1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumTripCountsComputed, 143 "Number of loops with predictable loop counts"); 144 STATISTIC(NumTripCountsNotComputed, 145 "Number of loops without predictable loop counts"); 146 STATISTIC(NumBruteForceTripCountsComputed, 147 "Number of loops with trip counts computed by force"); 148 149 static cl::opt<unsigned> 150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 151 cl::ZeroOrMore, 152 cl::desc("Maximum number of iterations SCEV will " 153 "symbolically execute a constant " 154 "derived loop"), 155 cl::init(100)); 156 157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 158 static cl::opt<bool> VerifySCEV( 159 "verify-scev", cl::Hidden, 160 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 161 static cl::opt<bool> VerifySCEVStrict( 162 "verify-scev-strict", cl::Hidden, 163 cl::desc("Enable stricter verification with -verify-scev is passed")); 164 static cl::opt<bool> 165 VerifySCEVMap("verify-scev-maps", cl::Hidden, 166 cl::desc("Verify no dangling value in ScalarEvolution's " 167 "ExprValueMap (slow)")); 168 169 static cl::opt<bool> VerifyIR( 170 "scev-verify-ir", cl::Hidden, 171 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 172 cl::init(false)); 173 174 static cl::opt<unsigned> MulOpsInlineThreshold( 175 "scev-mulops-inline-threshold", cl::Hidden, 176 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 177 cl::init(32)); 178 179 static cl::opt<unsigned> AddOpsInlineThreshold( 180 "scev-addops-inline-threshold", cl::Hidden, 181 cl::desc("Threshold for inlining addition operands into a SCEV"), 182 cl::init(500)); 183 184 static cl::opt<unsigned> MaxSCEVCompareDepth( 185 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 186 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 187 cl::init(32)); 188 189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 190 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 191 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 192 cl::init(2)); 193 194 static cl::opt<unsigned> MaxValueCompareDepth( 195 "scalar-evolution-max-value-compare-depth", cl::Hidden, 196 cl::desc("Maximum depth of recursive value complexity comparisons"), 197 cl::init(2)); 198 199 static cl::opt<unsigned> 200 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 201 cl::desc("Maximum depth of recursive arithmetics"), 202 cl::init(32)); 203 204 static cl::opt<unsigned> MaxConstantEvolvingDepth( 205 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 206 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 207 208 static cl::opt<unsigned> 209 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 210 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 211 cl::init(8)); 212 213 static cl::opt<unsigned> 214 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 215 cl::desc("Max coefficients in AddRec during evolving"), 216 cl::init(8)); 217 218 static cl::opt<unsigned> 219 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 220 cl::desc("Size of the expression which is considered huge"), 221 cl::init(4096)); 222 223 static cl::opt<bool> 224 ClassifyExpressions("scalar-evolution-classify-expressions", 225 cl::Hidden, cl::init(true), 226 cl::desc("When printing analysis, include information on every instruction")); 227 228 static cl::opt<bool> UseExpensiveRangeSharpening( 229 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 230 cl::init(false), 231 cl::desc("Use more powerful methods of sharpening expression ranges. May " 232 "be costly in terms of compile time")); 233 234 //===----------------------------------------------------------------------===// 235 // SCEV class definitions 236 //===----------------------------------------------------------------------===// 237 238 //===----------------------------------------------------------------------===// 239 // Implementation of the SCEV class. 240 // 241 242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 243 LLVM_DUMP_METHOD void SCEV::dump() const { 244 print(dbgs()); 245 dbgs() << '\n'; 246 } 247 #endif 248 249 void SCEV::print(raw_ostream &OS) const { 250 switch (getSCEVType()) { 251 case scConstant: 252 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 253 return; 254 case scPtrToInt: { 255 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 256 const SCEV *Op = PtrToInt->getOperand(); 257 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 258 << *PtrToInt->getType() << ")"; 259 return; 260 } 261 case scTruncate: { 262 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 263 const SCEV *Op = Trunc->getOperand(); 264 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 265 << *Trunc->getType() << ")"; 266 return; 267 } 268 case scZeroExtend: { 269 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 270 const SCEV *Op = ZExt->getOperand(); 271 OS << "(zext " << *Op->getType() << " " << *Op << " to " 272 << *ZExt->getType() << ")"; 273 return; 274 } 275 case scSignExtend: { 276 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 277 const SCEV *Op = SExt->getOperand(); 278 OS << "(sext " << *Op->getType() << " " << *Op << " to " 279 << *SExt->getType() << ")"; 280 return; 281 } 282 case scAddRecExpr: { 283 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 284 OS << "{" << *AR->getOperand(0); 285 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 286 OS << ",+," << *AR->getOperand(i); 287 OS << "}<"; 288 if (AR->hasNoUnsignedWrap()) 289 OS << "nuw><"; 290 if (AR->hasNoSignedWrap()) 291 OS << "nsw><"; 292 if (AR->hasNoSelfWrap() && 293 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 294 OS << "nw><"; 295 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 296 OS << ">"; 297 return; 298 } 299 case scAddExpr: 300 case scMulExpr: 301 case scUMaxExpr: 302 case scSMaxExpr: 303 case scUMinExpr: 304 case scSMinExpr: 305 case scSequentialUMinExpr: { 306 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 307 const char *OpStr = nullptr; 308 switch (NAry->getSCEVType()) { 309 case scAddExpr: OpStr = " + "; break; 310 case scMulExpr: OpStr = " * "; break; 311 case scUMaxExpr: OpStr = " umax "; break; 312 case scSMaxExpr: OpStr = " smax "; break; 313 case scUMinExpr: 314 OpStr = " umin "; 315 break; 316 case scSMinExpr: 317 OpStr = " smin "; 318 break; 319 case scSequentialUMinExpr: 320 OpStr = " umin_seq "; 321 break; 322 default: 323 llvm_unreachable("There are no other nary expression types."); 324 } 325 OS << "("; 326 ListSeparator LS(OpStr); 327 for (const SCEV *Op : NAry->operands()) 328 OS << LS << *Op; 329 OS << ")"; 330 switch (NAry->getSCEVType()) { 331 case scAddExpr: 332 case scMulExpr: 333 if (NAry->hasNoUnsignedWrap()) 334 OS << "<nuw>"; 335 if (NAry->hasNoSignedWrap()) 336 OS << "<nsw>"; 337 break; 338 default: 339 // Nothing to print for other nary expressions. 340 break; 341 } 342 return; 343 } 344 case scUDivExpr: { 345 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 346 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 347 return; 348 } 349 case scUnknown: { 350 const SCEVUnknown *U = cast<SCEVUnknown>(this); 351 Type *AllocTy; 352 if (U->isSizeOf(AllocTy)) { 353 OS << "sizeof(" << *AllocTy << ")"; 354 return; 355 } 356 if (U->isAlignOf(AllocTy)) { 357 OS << "alignof(" << *AllocTy << ")"; 358 return; 359 } 360 361 Type *CTy; 362 Constant *FieldNo; 363 if (U->isOffsetOf(CTy, FieldNo)) { 364 OS << "offsetof(" << *CTy << ", "; 365 FieldNo->printAsOperand(OS, false); 366 OS << ")"; 367 return; 368 } 369 370 // Otherwise just print it normally. 371 U->getValue()->printAsOperand(OS, false); 372 return; 373 } 374 case scCouldNotCompute: 375 OS << "***COULDNOTCOMPUTE***"; 376 return; 377 } 378 llvm_unreachable("Unknown SCEV kind!"); 379 } 380 381 Type *SCEV::getType() const { 382 switch (getSCEVType()) { 383 case scConstant: 384 return cast<SCEVConstant>(this)->getType(); 385 case scPtrToInt: 386 case scTruncate: 387 case scZeroExtend: 388 case scSignExtend: 389 return cast<SCEVCastExpr>(this)->getType(); 390 case scAddRecExpr: 391 return cast<SCEVAddRecExpr>(this)->getType(); 392 case scMulExpr: 393 return cast<SCEVMulExpr>(this)->getType(); 394 case scUMaxExpr: 395 case scSMaxExpr: 396 case scUMinExpr: 397 case scSMinExpr: 398 return cast<SCEVMinMaxExpr>(this)->getType(); 399 case scSequentialUMinExpr: 400 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 401 case scAddExpr: 402 return cast<SCEVAddExpr>(this)->getType(); 403 case scUDivExpr: 404 return cast<SCEVUDivExpr>(this)->getType(); 405 case scUnknown: 406 return cast<SCEVUnknown>(this)->getType(); 407 case scCouldNotCompute: 408 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 409 } 410 llvm_unreachable("Unknown SCEV kind!"); 411 } 412 413 bool SCEV::isZero() const { 414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 415 return SC->getValue()->isZero(); 416 return false; 417 } 418 419 bool SCEV::isOne() const { 420 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 421 return SC->getValue()->isOne(); 422 return false; 423 } 424 425 bool SCEV::isAllOnesValue() const { 426 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 427 return SC->getValue()->isMinusOne(); 428 return false; 429 } 430 431 bool SCEV::isNonConstantNegative() const { 432 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 433 if (!Mul) return false; 434 435 // If there is a constant factor, it will be first. 436 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 437 if (!SC) return false; 438 439 // Return true if the value is negative, this matches things like (-42 * V). 440 return SC->getAPInt().isNegative(); 441 } 442 443 SCEVCouldNotCompute::SCEVCouldNotCompute() : 444 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 445 446 bool SCEVCouldNotCompute::classof(const SCEV *S) { 447 return S->getSCEVType() == scCouldNotCompute; 448 } 449 450 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 451 FoldingSetNodeID ID; 452 ID.AddInteger(scConstant); 453 ID.AddPointer(V); 454 void *IP = nullptr; 455 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 456 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 457 UniqueSCEVs.InsertNode(S, IP); 458 return S; 459 } 460 461 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 462 return getConstant(ConstantInt::get(getContext(), Val)); 463 } 464 465 const SCEV * 466 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 467 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 468 return getConstant(ConstantInt::get(ITy, V, isSigned)); 469 } 470 471 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 472 const SCEV *op, Type *ty) 473 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 474 Operands[0] = op; 475 } 476 477 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 478 Type *ITy) 479 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 480 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 481 "Must be a non-bit-width-changing pointer-to-integer cast!"); 482 } 483 484 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 485 SCEVTypes SCEVTy, const SCEV *op, 486 Type *ty) 487 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 488 489 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 490 Type *ty) 491 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 492 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 493 "Cannot truncate non-integer value!"); 494 } 495 496 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 497 const SCEV *op, Type *ty) 498 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 499 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 500 "Cannot zero extend non-integer value!"); 501 } 502 503 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 504 const SCEV *op, Type *ty) 505 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 506 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 507 "Cannot sign extend non-integer value!"); 508 } 509 510 void SCEVUnknown::deleted() { 511 // Clear this SCEVUnknown from various maps. 512 SE->forgetMemoizedResults(this); 513 514 // Remove this SCEVUnknown from the uniquing map. 515 SE->UniqueSCEVs.RemoveNode(this); 516 517 // Release the value. 518 setValPtr(nullptr); 519 } 520 521 void SCEVUnknown::allUsesReplacedWith(Value *New) { 522 // Remove this SCEVUnknown from the uniquing map. 523 SE->UniqueSCEVs.RemoveNode(this); 524 525 // Update this SCEVUnknown to point to the new value. This is needed 526 // because there may still be outstanding SCEVs which still point to 527 // this SCEVUnknown. 528 setValPtr(New); 529 } 530 531 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 532 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 533 if (VCE->getOpcode() == Instruction::PtrToInt) 534 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 535 if (CE->getOpcode() == Instruction::GetElementPtr && 536 CE->getOperand(0)->isNullValue() && 537 CE->getNumOperands() == 2) 538 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 539 if (CI->isOne()) { 540 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 541 return true; 542 } 543 544 return false; 545 } 546 547 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 548 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 549 if (VCE->getOpcode() == Instruction::PtrToInt) 550 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 551 if (CE->getOpcode() == Instruction::GetElementPtr && 552 CE->getOperand(0)->isNullValue()) { 553 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 554 if (StructType *STy = dyn_cast<StructType>(Ty)) 555 if (!STy->isPacked() && 556 CE->getNumOperands() == 3 && 557 CE->getOperand(1)->isNullValue()) { 558 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 559 if (CI->isOne() && 560 STy->getNumElements() == 2 && 561 STy->getElementType(0)->isIntegerTy(1)) { 562 AllocTy = STy->getElementType(1); 563 return true; 564 } 565 } 566 } 567 568 return false; 569 } 570 571 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 572 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 573 if (VCE->getOpcode() == Instruction::PtrToInt) 574 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 575 if (CE->getOpcode() == Instruction::GetElementPtr && 576 CE->getNumOperands() == 3 && 577 CE->getOperand(0)->isNullValue() && 578 CE->getOperand(1)->isNullValue()) { 579 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 580 // Ignore vector types here so that ScalarEvolutionExpander doesn't 581 // emit getelementptrs that index into vectors. 582 if (Ty->isStructTy() || Ty->isArrayTy()) { 583 CTy = Ty; 584 FieldNo = CE->getOperand(2); 585 return true; 586 } 587 } 588 589 return false; 590 } 591 592 //===----------------------------------------------------------------------===// 593 // SCEV Utilities 594 //===----------------------------------------------------------------------===// 595 596 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 597 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 598 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 599 /// have been previously deemed to be "equally complex" by this routine. It is 600 /// intended to avoid exponential time complexity in cases like: 601 /// 602 /// %a = f(%x, %y) 603 /// %b = f(%a, %a) 604 /// %c = f(%b, %b) 605 /// 606 /// %d = f(%x, %y) 607 /// %e = f(%d, %d) 608 /// %f = f(%e, %e) 609 /// 610 /// CompareValueComplexity(%f, %c) 611 /// 612 /// Since we do not continue running this routine on expression trees once we 613 /// have seen unequal values, there is no need to track them in the cache. 614 static int 615 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 616 const LoopInfo *const LI, Value *LV, Value *RV, 617 unsigned Depth) { 618 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 619 return 0; 620 621 // Order pointer values after integer values. This helps SCEVExpander form 622 // GEPs. 623 bool LIsPointer = LV->getType()->isPointerTy(), 624 RIsPointer = RV->getType()->isPointerTy(); 625 if (LIsPointer != RIsPointer) 626 return (int)LIsPointer - (int)RIsPointer; 627 628 // Compare getValueID values. 629 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 630 if (LID != RID) 631 return (int)LID - (int)RID; 632 633 // Sort arguments by their position. 634 if (const auto *LA = dyn_cast<Argument>(LV)) { 635 const auto *RA = cast<Argument>(RV); 636 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 637 return (int)LArgNo - (int)RArgNo; 638 } 639 640 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 641 const auto *RGV = cast<GlobalValue>(RV); 642 643 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 644 auto LT = GV->getLinkage(); 645 return !(GlobalValue::isPrivateLinkage(LT) || 646 GlobalValue::isInternalLinkage(LT)); 647 }; 648 649 // Use the names to distinguish the two values, but only if the 650 // names are semantically important. 651 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 652 return LGV->getName().compare(RGV->getName()); 653 } 654 655 // For instructions, compare their loop depth, and their operand count. This 656 // is pretty loose. 657 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 658 const auto *RInst = cast<Instruction>(RV); 659 660 // Compare loop depths. 661 const BasicBlock *LParent = LInst->getParent(), 662 *RParent = RInst->getParent(); 663 if (LParent != RParent) { 664 unsigned LDepth = LI->getLoopDepth(LParent), 665 RDepth = LI->getLoopDepth(RParent); 666 if (LDepth != RDepth) 667 return (int)LDepth - (int)RDepth; 668 } 669 670 // Compare the number of operands. 671 unsigned LNumOps = LInst->getNumOperands(), 672 RNumOps = RInst->getNumOperands(); 673 if (LNumOps != RNumOps) 674 return (int)LNumOps - (int)RNumOps; 675 676 for (unsigned Idx : seq(0u, LNumOps)) { 677 int Result = 678 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 679 RInst->getOperand(Idx), Depth + 1); 680 if (Result != 0) 681 return Result; 682 } 683 } 684 685 EqCacheValue.unionSets(LV, RV); 686 return 0; 687 } 688 689 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 690 // than RHS, respectively. A three-way result allows recursive comparisons to be 691 // more efficient. 692 // If the max analysis depth was reached, return None, assuming we do not know 693 // if they are equivalent for sure. 694 static Optional<int> 695 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 696 EquivalenceClasses<const Value *> &EqCacheValue, 697 const LoopInfo *const LI, const SCEV *LHS, 698 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 699 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 700 if (LHS == RHS) 701 return 0; 702 703 // Primarily, sort the SCEVs by their getSCEVType(). 704 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 705 if (LType != RType) 706 return (int)LType - (int)RType; 707 708 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 709 return 0; 710 711 if (Depth > MaxSCEVCompareDepth) 712 return None; 713 714 // Aside from the getSCEVType() ordering, the particular ordering 715 // isn't very important except that it's beneficial to be consistent, 716 // so that (a + b) and (b + a) don't end up as different expressions. 717 switch (LType) { 718 case scUnknown: { 719 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 720 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 721 722 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 723 RU->getValue(), Depth + 1); 724 if (X == 0) 725 EqCacheSCEV.unionSets(LHS, RHS); 726 return X; 727 } 728 729 case scConstant: { 730 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 731 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 732 733 // Compare constant values. 734 const APInt &LA = LC->getAPInt(); 735 const APInt &RA = RC->getAPInt(); 736 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 737 if (LBitWidth != RBitWidth) 738 return (int)LBitWidth - (int)RBitWidth; 739 return LA.ult(RA) ? -1 : 1; 740 } 741 742 case scAddRecExpr: { 743 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 744 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 745 746 // There is always a dominance between two recs that are used by one SCEV, 747 // so we can safely sort recs by loop header dominance. We require such 748 // order in getAddExpr. 749 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 750 if (LLoop != RLoop) { 751 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 752 assert(LHead != RHead && "Two loops share the same header?"); 753 if (DT.dominates(LHead, RHead)) 754 return 1; 755 else 756 assert(DT.dominates(RHead, LHead) && 757 "No dominance between recurrences used by one SCEV?"); 758 return -1; 759 } 760 761 // Addrec complexity grows with operand count. 762 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 763 if (LNumOps != RNumOps) 764 return (int)LNumOps - (int)RNumOps; 765 766 // Lexicographically compare. 767 for (unsigned i = 0; i != LNumOps; ++i) { 768 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 769 LA->getOperand(i), RA->getOperand(i), DT, 770 Depth + 1); 771 if (X != 0) 772 return X; 773 } 774 EqCacheSCEV.unionSets(LHS, RHS); 775 return 0; 776 } 777 778 case scAddExpr: 779 case scMulExpr: 780 case scSMaxExpr: 781 case scUMaxExpr: 782 case scSMinExpr: 783 case scUMinExpr: 784 case scSequentialUMinExpr: { 785 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 786 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 787 788 // Lexicographically compare n-ary expressions. 789 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 790 if (LNumOps != RNumOps) 791 return (int)LNumOps - (int)RNumOps; 792 793 for (unsigned i = 0; i != LNumOps; ++i) { 794 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 795 LC->getOperand(i), RC->getOperand(i), DT, 796 Depth + 1); 797 if (X != 0) 798 return X; 799 } 800 EqCacheSCEV.unionSets(LHS, RHS); 801 return 0; 802 } 803 804 case scUDivExpr: { 805 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 806 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 807 808 // Lexicographically compare udiv expressions. 809 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 810 RC->getLHS(), DT, Depth + 1); 811 if (X != 0) 812 return X; 813 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 814 RC->getRHS(), DT, Depth + 1); 815 if (X == 0) 816 EqCacheSCEV.unionSets(LHS, RHS); 817 return X; 818 } 819 820 case scPtrToInt: 821 case scTruncate: 822 case scZeroExtend: 823 case scSignExtend: { 824 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 825 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 826 827 // Compare cast expressions by operand. 828 auto X = 829 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 830 RC->getOperand(), DT, Depth + 1); 831 if (X == 0) 832 EqCacheSCEV.unionSets(LHS, RHS); 833 return X; 834 } 835 836 case scCouldNotCompute: 837 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 838 } 839 llvm_unreachable("Unknown SCEV kind!"); 840 } 841 842 /// Given a list of SCEV objects, order them by their complexity, and group 843 /// objects of the same complexity together by value. When this routine is 844 /// finished, we know that any duplicates in the vector are consecutive and that 845 /// complexity is monotonically increasing. 846 /// 847 /// Note that we go take special precautions to ensure that we get deterministic 848 /// results from this routine. In other words, we don't want the results of 849 /// this to depend on where the addresses of various SCEV objects happened to 850 /// land in memory. 851 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 852 LoopInfo *LI, DominatorTree &DT) { 853 if (Ops.size() < 2) return; // Noop 854 855 EquivalenceClasses<const SCEV *> EqCacheSCEV; 856 EquivalenceClasses<const Value *> EqCacheValue; 857 858 // Whether LHS has provably less complexity than RHS. 859 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 860 auto Complexity = 861 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 862 return Complexity && *Complexity < 0; 863 }; 864 if (Ops.size() == 2) { 865 // This is the common case, which also happens to be trivially simple. 866 // Special case it. 867 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 868 if (IsLessComplex(RHS, LHS)) 869 std::swap(LHS, RHS); 870 return; 871 } 872 873 // Do the rough sort by complexity. 874 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 875 return IsLessComplex(LHS, RHS); 876 }); 877 878 // Now that we are sorted by complexity, group elements of the same 879 // complexity. Note that this is, at worst, N^2, but the vector is likely to 880 // be extremely short in practice. Note that we take this approach because we 881 // do not want to depend on the addresses of the objects we are grouping. 882 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 883 const SCEV *S = Ops[i]; 884 unsigned Complexity = S->getSCEVType(); 885 886 // If there are any objects of the same complexity and same value as this 887 // one, group them. 888 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 889 if (Ops[j] == S) { // Found a duplicate. 890 // Move it to immediately after i'th element. 891 std::swap(Ops[i+1], Ops[j]); 892 ++i; // no need to rescan it. 893 if (i == e-2) return; // Done! 894 } 895 } 896 } 897 } 898 899 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 900 /// least HugeExprThreshold nodes). 901 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 902 return any_of(Ops, [](const SCEV *S) { 903 return S->getExpressionSize() >= HugeExprThreshold; 904 }); 905 } 906 907 //===----------------------------------------------------------------------===// 908 // Simple SCEV method implementations 909 //===----------------------------------------------------------------------===// 910 911 /// Compute BC(It, K). The result has width W. Assume, K > 0. 912 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 913 ScalarEvolution &SE, 914 Type *ResultTy) { 915 // Handle the simplest case efficiently. 916 if (K == 1) 917 return SE.getTruncateOrZeroExtend(It, ResultTy); 918 919 // We are using the following formula for BC(It, K): 920 // 921 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 922 // 923 // Suppose, W is the bitwidth of the return value. We must be prepared for 924 // overflow. Hence, we must assure that the result of our computation is 925 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 926 // safe in modular arithmetic. 927 // 928 // However, this code doesn't use exactly that formula; the formula it uses 929 // is something like the following, where T is the number of factors of 2 in 930 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 931 // exponentiation: 932 // 933 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 934 // 935 // This formula is trivially equivalent to the previous formula. However, 936 // this formula can be implemented much more efficiently. The trick is that 937 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 938 // arithmetic. To do exact division in modular arithmetic, all we have 939 // to do is multiply by the inverse. Therefore, this step can be done at 940 // width W. 941 // 942 // The next issue is how to safely do the division by 2^T. The way this 943 // is done is by doing the multiplication step at a width of at least W + T 944 // bits. This way, the bottom W+T bits of the product are accurate. Then, 945 // when we perform the division by 2^T (which is equivalent to a right shift 946 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 947 // truncated out after the division by 2^T. 948 // 949 // In comparison to just directly using the first formula, this technique 950 // is much more efficient; using the first formula requires W * K bits, 951 // but this formula less than W + K bits. Also, the first formula requires 952 // a division step, whereas this formula only requires multiplies and shifts. 953 // 954 // It doesn't matter whether the subtraction step is done in the calculation 955 // width or the input iteration count's width; if the subtraction overflows, 956 // the result must be zero anyway. We prefer here to do it in the width of 957 // the induction variable because it helps a lot for certain cases; CodeGen 958 // isn't smart enough to ignore the overflow, which leads to much less 959 // efficient code if the width of the subtraction is wider than the native 960 // register width. 961 // 962 // (It's possible to not widen at all by pulling out factors of 2 before 963 // the multiplication; for example, K=2 can be calculated as 964 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 965 // extra arithmetic, so it's not an obvious win, and it gets 966 // much more complicated for K > 3.) 967 968 // Protection from insane SCEVs; this bound is conservative, 969 // but it probably doesn't matter. 970 if (K > 1000) 971 return SE.getCouldNotCompute(); 972 973 unsigned W = SE.getTypeSizeInBits(ResultTy); 974 975 // Calculate K! / 2^T and T; we divide out the factors of two before 976 // multiplying for calculating K! / 2^T to avoid overflow. 977 // Other overflow doesn't matter because we only care about the bottom 978 // W bits of the result. 979 APInt OddFactorial(W, 1); 980 unsigned T = 1; 981 for (unsigned i = 3; i <= K; ++i) { 982 APInt Mult(W, i); 983 unsigned TwoFactors = Mult.countTrailingZeros(); 984 T += TwoFactors; 985 Mult.lshrInPlace(TwoFactors); 986 OddFactorial *= Mult; 987 } 988 989 // We need at least W + T bits for the multiplication step 990 unsigned CalculationBits = W + T; 991 992 // Calculate 2^T, at width T+W. 993 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 994 995 // Calculate the multiplicative inverse of K! / 2^T; 996 // this multiplication factor will perform the exact division by 997 // K! / 2^T. 998 APInt Mod = APInt::getSignedMinValue(W+1); 999 APInt MultiplyFactor = OddFactorial.zext(W+1); 1000 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1001 MultiplyFactor = MultiplyFactor.trunc(W); 1002 1003 // Calculate the product, at width T+W 1004 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1005 CalculationBits); 1006 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1007 for (unsigned i = 1; i != K; ++i) { 1008 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1009 Dividend = SE.getMulExpr(Dividend, 1010 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1011 } 1012 1013 // Divide by 2^T 1014 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1015 1016 // Truncate the result, and divide by K! / 2^T. 1017 1018 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1019 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1020 } 1021 1022 /// Return the value of this chain of recurrences at the specified iteration 1023 /// number. We can evaluate this recurrence by multiplying each element in the 1024 /// chain by the binomial coefficient corresponding to it. In other words, we 1025 /// can evaluate {A,+,B,+,C,+,D} as: 1026 /// 1027 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1028 /// 1029 /// where BC(It, k) stands for binomial coefficient. 1030 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1031 ScalarEvolution &SE) const { 1032 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1033 } 1034 1035 const SCEV * 1036 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1037 const SCEV *It, ScalarEvolution &SE) { 1038 assert(Operands.size() > 0); 1039 const SCEV *Result = Operands[0]; 1040 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1041 // The computation is correct in the face of overflow provided that the 1042 // multiplication is performed _after_ the evaluation of the binomial 1043 // coefficient. 1044 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1045 if (isa<SCEVCouldNotCompute>(Coeff)) 1046 return Coeff; 1047 1048 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1049 } 1050 return Result; 1051 } 1052 1053 //===----------------------------------------------------------------------===// 1054 // SCEV Expression folder implementations 1055 //===----------------------------------------------------------------------===// 1056 1057 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1058 unsigned Depth) { 1059 assert(Depth <= 1 && 1060 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1061 1062 // We could be called with an integer-typed operands during SCEV rewrites. 1063 // Since the operand is an integer already, just perform zext/trunc/self cast. 1064 if (!Op->getType()->isPointerTy()) 1065 return Op; 1066 1067 // What would be an ID for such a SCEV cast expression? 1068 FoldingSetNodeID ID; 1069 ID.AddInteger(scPtrToInt); 1070 ID.AddPointer(Op); 1071 1072 void *IP = nullptr; 1073 1074 // Is there already an expression for such a cast? 1075 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1076 return S; 1077 1078 // It isn't legal for optimizations to construct new ptrtoint expressions 1079 // for non-integral pointers. 1080 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1081 return getCouldNotCompute(); 1082 1083 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1084 1085 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1086 // is sufficiently wide to represent all possible pointer values. 1087 // We could theoretically teach SCEV to truncate wider pointers, but 1088 // that isn't implemented for now. 1089 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1090 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1091 return getCouldNotCompute(); 1092 1093 // If not, is this expression something we can't reduce any further? 1094 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1095 // Perform some basic constant folding. If the operand of the ptr2int cast 1096 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1097 // left as-is), but produce a zero constant. 1098 // NOTE: We could handle a more general case, but lack motivational cases. 1099 if (isa<ConstantPointerNull>(U->getValue())) 1100 return getZero(IntPtrTy); 1101 1102 // Create an explicit cast node. 1103 // We can reuse the existing insert position since if we get here, 1104 // we won't have made any changes which would invalidate it. 1105 SCEV *S = new (SCEVAllocator) 1106 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1107 UniqueSCEVs.InsertNode(S, IP); 1108 registerUser(S, Op); 1109 return S; 1110 } 1111 1112 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1113 "non-SCEVUnknown's."); 1114 1115 // Otherwise, we've got some expression that is more complex than just a 1116 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1117 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1118 // only, and the expressions must otherwise be integer-typed. 1119 // So sink the cast down to the SCEVUnknown's. 1120 1121 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1122 /// which computes a pointer-typed value, and rewrites the whole expression 1123 /// tree so that *all* the computations are done on integers, and the only 1124 /// pointer-typed operands in the expression are SCEVUnknown. 1125 class SCEVPtrToIntSinkingRewriter 1126 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1127 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1128 1129 public: 1130 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1131 1132 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1133 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1134 return Rewriter.visit(Scev); 1135 } 1136 1137 const SCEV *visit(const SCEV *S) { 1138 Type *STy = S->getType(); 1139 // If the expression is not pointer-typed, just keep it as-is. 1140 if (!STy->isPointerTy()) 1141 return S; 1142 // Else, recursively sink the cast down into it. 1143 return Base::visit(S); 1144 } 1145 1146 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1147 SmallVector<const SCEV *, 2> Operands; 1148 bool Changed = false; 1149 for (auto *Op : Expr->operands()) { 1150 Operands.push_back(visit(Op)); 1151 Changed |= Op != Operands.back(); 1152 } 1153 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1154 } 1155 1156 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1157 SmallVector<const SCEV *, 2> Operands; 1158 bool Changed = false; 1159 for (auto *Op : Expr->operands()) { 1160 Operands.push_back(visit(Op)); 1161 Changed |= Op != Operands.back(); 1162 } 1163 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1164 } 1165 1166 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1167 assert(Expr->getType()->isPointerTy() && 1168 "Should only reach pointer-typed SCEVUnknown's."); 1169 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1170 } 1171 }; 1172 1173 // And actually perform the cast sinking. 1174 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1175 assert(IntOp->getType()->isIntegerTy() && 1176 "We must have succeeded in sinking the cast, " 1177 "and ending up with an integer-typed expression!"); 1178 return IntOp; 1179 } 1180 1181 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1182 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1183 1184 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1185 if (isa<SCEVCouldNotCompute>(IntOp)) 1186 return IntOp; 1187 1188 return getTruncateOrZeroExtend(IntOp, Ty); 1189 } 1190 1191 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1192 unsigned Depth) { 1193 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1194 "This is not a truncating conversion!"); 1195 assert(isSCEVable(Ty) && 1196 "This is not a conversion to a SCEVable type!"); 1197 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1198 Ty = getEffectiveSCEVType(Ty); 1199 1200 FoldingSetNodeID ID; 1201 ID.AddInteger(scTruncate); 1202 ID.AddPointer(Op); 1203 ID.AddPointer(Ty); 1204 void *IP = nullptr; 1205 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1206 1207 // Fold if the operand is constant. 1208 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1209 return getConstant( 1210 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1211 1212 // trunc(trunc(x)) --> trunc(x) 1213 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1214 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1215 1216 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1217 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1218 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1219 1220 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1221 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1222 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1223 1224 if (Depth > MaxCastDepth) { 1225 SCEV *S = 1226 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1227 UniqueSCEVs.InsertNode(S, IP); 1228 registerUser(S, Op); 1229 return S; 1230 } 1231 1232 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1233 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1234 // if after transforming we have at most one truncate, not counting truncates 1235 // that replace other casts. 1236 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1237 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1238 SmallVector<const SCEV *, 4> Operands; 1239 unsigned numTruncs = 0; 1240 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1241 ++i) { 1242 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1243 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1244 isa<SCEVTruncateExpr>(S)) 1245 numTruncs++; 1246 Operands.push_back(S); 1247 } 1248 if (numTruncs < 2) { 1249 if (isa<SCEVAddExpr>(Op)) 1250 return getAddExpr(Operands); 1251 else if (isa<SCEVMulExpr>(Op)) 1252 return getMulExpr(Operands); 1253 else 1254 llvm_unreachable("Unexpected SCEV type for Op."); 1255 } 1256 // Although we checked in the beginning that ID is not in the cache, it is 1257 // possible that during recursion and different modification ID was inserted 1258 // into the cache. So if we find it, just return it. 1259 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1260 return S; 1261 } 1262 1263 // If the input value is a chrec scev, truncate the chrec's operands. 1264 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1265 SmallVector<const SCEV *, 4> Operands; 1266 for (const SCEV *Op : AddRec->operands()) 1267 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1268 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1269 } 1270 1271 // Return zero if truncating to known zeros. 1272 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1273 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1274 return getZero(Ty); 1275 1276 // The cast wasn't folded; create an explicit cast node. We can reuse 1277 // the existing insert position since if we get here, we won't have 1278 // made any changes which would invalidate it. 1279 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1280 Op, Ty); 1281 UniqueSCEVs.InsertNode(S, IP); 1282 registerUser(S, Op); 1283 return S; 1284 } 1285 1286 // Get the limit of a recurrence such that incrementing by Step cannot cause 1287 // signed overflow as long as the value of the recurrence within the 1288 // loop does not exceed this limit before incrementing. 1289 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1290 ICmpInst::Predicate *Pred, 1291 ScalarEvolution *SE) { 1292 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1293 if (SE->isKnownPositive(Step)) { 1294 *Pred = ICmpInst::ICMP_SLT; 1295 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1296 SE->getSignedRangeMax(Step)); 1297 } 1298 if (SE->isKnownNegative(Step)) { 1299 *Pred = ICmpInst::ICMP_SGT; 1300 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1301 SE->getSignedRangeMin(Step)); 1302 } 1303 return nullptr; 1304 } 1305 1306 // Get the limit of a recurrence such that incrementing by Step cannot cause 1307 // unsigned overflow as long as the value of the recurrence within the loop does 1308 // not exceed this limit before incrementing. 1309 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1310 ICmpInst::Predicate *Pred, 1311 ScalarEvolution *SE) { 1312 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1313 *Pred = ICmpInst::ICMP_ULT; 1314 1315 return SE->getConstant(APInt::getMinValue(BitWidth) - 1316 SE->getUnsignedRangeMax(Step)); 1317 } 1318 1319 namespace { 1320 1321 struct ExtendOpTraitsBase { 1322 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1323 unsigned); 1324 }; 1325 1326 // Used to make code generic over signed and unsigned overflow. 