() != L)
10024     return None;
10025 
10026   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10027   if (!MonotonicType)
10028     return None;
10029   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10030   // true as the loop iterates, and the backedge is control dependent on
10031   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10032   //
10033   //   * if the predicate was false in the first iteration then the predicate
10034   //     is never evaluated again, since the loop exits without taking the
10035   //     backedge.
10036   //   * if the predicate was true in the first iteration then it will
10037   //     continue to be true for all future iterations since it is
10038   //     monotonically increasing.
10039   //
10040   // For both the above possibilities, we can replace the loop varying
10041   // predicate with its value on the first iteration of the loop (which is
10042   // loop invariant).
10043   //
10044   // A similar reasoning applies for a monotonically decreasing predicate, by
10045   // replacing true with false and false with true in the above two bullets.
10046   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10047   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10048 
10049   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10050     return None;
10051 
10052   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10053 }
10054 
10055 Optional<ScalarEvolution::LoopInvariantPredicate>
10056 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10057     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10058     const Instruction *CtxI, const SCEV *MaxIter) {
10059   // Try to prove the following set of facts:
10060   // - The predicate is monotonic in the iteration space.
10061   // - If the check does not fail on the 1st iteration:
10062   //   - No overflow will happen during first MaxIter iterations;
10063   //   - It will not fail on the MaxIter'th iteration.
10064   // If the check does fail on the 1st iteration, we leave the loop and no
10065   // other checks matter.
10066 
10067   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10068   if (!isLoopInvariant(RHS, L)) {
10069     if (!isLoopInvariant(LHS, L))
10070       return None;
10071 
10072     std::swap(LHS, RHS);
10073     Pred = ICmpInst::getSwappedPredicate(Pred);
10074   }
10075 
10076   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10077   if (!AR || AR->getLoop() != L)
10078     return None;
10079 
10080   // The predicate must be relational (i.e. <, <=, >=, >).
10081   if (!ICmpInst::isRelational(Pred))
10082     return None;
10083 
10084   // TODO: Support steps other than +/- 1.
10085   const SCEV *Step = AR->getStepRecurrence(*this);
10086   auto *One = getOne(Step->getType());
10087   auto *MinusOne = getNegativeSCEV(One);
10088   if (Step != One && Step != MinusOne)
10089     return None;
10090 
10091   // Type mismatch here means that MaxIter is potentially larger than max
10092   // unsigned value in start type, which mean we cannot prove no wrap for the
10093   // indvar.
10094   if (AR->getType() != MaxIter->getType())
10095     return None;
10096 
10097   // Value of IV on suggested last iteration.
10098   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10099   // Does it still meet the requirement?
10100   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10101     return None;
10102   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10103   // not exceed max unsigned value of this type), this effectively proves
10104   // that there is no wrap during the iteration. To prove that there is no
10105   // signed/unsigned wrap, we need to check that
10106   // Start <= Last for step = 1 or Start >= Last for step = -1.
10107   ICmpInst::Predicate NoOverflowPred =
10108       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10109   if (Step == MinusOne)
10110     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10111   const SCEV *Start = AR->getStart();
10112   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10113     return None;
10114 
10115   // Everything is fine.
10116   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10117 }
10118 
10119 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10120     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10121   if (HasSameValue(LHS, RHS))
10122     return ICmpInst::isTrueWhenEqual(Pred);
10123 
10124   // This code is split out from isKnownPredicate because it is called from
10125   // within isLoopEntryGuardedByCond.
10126 
10127   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10128                          const ConstantRange &RangeRHS) {
10129     return RangeLHS.icmp(Pred, RangeRHS);
10130   };
10131 
10132   // The check at the top of the function catches the case where the values are
10133   // known to be equal.
10134   if (Pred == CmpInst::ICMP_EQ)
10135     return false;
10136 
10137   if (Pred == CmpInst::ICMP_NE) {
10138     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10139         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10140       return true;
10141     auto *Diff = getMinusSCEV(LHS, RHS);
10142     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10143   }
10144 
10145   if (CmpInst::isSigned(Pred))
10146     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10147 
10148   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10149 }
10150 
10151 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10152                                                     const SCEV *LHS,
10153                                                     const SCEV *RHS) {
10154   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10155   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10156   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10157   // OutC1 and OutC2.
10158   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10159                                       APInt &OutC1, APInt &OutC2,
10160                                       SCEV::NoWrapFlags ExpectedFlags) {
10161     const SCEV *XNonConstOp, *XConstOp;
10162     const SCEV *YNonConstOp, *YConstOp;
10163     SCEV::NoWrapFlags XFlagsPresent;
10164     SCEV::NoWrapFlags YFlagsPresent;
10165 
10166     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10167       XConstOp = getZero(X->getType());
10168       XNonConstOp = X;
10169       XFlagsPresent = ExpectedFlags;
10170     }
10171     if (!isa<SCEVConstant>(XConstOp) ||
10172         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10173       return false;
10174 
10175     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10176       YConstOp = getZero(Y->getType());
10177       YNonConstOp = Y;
10178       YFlagsPresent = ExpectedFlags;
10179     }
10180 
10181     if (!isa<SCEVConstant>(YConstOp) ||
10182         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10183       return false;
10184 
10185     if (YNonConstOp != XNonConstOp)
10186       return false;
10187 
10188     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10189     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10190 
10191     return true;
10192   };
10193 
10194   APInt C1;
10195   APInt C2;
10196 
10197   switch (Pred) {
10198   default:
10199     break;
10200 
10201   case ICmpInst::ICMP_SGE:
10202     std::swap(LHS, RHS);
10203     LLVM_FALLTHROUGH;
10204   case ICmpInst::ICMP_SLE:
10205     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10206     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10207       return true;
10208 
10209     break;
10210 
10211   case ICmpInst::ICMP_SGT:
10212     std::swap(LHS, RHS);
10213     LLVM_FALLTHROUGH;
10214   case ICmpInst::ICMP_SLT:
10215     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10216     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10217       return true;
10218 
10219     break;
10220 
10221   case ICmpInst::ICMP_UGE:
10222     std::swap(LHS, RHS);
10223     LLVM_FALLTHROUGH;
10224   case ICmpInst::ICMP_ULE:
10225     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10226     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10227       return true;
10228 
10229     break;
10230 
10231   case ICmpInst::ICMP_UGT:
10232     std::swap(LHS, RHS);
10233     LLVM_FALLTHROUGH;
10234   case ICmpInst::ICMP_ULT:
10235     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10236     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10237       return true;
10238     break;
10239   }
10240 
10241   return false;
10242 }
10243 
10244 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10245                                                    const SCEV *LHS,
10246                                                    const SCEV *RHS) {
10247   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10248     return false;
10249 
10250   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10251   // the stack can result in exponential time complexity.
10252   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10253 
10254   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10255   //
10256   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10257   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10258   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10259   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10260   // use isKnownPredicate later if needed.
10261   return isKnownNonNegative(RHS) &&
10262          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10263          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10264 }
10265 
10266 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10267                                         ICmpInst::Predicate Pred,
10268                                         const SCEV *LHS, const SCEV *RHS) {
10269   // No need to even try if we know the module has no guards.
10270   if (!HasGuards)
10271     return false;
10272 
10273   return any_of(*BB, [&](const Instruction &I) {
10274     using namespace llvm::PatternMatch;
10275 
10276     Value *Condition;
10277     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10278                          m_Value(Condition))) &&
10279            isImpliedCond(Pred, LHS, RHS, Condition, false);
10280   });
10281 }
10282 
10283 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10284 /// protected by a conditional between LHS and RHS.  This is used to
10285 /// to eliminate casts.
10286 bool
10287 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10288                                              ICmpInst::Predicate Pred,
10289                                              const SCEV *LHS, const SCEV *RHS) {
10290   // Interpret a null as meaning no loop, where there is obviously no guard
10291   // (interprocedural conditions notwithstanding).
10292   if (!L) return true;
10293 
10294   if (VerifyIR)
10295     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10296            "This cannot be done on broken IR!");
10297 
10298 
10299   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10300     return true;
10301 
10302   BasicBlock *Latch = L->getLoopLatch();
10303   if (!Latch)
10304     return false;
10305 
10306   BranchInst *LoopContinuePredicate =
10307     dyn_cast<BranchInst>(Latch->getTerminator());
10308   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10309       isImpliedCond(Pred, LHS, RHS,
10310                     LoopContinuePredicate->getCondition(),
10311                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10312     return true;
10313 
10314   // We don't want more than one activation of the following loops on the stack
10315   // -- that can lead to O(n!) time complexity.
10316   if (WalkingBEDominatingConds)
10317     return false;
10318 
10319   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10320 
10321   // See if we can exploit a trip count to prove the predicate.
10322   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10323   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10324   if (LatchBECount != getCouldNotCompute()) {
10325     // We know that Latch branches back to the loop header exactly
10326     // LatchBECount times.  This means the backdege condition at Latch is
10327     // equivalent to  "{0,+,1} u< LatchBECount".
10328     Type *Ty = LatchBECount->getType();
10329     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10330     const SCEV *LoopCounter =
10331       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10332     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10333                       LatchBECount))
10334       return true;
10335   }
10336 
10337   // Check conditions due to any @llvm.assume intrinsics.
10338   for (auto &AssumeVH : AC.assumptions()) {
10339     if (!AssumeVH)
10340       continue;
10341     auto *CI = cast<CallInst>(AssumeVH);
10342     if (!DT.dominates(CI, Latch->getTerminator()))
10343       continue;
10344 
10345     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10346       return true;
10347   }
10348 
10349   // If the loop is not reachable from the entry block, we risk running into an
10350   // infinite loop as we walk up into the dom tree.  These loops do not matter
10351   // anyway, so we just return a conservative answer when we see them.
10352   if (!DT.isReachableFromEntry(L->getHeader()))
10353     return false;
10354 
10355   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10356     return true;
10357 
10358   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10359        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10360     assert(DTN && "should reach the loop header before reaching the root!");
10361 
10362     BasicBlock *BB = DTN->getBlock();
10363     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10364       return true;
10365 
10366     BasicBlock *PBB = BB->getSinglePredecessor();
10367     if (!PBB)
10368       continue;
10369 
10370     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10371     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10372       continue;
10373 
10374     Value *Condition = ContinuePredicate->getCondition();
10375 
10376     // If we have an edge `E` within the loop body that dominates the only
10377     // latch, the condition guarding `E` also guards the backedge.  This
10378     // reasoning works only for loops with a single latch.
10379 
10380     BasicBlockEdge DominatingEdge(PBB, BB);
10381     if (DominatingEdge.isSingleEdge()) {
10382       // We're constructively (and conservatively) enumerating edges within the
10383       // loop body that dominate the latch.  The dominator tree better agree
10384       // with us on this:
10385       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10386 
10387       if (isImpliedCond(Pred, LHS, RHS, Condition,
10388                         BB != ContinuePredicate->getSuccessor(0)))
10389         return true;
10390     }
10391   }
10392 
10393   return false;
10394 }
10395 
10396 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10397                                                      ICmpInst::Predicate Pred,
10398                                                      const SCEV *LHS,
10399                                                      const SCEV *RHS) {
10400   if (VerifyIR)
10401     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10402            "This cannot be done on broken IR!");
10403 
10404   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10405   // the facts (a >= b && a != b) separately. A typical situation is when the
10406   // non-strict comparison is known from ranges and non-equality is known from
10407   // dominating predicates. If we are proving strict comparison, we always try
10408   // to prove non-equality and non-strict comparison separately.
10409   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10410   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10411   bool ProvedNonStrictComparison = false;
10412   bool ProvedNonEquality = false;
10413 
10414   auto SplitAndProve =
10415     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10416     if (!ProvedNonStrictComparison)
10417       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10418     if (!ProvedNonEquality)
10419       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10420     if (ProvedNonStrictComparison && ProvedNonEquality)
10421       return true;
10422     return false;
10423   };
10424 
10425   if (ProvingStrictComparison) {
10426     auto ProofFn = [&](ICmpInst::Predicate P) {
10427       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10428     };
10429     if (SplitAndProve(ProofFn))
10430       return true;
10431   }
10432 
10433   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10434   auto ProveViaGuard = [&](const BasicBlock *Block) {
10435     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10436       return true;
10437     if (ProvingStrictComparison) {
10438       auto ProofFn = [&](ICmpInst::Predicate P) {
10439         return isImpliedViaGuard(Block, P, LHS, RHS);
10440       };
10441       if (SplitAndProve(ProofFn))
10442         return true;
10443     }
10444     return false;
10445   };
10446 
10447   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10448   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10449     const Instruction *CtxI = &BB->front();
10450     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
10451       return true;
10452     if (ProvingStrictComparison) {
10453       auto ProofFn = [&](ICmpInst::Predicate P) {
10454         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
10455       };
10456       if (SplitAndProve(ProofFn))
10457         return true;
10458     }
10459     return false;
10460   };
10461 
10462   // Starting at the block's predecessor, climb up the predecessor chain, as long
10463   // as there are predecessors that can be found that have unique successors
10464   // leading to the original block.
10465   const Loop *ContainingLoop = LI.getLoopFor(BB);
10466   const BasicBlock *PredBB;
10467   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10468     PredBB = ContainingLoop->getLoopPredecessor();
10469   else
10470     PredBB = BB->getSinglePredecessor();
10471   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10472        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10473     if (ProveViaGuard(Pair.first))
10474       return true;
10475 
10476     const BranchInst *LoopEntryPredicate =
10477         dyn_cast<BranchInst>(Pair.first->getTerminator());
10478     if (!LoopEntryPredicate ||
10479         LoopEntryPredicate->isUnconditional())
10480       continue;
10481 
10482     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10483                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10484       return true;
10485   }
10486 
10487   // Check conditions due to any @llvm.assume intrinsics.
10488   for (auto &AssumeVH : AC.assumptions()) {
10489     if (!AssumeVH)
10490       continue;
10491     auto *CI = cast<CallInst>(AssumeVH);
10492     if (!DT.dominates(CI, BB))
10493       continue;
10494 
10495     if (ProveViaCond(CI->getArgOperand(0), false))
10496       return true;
10497   }
10498 
10499   return false;
10500 }
10501 
10502 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10503                                                ICmpInst::Predicate Pred,
10504                                                const SCEV *LHS,
10505                                                const SCEV *RHS) {
10506   // Interpret a null as meaning no loop, where there is obviously no guard
10507   // (interprocedural conditions notwithstanding).
10508   if (!L)
10509     return false;
10510 
10511   // Both LHS and RHS must be available at loop entry.
10512   assert(isAvailableAtLoopEntry(LHS, L) &&
10513          "LHS is not available at Loop Entry");
10514   assert(isAvailableAtLoopEntry(RHS, L) &&
10515          "RHS is not available at Loop Entry");
10516 
10517   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10518     return true;
10519 
10520   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10521 }
10522 
10523 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10524                                     const SCEV *RHS,
10525                                     const Value *FoundCondValue, bool Inverse,
10526                                     const Instruction *CtxI) {
10527   // False conditions implies anything. Do not bother analyzing it further.
10528   if (FoundCondValue ==
10529       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10530     return true;
10531 
10532   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10533     return false;
10534 
10535   auto ClearOnExit =
10536       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10537 
10538   // Recursively handle And and Or conditions.
10539   const Value *Op0, *Op1;
10540   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10541     if (!Inverse)
10542       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10543              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10544   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10545     if (Inverse)
10546       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10547              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10548   }
10549 
10550   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10551   if (!ICI) return false;
10552 
10553   // Now that we found a conditional branch that dominates the loop or controls
10554   // the loop latch. Check to see if it is the comparison we are looking for.
10555   ICmpInst::Predicate FoundPred;
10556   if (Inverse)
10557     FoundPred = ICI->getInversePredicate();
10558   else
10559     FoundPred = ICI->getPredicate();
10560 
10561   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10562   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10563 
10564   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
10565 }
10566 
10567 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10568                                     const SCEV *RHS,
10569                                     ICmpInst::Predicate FoundPred,
10570                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10571                                     const Instruction *CtxI) {
10572   // Balance the types.
10573   if (getTypeSizeInBits(LHS->getType()) <
10574       getTypeSizeInBits(FoundLHS->getType())) {
10575     // For unsigned and equality predicates, try to prove that both found
10576     // operands fit into narrow unsigned range. If so, try to prove facts in
10577     // narrow types.
10578     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10579       auto *NarrowType = LHS->getType();
10580       auto *WideType = FoundLHS->getType();
10581       auto BitWidth = getTypeSizeInBits(NarrowType);
10582       const SCEV *MaxValue = getZeroExtendExpr(
10583           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10584       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
10585                                           MaxValue) &&
10586           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
10587                                           MaxValue)) {
10588         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10589         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10590         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10591                                        TruncFoundRHS, CtxI))
10592           return true;
10593       }
10594     }
10595 
10596     if (LHS->getType()->isPointerTy())
10597       return false;
10598     if (CmpInst::isSigned(Pred)) {
10599       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10600       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10601     } else {
10602       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10603       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10604     }
10605   } else if (getTypeSizeInBits(LHS->getType()) >
10606       getTypeSizeInBits(FoundLHS->getType())) {
10607     if (FoundLHS->getType()->isPointerTy())
10608       return false;
10609     if (CmpInst::isSigned(FoundPred)) {
10610       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10611       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10612     } else {
10613       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10614       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10615     }
10616   }
10617   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10618                                     FoundRHS, CtxI);
10619 }
10620 
10621 bool ScalarEvolution::isImpliedCondBalancedTypes(
10622     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10623     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10624     const Instruction *CtxI) {
10625   assert(getTypeSizeInBits(LHS->getType()) ==
10626              getTypeSizeInBits(FoundLHS->getType()) &&
10627          "Types should be balanced!");
10628   // Canonicalize the query to match the way instcombine will have
10629   // canonicalized the comparison.
10630   if (SimplifyICmpOperands(Pred, LHS, RHS))
10631     if (LHS == RHS)
10632       return CmpInst::isTrueWhenEqual(Pred);
10633   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10634     if (FoundLHS == FoundRHS)
10635       return CmpInst::isFalseWhenEqual(FoundPred);
10636 
10637   // Check to see if we can make the LHS or RHS match.
10638   if (LHS == FoundRHS || RHS == FoundLHS) {
10639     if (isa<SCEVConstant>(RHS)) {
10640       std::swap(FoundLHS, FoundRHS);
10641       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10642     } else {
10643       std::swap(LHS, RHS);
10644       Pred = ICmpInst::getSwappedPredicate(Pred);
10645     }
10646   }
10647 
10648   // Check whether the found predicate is the same as the desired predicate.
10649   if (FoundPred == Pred)
10650     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10651 
10652   // Check whether swapping the found predicate makes it the same as the
10653   // desired predicate.
10654   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10655     // We can write the implication
10656     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10657     // using one of the following ways:
10658     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10659     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10660     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10661     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10662     // Forms 1. and 2. require swapping the operands of one condition. Don't
10663     // do this if it would break canonical constant/addrec ordering.
10664     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10665       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10666                                    CtxI);
10667     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10668       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
10669 
10670     // There's no clear preference between forms 3. and 4., try both.  Avoid
10671     // forming getNotSCEV of pointer values as the resulting subtract is
10672     // not legal.
10673     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
10674         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10675                               FoundLHS, FoundRHS, CtxI))
10676       return true;
10677 
10678     if (!FoundLHS->getType()->isPointerTy() &&
10679         !FoundRHS->getType()->isPointerTy() &&
10680         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10681                               getNotSCEV(FoundRHS), CtxI))
10682       return true;
10683 
10684     return false;
10685   }
10686 
10687   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
10688                                    CmpInst::Predicate P2) {
10689     assert(P1 != P2 && "Handled earlier!");
10690     return CmpInst::isRelational(P2) &&
10691            P1 == CmpInst::getFlippedSignednessPredicate(P2);
10692   };
10693   if (IsSignFlippedPredicate(Pred, FoundPred)) {
10694     // Unsigned comparison is the same as signed comparison when both the
10695     // operands are non-negative or negative.
10696     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
10697         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
10698       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10699     // Create local copies that we can freely swap and canonicalize our
10700     // conditions to "le/lt".
10701     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
10702     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
10703                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
10704     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
10705       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
10706       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
10707       std::swap(CanonicalLHS, CanonicalRHS);
10708       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
10709     }
10710     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
10711            "Must be!");
10712     assert((ICmpInst::isLT(CanonicalFoundPred) ||
10713             ICmpInst::isLE(CanonicalFoundPred)) &&
10714            "Must be!");
10715     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
10716       // Use implication:
10717       // x <u y && y >=s 0 --> x <s y.
10718       // If we can prove the left part, the right part is also proven.
10719       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
10720                                    CanonicalRHS, CanonicalFoundLHS,
10721                                    CanonicalFoundRHS);
10722     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
10723       // Use implication:
10724       // x <s y && y <s 0 --> x <u y.
10725       // If we can prove the left part, the right part is also proven.
10726       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
10727                                    CanonicalRHS, CanonicalFoundLHS,
10728                                    CanonicalFoundRHS);
10729   }
10730 
10731   // Check if we can make progress by sharpening ranges.
10732   if (FoundPred == ICmpInst::ICMP_NE &&
10733       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10734 
10735     const SCEVConstant *C = nullptr;
10736     const SCEV *V = nullptr;
10737 
10738     if (isa<SCEVConstant>(FoundLHS)) {
10739       C = cast<SCEVConstant>(FoundLHS);
10740       V = FoundRHS;
10741     } else {
10742       C = cast<SCEVConstant>(FoundRHS);
10743       V = FoundLHS;
10744     }
10745 
10746     // The guarding predicate tells us that C != V. If the known range
10747     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10748     // range we consider has to correspond to same signedness as the
10749     // predicate we're interested in folding.
10750 
10751     APInt Min = ICmpInst::isSigned(Pred) ?
10752         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10753 
10754     if (Min == C->getAPInt()) {
10755       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10756       // This is true even if (Min + 1) wraps around -- in case of
10757       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10758 
10759       APInt SharperMin = Min + 1;
10760 
10761       switch (Pred) {
10762         case ICmpInst::ICMP_SGE:
10763         case ICmpInst::ICMP_UGE:
10764           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10765           // RHS, we're done.
10766           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10767                                     CtxI))
10768             return true;
10769           LLVM_FALLTHROUGH;
10770 
10771         case ICmpInst::ICMP_SGT:
10772         case ICmpInst::ICMP_UGT:
10773           // We know from the range information that (V `Pred` Min ||
10774           // V == Min).  We know from the guarding condition that !(V
10775           // == Min).  This gives us
10776           //
10777           //       V `Pred` Min || V == Min && !(V == Min)
10778           //   =>  V `Pred` Min
10779           //
10780           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10781 
10782           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
10783             return true;
10784           break;
10785 
10786         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10787         case ICmpInst::ICMP_SLE:
10788         case ICmpInst::ICMP_ULE:
10789           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10790                                     LHS, V, getConstant(SharperMin), CtxI))
10791             return true;
10792           LLVM_FALLTHROUGH;
10793 
10794         case ICmpInst::ICMP_SLT:
10795         case ICmpInst::ICMP_ULT:
10796           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10797                                     LHS, V, getConstant(Min), CtxI))
10798             return true;
10799           break;
10800 
10801         default:
10802           // No change
10803           break;
10804       }
10805     }
10806   }
10807 
10808   // Check whether the actual condition is beyond sufficient.
10809   if (FoundPred == ICmpInst::ICMP_EQ)
10810     if (ICmpInst::isTrueWhenEqual(Pred))
10811       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10812         return true;
10813   if (Pred == ICmpInst::ICMP_NE)
10814     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10815       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10816         return true;
10817 
10818   // Otherwise assume the worst.
10819   return false;
10820 }
10821 
10822 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10823                                      const SCEV *&L, const SCEV *&R,
10824                                      SCEV::NoWrapFlags &Flags) {
10825   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10826   if (!AE || AE->getNumOperands() != 2)
10827     return false;
10828 
10829   L = AE->getOperand(0);
10830   R = AE->getOperand(1);
10831   Flags = AE->getNoWrapFlags();
10832   return true;
10833 }
10834 
10835 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10836                                                            const SCEV *Less) {
10837   // We avoid subtracting expressions here because this function is usually
10838   // fairly deep in the call stack (i.e. is called many times).
10839 
10840   // X - X = 0.
10841   if (More == Less)
10842     return APInt(getTypeSizeInBits(More->getType()), 0);
10843 
10844   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10845     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10846     const auto *MAR = cast<SCEVAddRecExpr>(More);
10847 
10848     if (LAR->getLoop() != MAR->getLoop())
10849       return None;
10850 
10851     // We look at affine expressions only; not for correctness but to keep
10852     // getStepRecurrence cheap.
10853     if (!LAR->isAffine() || !MAR->isAffine())
10854       return None;
10855 
10856     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10857       return None;
10858 
10859     Less = LAR->getStart();
10860     More = MAR->getStart();
10861 
10862     // fall through
10863   }
10864 
10865   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10866     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10867     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10868     return M - L;
10869   }
10870 
10871   SCEV::NoWrapFlags Flags;
10872   const SCEV *LLess = nullptr, *RLess = nullptr;
10873   const SCEV *LMore = nullptr, *RMore = nullptr;
10874   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10875   // Compare (X + C1) vs X.
10876   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10877     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10878       if (RLess == More)
10879         return -(C1->getAPInt());
10880 
10881   // Compare X vs (X + C2).
10882   if (splitBinaryAdd(More, LMore, RMore, Flags))
10883     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10884       if (RMore == Less)
10885         return C2->getAPInt();
10886 
10887   // Compare (X + C1) vs (X + C2).
10888   if (C1 && C2 && RLess == RMore)
10889     return C2->getAPInt() - C1->getAPInt();
10890 
10891   return None;
10892 }
10893 
10894 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10895     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10896     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
10897   // Try to recognize the following pattern:
10898   //
10899   //   FoundRHS = ...
10900   // ...
10901   // loop:
10902   //   FoundLHS = {Start,+,W}
10903   // context_bb: // Basic block from the same loop
10904   //   known(Pred, FoundLHS, FoundRHS)
10905   //
10906   // If some predicate is known in the context of a loop, it is also known on
10907   // each iteration of this loop, including the first iteration. Therefore, in
10908   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10909   // prove the original pred using this fact.
10910   if (!CtxI)
10911     return false;
10912   const BasicBlock *ContextBB = CtxI->getParent();
10913   // Make sure AR varies in the context block.
10914   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10915     const Loop *L = AR->getLoop();
10916     // Make sure that context belongs to the loop and executes on 1st iteration
10917     // (if it ever executes at all).
10918     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10919       return false;
10920     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10921       return false;
10922     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10923   }
10924 
10925   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10926     const Loop *L = AR->getLoop();
10927     // Make sure that context belongs to the loop and executes on 1st iteration
10928     // (if it ever executes at all).
10929     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10930       return false;
10931     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10932       return false;
10933     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10934   }
10935 
10936   return false;
10937 }
10938 
10939 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10940     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10941     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10942   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10943     return false;
10944 
10945   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10946   if (!AddRecLHS)
10947     return false;
10948 
10949   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10950   if (!AddRecFoundLHS)
10951     return false;
10952 
10953   // We'd like to let SCEV reason about control dependencies, so we constrain
10954   // both the inequalities to be about add recurrences on the same loop.  This
10955   // way we can use isLoopEntryGuardedByCond later.