1327 template <typename ExtendOp> struct ExtendOpTraits { 1328 // Members present: 1329 // 1330 // static const SCEV::NoWrapFlags WrapType; 1331 // 1332 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1333 // 1334 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1335 // ICmpInst::Predicate *Pred, 1336 // ScalarEvolution *SE); 1337 }; 1338 1339 template <> 1340 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1341 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1342 1343 static const GetExtendExprTy GetExtendExpr; 1344 1345 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1346 ICmpInst::Predicate *Pred, 1347 ScalarEvolution *SE) { 1348 return getSignedOverflowLimitForStep(Step, Pred, SE); 1349 } 1350 }; 1351 1352 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1353 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1354 1355 template <> 1356 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1357 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1358 1359 static const GetExtendExprTy GetExtendExpr; 1360 1361 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1362 ICmpInst::Predicate *Pred, 1363 ScalarEvolution *SE) { 1364 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1365 } 1366 }; 1367 1368 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1369 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1370 1371 } // end anonymous namespace 1372 1373 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1374 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1375 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1376 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1377 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1378 // expression "Step + sext/zext(PreIncAR)" is congruent with 1379 // "sext/zext(PostIncAR)" 1380 template <typename ExtendOpTy> 1381 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1382 ScalarEvolution *SE, unsigned Depth) { 1383 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1384 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1385 1386 const Loop *L = AR->getLoop(); 1387 const SCEV *Start = AR->getStart(); 1388 const SCEV *Step = AR->getStepRecurrence(*SE); 1389 1390 // Check for a simple looking step prior to loop entry. 1391 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1392 if (!SA) 1393 return nullptr; 1394 1395 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1396 // subtraction is expensive. For this purpose, perform a quick and dirty 1397 // difference, by checking for Step in the operand list. 1398 SmallVector<const SCEV *, 4> DiffOps; 1399 for (const SCEV *Op : SA->operands()) 1400 if (Op != Step) 1401 DiffOps.push_back(Op); 1402 1403 if (DiffOps.size() == SA->getNumOperands()) 1404 return nullptr; 1405 1406 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1407 // `Step`: 1408 1409 // 1. NSW/NUW flags on the step increment. 1410 auto PreStartFlags = 1411 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1412 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1413 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1414 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1415 1416 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1417 // "S+X does not sign/unsign-overflow". 1418 // 1419 1420 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1421 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1422 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1423 return PreStart; 1424 1425 // 2. Direct overflow check on the step operation's expression. 1426 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1427 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1428 const SCEV *OperandExtendedStart = 1429 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1430 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1431 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1432 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1433 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1434 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1435 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1436 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1437 } 1438 return PreStart; 1439 } 1440 1441 // 3. Loop precondition. 1442 ICmpInst::Predicate Pred; 1443 const SCEV *OverflowLimit = 1444 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1445 1446 if (OverflowLimit && 1447 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1448 return PreStart; 1449 1450 return nullptr; 1451 } 1452 1453 // Get the normalized zero or sign extended expression for this AddRec's Start. 1454 template <typename ExtendOpTy> 1455 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1456 ScalarEvolution *SE, 1457 unsigned Depth) { 1458 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1459 1460 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1461 if (!PreStart) 1462 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1463 1464 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1465 Depth), 1466 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1467 } 1468 1469 // Try to prove away overflow by looking at "nearby" add recurrences. A 1470 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1471 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1472 // 1473 // Formally: 1474 // 1475 // {S,+,X} == {S-T,+,X} + T 1476 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1477 // 1478 // If ({S-T,+,X} + T) does not overflow ... (1) 1479 // 1480 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1481 // 1482 // If {S-T,+,X} does not overflow ... (2) 1483 // 1484 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1485 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1486 // 1487 // If (S-T)+T does not overflow ... (3) 1488 // 1489 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1490 // == {Ext(S),+,Ext(X)} == LHS 1491 // 1492 // Thus, if (1), (2) and (3) are true for some T, then 1493 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1494 // 1495 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1496 // does not overflow" restricted to the 0th iteration. Therefore we only need 1497 // to check for (1) and (2). 1498 // 1499 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1500 // is `Delta` (defined below). 1501 template <typename ExtendOpTy> 1502 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1503 const SCEV *Step, 1504 const Loop *L) { 1505 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1506 1507 // We restrict `Start` to a constant to prevent SCEV from spending too much 1508 // time here. It is correct (but more expensive) to continue with a 1509 // non-constant `Start` and do a general SCEV subtraction to compute 1510 // `PreStart` below. 1511 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1512 if (!StartC) 1513 return false; 1514 1515 APInt StartAI = StartC->getAPInt(); 1516 1517 for (unsigned Delta : {-2, -1, 1, 2}) { 1518 const SCEV *PreStart = getConstant(StartAI - Delta); 1519 1520 FoldingSetNodeID ID; 1521 ID.AddInteger(scAddRecExpr); 1522 ID.AddPointer(PreStart); 1523 ID.AddPointer(Step); 1524 ID.AddPointer(L); 1525 void *IP = nullptr; 1526 const auto *PreAR = 1527 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1528 1529 // Give up if we don't already have the add recurrence we need because 1530 // actually constructing an add recurrence is relatively expensive. 1531 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1532 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1533 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1534 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1535 DeltaS, &Pred, this); 1536 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1537 return true; 1538 } 1539 } 1540 1541 return false; 1542 } 1543 1544 // Finds an integer D for an expression (C + x + y + ...) such that the top 1545 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1546 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1547 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1548 // the (C + x + y + ...) expression is \p WholeAddExpr. 1549 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1550 const SCEVConstant *ConstantTerm, 1551 const SCEVAddExpr *WholeAddExpr) { 1552 const APInt &C = ConstantTerm->getAPInt(); 1553 const unsigned BitWidth = C.getBitWidth(); 1554 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1555 uint32_t TZ = BitWidth; 1556 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1557 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1558 if (TZ) { 1559 // Set D to be as many least significant bits of C as possible while still 1560 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1561 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1562 } 1563 return APInt(BitWidth, 0); 1564 } 1565 1566 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1567 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1568 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1569 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1570 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1571 const APInt &ConstantStart, 1572 const SCEV *Step) { 1573 const unsigned BitWidth = ConstantStart.getBitWidth(); 1574 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1575 if (TZ) 1576 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1577 : ConstantStart; 1578 return APInt(BitWidth, 0); 1579 } 1580 1581 const SCEV * 1582 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1583 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1584 "This is not an extending conversion!"); 1585 assert(isSCEVable(Ty) && 1586 "This is not a conversion to a SCEVable type!"); 1587 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1588 Ty = getEffectiveSCEVType(Ty); 1589 1590 // Fold if the operand is constant. 1591 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1592 return getConstant( 1593 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1594 1595 // zext(zext(x)) --> zext(x) 1596 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1597 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1598 1599 // Before doing any expensive analysis, check to see if we've already 1600 // computed a SCEV for this Op and Ty. 1601 FoldingSetNodeID ID; 1602 ID.AddInteger(scZeroExtend); 1603 ID.AddPointer(Op); 1604 ID.AddPointer(Ty); 1605 void *IP = nullptr; 1606 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1607 if (Depth > MaxCastDepth) { 1608 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1609 Op, Ty); 1610 UniqueSCEVs.InsertNode(S, IP); 1611 registerUser(S, Op); 1612 return S; 1613 } 1614 1615 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1616 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1617 // It's possible the bits taken off by the truncate were all zero bits. If 1618 // so, we should be able to simplify this further. 1619 const SCEV *X = ST->getOperand(); 1620 ConstantRange CR = getUnsignedRange(X); 1621 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1622 unsigned NewBits = getTypeSizeInBits(Ty); 1623 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1624 CR.zextOrTrunc(NewBits))) 1625 return getTruncateOrZeroExtend(X, Ty, Depth); 1626 } 1627 1628 // If the input value is a chrec scev, and we can prove that the value 1629 // did not overflow the old, smaller, value, we can zero extend all of the 1630 // operands (often constants). This allows analysis of something like 1631 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1632 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1633 if (AR->isAffine()) { 1634 const SCEV *Start = AR->getStart(); 1635 const SCEV *Step = AR->getStepRecurrence(*this); 1636 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1637 const Loop *L = AR->getLoop(); 1638 1639 if (!AR->hasNoUnsignedWrap()) { 1640 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1641 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1642 } 1643 1644 // If we have special knowledge that this addrec won't overflow, 1645 // we don't need to do any further analysis. 1646 if (AR->hasNoUnsignedWrap()) 1647 return getAddRecExpr( 1648 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1649 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1650 1651 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1652 // Note that this serves two purposes: It filters out loops that are 1653 // simply not analyzable, and it covers the case where this code is 1654 // being called from within backedge-taken count analysis, such that 1655 // attempting to ask for the backedge-taken count would likely result 1656 // in infinite recursion. In the later case, the analysis code will 1657 // cope with a conservative value, and it will take care to purge 1658 // that value once it has finished. 1659 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1660 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1661 // Manually compute the final value for AR, checking for overflow. 1662 1663 // Check whether the backedge-taken count can be losslessly casted to 1664 // the addrec's type. The count is always unsigned. 1665 const SCEV *CastedMaxBECount = 1666 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1667 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1668 CastedMaxBECount, MaxBECount->getType(), Depth); 1669 if (MaxBECount == RecastedMaxBECount) { 1670 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1671 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1672 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1673 SCEV::FlagAnyWrap, Depth + 1); 1674 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1675 SCEV::FlagAnyWrap, 1676 Depth + 1), 1677 WideTy, Depth + 1); 1678 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1679 const SCEV *WideMaxBECount = 1680 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1681 const SCEV *OperandExtendedAdd = 1682 getAddExpr(WideStart, 1683 getMulExpr(WideMaxBECount, 1684 getZeroExtendExpr(Step, WideTy, Depth + 1), 1685 SCEV::FlagAnyWrap, Depth + 1), 1686 SCEV::FlagAnyWrap, Depth + 1); 1687 if (ZAdd == OperandExtendedAdd) { 1688 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1689 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1690 // Return the expression with the addrec on the outside. 1691 return getAddRecExpr( 1692 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1693 Depth + 1), 1694 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1695 AR->getNoWrapFlags()); 1696 } 1697 // Similar to above, only this time treat the step value as signed. 1698 // This covers loops that count down. 1699 OperandExtendedAdd = 1700 getAddExpr(WideStart, 1701 getMulExpr(WideMaxBECount, 1702 getSignExtendExpr(Step, WideTy, Depth + 1), 1703 SCEV::FlagAnyWrap, Depth + 1), 1704 SCEV::FlagAnyWrap, Depth + 1); 1705 if (ZAdd == OperandExtendedAdd) { 1706 // Cache knowledge of AR NW, which is propagated to this AddRec. 1707 // Negative step causes unsigned wrap, but it still can't self-wrap. 1708 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1709 // Return the expression with the addrec on the outside. 1710 return getAddRecExpr( 1711 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1712 Depth + 1), 1713 getSignExtendExpr(Step, Ty, Depth + 1), L, 1714 AR->getNoWrapFlags()); 1715 } 1716 } 1717 } 1718 1719 // Normally, in the cases we can prove no-overflow via a 1720 // backedge guarding condition, we can also compute a backedge 1721 // taken count for the loop. The exceptions are assumptions and 1722 // guards present in the loop -- SCEV is not great at exploiting 1723 // these to compute max backedge taken counts, but can still use 1724 // these to prove lack of overflow. Use this fact to avoid 1725 // doing extra work that may not pay off. 1726 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1727 !AC.assumptions().empty()) { 1728 1729 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1730 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1731 if (AR->hasNoUnsignedWrap()) { 1732 // Same as nuw case above - duplicated here to avoid a compile time 1733 // issue. It's not clear that the order of checks does matter, but 1734 // it's one of two issue possible causes for a change which was 1735 // reverted. Be conservative for the moment. 1736 return getAddRecExpr( 1737 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1738 Depth + 1), 1739 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1740 AR->getNoWrapFlags()); 1741 } 1742 1743 // For a negative step, we can extend the operands iff doing so only 1744 // traverses values in the range zext([0,UINT_MAX]). 1745 if (isKnownNegative(Step)) { 1746 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1747 getSignedRangeMin(Step)); 1748 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1749 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1750 // Cache knowledge of AR NW, which is propagated to this 1751 // AddRec. Negative step causes unsigned wrap, but it 1752 // still can't self-wrap. 1753 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1754 // Return the expression with the addrec on the outside. 1755 return getAddRecExpr( 1756 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1757 Depth + 1), 1758 getSignExtendExpr(Step, Ty, Depth + 1), L, 1759 AR->getNoWrapFlags()); 1760 } 1761 } 1762 } 1763 1764 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1765 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1766 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1767 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1768 const APInt &C = SC->getAPInt(); 1769 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1770 if (D != 0) { 1771 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1772 const SCEV *SResidual = 1773 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1774 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1775 return getAddExpr(SZExtD, SZExtR, 1776 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1777 Depth + 1); 1778 } 1779 } 1780 1781 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1782 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1783 return getAddRecExpr( 1784 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1785 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1786 } 1787 } 1788 1789 // zext(A % B) --> zext(A) % zext(B) 1790 { 1791 const SCEV *LHS; 1792 const SCEV *RHS; 1793 if (matchURem(Op, LHS, RHS)) 1794 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1795 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1796 } 1797 1798 // zext(A / B) --> zext(A) / zext(B). 1799 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1800 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1801 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1802 1803 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1804 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1805 if (SA->hasNoUnsignedWrap()) { 1806 // If the addition does not unsign overflow then we can, by definition, 1807 // commute the zero extension with the addition operation. 1808 SmallVector<const SCEV *, 4> Ops; 1809 for (const auto *Op : SA->operands()) 1810 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1811 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1812 } 1813 1814 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1815 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1816 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1817 // 1818 // Often address arithmetics contain expressions like 1819 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1820 // This transformation is useful while proving that such expressions are 1821 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1822 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1823 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1824 if (D != 0) { 1825 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1826 const SCEV *SResidual = 1827 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1828 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1829 return getAddExpr(SZExtD, SZExtR, 1830 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1831 Depth + 1); 1832 } 1833 } 1834 } 1835 1836 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1837 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1838 if (SM->hasNoUnsignedWrap()) { 1839 // If the multiply does not unsign overflow then we can, by definition, 1840 // commute the zero extension with the multiply operation. 1841 SmallVector<const SCEV *, 4> Ops; 1842 for (const auto *Op : SM->operands()) 1843 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1844 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1845 } 1846 1847 // zext(2^K * (trunc X to iN)) to iM -> 1848 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1849 // 1850 // Proof: 1851 // 1852 // zext(2^K * (trunc X to iN)) to iM 1853 // = zext((trunc X to iN) << K) to iM 1854 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1855 // (because shl removes the top K bits) 1856 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1857 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1858 // 1859 if (SM->getNumOperands() == 2) 1860 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1861 if (MulLHS->getAPInt().isPowerOf2()) 1862 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1863 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1864 MulLHS->getAPInt().logBase2(); 1865 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1866 return getMulExpr( 1867 getZeroExtendExpr(MulLHS, Ty), 1868 getZeroExtendExpr( 1869 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1870 SCEV::FlagNUW, Depth + 1); 1871 } 1872 } 1873 1874 // The cast wasn't folded; create an explicit cast node. 1875 // Recompute the insert position, as it may have been invalidated. 1876 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1877 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1878 Op, Ty); 1879 UniqueSCEVs.InsertNode(S, IP); 1880 registerUser(S, Op); 1881 return S; 1882 } 1883 1884 const SCEV * 1885 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1886 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1887 "This is not an extending conversion!"); 1888 assert(isSCEVable(Ty) && 1889 "This is not a conversion to a SCEVable type!"); 1890 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1891 Ty = getEffectiveSCEVType(Ty); 1892 1893 // Fold if the operand is constant. 1894 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1895 return getConstant( 1896 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1897 1898 // sext(sext(x)) --> sext(x) 1899 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1900 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1901 1902 // sext(zext(x)) --> zext(x) 1903 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1904 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1905 1906 // Before doing any expensive analysis, check to see if we've already 1907 // computed a SCEV for this Op and Ty. 1908 FoldingSetNodeID ID; 1909 ID.AddInteger(scSignExtend); 1910 ID.AddPointer(Op); 1911 ID.AddPointer(Ty); 1912 void *IP = nullptr; 1913 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1914 // Limit recursion depth. 1915 if (Depth > MaxCastDepth) { 1916 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1917 Op, Ty); 1918 UniqueSCEVs.InsertNode(S, IP); 1919 registerUser(S, Op); 1920 return S; 1921 } 1922 1923 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1924 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1925 // It's possible the bits taken off by the truncate were all sign bits. If 1926 // so, we should be able to simplify this further. 1927 const SCEV *X = ST->getOperand(); 1928 ConstantRange CR = getSignedRange(X); 1929 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1930 unsigned NewBits = getTypeSizeInBits(Ty); 1931 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1932 CR.sextOrTrunc(NewBits))) 1933 return getTruncateOrSignExtend(X, Ty, Depth); 1934 } 1935 1936 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1937 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1938 if (SA->hasNoSignedWrap()) { 1939 // If the addition does not sign overflow then we can, by definition, 1940 // commute the sign extension with the addition operation. 1941 SmallVector<const SCEV *, 4> Ops; 1942 for (const auto *Op : SA->operands()) 1943 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1944 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1945 } 1946 1947 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1948 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1949 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1950 // 1951 // For instance, this will bring two seemingly different expressions: 1952 // 1 + sext(5 + 20 * %x + 24 * %y) and 1953 // sext(6 + 20 * %x + 24 * %y) 1954 // to the same form: 1955 // 2 + sext(4 + 20 * %x + 24 * %y) 1956 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1957 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1958 if (D != 0) { 1959 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1960 const SCEV *SResidual = 1961 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1962 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1963 return getAddExpr(SSExtD, SSExtR, 1964 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1965 Depth + 1); 1966 } 1967 } 1968 } 1969 // If the input value is a chrec scev, and we can prove that the value 1970 // did not overflow the old, smaller, value, we can sign extend all of the 1971 // operands (often constants). This allows analysis of something like 1972 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1973 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1974 if (AR->isAffine()) { 1975 const SCEV *Start = AR->getStart(); 1976 const SCEV *Step = AR->getStepRecurrence(*this); 1977 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1978 const Loop *L = AR->getLoop(); 1979 1980 if (!AR->hasNoSignedWrap()) { 1981 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1982 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1983 } 1984 1985 // If we have special knowledge that this addrec won't overflow, 1986 // we don't need to do any further analysis. 1987 if (AR->hasNoSignedWrap()) 1988 return getAddRecExpr( 1989 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1990 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1991 1992 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1993 // Note that this serves two purposes: It filters out loops that are 1994 // simply not analyzable, and it covers the case where this code is 1995 // being called from within backedge-taken count analysis, such that 1996 // attempting to ask for the backedge-taken count would likely result 1997 // in infinite recursion. In the later case, the analysis code will 1998 // cope with a conservative value, and it will take care to purge 1999 // that value once it has finished. 2000 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2001 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2002 // Manually compute the final value for AR, checking for 2003 // overflow. 2004 2005 // Check whether the backedge-taken count can be losslessly casted to 2006 // the addrec's type. The count is always unsigned. 2007 const SCEV *CastedMaxBECount = 2008 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2009 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2010 CastedMaxBECount, MaxBECount->getType(), Depth); 2011 if (MaxBECount == RecastedMaxBECount) { 2012 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2013 // Check whether Start+Step*MaxBECount has no signed overflow. 2014 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2015 SCEV::FlagAnyWrap, Depth + 1); 2016 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2017 SCEV::FlagAnyWrap, 2018 Depth + 1), 2019 WideTy, Depth + 1); 2020 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2021 const SCEV *WideMaxBECount = 2022 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2023 const SCEV *OperandExtendedAdd = 2024 getAddExpr(WideStart, 2025 getMulExpr(WideMaxBECount, 2026 getSignExtendExpr(Step, WideTy, Depth + 1), 2027 SCEV::FlagAnyWrap, Depth + 1), 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 if (SAdd == OperandExtendedAdd) { 2030 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2031 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2032 // Return the expression with the addrec on the outside. 2033 return getAddRecExpr( 2034 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2035 Depth + 1), 2036 getSignExtendExpr(Step, Ty, Depth + 1), L, 2037 AR->getNoWrapFlags()); 2038 } 2039 // Similar to above, only this time treat the step value as unsigned. 2040 // This covers loops that count up with an unsigned step. 2041 OperandExtendedAdd = 2042 getAddExpr(WideStart, 2043 getMulExpr(WideMaxBECount, 2044 getZeroExtendExpr(Step, WideTy, Depth + 1), 2045 SCEV::FlagAnyWrap, Depth + 1), 2046 SCEV::FlagAnyWrap, Depth + 1); 2047 if (SAdd == OperandExtendedAdd) { 2048 // If AR wraps around then 2049 // 2050 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2051 // => SAdd != OperandExtendedAdd 2052 // 2053 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2054 // (SAdd == OperandExtendedAdd => AR is NW) 2055 2056 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2057 2058 // Return the expression with the addrec on the outside. 2059 return getAddRecExpr( 2060 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2061 Depth + 1), 2062 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2063 AR->getNoWrapFlags()); 2064 } 2065 } 2066 } 2067 2068 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2069 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2070 if (AR->hasNoSignedWrap()) { 2071 // Same as nsw case above - duplicated here to avoid a compile time 2072 // issue. It's not clear that the order of checks does matter, but 2073 // it's one of two issue possible causes for a change which was 2074 // reverted. Be conservative for the moment. 2075 return getAddRecExpr( 2076 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2077 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2078 } 2079 2080 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2081 // if D + (C - D + Step * n) could be proven to not signed wrap 2082 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2083 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2084 const APInt &C = SC->getAPInt(); 2085 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2086 if (D != 0) { 2087 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2088 const SCEV *SResidual = 2089 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2090 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2091 return getAddExpr(SSExtD, SSExtR, 2092 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2093 Depth + 1); 2094 } 2095 } 2096 2097 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2098 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2099 return getAddRecExpr( 2100 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2101 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2102 } 2103 } 2104 2105 // If the input value is provably positive and we could not simplify 2106 // away the sext build a zext instead. 2107 if (isKnownNonNegative(Op)) 2108 return getZeroExtendExpr(Op, Ty, Depth + 1); 2109 2110 // The cast wasn't folded; create an explicit cast node. 2111 // Recompute the insert position, as it may have been invalidated. 2112 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2113 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2114 Op, Ty); 2115 UniqueSCEVs.InsertNode(S, IP); 2116 registerUser(S, { Op }); 2117 return S; 2118 } 2119 2120 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2121 /// unspecified bits out to the given type. 2122 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2123 Type *Ty) { 2124 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2125 "This is not an extending conversion!"); 2126 assert(isSCEVable(Ty) && 2127 "This is not a conversion to a SCEVable type!"); 2128 Ty = getEffectiveSCEVType(Ty); 2129 2130 // Sign-extend negative constants. 2131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2132 if (SC->getAPInt().isNegative()) 2133 return getSignExtendExpr(Op, Ty); 2134 2135 // Peel off a truncate cast. 2136 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2137 const SCEV *NewOp = T->getOperand(); 2138 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2139 return getAnyExtendExpr(NewOp, Ty); 2140 return getTruncateOrNoop(NewOp, Ty); 2141 } 2142 2143 // Next try a zext cast. If the cast is folded, use it. 2144 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2145 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2146 return ZExt; 2147 2148 // Next try a sext cast. If the cast is folded, use it. 2149 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2150 if (!isa<SCEVSignExtendExpr>(SExt)) 2151 return SExt; 2152 2153 // Force the cast to be folded into the operands of an addrec. 2154 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2155 SmallVector<const SCEV *, 4> Ops; 2156 for (const SCEV *Op : AR->operands()) 2157 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2158 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2159 } 2160 2161 // If the expression is obviously signed, use the sext cast value. 2162 if (isa<SCEVSMaxExpr>(Op)) 2163 return SExt; 2164 2165 // Absent any other information, use the zext cast value. 2166 return ZExt; 2167 } 2168 2169 /// Process the given Ops list, which is a list of operands to be added under 2170 /// the given scale, update the given map. This is a helper function for 2171 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2172 /// that would form an add expression like this: 2173 /// 2174 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2175 /// 2176 /// where A and B are constants, update the map with these values: 2177 /// 2178 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2179 /// 2180 /// and add 13 + A*B*29 to AccumulatedConstant. 2181 /// This will allow getAddRecExpr to produce this: 2182 /// 2183 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2184 /// 2185 /// This form often exposes folding opportunities that are hidden in 2186 /// the original operand list. 2187 /// 2188 /// Return true iff it appears that any interesting folding opportunities 2189 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2190 /// the common case where no interesting opportunities are present, and 2191 /// is also used as a check to avoid infinite recursion. 2192 static bool 2193 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2194 SmallVectorImpl<const SCEV *> &NewOps, 2195 APInt &AccumulatedConstant, 2196 const SCEV *const *Ops, size_t NumOperands, 2197 const APInt &Scale, 2198 ScalarEvolution &SE) { 2199 bool Interesting = false; 2200 2201 // Iterate over the add operands. They are sorted, with constants first. 2202 unsigned i = 0; 2203 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2204 ++i; 2205 // Pull a buried constant out to the outside. 2206 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2207 Interesting = true; 2208 AccumulatedConstant += Scale * C->getAPInt(); 2209 } 2210 2211 // Next comes everything else. We're especially interested in multiplies 2212 // here, but they're in the middle, so just visit the rest with one loop. 2213 for (; i != NumOperands; ++i) { 2214 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2215 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2216 APInt NewScale = 2217 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2218 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2219 // A multiplication of a constant with another add; recurse. 2220 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2221 Interesting |= 2222 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2223 Add->op_begin(), Add->getNumOperands(), 2224 NewScale, SE); 2225 } else { 2226 // A multiplication of a constant with some other value. Update 2227 // the map. 2228 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2229 const SCEV *Key = SE.getMulExpr(MulOps); 2230 auto Pair = M.insert({Key, NewScale}); 2231 if (Pair.second) { 2232 NewOps.push_back(Pair.first->first); 2233 } else { 2234 Pair.first->second += NewScale; 2235 // The map already had an entry for this value, which may indicate 2236 // a folding opportunity. 2237 Interesting = true; 2238 } 2239 } 2240 } else { 2241 // An ordinary operand. Update the map. 2242 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2243 M.insert({Ops[i], Scale}); 2244 if (Pair.second) { 2245 NewOps.push_back(Pair.first->first); 2246 } else { 2247 Pair.first->second += Scale; 2248 // The map already had an entry for this value, which may indicate 2249 // a folding opportunity. 2250 Interesting = true; 2251 } 2252 } 2253 } 2254 2255 return Interesting; 2256 } 2257 2258 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2259 const SCEV *LHS, const SCEV *RHS) { 2260 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2261 SCEV::NoWrapFlags, unsigned); 2262 switch (BinOp) { 2263 default: 2264 llvm_unreachable("Unsupported binary op"); 2265 case Instruction::Add: 2266 Operation = &ScalarEvolution::getAddExpr; 2267 break; 2268 case Instruction::Sub: 2269 Operation = &ScalarEvolution::getMinusSCEV; 2270 break; 2271 case Instruction::Mul: 2272 Operation = &ScalarEvolution::getMulExpr; 2273 break; 2274 } 2275 2276 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2277 Signed ? &ScalarEvolution::getSignExtendExpr 2278 : &ScalarEvolution::getZeroExtendExpr; 2279 2280 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2281 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2282 auto *WideTy = 2283 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2284 2285 const SCEV *A = (this->*Extension)( 2286 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2287 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2288 (this->*Extension)(RHS, WideTy, 0), 2289 SCEV::FlagAnyWrap, 0); 2290 return A == B; 2291 } 2292 2293 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2294 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2295 const OverflowingBinaryOperator *OBO) { 2296 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2297 2298 if (OBO->hasNoUnsignedWrap()) 2299 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2300 if (OBO->hasNoSignedWrap()) 2301 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2302 2303 bool Deduced = false; 2304 2305 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2306 return {Flags, Deduced}; 2307 2308 if (OBO->getOpcode() != Instruction::Add && 2309 OBO->getOpcode() != Instruction::Sub && 2310 OBO->getOpcode() != Instruction::Mul) 2311 return {Flags, Deduced}; 2312 2313 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2314 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2315 2316 if (!OBO->hasNoUnsignedWrap() && 2317 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2318 /* Signed */ false, LHS, RHS)) { 2319 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2320 Deduced = true; 2321 } 2322 2323 if (!OBO->hasNoSignedWrap() && 2324 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2325 /* Signed */ true, LHS, RHS)) { 2326 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2327 Deduced = true; 2328 } 2329 2330 return {Flags, Deduced}; 2331 } 2332 2333 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2334 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2335 // can't-overflow flags for the operation if possible. 2336 static SCEV::NoWrapFlags 2337 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2338 const ArrayRef<const SCEV *> Ops, 2339 SCEV::NoWrapFlags Flags) { 2340 using namespace std::placeholders; 2341 2342 using OBO = OverflowingBinaryOperator; 2343 2344 bool CanAnalyze = 2345 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2346 (void)CanAnalyze; 2347 assert(CanAnalyze && "don't call from other places!"); 2348 2349 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2350 SCEV::NoWrapFlags SignOrUnsignWrap = 2351 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2352 2353 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2354 auto IsKnownNonNegative = [&](const SCEV *S) { 2355 return SE->isKnownNonNegative(S); 2356 }; 2357 2358 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2359 Flags = 2360 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2361 2362 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2363 2364 if (SignOrUnsignWrap != SignOrUnsignMask && 2365 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2366 isa<SCEVConstant>(Ops[0])) { 2367 2368 auto Opcode = [&] { 2369 switch (Type) { 2370 case scAddExpr: 2371 return Instruction::Add; 2372 case scMulExpr: 2373 return Instruction::Mul; 2374 default: 2375 llvm_unreachable("Unexpected SCEV op."); 2376 } 2377 }(); 2378 2379 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2380 2381 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2382 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2383 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2384 Opcode, C, OBO::NoSignedWrap); 2385 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2386 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2387 } 2388 2389 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2390 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2391 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2392 Opcode, C, OBO::NoUnsignedWrap); 2393 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2394 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2395 } 2396 } 2397 2398 // <0,+,nonnegative><nw> is also nuw 2399 // TODO: Add corresponding nsw case 2400 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2401 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2402 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2403 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2404 2405 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2406 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2407 Ops.size() == 2) { 2408 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2409 if (UDiv->getOperand(1) == Ops[1]) 2410 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2411 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2412 if (UDiv->getOperand(1) == Ops[0]) 2413 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2414 } 2415 2416 return Flags; 2417 } 2418 2419 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2420 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2421 } 2422 2423 /// Get a canonical add expression, or something simpler if possible. 