10956 
10957   const Loop *L = AddRecFoundLHS->getLoop();
10958   if (L != AddRecLHS->getLoop())
10959     return false;
10960 
10961   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10962   //
10963   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10964   //                                                                  ... (2)
10965   //
10966   // Informal proof for (2), assuming (1) [*]:
10967   //
10968   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10969   //
10970   // Then
10971   //
10972   //       FoundLHS s< FoundRHS s< INT_MIN - C
10973   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10974   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10975   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10976   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10977   // <=>  FoundLHS + C s< FoundRHS + C
10978   //
10979   // [*]: (1) can be proved by ruling out overflow.
10980   //
10981   // [**]: This can be proved by analyzing all the four possibilities:
10982   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10983   //    (A s>= 0, B s>= 0).
10984   //
10985   // Note:
10986   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10987   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10988   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10989   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10990   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10991   // C)".
10992 
10993   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10994   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10995   if (!LDiff || !RDiff || *LDiff != *RDiff)
10996     return false;
10997 
10998   if (LDiff->isMinValue())
10999     return true;
11000 
11001   APInt FoundRHSLimit;
11002 
11003   if (Pred == CmpInst::ICMP_ULT) {
11004     FoundRHSLimit = -(*RDiff);
11005   } else {
11006     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
11007     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11008   }
11009 
11010   // Try to prove (1) or (2), as needed.
11011   return isAvailableAtLoopEntry(FoundRHS, L) &&
11012          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11013                                   getConstant(FoundRHSLimit));
11014 }
11015 
11016 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11017                                         const SCEV *LHS, const SCEV *RHS,
11018                                         const SCEV *FoundLHS,
11019                                         const SCEV *FoundRHS, unsigned Depth) {
11020   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11021 
11022   auto ClearOnExit = make_scope_exit([&]() {
11023     if (LPhi) {
11024       bool Erased = PendingMerges.erase(LPhi);
11025       assert(Erased && "Failed to erase LPhi!");
11026       (void)Erased;
11027     }
11028     if (RPhi) {
11029       bool Erased = PendingMerges.erase(RPhi);
11030       assert(Erased && "Failed to erase RPhi!");
11031       (void)Erased;
11032     }
11033   });
11034 
11035   // Find respective Phis and check that they are not being pending.
11036   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11037     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11038       if (!PendingMerges.insert(Phi).second)
11039         return false;
11040       LPhi = Phi;
11041     }
11042   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11043     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11044       // If we detect a loop of Phi nodes being processed by this method, for
11045       // example:
11046       //
11047       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11048       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11049       //
11050       // we don't want to deal with a case that complex, so return conservative
11051       // answer false.
11052       if (!PendingMerges.insert(Phi).second)
11053         return false;
11054       RPhi = Phi;
11055     }
11056 
11057   // If none of LHS, RHS is a Phi, nothing to do here.
11058   if (!LPhi && !RPhi)
11059     return false;
11060 
11061   // If there is a SCEVUnknown Phi we are interested in, make it left.
11062   if (!LPhi) {
11063     std::swap(LHS, RHS);
11064     std::swap(FoundLHS, FoundRHS);
11065     std::swap(LPhi, RPhi);
11066     Pred = ICmpInst::getSwappedPredicate(Pred);
11067   }
11068 
11069   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11070   const BasicBlock *LBB = LPhi->getParent();
11071   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11072 
11073   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11074     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11075            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11076            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11077   };
11078 
11079   if (RPhi && RPhi->getParent() == LBB) {
11080     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11081     // If we compare two Phis from the same block, and for each entry block
11082     // the predicate is true for incoming values from this block, then the
11083     // predicate is also true for the Phis.
11084     for (const BasicBlock *IncBB : predecessors(LBB)) {
11085       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11086       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11087       if (!ProvedEasily(L, R))
11088         return false;
11089     }
11090   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11091     // Case two: RHS is also a Phi from the same basic block, and it is an
11092     // AddRec. It means that there is a loop which has both AddRec and Unknown
11093     // PHIs, for it we can compare incoming values of AddRec from above the loop
11094     // and latch with their respective incoming values of LPhi.
11095     // TODO: Generalize to handle loops with many inputs in a header.
11096     if (LPhi->getNumIncomingValues() != 2) return false;
11097 
11098     auto *RLoop = RAR->getLoop();
11099     auto *Predecessor = RLoop->getLoopPredecessor();
11100     assert(Predecessor && "Loop with AddRec with no predecessor?");
11101     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11102     if (!ProvedEasily(L1, RAR->getStart()))
11103       return false;
11104     auto *Latch = RLoop->getLoopLatch();
11105     assert(Latch && "Loop with AddRec with no latch?");
11106     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11107     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11108       return false;
11109   } else {
11110     // In all other cases go over inputs of LHS and compare each of them to RHS,
11111     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11112     // At this point RHS is either a non-Phi, or it is a Phi from some block
11113     // different from LBB.
11114     for (const BasicBlock *IncBB : predecessors(LBB)) {
11115       // Check that RHS is available in this block.
11116       if (!dominates(RHS, IncBB))
11117         return false;
11118       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11119       // Make sure L does not refer to a value from a potentially previous
11120       // iteration of a loop.
11121       if (!properlyDominates(L, IncBB))
11122         return false;
11123       if (!ProvedEasily(L, RHS))
11124         return false;
11125     }
11126   }
11127   return true;
11128 }
11129 
11130 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11131                                             const SCEV *LHS, const SCEV *RHS,
11132                                             const SCEV *FoundLHS,
11133                                             const SCEV *FoundRHS,
11134                                             const Instruction *CtxI) {
11135   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11136     return true;
11137 
11138   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11139     return true;
11140 
11141   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11142                                           CtxI))
11143     return true;
11144 
11145   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11146                                      FoundLHS, FoundRHS);
11147 }
11148 
11149 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11150 template <typename MinMaxExprType>
11151 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11152                                  const SCEV *Candidate) {
11153   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11154   if (!MinMaxExpr)
11155     return false;
11156 
11157   return is_contained(MinMaxExpr->operands(), Candidate);
11158 }
11159 
11160 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11161                                            ICmpInst::Predicate Pred,
11162                                            const SCEV *LHS, const SCEV *RHS) {
11163   // If both sides are affine addrecs for the same loop, with equal
11164   // steps, and we know the recurrences don't wrap, then we only
11165   // need to check the predicate on the starting values.
11166 
11167   if (!ICmpInst::isRelational(Pred))
11168     return false;
11169 
11170   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11171   if (!LAR)
11172     return false;
11173   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11174   if (!RAR)
11175     return false;
11176   if (LAR->getLoop() != RAR->getLoop())
11177     return false;
11178   if (!LAR->isAffine() || !RAR->isAffine())
11179     return false;
11180 
11181   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11182     return false;
11183 
11184   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11185                          SCEV::FlagNSW : SCEV::FlagNUW;
11186   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11187     return false;
11188 
11189   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11190 }
11191 
11192 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11193 /// expression?
11194 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11195                                         ICmpInst::Predicate Pred,
11196                                         const SCEV *LHS, const SCEV *RHS) {
11197   switch (Pred) {
11198   default:
11199     return false;
11200 
11201   case ICmpInst::ICMP_SGE:
11202     std::swap(LHS, RHS);
11203     LLVM_FALLTHROUGH;
11204   case ICmpInst::ICMP_SLE:
11205     return
11206         // min(A, ...) <= A
11207         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11208         // A <= max(A, ...)
11209         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11210 
11211   case ICmpInst::ICMP_UGE:
11212     std::swap(LHS, RHS);
11213     LLVM_FALLTHROUGH;
11214   case ICmpInst::ICMP_ULE:
11215     return
11216         // min(A, ...) <= A
11217         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11218         // A <= max(A, ...)
11219         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11220   }
11221 
11222   llvm_unreachable("covered switch fell through?!");
11223 }
11224 
11225 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11226                                              const SCEV *LHS, const SCEV *RHS,
11227                                              const SCEV *FoundLHS,
11228                                              const SCEV *FoundRHS,
11229                                              unsigned Depth) {
11230   assert(getTypeSizeInBits(LHS->getType()) ==
11231              getTypeSizeInBits(RHS->getType()) &&
11232          "LHS and RHS have different sizes?");
11233   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11234              getTypeSizeInBits(FoundRHS->getType()) &&
11235          "FoundLHS and FoundRHS have different sizes?");
11236   // We want to avoid hurting the compile time with analysis of too big trees.
11237   if (Depth > MaxSCEVOperationsImplicationDepth)
11238     return false;
11239 
11240   // We only want to work with GT comparison so far.
11241   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11242     Pred = CmpInst::getSwappedPredicate(Pred);
11243     std::swap(LHS, RHS);
11244     std::swap(FoundLHS, FoundRHS);
11245   }
11246 
11247   // For unsigned, try to reduce it to corresponding signed comparison.
11248   if (Pred == ICmpInst::ICMP_UGT)
11249     // We can replace unsigned predicate with its signed counterpart if all
11250     // involved values are non-negative.
11251     // TODO: We could have better support for unsigned.
11252     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11253       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11254       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11255       // use this fact to prove that LHS and RHS are non-negative.
11256       const SCEV *MinusOne = getMinusOne(LHS->getType());
11257       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11258                                 FoundRHS) &&
11259           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11260                                 FoundRHS))
11261         Pred = ICmpInst::ICMP_SGT;
11262     }
11263 
11264   if (Pred != ICmpInst::ICMP_SGT)
11265     return false;
11266 
11267   auto GetOpFromSExt = [&](const SCEV *S) {
11268     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11269       return Ext->getOperand();
11270     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11271     // the constant in some cases.
11272     return S;
11273   };
11274 
11275   // Acquire values from extensions.
11276   auto *OrigLHS = LHS;
11277   auto *OrigFoundLHS = FoundLHS;
11278   LHS = GetOpFromSExt(LHS);
11279   FoundLHS = GetOpFromSExt(FoundLHS);
11280 
11281   // Is the SGT predicate can be proved trivially or using the found context.
11282   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11283     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11284            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11285                                   FoundRHS, Depth + 1);
11286   };
11287 
11288   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11289     // We want to avoid creation of any new non-constant SCEV. Since we are
11290     // going to compare the operands to RHS, we should be certain that we don't
11291     // need any size extensions for this. So let's decline all cases when the
11292     // sizes of types of LHS and RHS do not match.
11293     // TODO: Maybe try to get RHS from sext to catch more cases?
11294     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11295       return false;
11296 
11297     // Should not overflow.
11298     if (!LHSAddExpr->hasNoSignedWrap())
11299       return false;
11300 
11301     auto *LL = LHSAddExpr->getOperand(0);
11302     auto *LR = LHSAddExpr->getOperand(1);
11303     auto *MinusOne = getMinusOne(RHS->getType());
11304 
11305     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11306     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11307       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11308     };
11309     // Try to prove the following rule:
11310     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11311     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11312     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11313       return true;
11314   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11315     Value *LL, *LR;
11316     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11317 
11318     using namespace llvm::PatternMatch;
11319 
11320     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11321       // Rules for division.
11322       // We are going to perform some comparisons with Denominator and its
11323       // derivative expressions. In general case, creating a SCEV for it may
11324       // lead to a complex analysis of the entire graph, and in particular it
11325       // can request trip count recalculation for the same loop. This would
11326       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11327       // this, we only want to create SCEVs that are constants in this section.
11328       // So we bail if Denominator is not a constant.
11329       if (!isa<ConstantInt>(LR))
11330         return false;
11331 
11332       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11333 
11334       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11335       // then a SCEV for the numerator already exists and matches with FoundLHS.
11336       auto *Numerator = getExistingSCEV(LL);
11337       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11338         return false;
11339 
11340       // Make sure that the numerator matches with FoundLHS and the denominator
11341       // is positive.
11342       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11343         return false;
11344 
11345       auto *DTy = Denominator->getType();
11346       auto *FRHSTy = FoundRHS->getType();
11347       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11348         // One of types is a pointer and another one is not. We cannot extend
11349         // them properly to a wider type, so let us just reject this case.
11350         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11351         // to avoid this check.
11352         return false;
11353 
11354       // Given that:
11355       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11356       auto *WTy = getWiderType(DTy, FRHSTy);
11357       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11358       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11359 
11360       // Try to prove the following rule:
11361       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11362       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11363       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11364       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11365       if (isKnownNonPositive(RHS) &&
11366           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11367         return true;
11368 
11369       // Try to prove the following rule:
11370       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11371       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11372       // If we divide it by Denominator > 2, then:
11373       // 1. If FoundLHS is negative, then the result is 0.
11374       // 2. If FoundLHS is non-negative, then the result is non-negative.
11375       // Anyways, the result is non-negative.
11376       auto *MinusOne = getMinusOne(WTy);
11377       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11378       if (isKnownNegative(RHS) &&
11379           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11380         return true;
11381     }
11382   }
11383 
11384   // If our expression contained SCEVUnknown Phis, and we split it down and now
11385   // need to prove something for them, try to prove the predicate for every
11386   // possible incoming values of those Phis.
11387   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11388     return true;
11389 
11390   return false;
11391 }
11392 
11393 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11394                                         const SCEV *LHS, const SCEV *RHS) {
11395   // zext x u<= sext x, sext x s<= zext x
11396   switch (Pred) {
11397   case ICmpInst::ICMP_SGE:
11398     std::swap(LHS, RHS);
11399     LLVM_FALLTHROUGH;
11400   case ICmpInst::ICMP_SLE: {
11401     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11402     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11403     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11404     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11405       return true;
11406     break;
11407   }
11408   case ICmpInst::ICMP_UGE:
11409     std::swap(LHS, RHS);
11410     LLVM_FALLTHROUGH;
11411   case ICmpInst::ICMP_ULE: {
11412     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11413     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11414     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11415     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11416       return true;
11417     break;
11418   }
11419   default:
11420     break;
11421   };
11422   return false;
11423 }
11424 
11425 bool
11426 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11427                                            const SCEV *LHS, const SCEV *RHS) {
11428   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11429          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11430          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11431          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11432          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11433 }
11434 
11435 bool
11436 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11437                                              const SCEV *LHS, const SCEV *RHS,
11438                                              const SCEV *FoundLHS,
11439                                              const SCEV *FoundRHS) {
11440   switch (Pred) {
11441   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11442   case ICmpInst::ICMP_EQ:
11443   case ICmpInst::ICMP_NE:
11444     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11445       return true;
11446     break;
11447   case ICmpInst::ICMP_SLT:
11448   case ICmpInst::ICMP_SLE:
11449     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11450         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11451       return true;
11452     break;
11453   case ICmpInst::ICMP_SGT:
11454   case ICmpInst::ICMP_SGE:
11455     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11456         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11457       return true;
11458     break;
11459   case ICmpInst::ICMP_ULT:
11460   case ICmpInst::ICMP_ULE:
11461     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11462         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11463       return true;
11464     break;
11465   case ICmpInst::ICMP_UGT:
11466   case ICmpInst::ICMP_UGE:
11467     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11468         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11469       return true;
11470     break;
11471   }
11472 
11473   // Maybe it can be proved via operations?