2424 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2425 SCEV::NoWrapFlags OrigFlags, 2426 unsigned Depth) { 2427 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2428 "only nuw or nsw allowed"); 2429 assert(!Ops.empty() && "Cannot get empty add!"); 2430 if (Ops.size() == 1) return Ops[0]; 2431 #ifndef NDEBUG 2432 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2433 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2434 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2435 "SCEVAddExpr operand types don't match!"); 2436 unsigned NumPtrs = count_if( 2437 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2438 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2439 #endif 2440 2441 // Sort by complexity, this groups all similar expression types together. 2442 GroupByComplexity(Ops, &LI, DT); 2443 2444 // If there are any constants, fold them together. 2445 unsigned Idx = 0; 2446 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2447 ++Idx; 2448 assert(Idx < Ops.size()); 2449 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2450 // We found two constants, fold them together! 2451 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2452 if (Ops.size() == 2) return Ops[0]; 2453 Ops.erase(Ops.begin()+1); // Erase the folded element 2454 LHSC = cast<SCEVConstant>(Ops[0]); 2455 } 2456 2457 // If we are left with a constant zero being added, strip it off. 2458 if (LHSC->getValue()->isZero()) { 2459 Ops.erase(Ops.begin()); 2460 --Idx; 2461 } 2462 2463 if (Ops.size() == 1) return Ops[0]; 2464 } 2465 2466 // Delay expensive flag strengthening until necessary. 2467 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2468 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2469 }; 2470 2471 // Limit recursion calls depth. 2472 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2473 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2474 2475 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2476 // Don't strengthen flags if we have no new information. 2477 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2478 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2479 Add->setNoWrapFlags(ComputeFlags(Ops)); 2480 return S; 2481 } 2482 2483 // Okay, check to see if the same value occurs in the operand list more than 2484 // once. If so, merge them together into an multiply expression. Since we 2485 // sorted the list, these values are required to be adjacent. 2486 Type *Ty = Ops[0]->getType(); 2487 bool FoundMatch = false; 2488 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2489 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2490 // Scan ahead to count how many equal operands there are. 2491 unsigned Count = 2; 2492 while (i+Count != e && Ops[i+Count] == Ops[i]) 2493 ++Count; 2494 // Merge the values into a multiply. 2495 const SCEV *Scale = getConstant(Ty, Count); 2496 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2497 if (Ops.size() == Count) 2498 return Mul; 2499 Ops[i] = Mul; 2500 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2501 --i; e -= Count - 1; 2502 FoundMatch = true; 2503 } 2504 if (FoundMatch) 2505 return getAddExpr(Ops, OrigFlags, Depth + 1); 2506 2507 // Check for truncates. If all the operands are truncated from the same 2508 // type, see if factoring out the truncate would permit the result to be 2509 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2510 // if the contents of the resulting outer trunc fold to something simple. 2511 auto FindTruncSrcType = [&]() -> Type * { 2512 // We're ultimately looking to fold an addrec of truncs and muls of only 2513 // constants and truncs, so if we find any other types of SCEV 2514 // as operands of the addrec then we bail and return nullptr here. 2515 // Otherwise, we return the type of the operand of a trunc that we find. 2516 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2517 return T->getOperand()->getType(); 2518 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2519 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2520 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2521 return T->getOperand()->getType(); 2522 } 2523 return nullptr; 2524 }; 2525 if (auto *SrcType = FindTruncSrcType()) { 2526 SmallVector<const SCEV *, 8> LargeOps; 2527 bool Ok = true; 2528 // Check all the operands to see if they can be represented in the 2529 // source type of the truncate. 2530 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2531 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2532 if (T->getOperand()->getType() != SrcType) { 2533 Ok = false; 2534 break; 2535 } 2536 LargeOps.push_back(T->getOperand()); 2537 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2538 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2539 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2540 SmallVector<const SCEV *, 8> LargeMulOps; 2541 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2542 if (const SCEVTruncateExpr *T = 2543 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2544 if (T->getOperand()->getType() != SrcType) { 2545 Ok = false; 2546 break; 2547 } 2548 LargeMulOps.push_back(T->getOperand()); 2549 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2550 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2551 } else { 2552 Ok = false; 2553 break; 2554 } 2555 } 2556 if (Ok) 2557 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2558 } else { 2559 Ok = false; 2560 break; 2561 } 2562 } 2563 if (Ok) { 2564 // Evaluate the expression in the larger type. 2565 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2566 // If it folds to something simple, use it. Otherwise, don't. 2567 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2568 return getTruncateExpr(Fold, Ty); 2569 } 2570 } 2571 2572 if (Ops.size() == 2) { 2573 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2574 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2575 // C1). 2576 const SCEV *A = Ops[0]; 2577 const SCEV *B = Ops[1]; 2578 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2579 auto *C = dyn_cast<SCEVConstant>(A); 2580 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2581 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2582 auto C2 = C->getAPInt(); 2583 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2584 2585 APInt ConstAdd = C1 + C2; 2586 auto AddFlags = AddExpr->getNoWrapFlags(); 2587 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2588 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2589 ConstAdd.ule(C1)) { 2590 PreservedFlags = 2591 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2592 } 2593 2594 // Adding a constant with the same sign and small magnitude is NSW, if the 2595 // original AddExpr was NSW. 2596 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2597 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2598 ConstAdd.abs().ule(C1.abs())) { 2599 PreservedFlags = 2600 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2601 } 2602 2603 if (PreservedFlags != SCEV::FlagAnyWrap) { 2604 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2605 NewOps[0] = getConstant(ConstAdd); 2606 return getAddExpr(NewOps, PreservedFlags); 2607 } 2608 } 2609 } 2610 2611 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2612 if (Ops.size() == 2) { 2613 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2614 if (Mul && Mul->getNumOperands() == 2 && 2615 Mul->getOperand(0)->isAllOnesValue()) { 2616 const SCEV *X; 2617 const SCEV *Y; 2618 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2619 return getMulExpr(Y, getUDivExpr(X, Y)); 2620 } 2621 } 2622 } 2623 2624 // Skip past any other cast SCEVs. 2625 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2626 ++Idx; 2627 2628 // If there are add operands they would be next. 2629 if (Idx < Ops.size()) { 2630 bool DeletedAdd = false; 2631 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2632 // common NUW flag for expression after inlining. Other flags cannot be 2633 // preserved, because they may depend on the original order of operations. 2634 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2635 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2636 if (Ops.size() > AddOpsInlineThreshold || 2637 Add->getNumOperands() > AddOpsInlineThreshold) 2638 break; 2639 // If we have an add, expand the add operands onto the end of the operands 2640 // list. 2641 Ops.erase(Ops.begin()+Idx); 2642 Ops.append(Add->op_begin(), Add->op_end()); 2643 DeletedAdd = true; 2644 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2645 } 2646 2647 // If we deleted at least one add, we added operands to the end of the list, 2648 // and they are not necessarily sorted. Recurse to resort and resimplify 2649 // any operands we just acquired. 2650 if (DeletedAdd) 2651 return getAddExpr(Ops, CommonFlags, Depth + 1); 2652 } 2653 2654 // Skip over the add expression until we get to a multiply. 2655 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2656 ++Idx; 2657 2658 // Check to see if there are any folding opportunities present with 2659 // operands multiplied by constant values. 2660 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2661 uint64_t BitWidth = getTypeSizeInBits(Ty); 2662 DenseMap<const SCEV *, APInt> M; 2663 SmallVector<const SCEV *, 8> NewOps; 2664 APInt AccumulatedConstant(BitWidth, 0); 2665 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2666 Ops.data(), Ops.size(), 2667 APInt(BitWidth, 1), *this)) { 2668 struct APIntCompare { 2669 bool operator()(const APInt &LHS, const APInt &RHS) const { 2670 return LHS.ult(RHS); 2671 } 2672 }; 2673 2674 // Some interesting folding opportunity is present, so its worthwhile to 2675 // re-generate the operands list. Group the operands by constant scale, 2676 // to avoid multiplying by the same constant scale multiple times. 2677 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2678 for (const SCEV *NewOp : NewOps) 2679 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2680 // Re-generate the operands list. 2681 Ops.clear(); 2682 if (AccumulatedConstant != 0) 2683 Ops.push_back(getConstant(AccumulatedConstant)); 2684 for (auto &MulOp : MulOpLists) { 2685 if (MulOp.first == 1) { 2686 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2687 } else if (MulOp.first != 0) { 2688 Ops.push_back(getMulExpr( 2689 getConstant(MulOp.first), 2690 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2691 SCEV::FlagAnyWrap, Depth + 1)); 2692 } 2693 } 2694 if (Ops.empty()) 2695 return getZero(Ty); 2696 if (Ops.size() == 1) 2697 return Ops[0]; 2698 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2699 } 2700 } 2701 2702 // If we are adding something to a multiply expression, make sure the 2703 // something is not already an operand of the multiply. If so, merge it into 2704 // the multiply. 2705 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2706 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2707 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2708 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2709 if (isa<SCEVConstant>(MulOpSCEV)) 2710 continue; 2711 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2712 if (MulOpSCEV == Ops[AddOp]) { 2713 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2714 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2715 if (Mul->getNumOperands() != 2) { 2716 // If the multiply has more than two operands, we must get the 2717 // Y*Z term. 2718 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2719 Mul->op_begin()+MulOp); 2720 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2721 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2722 } 2723 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2724 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2725 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2726 SCEV::FlagAnyWrap, Depth + 1); 2727 if (Ops.size() == 2) return OuterMul; 2728 if (AddOp < Idx) { 2729 Ops.erase(Ops.begin()+AddOp); 2730 Ops.erase(Ops.begin()+Idx-1); 2731 } else { 2732 Ops.erase(Ops.begin()+Idx); 2733 Ops.erase(Ops.begin()+AddOp-1); 2734 } 2735 Ops.push_back(OuterMul); 2736 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2737 } 2738 2739 // Check this multiply against other multiplies being added together. 2740 for (unsigned OtherMulIdx = Idx+1; 2741 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2742 ++OtherMulIdx) { 2743 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2744 // If MulOp occurs in OtherMul, we can fold the two multiplies 2745 // together. 2746 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2747 OMulOp != e; ++OMulOp) 2748 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2749 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2750 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2751 if (Mul->getNumOperands() != 2) { 2752 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2753 Mul->op_begin()+MulOp); 2754 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2755 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2756 } 2757 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2758 if (OtherMul->getNumOperands() != 2) { 2759 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2760 OtherMul->op_begin()+OMulOp); 2761 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2762 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2763 } 2764 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2765 const SCEV *InnerMulSum = 2766 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2767 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2768 SCEV::FlagAnyWrap, Depth + 1); 2769 if (Ops.size() == 2) return OuterMul; 2770 Ops.erase(Ops.begin()+Idx); 2771 Ops.erase(Ops.begin()+OtherMulIdx-1); 2772 Ops.push_back(OuterMul); 2773 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2774 } 2775 } 2776 } 2777 } 2778 2779 // If there are any add recurrences in the operands list, see if any other 2780 // added values are loop invariant. If so, we can fold them into the 2781 // recurrence. 2782 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2783 ++Idx; 2784 2785 // Scan over all recurrences, trying to fold loop invariants into them. 2786 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2787 // Scan all of the other operands to this add and add them to the vector if 2788 // they are loop invariant w.r.t. the recurrence. 2789 SmallVector<const SCEV *, 8> LIOps; 2790 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2791 const Loop *AddRecLoop = AddRec->getLoop(); 2792 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2793 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2794 LIOps.push_back(Ops[i]); 2795 Ops.erase(Ops.begin()+i); 2796 --i; --e; 2797 } 2798 2799 // If we found some loop invariants, fold them into the recurrence. 2800 if (!LIOps.empty()) { 2801 // Compute nowrap flags for the addition of the loop-invariant ops and 2802 // the addrec. Temporarily push it as an operand for that purpose. These 2803 // flags are valid in the scope of the addrec only. 2804 LIOps.push_back(AddRec); 2805 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2806 LIOps.pop_back(); 2807 2808 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2809 LIOps.push_back(AddRec->getStart()); 2810 2811 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2812 2813 // It is not in general safe to propagate flags valid on an add within 2814 // the addrec scope to one outside it. We must prove that the inner 2815 // scope is guaranteed to execute if the outer one does to be able to 2816 // safely propagate. We know the program is undefined if poison is 2817 // produced on the inner scoped addrec. We also know that *for this use* 2818 // the outer scoped add can't overflow (because of the flags we just 2819 // computed for the inner scoped add) without the program being undefined. 2820 // Proving that entry to the outer scope neccesitates entry to the inner 2821 // scope, thus proves the program undefined if the flags would be violated 2822 // in the outer scope. 2823 SCEV::NoWrapFlags AddFlags = Flags; 2824 if (AddFlags != SCEV::FlagAnyWrap) { 2825 auto *DefI = getDefiningScopeBound(LIOps); 2826 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2827 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2828 AddFlags = SCEV::FlagAnyWrap; 2829 } 2830 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2831 2832 // Build the new addrec. Propagate the NUW and NSW flags if both the 2833 // outer add and the inner addrec are guaranteed to have no overflow. 2834 // Always propagate NW. 2835 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2836 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2837 2838 // If all of the other operands were loop invariant, we are done. 2839 if (Ops.size() == 1) return NewRec; 2840 2841 // Otherwise, add the folded AddRec by the non-invariant parts. 2842 for (unsigned i = 0;; ++i) 2843 if (Ops[i] == AddRec) { 2844 Ops[i] = NewRec; 2845 break; 2846 } 2847 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2848 } 2849 2850 // Okay, if there weren't any loop invariants to be folded, check to see if 2851 // there are multiple AddRec's with the same loop induction variable being 2852 // added together. If so, we can fold them. 2853 for (unsigned OtherIdx = Idx+1; 2854 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2855 ++OtherIdx) { 2856 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2857 // so that the 1st found AddRecExpr is dominated by all others. 2858 assert(DT.dominates( 2859 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2860 AddRec->getLoop()->getHeader()) && 2861 "AddRecExprs are not sorted in reverse dominance order?"); 2862 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2863 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2864 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2865 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2866 ++OtherIdx) { 2867 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2868 if (OtherAddRec->getLoop() == AddRecLoop) { 2869 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2870 i != e; ++i) { 2871 if (i >= AddRecOps.size()) { 2872 AddRecOps.append(OtherAddRec->op_begin()+i, 2873 OtherAddRec->op_end()); 2874 break; 2875 } 2876 SmallVector<const SCEV *, 2> TwoOps = { 2877 AddRecOps[i], OtherAddRec->getOperand(i)}; 2878 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2879 } 2880 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2881 } 2882 } 2883 // Step size has changed, so we cannot guarantee no self-wraparound. 2884 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2885 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2886 } 2887 } 2888 2889 // Otherwise couldn't fold anything into this recurrence. Move onto the 2890 // next one. 2891 } 2892 2893 // Okay, it looks like we really DO need an add expr. Check to see if we 2894 // already have one, otherwise create a new one. 2895 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2896 } 2897 2898 const SCEV * 2899 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2900 SCEV::NoWrapFlags Flags) { 2901 FoldingSetNodeID ID; 2902 ID.AddInteger(scAddExpr); 2903 for (const SCEV *Op : Ops) 2904 ID.AddPointer(Op); 2905 void *IP = nullptr; 2906 SCEVAddExpr *S = 2907 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2908 if (!S) { 2909 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2910 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2911 S = new (SCEVAllocator) 2912 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2913 UniqueSCEVs.InsertNode(S, IP); 2914 registerUser(S, Ops); 2915 } 2916 S->setNoWrapFlags(Flags); 2917 return S; 2918 } 2919 2920 const SCEV * 2921 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2922 const Loop *L, SCEV::NoWrapFlags Flags) { 2923 FoldingSetNodeID ID; 2924 ID.AddInteger(scAddRecExpr); 2925 for (const SCEV *Op : Ops) 2926 ID.AddPointer(Op); 2927 ID.AddPointer(L); 2928 void *IP = nullptr; 2929 SCEVAddRecExpr *S = 2930 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2931 if (!S) { 2932 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2933 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2934 S = new (SCEVAllocator) 2935 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2936 UniqueSCEVs.InsertNode(S, IP); 2937 LoopUsers[L].push_back(S); 2938 registerUser(S, Ops); 2939 } 2940 setNoWrapFlags(S, Flags); 2941 return S; 2942 } 2943 2944 const SCEV * 2945 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2946 SCEV::NoWrapFlags Flags) { 2947 FoldingSetNodeID ID; 2948 ID.AddInteger(scMulExpr); 2949 for (const SCEV *Op : Ops) 2950 ID.AddPointer(Op); 2951 void *IP = nullptr; 2952 SCEVMulExpr *S = 2953 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2954 if (!S) { 2955 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2956 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2957 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2958 O, Ops.size()); 2959 UniqueSCEVs.InsertNode(S, IP); 2960 registerUser(S, Ops); 2961 } 2962 S->setNoWrapFlags(Flags); 2963 return S; 2964 } 2965 2966 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2967 uint64_t k = i*j; 2968 if (j > 1 && k / j != i) Overflow = true; 2969 return k; 2970 } 2971 2972 /// Compute the result of "n choose k", the binomial coefficient. If an 2973 /// intermediate computation overflows, Overflow will be set and the return will 2974 /// be garbage. Overflow is not cleared on absence of overflow. 2975 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2976 // We use the multiplicative formula: 2977 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2978 // At each iteration, we take the n-th term of the numeral and divide by the 2979 // (k-n)th term of the denominator. This division will always produce an 2980 // integral result, and helps reduce the chance of overflow in the 2981 // intermediate computations. However, we can still overflow even when the 2982 // final result would fit. 2983 2984 if (n == 0 || n == k) return 1; 2985 if (k > n) return 0; 2986 2987 if (k > n/2) 2988 k = n-k; 2989 2990 uint64_t r = 1; 2991 for (uint64_t i = 1; i <= k; ++i) { 2992 r = umul_ov(r, n-(i-1), Overflow); 2993 r /= i; 2994 } 2995 return r; 2996 } 2997 2998 /// Determine if any of the operands in this SCEV are a constant or if 2999 /// any of the add or multiply expressions in this SCEV contain a constant. 3000 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3001 struct FindConstantInAddMulChain { 3002 bool FoundConstant = false; 3003 3004 bool follow(const SCEV *S) { 3005 FoundConstant |= isa<SCEVConstant>(S); 3006 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3007 } 3008 3009 bool isDone() const { 3010 return FoundConstant; 3011 } 3012 }; 3013 3014 FindConstantInAddMulChain F; 3015 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3016 ST.visitAll(StartExpr); 3017 return F.FoundConstant; 3018 } 3019 3020 /// Get a canonical multiply expression, or something simpler if possible. 3021 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3022 SCEV::NoWrapFlags OrigFlags, 3023 unsigned Depth) { 3024 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3025 "only nuw or nsw allowed"); 3026 assert(!Ops.empty() && "Cannot get empty mul!"); 3027 if (Ops.size() == 1) return Ops[0]; 3028 #ifndef NDEBUG 3029 Type *ETy = Ops[0]->getType(); 3030 assert(!ETy->isPointerTy()); 3031 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3032 assert(Ops[i]->getType() == ETy && 3033 "SCEVMulExpr operand types don't match!"); 3034 #endif 3035 3036 // Sort by complexity, this groups all similar expression types together. 3037 GroupByComplexity(Ops, &LI, DT); 3038 3039 // If there are any constants, fold them together. 3040 unsigned Idx = 0; 3041 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3042 ++Idx; 3043 assert(Idx < Ops.size()); 3044 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3045 // We found two constants, fold them together! 3046 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3047 if (Ops.size() == 2) return Ops[0]; 3048 Ops.erase(Ops.begin()+1); // Erase the folded element 3049 LHSC = cast<SCEVConstant>(Ops[0]); 3050 } 3051 3052 // If we have a multiply of zero, it will always be zero. 3053 if (LHSC->getValue()->isZero()) 3054 return LHSC; 3055 3056 // If we are left with a constant one being multiplied, strip it off. 3057 if (LHSC->getValue()->isOne()) { 3058 Ops.erase(Ops.begin()); 3059 --Idx; 3060 } 3061 3062 if (Ops.size() == 1) 3063 return Ops[0]; 3064 } 3065 3066 // Delay expensive flag strengthening until necessary. 3067 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3068 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3069 }; 3070 3071 // Limit recursion calls depth. 3072 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3073 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3074 3075 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3076 // Don't strengthen flags if we have no new information. 3077 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3078 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3079 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3080 return S; 3081 } 3082 3083 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3084 if (Ops.size() == 2) { 3085 // C1*(C2+V) -> C1*C2 + C1*V 3086 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3087 // If any of Add's ops are Adds or Muls with a constant, apply this 3088 // transformation as well. 3089 // 3090 // TODO: There are some cases where this transformation is not 3091 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3092 // this transformation should be narrowed down. 3093 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3094 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3095 SCEV::FlagAnyWrap, Depth + 1), 3096 getMulExpr(LHSC, Add->getOperand(1), 3097 SCEV::FlagAnyWrap, Depth + 1), 3098 SCEV::FlagAnyWrap, Depth + 1); 3099 3100 if (Ops[0]->isAllOnesValue()) { 3101 // If we have a mul by -1 of an add, try distributing the -1 among the 3102 // add operands. 3103 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3104 SmallVector<const SCEV *, 4> NewOps; 3105 bool AnyFolded = false; 3106 for (const SCEV *AddOp : Add->operands()) { 3107 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3108 Depth + 1); 3109 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3110 NewOps.push_back(Mul); 3111 } 3112 if (AnyFolded) 3113 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3114 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3115 // Negation preserves a recurrence's no self-wrap property. 3116 SmallVector<const SCEV *, 4> Operands; 3117 for (const SCEV *AddRecOp : AddRec->operands()) 3118 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3119 Depth + 1)); 3120 3121 return getAddRecExpr(Operands, AddRec->getLoop(), 3122 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3123 } 3124 } 3125 } 3126 } 3127 3128 // Skip over the add expression until we get to a multiply. 3129 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3130 ++Idx; 3131 3132 // If there are mul operands inline them all into this expression. 3133 if (Idx < Ops.size()) { 3134 bool DeletedMul = false; 3135 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3136 if (Ops.size() > MulOpsInlineThreshold) 3137 break; 3138 // If we have an mul, expand the mul operands onto the end of the 3139 // operands list. 3140 Ops.erase(Ops.begin()+Idx); 3141 Ops.append(Mul->op_begin(), Mul->op_end()); 3142 DeletedMul = true; 3143 } 3144 3145 // If we deleted at least one mul, we added operands to the end of the 3146 // list, and they are not necessarily sorted. Recurse to resort and 3147 // resimplify any operands we just acquired. 3148 if (DeletedMul) 3149 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3150 } 3151 3152 // If there are any add recurrences in the operands list, see if any other 3153 // added values are loop invariant. If so, we can fold them into the 3154 // recurrence. 3155 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3156 ++Idx; 3157 3158 // Scan over all recurrences, trying to fold loop invariants into them. 3159 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3160 // Scan all of the other operands to this mul and add them to the vector 3161 // if they are loop invariant w.r.t. the recurrence. 3162 SmallVector<const SCEV *, 8> LIOps; 3163 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3164 const Loop *AddRecLoop = AddRec->getLoop(); 3165 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3166 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3167 LIOps.push_back(Ops[i]); 3168 Ops.erase(Ops.begin()+i); 3169 --i; --e; 3170 } 3171 3172 // If we found some loop invariants, fold them into the recurrence. 3173 if (!LIOps.empty()) { 3174 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3175 SmallVector<const SCEV *, 4> NewOps; 3176 NewOps.reserve(AddRec->getNumOperands()); 3177 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3178 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3179 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3180 SCEV::FlagAnyWrap, Depth + 1)); 3181 3182 // Build the new addrec. Propagate the NUW and NSW flags if both the 3183 // outer mul and the inner addrec are guaranteed to have no overflow. 3184 // 3185 // No self-wrap cannot be guaranteed after changing the step size, but 3186 // will be inferred if either NUW or NSW is true. 3187 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3188 const SCEV *NewRec = getAddRecExpr( 3189 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3190 3191 // If all of the other operands were loop invariant, we are done. 3192 if (Ops.size() == 1) return NewRec; 3193 3194 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3195 for (unsigned i = 0;; ++i) 3196 if (Ops[i] == AddRec) { 3197 Ops[i] = NewRec; 3198 break; 3199 } 3200 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3201 } 3202 3203 // Okay, if there weren't any loop invariants to be folded, check to see 3204 // if there are multiple AddRec's with the same loop induction variable 3205 // being multiplied together. If so, we can fold them. 3206 3207 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3208 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3209 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3210 // ]]],+,...up to x=2n}. 3211 // Note that the arguments to choose() are always integers with values 3212 // known at compile time, never SCEV objects. 3213 // 3214 // The implementation avoids pointless extra computations when the two 3215 // addrec's are of different length (mathematically, it's equivalent to 3216 // an infinite stream of zeros on the right). 3217 bool OpsModified = false; 3218 for (unsigned OtherIdx = Idx+1; 3219 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3220 ++OtherIdx) { 3221 const SCEVAddRecExpr *OtherAddRec = 3222 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3223 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3224 continue; 3225 3226 // Limit max number of arguments to avoid creation of unreasonably big 3227 // SCEVAddRecs with very complex operands. 3228 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3229 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3230 continue; 3231 3232 bool Overflow = false; 3233 Type *Ty = AddRec->getType(); 3234 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3235 SmallVector<const SCEV*, 7> AddRecOps; 3236 for (int x = 0, xe = AddRec->getNumOperands() + 3237 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3238 SmallVector <const SCEV *, 7> SumOps; 3239 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3240 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3241 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3242 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3243 z < ze && !Overflow; ++z) { 3244 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3245 uint64_t Coeff; 3246 if (LargerThan64Bits) 3247 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3248 else 3249 Coeff = Coeff1*Coeff2; 3250 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3251 const SCEV *Term1 = AddRec->getOperand(y-z); 3252 const SCEV *Term2 = OtherAddRec->getOperand(z); 3253 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3254 SCEV::FlagAnyWrap, Depth + 1)); 3255 } 3256 } 3257 if (SumOps.empty()) 3258 SumOps.push_back(getZero(Ty)); 3259 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3260 } 3261 if (!Overflow) { 3262 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3263 SCEV::FlagAnyWrap); 3264 if (Ops.size() == 2) return NewAddRec; 3265 Ops[Idx] = NewAddRec; 3266 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3267 OpsModified = true; 3268 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3269 if (!AddRec) 3270 break; 3271 } 3272 } 3273 if (OpsModified) 3274 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3275 3276 // Otherwise couldn't fold anything into this recurrence. Move onto the 3277 // next one. 3278 } 3279 3280 // Okay, it looks like we really DO need an mul expr. Check to see if we 3281 // already have one, otherwise create a new one. 3282 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3283 } 3284 3285 /// Represents an unsigned remainder expression based on unsigned division. 3286 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3287 const SCEV *RHS) { 3288 assert(getEffectiveSCEVType(LHS->getType()) == 3289 getEffectiveSCEVType(RHS->getType()) && 3290 "SCEVURemExpr operand types don't match!"); 3291 3292 // Short-circuit easy cases 3293 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3294 // If constant is one, the result is trivial 3295 if (RHSC->getValue()->isOne()) 3296 return getZero(LHS->getType()); // X urem 1 --> 0 3297 3298 // If constant is a power of two, fold into a zext(trunc(LHS)). 3299 if (RHSC->getAPInt().isPowerOf2()) { 3300 Type *FullTy = LHS->getType(); 3301 Type *TruncTy = 3302 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3303 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3304 } 3305 } 3306 3307 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3308 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3309 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3310 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3311 } 3312 3313 /// Get a canonical unsigned division expression, or something simpler if 3314 /// possible. 3315 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3316 const SCEV *RHS) { 3317 assert(!LHS->getType()->isPointerTy() && 3318 "SCEVUDivExpr operand can't be pointer!"); 3319 assert(LHS->getType() == RHS->getType() && 3320 "SCEVUDivExpr operand types don't match!"); 3321 3322 FoldingSetNodeID ID; 3323 ID.AddInteger(scUDivExpr); 3324 ID.AddPointer(LHS); 3325 ID.AddPointer(RHS); 3326 void *IP = nullptr; 3327 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3328 return S; 3329 3330 // 0 udiv Y == 0 3331 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3332 if (LHSC->getValue()->isZero()) 3333 return LHS; 3334 3335 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3336 if (RHSC->getValue()->isOne()) 3337 return LHS; // X udiv 1 --> x 3338 // If the denominator is zero, the result of the udiv is undefined. Don't 3339 // try to analyze it, because the resolution chosen here may differ from 3340 // the resolution chosen in other parts of the compiler. 3341 if (!RHSC->getValue()->isZero()) { 3342 // Determine if the division can be folded into the operands of 3343 // its operands. 3344 // TODO: Generalize this to non-constants by using known-bits information. 3345 Type *Ty = LHS->getType(); 3346 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3347 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3348 // For non-power-of-two values, effectively round the value up to the 3349 // nearest power of two. 3350 if (!RHSC->getAPInt().isPowerOf2()) 3351 ++MaxShiftAmt; 3352 IntegerType *ExtTy = 3353 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3354 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3355 if (const SCEVConstant *Step = 3356 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3357 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3358 const APInt &StepInt = Step->getAPInt(); 3359 const APInt &DivInt = RHSC->getAPInt(); 3360 if (!StepInt.urem(DivInt) && 3361 getZeroExtendExpr(AR, ExtTy) == 3362 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3363 getZeroExtendExpr(Step, ExtTy), 3364 AR->getLoop(), SCEV::FlagAnyWrap)) { 3365 SmallVector<const SCEV *, 4> Operands; 3366 for (const SCEV *Op : AR->operands()) 3367 Operands.push_back(getUDivExpr(Op, RHS)); 3368 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3369 } 3370 /// Get a canonical UDivExpr for a recurrence. 3371 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3372 // We can currently only fold X%N if X is constant. 3373 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3374 if (StartC && !DivInt.urem(StepInt) && 3375 getZeroExtendExpr(AR, ExtTy) == 3376 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3377 getZeroExtendExpr(Step, ExtTy), 3378 AR->getLoop(), SCEV::FlagAnyWrap)) { 3379 const APInt &StartInt = StartC->getAPInt(); 3380 const APInt &StartRem = StartInt.urem(StepInt); 3381 if (StartRem != 0) { 3382 const SCEV *NewLHS = 3383 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3384 AR->getLoop(), SCEV::FlagNW); 3385 if (LHS != NewLHS) { 3386 LHS = NewLHS; 3387 3388 // Reset the ID to include the new LHS, and check if it is 3389 // already cached. 3390 ID.clear(); 3391 ID.AddInteger(scUDivExpr); 3392 ID.AddPointer(LHS); 3393 ID.AddPointer(RHS); 3394 IP = nullptr; 3395 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3396 return S; 3397 } 3398 } 3399 } 3400 } 3401 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3402 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3403 SmallVector<const SCEV *, 4> Operands; 3404 for (const SCEV *Op : M->operands()) 3405 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3406 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3407 // Find an operand that's safely divisible. 3408 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3409 const SCEV *Op = M->getOperand(i); 3410 const SCEV *Div = getUDivExpr(Op, RHSC); 3411 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3412 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3413 Operands[i] = Div; 3414 return getMulExpr(Operands); 3415 } 3416 } 3417 } 3418 3419 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3420 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3421 if (auto *DivisorConstant = 3422 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3423 bool Overflow = false; 3424 APInt NewRHS = 3425 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3426 if (Overflow) { 3427 return getConstant(RHSC->getType(), 0, false); 3428 } 3429 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3430 } 3431 } 3432 3433 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3434 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3435 SmallVector<const SCEV *, 4> Operands; 3436 for (const SCEV *Op : A->operands()) 3437 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3438 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3439 Operands.clear(); 3440 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3441 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3442 if (isa<SCEVUDivExpr>(Op) || 3443 getMulExpr(Op, RHS) != A->getOperand(i)) 3444 break; 3445 Operands.push_back(Op); 3446 } 3447 if (Operands.size() == A->getNumOperands()) 3448 return getAddExpr(Operands); 3449 } 3450 } 3451 3452 // Fold if both operands are constant. 3453 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3454 Constant *LHSCV = LHSC->getValue(); 3455 Constant *RHSCV = RHSC->getValue(); 3456 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3457 RHSCV))); 3458 } 3459 } 3460 } 3461 3462 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3463 // changes). Make sure we get a new one. 3464 IP = nullptr; 3465 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3466 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3467 LHS, RHS); 3468 UniqueSCEVs.InsertNode(S, IP); 3469 registerUser(S, {LHS, RHS}); 3470 return S; 3471 } 3472 3473 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3474 APInt A = C1->getAPInt().abs(); 3475 APInt B = C2->getAPInt().abs(); 3476 uint32_t ABW = A.getBitWidth(); 3477 uint32_t BBW = B.getBitWidth(); 3478 3479 if (ABW > BBW) 3480 B = B.zext(ABW); 3481 else if (ABW < BBW) 3482 A = A.zext(BBW); 3483 3484 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3485 } 3486 3487 /// Get a canonical unsigned division expression, or something simpler if 3488 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3489 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3490 /// it's not exact because the udiv may be clearing bits. 3491 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3492 const SCEV *RHS) { 3493 // TODO: we could try to find factors in all sorts of things, but for now we 3494 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3495 // end of this file for inspiration. 3496 3497 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3498 if (!Mul || !Mul->hasNoUnsignedWrap()) 3499 return getUDivExpr(LHS, RHS); 3500 3501 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3502 // If the mulexpr multiplies by a constant, then that constant must be the 3503 // first element of the mulexpr. 3504 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3505 if (LHSCst == RHSCst) { 3506 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3507 return getMulExpr(Operands); 3508 } 3509 3510 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3511 // that there's a factor provided by one of the other terms. We need to 3512 // check. 3513 APInt Factor = gcd(LHSCst, RHSCst); 3514 if (!Factor.isIntN(1)) { 3515 LHSCst = 3516 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3517 RHSCst = 3518 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3519 SmallVector<const SCEV *, 2> Operands; 3520 Operands.push_back(LHSCst); 3521 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3522 LHS = getMulExpr(Operands); 3523 RHS = RHSCst; 3524 Mul = dyn_cast<SCEVMulExpr>(LHS); 3525 if (!Mul) 3526 return getUDivExactExpr(LHS, RHS); 3527 } 3528 } 3529 } 3530 3531 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3532 if (Mul->getOperand(i) == RHS) { 3533 SmallVector<const SCEV *, 2> Operands; 3534 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3535 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3536 return getMulExpr(Operands); 3537 } 3538 } 3539 3540 return getUDivExpr(LHS, RHS); 3541 } 3542 3543 /// Get an add recurrence expression for the specified loop. Simplify the 3544 /// expression as much as possible. 3545 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3546 const Loop *L, 3547 SCEV::NoWrapFlags Flags) { 3548 SmallVector<const SCEV *, 4> Operands; 3549 Operands.push_back(Start); 3550 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3551 if (StepChrec->getLoop() == L) { 3552 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3553 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3554 } 3555 3556 Operands.push_back(Step); 3557 return getAddRecExpr(Operands, L, Flags); 3558 } 3559 3560 /// Get an add recurrence expression for the specified loop. Simplify the 3561 /// expression as much as possible. 3562 const SCEV * 3563 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3564 const Loop *L, SCEV::NoWrapFlags Flags) { 3565 if (Operands.size() == 1) return Operands[0]; 3566 #ifndef NDEBUG 3567 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3568 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3569 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3570 "SCEVAddRecExpr operand types don't match!"); 3571 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3572 } 3573 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3574 assert(isLoopInvariant(Operands[i], L) && 3575 "SCEVAddRecExpr operand is not loop-invariant!"); 3576 #endif 3577 3578 if (Operands.back()->isZero()) { 3579 Operands.pop_back(); 3580 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3581 } 3582 3583 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3584 // use that information to infer NUW and NSW flags. However, computing a 3585 // BE count requires calling getAddRecExpr, so we may not yet have a 3586 // meaningful BE count at this point (and if we don't, we'd be stuck 3587 // with a SCEVCouldNotCompute as the cached BE count). 3588 3589 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3590 3591 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3592 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3593 const Loop *NestedLoop = NestedAR->getLoop(); 3594 if (L->contains(NestedLoop) 3595 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3596 : (!NestedLoop->contains(L) && 3597 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3598 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3599 Operands[0] = NestedAR->getStart(); 3600 // AddRecs require their operands be loop-invariant with respect to their 3601 // loops. Don't perform this transformation if it would break this 3602 // requirement. 3603 bool AllInvariant = all_of( 3604 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3605 3606 if (AllInvariant) { 3607 // Create a recurrence for the outer loop with the same step size. 3608 // 3609 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3610 // inner recurrence has the same property. 3611 SCEV::NoWrapFlags OuterFlags = 3612 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3613 3614 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3615 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3616 return isLoopInvariant(Op, NestedLoop); 3617 }); 3618 3619 if (AllInvariant) { 3620 // Ok, both add recurrences are valid after the transformation. 3621 // 3622 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3623 // the outer recurrence has the same property. 3624 SCEV::NoWrapFlags InnerFlags = 3625 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3626 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3627 } 3628 } 3629 // Reset Operands to its original state. 3630 Operands[0] = NestedAR; 3631 } 3632 } 3633 3634 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3635 // already have one, otherwise create a new one. 3636 return getOrCreateAddRecExpr(Operands, L, Flags); 3637 } 3638 3639 const SCEV * 3640 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3641 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3642 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3643 // getSCEV(Base)->getType() has the same address space as Base->getType() 3644 // because SCEV::getType() preserves the address space. 3645 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3646 const bool AssumeInBoundsFlags = [&]() { 3647 if (!GEP->isInBounds()) 3648 return false; 3649 3650 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3651 // but to do that, we have to ensure that said flag is valid in the entire 3652 // defined scope of the SCEV. 3653 auto *GEPI = dyn_cast<Instruction>(GEP); 3654 // TODO: non-instructions have global scope. We might be able to prove 3655 // some global scope cases 3656 return GEPI && isSCEVExprNeverPoison(GEPI); 3657 }(); 3658 3659 SCEV::NoWrapFlags OffsetWrap = 3660 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3661 3662 Type *CurTy = GEP->getType(); 3663 bool FirstIter = true; 3664 SmallVector<const SCEV *, 4> Offsets; 3665 for (const SCEV *IndexExpr : IndexExprs) { 3666 // Compute the (potentially symbolic) offset in bytes for this index. 3667 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3668 // For a struct, add the member offset. 3669 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3670 unsigned FieldNo = Index->getZExtValue(); 3671 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3672 Offsets.push_back(FieldOffset); 3673 3674 // Update CurTy to the type of the field at Index. 3675 CurTy = STy->getTypeAtIndex(Index); 3676 } else { 3677 // Update CurTy to its element type. 3678 if (FirstIter) { 3679 assert(isa<PointerType>(CurTy) && 3680 "The first index of a GEP indexes a pointer"); 3681 CurTy = GEP->getSourceElementType(); 3682 FirstIter = false; 3683 } else { 3684 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3685 } 3686 // For an array, add the element offset, explicitly scaled. 3687 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3688 // Getelementptr indices are signed. 3689 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3690 3691 // Multiply the index by the element size to compute the element offset. 3692 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3693 Offsets.push_back(LocalOffset); 3694 } 3695 } 3696 3697 // Handle degenerate case of GEP without offsets. 3698 if (Offsets.empty()) 3699 return BaseExpr; 3700 3701 // Add the offsets together, assuming nsw if inbounds. 3702 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3703 // Add the base address and the offset. We cannot use the nsw flag, as the 3704 // base address is unsigned. However, if we know that the offset is 3705 // non-negative, we can use nuw. 3706 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3707 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3708 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3709 assert(BaseExpr->getType() == GEPExpr->getType() && 3710 "GEP should not change type mid-flight."); 3711 return GEPExpr; 3712 } 3713 3714 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3715 ArrayRef<const SCEV *> Ops) { 3716 FoldingSetNodeID ID; 3717 ID.AddInteger(SCEVType); 3718 for (const SCEV *Op : Ops) 3719 ID.AddPointer(Op); 3720 void *IP = nullptr; 3721 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3722 } 3723 3724 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3725 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3726 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3727 } 3728 3729 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3730 SmallVectorImpl<const SCEV *> &Ops) { 3731 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3732 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3733 if (Ops.size() == 1) return Ops[0]; 3734 #ifndef NDEBUG 3735 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3736 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3737 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3738 "Operand types don't match!"); 3739 assert(Ops[0]->getType()->isPointerTy() == 3740 Ops[i]->getType()->isPointerTy() && 3741 "min/max should be consistently pointerish"); 3742 } 3743 #endif 3744 3745 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3746 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3747 3748 // Sort by complexity, this groups all similar expression types together. 3749 GroupByComplexity(Ops, &LI, DT); 3750 3751 // Check if we have created the same expression before. 3752 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3753 return S; 3754 } 3755 3756 // If there are any constants, fold them together. 3757 unsigned Idx = 0; 3758 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3759 ++Idx; 3760 assert(Idx < Ops.size()); 3761 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3762 if (Kind == scSMaxExpr) 3763 return APIntOps::smax(LHS, RHS); 3764 else if (Kind == scSMinExpr) 3765 return APIntOps::smin(LHS, RHS); 3766 else if (Kind == scUMaxExpr) 3767 return APIntOps::umax(LHS, RHS); 3768 else if (Kind == scUMinExpr) 3769 return APIntOps::umin(LHS, RHS); 3770 llvm_unreachable("Unknown SCEV min/max opcode"); 3771 }; 3772 3773 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3774 // We found two constants, fold them together! 3775 ConstantInt *Fold = ConstantInt::get( 3776 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3777 Ops[0] = getConstant(Fold); 3778 Ops.erase(Ops.begin()+1); // Erase the folded element 3779 if (Ops.size() == 1) return Ops[0]; 3780 LHSC = cast<SCEVConstant>(Ops[0]); 3781 } 3782 3783 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3784 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3785 3786 if (IsMax ? IsMinV : IsMaxV) { 3787 // If we are left with a constant minimum(/maximum)-int, strip it off. 3788 Ops.erase(Ops.begin()); 3789 --Idx; 3790 } else if (IsMax ? IsMaxV : IsMinV) { 3791 // If we have a max(/min) with a constant maximum(/minimum)-int, 3792 // it will always be the extremum. 3793 return LHSC; 3794 } 3795 3796 if (Ops.size() == 1) return Ops[0]; 3797 } 3798 3799 // Find the first operation of the same kind 3800 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3801 ++Idx; 3802 3803 // Check to see if one of the operands is of the same kind. If so, expand its 3804 // operands onto our operand list, and recurse to simplify. 3805 if (Idx < Ops.size()) { 3806 bool DeletedAny = false; 3807 while (Ops[Idx]->getSCEVType() == Kind) { 3808 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3809 Ops.erase(Ops.begin()+Idx); 3810 Ops.append(SMME->op_begin(), SMME->op_end()); 3811 DeletedAny = true; 3812 } 3813 3814 if (DeletedAny) 3815 return getMinMaxExpr(Kind, Ops); 3816 } 3817 3818 // Okay, check to see if the same value occurs in the operand list twice. If 3819 // so, delete one. Since we sorted the list, these values are required to 3820 // be adjacent. 3821 llvm::CmpInst::Predicate GEPred = 3822 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3823 llvm::CmpInst::Predicate LEPred = 3824 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3825 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3826 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3827 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3828 if (Ops[i] == Ops[i + 1] || 3829 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3830 // X op Y op Y --> X op Y 3831 // X op Y --> X, if we know X, Y are ordered appropriately 3832 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3833 --i; 3834 --e; 3835 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3836 Ops[i + 1])) { 3837 // X op Y --> Y, if we know X, Y are ordered appropriately 3838 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3839 --i; 3840 --e; 3841 } 3842 } 3843 3844 if (Ops.size() == 1) return Ops[0]; 3845 3846 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3847 3848 // Okay, it looks like we really DO need an expr. Check to see if we 3849 // already have one, otherwise create a new one. 3850 FoldingSetNodeID ID; 3851 ID.AddInteger(Kind); 3852 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3853 ID.AddPointer(Ops[i]); 3854 void *IP = nullptr; 3855 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3856 if (ExistingSCEV) 3857 return ExistingSCEV; 3858 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3859 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3860 SCEV *S = new (SCEVAllocator) 3861 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3862 3863 UniqueSCEVs.InsertNode(S, IP); 3864 registerUser(S, Ops); 3865 return S; 3866 } 3867 3868 const SCEV * 3869 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 3870 SmallVectorImpl<const SCEV *> &Ops) { 3871 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 3872 "Not a SCEVSequentialMinMaxExpr!"); 3873 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3874 if (Ops.size() == 1) 3875 return Ops[0]; 3876 #ifndef NDEBUG 3877 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3878 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3879 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3880 "Operand types don't match!"); 3881 assert(Ops[0]->getType()->isPointerTy() == 3882 Ops[i]->getType()->isPointerTy() && 3883 "min/max should be consistently pointerish"); 3884 } 3885 #endif 3886 3887 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 3888 // so we can *NOT* do any kind of sorting of the expressions! 3889 3890 // Check if we have created the same expression before. 3891 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 3892 return S; 3893 3894 // FIXME: there are *some* simplifications that we can do here. 3895 3896 // Keep only the first instance of an operand. 3897 { 3898 SmallPtrSet<const SCEV *, 16> SeenOps; 3899 unsigned Idx = 0; 3900 bool Changed = false; 3901 while (Idx < Ops.size()) { 3902 // Has the whole operand been seen already? 3903 if (!SeenOps.insert(Ops[Idx]).second) { 3904 Ops.erase(Ops.begin() + Idx); 3905 Changed = true; 3906 continue; // Look at operand under this index again. 3907 } 3908 3909 // Look into non-sequential same-typed min/max expressions, 3910 // drop any of it's operands that we have already seen. 3911 // FIXME: once there are other sequential min/max types, generalize. 3912 if (const auto *CommUMinExpr = dyn_cast<SCEVUMinExpr>(Ops[Idx])) { 3913 SmallVector<const SCEV *> InnerOps; 3914 InnerOps.reserve(CommUMinExpr->getNumOperands()); 3915 for (const SCEV *InnerOp : CommUMinExpr->operands()) { 3916 if (SeenOps.insert(InnerOp).second) // Operand not seen before? 3917 InnerOps.emplace_back(InnerOp); // Keep this inner operand. 3918 } 3919 // Were any operands of this 'umin' themselves redundant? 3920 if (InnerOps.size() != CommUMinExpr->getNumOperands()) { 3921 Changed = true; 3922 // Was the whole operand effectively redundant? Note that it can 3923 // happen even when the operand itself wasn't redundant as a whole. 3924 if (InnerOps.empty()) { 3925 Ops.erase(Ops.begin() + Idx); 3926 continue; // Look at operand under this index again. 3927 } 3928 // Recreate our operand. 3929 Ops[Idx] = getMinMaxExpr(Ops[Idx]->getSCEVType(), InnerOps); 3930 } 3931 } 3932 3933 // Ok, can't do anything else about this operand, move onto the next one. 3934 ++Idx; 3935 } 3936 3937 if (Changed) 3938 return getSequentialMinMaxExpr(Kind, Ops); 3939 } 3940 3941 // Check to see if one of the operands is of the same kind. If so, expand its 3942 // operands onto our operand list, and recurse to simplify. 3943 { 3944 unsigned Idx = 0; 3945 bool DeletedAny = false; 3946 while (Idx < Ops.size()) { 3947 if (Ops[Idx]->getSCEVType() != Kind) { 3948 ++Idx; 3949 continue; 3950 } 3951 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 3952 Ops.erase(Ops.begin() + Idx); 3953 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end()); 3954 DeletedAny = true; 3955 } 3956 3957 if (DeletedAny) 3958 return getSequentialMinMaxExpr(Kind, Ops); 3959 } 3960 3961 // Okay, it looks like we really DO need an expr. Check to see if we 3962 // already have one, otherwise create a new one. 3963 FoldingSetNodeID ID; 3964 ID.AddInteger(Kind); 3965 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3966 ID.AddPointer(Ops[i]); 3967 void *IP = nullptr; 3968 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3969 if (ExistingSCEV) 3970 return ExistingSCEV; 3971 3972 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3973 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3974 SCEV *S = new (SCEVAllocator) 3975 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3976 3977 UniqueSCEVs.InsertNode(S, IP); 3978 registerUser(S, Ops); 3979 return S; 3980 } 3981 3982 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3983 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3984 return getSMaxExpr(Ops); 3985 } 3986 3987 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3988 return getMinMaxExpr(scSMaxExpr, Ops); 3989 } 3990 3991 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3992 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3993 return getUMaxExpr(Ops); 3994 } 3995 3996 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3997 return getMinMaxExpr(scUMaxExpr, Ops); 3998 } 3999 4000 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4001 const SCEV *RHS) { 4002 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4003 return getSMinExpr(Ops); 4004 } 4005 4006 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4007 return getMinMaxExpr(scSMinExpr, Ops); 4008 } 4009 4010 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4011 bool Sequential) { 4012 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4013 return getUMinExpr(Ops, Sequential); 4014 } 4015 4016 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4017 bool Sequential) { 4018 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4019 : getMinMaxExpr(scUMinExpr, Ops); 4020 } 4021 4022 const SCEV * 4023 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4024 ScalableVectorType *ScalableTy) { 4025 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4026 Constant *One = ConstantInt::get(IntTy, 1); 4027 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4028 // Note that the expression we created is the final expression, we don't 4029 // want to simplify it any further Also, if we call a normal getSCEV(), 4030 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4031 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4032 } 4033 4034 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4035 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4036 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4037 // We can bypass creating a target-independent constant expression and then 4038 // folding it back into a ConstantInt. This is just a compile-time 4039 // optimization. 4040 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4041 } 4042 4043 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4044 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4045 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4046 // We can bypass creating a target-independent constant expression and then 4047 // folding it back into a ConstantInt. This is just a compile-time 4048 // optimization. 4049 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4050 } 4051 4052 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4053 StructType *STy, 4054 unsigned FieldNo) { 4055 // We can bypass creating a target-independent constant expression and then 4056 // folding it back into a ConstantInt. This is just a compile-time 4057 // optimization. 4058 return getConstant( 4059 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4060 } 4061 4062 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4063 // Don't attempt to do anything other than create a SCEVUnknown object 4064 // here. createSCEV only calls getUnknown after checking for all other 4065 // interesting possibilities, and any other code that calls getUnknown 4066 // is doing so in order to hide a value from SCEV canonicalization. 4067 4068 FoldingSetNodeID ID; 4069 ID.AddInteger(scUnknown); 4070 ID.AddPointer(V); 4071 void *IP = nullptr; 4072 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4073 assert(cast<SCEVUnknown>(S)->getValue() == V && 4074 "Stale SCEVUnknown in uniquing map!"); 4075 return S; 4076 } 4077 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4078 FirstUnknown); 4079 FirstUnknown = cast<SCEVUnknown>(S); 4080 UniqueSCEVs.InsertNode(S, IP); 4081 return S; 4082 } 4083 4084 //===----------------------------------------------------------------------===// 4085 // Basic SCEV Analysis and PHI Idiom Recognition Code 4086 // 4087 4088 /// Test if values of the given type are analyzable within the SCEV 4089 /// framework. This primarily includes integer types, and it can optionally 4090 /// include pointer types if the ScalarEvolution class has access to 4091 /// target-specific information. 4092 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4093 // Integers and pointers are always SCEVable. 4094 return Ty->isIntOrPtrTy(); 4095 } 4096 4097 /// Return the size in bits of the specified type, for which isSCEVable must 4098 /// return true. 4099 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4100 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4101 if (Ty->isPointerTy()) 4102 return getDataLayout().getIndexTypeSizeInBits(Ty); 4103 return getDataLayout().getTypeSizeInBits(Ty); 4104 } 4105 4106 /// Return a type with the same bitwidth as the given type and which represents 4107 /// how SCEV will treat the given type, for which isSCEVable must return 4108 /// true. For pointer types, this is the pointer index sized integer type. 4109 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4110 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4111 4112 if (Ty->isIntegerTy()) 4113 return Ty; 4114 4115 // The only other support type is pointer. 4116 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4117 return getDataLayout().getIndexType(Ty); 4118 } 4119 4120 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4121 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4122 } 4123 4124 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4125 const SCEV *B) { 4126 /// For a valid use point to exist, the defining scope of one operand 4127 /// must dominate the other. 4128 bool PreciseA, PreciseB; 4129 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4130 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4131 if (!PreciseA || !PreciseB) 4132 // Can't tell. 4133 return false; 4134 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4135 DT.dominates(ScopeB, ScopeA); 4136 } 4137 4138 4139 const SCEV *ScalarEvolution::getCouldNotCompute() { 4140 return CouldNotCompute.get(); 4141 } 4142 4143 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4144 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4145 auto *SU = dyn_cast<SCEVUnknown>(S); 4146 return SU && SU->getValue() == nullptr; 4147 }); 4148 4149 return !ContainsNulls; 4150 } 4151 4152 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4153 HasRecMapType::iterator I = HasRecMap.find(S); 4154 if (I != HasRecMap.end()) 4155 return I->second; 4156 4157 bool FoundAddRec = 4158 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4159 HasRecMap.insert({S, FoundAddRec}); 4160 return FoundAddRec; 4161 } 4162 4163 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 4164 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 4165 /// offset I, then return {S', I}, else return {\p S, nullptr}. 4166 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 4167 const auto *Add = dyn_cast<SCEVAddExpr>(S); 4168 if (!Add) 4169 return {S, nullptr}; 4170 4171 if (Add->getNumOperands() != 2) 4172 return {S, nullptr}; 4173 4174 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 4175 if (!ConstOp) 4176 return {S, nullptr}; 4177 4178 return {Add->getOperand(1), ConstOp->getValue()}; 4179 } 4180 4181 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4182 /// by the value and offset from any ValueOffsetPair in the set. 4183 ScalarEvolution::ValueOffsetPairSetVector * 4184 ScalarEvolution::getSCEVValues(const SCEV *S) { 4185 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4186 if (SI == ExprValueMap.end()) 4187 return nullptr; 4188 #ifndef NDEBUG 4189 if (VerifySCEVMap) { 4190 // Check there is no dangling Value in the set returned. 4191 for (const auto &VE : SI->second) 4192 assert(ValueExprMap.count(VE.first)); 4193 } 4194 #endif 4195 return &SI->second; 4196 } 4197 4198 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4199 /// cannot be used separately. eraseValueFromMap should be used to remove 4200 /// V from ValueExprMap and ExprValueMap at the same time. 4201 void ScalarEvolution::eraseValueFromMap(Value *V) { 4202 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4203 if (I != ValueExprMap.end()) { 4204 const SCEV *S = I->second; 4205 // Remove {V, 0} from the set of ExprValueMap[S] 4206 if (auto *SV = getSCEVValues(S)) 4207 SV->remove({V, nullptr}); 4208 4209 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4210 const SCEV *Stripped; 4211 ConstantInt *Offset; 4212 std::tie(Stripped, Offset) = splitAddExpr(S); 4213 if (Offset != nullptr) { 4214 if (auto *SV = getSCEVValues(Stripped)) 4215 SV->remove({V, Offset}); 4216 } 4217 ValueExprMap.erase(V); 4218 } 4219 } 4220 4221 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4222 // A recursive query may have already computed the SCEV. It should be 4223 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4224 // inferred nowrap flags. 4225 auto It = ValueExprMap.find_as(V); 4226 if (It == ValueExprMap.end()) { 4227 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4228 ExprValueMap[S].insert({V, nullptr}); 4229 } 4230 } 4231 4232 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4233 /// create a new one. 4234 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4235 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4236 4237 const SCEV *S = getExistingSCEV(V); 4238 if (S == nullptr) { 4239 S = createSCEV(V); 4240 // During PHI resolution, it is possible to create two SCEVs for the same 4241 // V, so it is needed to double check whether V->S is inserted into 4242 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4243 std::pair<ValueExprMapType::iterator, bool> Pair = 4244 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4245 if (Pair.second) { 4246 ExprValueMap[S].insert({V, nullptr}); 4247 4248 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4249 // ExprValueMap. 4250 const SCEV *Stripped = S; 4251 ConstantInt *Offset = nullptr; 4252 std::tie(Stripped, Offset) = splitAddExpr(S); 4253 // If stripped is SCEVUnknown, don't bother to save 4254 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4255 // increase the complexity of the expansion code. 4256 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4257 // because it may generate add/sub instead of GEP in SCEV expansion. 4258 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4259 !isa<GetElementPtrInst>(V)) 4260 ExprValueMap[Stripped].insert({V, Offset}); 4261 } 4262 } 4263 return S; 4264 } 4265 4266 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4267 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4268 4269 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4270 if (I != ValueExprMap.end()) { 4271 const SCEV *S = I->second; 4272 assert(checkValidity(S) && 4273 "existing SCEV has not been properly invalidated"); 4274 return S; 4275 } 4276 return nullptr; 4277 } 4278 4279 /// Return a SCEV corresponding to -V = -1*V 4280 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4281 SCEV::NoWrapFlags Flags) { 4282 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4283 return getConstant( 4284 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4285 4286 Type *Ty = V->getType(); 4287 Ty = getEffectiveSCEVType(Ty); 4288 return getMulExpr(V, getMinusOne(Ty), Flags); 4289 } 4290 4291 /// If Expr computes ~A, return A else return nullptr 4292 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4293 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4294 if (!Add || Add->getNumOperands() != 2 || 4295 !Add->getOperand(0)->isAllOnesValue()) 4296 return nullptr; 4297 4298 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4299 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4300 !AddRHS->getOperand(0)->isAllOnesValue()) 4301 return nullptr; 4302 4303 return AddRHS->getOperand(1); 4304 } 4305 4306 /// Return a SCEV corresponding to ~V = -1-V 4307 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4308 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4309 4310 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4311 return getConstant( 4312 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4313 4314 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4315 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4316 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4317 SmallVector<const SCEV *, 2> MatchedOperands; 4318 for (const SCEV *Operand : MME->operands()) { 4319 const SCEV *Matched = MatchNotExpr(Operand); 4320 if (!Matched) 4321 return (const SCEV *)nullptr; 4322 MatchedOperands.push_back(Matched); 4323 } 4324 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4325 MatchedOperands); 4326 }; 4327 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4328 return Replaced; 4329 } 4330 4331 Type *Ty = V->getType(); 4332 Ty = getEffectiveSCEVType(Ty); 4333 return getMinusSCEV(getMinusOne(Ty), V); 4334 } 4335 4336 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4337 assert(P->getType()->isPointerTy()); 4338 4339 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4340 // The base of an AddRec is the first operand. 4341 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4342 Ops[0] = removePointerBase(Ops[0]); 4343 // Don't try to transfer nowrap flags for now. We could in some cases 4344 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4345 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4346 } 4347 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4348 // The base of an Add is the pointer operand. 4349 SmallVector<const SCEV *> Ops{Add->operands()}; 4350 const SCEV **PtrOp = nullptr; 4351 for (const SCEV *&AddOp : Ops) { 4352 if (AddOp->getType()->isPointerTy()) { 4353 assert(!PtrOp && "Cannot have multiple pointer ops"); 4354 PtrOp = &AddOp; 4355 } 4356 } 4357 *PtrOp = removePointerBase(*PtrOp); 4358 // Don't try to transfer nowrap flags for now. We could in some cases 4359 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4360 return getAddExpr(Ops); 4361 } 4362 // Any other expression must be a pointer base. 4363 return getZero(P->getType()); 4364 } 4365 4366 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4367 SCEV::NoWrapFlags Flags, 4368 unsigned Depth) { 4369 // Fast path: X - X --> 0. 4370 if (LHS == RHS) 4371 return getZero(LHS->getType()); 4372 4373 // If we subtract two pointers with different pointer bases, bail. 4374 // Eventually, we're going to add an assertion to getMulExpr that we 4375 // can't multiply by a pointer. 4376 if (RHS->getType()->isPointerTy()) { 4377 if (!LHS->getType()->isPointerTy() || 4378 getPointerBase(LHS) != getPointerBase(RHS)) 4379 return getCouldNotCompute(); 4380 LHS = removePointerBase(LHS); 4381 RHS = removePointerBase(RHS); 4382 } 4383 4384 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4385 // makes it so that we cannot make much use of NUW. 4386 auto AddFlags = SCEV::FlagAnyWrap; 4387 const bool RHSIsNotMinSigned = 4388 !getSignedRangeMin(RHS).isMinSignedValue(); 4389 if (hasFlags(Flags, SCEV::FlagNSW)) { 4390 // Let M be the minimum representable signed value. Then (-1)*RHS 4391 // signed-wraps if and only if RHS is M. That can happen even for 4392 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4393 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4394 // (-1)*RHS, we need to prove that RHS != M. 4395 // 4396 // If LHS is non-negative and we know that LHS - RHS does not 4397 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4398 // either by proving that RHS > M or that LHS >= 0. 4399 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4400 AddFlags = SCEV::FlagNSW; 4401 } 4402 } 4403 4404 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4405 // RHS is NSW and LHS >= 0. 4406 // 4407 // The difficulty here is that the NSW flag may have been proven 4408 // relative to a loop that is to be found in a recurrence in LHS and 4409 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4410 // larger scope than intended. 4411 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4412 4413 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4414 } 4415 4416 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4417 unsigned Depth) { 4418 Type *SrcTy = V->getType(); 4419 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4420 "Cannot truncate or zero extend with non-integer arguments!"); 4421 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4422 return V; // No conversion 4423 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4424 return getTruncateExpr(V, Ty, Depth); 4425 return getZeroExtendExpr(V, Ty, Depth); 4426 } 4427 4428 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4429 unsigned Depth) { 4430 Type *SrcTy = V->getType(); 4431 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4432 "Cannot truncate or zero extend with non-integer arguments!"); 4433 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4434 return V; // No conversion 4435 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4436 return getTruncateExpr(V, Ty, Depth); 4437 return getSignExtendExpr(V, Ty, Depth); 4438 } 4439 4440 const SCEV * 4441 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4442 Type *SrcTy = V->getType(); 4443 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4444 "Cannot noop or zero extend with non-integer arguments!"); 4445 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4446 "getNoopOrZeroExtend cannot truncate!"); 4447 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4448 return V; // No conversion 4449 return getZeroExtendExpr(V, Ty); 4450 } 4451 4452 const SCEV * 4453 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4454 Type *SrcTy = V->getType(); 4455 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4456 "Cannot noop or sign extend with non-integer arguments!"); 4457 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4458 "getNoopOrSignExtend cannot truncate!"); 4459 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4460 return V; // No conversion 4461 return getSignExtendExpr(V, Ty); 4462 } 4463 4464 const SCEV * 4465 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4466 Type *SrcTy = V->getType(); 4467 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4468 "Cannot noop or any extend with non-integer arguments!"); 4469 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4470 "getNoopOrAnyExtend cannot truncate!"); 4471 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4472 return V; // No conversion 4473 return getAnyExtendExpr(V, Ty); 4474 } 4475 4476 const SCEV * 4477 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4478 Type *SrcTy = V->getType(); 4479 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4480 "Cannot truncate or noop with non-integer arguments!"); 4481 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4482 "getTruncateOrNoop cannot extend!"); 4483 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4484 return V; // No conversion 4485 return getTruncateExpr(V, Ty); 4486 } 4487 4488 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4489 const SCEV *RHS) { 4490 const SCEV *PromotedLHS = LHS; 4491 const SCEV *PromotedRHS = RHS; 4492 4493 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4494 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4495 else 4496 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4497 4498 return getUMaxExpr(PromotedLHS, PromotedRHS); 4499 } 4500 4501 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4502 const SCEV *RHS, 4503 bool Sequential) { 4504 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4505 return getUMinFromMismatchedTypes(Ops, Sequential); 4506 } 4507 4508 const SCEV * 4509 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4510 bool Sequential) { 4511 assert(!Ops.empty() && "At least one operand must be!"); 4512 // Trivial case. 4513 if (Ops.size() == 1) 4514 return Ops[0]; 4515 4516 // Find the max type first. 4517 Type *MaxType = nullptr; 4518 for (auto *S : Ops) 4519 if (MaxType) 4520 MaxType = getWiderType(MaxType, S->getType()); 4521 else 4522 MaxType = S->getType(); 4523 assert(MaxType && "Failed to find maximum type!"); 4524 4525 // Extend all ops to max type. 4526 SmallVector<const SCEV *, 2> PromotedOps; 4527 for (auto *S : Ops) 4528 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4529 4530 // Generate umin. 4531 return getUMinExpr(PromotedOps, Sequential); 4532 } 4533 4534 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4535 // A pointer operand may evaluate to a nonpointer expression, such as null. 4536 if (!V->getType()->isPointerTy()) 4537 return V; 4538 4539 while (true) { 4540 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4541 V = AddRec->getStart(); 4542 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4543 const SCEV *PtrOp = nullptr; 4544 for (const SCEV *AddOp : Add->operands()) { 4545 if (AddOp->getType()->isPointerTy()) { 4546 assert(!PtrOp && "Cannot have multiple pointer ops"); 4547 PtrOp = AddOp; 4548 } 4549 } 4550 assert(PtrOp && "Must have pointer op"); 4551 V = PtrOp; 4552 } else // Not something we can look further into. 4553 return V; 4554 } 4555 } 4556 4557 /// Push users of the given Instruction onto the given Worklist. 4558 static void PushDefUseChildren(Instruction *I, 4559 SmallVectorImpl<Instruction *> &Worklist, 4560 SmallPtrSetImpl<Instruction *> &Visited) { 4561 // Push the def-use children onto the Worklist stack. 4562 for (User *U : I->users()) { 4563 auto *UserInsn = cast<Instruction>(U); 4564 if (Visited.insert(UserInsn).second) 4565 Worklist.push_back(UserInsn); 4566 } 4567 } 4568 4569 namespace { 4570 4571 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4572 /// expression in case its Loop is L. If it is not L then 4573 /// if IgnoreOtherLoops is true then use AddRec itself 4574 /// otherwise rewrite cannot be done. 4575 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4576 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4577 public: 4578 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4579 bool IgnoreOtherLoops = true) { 4580 SCEVInitRewriter Rewriter(L, SE); 4581 const SCEV *Result = Rewriter.visit(S); 4582 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4583 return SE.getCouldNotCompute(); 4584 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4585 ? SE.getCouldNotCompute() 4586 : Result; 4587 } 4588 4589 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4590 if (!SE.isLoopInvariant(Expr, L)) 4591 SeenLoopVariantSCEVUnknown = true; 4592 return Expr; 4593 } 4594 4595 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4596 // Only re-write AddRecExprs for this loop. 4597 if (Expr->getLoop() == L) 4598 return Expr->getStart(); 4599 SeenOtherLoops = true; 4600 return Expr; 4601 } 4602 4603 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4604 4605 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4606 4607 private: 4608 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4609 : SCEVRewriteVisitor(SE), L(L) {} 4610 4611 const Loop *L; 4612 bool SeenLoopVariantSCEVUnknown = false; 4613 bool SeenOtherLoops = false; 4614 }; 4615 4616 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4617 /// increment expression in case its Loop is L. If it is not L then 4618 /// use AddRec itself. 4619 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4620 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4621 public: 4622 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4623 SCEVPostIncRewriter Rewriter(L, SE); 4624 const SCEV *Result = Rewriter.visit(S); 4625 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4626 ? SE.getCouldNotCompute() 4627 : Result; 4628 } 4629 4630 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4631 if (!SE.isLoopInvariant(Expr, L)) 4632 SeenLoopVariantSCEVUnknown = true; 4633 return Expr; 4634 } 4635 4636 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4637 // Only re-write AddRecExprs for this loop. 4638 if (Expr->getLoop() == L) 4639 return Expr->getPostIncExpr(SE); 4640 SeenOtherLoops = true; 4641 return Expr; 4642 } 4643 4644 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4645 4646 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4647 4648 private: 4649 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4650 : SCEVRewriteVisitor(SE), L(L) {} 4651 4652 const Loop *L; 4653 bool SeenLoopVariantSCEVUnknown = false; 4654 bool SeenOtherLoops = false; 4655 }; 4656 4657 /// This class evaluates the compare condition by matching it against the 4658 /// condition of loop latch. If there is a match we assume a true value 4659 /// for the condition while building SCEV nodes. 