11474   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11475     return true;
11476 
11477   return false;
11478 }
11479 
11480 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11481                                                      const SCEV *LHS,
11482                                                      const SCEV *RHS,
11483                                                      const SCEV *FoundLHS,
11484                                                      const SCEV *FoundRHS) {
11485   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11486     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11487     // reduce the compile time impact of this optimization.
11488     return false;
11489 
11490   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11491   if (!Addend)
11492     return false;
11493 
11494   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11495 
11496   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11497   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11498   ConstantRange FoundLHSRange =
11499       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11500 
11501   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11502   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11503 
11504   // We can also compute the range of values for `LHS` that satisfy the
11505   // consequent, "`LHS` `Pred` `RHS`":
11506   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11507   // The antecedent implies the consequent if every value of `LHS` that
11508   // satisfies the antecedent also satisfies the consequent.
11509   return LHSRange.icmp(Pred, ConstRHS);
11510 }
11511 
11512 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11513                                         bool IsSigned) {
11514   assert(isKnownPositive(Stride) && "Positive stride expected!");
11515 
11516   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11517   const SCEV *One = getOne(Stride->getType());
11518 
11519   if (IsSigned) {
11520     APInt MaxRHS = getSignedRangeMax(RHS);
11521     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11522     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11523 
11524     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11525     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11526   }
11527 
11528   APInt MaxRHS = getUnsignedRangeMax(RHS);
11529   APInt MaxValue = APInt::getMaxValue(BitWidth);
11530   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11531 
11532   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11533   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11534 }
11535 
11536 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11537                                         bool IsSigned) {
11538 
11539   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11540   const SCEV *One = getOne(Stride->getType());
11541 
11542   if (IsSigned) {
11543     APInt MinRHS = getSignedRangeMin(RHS);
11544     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11545     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11546 
11547     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11548     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11549   }
11550 
11551   APInt MinRHS = getUnsignedRangeMin(RHS);
11552   APInt MinValue = APInt::getMinValue(BitWidth);
11553   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11554 
11555   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11556   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11557 }
11558 
11559 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11560   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11561   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11562   // expression fixes the case of N=0.
11563   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11564   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11565   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11566 }
11567 
11568 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11569                                                     const SCEV *Stride,
11570                                                     const SCEV *End,
11571                                                     unsigned BitWidth,
11572                                                     bool IsSigned) {
11573   // The logic in this function assumes we can represent a positive stride.
11574   // If we can't, the backedge-taken count must be zero.
11575   if (IsSigned && BitWidth == 1)
11576     return getZero(Stride->getType());
11577 
11578   // This code has only been closely audited for negative strides in the
11579   // unsigned comparison case, it may be correct for signed comparison, but
11580   // that needs to be established.
11581   assert((!IsSigned || !isKnownNonPositive(Stride)) &&
11582          "Stride is expected strictly positive for signed case!");
11583 
11584   // Calculate the maximum backedge count based on the range of values
11585   // permitted by Start, End, and Stride.
11586   APInt MinStart =
11587       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11588 
11589   APInt MinStride =
11590       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11591 
11592   // We assume either the stride is positive, or the backedge-taken count
11593   // is zero. So force StrideForMaxBECount to be at least one.
11594   APInt One(BitWidth, 1);
11595   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11596                                        : APIntOps::umax(One, MinStride);
11597 
11598   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11599                             : APInt::getMaxValue(BitWidth);
11600   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11601 
11602   // Although End can be a MAX expression we estimate MaxEnd considering only
11603   // the case End = RHS of the loop termination condition. This is safe because
11604   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11605   // taken count.
11606   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11607                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11608 
11609   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11610   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11611                     : APIntOps::umax(MaxEnd, MinStart);
11612 
11613   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11614                          getConstant(StrideForMaxBECount) /* Step */);
11615 }
11616 
11617 ScalarEvolution::ExitLimit
11618 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11619                                   const Loop *L, bool IsSigned,
11620                                   bool ControlsExit, bool AllowPredicates) {
11621   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11622 
11623   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11624   bool PredicatedIV = false;
11625 
11626   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
11627     // Can we prove this loop *must* be UB if overflow of IV occurs?
11628     // Reasoning goes as follows:
11629     // * Suppose the IV did self wrap.
11630     // * If Stride evenly divides the iteration space, then once wrap
11631     //   occurs, the loop must revisit the same values.
11632     // * We know that RHS is invariant, and that none of those values
11633     //   caused this exit to be taken previously.  Thus, this exit is
11634     //   dynamically dead.
11635     // * If this is the sole exit, then a dead exit implies the loop
11636     //   must be infinite if there are no abnormal exits.
11637     // * If the loop were infinite, then it must either not be mustprogress
11638     //   or have side effects. Otherwise, it must be UB.
11639     // * It can't (by assumption), be UB so we have contradicted our
11640     //   premise and can conclude the IV did not in fact self-wrap.
11641     if (!isLoopInvariant(RHS, L))
11642       return false;
11643 
11644     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
11645     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11646       return false;
11647 
11648     if (!ControlsExit || !loopHasNoAbnormalExits(L))
11649       return false;
11650 
11651     return loopIsFiniteByAssumption(L);
11652   };
11653 
11654   if (!IV) {
11655     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
11656       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
11657       if (AR && AR->getLoop() == L && AR->isAffine()) {
11658         auto Flags = AR->getNoWrapFlags();
11659         if (!hasFlags(Flags, SCEV::FlagNW) && canAssumeNoSelfWrap(AR)) {
11660           Flags = setFlags(Flags, SCEV::FlagNW);
11661 
11662           SmallVector<const SCEV*> Operands{AR->operands()};
11663           Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
11664 
11665           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
11666         }
11667         if (AR->hasNoUnsignedWrap()) {
11668           // Emulate what getZeroExtendExpr would have done during construction
11669           // if we'd been able to infer the fact just above at that time.
11670           const SCEV *Step = AR->getStepRecurrence(*this);
11671           Type *Ty = ZExt->getType();
11672           auto *S = getAddRecExpr(
11673             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
11674             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
11675           IV = dyn_cast<SCEVAddRecExpr>(S);
11676         }
11677       }
11678     }
11679   }
11680 
11681 
11682   if (!IV && AllowPredicates) {
11683     // Try to make this an AddRec using runtime tests, in the first X
11684     // iterations of this loop, where X is the SCEV expression found by the
11685     // algorithm below.
11686     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11687     PredicatedIV = true;
11688   }
11689 
11690   // Avoid weird loops
11691   if (!IV || IV->getLoop() != L || !IV->isAffine())
11692     return getCouldNotCompute();
11693 
11694   // A precondition of this method is that the condition being analyzed
11695   // reaches an exiting branch which dominates the latch.  Given that, we can
11696   // assume that an increment which violates the nowrap specification and
11697   // produces poison must cause undefined behavior when the resulting poison
11698   // value is branched upon and thus we can conclude that the backedge is
11699   // taken no more often than would be required to produce that poison value.
11700   // Note that a well defined loop can exit on the iteration which violates
11701   // the nowrap specification if there is another exit (either explicit or
11702   // implicit/exceptional) which causes the loop to execute before the
11703   // exiting instruction we're analyzing would trigger UB.
11704   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11705   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11706   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11707 
11708   const SCEV *Stride = IV->getStepRecurrence(*this);
11709 
11710   bool PositiveStride = isKnownPositive(Stride);
11711 
11712   // Avoid negative or zero stride values.
11713   if (!PositiveStride) {
11714     // We can compute the correct backedge taken count for loops with unknown
11715     // strides if we can prove that the loop is not an infinite loop with side
11716     // effects. Here's the loop structure we are trying to handle -
11717     //
11718     // i = start
11719     // do {
11720     //   A[i] = i;
11721     //   i += s;
11722     // } while (i < end);
11723     //
11724     // The backedge taken count for such loops is evaluated as -
11725     // (max(end, start + stride) - start - 1) /u stride
11726     //
11727     // The additional preconditions that we need to check to prove correctness
11728     // of the above formula is as follows -
11729     //
11730     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11731     //    NoWrap flag).
11732     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
11733     //    no side effects within the loop)
11734     // c) loop has a single static exit (with no abnormal exits)
11735     //
11736     // Precondition a) implies that if the stride is negative, this is a single
11737     // trip loop. The backedge taken count formula reduces to zero in this case.
11738     //
11739     // Precondition b) and c) combine to imply that if rhs is invariant in L,
11740     // then a zero stride means the backedge can't be taken without executing
11741     // undefined behavior.
11742     //
11743     // The positive stride case is the same as isKnownPositive(Stride) returning
11744     // true (original behavior of the function).
11745     //
11746     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
11747         !loopHasNoAbnormalExits(L))
11748       return getCouldNotCompute();
11749 
11750     // This bailout is protecting the logic in computeMaxBECountForLT which
11751     // has not yet been sufficiently auditted or tested with negative strides.
11752     // We used to filter out all known-non-positive cases here, we're in the
11753     // process of being less restrictive bit by bit.
11754     if (IsSigned && isKnownNonPositive(Stride))
11755       return getCouldNotCompute();
11756 
11757     if (!isKnownNonZero(Stride)) {
11758       // If we have a step of zero, and RHS isn't invariant in L, we don't know
11759       // if it might eventually be greater than start and if so, on which
11760       // iteration.  We can't even produce a useful upper bound.
11761       if (!isLoopInvariant(RHS, L))
11762         return getCouldNotCompute();
11763 
11764       // We allow a potentially zero stride, but we need to divide by stride
11765       // below.  Since the loop can't be infinite and this check must control
11766       // the sole exit, we can infer the exit must be taken on the first
11767       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
11768       // we know the numerator in the divides below must be zero, so we can
11769       // pick an arbitrary non-zero value for the denominator (e.g. stride)
11770       // and produce the right result.
11771       // FIXME: Handle the case where Stride is poison?
11772       auto wouldZeroStrideBeUB = [&]() {
11773         // Proof by contradiction.  Suppose the stride were zero.  If we can
11774         // prove that the backedge *is* taken on the first iteration, then since
11775         // we know this condition controls the sole exit, we must have an
11776         // infinite loop.  We can't have a (well defined) infinite loop per
11777         // check just above.
11778         // Note: The (Start - Stride) term is used to get the start' term from
11779         // (start' + stride,+,stride). Remember that we only care about the
11780         // result of this expression when stride == 0 at runtime.
11781         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
11782         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
11783       };
11784       if (!wouldZeroStrideBeUB()) {
11785         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
11786       }
11787     }
11788   } else if (!Stride->isOne() && !NoWrap) {
11789     auto isUBOnWrap = [&]() {
11790       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11791       // follows trivially from the fact that every (un)signed-wrapped, but
11792       // not self-wrapped value must be LT than the last value before
11793       // (un)signed wrap.  Since we know that last value didn't exit, nor
11794       // will any smaller one.
11795       return canAssumeNoSelfWrap(IV);
11796     };
11797 
11798     // Avoid proven overflow cases: this will ensure that the backedge taken
11799     // count will not generate any unsigned overflow. Relaxed no-overflow
11800     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11801     // undefined behaviors like the case of C language.
11802     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11803       return getCouldNotCompute();
11804   }
11805 
11806   // On all paths just preceeding, we established the following invariant:
11807   //   IV can be assumed not to overflow up to and including the exiting
11808   //   iteration.  We proved this in one of two ways:
11809   //   1) We can show overflow doesn't occur before the exiting iteration
11810   //      1a) canIVOverflowOnLT, and b) step of one
11811   //   2) We can show that if overflow occurs, the loop must execute UB
11812   //      before any possible exit.
11813   // Note that we have not yet proved RHS invariant (in general).
11814 
11815   const SCEV *Start = IV->getStart();
11816 
11817   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11818   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
11819   // Use integer-typed versions for actual computation; we can't subtract
11820   // pointers in general.
11821   const SCEV *OrigStart = Start;
11822   const SCEV *OrigRHS = RHS;
11823   if (Start->getType()->isPointerTy()) {
11824     Start = getLosslessPtrToIntExpr(Start);
11825     if (isa<SCEVCouldNotCompute>(Start))
11826       return Start;
11827   }
11828   if (RHS->getType()->isPointerTy()) {
11829     RHS = getLosslessPtrToIntExpr(RHS);
11830     if (isa<SCEVCouldNotCompute>(RHS))
11831       return RHS;
11832   }
11833 
11834   // When the RHS is not invariant, we do not know the end bound of the loop and
11835   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11836   // calculate the MaxBECount, given the start, stride and max value for the end
11837   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11838   // checked above).
11839   if (!isLoopInvariant(RHS, L)) {
11840     const SCEV *MaxBECount = computeMaxBECountForLT(
11841         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11842     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11843                      false /*MaxOrZero*/, Predicates);
11844   }
11845 
11846   // We use the expression (max(End,Start)-Start)/Stride to describe the
11847   // backedge count, as if the backedge is taken at least once max(End,Start)
11848   // is End and so the result is as above, and if not max(End,Start) is Start
11849   // so we get a backedge count of zero.