4660 class SCEVBackedgeConditionFolder 4661 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4662 public: 4663 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4664 ScalarEvolution &SE) { 4665 bool IsPosBECond = false; 4666 Value *BECond = nullptr; 4667 if (BasicBlock *Latch = L->getLoopLatch()) { 4668 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4669 if (BI && BI->isConditional()) { 4670 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4671 "Both outgoing branches should not target same header!"); 4672 BECond = BI->getCondition(); 4673 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4674 } else { 4675 return S; 4676 } 4677 } 4678 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4679 return Rewriter.visit(S); 4680 } 4681 4682 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4683 const SCEV *Result = Expr; 4684 bool InvariantF = SE.isLoopInvariant(Expr, L); 4685 4686 if (!InvariantF) { 4687 Instruction *I = cast<Instruction>(Expr->getValue()); 4688 switch (I->getOpcode()) { 4689 case Instruction::Select: { 4690 SelectInst *SI = cast<SelectInst>(I); 4691 Optional<const SCEV *> Res = 4692 compareWithBackedgeCondition(SI->getCondition()); 4693 if (Res.hasValue()) { 4694 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4695 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4696 } 4697 break; 4698 } 4699 default: { 4700 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4701 if (Res.hasValue()) 4702 Result = Res.getValue(); 4703 break; 4704 } 4705 } 4706 } 4707 return Result; 4708 } 4709 4710 private: 4711 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4712 bool IsPosBECond, ScalarEvolution &SE) 4713 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4714 IsPositiveBECond(IsPosBECond) {} 4715 4716 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4717 4718 const Loop *L; 4719 /// Loop back condition. 4720 Value *BackedgeCond = nullptr; 4721 /// Set to true if loop back is on positive branch condition. 4722 bool IsPositiveBECond; 4723 }; 4724 4725 Optional<const SCEV *> 4726 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4727 4728 // If value matches the backedge condition for loop latch, 4729 // then return a constant evolution node based on loopback 4730 // branch taken. 4731 if (BackedgeCond == IC) 4732 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4733 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4734 return None; 4735 } 4736 4737 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4738 public: 4739 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4740 ScalarEvolution &SE) { 4741 SCEVShiftRewriter Rewriter(L, SE); 4742 const SCEV *Result = Rewriter.visit(S); 4743 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4744 } 4745 4746 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4747 // Only allow AddRecExprs for this loop. 4748 if (!SE.isLoopInvariant(Expr, L)) 4749 Valid = false; 4750 return Expr; 4751 } 4752 4753 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4754 if (Expr->getLoop() == L && Expr->isAffine()) 4755 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4756 Valid = false; 4757 return Expr; 4758 } 4759 4760 bool isValid() { return Valid; } 4761 4762 private: 4763 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4764 : SCEVRewriteVisitor(SE), L(L) {} 4765 4766 const Loop *L; 4767 bool Valid = true; 4768 }; 4769 4770 } // end anonymous namespace 4771 4772 SCEV::NoWrapFlags 4773 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4774 if (!AR->isAffine()) 4775 return SCEV::FlagAnyWrap; 4776 4777 using OBO = OverflowingBinaryOperator; 4778 4779 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4780 4781 if (!AR->hasNoSignedWrap()) { 4782 ConstantRange AddRecRange = getSignedRange(AR); 4783 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4784 4785 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4786 Instruction::Add, IncRange, OBO::NoSignedWrap); 4787 if (NSWRegion.contains(AddRecRange)) 4788 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4789 } 4790 4791 if (!AR->hasNoUnsignedWrap()) { 4792 ConstantRange AddRecRange = getUnsignedRange(AR); 4793 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4794 4795 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4796 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4797 if (NUWRegion.contains(AddRecRange)) 4798 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4799 } 4800 4801 return Result; 4802 } 4803 4804 SCEV::NoWrapFlags 4805 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4806 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4807 4808 if (AR->hasNoSignedWrap()) 4809 return Result; 4810 4811 if (!AR->isAffine()) 4812 return Result; 4813 4814 const SCEV *Step = AR->getStepRecurrence(*this); 4815 const Loop *L = AR->getLoop(); 4816 4817 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4818 // Note that this serves two purposes: It filters out loops that are 4819 // simply not analyzable, and it covers the case where this code is 4820 // being called from within backedge-taken count analysis, such that 4821 // attempting to ask for the backedge-taken count would likely result 4822 // in infinite recursion. In the later case, the analysis code will 4823 // cope with a conservative value, and it will take care to purge 4824 // that value once it has finished. 4825 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4826 4827 // Normally, in the cases we can prove no-overflow via a 4828 // backedge guarding condition, we can also compute a backedge 4829 // taken count for the loop. The exceptions are assumptions and 4830 // guards present in the loop -- SCEV is not great at exploiting 4831 // these to compute max backedge taken counts, but can still use 4832 // these to prove lack of overflow. Use this fact to avoid 4833 // doing extra work that may not pay off. 4834 4835 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4836 AC.assumptions().empty()) 4837 return Result; 4838 4839 // If the backedge is guarded by a comparison with the pre-inc value the 4840 // addrec is safe. Also, if the entry is guarded by a comparison with the 4841 // start value and the backedge is guarded by a comparison with the post-inc 4842 // value, the addrec is safe. 4843 ICmpInst::Predicate Pred; 4844 const SCEV *OverflowLimit = 4845 getSignedOverflowLimitForStep(Step, &Pred, this); 4846 if (OverflowLimit && 4847 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4848 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4849 Result = setFlags(Result, SCEV::FlagNSW); 4850 } 4851 return Result; 4852 } 4853 SCEV::NoWrapFlags 4854 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4855 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4856 4857 if (AR->hasNoUnsignedWrap()) 4858 return Result; 4859 4860 if (!AR->isAffine()) 4861 return Result; 4862 4863 const SCEV *Step = AR->getStepRecurrence(*this); 4864 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4865 const Loop *L = AR->getLoop(); 4866 4867 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4868 // Note that this serves two purposes: It filters out loops that are 4869 // simply not analyzable, and it covers the case where this code is 4870 // being called from within backedge-taken count analysis, such that 4871 // attempting to ask for the backedge-taken count would likely result 4872 // in infinite recursion. In the later case, the analysis code will 4873 // cope with a conservative value, and it will take care to purge 4874 // that value once it has finished. 4875 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4876 4877 // Normally, in the cases we can prove no-overflow via a 4878 // backedge guarding condition, we can also compute a backedge 4879 // taken count for the loop. The exceptions are assumptions and 4880 // guards present in the loop -- SCEV is not great at exploiting 4881 // these to compute max backedge taken counts, but can still use 4882 // these to prove lack of overflow. Use this fact to avoid 4883 // doing extra work that may not pay off. 4884 4885 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4886 AC.assumptions().empty()) 4887 return Result; 4888 4889 // If the backedge is guarded by a comparison with the pre-inc value the 4890 // addrec is safe. Also, if the entry is guarded by a comparison with the 4891 // start value and the backedge is guarded by a comparison with the post-inc 4892 // value, the addrec is safe. 4893 if (isKnownPositive(Step)) { 4894 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4895 getUnsignedRangeMax(Step)); 4896 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4897 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4898 Result = setFlags(Result, SCEV::FlagNUW); 4899 } 4900 } 4901 4902 return Result; 4903 } 4904 4905 namespace { 4906 4907 /// Represents an abstract binary operation. This may exist as a 4908 /// normal instruction or constant expression, or may have been 4909 /// derived from an expression tree. 4910 struct BinaryOp { 4911 unsigned Opcode; 4912 Value *LHS; 4913 Value *RHS; 4914 bool IsNSW = false; 4915 bool IsNUW = false; 4916 4917 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4918 /// constant expression. 4919 Operator *Op = nullptr; 4920 4921 explicit BinaryOp(Operator *Op) 4922 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4923 Op(Op) { 4924 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4925 IsNSW = OBO->hasNoSignedWrap(); 4926 IsNUW = OBO->hasNoUnsignedWrap(); 4927 } 4928 } 4929 4930 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4931 bool IsNUW = false) 4932 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4933 }; 4934 4935 } // end anonymous namespace 4936 4937 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4938 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4939 auto *Op = dyn_cast<Operator>(V); 4940 if (!Op) 4941 return None; 4942 4943 // Implementation detail: all the cleverness here should happen without 4944 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4945 // SCEV expressions when possible, and we should not break that. 4946 4947 switch (Op->getOpcode()) { 4948 case Instruction::Add: 4949 case Instruction::Sub: 4950 case Instruction::Mul: 4951 case Instruction::UDiv: 4952 case Instruction::URem: 4953 case Instruction::And: 4954 case Instruction::Or: 4955 case Instruction::AShr: 4956 case Instruction::Shl: 4957 return BinaryOp(Op); 4958 4959 case Instruction::Xor: 4960 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4961 // If the RHS of the xor is a signmask, then this is just an add. 4962 // Instcombine turns add of signmask into xor as a strength reduction step. 4963 if (RHSC->getValue().isSignMask()) 4964 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4965 return BinaryOp(Op); 4966 4967 case Instruction::LShr: 4968 // Turn logical shift right of a constant into a unsigned divide. 4969 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4970 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4971 4972 // If the shift count is not less than the bitwidth, the result of 4973 // the shift is undefined. Don't try to analyze it, because the 4974 // resolution chosen here may differ from the resolution chosen in 4975 // other parts of the compiler. 4976 if (SA->getValue().ult(BitWidth)) { 4977 Constant *X = 4978 ConstantInt::get(SA->getContext(), 4979 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4980 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4981 } 4982 } 4983 return BinaryOp(Op); 4984 4985 case Instruction::ExtractValue: { 4986 auto *EVI = cast<ExtractValueInst>(Op); 4987 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4988 break; 4989 4990 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4991 if (!WO) 4992 break; 4993 4994 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4995 bool Signed = WO->isSigned(); 4996 // TODO: Should add nuw/nsw flags for mul as well. 4997 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4998 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4999 5000 // Now that we know that all uses of the arithmetic-result component of 5001 // CI are guarded by the overflow check, we can go ahead and pretend 5002 // that the arithmetic is non-overflowing. 5003 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5004 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5005 } 5006 5007 default: 5008 break; 5009 } 5010 5011 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5012 // semantics as a Sub, return a binary sub expression. 5013 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5014 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5015 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5016 5017 return None; 5018 } 5019 5020 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5021 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5022 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5023 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5024 /// follows one of the following patterns: 5025 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5026 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5027 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5028 /// we return the type of the truncation operation, and indicate whether the 5029 /// truncated type should be treated as signed/unsigned by setting 5030 /// \p Signed to true/false, respectively. 5031 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5032 bool &Signed, ScalarEvolution &SE) { 5033 // The case where Op == SymbolicPHI (that is, with no type conversions on 5034 // the way) is handled by the regular add recurrence creating logic and 5035 // would have already been triggered in createAddRecForPHI. Reaching it here 5036 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5037 // because one of the other operands of the SCEVAddExpr updating this PHI is 5038 // not invariant). 5039 // 5040 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5041 // this case predicates that allow us to prove that Op == SymbolicPHI will 5042 // be added. 5043 if (Op == SymbolicPHI) 5044 return nullptr; 5045 5046 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5047 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5048 if (SourceBits != NewBits) 5049 return nullptr; 5050 5051 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5052 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5053 if (!SExt && !ZExt) 5054 return nullptr; 5055 const SCEVTruncateExpr *Trunc = 5056 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5057 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5058 if (!Trunc) 5059 return nullptr; 5060 const SCEV *X = Trunc->getOperand(); 5061 if (X != SymbolicPHI) 5062 return nullptr; 5063 Signed = SExt != nullptr; 5064 return Trunc->getType(); 5065 } 5066 5067 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5068 if (!PN->getType()->isIntegerTy()) 5069 return nullptr; 5070 const Loop *L = LI.getLoopFor(PN->getParent()); 5071 if (!L || L->getHeader() != PN->getParent()) 5072 return nullptr; 5073 return L; 5074 } 5075 5076 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5077 // computation that updates the phi follows the following pattern: 5078 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5079 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5080 // If so, try to see if it can be rewritten as an AddRecExpr under some 5081 // Predicates. If successful, return them as a pair. Also cache the results 5082 // of the analysis. 5083 // 5084 // Example usage scenario: 5085 // Say the Rewriter is called for the following SCEV: 5086 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5087 // where: 5088 // %X = phi i64 (%Start, %BEValue) 5089 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5090 // and call this function with %SymbolicPHI = %X. 5091 // 5092 // The analysis will find that the value coming around the backedge has 5093 // the following SCEV: 5094 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5095 // Upon concluding that this matches the desired pattern, the function 5096 // will return the pair {NewAddRec, SmallPredsVec} where: 5097 // NewAddRec = {%Start,+,%Step} 5098 // SmallPredsVec = {P1, P2, P3} as follows: 5099 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5100 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5101 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5102 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5103 // under the predicates {P1,P2,P3}. 5104 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5105 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5106 // 5107 // TODO's: 5108 // 5109 // 1) Extend the Induction descriptor to also support inductions that involve 5110 // casts: When needed (namely, when we are called in the context of the 5111 // vectorizer induction analysis), a Set of cast instructions will be 5112 // populated by this method, and provided back to isInductionPHI. This is 5113 // needed to allow the vectorizer to properly record them to be ignored by 5114 // the cost model and to avoid vectorizing them (otherwise these casts, 5115 // which are redundant under the runtime overflow checks, will be 5116 // vectorized, which can be costly). 5117 // 5118 // 2) Support additional induction/PHISCEV patterns: We also want to support 5119 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5120 // after the induction update operation (the induction increment): 5121 // 5122 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5123 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5124 // 5125 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5126 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5127 // 5128 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5129 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5130 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5131 SmallVector<const SCEVPredicate *, 3> Predicates; 5132 5133 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5134 // return an AddRec expression under some predicate. 5135 5136 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5137 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5138 assert(L && "Expecting an integer loop header phi"); 5139 5140 // The loop may have multiple entrances or multiple exits; we can analyze 5141 // this phi as an addrec if it has a unique entry value and a unique 5142 // backedge value. 5143 Value *BEValueV = nullptr, *StartValueV = nullptr; 5144 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5145 Value *V = PN->getIncomingValue(i); 5146 if (L->contains(PN->getIncomingBlock(i))) { 5147 if (!BEValueV) { 5148 BEValueV = V; 5149 } else if (BEValueV != V) { 5150 BEValueV = nullptr; 5151 break; 5152 } 5153 } else if (!StartValueV) { 5154 StartValueV = V; 5155 } else if (StartValueV != V) { 5156 StartValueV = nullptr; 5157 break; 5158 } 5159 } 5160 if (!BEValueV || !StartValueV) 5161 return None; 5162 5163 const SCEV *BEValue = getSCEV(BEValueV); 5164 5165 // If the value coming around the backedge is an add with the symbolic 5166 // value we just inserted, possibly with casts that we can ignore under 5167 // an appropriate runtime guard, then we found a simple induction variable! 5168 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5169 if (!Add) 5170 return None; 5171 5172 // If there is a single occurrence of the symbolic value, possibly 5173 // casted, replace it with a recurrence. 5174 unsigned FoundIndex = Add->getNumOperands(); 5175 Type *TruncTy = nullptr; 5176 bool Signed; 5177 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5178 if ((TruncTy = 5179 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5180 if (FoundIndex == e) { 5181 FoundIndex = i; 5182 break; 5183 } 5184 5185 if (FoundIndex == Add->getNumOperands()) 5186 return None; 5187 5188 // Create an add with everything but the specified operand. 5189 SmallVector<const SCEV *, 8> Ops; 5190 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5191 if (i != FoundIndex) 5192 Ops.push_back(Add->getOperand(i)); 5193 const SCEV *Accum = getAddExpr(Ops); 5194 5195 // The runtime checks will not be valid if the step amount is 5196 // varying inside the loop. 5197 if (!isLoopInvariant(Accum, L)) 5198 return None; 5199 5200 // *** Part2: Create the predicates 5201 5202 // Analysis was successful: we have a phi-with-cast pattern for which we 5203 // can return an AddRec expression under the following predicates: 5204 // 5205 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5206 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5207 // P2: An Equal predicate that guarantees that 5208 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5209 // P3: An Equal predicate that guarantees that 5210 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5211 // 5212 // As we next prove, the above predicates guarantee that: 5213 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5214 // 5215 // 5216 // More formally, we want to prove that: 5217 // Expr(i+1) = Start + (i+1) * Accum 5218 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5219 // 5220 // Given that: 5221 // 1) Expr(0) = Start 5222 // 2) Expr(1) = Start + Accum 5223 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5224 // 3) Induction hypothesis (step i): 5225 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5226 // 5227 // Proof: 5228 // Expr(i+1) = 5229 // = Start + (i+1)*Accum 5230 // = (Start + i*Accum) + Accum 5231 // = Expr(i) + Accum 5232 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5233 // :: from step i 5234 // 5235 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5236 // 5237 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5238 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5239 // + Accum :: from P3 5240 // 5241 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5242 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5243 // 5244 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5245 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5246 // 5247 // By induction, the same applies to all iterations 1<=i<n: 5248 // 5249 5250 // Create a truncated addrec for which we will add a no overflow check (P1). 5251 const SCEV *StartVal = getSCEV(StartValueV); 5252 const SCEV *PHISCEV = 5253 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5254 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5255 5256 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5257 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5258 // will be constant. 5259 // 5260 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5261 // add P1. 5262 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5263 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5264 Signed ? SCEVWrapPredicate::IncrementNSSW 5265 : SCEVWrapPredicate::IncrementNUSW; 5266 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5267 Predicates.push_back(AddRecPred); 5268 } 5269 5270 // Create the Equal Predicates P2,P3: 5271 5272 // It is possible that the predicates P2 and/or P3 are computable at 5273 // compile time due to StartVal and/or Accum being constants. 5274 // If either one is, then we can check that now and escape if either P2 5275 // or P3 is false. 5276 5277 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5278 // for each of StartVal and Accum 5279 auto getExtendedExpr = [&](const SCEV *Expr, 5280 bool CreateSignExtend) -> const SCEV * { 5281 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5282 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5283 const SCEV *ExtendedExpr = 5284 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5285 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5286 return ExtendedExpr; 5287 }; 5288 5289 // Given: 5290 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5291 // = getExtendedExpr(Expr) 5292 // Determine whether the predicate P: Expr == ExtendedExpr 5293 // is known to be false at compile time 5294 auto PredIsKnownFalse = [&](const SCEV *Expr, 5295 const SCEV *ExtendedExpr) -> bool { 5296 return Expr != ExtendedExpr && 5297 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5298 }; 5299 5300 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5301 if (PredIsKnownFalse(StartVal, StartExtended)) { 5302 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5303 return None; 5304 } 5305 5306 // The Step is always Signed (because the overflow checks are either 5307 // NSSW or NUSW) 5308 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5309 if (PredIsKnownFalse(Accum, AccumExtended)) { 5310 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5311 return None; 5312 } 5313 5314 auto AppendPredicate = [&](const SCEV *Expr, 5315 const SCEV *ExtendedExpr) -> void { 5316 if (Expr != ExtendedExpr && 5317 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5318 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5319 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5320 Predicates.push_back(Pred); 5321 } 5322 }; 5323 5324 AppendPredicate(StartVal, StartExtended); 5325 AppendPredicate(Accum, AccumExtended); 5326 5327 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5328 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5329 // into NewAR if it will also add the runtime overflow checks specified in 5330 // Predicates. 5331 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5332 5333 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5334 std::make_pair(NewAR, Predicates); 5335 // Remember the result of the analysis for this SCEV at this locayyytion. 5336 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5337 return PredRewrite; 5338 } 5339 5340 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5341 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5342 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5343 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5344 if (!L) 5345 return None; 5346 5347 // Check to see if we already analyzed this PHI. 5348 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5349 if (I != PredicatedSCEVRewrites.end()) { 5350 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5351 I->second; 5352 // Analysis was done before and failed to create an AddRec: 5353 if (Rewrite.first == SymbolicPHI) 5354 return None; 5355 // Analysis was done before and succeeded to create an AddRec under 5356 // a predicate: 5357 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5358 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5359 return Rewrite; 5360 } 5361 5362 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5363 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5364 5365 // Record in the cache that the analysis failed 5366 if (!Rewrite) { 5367 SmallVector<const SCEVPredicate *, 3> Predicates; 5368 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5369 return None; 5370 } 5371 5372 return Rewrite; 5373 } 5374 5375 // FIXME: This utility is currently required because the Rewriter currently 5376 // does not rewrite this expression: 5377 // {0, +, (sext ix (trunc iy to ix) to iy)} 5378 // into {0, +, %step}, 5379 // even when the following Equal predicate exists: 5380 // "%step == (sext ix (trunc iy to ix) to iy)". 5381 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5382 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5383 if (AR1 == AR2) 5384 return true; 5385 5386 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5387 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5388 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5389 return false; 5390 return true; 5391 }; 5392 5393 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5394 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5395 return false; 5396 return true; 5397 } 5398 5399 /// A helper function for createAddRecFromPHI to handle simple cases. 5400 /// 5401 /// This function tries to find an AddRec expression for the simplest (yet most 5402 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5403 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5404 /// technique for finding the AddRec expression. 5405 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5406 Value *BEValueV, 5407 Value *StartValueV) { 5408 const Loop *L = LI.getLoopFor(PN->getParent()); 5409 assert(L && L->getHeader() == PN->getParent()); 5410 assert(BEValueV && StartValueV); 5411 5412 auto BO = MatchBinaryOp(BEValueV, DT); 5413 if (!BO) 5414 return nullptr; 5415 5416 if (BO->Opcode != Instruction::Add) 5417 return nullptr; 5418 5419 const SCEV *Accum = nullptr; 5420 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5421 Accum = getSCEV(BO->RHS); 5422 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5423 Accum = getSCEV(BO->LHS); 5424 5425 if (!Accum) 5426 return nullptr; 5427 5428 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5429 if (BO->IsNUW) 5430 Flags = setFlags(Flags, SCEV::FlagNUW); 5431 if (BO->IsNSW) 5432 Flags = setFlags(Flags, SCEV::FlagNSW); 5433 5434 const SCEV *StartVal = getSCEV(StartValueV); 5435 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5436 insertValueToMap(PN, PHISCEV); 5437 5438 // We can add Flags to the post-inc expression only if we 5439 // know that it is *undefined behavior* for BEValueV to 5440 // overflow. 5441 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5442 assert(isLoopInvariant(Accum, L) && 5443 "Accum is defined outside L, but is not invariant?"); 5444 if (isAddRecNeverPoison(BEInst, L)) 5445 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5446 } 5447 5448 return PHISCEV; 5449 } 5450 5451 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5452 const Loop *L = LI.getLoopFor(PN->getParent()); 5453 if (!L || L->getHeader() != PN->getParent()) 5454 return nullptr; 5455 5456 // The loop may have multiple entrances or multiple exits; we can analyze 5457 // this phi as an addrec if it has a unique entry value and a unique 5458 // backedge value. 5459 Value *BEValueV = nullptr, *StartValueV = nullptr; 5460 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5461 Value *V = PN->getIncomingValue(i); 5462 if (L->contains(PN->getIncomingBlock(i))) { 5463 if (!BEValueV) { 5464 BEValueV = V; 5465 } else if (BEValueV != V) { 5466 BEValueV = nullptr; 5467 break; 5468 } 5469 } else if (!StartValueV) { 5470 StartValueV = V; 5471 } else if (StartValueV != V) { 5472 StartValueV = nullptr; 5473 break; 5474 } 5475 } 5476 if (!BEValueV || !StartValueV) 5477 return nullptr; 5478 5479 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5480 "PHI node already processed?"); 5481 5482 // First, try to find AddRec expression without creating a fictituos symbolic 5483 // value for PN. 5484 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5485 return S; 5486 5487 // Handle PHI node value symbolically. 5488 const SCEV *SymbolicName = getUnknown(PN); 5489 insertValueToMap(PN, SymbolicName); 5490 5491 // Using this symbolic name for the PHI, analyze the value coming around 5492 // the back-edge. 5493 const SCEV *BEValue = getSCEV(BEValueV); 5494 5495 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5496 // has a special value for the first iteration of the loop. 5497 5498 // If the value coming around the backedge is an add with the symbolic 5499 // value we just inserted, then we found a simple induction variable! 5500 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5501 // If there is a single occurrence of the symbolic value, replace it 5502 // with a recurrence. 5503 unsigned FoundIndex = Add->getNumOperands(); 5504 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5505 if (Add->getOperand(i) == SymbolicName) 5506 if (FoundIndex == e) { 5507 FoundIndex = i; 5508 break; 5509 } 5510 5511 if (FoundIndex != Add->getNumOperands()) { 5512 // Create an add with everything but the specified operand. 5513 SmallVector<const SCEV *, 8> Ops; 5514 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5515 if (i != FoundIndex) 5516 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5517 L, *this)); 5518 const SCEV *Accum = getAddExpr(Ops); 5519 5520 // This is not a valid addrec if the step amount is varying each 5521 // loop iteration, but is not itself an addrec in this loop. 5522 if (isLoopInvariant(Accum, L) || 5523 (isa<SCEVAddRecExpr>(Accum) && 5524 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5525 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5526 5527 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5528 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5529 if (BO->IsNUW) 5530 Flags = setFlags(Flags, SCEV::FlagNUW); 5531 if (BO->IsNSW) 5532 Flags = setFlags(Flags, SCEV::FlagNSW); 5533 } 5534 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5535 // If the increment is an inbounds GEP, then we know the address 5536 // space cannot be wrapped around. We cannot make any guarantee 5537 // about signed or unsigned overflow because pointers are 5538 // unsigned but we may have a negative index from the base 5539 // pointer. We can guarantee that no unsigned wrap occurs if the 5540 // indices form a positive value. 5541 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5542 Flags = setFlags(Flags, SCEV::FlagNW); 5543 5544 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5545 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5546 Flags = setFlags(Flags, SCEV::FlagNUW); 5547 } 5548 5549 // We cannot transfer nuw and nsw flags from subtraction 5550 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5551 // for instance. 5552 } 5553 5554 const SCEV *StartVal = getSCEV(StartValueV); 5555 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5556 5557 // Okay, for the entire analysis of this edge we assumed the PHI 5558 // to be symbolic. We now need to go back and purge all of the 5559 // entries for the scalars that use the symbolic expression. 5560 forgetMemoizedResults(SymbolicName); 5561 insertValueToMap(PN, PHISCEV); 5562 5563 // We can add Flags to the post-inc expression only if we 5564 // know that it is *undefined behavior* for BEValueV to 5565 // overflow. 5566 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5567 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5568 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5569 5570 return PHISCEV; 5571 } 5572 } 5573 } else { 5574 // Otherwise, this could be a loop like this: 5575 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5576 // In this case, j = {1,+,1} and BEValue is j. 5577 // Because the other in-value of i (0) fits the evolution of BEValue 5578 // i really is an addrec evolution. 5579 // 5580 // We can generalize this saying that i is the shifted value of BEValue 5581 // by one iteration: 5582 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5583 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5584 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5585 if (Shifted != getCouldNotCompute() && 5586 Start != getCouldNotCompute()) { 5587 const SCEV *StartVal = getSCEV(StartValueV); 5588 if (Start == StartVal) { 5589 // Okay, for the entire analysis of this edge we assumed the PHI 5590 // to be symbolic. We now need to go back and purge all of the 5591 // entries for the scalars that use the symbolic expression. 5592 forgetMemoizedResults(SymbolicName); 5593 insertValueToMap(PN, Shifted); 5594 return Shifted; 5595 } 5596 } 5597 } 5598 5599 // Remove the temporary PHI node SCEV that has been inserted while intending 5600 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5601 // as it will prevent later (possibly simpler) SCEV expressions to be added 5602 // to the ValueExprMap. 5603 eraseValueFromMap(PN); 5604 5605 return nullptr; 5606 } 5607 5608 // Checks if the SCEV S is available at BB. S is considered available at BB 5609 // if S can be materialized at BB without introducing a fault. 5610 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5611 BasicBlock *BB) { 5612 struct CheckAvailable { 5613 bool TraversalDone = false; 5614 bool Available = true; 5615 5616 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5617 BasicBlock *BB = nullptr; 5618 DominatorTree &DT; 5619 5620 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5621 : L(L), BB(BB), DT(DT) {} 5622 5623 bool setUnavailable() { 5624 TraversalDone = true; 5625 Available = false; 5626 return false; 5627 } 5628 5629 bool follow(const SCEV *S) { 5630 switch (S->getSCEVType()) { 5631 case scConstant: 5632 case scPtrToInt: 5633 case scTruncate: 5634 case scZeroExtend: 5635 case scSignExtend: 5636 case scAddExpr: 5637 case scMulExpr: 5638 case scUMaxExpr: 5639 case scSMaxExpr: 5640 case scUMinExpr: 5641 case scSMinExpr: 5642 case scSequentialUMinExpr: 5643 // These expressions are available if their operand(s) is/are. 5644 return true; 5645 5646 case scAddRecExpr: { 5647 // We allow add recurrences that are on the loop BB is in, or some 5648 // outer loop. This guarantees availability because the value of the 5649 // add recurrence at BB is simply the "current" value of the induction 5650 // variable. We can relax this in the future; for instance an add 5651 // recurrence on a sibling dominating loop is also available at BB. 5652 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5653 if (L && (ARLoop == L || ARLoop->contains(L))) 5654 return true; 5655 5656 return setUnavailable(); 5657 } 5658 5659 case scUnknown: { 5660 // For SCEVUnknown, we check for simple dominance. 5661 const auto *SU = cast<SCEVUnknown>(S); 5662 Value *V = SU->getValue(); 5663 5664 if (isa<Argument>(V)) 5665 return false; 5666 5667 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5668 return false; 5669 5670 return setUnavailable(); 5671 } 5672 5673 case scUDivExpr: 5674 case scCouldNotCompute: 5675 // We do not try to smart about these at all. 5676 return setUnavailable(); 5677 } 5678 llvm_unreachable("Unknown SCEV kind!"); 5679 } 5680 5681 bool isDone() { return TraversalDone; } 5682 }; 5683 5684 CheckAvailable CA(L, BB, DT); 5685 SCEVTraversal<CheckAvailable> ST(CA); 5686 5687 ST.visitAll(S); 5688 return CA.Available; 5689 } 5690 5691 // Try to match a control flow sequence that branches out at BI and merges back 5692 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5693 // match. 5694 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5695 Value *&C, Value *&LHS, Value *&RHS) { 5696 C = BI->getCondition(); 5697 5698 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5699 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5700 5701 if (!LeftEdge.isSingleEdge()) 5702 return false; 5703 5704 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5705 5706 Use &LeftUse = Merge->getOperandUse(0); 5707 Use &RightUse = Merge->getOperandUse(1); 5708 5709 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5710 LHS = LeftUse; 5711 RHS = RightUse; 5712 return true; 5713 } 5714 5715 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5716 LHS = RightUse; 5717 RHS = LeftUse; 5718 return true; 5719 } 5720 5721 return false; 5722 } 5723 5724 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5725 auto IsReachable = 5726 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5727 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5728 const Loop *L = LI.getLoopFor(PN->getParent()); 5729 5730 // We don't want to break LCSSA, even in a SCEV expression tree. 5731 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5732 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5733 return nullptr; 5734 5735 // Try to match 5736 // 5737 // br %cond, label %left, label %right 5738 // left: 5739 // br label %merge 5740 // right: 5741 // br label %merge 5742 // merge: 5743 // V = phi [ %x, %left ], [ %y, %right ] 5744 // 5745 // as "select %cond, %x, %y" 5746 5747 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5748 assert(IDom && "At least the entry block should dominate PN"); 5749 5750 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5751 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5752 5753 if (BI && BI->isConditional() && 5754 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5755 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5756 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5757 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5758 } 5759 5760 return nullptr; 5761 } 5762 5763 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5764 if (const SCEV *S = createAddRecFromPHI(PN)) 5765 return S; 5766 5767 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5768 return S; 5769 5770 // If the PHI has a single incoming value, follow that value, unless the 5771 // PHI's incoming blocks are in a different loop, in which case doing so 5772 // risks breaking LCSSA form. Instcombine would normally zap these, but 5773 // it doesn't have DominatorTree information, so it may miss cases. 5774 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5775 if (LI.replacementPreservesLCSSAForm(PN, V)) 5776 return getSCEV(V); 5777 5778 // If it's not a loop phi, we can't handle it yet. 5779 return getUnknown(PN); 5780 } 5781 5782 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5783 Value *Cond, 5784 Value *TrueVal, 5785 Value *FalseVal) { 5786 // Handle "constant" branch or select. This can occur for instance when a 5787 // loop pass transforms an inner loop and moves on to process the outer loop. 5788 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5789 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5790 5791 // Try to match some simple smax or umax patterns. 5792 auto *ICI = dyn_cast<ICmpInst>(Cond); 5793 if (!ICI) 5794 return getUnknown(I); 5795 5796 Value *LHS = ICI->getOperand(0); 5797 Value *RHS = ICI->getOperand(1); 5798 5799 switch (ICI->getPredicate()) { 5800 case ICmpInst::ICMP_SLT: 5801 case ICmpInst::ICMP_SLE: 5802 case ICmpInst::ICMP_ULT: 5803 case ICmpInst::ICMP_ULE: 5804 std::swap(LHS, RHS); 5805 LLVM_FALLTHROUGH; 5806 case ICmpInst::ICMP_SGT: 5807 case ICmpInst::ICMP_SGE: 5808 case ICmpInst::ICMP_UGT: 5809 case ICmpInst::ICMP_UGE: 5810 // a > b ? a+x : b+x -> max(a, b)+x 5811 // a > b ? b+x : a+x -> min(a, b)+x 5812 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5813 bool Signed = ICI->isSigned(); 5814 const SCEV *LA = getSCEV(TrueVal); 5815 const SCEV *RA = getSCEV(FalseVal); 5816 const SCEV *LS = getSCEV(LHS); 5817 const SCEV *RS = getSCEV(RHS); 5818 if (LA->getType()->isPointerTy()) { 5819 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5820 // Need to make sure we can't produce weird expressions involving 5821 // negated pointers. 