11850   const SCEV *BECount = nullptr;
11851   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
11852   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
11853   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
11854   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
11855   // Can we prove (max(RHS,Start) > Start - Stride?
11856   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
11857       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
11858     // In this case, we can use a refined formula for computing backedge taken
11859     // count.  The general formula remains:
11860     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
11861     // We want to use the alternate formula:
11862     //   "((End - 1) - (Start - Stride)) /u Stride"
11863     // Let's do a quick case analysis to show these are equivalent under
11864     // our precondition that max(RHS,Start) > Start - Stride.
11865     // * For RHS <= Start, the backedge-taken count must be zero.
11866     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11867     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
11868     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
11869     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
11870     //     this to the stride of 1 case.
11871     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
11872     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11873     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
11874     //   "((RHS - (Start - Stride) - 1) /u Stride".
11875     //   Our preconditions trivially imply no overflow in that form.
11876     const SCEV *MinusOne = getMinusOne(Stride->getType());
11877     const SCEV *Numerator =
11878         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
11879     BECount = getUDivExpr(Numerator, Stride);
11880   }
11881 
11882   const SCEV *BECountIfBackedgeTaken = nullptr;
11883   if (!BECount) {
11884     auto canProveRHSGreaterThanEqualStart = [&]() {
11885       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11886       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
11887         return true;
11888 
11889       // (RHS > Start - 1) implies RHS >= Start.
11890       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
11891       //   "Start - 1" doesn't overflow.
11892       // * For signed comparison, if Start - 1 does overflow, it's equal
11893       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
11894       // * For unsigned comparison, if Start - 1 does overflow, it's equal
11895       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
11896       //
11897       // FIXME: Should isLoopEntryGuardedByCond do this for us?
11898       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11899       auto *StartMinusOne = getAddExpr(OrigStart,
11900                                        getMinusOne(OrigStart->getType()));
11901       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
11902     };
11903 
11904     // If we know that RHS >= Start in the context of loop, then we know that
11905     // max(RHS, Start) = RHS at this point.
11906     const SCEV *End;
11907     if (canProveRHSGreaterThanEqualStart()) {
11908       End = RHS;
11909     } else {
11910       // If RHS < Start, the backedge will be taken zero times.  So in
11911       // general, we can write the backedge-taken count as:
11912       //
11913       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
11914       //
11915       // We convert it to the following to make it more convenient for SCEV:
11916       //
11917       //     ceil(max(RHS, Start) - Start) / Stride
11918       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11919 
11920       // See what would happen if we assume the backedge is taken. This is
11921       // used to compute MaxBECount.
11922       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
11923     }
11924 
11925     // At this point, we know:
11926     //
11927     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
11928     // 2. The index variable doesn't overflow.
11929     //
11930     // Therefore, we know N exists such that
11931     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
11932     // doesn't overflow.
11933     //
11934     // Using this information, try to prove whether the addition in
11935     // "(Start - End) + (Stride - 1)" has unsigned overflow.
11936     const SCEV *One = getOne(Stride->getType());
11937     bool MayAddOverflow = [&] {
11938       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
11939         if (StrideC->getAPInt().isPowerOf2()) {
11940           // Suppose Stride is a power of two, and Start/End are unsigned
11941           // integers.  Let UMAX be the largest representable unsigned
11942           // integer.
11943           //
11944           // By the preconditions of this function, we know
11945           // "(Start + Stride * N) >= End", and this doesn't overflow.
11946           // As a formula:
11947           //
11948           //   End <= (Start + Stride * N) <= UMAX
11949           //
11950           // Subtracting Start from all the terms:
11951           //
11952           //   End - Start <= Stride * N <= UMAX - Start
11953           //
11954           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
11955           //
11956           //   End - Start <= Stride * N <= UMAX
11957           //
11958           // Stride * N is a multiple of Stride. Therefore,
11959           //
11960           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
11961           //
11962           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
11963           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
11964           //
11965           //   End - Start <= Stride * N <= UMAX - Stride - 1
11966           //
11967           // Dropping the middle term:
11968           //
11969           //   End - Start <= UMAX - Stride - 1
11970           //
11971           // Adding Stride - 1 to both sides:
11972           //
11973           //   (End - Start) + (Stride - 1) <= UMAX
11974           //
11975           // In other words, the addition doesn't have unsigned overflow.
11976           //
11977           // A similar proof works if we treat Start/End as signed values.
11978           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
11979           // use signed max instead of unsigned max. Note that we're trying
11980           // to prove a lack of unsigned overflow in either case.
11981           return false;
11982         }
11983       }
11984       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
11985         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
11986         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
11987         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
11988         //
11989         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
11990         return false;
11991       }
11992       return true;
11993     }();
11994 
11995     const SCEV *Delta = getMinusSCEV(End, Start);
11996     if (!MayAddOverflow) {
11997       // floor((D + (S - 1)) / S)
11998       // We prefer this formulation if it's legal because it's fewer operations.
11999       BECount =
12000           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
12001     } else {
12002       BECount = getUDivCeilSCEV(Delta, Stride);
12003     }
12004   }
12005 
12006   const SCEV *MaxBECount;
12007   bool MaxOrZero = false;
12008   if (isa<SCEVConstant>(BECount)) {
12009     MaxBECount = BECount;
12010   } else if (BECountIfBackedgeTaken &&
12011              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
12012     // If we know exactly how many times the backedge will be taken if it's
12013     // taken at least once, then the backedge count will either be that or
12014     // zero.
12015     MaxBECount = BECountIfBackedgeTaken;
12016     MaxOrZero = true;
12017   } else {
12018     MaxBECount = computeMaxBECountForLT(
12019         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12020   }
12021 
12022   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12023       !isa<SCEVCouldNotCompute>(BECount))
12024     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12025 
12026   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12027 }
12028 
12029 ScalarEvolution::ExitLimit
12030 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12031                                      const Loop *L, bool IsSigned,
12032                                      bool ControlsExit, bool AllowPredicates) {
12033   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12034   // We handle only IV > Invariant
12035   if (!isLoopInvariant(RHS, L))
12036     return getCouldNotCompute();
12037 
12038   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12039   if (!IV && AllowPredicates)
12040     // Try to make this an AddRec using runtime tests, in the first X
12041     // iterations of this loop, where X is the SCEV expression found by the
12042     // algorithm below.
12043     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12044 
12045   // Avoid weird loops
12046   if (!IV || IV->getLoop() != L || !IV->isAffine())
12047     return getCouldNotCompute();
12048 
12049   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12050   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12051   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12052 
12053   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12054 
12055   // Avoid negative or zero stride values
12056   if (!isKnownPositive(Stride))
12057     return getCouldNotCompute();
12058 
12059   // Avoid proven overflow cases: this will ensure that the backedge taken count
12060   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12061   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12062   // behaviors like the case of C language.
12063   if (!Stride->isOne() && !NoWrap)
12064     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12065       return getCouldNotCompute();
12066 
12067   const SCEV *Start = IV->getStart();
12068   const SCEV *End = RHS;
12069   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12070     // If we know that Start >= RHS in the context of loop, then we know that
12071     // min(RHS, Start) = RHS at this point.
12072     if (isLoopEntryGuardedByCond(
12073             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12074       End = RHS;
12075     else
12076       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12077   }
12078 
12079   if (Start->getType()->isPointerTy()) {
12080     Start = getLosslessPtrToIntExpr(Start);
12081     if (isa<SCEVCouldNotCompute>(Start))
12082       return Start;
12083   }
12084   if (End->getType()->isPointerTy()) {
12085     End = getLosslessPtrToIntExpr(End);
12086     if (isa<SCEVCouldNotCompute>(End))
12087       return End;
12088   }
12089 
12090   // Compute ((Start - End) + (Stride - 1)) / Stride.
12091   // FIXME: This can overflow. Holding off on fixing this for now;
12092   // howManyGreaterThans will hopefully be gone soon.
12093   const SCEV *One = getOne(Stride->getType());
12094   const SCEV *BECount = getUDivExpr(
12095       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12096 
12097   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12098                             : getUnsignedRangeMax(Start);
12099 
12100   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12101                              : getUnsignedRangeMin(Stride);
12102 
12103   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12104   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12105                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12106 
12107   // Although End can be a MIN expression we estimate MinEnd considering only
12108   // the case End = RHS. This is safe because in the other case (Start - End)
12109   // is zero, leading to a zero maximum backedge taken count.
12110   APInt MinEnd =
12111     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12112              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12113 
12114   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12115                                ? BECount
12116                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12117                                                  getConstant(MinStride));
12118 
12119   if (isa<SCEVCouldNotCompute>(MaxBECount))
12120     MaxBECount = BECount;
12121 
12122   return ExitLimit(BECount, MaxBECount, false, Predicates);
12123 }
12124 
12125 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12126                                                     ScalarEvolution &SE) const {
12127   if (Range.isFullSet())  // Infinite loop.
12128     return SE.getCouldNotCompute();
12129 
12130   // If the start is a non-zero constant, shift the range to simplify things.
12131   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12132     if (!SC->getValue()->isZero()) {
12133       SmallVector<const SCEV *, 4> Operands(operands());
12134       Operands[0] = SE.getZero(SC->getType());
12135       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12136                                              getNoWrapFlags(FlagNW));
12137       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12138         return ShiftedAddRec->getNumIterationsInRange(
12139             Range.subtract(SC->getAPInt()), SE);
12140       // This is strange and shouldn't happen.
12141       return SE.getCouldNotCompute();
12142     }
12143 
12144   // The only time we can solve this is when we have all constant indices.
12145   // Otherwise, we cannot determine the overflow conditions.
12146   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12147     return SE.getCouldNotCompute();
12148 
12149   // Okay at this point we know that all elements of the chrec are constants and
12150   // that the start element is zero.
12151 
12152   // First check to see if the range contains zero.  If not, the first
12153   // iteration exits.
12154   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12155   if (!Range.contains(APInt(BitWidth, 0)))
12156     return SE.getZero(getType());
12157 
12158   if (isAffine()) {
12159     // If this is an affine expression then we have this situation:
12160     //   Solve {0,+,A} in Range  ===  Ax in Range
12161 
12162     // We know that zero is in the range.  If A is positive then we know that
12163     // the upper value of the range must be the first possible exit value.
12164     // If A is negative then the lower of the range is the last possible loop
12165     // value.  Also note that we already checked for a full range.
12166     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12167     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12168 
12169     // The exit value should be (End+A)/A.
12170     APInt ExitVal = (End + A).udiv(A);
12171     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12172 
12173     // Evaluate at the exit value.  If we really did fall out of the valid
12174     // range, then we computed our trip count, otherwise wrap around or other
12175     // things must have happened.
12176     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12177     if (Range.contains(Val->getValue()))
12178       return SE.getCouldNotCompute();  // Something strange happened
12179 
12180     // Ensure that the previous value is in the range.  This is a sanity check.
12181     assert(Range.contains(
12182            EvaluateConstantChrecAtConstant(this,
12183            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12184            "Linear scev computation is off in a bad way!");
12185     return SE.getConstant(ExitValue);
12186   }
12187 
12188   if (isQuadratic()) {
12189     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12190       return SE.getConstant(S.getValue());
12191   }
12192 
12193   return SE.getCouldNotCompute();
12194 }
12195 
12196 const SCEVAddRecExpr *
12197 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12198   assert(getNumOperands() > 1 && "AddRec with zero step?");
12199   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12200   // but in this case we cannot guarantee that the value returned will be an
12201   // AddRec because SCEV does not have a fixed point where it stops
12202   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12203   // may happen if we reach arithmetic depth limit while simplifying. So we
12204   // construct the returned value explicitly.
12205   SmallVector<const SCEV *, 3> Ops;
12206   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12207   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12208   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12209     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12210   // We know that the last operand is not a constant zero (otherwise it would
12211   // have been popped out earlier). This guarantees us that if the result has
12212   // the same last operand, then it will also not be popped out, meaning that
12213   // the returned value will be an AddRec.
12214   const SCEV *Last = getOperand(getNumOperands() - 1);
12215   assert(!Last->isZero() && "Recurrency with zero step?");
12216   Ops.push_back(Last);
12217   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12218                                                SCEV::FlagAnyWrap));
12219 }
12220 
12221 // Return true when S contains at least an undef value.
12222 static inline bool containsUndefs(const SCEV *S) {
12223   return SCEVExprContains(S, [](const SCEV *S) {
12224     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12225       return isa<UndefValue>(SU->getValue());
12226     return false;
12227   });
12228 }
12229 
12230 /// Return the size of an element read or written by Inst.
12231 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12232   Type *Ty;
12233   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12234     Ty = Store->getValueOperand()->getType();
12235   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12236     Ty = Load->getType();
12237   else
12238     return nullptr;
12239 
12240   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12241   return getSizeOfExpr(ETy, Ty);
12242 }
12243 
12244 //===----------------------------------------------------------------------===//
12245 //                   SCEVCallbackVH Class Implementation
12246 //===----------------------------------------------------------------------===//
12247 
12248 void ScalarEvolution::SCEVCallbackVH::deleted() {
12249   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12250   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12251     SE->ConstantEvolutionLoopExitValue.erase(PN);
12252   SE->eraseValueFromMap(getValPtr());
12253   // this now dangles!
12254 }
12255 
12256 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12257   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12258 
12259   // Forget all the expressions associated with users of the old value,
12260   // so that future queries will recompute the expressions using the new
12261   // value.
12262   Value *Old = getValPtr();
12263   SmallVector<User *, 16> Worklist(Old->users());
12264   SmallPtrSet<User *, 8> Visited;
12265   while (!Worklist.empty()) {
12266     User *U = Worklist.pop_back_val();
12267     // Deleting the Old value will cause this to dangle. Postpone
12268     // that until everything else is done.
12269     if (U == Old)
12270       continue;
12271     if (!Visited.insert(U).second)
12272       continue;
12273     if (PHINode *PN = dyn_cast<PHINode>(U))
12274       SE->ConstantEvolutionLoopExitValue.erase(PN);
12275     SE->eraseValueFromMap(U);
12276     llvm::append_range(Worklist, U->users());
12277   }
12278   // Delete the Old value.
12279   if (PHINode *PN = dyn_cast<PHINode>(Old))
12280     SE->ConstantEvolutionLoopExitValue.erase(PN);
12281   SE->eraseValueFromMap(Old);
12282   // this now dangles!
12283 }
12284 
12285 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12286   : CallbackVH(V), SE(se) {}
12287 
12288 //===----------------------------------------------------------------------===//
12289 //                   ScalarEvolution Class Implementation
12290 //===----------------------------------------------------------------------===//
12291 
12292 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12293                                  AssumptionCache &AC, DominatorTree &DT,
12294                                  LoopInfo &LI)
12295     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12296       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12297       LoopDispositions(64), BlockDispositions(64) {
12298   // To use guards for proving predicates, we need to scan every instruction in
12299   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12300   // time if the IR does not actually contain any calls to
12301   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12302   //
12303   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12304   // to _add_ guards to the module when there weren't any before, and wants
12305   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12306   // efficient in lieu of being smart in that rather obscure case.
12307 
12308   auto *GuardDecl = F.getParent()->getFunction(
12309       Intrinsic::getName(Intrinsic::experimental_guard));
12310   HasGuards = GuardDecl && !GuardDecl->use_empty();
12311 }
12312 
12313 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12314     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12315       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12316       ValueExprMap(std::move(Arg.ValueExprMap)),
12317       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12318       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12319       PendingMerges(std::move(Arg.PendingMerges)),
12320       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12321       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12322       PredicatedBackedgeTakenCounts(
12323           std::move(Arg.PredicatedBackedgeTakenCounts)),
12324       ConstantEvolutionLoopExitValue(
12325           std::move(Arg.ConstantEvolutionLoopExitValue)),
12326       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12327       LoopDispositions(std::move(Arg.LoopDispositions)),
12328       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12329       BlockDispositions(std::move(Arg.BlockDispositions)),
12330       SCEVUsers(std::move(Arg.SCEVUsers)),
12331       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12332       SignedRanges(std::move(Arg.SignedRanges)),
12333       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12334       UniquePreds(std::move(Arg.UniquePreds)),
12335       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12336       LoopUsers(std::move(Arg.LoopUsers)),
12337       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12338       FirstUnknown(Arg.FirstUnknown) {
12339   Arg.FirstUnknown = nullptr;
12340 }
12341 
12342 ScalarEvolution::~ScalarEvolution() {
12343   // Iterate through all the SCEVUnknown instances and call their
12344   // destructors, so that they release their references to their values.
12345   for (SCEVUnknown *U = FirstUnknown; U;) {
12346     SCEVUnknown *Tmp = U;
12347     U = U->Next;
12348     Tmp->~SCEVUnknown();
12349   }
12350   FirstUnknown = nullptr;
12351 
12352   ExprValueMap.clear();
12353   ValueExprMap.clear();
12354   HasRecMap.clear();
12355   BackedgeTakenCounts.clear();
12356   PredicatedBackedgeTakenCounts.clear();
12357 
12358   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12359   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12360   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12361   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12362   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12363 }
12364 
12365 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12366   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12367 }
12368 
12369 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12370                           const Loop *L) {
12371   // Print all inner loops first
12372   for (Loop *I : *L)
12373     PrintLoopInfo(OS, SE, I);
12374 
12375   OS << "Loop ";
12376   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12377   OS << ": ";
12378 
12379   SmallVector<BasicBlock *, 8> ExitingBlocks;
12380   L->getExitingBlocks(ExitingBlocks);
12381   if (ExitingBlocks.size() != 1)
12382     OS << "<multiple exits> ";
12383 
12384   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12385     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12386   else
12387     OS << "Unpredictable backedge-taken count.\n";
12388 
12389   if (ExitingBlocks.size() > 1)
12390     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12391       OS << "  exit count for " << ExitingBlock->getName() << ": "
12392          << *SE->getExitCount(L, ExitingBlock) << "\n";
12393     }
12394 
12395   OS << "Loop ";
12396   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12397   OS << ": ";
12398 
12399   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12400     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12401     if (SE->isBackedgeTakenCountMaxOrZero(L))
12402       OS << ", actual taken count either this or zero.";
12403   } else {
12404     OS << "Unpredictable max backedge-taken count. ";
12405   }
12406 
12407   OS << "\n"
12408         "Loop ";
12409   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12410   OS << ": ";
12411 
12412   SCEVUnionPredicate Pred;
12413   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12414   if (!isa<SCEVCouldNotCompute>(PBT)) {
12415     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12416     OS << " Predicates:\n";
12417     Pred.print(OS, 4);
12418   } else {
12419     OS << "Unpredictable predicated backedge-taken count. ";
12420   }
12421   OS << "\n";
12422 
12423   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12424     OS << "Loop ";
12425     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12426     OS << ": ";
12427     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12428   }
12429 }
12430 
12431 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12432   switch (LD) {
12433   case ScalarEvolution::LoopVariant:
12434     return "Variant";
12435   case ScalarEvolution::LoopInvariant:
12436     return "Invariant";
12437   case ScalarEvolution::LoopComputable:
12438     return "Computable";
12439   }
12440   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12441 }
12442 
12443 void ScalarEvolution::print(raw_ostream &OS) const {
12444   // ScalarEvolution's implementation of the print method is to print
12445   // out SCEV values of all instructions that are interesting. Doing
12446   // this potentially causes it to create new SCEV objects though,
12447   // which technically conflicts with the const qualifier. This isn't
12448   // observable from outside the class though, so casting away the
12449   // const isn't dangerous.
12450   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12451 
12452   if (ClassifyExpressions) {
12453     OS << "Classifying expressions for: ";
12454     F.printAsOperand(OS, /*PrintType=*/false);
12455     OS << "\n";
12456     for (Instruction &I : instructions(F))
12457       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12458         OS << I << '\n';
12459         OS << "  -->  ";
12460         const SCEV *SV = SE.getSCEV(&I);
12461         SV->print(OS);
12462         if (!isa<SCEVCouldNotCompute>(SV)) {
12463           OS << " U: ";
12464           SE.getUnsignedRange(SV).print(OS);
12465           OS << " S: ";
12466           SE.getSignedRange(SV).print(OS);
12467         }
12468 
12469         const Loop *L = LI.getLoopFor(I.getParent());
12470 
12471         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12472         if (AtUse != SV) {
12473           OS << "  -->  ";
12474           AtUse->print(OS);
12475           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12476             OS << " U: ";
12477             SE.getUnsignedRange(AtUse).print(OS);
12478             OS << " S: ";
12479             SE.getSignedRange(AtUse).print(OS);
12480           }
12481         }
12482 
12483         if (L) {
12484           OS << "\t\t" "Exits: ";
12485           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12486           if (!SE.isLoopInvariant(ExitValue, L)) {
12487             OS << "<<Unknown>>";
12488           } else {
12489             OS << *ExitValue;
12490           }
12491 
12492           bool First = true;
12493           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12494             if (First) {
12495               OS << "\t\t" "LoopDispositions: { ";
12496               First = false;
12497             } else {
12498               OS << ", ";
12499             }
12500 
12501             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12502             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12503           }
12504 
12505           for (auto *InnerL : depth_first(L)) {
12506             if (InnerL == L)
12507               continue;
12508             if (First) {
12509               OS << "\t\t" "LoopDispositions: { ";
12510               First = false;
12511             } else {
12512               OS << ", ";
12513             }
12514 
12515             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12516             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12517           }
12518 
12519           OS << " }";
12520         }
12521 
12522         OS << "\n";
12523       }
12524   }
12525 
12526   OS << "Determining loop execution counts for: ";
12527   F.printAsOperand(OS, /*PrintType=*/false);
12528   OS << "\n";
12529   for (Loop *I : LI)
12530     PrintLoopInfo(OS, &SE, I);
12531 }
12532 
12533 ScalarEvolution::LoopDisposition
12534 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12535   auto &Values = LoopDispositions[S];
12536   for (auto &V : Values) {
12537     if (V.getPointer() == L)
12538       return V.getInt();
12539   }
12540   Values.emplace_back(L, LoopVariant);
12541   LoopDisposition D = computeLoopDisposition(S, L);
12542   auto &Values2 = LoopDispositions[S];
12543   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12544     if (V.getPointer() == L) {
12545       V.setInt(D);
12546       break;
12547     }
12548   }
12549   return D;
12550 }
12551 
12552 ScalarEvolution::LoopDisposition
12553 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12554   switch (S->getSCEVType()) {
12555   case scConstant:
12556     return LoopInvariant;
12557   case scPtrToInt:
12558   case scTruncate:
12559   case scZeroExtend:
12560   case scSignExtend:
12561     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12562   case scAddRecExpr: {
12563     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12564 
12565     // If L is the addrec's loop, it's computable.
12566     if (AR->getLoop() == L)
12567       return LoopComputable;
12568 
12569     // Add recurrences are never invariant in the function-body (null loop).
12570     if (!L)
12571       return LoopVariant;
12572 
12573     // Everything that is not defined at loop entry is variant.
12574     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12575       return LoopVariant;
12576     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12577            " dominate the contained loop's header?");
12578 
12579     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12580     if (AR->getLoop()->contains(L))
12581       return LoopInvariant;
12582 
12583     // This recurrence is variant w.r.t. L if any of its operands
12584     // are variant.
12585     for (auto *Op : AR->operands())
12586       if (!isLoopInvariant(Op, L))
12587         return LoopVariant;
12588 
12589     // Otherwise it's loop-invariant.
12590     return LoopInvariant;
12591   }
12592   case scAddExpr:
12593   case scMulExpr:
12594   case scUMaxExpr:
12595   case scSMaxExpr:
12596   case scUMinExpr:
12597   case scSMinExpr: {
12598     bool HasVarying = false;
12599     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12600       LoopDisposition D = getLoopDisposition(Op, L);
12601       if (D == LoopVariant)
12602         return LoopVariant;
12603       if (D == LoopComputable)
12604         HasVarying = true;
12605     }
12606     return HasVarying ? LoopComputable : LoopInvariant;
12607   }
12608   case scUDivExpr: {
12609     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12610     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12611     if (LD == LoopVariant)
12612       return LoopVariant;
12613     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12614     if (RD == LoopVariant)
12615       return LoopVariant;
12616     return (LD == LoopInvariant && RD == LoopInvariant) ?
12617            LoopInvariant : LoopComputable;
12618   }
12619   case scUnknown:
12620     // All non-instruction values are loop invariant.  All instructions are loop
12621     // invariant if they are not contained in the specified loop.
12622     // Instructions are never considered invariant in the function body
12623     // (null loop) because they are defined within the "loop".
12624     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12625       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12626     return LoopInvariant;
12627   case scCouldNotCompute:
12628     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12629   }
12630   llvm_unreachable("Unknown SCEV kind!");
12631 }
12632 
12633 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12634   return getLoopDisposition(S, L) == LoopInvariant;
12635 }
12636 
12637 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12638   return getLoopDisposition(S, L) == LoopComputable;
12639 }
12640 
12641 ScalarEvolution::BlockDisposition
12642 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12643   auto &Values = BlockDispositions[S];
12644   for (auto &V : Values) {
12645     if (V.getPointer() == BB)
12646       return V.getInt();
12647   }
12648   Values.emplace_back(BB, DoesNotDominateBlock);
12649   BlockDisposition D = computeBlockDisposition(S, BB);
12650   auto &Values2 = BlockDispositions[S];
12651   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12652     if (V.getPointer() == BB) {
12653       V.setInt(D);
12654       break;
12655     }
12656   }
12657   return D;
12658 }
12659 
12660 ScalarEvolution::BlockDisposition
12661 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12662   switch (S->getSCEVType()) {
12663   case scConstant:
12664     return ProperlyDominatesBlock;
12665   case scPtrToInt:
12666   case scTruncate:
12667   case scZeroExtend:
12668   case scSignExtend:
12669     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12670   case scAddRecExpr: {
12671     // This uses a "dominates" query instead of "properly dominates" query
12672     // to test for proper dominance too, because the instruction which
12673     // produces the addrec's value is a PHI, and a PHI effectively properly
12674     // dominates its entire containing block.
12675     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12676     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12677       return DoesNotDominateBlock;
12678 
12679     // Fall through into SCEVNAryExpr handling.