5822 if (LA == LS && RA == RS) 5823 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5824 if (LA == RS && RA == LS) 5825 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5826 } 5827 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5828 if (Op->getType()->isPointerTy()) { 5829 Op = getLosslessPtrToIntExpr(Op); 5830 if (isa<SCEVCouldNotCompute>(Op)) 5831 return Op; 5832 } 5833 if (Signed) 5834 Op = getNoopOrSignExtend(Op, I->getType()); 5835 else 5836 Op = getNoopOrZeroExtend(Op, I->getType()); 5837 return Op; 5838 }; 5839 LS = CoerceOperand(LS); 5840 RS = CoerceOperand(RS); 5841 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5842 break; 5843 const SCEV *LDiff = getMinusSCEV(LA, LS); 5844 const SCEV *RDiff = getMinusSCEV(RA, RS); 5845 if (LDiff == RDiff) 5846 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5847 LDiff); 5848 LDiff = getMinusSCEV(LA, RS); 5849 RDiff = getMinusSCEV(RA, LS); 5850 if (LDiff == RDiff) 5851 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5852 LDiff); 5853 } 5854 break; 5855 case ICmpInst::ICMP_NE: 5856 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5857 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5858 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5859 const SCEV *One = getOne(I->getType()); 5860 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5861 const SCEV *LA = getSCEV(TrueVal); 5862 const SCEV *RA = getSCEV(FalseVal); 5863 const SCEV *LDiff = getMinusSCEV(LA, LS); 5864 const SCEV *RDiff = getMinusSCEV(RA, One); 5865 if (LDiff == RDiff) 5866 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5867 } 5868 break; 5869 case ICmpInst::ICMP_EQ: 5870 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5871 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5872 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5873 const SCEV *One = getOne(I->getType()); 5874 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5875 const SCEV *LA = getSCEV(TrueVal); 5876 const SCEV *RA = getSCEV(FalseVal); 5877 const SCEV *LDiff = getMinusSCEV(LA, One); 5878 const SCEV *RDiff = getMinusSCEV(RA, LS); 5879 if (LDiff == RDiff) 5880 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5881 } 5882 break; 5883 default: 5884 break; 5885 } 5886 5887 return getUnknown(I); 5888 } 5889 5890 /// Expand GEP instructions into add and multiply operations. This allows them 5891 /// to be analyzed by regular SCEV code. 5892 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5893 // Don't attempt to analyze GEPs over unsized objects. 5894 if (!GEP->getSourceElementType()->isSized()) 5895 return getUnknown(GEP); 5896 5897 SmallVector<const SCEV *, 4> IndexExprs; 5898 for (Value *Index : GEP->indices()) 5899 IndexExprs.push_back(getSCEV(Index)); 5900 return getGEPExpr(GEP, IndexExprs); 5901 } 5902 5903 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5904 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5905 return C->getAPInt().countTrailingZeros(); 5906 5907 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5908 return GetMinTrailingZeros(I->getOperand()); 5909 5910 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5911 return std::min(GetMinTrailingZeros(T->getOperand()), 5912 (uint32_t)getTypeSizeInBits(T->getType())); 5913 5914 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5915 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5916 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5917 ? getTypeSizeInBits(E->getType()) 5918 : OpRes; 5919 } 5920 5921 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5922 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5923 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5924 ? getTypeSizeInBits(E->getType()) 5925 : OpRes; 5926 } 5927 5928 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5929 // The result is the min of all operands results. 5930 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5931 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5932 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5933 return MinOpRes; 5934 } 5935 5936 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5937 // The result is the sum of all operands results. 5938 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5939 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5940 for (unsigned i = 1, e = M->getNumOperands(); 5941 SumOpRes != BitWidth && i != e; ++i) 5942 SumOpRes = 5943 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5944 return SumOpRes; 5945 } 5946 5947 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5948 // The result is the min of all operands results. 5949 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5950 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5951 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5952 return MinOpRes; 5953 } 5954 5955 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5956 // The result is the min of all operands results. 5957 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5958 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5959 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5960 return MinOpRes; 5961 } 5962 5963 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5964 // The result is the min of all operands results. 5965 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5966 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5967 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5968 return MinOpRes; 5969 } 5970 5971 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5972 // For a SCEVUnknown, ask ValueTracking. 5973 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5974 return Known.countMinTrailingZeros(); 5975 } 5976 5977 // SCEVUDivExpr 5978 return 0; 5979 } 5980 5981 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5982 auto I = MinTrailingZerosCache.find(S); 5983 if (I != MinTrailingZerosCache.end()) 5984 return I->second; 5985 5986 uint32_t Result = GetMinTrailingZerosImpl(S); 5987 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5988 assert(InsertPair.second && "Should insert a new key"); 5989 return InsertPair.first->second; 5990 } 5991 5992 /// Helper method to assign a range to V from metadata present in the IR. 5993 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5994 if (Instruction *I = dyn_cast<Instruction>(V)) 5995 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5996 return getConstantRangeFromMetadata(*MD); 5997 5998 return None; 5999 } 6000 6001 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6002 SCEV::NoWrapFlags Flags) { 6003 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6004 AddRec->setNoWrapFlags(Flags); 6005 UnsignedRanges.erase(AddRec); 6006 SignedRanges.erase(AddRec); 6007 } 6008 } 6009 6010 ConstantRange ScalarEvolution:: 6011 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6012 const DataLayout &DL = getDataLayout(); 6013 6014 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6015 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6016 6017 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6018 // use information about the trip count to improve our available range. Note 6019 // that the trip count independent cases are already handled by known bits. 6020 // WARNING: The definition of recurrence used here is subtly different than 6021 // the one used by AddRec (and thus most of this file). Step is allowed to 6022 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6023 // and other addrecs in the same loop (for non-affine addrecs). The code 6024 // below intentionally handles the case where step is not loop invariant. 6025 auto *P = dyn_cast<PHINode>(U->getValue()); 6026 if (!P) 6027 return FullSet; 6028 6029 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6030 // even the values that are not available in these blocks may come from them, 6031 // and this leads to false-positive recurrence test. 6032 for (auto *Pred : predecessors(P->getParent())) 6033 if (!DT.isReachableFromEntry(Pred)) 6034 return FullSet; 6035 6036 BinaryOperator *BO; 6037 Value *Start, *Step; 6038 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6039 return FullSet; 6040 6041 // If we found a recurrence in reachable code, we must be in a loop. Note 6042 // that BO might be in some subloop of L, and that's completely okay. 6043 auto *L = LI.getLoopFor(P->getParent()); 6044 assert(L && L->getHeader() == P->getParent()); 6045 if (!L->contains(BO->getParent())) 6046 // NOTE: This bailout should be an assert instead. However, asserting 6047 // the condition here exposes a case where LoopFusion is querying SCEV 6048 // with malformed loop information during the midst of the transform. 6049 // There doesn't appear to be an obvious fix, so for the moment bailout 6050 // until the caller issue can be fixed. PR49566 tracks the bug. 6051 return FullSet; 6052 6053 // TODO: Extend to other opcodes such as mul, and div 6054 switch (BO->getOpcode()) { 6055 default: 6056 return FullSet; 6057 case Instruction::AShr: 6058 case Instruction::LShr: 6059 case Instruction::Shl: 6060 break; 6061 }; 6062 6063 if (BO->getOperand(0) != P) 6064 // TODO: Handle the power function forms some day. 6065 return FullSet; 6066 6067 unsigned TC = getSmallConstantMaxTripCount(L); 6068 if (!TC || TC >= BitWidth) 6069 return FullSet; 6070 6071 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6072 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6073 assert(KnownStart.getBitWidth() == BitWidth && 6074 KnownStep.getBitWidth() == BitWidth); 6075 6076 // Compute total shift amount, being careful of overflow and bitwidths. 6077 auto MaxShiftAmt = KnownStep.getMaxValue(); 6078 APInt TCAP(BitWidth, TC-1); 6079 bool Overflow = false; 6080 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6081 if (Overflow) 6082 return FullSet; 6083 6084 switch (BO->getOpcode()) { 6085 default: 6086 llvm_unreachable("filtered out above"); 6087 case Instruction::AShr: { 6088 // For each ashr, three cases: 6089 // shift = 0 => unchanged value 6090 // saturation => 0 or -1 6091 // other => a value closer to zero (of the same sign) 6092 // Thus, the end value is closer to zero than the start. 6093 auto KnownEnd = KnownBits::ashr(KnownStart, 6094 KnownBits::makeConstant(TotalShift)); 6095 if (KnownStart.isNonNegative()) 6096 // Analogous to lshr (simply not yet canonicalized) 6097 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6098 KnownStart.getMaxValue() + 1); 6099 if (KnownStart.isNegative()) 6100 // End >=u Start && End <=s Start 6101 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6102 KnownEnd.getMaxValue() + 1); 6103 break; 6104 } 6105 case Instruction::LShr: { 6106 // For each lshr, three cases: 6107 // shift = 0 => unchanged value 6108 // saturation => 0 6109 // other => a smaller positive number 6110 // Thus, the low end of the unsigned range is the last value produced. 6111 auto KnownEnd = KnownBits::lshr(KnownStart, 6112 KnownBits::makeConstant(TotalShift)); 6113 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6114 KnownStart.getMaxValue() + 1); 6115 } 6116 case Instruction::Shl: { 6117 // Iff no bits are shifted out, value increases on every shift. 6118 auto KnownEnd = KnownBits::shl(KnownStart, 6119 KnownBits::makeConstant(TotalShift)); 6120 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6121 return ConstantRange(KnownStart.getMinValue(), 6122 KnownEnd.getMaxValue() + 1); 6123 break; 6124 } 6125 }; 6126 return FullSet; 6127 } 6128 6129 /// Determine the range for a particular SCEV. If SignHint is 6130 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6131 /// with a "cleaner" unsigned (resp. signed) representation. 6132 const ConstantRange & 6133 ScalarEvolution::getRangeRef(const SCEV *S, 6134 ScalarEvolution::RangeSignHint SignHint) { 6135 DenseMap<const SCEV *, ConstantRange> &Cache = 6136 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6137 : SignedRanges; 6138 ConstantRange::PreferredRangeType RangeType = 6139 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6140 ? ConstantRange::Unsigned : ConstantRange::Signed; 6141 6142 // See if we've computed this range already. 6143 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6144 if (I != Cache.end()) 6145 return I->second; 6146 6147 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6148 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6149 6150 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6151 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6152 using OBO = OverflowingBinaryOperator; 6153 6154 // If the value has known zeros, the maximum value will have those known zeros 6155 // as well. 6156 uint32_t TZ = GetMinTrailingZeros(S); 6157 if (TZ != 0) { 6158 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6159 ConservativeResult = 6160 ConstantRange(APInt::getMinValue(BitWidth), 6161 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6162 else 6163 ConservativeResult = ConstantRange( 6164 APInt::getSignedMinValue(BitWidth), 6165 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6166 } 6167 6168 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6169 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6170 unsigned WrapType = OBO::AnyWrap; 6171 if (Add->hasNoSignedWrap()) 6172 WrapType |= OBO::NoSignedWrap; 6173 if (Add->hasNoUnsignedWrap()) 6174 WrapType |= OBO::NoUnsignedWrap; 6175 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6176 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6177 WrapType, RangeType); 6178 return setRange(Add, SignHint, 6179 ConservativeResult.intersectWith(X, RangeType)); 6180 } 6181 6182 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6183 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6184 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6185 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6186 return setRange(Mul, SignHint, 6187 ConservativeResult.intersectWith(X, RangeType)); 6188 } 6189 6190 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) { 6191 Intrinsic::ID ID; 6192 switch (S->getSCEVType()) { 6193 case scUMaxExpr: 6194 ID = Intrinsic::umax; 6195 break; 6196 case scSMaxExpr: 6197 ID = Intrinsic::smax; 6198 break; 6199 case scUMinExpr: 6200 case scSequentialUMinExpr: 6201 ID = Intrinsic::umin; 6202 break; 6203 case scSMinExpr: 6204 ID = Intrinsic::smin; 6205 break; 6206 default: 6207 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6208 } 6209 6210 const auto *NAry = cast<SCEVNAryExpr>(S); 6211 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint); 6212 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6213 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)}); 6214 return setRange(S, SignHint, 6215 ConservativeResult.intersectWith(X, RangeType)); 6216 } 6217 6218 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6219 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6220 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6221 return setRange(UDiv, SignHint, 6222 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6223 } 6224 6225 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6226 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6227 return setRange(ZExt, SignHint, 6228 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6229 RangeType)); 6230 } 6231 6232 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6233 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6234 return setRange(SExt, SignHint, 6235 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6236 RangeType)); 6237 } 6238 6239 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6240 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6241 return setRange(PtrToInt, SignHint, X); 6242 } 6243 6244 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6245 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6246 return setRange(Trunc, SignHint, 6247 ConservativeResult.intersectWith(X.truncate(BitWidth), 6248 RangeType)); 6249 } 6250 6251 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6252 // If there's no unsigned wrap, the value will never be less than its 6253 // initial value. 6254 if (AddRec->hasNoUnsignedWrap()) { 6255 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6256 if (!UnsignedMinValue.isZero()) 6257 ConservativeResult = ConservativeResult.intersectWith( 6258 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6259 } 6260 6261 // If there's no signed wrap, and all the operands except initial value have 6262 // the same sign or zero, the value won't ever be: 6263 // 1: smaller than initial value if operands are non negative, 6264 // 2: bigger than initial value if operands are non positive. 6265 // For both cases, value can not cross signed min/max boundary. 6266 if (AddRec->hasNoSignedWrap()) { 6267 bool AllNonNeg = true; 6268 bool AllNonPos = true; 6269 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6270 if (!isKnownNonNegative(AddRec->getOperand(i))) 6271 AllNonNeg = false; 6272 if (!isKnownNonPositive(AddRec->getOperand(i))) 6273 AllNonPos = false; 6274 } 6275 if (AllNonNeg) 6276 ConservativeResult = ConservativeResult.intersectWith( 6277 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6278 APInt::getSignedMinValue(BitWidth)), 6279 RangeType); 6280 else if (AllNonPos) 6281 ConservativeResult = ConservativeResult.intersectWith( 6282 ConstantRange::getNonEmpty( 6283 APInt::getSignedMinValue(BitWidth), 6284 getSignedRangeMax(AddRec->getStart()) + 1), 6285 RangeType); 6286 } 6287 6288 // TODO: non-affine addrec 6289 if (AddRec->isAffine()) { 6290 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6291 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6292 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6293 auto RangeFromAffine = getRangeForAffineAR( 6294 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6295 BitWidth); 6296 ConservativeResult = 6297 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6298 6299 auto RangeFromFactoring = getRangeViaFactoring( 6300 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6301 BitWidth); 6302 ConservativeResult = 6303 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6304 } 6305 6306 // Now try symbolic BE count and more powerful methods. 6307 if (UseExpensiveRangeSharpening) { 6308 const SCEV *SymbolicMaxBECount = 6309 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6310 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6311 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6312 AddRec->hasNoSelfWrap()) { 6313 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6314 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6315 ConservativeResult = 6316 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6317 } 6318 } 6319 } 6320 6321 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6322 } 6323 6324 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6325 6326 // Check if the IR explicitly contains !range metadata. 6327 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6328 if (MDRange.hasValue()) 6329 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6330 RangeType); 6331 6332 // Use facts about recurrences in the underlying IR. Note that add 6333 // recurrences are AddRecExprs and thus don't hit this path. This 6334 // primarily handles shift recurrences. 6335 auto CR = getRangeForUnknownRecurrence(U); 6336 ConservativeResult = ConservativeResult.intersectWith(CR); 6337 6338 // See if ValueTracking can give us a useful range. 6339 const DataLayout &DL = getDataLayout(); 6340 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6341 if (Known.getBitWidth() != BitWidth) 6342 Known = Known.zextOrTrunc(BitWidth); 6343 6344 // ValueTracking may be able to compute a tighter result for the number of 6345 // sign bits than for the value of those sign bits. 6346 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6347 if (U->getType()->isPointerTy()) { 6348 // If the pointer size is larger than the index size type, this can cause 6349 // NS to be larger than BitWidth. So compensate for this. 6350 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6351 int ptrIdxDiff = ptrSize - BitWidth; 6352 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6353 NS -= ptrIdxDiff; 6354 } 6355 6356 if (NS > 1) { 6357 // If we know any of the sign bits, we know all of the sign bits. 6358 if (!Known.Zero.getHiBits(NS).isZero()) 6359 Known.Zero.setHighBits(NS); 6360 if (!Known.One.getHiBits(NS).isZero()) 6361 Known.One.setHighBits(NS); 6362 } 6363 6364 if (Known.getMinValue() != Known.getMaxValue() + 1) 6365 ConservativeResult = ConservativeResult.intersectWith( 6366 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6367 RangeType); 6368 if (NS > 1) 6369 ConservativeResult = ConservativeResult.intersectWith( 6370 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6371 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6372 RangeType); 6373 6374 // A range of Phi is a subset of union of all ranges of its input. 6375 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6376 // Make sure that we do not run over cycled Phis. 6377 if (PendingPhiRanges.insert(Phi).second) { 6378 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6379 for (auto &Op : Phi->operands()) { 6380 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6381 RangeFromOps = RangeFromOps.unionWith(OpRange); 6382 // No point to continue if we already have a full set. 6383 if (RangeFromOps.isFullSet()) 6384 break; 6385 } 6386 ConservativeResult = 6387 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6388 bool Erased = PendingPhiRanges.erase(Phi); 6389 assert(Erased && "Failed to erase Phi properly?"); 6390 (void) Erased; 6391 } 6392 } 6393 6394 return setRange(U, SignHint, std::move(ConservativeResult)); 6395 } 6396 6397 return setRange(S, SignHint, std::move(ConservativeResult)); 6398 } 6399 6400 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6401 // values that the expression can take. Initially, the expression has a value 6402 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6403 // argument defines if we treat Step as signed or unsigned. 6404 static ConstantRange getRangeForAffineARHelper(APInt Step, 6405 const ConstantRange &StartRange, 6406 const APInt &MaxBECount, 6407 unsigned BitWidth, bool Signed) { 6408 // If either Step or MaxBECount is 0, then the expression won't change, and we 6409 // just need to return the initial range. 6410 if (Step == 0 || MaxBECount == 0) 6411 return StartRange; 6412 6413 // If we don't know anything about the initial value (i.e. StartRange is 6414 // FullRange), then we don't know anything about the final range either. 6415 // Return FullRange. 6416 if (StartRange.isFullSet()) 6417 return ConstantRange::getFull(BitWidth); 6418 6419 // If Step is signed and negative, then we use its absolute value, but we also 6420 // note that we're moving in the opposite direction. 6421 bool Descending = Signed && Step.isNegative(); 6422 6423 if (Signed) 6424 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6425 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6426 // This equations hold true due to the well-defined wrap-around behavior of 6427 // APInt. 6428 Step = Step.abs(); 6429 6430 // Check if Offset is more than full span of BitWidth. If it is, the 6431 // expression is guaranteed to overflow. 6432 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6433 return ConstantRange::getFull(BitWidth); 6434 6435 // Offset is by how much the expression can change. Checks above guarantee no 6436 // overflow here. 6437 APInt Offset = Step * MaxBECount; 6438 6439 // Minimum value of the final range will match the minimal value of StartRange 6440 // if the expression is increasing and will be decreased by Offset otherwise. 6441 // Maximum value of the final range will match the maximal value of StartRange 6442 // if the expression is decreasing and will be increased by Offset otherwise. 6443 APInt StartLower = StartRange.getLower(); 6444 APInt StartUpper = StartRange.getUpper() - 1; 6445 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6446 : (StartUpper + std::move(Offset)); 6447 6448 // It's possible that the new minimum/maximum value will fall into the initial 6449 // range (due to wrap around). This means that the expression can take any 6450 // value in this bitwidth, and we have to return full range. 6451 if (StartRange.contains(MovedBoundary)) 6452 return ConstantRange::getFull(BitWidth); 6453 6454 APInt NewLower = 6455 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6456 APInt NewUpper = 6457 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6458 NewUpper += 1; 6459 6460 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6461 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6462 } 6463 6464 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6465 const SCEV *Step, 6466 const SCEV *MaxBECount, 6467 unsigned BitWidth) { 6468 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6469 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6470 "Precondition!"); 6471 6472 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6473 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6474 6475 // First, consider step signed. 6476 ConstantRange StartSRange = getSignedRange(Start); 6477 ConstantRange StepSRange = getSignedRange(Step); 6478 6479 // If Step can be both positive and negative, we need to find ranges for the 6480 // maximum absolute step values in both directions and union them. 6481 ConstantRange SR = 6482 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6483 MaxBECountValue, BitWidth, /* Signed = */ true); 6484 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6485 StartSRange, MaxBECountValue, 6486 BitWidth, /* Signed = */ true)); 6487 6488 // Next, consider step unsigned. 6489 ConstantRange UR = getRangeForAffineARHelper( 6490 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6491 MaxBECountValue, BitWidth, /* Signed = */ false); 6492 6493 // Finally, intersect signed and unsigned ranges. 6494 return SR.intersectWith(UR, ConstantRange::Smallest); 6495 } 6496 6497 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6498 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6499 ScalarEvolution::RangeSignHint SignHint) { 6500 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6501 assert(AddRec->hasNoSelfWrap() && 6502 "This only works for non-self-wrapping AddRecs!"); 6503 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6504 const SCEV *Step = AddRec->getStepRecurrence(*this); 6505 // Only deal with constant step to save compile time. 6506 if (!isa<SCEVConstant>(Step)) 6507 return ConstantRange::getFull(BitWidth); 6508 // Let's make sure that we can prove that we do not self-wrap during 6509 // MaxBECount iterations. We need this because MaxBECount is a maximum 6510 // iteration count estimate, and we might infer nw from some exit for which we 6511 // do not know max exit count (or any other side reasoning). 6512 // TODO: Turn into assert at some point. 6513 if (getTypeSizeInBits(MaxBECount->getType()) > 6514 getTypeSizeInBits(AddRec->getType())) 6515 return ConstantRange::getFull(BitWidth); 6516 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6517 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6518 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6519 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6520 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6521 MaxItersWithoutWrap)) 6522 return ConstantRange::getFull(BitWidth); 6523 6524 ICmpInst::Predicate LEPred = 6525 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6526 ICmpInst::Predicate GEPred = 6527 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6528 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6529 6530 // We know that there is no self-wrap. Let's take Start and End values and 6531 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6532 // the iteration. They either lie inside the range [Min(Start, End), 6533 // Max(Start, End)] or outside it: 6534 // 6535 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6536 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6537 // 6538 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6539 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6540 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6541 // Start <= End and step is positive, or Start >= End and step is negative. 6542 const SCEV *Start = AddRec->getStart(); 6543 ConstantRange StartRange = getRangeRef(Start, SignHint); 6544 ConstantRange EndRange = getRangeRef(End, SignHint); 6545 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6546 // If they already cover full iteration space, we will know nothing useful 6547 // even if we prove what we want to prove. 6548 if (RangeBetween.isFullSet()) 6549 return RangeBetween; 6550 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6551 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6552 : RangeBetween.isWrappedSet(); 6553 if (IsWrappedSet) 6554 return ConstantRange::getFull(BitWidth); 6555 6556 if (isKnownPositive(Step) && 6557 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6558 return RangeBetween; 6559 else if (isKnownNegative(Step) && 6560 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6561 return RangeBetween; 6562 return ConstantRange::getFull(BitWidth); 6563 } 6564 6565 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6566 const SCEV *Step, 6567 const SCEV *MaxBECount, 6568 unsigned BitWidth) { 6569 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6570 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6571 6572 struct SelectPattern { 6573 Value *Condition = nullptr; 6574 APInt TrueValue; 6575 APInt FalseValue; 6576 6577 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6578 const SCEV *S) { 6579 Optional<unsigned> CastOp; 6580 APInt Offset(BitWidth, 0); 6581 6582 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6583 "Should be!"); 6584 6585 // Peel off a constant offset: 6586 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6587 // In the future we could consider being smarter here and handle 6588 // {Start+Step,+,Step} too. 6589 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6590 return; 6591 6592 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6593 S = SA->getOperand(1); 6594 } 6595 6596 // Peel off a cast operation 6597 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6598 CastOp = SCast->getSCEVType(); 6599 S = SCast->getOperand(); 6600 } 6601 6602 using namespace llvm::PatternMatch; 6603 6604 auto *SU = dyn_cast<SCEVUnknown>(S); 6605 const APInt *TrueVal, *FalseVal; 6606 if (!SU || 6607 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6608 m_APInt(FalseVal)))) { 6609 Condition = nullptr; 6610 return; 6611 } 6612 6613 TrueValue = *TrueVal; 6614 FalseValue = *FalseVal; 6615 6616 // Re-apply the cast we peeled off earlier 6617 if (CastOp.hasValue()) 6618 switch (*CastOp) { 6619 default: 6620 llvm_unreachable("Unknown SCEV cast type!"); 6621 6622 case scTruncate: 6623 TrueValue = TrueValue.trunc(BitWidth); 6624 FalseValue = FalseValue.trunc(BitWidth); 6625 break; 6626 case scZeroExtend: 6627 TrueValue = TrueValue.zext(BitWidth); 6628 FalseValue = FalseValue.zext(BitWidth); 6629 break; 6630 case scSignExtend: 6631 TrueValue = TrueValue.sext(BitWidth); 6632 FalseValue = FalseValue.sext(BitWidth); 6633 break; 6634 } 6635 6636 // Re-apply the constant offset we peeled off earlier 6637 TrueValue += Offset; 6638 FalseValue += Offset; 6639 } 6640 6641 bool isRecognized() { return Condition != nullptr; } 6642 }; 6643 6644 SelectPattern StartPattern(*this, BitWidth, Start); 6645 if (!StartPattern.isRecognized()) 6646 return ConstantRange::getFull(BitWidth); 6647 6648 SelectPattern StepPattern(*this, BitWidth, Step); 6649 if (!StepPattern.isRecognized()) 6650 return ConstantRange::getFull(BitWidth); 6651 6652 if (StartPattern.Condition != StepPattern.Condition) { 6653 // We don't handle this case today; but we could, by considering four 6654 // possibilities below instead of two. I'm not sure if there are cases where 6655 // that will help over what getRange already does, though. 6656 return ConstantRange::getFull(BitWidth); 6657 } 6658 6659 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6660 // construct arbitrary general SCEV expressions here. This function is called 6661 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6662 // say) can end up caching a suboptimal value. 6663 6664 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6665 // C2352 and C2512 (otherwise it isn't needed). 6666 6667 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6668 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6669 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6670 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6671 6672 ConstantRange TrueRange = 6673 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6674 ConstantRange FalseRange = 6675 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6676 6677 return TrueRange.unionWith(FalseRange); 6678 } 6679 6680 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6681 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6682 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6683 6684 // Return early if there are no flags to propagate to the SCEV. 6685 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6686 if (BinOp->hasNoUnsignedWrap()) 6687 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6688 if (BinOp->hasNoSignedWrap()) 6689 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6690 if (Flags == SCEV::FlagAnyWrap) 6691 return SCEV::FlagAnyWrap; 6692 6693 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6694 } 6695 6696 const Instruction * 6697 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6698 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6699 return &*AddRec->getLoop()->getHeader()->begin(); 6700 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6701 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6702 return I; 6703 return nullptr; 6704 } 6705 6706 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6707 /// \p Ops remains unmodified. 6708 static void collectUniqueOps(const SCEV *S, 6709 SmallVectorImpl<const SCEV *> &Ops) { 6710 SmallPtrSet<const SCEV *, 4> Unique; 6711 auto InsertUnique = [&](const SCEV *S) { 6712 if (Unique.insert(S).second) 6713 Ops.push_back(S); 6714 }; 6715 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6716 for (auto *Op : S2->operands()) 6717 InsertUnique(Op); 6718 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6719 for (auto *Op : S2->operands()) 6720 InsertUnique(Op); 6721 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6722 for (auto *Op : S2->operands()) 6723 InsertUnique(Op); 6724 } 6725 6726 const Instruction * 6727 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6728 bool &Precise) { 6729 Precise = true; 6730 // Do a bounded search of the def relation of the requested SCEVs. 6731 SmallSet<const SCEV *, 16> Visited; 6732 SmallVector<const SCEV *> Worklist; 6733 auto pushOp = [&](const SCEV *S) { 6734 if (!Visited.insert(S).second) 6735 return; 6736 // Threshold of 30 here is arbitrary. 6737 if (Visited.size() > 30) { 6738 Precise = false; 6739 return; 6740 } 6741 Worklist.push_back(S); 6742 }; 6743 6744 for (auto *S : Ops) 6745 pushOp(S); 6746 6747 const Instruction *Bound = nullptr; 6748 while (!Worklist.empty()) { 6749 auto *S = Worklist.pop_back_val(); 6750 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 6751 if (!Bound || DT.dominates(Bound, DefI)) 6752 Bound = DefI; 6753 } else { 6754 SmallVector<const SCEV *, 4> Ops; 6755 collectUniqueOps(S, Ops); 6756 for (auto *Op : Ops) 6757 pushOp(Op); 6758 } 6759 } 6760 return Bound ? Bound : &*F.getEntryBlock().begin(); 6761 } 6762 6763 const Instruction * 6764 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 6765 bool Discard; 6766 return getDefiningScopeBound(Ops, Discard); 6767 } 6768 6769 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 6770 const Instruction *B) { 6771 if (A->getParent() == B->getParent() && 6772 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6773 B->getIterator())) 6774 return true; 6775 6776 auto *BLoop = LI.getLoopFor(B->getParent()); 6777 if (BLoop && BLoop->getHeader() == B->getParent() && 6778 BLoop->getLoopPreheader() == A->getParent() && 6779 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6780 A->getParent()->end()) && 6781 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 6782 B->getIterator())) 6783 return true; 6784 return false; 6785 } 6786 6787 6788 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6789 // Only proceed if we can prove that I does not yield poison. 6790 if (!programUndefinedIfPoison(I)) 6791 return false; 6792 6793 // At this point we know that if I is executed, then it does not wrap 6794 // according to at least one of NSW or NUW. If I is not executed, then we do 6795 // not know if the calculation that I represents would wrap. Multiple 6796 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6797 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6798 // derived from other instructions that map to the same SCEV. We cannot make 6799 // that guarantee for cases where I is not executed. So we need to find a 6800 // upper bound on the defining scope for the SCEV, and prove that I is 6801 // executed every time we enter that scope. When the bounding scope is a 6802 // loop (the common case), this is equivalent to proving I executes on every 6803 // iteration of that loop. 6804 SmallVector<const SCEV *> SCEVOps; 6805 for (const Use &Op : I->operands()) { 6806 // I could be an extractvalue from a call to an overflow intrinsic. 6807 // TODO: We can do better here in some cases. 6808 if (isSCEVable(Op->getType())) 6809 SCEVOps.push_back(getSCEV(Op)); 6810 } 6811 auto *DefI = getDefiningScopeBound(SCEVOps); 6812 return isGuaranteedToTransferExecutionTo(DefI, I); 6813 } 6814 6815 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6816 // If we know that \c I can never be poison period, then that's enough. 6817 if (isSCEVExprNeverPoison(I)) 6818 return true; 6819 6820 // For an add recurrence specifically, we assume that infinite loops without 6821 // side effects are undefined behavior, and then reason as follows: 6822 // 6823 // If the add recurrence is poison in any iteration, it is poison on all 6824 // future iterations (since incrementing poison yields poison). If the result 6825 // of the add recurrence is fed into the loop latch condition and the loop 6826 // does not contain any throws or exiting blocks other than the latch, we now 6827 // have the ability to "choose" whether the backedge is taken or not (by 6828 // choosing a sufficiently evil value for the poison feeding into the branch) 6829 // for every iteration including and after the one in which \p I first became 6830 // poison. There are two possibilities (let's call the iteration in which \p 6831 // I first became poison as K): 6832 // 6833 // 1. In the set of iterations including and after K, the loop body executes 6834 // no side effects. In this case executing the backege an infinte number 6835 // of times will yield undefined behavior. 6836 // 6837 // 2. In the set of iterations including and after K, the loop body executes 6838 // at least one side effect. In this case, that specific instance of side 6839 // effect is control dependent on poison, which also yields undefined 6840 // behavior. 6841 6842 auto *ExitingBB = L->getExitingBlock(); 6843 auto *LatchBB = L->getLoopLatch(); 6844 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6845 return false; 6846 6847 SmallPtrSet<const Instruction *, 16> Pushed; 6848 SmallVector<const Instruction *, 8> PoisonStack; 6849 6850 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6851 // things that are known to be poison under that assumption go on the 6852 // PoisonStack. 6853 Pushed.insert(I); 6854 PoisonStack.push_back(I); 6855 6856 bool LatchControlDependentOnPoison = false; 6857 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6858 const Instruction *Poison = PoisonStack.pop_back_val(); 6859 6860 for (auto *PoisonUser : Poison->users()) { 6861 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6862 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6863 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6864 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6865 assert(BI->isConditional() && "Only possibility!"); 6866 if (BI->getParent() == LatchBB) { 6867 LatchControlDependentOnPoison = true; 6868 break; 6869 } 6870 } 6871 } 6872 } 6873 6874 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6875 } 6876 6877 ScalarEvolution::LoopProperties 6878 ScalarEvolution::getLoopProperties(const Loop *L) { 6879 using LoopProperties = ScalarEvolution::LoopProperties; 6880 6881 auto Itr = LoopPropertiesCache.find(L); 6882 if (Itr == LoopPropertiesCache.end()) { 6883 auto HasSideEffects = [](Instruction *I) { 6884 if (auto *SI = dyn_cast<StoreInst>(I)) 6885 return !SI->isSimple(); 6886 6887 return I->mayThrow() || I->mayWriteToMemory(); 6888 }; 6889 6890 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6891 /*HasNoSideEffects*/ true}; 6892 6893 for (auto *BB : L->getBlocks()) 6894 for (auto &I : *BB) { 6895 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6896 LP.HasNoAbnormalExits = false; 6897 if (HasSideEffects(&I)) 6898 LP.HasNoSideEffects = false; 6899 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6900 break; // We're already as pessimistic as we can get. 6901 } 6902 6903 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6904 assert(InsertPair.second && "We just checked!"); 6905 Itr = InsertPair.first; 6906 } 6907 6908 return Itr->second; 6909 } 6910 6911 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6912 // A mustprogress loop without side effects must be finite. 6913 // TODO: The check used here is very conservative. It's only *specific* 6914 // side effects which are well defined in infinite loops. 6915 return isMustProgress(L) && loopHasNoSideEffects(L); 6916 } 6917 6918 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6919 if (!isSCEVable(V->getType())) 6920 return getUnknown(V); 6921 6922 if (Instruction *I = dyn_cast<Instruction>(V)) { 6923 // Don't attempt to analyze instructions in blocks that aren't 6924 // reachable. Such instructions don't matter, and they aren't required 6925 // to obey basic rules for definitions dominating uses which this 6926 // analysis depends on. 6927 if (!DT.isReachableFromEntry(I->getParent())) 6928 return getUnknown(UndefValue::get(V->getType())); 6929 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6930 return getConstant(CI); 6931 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6932 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6933 else if (!isa<ConstantExpr>(V)) 6934 return getUnknown(V); 6935 6936 Operator *U = cast<Operator>(V); 6937 if (auto BO = MatchBinaryOp(U, DT)) { 6938 switch (BO->Opcode) { 6939 case Instruction::Add: { 6940 // The simple thing to do would be to just call getSCEV on both operands 6941 // and call getAddExpr with the result. However if we're looking at a 6942 // bunch of things all added together, this can be quite inefficient, 6943 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6944 // Instead, gather up all the operands and make a single getAddExpr call. 6945 // LLVM IR canonical form means we need only traverse the left operands. 