12680     LLVM_FALLTHROUGH;
12681   }
12682   case scAddExpr:
12683   case scMulExpr:
12684   case scUMaxExpr:
12685   case scSMaxExpr:
12686   case scUMinExpr:
12687   case scSMinExpr: {
12688     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12689     bool Proper = true;
12690     for (const SCEV *NAryOp : NAry->operands()) {
12691       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12692       if (D == DoesNotDominateBlock)
12693         return DoesNotDominateBlock;
12694       if (D == DominatesBlock)
12695         Proper = false;
12696     }
12697     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12698   }
12699   case scUDivExpr: {
12700     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12701     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12702     BlockDisposition LD = getBlockDisposition(LHS, BB);
12703     if (LD == DoesNotDominateBlock)
12704       return DoesNotDominateBlock;
12705     BlockDisposition RD = getBlockDisposition(RHS, BB);
12706     if (RD == DoesNotDominateBlock)
12707       return DoesNotDominateBlock;
12708     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12709       ProperlyDominatesBlock : DominatesBlock;
12710   }
12711   case scUnknown:
12712     if (Instruction *I =
12713           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12714       if (I->getParent() == BB)
12715         return DominatesBlock;
12716       if (DT.properlyDominates(I->getParent(), BB))
12717         return ProperlyDominatesBlock;
12718       return DoesNotDominateBlock;
12719     }
12720     return ProperlyDominatesBlock;
12721   case scCouldNotCompute:
12722     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12723   }
12724   llvm_unreachable("Unknown SCEV kind!");
12725 }
12726 
12727 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12728   return getBlockDisposition(S, BB) >= DominatesBlock;
12729 }
12730 
12731 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12732   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12733 }
12734 
12735 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12736   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12737 }
12738 
12739 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
12740   for (auto *S : SCEVs)
12741     forgetMemoizedResultsImpl(S);
12742   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
12743   for (auto I = PredicatedSCEVRewrites.begin();
12744        I != PredicatedSCEVRewrites.end();) {
12745     std::pair<const SCEV *, const Loop *> Entry = I->first;
12746     if (ToForget.count(Entry.first))
12747       PredicatedSCEVRewrites.erase(I++);
12748     else
12749       ++I;
12750   }
12751 
12752   auto RemoveSCEVFromBackedgeMap = [&ToForget](
12753       DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12754         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12755           BackedgeTakenInfo &BEInfo = I->second;
12756           if (any_of(ToForget,
12757                      [&BEInfo](const SCEV *S) { return BEInfo.hasOperand(S); }))
12758             Map.erase(I++);
12759           else
12760             ++I;
12761         }
12762   };
12763 
12764   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12765   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12766 }
12767 
12768 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
12769   ValuesAtScopes.erase(S);
12770   LoopDispositions.erase(S);
12771   BlockDispositions.erase(S);
12772   UnsignedRanges.erase(S);
12773   SignedRanges.erase(S);
12774   ExprValueMap.erase(S);
12775   HasRecMap.erase(S);
12776   MinTrailingZerosCache.erase(S);
12777 }
12778 
12779 void
12780 ScalarEvolution::getUsedLoops(const SCEV *S,
12781                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12782   struct FindUsedLoops {
12783     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12784         : LoopsUsed(LoopsUsed) {}
12785     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12786     bool follow(const SCEV *S) {
12787       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12788         LoopsUsed.insert(AR->getLoop());
12789       return true;
12790     }
12791 
12792     bool isDone() const { return false; }
12793   };
12794 
12795   FindUsedLoops F(LoopsUsed);
12796   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12797 }
12798 
12799 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12800   SmallPtrSet<const Loop *, 8> LoopsUsed;
12801   getUsedLoops(S, LoopsUsed);
12802   for (auto *L : LoopsUsed)
12803     LoopUsers[L].push_back(S);
12804 }
12805 
12806 void ScalarEvolution::verify() const {
12807   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12808   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12809 
12810   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12811 
12812   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12813   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12814     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12815 
12816     const SCEV *visitConstant(const SCEVConstant *Constant) {
12817       return SE.getConstant(Constant->getAPInt());
12818     }
12819 
12820     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12821       return SE.getUnknown(Expr->getValue());
12822     }
12823 
12824     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12825       return SE.getCouldNotCompute();
12826     }
12827   };
12828 
12829   SCEVMapper SCM(SE2);
12830 
12831   while (!LoopStack.empty()) {
12832     auto *L = LoopStack.pop_back_val();
12833     llvm::append_range(LoopStack, *L);
12834 
12835     auto *CurBECount = SCM.visit(
12836         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12837     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12838 
12839     if (CurBECount == SE2.getCouldNotCompute() ||
12840         NewBECount == SE2.getCouldNotCompute()) {
12841       // NB! This situation is legal, but is very suspicious -- whatever pass
12842       // change the loop to make a trip count go from could not compute to
12843       // computable or vice-versa *should have* invalidated SCEV.  However, we
12844       // choose not to assert here (for now) since we don't want false
12845       // positives.
12846       continue;
12847     }
12848 
12849     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12850       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12851       // not propagate undef aggressively).  This means we can (and do) fail
12852       // verification in cases where a transform makes the trip count of a loop
12853       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12854       // both cases the loop iterates "undef" times, but SCEV thinks we
12855       // increased the trip count of the loop by 1 incorrectly.
12856       continue;
12857     }
12858 
12859     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12860         SE.getTypeSizeInBits(NewBECount->getType()))
12861       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12862     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12863              SE.getTypeSizeInBits(NewBECount->getType()))
12864       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12865 
12866     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12867 
12868     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12869     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12870       dbgs() << "Trip Count for " << *L << " Changed!\n";
12871       dbgs() << "Old: " << *CurBECount << "\n";
12872       dbgs() << "New: " << *NewBECount << "\n";
12873       dbgs() << "Delta: " << *Delta << "\n";
12874       std::abort();
12875     }
12876   }
12877 
12878   // Collect all valid loops currently in LoopInfo.
12879   SmallPtrSet<Loop *, 32> ValidLoops;
12880   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12881   while (!Worklist.empty()) {
12882     Loop *L = Worklist.pop_back_val();
12883     if (ValidLoops.contains(L))
12884       continue;
12885     ValidLoops.insert(L);
12886     Worklist.append(L->begin(), L->end());
12887   }
12888   // Check for SCEV expressions referencing invalid/deleted loops.
12889   for (auto &KV : ValueExprMap) {
12890     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12891     if (!AR)
12892       continue;
12893     assert(ValidLoops.contains(AR->getLoop()) &&
12894            "AddRec references invalid loop");
12895   }
12896 }
12897 
12898 bool ScalarEvolution::invalidate(
12899     Function &F, const PreservedAnalyses &PA,
12900     FunctionAnalysisManager::Invalidator &Inv) {
12901   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12902   // of its dependencies is invalidated.
12903   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12904   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12905          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12906          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12907          Inv.invalidate<LoopAnalysis>(F, PA);
12908 }
12909 
12910 AnalysisKey ScalarEvolutionAnalysis::Key;
12911 
12912 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12913                                              FunctionAnalysisManager &AM) {
12914   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12915                          AM.getResult<AssumptionAnalysis>(F),
12916                          AM.getResult<DominatorTreeAnalysis>(F),
12917                          AM.getResult<LoopAnalysis>(F));
12918 }
12919 
12920 PreservedAnalyses
12921 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12922   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12923   return PreservedAnalyses::all();
12924 }
12925 
12926 PreservedAnalyses
12927 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12928   // For compatibility with opt's -analyze feature under legacy pass manager
12929   // which was not ported to NPM. This keeps tests using
12930   // update_analyze_test_checks.py working.
12931   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12932      << F.getName() << "':\n";
12933   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12934   return PreservedAnalyses::all();
12935 }
12936 
12937 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12938                       "Scalar Evolution Analysis", false, true)
12939 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12940 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12941 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12942 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12943 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12944                     "Scalar Evolution Analysis", false, true)
12945 
12946 char ScalarEvolutionWrapperPass::ID = 0;
12947 
12948 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12949   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12950 }
12951 
12952 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12953   SE.reset(new ScalarEvolution(
12954       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12955       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12956       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12957       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12958   return false;
12959 }
12960 
12961 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12962 
12963 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12964   SE->print(OS);
12965 }
12966 
12967 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12968   if (!VerifySCEV)
12969     return;
12970 
12971   SE->verify();
12972 }
12973 
12974 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12975   AU.setPreservesAll();
12976   AU.addRequiredTransitive<AssumptionCacheTracker>();
12977   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12978   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12979   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12980 }
12981 
12982 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12983                                                         const SCEV *RHS) {
12984   FoldingSetNodeID ID;
12985   assert(LHS->getType() == RHS->getType() &&
12986          "Type mismatch between LHS and RHS");
12987   // Unique this node based on the arguments
12988   ID.AddInteger(SCEVPredicate::P_Equal);
12989   ID.AddPointer(LHS);
12990   ID.AddPointer(RHS);
12991   void *IP = nullptr;
12992   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12993     return S;
12994   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12995       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12996   UniquePreds.InsertNode(Eq, IP);
12997   return Eq;
12998 }
12999 
13000 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13001     const SCEVAddRecExpr *AR,
13002     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13003   FoldingSetNodeID ID;
13004   // Unique this node based on the arguments
13005   ID.AddInteger(SCEVPredicate::P_Wrap);
13006   ID.AddPointer(AR);
13007   ID.AddInteger(AddedFlags);
13008   void *IP = nullptr;
13009   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13010     return S;
13011   auto *OF = new (SCEVAllocator)
13012       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13013   UniquePreds.InsertNode(OF, IP);
13014   return OF;
13015 }
13016 
13017 namespace {
13018 
13019 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13020 public:
13021 
13022   /// Rewrites \p S in the context of a loop L and the SCEV predication
13023   /// infrastructure.
13024   ///
13025   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13026   /// equivalences present in \p Pred.
13027   ///
13028   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13029   /// \p NewPreds such that the result will be an AddRecExpr.
13030   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13031                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13032                              SCEVUnionPredicate *Pred) {
13033     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13034     return Rewriter.visit(S);
13035   }
13036 
13037   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13038     if (Pred) {
13039       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13040       for (auto *Pred : ExprPreds)
13041         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13042           if (IPred->getLHS() == Expr)
13043             return IPred->getRHS();
13044     }
13045     return convertToAddRecWithPreds(Expr);
13046   }
13047 
13048   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13049     const SCEV *Operand = visit(Expr->getOperand());
13050     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13051     if (AR && AR->getLoop() == L && AR->isAffine()) {
13052       // This couldn't be folded because the operand didn't have the nuw
13053       // flag. Add the nusw flag as an assumption that we could make.
13054       const SCEV *Step = AR->getStepRecurrence(SE);
13055       Type *Ty = Expr->getType();
13056       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13057         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13058                                 SE.getSignExtendExpr(Step, Ty), L,
13059                                 AR->getNoWrapFlags());
13060     }
13061     return SE.getZeroExtendExpr(Operand, Expr->getType());
13062   }
13063 
13064   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13065     const SCEV *Operand = visit(Expr->getOperand());
13066     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13067     if (AR && AR->getLoop() == L && AR->isAffine()) {
13068       // This couldn't be folded because the operand didn't have the nsw
13069       // flag. Add the nssw flag as an assumption that we could make.
13070       const SCEV *Step = AR->getStepRecurrence(SE);
13071       Type *Ty = Expr->getType();
13072       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13073         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13074                                 SE.getSignExtendExpr(Step, Ty), L,
13075                                 AR->getNoWrapFlags());
13076     }
13077     return SE.getSignExtendExpr(Operand, Expr->getType());
13078   }
13079 
13080 private:
13081   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13082                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13083                         SCEVUnionPredicate *Pred)
13084       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13085 
13086   bool addOverflowAssumption(const SCEVPredicate *P) {
13087     if (!NewPreds) {
13088       // Check if we've already made this assumption.
13089       return Pred && Pred->implies(P);
13090     }
13091     NewPreds->insert(P);
13092     return true;
13093   }
13094 
13095   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13096                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13097     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13098     return addOverflowAssumption(A);
13099   }
13100 
13101   // If \p Expr represents a PHINode, we try to see if it can be represented
13102   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13103   // to add this predicate as a runtime overflow check, we return the AddRec.
13104   // If \p Expr does not meet these conditions (is not a PHI node, or we
13105   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13106   // return \p Expr.
13107   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13108     if (!isa<PHINode>(Expr->getValue()))
13109       return Expr;
13110     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13111     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13112     if (!PredicatedRewrite)
13113       return Expr;
13114     for (auto *P : PredicatedRewrite->second){
13115       // Wrap predicates from outer loops are not supported.
13116       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13117         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13118         if (L != AR->getLoop())
13119           return Expr;
13120       }
13121       if (!addOverflowAssumption(P))
13122         return Expr;
13123     }
13124     return PredicatedRewrite->first;
13125   }
13126 
13127   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13128   SCEVUnionPredicate *Pred;
13129   const Loop *L;
13130 };
13131 
13132 } // end anonymous namespace
13133 
13134 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13135                                                    SCEVUnionPredicate &Preds) {
13136   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13137 }
13138 
13139 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13140     const SCEV *S, const Loop *L,
13141     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13142   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13143   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13144   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13145 
13146   if (!AddRec)
13147     return nullptr;
13148 
13149   // Since the transformation was successful, we can now transfer the SCEV
13150   // predicates.
13151   for (auto *P : TransformPreds)
13152     Preds.insert(P);
13153 
13154   return AddRec;
13155 }
13156 
13157 /// SCEV predicates
13158 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13159                              SCEVPredicateKind Kind)
13160     : FastID(ID), Kind(Kind) {}
13161 
13162 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13163                                        const SCEV *LHS, const SCEV *RHS)
13164     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13165   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13166   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13167 }
13168 
13169 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13170   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13171 
13172   if (!Op)
13173     return false;
13174 
13175   return Op->LHS == LHS && Op->RHS == RHS;
13176 }
13177 
13178 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13179 
13180 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13181 
13182 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13183   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13184 }
13185 
13186 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13187                                      const SCEVAddRecExpr *AR,
13188                                      IncrementWrapFlags Flags)
13189     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13190 
13191 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13192 
13193 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13194   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13195 
13196   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13197 }
13198 
13199 bool SCEVWrapPredicate::isAlwaysTrue() const {
13200   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13201   IncrementWrapFlags IFlags = Flags;
13202 
13203   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13204     IFlags = clearFlags(IFlags, IncrementNSSW);
13205 
13206   return IFlags == IncrementAnyWrap;
13207 }
13208 
13209 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13210   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13211   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13212     OS << "<nusw>";
13213   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13214     OS << "<nssw>";
13215   OS << "\n";
13216 }
13217 
13218 SCEVWrapPredicate::IncrementWrapFlags
13219 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13220                                    ScalarEvolution &SE) {
13221   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13222   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13223 
13224   // We can safely transfer the NSW flag as NSSW.
13225   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13226     ImpliedFlags = IncrementNSSW;
13227 
13228   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13229     // If the increment is positive, the SCEV NUW flag will also imply the
13230     // WrapPredicate NUSW flag.
13231     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13232       if (Step->getValue()->getValue().isNonNegative())
13233         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13234   }
13235 
13236   return ImpliedFlags;
13237 }
13238 
13239 /// Union predicates don't get cached so create a dummy set ID for it.