6946 SmallVector<const SCEV *, 4> AddOps; 6947 do { 6948 if (BO->Op) { 6949 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6950 AddOps.push_back(OpSCEV); 6951 break; 6952 } 6953 6954 // If a NUW or NSW flag can be applied to the SCEV for this 6955 // addition, then compute the SCEV for this addition by itself 6956 // with a separate call to getAddExpr. We need to do that 6957 // instead of pushing the operands of the addition onto AddOps, 6958 // since the flags are only known to apply to this particular 6959 // addition - they may not apply to other additions that can be 6960 // formed with operands from AddOps. 6961 const SCEV *RHS = getSCEV(BO->RHS); 6962 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6963 if (Flags != SCEV::FlagAnyWrap) { 6964 const SCEV *LHS = getSCEV(BO->LHS); 6965 if (BO->Opcode == Instruction::Sub) 6966 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6967 else 6968 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6969 break; 6970 } 6971 } 6972 6973 if (BO->Opcode == Instruction::Sub) 6974 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6975 else 6976 AddOps.push_back(getSCEV(BO->RHS)); 6977 6978 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6979 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6980 NewBO->Opcode != Instruction::Sub)) { 6981 AddOps.push_back(getSCEV(BO->LHS)); 6982 break; 6983 } 6984 BO = NewBO; 6985 } while (true); 6986 6987 return getAddExpr(AddOps); 6988 } 6989 6990 case Instruction::Mul: { 6991 SmallVector<const SCEV *, 4> MulOps; 6992 do { 6993 if (BO->Op) { 6994 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6995 MulOps.push_back(OpSCEV); 6996 break; 6997 } 6998 6999 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7000 if (Flags != SCEV::FlagAnyWrap) { 7001 MulOps.push_back( 7002 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 7003 break; 7004 } 7005 } 7006 7007 MulOps.push_back(getSCEV(BO->RHS)); 7008 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7009 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7010 MulOps.push_back(getSCEV(BO->LHS)); 7011 break; 7012 } 7013 BO = NewBO; 7014 } while (true); 7015 7016 return getMulExpr(MulOps); 7017 } 7018 case Instruction::UDiv: 7019 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7020 case Instruction::URem: 7021 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7022 case Instruction::Sub: { 7023 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7024 if (BO->Op) 7025 Flags = getNoWrapFlagsFromUB(BO->Op); 7026 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 7027 } 7028 case Instruction::And: 7029 // For an expression like x&255 that merely masks off the high bits, 7030 // use zext(trunc(x)) as the SCEV expression. 7031 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7032 if (CI->isZero()) 7033 return getSCEV(BO->RHS); 7034 if (CI->isMinusOne()) 7035 return getSCEV(BO->LHS); 7036 const APInt &A = CI->getValue(); 7037 7038 // Instcombine's ShrinkDemandedConstant may strip bits out of 7039 // constants, obscuring what would otherwise be a low-bits mask. 7040 // Use computeKnownBits to compute what ShrinkDemandedConstant 7041 // knew about to reconstruct a low-bits mask value. 7042 unsigned LZ = A.countLeadingZeros(); 7043 unsigned TZ = A.countTrailingZeros(); 7044 unsigned BitWidth = A.getBitWidth(); 7045 KnownBits Known(BitWidth); 7046 computeKnownBits(BO->LHS, Known, getDataLayout(), 7047 0, &AC, nullptr, &DT); 7048 7049 APInt EffectiveMask = 7050 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7051 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7052 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7053 const SCEV *LHS = getSCEV(BO->LHS); 7054 const SCEV *ShiftedLHS = nullptr; 7055 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7056 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7057 // For an expression like (x * 8) & 8, simplify the multiply. 7058 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7059 unsigned GCD = std::min(MulZeros, TZ); 7060 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7061 SmallVector<const SCEV*, 4> MulOps; 7062 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7063 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 7064 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7065 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7066 } 7067 } 7068 if (!ShiftedLHS) 7069 ShiftedLHS = getUDivExpr(LHS, MulCount); 7070 return getMulExpr( 7071 getZeroExtendExpr( 7072 getTruncateExpr(ShiftedLHS, 7073 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7074 BO->LHS->getType()), 7075 MulCount); 7076 } 7077 } 7078 break; 7079 7080 case Instruction::Or: 7081 // If the RHS of the Or is a constant, we may have something like: 7082 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 7083 // optimizations will transparently handle this case. 7084 // 7085 // In order for this transformation to be safe, the LHS must be of the 7086 // form X*(2^n) and the Or constant must be less than 2^n. 7087 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7088 const SCEV *LHS = getSCEV(BO->LHS); 7089 const APInt &CIVal = CI->getValue(); 7090 if (GetMinTrailingZeros(LHS) >= 7091 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 7092 // Build a plain add SCEV. 7093 return getAddExpr(LHS, getSCEV(CI), 7094 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 7095 } 7096 } 7097 break; 7098 7099 case Instruction::Xor: 7100 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7101 // If the RHS of xor is -1, then this is a not operation. 7102 if (CI->isMinusOne()) 7103 return getNotSCEV(getSCEV(BO->LHS)); 7104 7105 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7106 // This is a variant of the check for xor with -1, and it handles 7107 // the case where instcombine has trimmed non-demanded bits out 7108 // of an xor with -1. 7109 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7110 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7111 if (LBO->getOpcode() == Instruction::And && 7112 LCI->getValue() == CI->getValue()) 7113 if (const SCEVZeroExtendExpr *Z = 7114 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7115 Type *UTy = BO->LHS->getType(); 7116 const SCEV *Z0 = Z->getOperand(); 7117 Type *Z0Ty = Z0->getType(); 7118 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7119 7120 // If C is a low-bits mask, the zero extend is serving to 7121 // mask off the high bits. Complement the operand and 7122 // re-apply the zext. 7123 if (CI->getValue().isMask(Z0TySize)) 7124 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7125 7126 // If C is a single bit, it may be in the sign-bit position 7127 // before the zero-extend. In this case, represent the xor 7128 // using an add, which is equivalent, and re-apply the zext. 7129 APInt Trunc = CI->getValue().trunc(Z0TySize); 7130 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7131 Trunc.isSignMask()) 7132 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7133 UTy); 7134 } 7135 } 7136 break; 7137 7138 case Instruction::Shl: 7139 // Turn shift left of a constant amount into a multiply. 7140 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7141 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7142 7143 // If the shift count is not less than the bitwidth, the result of 7144 // the shift is undefined. Don't try to analyze it, because the 7145 // resolution chosen here may differ from the resolution chosen in 7146 // other parts of the compiler. 7147 if (SA->getValue().uge(BitWidth)) 7148 break; 7149 7150 // We can safely preserve the nuw flag in all cases. It's also safe to 7151 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7152 // requires special handling. It can be preserved as long as we're not 7153 // left shifting by bitwidth - 1. 7154 auto Flags = SCEV::FlagAnyWrap; 7155 if (BO->Op) { 7156 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7157 if ((MulFlags & SCEV::FlagNSW) && 7158 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7159 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7160 if (MulFlags & SCEV::FlagNUW) 7161 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7162 } 7163 7164 Constant *X = ConstantInt::get( 7165 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7166 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 7167 } 7168 break; 7169 7170 case Instruction::AShr: { 7171 // AShr X, C, where C is a constant. 7172 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7173 if (!CI) 7174 break; 7175 7176 Type *OuterTy = BO->LHS->getType(); 7177 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7178 // If the shift count is not less than the bitwidth, the result of 7179 // the shift is undefined. Don't try to analyze it, because the 7180 // resolution chosen here may differ from the resolution chosen in 7181 // other parts of the compiler. 7182 if (CI->getValue().uge(BitWidth)) 7183 break; 7184 7185 if (CI->isZero()) 7186 return getSCEV(BO->LHS); // shift by zero --> noop 7187 7188 uint64_t AShrAmt = CI->getZExtValue(); 7189 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7190 7191 Operator *L = dyn_cast<Operator>(BO->LHS); 7192 if (L && L->getOpcode() == Instruction::Shl) { 7193 // X = Shl A, n 7194 // Y = AShr X, m 7195 // Both n and m are constant. 7196 7197 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7198 if (L->getOperand(1) == BO->RHS) 7199 // For a two-shift sext-inreg, i.e. n = m, 7200 // use sext(trunc(x)) as the SCEV expression. 7201 return getSignExtendExpr( 7202 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7203 7204 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7205 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7206 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7207 if (ShlAmt > AShrAmt) { 7208 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7209 // expression. We already checked that ShlAmt < BitWidth, so 7210 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7211 // ShlAmt - AShrAmt < Amt. 7212 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7213 ShlAmt - AShrAmt); 7214 return getSignExtendExpr( 7215 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7216 getConstant(Mul)), OuterTy); 7217 } 7218 } 7219 } 7220 break; 7221 } 7222 } 7223 } 7224 7225 switch (U->getOpcode()) { 7226 case Instruction::Trunc: 7227 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7228 7229 case Instruction::ZExt: 7230 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7231 7232 case Instruction::SExt: 7233 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7234 // The NSW flag of a subtract does not always survive the conversion to 7235 // A + (-1)*B. By pushing sign extension onto its operands we are much 7236 // more likely to preserve NSW and allow later AddRec optimisations. 7237 // 7238 // NOTE: This is effectively duplicating this logic from getSignExtend: 7239 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7240 // but by that point the NSW information has potentially been lost. 7241 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7242 Type *Ty = U->getType(); 7243 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7244 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7245 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7246 } 7247 } 7248 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7249 7250 case Instruction::BitCast: 7251 // BitCasts are no-op casts so we just eliminate the cast. 7252 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7253 return getSCEV(U->getOperand(0)); 7254 break; 7255 7256 case Instruction::PtrToInt: { 7257 // Pointer to integer cast is straight-forward, so do model it. 7258 const SCEV *Op = getSCEV(U->getOperand(0)); 7259 Type *DstIntTy = U->getType(); 7260 // But only if effective SCEV (integer) type is wide enough to represent 7261 // all possible pointer values. 7262 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7263 if (isa<SCEVCouldNotCompute>(IntOp)) 7264 return getUnknown(V); 7265 return IntOp; 7266 } 7267 case Instruction::IntToPtr: 7268 // Just don't deal with inttoptr casts. 7269 return getUnknown(V); 7270 7271 case Instruction::SDiv: 7272 // If both operands are non-negative, this is just an udiv. 7273 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7274 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7275 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7276 break; 7277 7278 case Instruction::SRem: 7279 // If both operands are non-negative, this is just an urem. 7280 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7281 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7282 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7283 break; 7284 7285 case Instruction::GetElementPtr: 7286 return createNodeForGEP(cast<GEPOperator>(U)); 7287 7288 case Instruction::PHI: 7289 return createNodeForPHI(cast<PHINode>(U)); 7290 7291 case Instruction::Select: 7292 // U can also be a select constant expr, which let fall through. Since 7293 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7294 // constant expressions cannot have instructions as operands, we'd have 7295 // returned getUnknown for a select constant expressions anyway. 7296 if (isa<Instruction>(U)) 7297 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7298 U->getOperand(1), U->getOperand(2)); 7299 break; 7300 7301 case Instruction::Call: 7302 case Instruction::Invoke: 7303 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7304 return getSCEV(RV); 7305 7306 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7307 switch (II->getIntrinsicID()) { 7308 case Intrinsic::abs: 7309 return getAbsExpr( 7310 getSCEV(II->getArgOperand(0)), 7311 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7312 case Intrinsic::umax: 7313 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7314 getSCEV(II->getArgOperand(1))); 7315 case Intrinsic::umin: 7316 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7317 getSCEV(II->getArgOperand(1))); 7318 case Intrinsic::smax: 7319 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7320 getSCEV(II->getArgOperand(1))); 7321 case Intrinsic::smin: 7322 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7323 getSCEV(II->getArgOperand(1))); 7324 case Intrinsic::usub_sat: { 7325 const SCEV *X = getSCEV(II->getArgOperand(0)); 7326 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7327 const SCEV *ClampedY = getUMinExpr(X, Y); 7328 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7329 } 7330 case Intrinsic::uadd_sat: { 7331 const SCEV *X = getSCEV(II->getArgOperand(0)); 7332 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7333 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7334 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7335 } 7336 case Intrinsic::start_loop_iterations: 7337 // A start_loop_iterations is just equivalent to the first operand for 7338 // SCEV purposes. 7339 return getSCEV(II->getArgOperand(0)); 7340 default: 7341 break; 7342 } 7343 } 7344 break; 7345 } 7346 7347 return getUnknown(V); 7348 } 7349 7350 //===----------------------------------------------------------------------===// 7351 // Iteration Count Computation Code 7352 // 7353 7354 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7355 bool Extend) { 7356 if (isa<SCEVCouldNotCompute>(ExitCount)) 7357 return getCouldNotCompute(); 7358 7359 auto *ExitCountType = ExitCount->getType(); 7360 assert(ExitCountType->isIntegerTy()); 7361 7362 if (!Extend) 7363 return getAddExpr(ExitCount, getOne(ExitCountType)); 7364 7365 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7366 1 + ExitCountType->getScalarSizeInBits()); 7367 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7368 getOne(WiderType)); 7369 } 7370 7371 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7372 if (!ExitCount) 7373 return 0; 7374 7375 ConstantInt *ExitConst = ExitCount->getValue(); 7376 7377 // Guard against huge trip counts. 7378 if (ExitConst->getValue().getActiveBits() > 32) 7379 return 0; 7380 7381 // In case of integer overflow, this returns 0, which is correct. 7382 return ((unsigned)ExitConst->getZExtValue()) + 1; 7383 } 7384 7385 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7386 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7387 return getConstantTripCount(ExitCount); 7388 } 7389 7390 unsigned 7391 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7392 const BasicBlock *ExitingBlock) { 7393 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7394 assert(L->isLoopExiting(ExitingBlock) && 7395 "Exiting block must actually branch out of the loop!"); 7396 const SCEVConstant *ExitCount = 7397 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7398 return getConstantTripCount(ExitCount); 7399 } 7400 7401 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7402 const auto *MaxExitCount = 7403 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7404 return getConstantTripCount(MaxExitCount); 7405 } 7406 7407 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7408 // We can't infer from Array in Irregular Loop. 7409 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7410 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7411 return getCouldNotCompute(); 7412 7413 // FIXME: To make the scene more typical, we only analysis loops that have 7414 // one exiting block and that block must be the latch. To make it easier to 7415 // capture loops that have memory access and memory access will be executed 7416 // in each iteration. 7417 const BasicBlock *LoopLatch = L->getLoopLatch(); 7418 assert(LoopLatch && "See defination of simplify form loop."); 7419 if (L->getExitingBlock() != LoopLatch) 7420 return getCouldNotCompute(); 7421 7422 const DataLayout &DL = getDataLayout(); 7423 SmallVector<const SCEV *> InferCountColl; 7424 for (auto *BB : L->getBlocks()) { 7425 // Go here, we can know that Loop is a single exiting and simplified form 7426 // loop. Make sure that infer from Memory Operation in those BBs must be 7427 // executed in loop. First step, we can make sure that max execution time 7428 // of MemAccessBB in loop represents latch max excution time. 7429 // If MemAccessBB does not dom Latch, skip. 7430 // Entry 7431 // │ 7432 // ┌─────▼─────┐ 7433 // │Loop Header◄─────┐ 7434 // └──┬──────┬─┘ │ 7435 // │ │ │ 7436 // ┌────────▼──┐ ┌─▼─────┐ │ 7437 // │MemAccessBB│ │OtherBB│ │ 7438 // └────────┬──┘ └─┬─────┘ │ 7439 // │ │ │ 7440 // ┌─▼──────▼─┐ │ 7441 // │Loop Latch├─────┘ 7442 // └────┬─────┘ 7443 // ▼ 7444 // Exit 7445 if (!DT.dominates(BB, LoopLatch)) 7446 continue; 7447 7448 for (Instruction &Inst : *BB) { 7449 // Find Memory Operation Instruction. 7450 auto *GEP = getLoadStorePointerOperand(&Inst); 7451 if (!GEP) 7452 continue; 7453 7454 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7455 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7456 if (!ElemSize) 7457 continue; 7458 7459 // Use a existing polynomial recurrence on the trip count. 7460 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7461 if (!AddRec) 7462 continue; 7463 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7464 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7465 if (!ArrBase || !Step) 7466 continue; 7467 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7468 7469 // Only handle { %array + step }, 7470 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7471 if (AddRec->getStart() != ArrBase) 7472 continue; 7473 7474 // Memory operation pattern which have gaps. 7475 // Or repeat memory opreation. 7476 // And index of GEP wraps arround. 7477 if (Step->getAPInt().getActiveBits() > 32 || 7478 Step->getAPInt().getZExtValue() != 7479 ElemSize->getAPInt().getZExtValue() || 7480 Step->isZero() || Step->getAPInt().isNegative()) 7481 continue; 7482 7483 // Only infer from stack array which has certain size. 7484 // Make sure alloca instruction is not excuted in loop. 7485 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7486 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7487 continue; 7488 7489 // Make sure only handle normal array. 7490 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7491 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7492 if (!Ty || !ArrSize || !ArrSize->isOne()) 7493 continue; 7494 // Also make sure step was increased the same with sizeof allocated 7495 // element type. 7496 const PointerType *GEPT = dyn_cast<PointerType>(GEP->getType()); 7497 if (Ty->getElementType() != GEPT->getElementType()) 7498 continue; 7499 7500 // FIXME: Since gep indices are silently zext to the indexing type, 7501 // we will have a narrow gep index which wraps around rather than 7502 // increasing strictly, we shoule ensure that step is increasing 7503 // strictly by the loop iteration. 7504 // Now we can infer a max execution time by MemLength/StepLength. 7505 const SCEV *MemSize = 7506 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7507 auto *MaxExeCount = 7508 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7509 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7510 continue; 7511 7512 // If the loop reaches the maximum number of executions, we can not 7513 // access bytes starting outside the statically allocated size without 7514 // being immediate UB. But it is allowed to enter loop header one more 7515 // time. 7516 auto *InferCount = dyn_cast<SCEVConstant>( 7517 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7518 // Discard the maximum number of execution times under 32bits. 7519 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7520 continue; 7521 7522 InferCountColl.push_back(InferCount); 7523 } 7524 } 7525 7526 if (InferCountColl.size() == 0) 7527 return getCouldNotCompute(); 7528 7529 return getUMinFromMismatchedTypes(InferCountColl); 7530 } 7531 7532 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7533 SmallVector<BasicBlock *, 8> ExitingBlocks; 7534 L->getExitingBlocks(ExitingBlocks); 7535 7536 Optional<unsigned> Res = None; 7537 for (auto *ExitingBB : ExitingBlocks) { 7538 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7539 if (!Res) 7540 Res = Multiple; 7541 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7542 } 7543 return Res.getValueOr(1); 7544 } 7545 7546 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7547 const SCEV *ExitCount) { 7548 if (ExitCount == getCouldNotCompute()) 7549 return 1; 7550 7551 // Get the trip count 7552 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7553 7554 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7555 if (!TC) 7556 // Attempt to factor more general cases. Returns the greatest power of 7557 // two divisor. If overflow happens, the trip count expression is still 7558 // divisible by the greatest power of 2 divisor returned. 7559 return 1U << std::min((uint32_t)31, 7560 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7561 7562 ConstantInt *Result = TC->getValue(); 7563 7564 // Guard against huge trip counts (this requires checking 7565 // for zero to handle the case where the trip count == -1 and the 7566 // addition wraps). 7567 if (!Result || Result->getValue().getActiveBits() > 32 || 7568 Result->getValue().getActiveBits() == 0) 7569 return 1; 7570 7571 return (unsigned)Result->getZExtValue(); 7572 } 7573 7574 /// Returns the largest constant divisor of the trip count of this loop as a 7575 /// normal unsigned value, if possible. This means that the actual trip count is 7576 /// always a multiple of the returned value (don't forget the trip count could 7577 /// very well be zero as well!). 7578 /// 7579 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7580 /// multiple of a constant (which is also the case if the trip count is simply 7581 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7582 /// if the trip count is very large (>= 2^32). 7583 /// 7584 /// As explained in the comments for getSmallConstantTripCount, this assumes 7585 /// that control exits the loop via ExitingBlock. 7586 unsigned 7587 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7588 const BasicBlock *ExitingBlock) { 7589 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7590 assert(L->isLoopExiting(ExitingBlock) && 7591 "Exiting block must actually branch out of the loop!"); 7592 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7593 return getSmallConstantTripMultiple(L, ExitCount); 7594 } 7595 7596 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7597 const BasicBlock *ExitingBlock, 7598 ExitCountKind Kind) { 7599 switch (Kind) { 7600 case Exact: 7601 case SymbolicMaximum: 7602 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7603 case ConstantMaximum: 7604 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7605 }; 7606 llvm_unreachable("Invalid ExitCountKind!"); 7607 } 7608 7609 const SCEV * 7610 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7611 SCEVUnionPredicate &Preds) { 7612 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7613 } 7614 7615 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7616 ExitCountKind Kind) { 7617 switch (Kind) { 7618 case Exact: 7619 return getBackedgeTakenInfo(L).getExact(L, this); 7620 case ConstantMaximum: 7621 return getBackedgeTakenInfo(L).getConstantMax(this); 7622 case SymbolicMaximum: 7623 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7624 }; 7625 llvm_unreachable("Invalid ExitCountKind!"); 7626 } 7627 7628 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7629 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7630 } 7631 7632 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7633 static void PushLoopPHIs(const Loop *L, 7634 SmallVectorImpl<Instruction *> &Worklist, 7635 SmallPtrSetImpl<Instruction *> &Visited) { 7636 BasicBlock *Header = L->getHeader(); 7637 7638 // Push all Loop-header PHIs onto the Worklist stack. 7639 for (PHINode &PN : Header->phis()) 7640 if (Visited.insert(&PN).second) 7641 Worklist.push_back(&PN); 7642 } 7643 7644 const ScalarEvolution::BackedgeTakenInfo & 7645 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7646 auto &BTI = getBackedgeTakenInfo(L); 7647 if (BTI.hasFullInfo()) 7648 return BTI; 7649 7650 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7651 7652 if (!Pair.second) 7653 return Pair.first->second; 7654 7655 BackedgeTakenInfo Result = 7656 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7657 7658 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7659 } 7660 7661 ScalarEvolution::BackedgeTakenInfo & 7662 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7663 // Initially insert an invalid entry for this loop. If the insertion 7664 // succeeds, proceed to actually compute a backedge-taken count and 7665 // update the value. The temporary CouldNotCompute value tells SCEV 7666 // code elsewhere that it shouldn't attempt to request a new 7667 // backedge-taken count, which could result in infinite recursion. 7668 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7669 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7670 if (!Pair.second) 7671 return Pair.first->second; 7672 7673 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7674 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7675 // must be cleared in this scope. 7676 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7677 7678 // In product build, there are no usage of statistic. 7679 (void)NumTripCountsComputed; 7680 (void)NumTripCountsNotComputed; 7681 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7682 const SCEV *BEExact = Result.getExact(L, this); 7683 if (BEExact != getCouldNotCompute()) { 7684 assert(isLoopInvariant(BEExact, L) && 7685 isLoopInvariant(Result.getConstantMax(this), L) && 7686 "Computed backedge-taken count isn't loop invariant for loop!"); 7687 ++NumTripCountsComputed; 7688 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7689 isa<PHINode>(L->getHeader()->begin())) { 7690 // Only count loops that have phi nodes as not being computable. 7691 ++NumTripCountsNotComputed; 7692 } 7693 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7694 7695 // Now that we know more about the trip count for this loop, forget any 7696 // existing SCEV values for PHI nodes in this loop since they are only 7697 // conservative estimates made without the benefit of trip count 7698 // information. This invalidation is not necessary for correctness, and is 7699 // only done to produce more precise results. 7700 if (Result.hasAnyInfo()) { 7701 // Invalidate any expression using an addrec in this loop. 7702 SmallVector<const SCEV *, 8> ToForget; 7703 auto LoopUsersIt = LoopUsers.find(L); 7704 if (LoopUsersIt != LoopUsers.end()) 7705 append_range(ToForget, LoopUsersIt->second); 7706 forgetMemoizedResults(ToForget); 7707 7708 // Invalidate constant-evolved loop header phis. 7709 for (PHINode &PN : L->getHeader()->phis()) 7710 ConstantEvolutionLoopExitValue.erase(&PN); 7711 } 7712 7713 // Re-lookup the insert position, since the call to 7714 // computeBackedgeTakenCount above could result in a 7715 // recusive call to getBackedgeTakenInfo (on a different 7716 // loop), which would invalidate the iterator computed 7717 // earlier. 7718 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7719 } 7720 7721 void ScalarEvolution::forgetAllLoops() { 7722 // This method is intended to forget all info about loops. It should 7723 // invalidate caches as if the following happened: 7724 // - The trip counts of all loops have changed arbitrarily 7725 // - Every llvm::Value has been updated in place to produce a different 7726 // result. 7727 BackedgeTakenCounts.clear(); 7728 PredicatedBackedgeTakenCounts.clear(); 7729 BECountUsers.clear(); 7730 LoopPropertiesCache.clear(); 7731 ConstantEvolutionLoopExitValue.clear(); 7732 ValueExprMap.clear(); 7733 ValuesAtScopes.clear(); 7734 ValuesAtScopesUsers.clear(); 7735 LoopDispositions.clear(); 7736 BlockDispositions.clear(); 7737 UnsignedRanges.clear(); 7738 SignedRanges.clear(); 7739 ExprValueMap.clear(); 7740 HasRecMap.clear(); 7741 MinTrailingZerosCache.clear(); 7742 PredicatedSCEVRewrites.clear(); 7743 } 7744 7745 void ScalarEvolution::forgetLoop(const Loop *L) { 7746 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7747 SmallVector<Instruction *, 32> Worklist; 7748 SmallPtrSet<Instruction *, 16> Visited; 7749 SmallVector<const SCEV *, 16> ToForget; 7750 7751 // Iterate over all the loops and sub-loops to drop SCEV information. 7752 while (!LoopWorklist.empty()) { 7753 auto *CurrL = LoopWorklist.pop_back_val(); 7754 7755 // Drop any stored trip count value. 7756 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 7757 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 7758 7759 // Drop information about predicated SCEV rewrites for this loop. 7760 for (auto I = PredicatedSCEVRewrites.begin(); 7761 I != PredicatedSCEVRewrites.end();) { 7762 std::pair<const SCEV *, const Loop *> Entry = I->first; 7763 if (Entry.second == CurrL) 7764 PredicatedSCEVRewrites.erase(I++); 7765 else 7766 ++I; 7767 } 7768 7769 auto LoopUsersItr = LoopUsers.find(CurrL); 7770 if (LoopUsersItr != LoopUsers.end()) { 7771 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 7772 LoopUsersItr->second.end()); 7773 LoopUsers.erase(LoopUsersItr); 7774 } 7775 7776 // Drop information about expressions based on loop-header PHIs. 7777 PushLoopPHIs(CurrL, Worklist, Visited); 7778 7779 while (!Worklist.empty()) { 7780 Instruction *I = Worklist.pop_back_val(); 7781 7782 ValueExprMapType::iterator It = 7783 ValueExprMap.find_as(static_cast<Value *>(I)); 7784 if (It != ValueExprMap.end()) { 7785 eraseValueFromMap(It->first); 7786 ToForget.push_back(It->second); 7787 if (PHINode *PN = dyn_cast<PHINode>(I)) 7788 ConstantEvolutionLoopExitValue.erase(PN); 7789 } 7790 7791 PushDefUseChildren(I, Worklist, Visited); 7792 } 7793 7794 LoopPropertiesCache.erase(CurrL); 7795 // Forget all contained loops too, to avoid dangling entries in the 7796 // ValuesAtScopes map. 7797 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7798 } 7799 forgetMemoizedResults(ToForget); 7800 } 7801 7802 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7803 while (Loop *Parent = L->getParentLoop()) 7804 L = Parent; 7805 forgetLoop(L); 7806 } 7807 7808 void ScalarEvolution::forgetValue(Value *V) { 7809 Instruction *I = dyn_cast<Instruction>(V); 7810 if (!I) return; 7811 7812 // Drop information about expressions based on loop-header PHIs. 7813 SmallVector<Instruction *, 16> Worklist; 7814 SmallPtrSet<Instruction *, 8> Visited; 7815 SmallVector<const SCEV *, 8> ToForget; 7816 Worklist.push_back(I); 7817 Visited.insert(I); 7818 7819 while (!Worklist.empty()) { 7820 I = Worklist.pop_back_val(); 7821 ValueExprMapType::iterator It = 7822 ValueExprMap.find_as(static_cast<Value *>(I)); 7823 if (It != ValueExprMap.end()) { 7824 eraseValueFromMap(It->first); 7825 ToForget.push_back(It->second); 7826 if (PHINode *PN = dyn_cast<PHINode>(I)) 7827 ConstantEvolutionLoopExitValue.erase(PN); 7828 } 7829 7830 PushDefUseChildren(I, Worklist, Visited); 7831 } 7832 forgetMemoizedResults(ToForget); 7833 } 7834 7835 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7836 LoopDispositions.clear(); 7837 } 7838 7839 /// Get the exact loop backedge taken count considering all loop exits. A 7840 /// computable result can only be returned for loops with all exiting blocks 7841 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7842 /// is never skipped. This is a valid assumption as long as the loop exits via 7843 /// that test. For precise results, it is the caller's responsibility to specify 7844 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7845 const SCEV * 7846 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7847 SCEVUnionPredicate *Preds) const { 7848 // If any exits were not computable, the loop is not computable. 7849 if (!isComplete() || ExitNotTaken.empty()) 7850 return SE->getCouldNotCompute(); 7851 7852 const BasicBlock *Latch = L->getLoopLatch(); 7853 // All exiting blocks we have collected must dominate the only backedge. 7854 if (!Latch) 7855 return SE->getCouldNotCompute(); 7856 7857 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7858 // count is simply a minimum out of all these calculated exit counts. 7859 SmallVector<const SCEV *, 2> Ops; 7860 for (auto &ENT : ExitNotTaken) { 7861 const SCEV *BECount = ENT.ExactNotTaken; 7862 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7863 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7864 "We should only have known counts for exiting blocks that dominate " 7865 "latch!"); 7866 7867 Ops.push_back(BECount); 7868 7869 if (Preds && !ENT.hasAlwaysTruePredicate()) 7870 Preds->add(ENT.Predicate.get()); 7871 7872 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7873 "Predicate should be always true!"); 7874 } 7875 7876 return SE->getUMinFromMismatchedTypes(Ops); 7877 } 7878 7879 /// Get the exact not taken count for this loop exit. 7880 const SCEV * 7881 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7882 ScalarEvolution *SE) const { 7883 for (auto &ENT : ExitNotTaken) 7884 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7885 return ENT.ExactNotTaken; 7886 7887 return SE->getCouldNotCompute(); 7888 } 7889 7890 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7891 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7892 for (auto &ENT : ExitNotTaken) 7893 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7894 return ENT.MaxNotTaken; 7895 7896 return SE->getCouldNotCompute(); 7897 } 7898 7899 /// getConstantMax - Get the constant max backedge taken count for the loop. 7900 const SCEV * 7901 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7902 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7903 return !ENT.hasAlwaysTruePredicate(); 7904 }; 7905 7906 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 7907 return SE->getCouldNotCompute(); 7908 7909 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7910 isa<SCEVConstant>(getConstantMax())) && 7911 "No point in having a non-constant max backedge taken count!"); 7912 return getConstantMax(); 7913 } 7914 7915 const SCEV * 7916 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7917 ScalarEvolution *SE) { 7918 if (!SymbolicMax) 7919 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7920 return SymbolicMax; 7921 } 7922 7923 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7924 ScalarEvolution *SE) const { 7925 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7926 return !ENT.hasAlwaysTruePredicate(); 7927 }; 7928 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7929 } 7930 7931 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7932 : ExitLimit(E, E, false, None) { 7933 } 7934 7935 ScalarEvolution::ExitLimit::ExitLimit( 7936 const SCEV *E, const SCEV *M, bool MaxOrZero, 7937 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7938 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7939 // If we prove the max count is zero, so is the symbolic bound. This happens 7940 // in practice due to differences in a) how context sensitive we've chosen 7941 // to be and b) how we reason about bounds impied by UB. 7942 if (MaxNotTaken->isZero()) 7943 ExactNotTaken = MaxNotTaken; 7944 7945 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7946 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7947 "Exact is not allowed to be less precise than Max"); 7948 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7949 isa<SCEVConstant>(MaxNotTaken)) && 7950 "No point in having a non-constant max backedge taken count!"); 7951 for (auto *PredSet : PredSetList) 7952 for (auto *P : *PredSet) 7953 addPredicate(P); 7954 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7955 "Backedge count should be int"); 7956 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7957 "Max backedge count should be int"); 7958 } 7959 7960 ScalarEvolution::ExitLimit::ExitLimit( 7961 const SCEV *E, const SCEV *M, bool MaxOrZero, 7962 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7963 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7964 } 7965 7966 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7967 bool MaxOrZero) 7968 : ExitLimit(E, M, MaxOrZero, None) { 7969 } 7970 7971 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7972 /// computable exit into a persistent ExitNotTakenInfo array. 7973 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7974 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7975 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7976 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7977 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7978 7979 ExitNotTaken.reserve(ExitCounts.size()); 7980 std::transform( 7981 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7982 [&](const EdgeExitInfo &EEI) { 7983 BasicBlock *ExitBB = EEI.first; 7984 const ExitLimit &EL = EEI.second; 7985 if (EL.Predicates.empty()) 7986 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7987 nullptr); 7988 7989 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7990 for (auto *Pred : EL.Predicates) 7991 Predicate->add(Pred); 7992 7993 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7994 std::move(Predicate)); 7995 }); 7996 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7997 isa<SCEVConstant>(ConstantMax)) && 7998 "No point in having a non-constant max backedge taken count!"); 7999 } 8000 8001 /// Compute the number of times the backedge of the specified loop will execute. 8002 ScalarEvolution::BackedgeTakenInfo 8003 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8004 bool AllowPredicates) { 8005 SmallVector<BasicBlock *, 8> ExitingBlocks; 8006 L->getExitingBlocks(ExitingBlocks); 8007 8008 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8009 8010 SmallVector<EdgeExitInfo, 4> ExitCounts; 8011 bool CouldComputeBECount = true; 8012 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8013 const SCEV *MustExitMaxBECount = nullptr; 8014 const SCEV *MayExitMaxBECount = nullptr; 8015 bool MustExitMaxOrZero = false; 8016 8017 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8018 // and compute maxBECount. 8019 // Do a union of all the predicates here. 8020 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8021 BasicBlock *ExitBB = ExitingBlocks[i]; 8022 8023 // We canonicalize untaken exits to br (constant), ignore them so that 8024 // proving an exit untaken doesn't negatively impact our ability to reason 8025 // about the loop as whole. 8026 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8027 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8028 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8029 if (ExitIfTrue == CI->isZero()) 8030 continue; 8031 } 8032 8033 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8034 8035 assert((AllowPredicates || EL.Predicates.empty()) && 8036 "Predicated exit limit when predicates are not allowed!"); 8037 8038 // 1. For each exit that can be computed, add an entry to ExitCounts. 8039 // CouldComputeBECount is true only if all exits can be computed. 8040 if (EL.ExactNotTaken == getCouldNotCompute()) 8041 // We couldn't compute an exact value for this exit, so 8042 // we won't be able to compute an exact value for the loop. 8043 CouldComputeBECount = false; 8044 else 8045 ExitCounts.emplace_back(ExitBB, EL); 8046 8047 // 2. Derive the loop's MaxBECount from each exit's max number of 8048 // non-exiting iterations. Partition the loop exits into two kinds: 8049 // LoopMustExits and LoopMayExits. 8050 // 8051 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8052 // is a LoopMayExit. If any computable LoopMustExit is found, then 8053 // MaxBECount is the minimum EL.MaxNotTaken of computable 8054 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8055 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8056 // computable EL.MaxNotTaken. 