13240 SCEVUnionPredicate::SCEVUnionPredicate()
13241     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13242 
13243 bool SCEVUnionPredicate::isAlwaysTrue() const {
13244   return all_of(Preds,
13245                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13246 }
13247 
13248 ArrayRef<const SCEVPredicate *>
13249 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13250   auto I = SCEVToPreds.find(Expr);
13251   if (I == SCEVToPreds.end())
13252     return ArrayRef<const SCEVPredicate *>();
13253   return I->second;
13254 }
13255 
13256 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13257   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13258     return all_of(Set->Preds,
13259                   [this](const SCEVPredicate *I) { return this->implies(I); });
13260 
13261   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13262   if (ScevPredsIt == SCEVToPreds.end())
13263     return false;
13264   auto &SCEVPreds = ScevPredsIt->second;
13265 
13266   return any_of(SCEVPreds,
13267                 [N](const SCEVPredicate *I) { return I->implies(N); });
13268 }
13269 
13270 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13271 
13272 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13273   for (auto Pred : Preds)
13274     Pred->print(OS, Depth);
13275 }
13276 
13277 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13278   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13279     for (auto Pred : Set->Preds)
13280       add(Pred);
13281     return;
13282   }
13283 
13284   if (implies(N))
13285     return;
13286 
13287   const SCEV *Key = N->getExpr();
13288   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13289                 " associated expression!");
13290 
13291   SCEVToPreds[Key].push_back(N);
13292   Preds.push_back(N);
13293 }
13294 
13295 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13296                                                      Loop &L)
13297     : SE(SE), L(L) {}
13298 
13299 void ScalarEvolution::registerUser(const SCEV *User,
13300                                    ArrayRef<const SCEV *> Ops) {
13301   for (auto *Op : Ops)
13302     // We do not expect that forgetting cached data for SCEVConstants will ever
13303     // open any prospects for sharpening or introduce any correctness issues,
13304     // so we don't bother storing their dependencies.
13305     if (!isa<SCEVConstant>(Op))
13306       SCEVUsers[Op].insert(User);
13307 }
13308 
13309 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13310   const SCEV *Expr = SE.getSCEV(V);
13311   RewriteEntry &Entry = RewriteMap[Expr];
13312 
13313   // If we already have an entry and the version matches, return it.
13314   if (Entry.second && Generation == Entry.first)
13315     return Entry.second;
13316 
13317   // We found an entry but it's stale. Rewrite the stale entry
13318   // according to the current predicate.
13319   if (Entry.second)
13320     Expr = Entry.second;
13321 
13322   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13323   Entry = {Generation, NewSCEV};
13324 
13325   return NewSCEV;
13326 }
13327 
13328 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13329   if (!BackedgeCount) {
13330     SCEVUnionPredicate BackedgePred;
13331     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13332     addPredicate(BackedgePred);
13333   }
13334   return BackedgeCount;
13335 }
13336 
13337 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13338   if (Preds.implies(&Pred))
13339     return;
13340   Preds.add(&Pred);
13341   updateGeneration();
13342 }
13343 
13344 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13345   return Preds;
13346 }
13347 
13348 void PredicatedScalarEvolution::updateGeneration() {
13349   // If the generation number wrapped recompute everything.
13350   if (++Generation == 0) {
13351     for (auto &II : RewriteMap) {
13352       const SCEV *Rewritten = II.second.second;
13353       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13354     }
13355   }
13356 }
13357 
13358 void PredicatedScalarEvolution::setNoOverflow(
13359     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13360   const SCEV *Expr = getSCEV(V);
13361   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13362 
13363   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13364 
13365   // Clear the statically implied flags.
13366   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13367   addPredicate(*SE.getWrapPredicate(AR, Flags));
13368 
13369   auto II = FlagsMap.insert({V, Flags});
13370   if (!II.second)
13371     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13372 }
13373 
13374 bool PredicatedScalarEvolution::hasNoOverflow(
13375     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13376   const SCEV *Expr = getSCEV(V);
13377   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13378 
13379   Flags = SCEVWrapPredicate::clearFlags(
13380       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13381 
13382   auto II = FlagsMap.find(V);
13383 
13384   if (II != FlagsMap.end())
13385     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13386 
13387   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13388 }
13389 
13390 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13391   const SCEV *Expr = this->getSCEV(V);
13392   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13393   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13394 
13395   if (!New)
13396     return nullptr;
13397 
13398   for (auto *P : NewPreds)
13399     Preds.add(P);
13400 
13401   updateGeneration();
13402   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13403   return New;
13404 }
13405 
13406 PredicatedScalarEvolution::PredicatedScalarEvolution(
13407     const PredicatedScalarEvolution &Init)
13408     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13409       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13410   for (auto I : Init.FlagsMap)
13411     FlagsMap.insert(I);
13412 }
13413 
13414 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13415   // For each block.
13416   for (auto *BB : L.getBlocks())
13417     for (auto &I : *BB) {
13418       if (!SE.isSCEVable(I.getType()))
13419         continue;
13420 
13421       auto *Expr = SE.getSCEV(&I);
13422       auto II = RewriteMap.find(Expr);
13423 
13424       if (II == RewriteMap.end())
13425         continue;
13426 
13427       // Don't print things that are not interesting.
13428       if (II->second.second == Expr)
13429         continue;
13430 
13431       OS.indent(Depth) << "[PSE]" << I << ":\n";
13432       OS.indent(Depth + 2) << *Expr << "\n";
13433       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13434     }
13435 }
13436 
13437 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13438 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13439 // for URem with constant power-of-2 second operands.
13440 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13441 // 4, A / B becomes X / 8).
13442 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13443                                 const SCEV *&RHS) {
13444   // Try to match 'zext (trunc A to iB) to iY', which is used
13445   // for URem with constant power-of-2 second operands. Make sure the size of
13446   // the operand A matches the size of the whole expressions.
13447   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13448     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13449       LHS = Trunc->getOperand();
13450       // Bail out if the type of the LHS is larger than the type of the
13451       // expression for now.
13452       if (getTypeSizeInBits(LHS->getType()) >
13453           getTypeSizeInBits(Expr->getType()))
13454         return false;
13455       if (LHS->getType() != Expr->getType())
13456         LHS = getZeroExtendExpr(LHS, Expr->getType());
13457       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13458                         << getTypeSizeInBits(Trunc->getType()));
13459       return true;
13460     }
13461   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13462   if (Add == nullptr || Add->getNumOperands() != 2)
13463     return false;
13464 
13465   const SCEV *A = Add->getOperand(1);
13466   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13467 
13468   if (Mul == nullptr)
13469     return false;
13470 
13471   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13472     // (SomeExpr + (-(SomeExpr / B) * B)).
13473     if (Expr == getURemExpr(A, B)) {
13474       LHS = A;
13475       RHS = B;
13476       return true;
13477     }
13478     return false;
13479   };
13480 
13481   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13482   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13483     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13484            MatchURemWithDivisor(Mul->getOperand(2));
13485 
13486   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13487   if (Mul->getNumOperands() == 2)
13488     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13489            MatchURemWithDivisor(Mul->getOperand(0)) ||
13490            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13491            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13492   return false;
13493 }
13494 
13495 const SCEV *
13496 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13497   SmallVector<BasicBlock*, 16> ExitingBlocks;
13498   L->getExitingBlocks(ExitingBlocks);
13499 
13500   // Form an expression for the maximum exit count possible for this loop. We
13501   // merge the max and exact information to approximate a version of
13502   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13503   SmallVector<const SCEV*, 4> ExitCounts;
13504   for (BasicBlock *ExitingBB : ExitingBlocks) {
13505     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13506     if (isa<SCEVCouldNotCompute>(ExitCount))
13507       ExitCount = getExitCount(L, ExitingBB,
13508                                   ScalarEvolution::ConstantMaximum);
13509     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13510       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13511              "We should only have known counts for exiting blocks that "
13512              "dominate latch!");
13513       ExitCounts.push_back(ExitCount);
13514     }
13515   }
13516   if (ExitCounts.empty())
13517     return getCouldNotCompute();
13518   return getUMinFromMismatchedTypes(ExitCounts);
13519 }
13520 
13521 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13522 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13523 /// we cannot guarantee that the replacement is loop invariant in the loop of
13524 /// the AddRec.
13525 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13526   ValueToSCEVMapTy &Map;
13527 
13528 public:
13529   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13530       : SCEVRewriteVisitor(SE), Map(M) {}
13531 
13532   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13533 
13534   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13535     auto I = Map.find(Expr->getValue());
13536     if (I == Map.end())
13537       return Expr;
13538     return I->second;
13539   }
13540 };
13541 
13542 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13543   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13544                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13545     // WARNING: It is generally unsound to apply any wrap flags to the proposed
13546     // replacement SCEV which isn't directly implied by the structure of that
13547     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
13548     // legal.  See the scoping rules for flags in the header to understand why.
13549 
13550     // If we have LHS == 0, check if LHS is computing a property of some unknown
13551     // SCEV %v which we can rewrite %v to express explicitly.
13552     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13553     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13554         RHSC->getValue()->isNullValue()) {
13555       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13556       // explicitly express that.
13557       const SCEV *URemLHS = nullptr;
13558       const SCEV *URemRHS = nullptr;
13559       if (matchURem(LHS, URemLHS, URemRHS)) {
13560         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13561           Value *V = LHSUnknown->getValue();
13562           RewriteMap[V] = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
13563           return;
13564         }
13565       }
13566     }
13567 
13568     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
13569       std::swap(LHS, RHS);
13570       Predicate = CmpInst::getSwappedPredicate(Predicate);
13571     }
13572 
13573     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
13574     // create this form when combining two checks of the form (X u< C2 + C1) and
13575     // (X >=u C1).
13576     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() {
13577       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
13578       if (!AddExpr || AddExpr->getNumOperands() != 2)
13579         return false;
13580 
13581       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
13582       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
13583       auto *C2 = dyn_cast<SCEVConstant>(RHS);
13584       if (!C1 || !C2 || !LHSUnknown)
13585         return false;
13586 
13587       auto ExactRegion =
13588           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
13589               .sub(C1->getAPInt());
13590 
13591       // Bail out, unless we have a non-wrapping, monotonic range.
13592       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
13593         return false;
13594       auto I = RewriteMap.find(LHSUnknown->getValue());
13595       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
13596       RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(
13597           getConstant(ExactRegion.getUnsignedMin()),
13598           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
13599       return true;
13600     };
13601     if (MatchRangeCheckIdiom())
13602       return;
13603 
13604     // For now, limit to conditions that provide information about unknown
13605     // expressions. RHS also cannot contain add recurrences.
13606     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13607     if (!LHSUnknown || containsAddRecurrence(RHS))
13608       return;
13609 
13610     // Check whether LHS has already been rewritten. In that case we want to
13611     // chain further rewrites onto the already rewritten value.
13612     auto I = RewriteMap.find(LHSUnknown->getValue());
13613     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13614     const SCEV *RewrittenRHS = nullptr;
13615     switch (Predicate) {
13616     case CmpInst::ICMP_ULT:
13617       RewrittenRHS =
13618           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13619       break;
13620     case CmpInst::ICMP_SLT:
13621       RewrittenRHS =
13622           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13623       break;
13624     case CmpInst::ICMP_ULE:
13625       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
13626       break;
13627     case CmpInst::ICMP_SLE:
13628       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
13629       break;
13630     case CmpInst::ICMP_UGT:
13631       RewrittenRHS =
13632           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13633       break;
13634     case CmpInst::ICMP_SGT:
13635       RewrittenRHS =
13636           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13637       break;
13638     case CmpInst::ICMP_UGE:
13639       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
13640       break;
13641     case CmpInst::ICMP_SGE:
13642       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
13643       break;
13644     case CmpInst::ICMP_EQ:
13645       if (isa<SCEVConstant>(RHS))
13646         RewrittenRHS = RHS;
13647       break;
13648     case CmpInst::ICMP_NE:
13649       if (isa<SCEVConstant>(RHS) &&
13650           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13651         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
13652       break;
13653     default:
13654       break;
13655     }
13656 
13657     if (RewrittenRHS)
13658       RewriteMap[LHSUnknown->getValue()] = RewrittenRHS;
13659   };
13660   // Starting at the loop predecessor, climb up the predecessor chain, as long
13661   // as there are predecessors that can be found that have unique successors
13662   // leading to the original header.
13663   // TODO: share this logic with isLoopEntryGuardedByCond.
13664   ValueToSCEVMapTy RewriteMap;
13665   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13666            L->getLoopPredecessor(), L->getHeader());
13667        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13668 
13669     const BranchInst *LoopEntryPredicate =
13670         dyn_cast<BranchInst>(Pair.first->getTerminator());
13671     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13672       continue;
13673 
13674     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
13675     SmallVector<Value *, 8> Worklist;
13676     SmallPtrSet<Value *, 8> Visited;
13677     Worklist.push_back(LoopEntryPredicate->getCondition());
13678     while (!Worklist.empty()) {
13679       Value *Cond = Worklist.pop_back_val();
13680       if (!Visited.insert(Cond).second)
13681         continue;
13682 
13683       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13684         auto Predicate =
13685             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
13686         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13687                          getSCEV(Cmp->getOperand(1)), RewriteMap);
13688         continue;
13689       }
13690 
13691       Value *L, *R;
13692       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
13693                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
13694         Worklist.push_back(L);
13695         Worklist.push_back(R);
13696       }
13697     }
13698   }
13699 
13700   // Also collect information from assumptions dominating the loop.
13701   for (auto &AssumeVH : AC.assumptions()) {
13702     if (!AssumeVH)
13703       continue;
13704     auto *AssumeI = cast<CallInst>(AssumeVH);
13705     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13706     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13707       continue;
13708     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13709                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13710   }
13711 
13712   if (RewriteMap.empty())
13713     return Expr;
13714   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13715   return Rewriter.visit(Expr);
13716 }
13717