8057 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8058 DT.dominates(ExitBB, Latch)) { 8059 if (!MustExitMaxBECount) { 8060 MustExitMaxBECount = EL.MaxNotTaken; 8061 MustExitMaxOrZero = EL.MaxOrZero; 8062 } else { 8063 MustExitMaxBECount = 8064 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8065 } 8066 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8067 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8068 MayExitMaxBECount = EL.MaxNotTaken; 8069 else { 8070 MayExitMaxBECount = 8071 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8072 } 8073 } 8074 } 8075 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8076 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8077 // The loop backedge will be taken the maximum or zero times if there's 8078 // a single exit that must be taken the maximum or zero times. 8079 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8080 8081 // Remember which SCEVs are used in exit limits for invalidation purposes. 8082 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 8083 // and MaxBECount, which must be SCEVConstant. 8084 for (const auto &Pair : ExitCounts) 8085 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8086 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8087 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8088 MaxBECount, MaxOrZero); 8089 } 8090 8091 ScalarEvolution::ExitLimit 8092 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8093 bool AllowPredicates) { 8094 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8095 // If our exiting block does not dominate the latch, then its connection with 8096 // loop's exit limit may be far from trivial. 8097 const BasicBlock *Latch = L->getLoopLatch(); 8098 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8099 return getCouldNotCompute(); 8100 8101 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8102 Instruction *Term = ExitingBlock->getTerminator(); 8103 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8104 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8105 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8106 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8107 "It should have one successor in loop and one exit block!"); 8108 // Proceed to the next level to examine the exit condition expression. 8109 return computeExitLimitFromCond( 8110 L, BI->getCondition(), ExitIfTrue, 8111 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8112 } 8113 8114 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8115 // For switch, make sure that there is a single exit from the loop. 8116 BasicBlock *Exit = nullptr; 8117 for (auto *SBB : successors(ExitingBlock)) 8118 if (!L->contains(SBB)) { 8119 if (Exit) // Multiple exit successors. 8120 return getCouldNotCompute(); 8121 Exit = SBB; 8122 } 8123 assert(Exit && "Exiting block must have at least one exit"); 8124 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8125 /*ControlsExit=*/IsOnlyExit); 8126 } 8127 8128 return getCouldNotCompute(); 8129 } 8130 8131 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8132 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8133 bool ControlsExit, bool AllowPredicates) { 8134 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8135 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8136 ControlsExit, AllowPredicates); 8137 } 8138 8139 Optional<ScalarEvolution::ExitLimit> 8140 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8141 bool ExitIfTrue, bool ControlsExit, 8142 bool AllowPredicates) { 8143 (void)this->L; 8144 (void)this->ExitIfTrue; 8145 (void)this->AllowPredicates; 8146 8147 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8148 this->AllowPredicates == AllowPredicates && 8149 "Variance in assumed invariant key components!"); 8150 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8151 if (Itr == TripCountMap.end()) 8152 return None; 8153 return Itr->second; 8154 } 8155 8156 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8157 bool ExitIfTrue, 8158 bool ControlsExit, 8159 bool AllowPredicates, 8160 const ExitLimit &EL) { 8161 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8162 this->AllowPredicates == AllowPredicates && 8163 "Variance in assumed invariant key components!"); 8164 8165 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8166 assert(InsertResult.second && "Expected successful insertion!"); 8167 (void)InsertResult; 8168 (void)ExitIfTrue; 8169 } 8170 8171 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8172 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8173 bool ControlsExit, bool AllowPredicates) { 8174 8175 if (auto MaybeEL = 8176 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8177 return *MaybeEL; 8178 8179 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8180 ControlsExit, AllowPredicates); 8181 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8182 return EL; 8183 } 8184 8185 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8186 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8187 bool ControlsExit, bool AllowPredicates) { 8188 // Handle BinOp conditions (And, Or). 8189 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8190 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8191 return *LimitFromBinOp; 8192 8193 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8194 // Proceed to the next level to examine the icmp. 8195 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8196 ExitLimit EL = 8197 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8198 if (EL.hasFullInfo() || !AllowPredicates) 8199 return EL; 8200 8201 // Try again, but use SCEV predicates this time. 8202 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8203 /*AllowPredicates=*/true); 8204 } 8205 8206 // Check for a constant condition. These are normally stripped out by 8207 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8208 // preserve the CFG and is temporarily leaving constant conditions 8209 // in place. 8210 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8211 if (ExitIfTrue == !CI->getZExtValue()) 8212 // The backedge is always taken. 8213 return getCouldNotCompute(); 8214 else 8215 // The backedge is never taken. 8216 return getZero(CI->getType()); 8217 } 8218 8219 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8220 // with a constant step, we can form an equivalent icmp predicate and figure 8221 // out how many iterations will be taken before we exit. 8222 const WithOverflowInst *WO; 8223 const APInt *C; 8224 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8225 match(WO->getRHS(), m_APInt(C))) { 8226 ConstantRange NWR = 8227 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8228 WO->getNoWrapKind()); 8229 CmpInst::Predicate Pred; 8230 APInt NewRHSC, Offset; 8231 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8232 if (!ExitIfTrue) 8233 Pred = ICmpInst::getInversePredicate(Pred); 8234 auto *LHS = getSCEV(WO->getLHS()); 8235 if (Offset != 0) 8236 LHS = getAddExpr(LHS, getConstant(Offset)); 8237 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8238 ControlsExit, AllowPredicates); 8239 if (EL.hasAnyInfo()) return EL; 8240 } 8241 8242 // If it's not an integer or pointer comparison then compute it the hard way. 8243 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8244 } 8245 8246 Optional<ScalarEvolution::ExitLimit> 8247 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8248 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8249 bool ControlsExit, bool AllowPredicates) { 8250 // Check if the controlling expression for this loop is an And or Or. 8251 Value *Op0, *Op1; 8252 bool IsAnd = false; 8253 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8254 IsAnd = true; 8255 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8256 IsAnd = false; 8257 else 8258 return None; 8259 8260 // EitherMayExit is true in these two cases: 8261 // br (and Op0 Op1), loop, exit 8262 // br (or Op0 Op1), exit, loop 8263 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8264 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8265 ControlsExit && !EitherMayExit, 8266 AllowPredicates); 8267 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8268 ControlsExit && !EitherMayExit, 8269 AllowPredicates); 8270 8271 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8272 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8273 if (isa<ConstantInt>(Op1)) 8274 return Op1 == NeutralElement ? EL0 : EL1; 8275 if (isa<ConstantInt>(Op0)) 8276 return Op0 == NeutralElement ? EL1 : EL0; 8277 8278 const SCEV *BECount = getCouldNotCompute(); 8279 const SCEV *MaxBECount = getCouldNotCompute(); 8280 if (EitherMayExit) { 8281 // Both conditions must be same for the loop to continue executing. 8282 // Choose the less conservative count. 8283 // If ExitCond is a short-circuit form (select), using 8284 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 8285 // To see the detailed examples, please see 8286 // test/Analysis/ScalarEvolution/exit-count-select.ll 8287 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 8288 if (!PoisonSafe) 8289 // Even if ExitCond is select, we can safely derive BECount using both 8290 // EL0 and EL1 in these cases: 8291 // (1) EL0.ExactNotTaken is non-zero 8292 // (2) EL1.ExactNotTaken is non-poison 8293 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 8294 // it cannot be umin(0, ..)) 8295 // The PoisonSafe assignment below is simplified and the assertion after 8296 // BECount calculation fully guarantees the condition (3). 8297 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 8298 isa<SCEVConstant>(EL1.ExactNotTaken); 8299 if (EL0.ExactNotTaken != getCouldNotCompute() && 8300 EL1.ExactNotTaken != getCouldNotCompute()) { 8301 BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken, 8302 /*Sequential=*/!PoisonSafe); 8303 8304 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8305 // it should have been simplified to zero (see the condition (3) above) 8306 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8307 BECount->isZero()); 8308 } 8309 if (EL0.MaxNotTaken == getCouldNotCompute()) 8310 MaxBECount = EL1.MaxNotTaken; 8311 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8312 MaxBECount = EL0.MaxNotTaken; 8313 else 8314 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8315 } else { 8316 // Both conditions must be same at the same time for the loop to exit. 8317 // For now, be conservative. 8318 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8319 BECount = EL0.ExactNotTaken; 8320 } 8321 8322 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8323 // to be more aggressive when computing BECount than when computing 8324 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8325 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8326 // to not. 8327 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8328 !isa<SCEVCouldNotCompute>(BECount)) 8329 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8330 8331 return ExitLimit(BECount, MaxBECount, false, 8332 { &EL0.Predicates, &EL1.Predicates }); 8333 } 8334 8335 ScalarEvolution::ExitLimit 8336 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8337 ICmpInst *ExitCond, 8338 bool ExitIfTrue, 8339 bool ControlsExit, 8340 bool AllowPredicates) { 8341 // If the condition was exit on true, convert the condition to exit on false 8342 ICmpInst::Predicate Pred; 8343 if (!ExitIfTrue) 8344 Pred = ExitCond->getPredicate(); 8345 else 8346 Pred = ExitCond->getInversePredicate(); 8347 const ICmpInst::Predicate OriginalPred = Pred; 8348 8349 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8350 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8351 8352 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 8353 AllowPredicates); 8354 if (EL.hasAnyInfo()) return EL; 8355 8356 auto *ExhaustiveCount = 8357 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8358 8359 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8360 return ExhaustiveCount; 8361 8362 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8363 ExitCond->getOperand(1), L, OriginalPred); 8364 } 8365 ScalarEvolution::ExitLimit 8366 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8367 ICmpInst::Predicate Pred, 8368 const SCEV *LHS, const SCEV *RHS, 8369 bool ControlsExit, 8370 bool AllowPredicates) { 8371 8372 // Try to evaluate any dependencies out of the loop. 8373 LHS = getSCEVAtScope(LHS, L); 8374 RHS = getSCEVAtScope(RHS, L); 8375 8376 // At this point, we would like to compute how many iterations of the 8377 // loop the predicate will return true for these inputs. 8378 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8379 // If there is a loop-invariant, force it into the RHS. 8380 std::swap(LHS, RHS); 8381 Pred = ICmpInst::getSwappedPredicate(Pred); 8382 } 8383 8384 // Simplify the operands before analyzing them. 8385 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8386 8387 // If we have a comparison of a chrec against a constant, try to use value 8388 // ranges to answer this query. 8389 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8390 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8391 if (AddRec->getLoop() == L) { 8392 // Form the constant range. 8393 ConstantRange CompRange = 8394 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8395 8396 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8397 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8398 } 8399 8400 // If this loop must exit based on this condition (or execute undefined 8401 // behaviour), and we can prove the test sequence produced must repeat 8402 // the same values on self-wrap of the IV, then we can infer that IV 8403 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8404 // loop. 8405 if (ControlsExit && isLoopInvariant(RHS, L) && loopHasNoAbnormalExits(L) && 8406 loopIsFiniteByAssumption(L)) { 8407 8408 // TODO: We can peel off any functions which are invertible *in L*. Loop 8409 // invariant terms are effectively constants for our purposes here. 8410 auto *InnerLHS = LHS; 8411 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8412 InnerLHS = ZExt->getOperand(); 8413 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8414 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8415 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8416 StrideC && StrideC->getAPInt().isPowerOf2()) { 8417 auto Flags = AR->getNoWrapFlags(); 8418 Flags = setFlags(Flags, SCEV::FlagNW); 8419 SmallVector<const SCEV*> Operands{AR->operands()}; 8420 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8421 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8422 } 8423 } 8424 } 8425 8426 switch (Pred) { 8427 case ICmpInst::ICMP_NE: { // while (X != Y) 8428 // Convert to: while (X-Y != 0) 8429 if (LHS->getType()->isPointerTy()) { 8430 LHS = getLosslessPtrToIntExpr(LHS); 8431 if (isa<SCEVCouldNotCompute>(LHS)) 8432 return LHS; 8433 } 8434 if (RHS->getType()->isPointerTy()) { 8435 RHS = getLosslessPtrToIntExpr(RHS); 8436 if (isa<SCEVCouldNotCompute>(RHS)) 8437 return RHS; 8438 } 8439 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8440 AllowPredicates); 8441 if (EL.hasAnyInfo()) return EL; 8442 break; 8443 } 8444 case ICmpInst::ICMP_EQ: { // while (X == Y) 8445 // Convert to: while (X-Y == 0) 8446 if (LHS->getType()->isPointerTy()) { 8447 LHS = getLosslessPtrToIntExpr(LHS); 8448 if (isa<SCEVCouldNotCompute>(LHS)) 8449 return LHS; 8450 } 8451 if (RHS->getType()->isPointerTy()) { 8452 RHS = getLosslessPtrToIntExpr(RHS); 8453 if (isa<SCEVCouldNotCompute>(RHS)) 8454 return RHS; 8455 } 8456 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8457 if (EL.hasAnyInfo()) return EL; 8458 break; 8459 } 8460 case ICmpInst::ICMP_SLT: 8461 case ICmpInst::ICMP_ULT: { // while (X < Y) 8462 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8463 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8464 AllowPredicates); 8465 if (EL.hasAnyInfo()) return EL; 8466 break; 8467 } 8468 case ICmpInst::ICMP_SGT: 8469 case ICmpInst::ICMP_UGT: { // while (X > Y) 8470 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8471 ExitLimit EL = 8472 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8473 AllowPredicates); 8474 if (EL.hasAnyInfo()) return EL; 8475 break; 8476 } 8477 default: 8478 break; 8479 } 8480 8481 return getCouldNotCompute(); 8482 } 8483 8484 ScalarEvolution::ExitLimit 8485 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8486 SwitchInst *Switch, 8487 BasicBlock *ExitingBlock, 8488 bool ControlsExit) { 8489 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8490 8491 // Give up if the exit is the default dest of a switch. 8492 if (Switch->getDefaultDest() == ExitingBlock) 8493 return getCouldNotCompute(); 8494 8495 assert(L->contains(Switch->getDefaultDest()) && 8496 "Default case must not exit the loop!"); 8497 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8498 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8499 8500 // while (X != Y) --> while (X-Y != 0) 8501 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8502 if (EL.hasAnyInfo()) 8503 return EL; 8504 8505 return getCouldNotCompute(); 8506 } 8507 8508 static ConstantInt * 8509 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8510 ScalarEvolution &SE) { 8511 const SCEV *InVal = SE.getConstant(C); 8512 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8513 assert(isa<SCEVConstant>(Val) && 8514 "Evaluation of SCEV at constant didn't fold correctly?"); 8515 return cast<SCEVConstant>(Val)->getValue(); 8516 } 8517 8518 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8519 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8520 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8521 if (!RHS) 8522 return getCouldNotCompute(); 8523 8524 const BasicBlock *Latch = L->getLoopLatch(); 8525 if (!Latch) 8526 return getCouldNotCompute(); 8527 8528 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8529 if (!Predecessor) 8530 return getCouldNotCompute(); 8531 8532 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8533 // Return LHS in OutLHS and shift_opt in OutOpCode. 8534 auto MatchPositiveShift = 8535 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8536 8537 using namespace PatternMatch; 8538 8539 ConstantInt *ShiftAmt; 8540 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8541 OutOpCode = Instruction::LShr; 8542 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8543 OutOpCode = Instruction::AShr; 8544 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8545 OutOpCode = Instruction::Shl; 8546 else 8547 return false; 8548 8549 return ShiftAmt->getValue().isStrictlyPositive(); 8550 }; 8551 8552 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8553 // 8554 // loop: 8555 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8556 // %iv.shifted = lshr i32 %iv, <positive constant> 8557 // 8558 // Return true on a successful match. Return the corresponding PHI node (%iv 8559 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8560 auto MatchShiftRecurrence = 8561 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8562 Optional<Instruction::BinaryOps> PostShiftOpCode; 8563 8564 { 8565 Instruction::BinaryOps OpC; 8566 Value *V; 8567 8568 // If we encounter a shift instruction, "peel off" the shift operation, 8569 // and remember that we did so. Later when we inspect %iv's backedge 8570 // value, we will make sure that the backedge value uses the same 8571 // operation. 8572 // 8573 // Note: the peeled shift operation does not have to be the same 8574 // instruction as the one feeding into the PHI's backedge value. We only 8575 // really care about it being the same *kind* of shift instruction -- 8576 // that's all that is required for our later inferences to hold. 8577 if (MatchPositiveShift(LHS, V, OpC)) { 8578 PostShiftOpCode = OpC; 8579 LHS = V; 8580 } 8581 } 8582 8583 PNOut = dyn_cast<PHINode>(LHS); 8584 if (!PNOut || PNOut->getParent() != L->getHeader()) 8585 return false; 8586 8587 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8588 Value *OpLHS; 8589 8590 return 8591 // The backedge value for the PHI node must be a shift by a positive 8592 // amount 8593 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8594 8595 // of the PHI node itself 8596 OpLHS == PNOut && 8597 8598 // and the kind of shift should be match the kind of shift we peeled 8599 // off, if any. 8600 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8601 }; 8602 8603 PHINode *PN; 8604 Instruction::BinaryOps OpCode; 8605 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8606 return getCouldNotCompute(); 8607 8608 const DataLayout &DL = getDataLayout(); 8609 8610 // The key rationale for this optimization is that for some kinds of shift 8611 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8612 // within a finite number of iterations. If the condition guarding the 8613 // backedge (in the sense that the backedge is taken if the condition is true) 8614 // is false for the value the shift recurrence stabilizes to, then we know 8615 // that the backedge is taken only a finite number of times. 8616 8617 ConstantInt *StableValue = nullptr; 8618 switch (OpCode) { 8619 default: 8620 llvm_unreachable("Impossible case!"); 8621 8622 case Instruction::AShr: { 8623 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8624 // bitwidth(K) iterations. 8625 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8626 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8627 Predecessor->getTerminator(), &DT); 8628 auto *Ty = cast<IntegerType>(RHS->getType()); 8629 if (Known.isNonNegative()) 8630 StableValue = ConstantInt::get(Ty, 0); 8631 else if (Known.isNegative()) 8632 StableValue = ConstantInt::get(Ty, -1, true); 8633 else 8634 return getCouldNotCompute(); 8635 8636 break; 8637 } 8638 case Instruction::LShr: 8639 case Instruction::Shl: 8640 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8641 // stabilize to 0 in at most bitwidth(K) iterations. 8642 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8643 break; 8644 } 8645 8646 auto *Result = 8647 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8648 assert(Result->getType()->isIntegerTy(1) && 8649 "Otherwise cannot be an operand to a branch instruction"); 8650 8651 if (Result->isZeroValue()) { 8652 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8653 const SCEV *UpperBound = 8654 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8655 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8656 } 8657 8658 return getCouldNotCompute(); 8659 } 8660 8661 /// Return true if we can constant fold an instruction of the specified type, 8662 /// assuming that all operands were constants. 8663 static bool CanConstantFold(const Instruction *I) { 8664 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8665 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8666 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8667 return true; 8668 8669 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8670 if (const Function *F = CI->getCalledFunction()) 8671 return canConstantFoldCallTo(CI, F); 8672 return false; 8673 } 8674 8675 /// Determine whether this instruction can constant evolve within this loop 8676 /// assuming its operands can all constant evolve. 8677 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8678 // An instruction outside of the loop can't be derived from a loop PHI. 8679 if (!L->contains(I)) return false; 8680 8681 if (isa<PHINode>(I)) { 8682 // We don't currently keep track of the control flow needed to evaluate 8683 // PHIs, so we cannot handle PHIs inside of loops. 8684 return L->getHeader() == I->getParent(); 8685 } 8686 8687 // If we won't be able to constant fold this expression even if the operands 8688 // are constants, bail early. 8689 return CanConstantFold(I); 8690 } 8691 8692 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8693 /// recursing through each instruction operand until reaching a loop header phi. 8694 static PHINode * 8695 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8696 DenseMap<Instruction *, PHINode *> &PHIMap, 8697 unsigned Depth) { 8698 if (Depth > MaxConstantEvolvingDepth) 8699 return nullptr; 8700 8701 // Otherwise, we can evaluate this instruction if all of its operands are 8702 // constant or derived from a PHI node themselves. 8703 PHINode *PHI = nullptr; 8704 for (Value *Op : UseInst->operands()) { 8705 if (isa<Constant>(Op)) continue; 8706 8707 Instruction *OpInst = dyn_cast<Instruction>(Op); 8708 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8709 8710 PHINode *P = dyn_cast<PHINode>(OpInst); 8711 if (!P) 8712 // If this operand is already visited, reuse the prior result. 8713 // We may have P != PHI if this is the deepest point at which the 8714 // inconsistent paths meet. 8715 P = PHIMap.lookup(OpInst); 8716 if (!P) { 8717 // Recurse and memoize the results, whether a phi is found or not. 8718 // This recursive call invalidates pointers into PHIMap. 8719 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8720 PHIMap[OpInst] = P; 8721 } 8722 if (!P) 8723 return nullptr; // Not evolving from PHI 8724 if (PHI && PHI != P) 8725 return nullptr; // Evolving from multiple different PHIs. 8726 PHI = P; 8727 } 8728 // This is a expression evolving from a constant PHI! 8729 return PHI; 8730 } 8731 8732 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8733 /// in the loop that V is derived from. We allow arbitrary operations along the 8734 /// way, but the operands of an operation must either be constants or a value 8735 /// derived from a constant PHI. If this expression does not fit with these 8736 /// constraints, return null. 8737 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8738 Instruction *I = dyn_cast<Instruction>(V); 8739 if (!I || !canConstantEvolve(I, L)) return nullptr; 8740 8741 if (PHINode *PN = dyn_cast<PHINode>(I)) 8742 return PN; 8743 8744 // Record non-constant instructions contained by the loop. 8745 DenseMap<Instruction *, PHINode *> PHIMap; 8746 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8747 } 8748 8749 /// EvaluateExpression - Given an expression that passes the 8750 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8751 /// in the loop has the value PHIVal. If we can't fold this expression for some 8752 /// reason, return null. 8753 static Constant *EvaluateExpression(Value *V, const Loop *L, 8754 DenseMap<Instruction *, Constant *> &Vals, 8755 const DataLayout &DL, 8756 const TargetLibraryInfo *TLI) { 8757 // Convenient constant check, but redundant for recursive calls. 8758 if (Constant *C = dyn_cast<Constant>(V)) return C; 8759 Instruction *I = dyn_cast<Instruction>(V); 8760 if (!I) return nullptr; 8761 8762 if (Constant *C = Vals.lookup(I)) return C; 8763 8764 // An instruction inside the loop depends on a value outside the loop that we 8765 // weren't given a mapping for, or a value such as a call inside the loop. 8766 if (!canConstantEvolve(I, L)) return nullptr; 8767 8768 // An unmapped PHI can be due to a branch or another loop inside this loop, 8769 // or due to this not being the initial iteration through a loop where we 8770 // couldn't compute the evolution of this particular PHI last time. 8771 if (isa<PHINode>(I)) return nullptr; 8772 8773 std::vector<Constant*> Operands(I->getNumOperands()); 8774 8775 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8776 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8777 if (!Operand) { 8778 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8779 if (!Operands[i]) return nullptr; 8780 continue; 8781 } 8782 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8783 Vals[Operand] = C; 8784 if (!C) return nullptr; 8785 Operands[i] = C; 8786 } 8787 8788 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8789 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8790 Operands[1], DL, TLI); 8791 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8792 if (!LI->isVolatile()) 8793 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8794 } 8795 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8796 } 8797 8798 8799 // If every incoming value to PN except the one for BB is a specific Constant, 8800 // return that, else return nullptr. 8801 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8802 Constant *IncomingVal = nullptr; 8803 8804 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8805 if (PN->getIncomingBlock(i) == BB) 8806 continue; 8807 8808 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8809 if (!CurrentVal) 8810 return nullptr; 8811 8812 if (IncomingVal != CurrentVal) { 8813 if (IncomingVal) 8814 return nullptr; 8815 IncomingVal = CurrentVal; 8816 } 8817 } 8818 8819 return IncomingVal; 8820 } 8821 8822 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8823 /// in the header of its containing loop, we know the loop executes a 8824 /// constant number of times, and the PHI node is just a recurrence 8825 /// involving constants, fold it. 8826 Constant * 8827 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8828 const APInt &BEs, 8829 const Loop *L) { 8830 auto I = ConstantEvolutionLoopExitValue.find(PN); 8831 if (I != ConstantEvolutionLoopExitValue.end()) 8832 return I->second; 8833 8834 if (BEs.ugt(MaxBruteForceIterations)) 8835 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8836 8837 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8838 8839 DenseMap<Instruction *, Constant *> CurrentIterVals; 8840 BasicBlock *Header = L->getHeader(); 8841 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8842 8843 BasicBlock *Latch = L->getLoopLatch(); 8844 if (!Latch) 8845 return nullptr; 8846 8847 for (PHINode &PHI : Header->phis()) { 8848 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8849 CurrentIterVals[&PHI] = StartCST; 8850 } 8851 if (!CurrentIterVals.count(PN)) 8852 return RetVal = nullptr; 8853 8854 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8855 8856 // Execute the loop symbolically to determine the exit value. 8857 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8858 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8859 8860 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8861 unsigned IterationNum = 0; 8862 const DataLayout &DL = getDataLayout(); 8863 for (; ; ++IterationNum) { 8864 if (IterationNum == NumIterations) 8865 return RetVal = CurrentIterVals[PN]; // Got exit value! 8866 8867 // Compute the value of the PHIs for the next iteration. 8868 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8869 DenseMap<Instruction *, Constant *> NextIterVals; 8870 Constant *NextPHI = 8871 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8872 if (!NextPHI) 8873 return nullptr; // Couldn't evaluate! 8874 NextIterVals[PN] = NextPHI; 8875 8876 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8877 8878 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8879 // cease to be able to evaluate one of them or if they stop evolving, 8880 // because that doesn't necessarily prevent us from computing PN. 8881 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8882 for (const auto &I : CurrentIterVals) { 8883 PHINode *PHI = dyn_cast<PHINode>(I.first); 8884 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8885 PHIsToCompute.emplace_back(PHI, I.second); 8886 } 8887 // We use two distinct loops because EvaluateExpression may invalidate any 8888 // iterators into CurrentIterVals. 8889 for (const auto &I : PHIsToCompute) { 8890 PHINode *PHI = I.first; 8891 Constant *&NextPHI = NextIterVals[PHI]; 8892 if (!NextPHI) { // Not already computed. 8893 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8894 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8895 } 8896 if (NextPHI != I.second) 8897 StoppedEvolving = false; 8898 } 8899 8900 // If all entries in CurrentIterVals == NextIterVals then we can stop 8901 // iterating, the loop can't continue to change. 8902 if (StoppedEvolving) 8903 return RetVal = CurrentIterVals[PN]; 8904 8905 CurrentIterVals.swap(NextIterVals); 8906 } 8907 } 8908 8909 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8910 Value *Cond, 8911 bool ExitWhen) { 8912 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8913 if (!PN) return getCouldNotCompute(); 8914 8915 // If the loop is canonicalized, the PHI will have exactly two entries. 8916 // That's the only form we support here. 8917 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8918 8919 DenseMap<Instruction *, Constant *> CurrentIterVals; 8920 BasicBlock *Header = L->getHeader(); 8921 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8922 8923 BasicBlock *Latch = L->getLoopLatch(); 8924 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8925 8926 for (PHINode &PHI : Header->phis()) { 8927 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8928 CurrentIterVals[&PHI] = StartCST; 8929 } 8930 if (!CurrentIterVals.count(PN)) 8931 return getCouldNotCompute(); 8932 8933 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8934 // the loop symbolically to determine when the condition gets a value of 8935 // "ExitWhen". 8936 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8937 const DataLayout &DL = getDataLayout(); 8938 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8939 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8940 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8941 8942 // Couldn't symbolically evaluate. 8943 if (!CondVal) return getCouldNotCompute(); 8944 8945 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8946 ++NumBruteForceTripCountsComputed; 8947 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8948 } 8949 8950 // Update all the PHI nodes for the next iteration. 8951 DenseMap<Instruction *, Constant *> NextIterVals; 8952 8953 // Create a list of which PHIs we need to compute. We want to do this before 8954 // calling EvaluateExpression on them because that may invalidate iterators 8955 // into CurrentIterVals. 8956 SmallVector<PHINode *, 8> PHIsToCompute; 8957 for (const auto &I : CurrentIterVals) { 8958 PHINode *PHI = dyn_cast<PHINode>(I.first); 8959 if (!PHI || PHI->getParent() != Header) continue; 8960 PHIsToCompute.push_back(PHI); 8961 } 8962 for (PHINode *PHI : PHIsToCompute) { 8963 Constant *&NextPHI = NextIterVals[PHI]; 8964 if (NextPHI) continue; // Already computed! 8965 8966 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8967 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8968 } 8969 CurrentIterVals.swap(NextIterVals); 8970 } 8971 8972 // Too many iterations were needed to evaluate. 8973 return getCouldNotCompute(); 8974 } 8975 8976 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8977 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8978 ValuesAtScopes[V]; 8979 // Check to see if we've folded this expression at this loop before. 8980 for (auto &LS : Values) 8981 if (LS.first == L) 8982 return LS.second ? LS.second : V; 8983 8984 Values.emplace_back(L, nullptr); 8985 8986 // Otherwise compute it. 8987 const SCEV *C = computeSCEVAtScope(V, L); 8988 for (auto &LS : reverse(ValuesAtScopes[V])) 8989 if (LS.first == L) { 8990 LS.second = C; 8991 if (!isa<SCEVConstant>(C)) 8992 ValuesAtScopesUsers[C].push_back({L, V}); 8993 break; 8994 } 8995 return C; 8996 } 8997 8998 /// This builds up a Constant using the ConstantExpr interface. That way, we 8999 /// will return Constants for objects which aren't represented by a 9000 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9001 /// Returns NULL if the SCEV isn't representable as a Constant. 9002 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9003 switch (V->getSCEVType()) { 9004 case scCouldNotCompute: 9005 case scAddRecExpr: 9006 return nullptr; 9007 case scConstant: 9008 return cast<SCEVConstant>(V)->getValue(); 9009 case scUnknown: 9010 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9011 case scSignExtend: { 9012 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9013 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9014 return ConstantExpr::getSExt(CastOp, SS->getType()); 9015 return nullptr; 9016 } 9017 case scZeroExtend: { 9018 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9019 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9020 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9021 return nullptr; 9022 } 9023 case scPtrToInt: { 9024 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9025 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9026 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9027 9028 return nullptr; 9029 } 9030 case scTruncate: { 9031 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9032 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9033 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9034 return nullptr; 9035 } 9036 case scAddExpr: { 9037 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9038 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 9039 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 9040 unsigned AS = PTy->getAddressSpace(); 9041 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9042 C = ConstantExpr::getBitCast(C, DestPtrTy); 9043 } 9044 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 9045 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 9046 if (!C2) 9047 return nullptr; 9048 9049 // First pointer! 9050 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 9051 unsigned AS = C2->getType()->getPointerAddressSpace(); 9052 std::swap(C, C2); 9053 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9054 // The offsets have been converted to bytes. We can add bytes to an 9055 // i8* by GEP with the byte count in the first index. 9056 C = ConstantExpr::getBitCast(C, DestPtrTy); 9057 } 9058 9059 // Don't bother trying to sum two pointers. We probably can't 9060 // statically compute a load that results from it anyway. 9061 if (C2->getType()->isPointerTy()) 9062 return nullptr; 9063 9064 if (C->getType()->isPointerTy()) { 9065 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9066 C, C2); 9067 } else { 9068 C = ConstantExpr::getAdd(C, C2); 9069 } 9070 } 9071 return C; 9072 } 9073 return nullptr; 9074 } 9075 case scMulExpr: { 9076 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9077 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 9078 // Don't bother with pointers at all. 9079 if (C->getType()->isPointerTy()) 9080 return nullptr; 9081 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 9082 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 9083 if (!C2 || C2->getType()->isPointerTy()) 9084 return nullptr; 9085 C = ConstantExpr::getMul(C, C2); 9086 } 9087 return C; 9088 } 9089 return nullptr; 9090 } 9091 case scUDivExpr: { 9092 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 9093 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 9094 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 9095 if (LHS->getType() == RHS->getType()) 9096 return ConstantExpr::getUDiv(LHS, RHS); 9097 return nullptr; 9098 } 9099 case scSMaxExpr: 9100 case scUMaxExpr: 9101 case scSMinExpr: 9102 case scUMinExpr: 9103 case scSequentialUMinExpr: 9104 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9105 } 9106 llvm_unreachable("Unknown SCEV kind!"); 9107 } 9108 9109 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9110 if (isa<SCEVConstant>(V)) return V; 9111 9112 // If this instruction is evolved from a constant-evolving PHI, compute the 9113 // exit value from the loop without using SCEVs. 9114 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9115 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9116 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9117 const Loop *CurrLoop = this->LI[I->getParent()]; 9118 // Looking for loop exit value. 9119 if (CurrLoop && CurrLoop->getParentLoop() == L && 9120 PN->getParent() == CurrLoop->getHeader()) { 9121 // Okay, there is no closed form solution for the PHI node. Check 9122 // to see if the loop that contains it has a known backedge-taken 9123 // count. If so, we may be able to force computation of the exit 9124 // value. 9125 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9126 // This trivial case can show up in some degenerate cases where 9127 // the incoming IR has not yet been fully simplified. 9128 if (BackedgeTakenCount->isZero()) { 9129 Value *InitValue = nullptr; 9130 bool MultipleInitValues = false; 9131 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9132 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9133 if (!InitValue) 9134 InitValue = PN->getIncomingValue(i); 9135 else if (InitValue != PN->getIncomingValue(i)) { 9136 MultipleInitValues = true; 9137 break; 9138 } 9139 } 9140 } 9141 if (!MultipleInitValues && InitValue) 9142 return getSCEV(InitValue); 9143 } 9144 // Do we have a loop invariant value flowing around the backedge 9145 // for a loop which must execute the backedge? 9146 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9147 isKnownPositive(BackedgeTakenCount) && 9148 PN->getNumIncomingValues() == 2) { 9149 9150 unsigned InLoopPred = 9151 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9152 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9153 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9154 return getSCEV(BackedgeVal); 9155 } 9156 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9157 // Okay, we know how many times the containing loop executes. If 9158 // this is a constant evolving PHI node, get the final value at 9159 // the specified iteration number. 9160 Constant *RV = getConstantEvolutionLoopExitValue( 9161 PN, BTCC->getAPInt(), CurrLoop); 9162 if (RV) return getSCEV(RV); 9163 } 9164 } 9165 9166 // If there is a single-input Phi, evaluate it at our scope. If we can 9167 // prove that this replacement does not break LCSSA form, use new value. 9168 if (PN->getNumOperands() == 1) { 9169 const SCEV *Input = getSCEV(PN->getOperand(0)); 9170 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9171 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9172 // for the simplest case just support constants. 9173 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9174 } 9175 } 9176 9177 // Okay, this is an expression that we cannot symbolically evaluate 9178 // into a SCEV. Check to see if it's possible to symbolically evaluate 9179 // the arguments into constants, and if so, try to constant propagate the 9180 // result. This is particularly useful for computing loop exit values. 9181 if (CanConstantFold(I)) { 9182 SmallVector<Constant *, 4> Operands; 9183 bool MadeImprovement = false; 9184 for (Value *Op : I->operands()) { 9185 if (Constant *C = dyn_cast<Constant>(Op)) { 9186 Operands.push_back(C); 9187 continue; 9188 } 9189 9190 // If any of the operands is non-constant and if they are 9191 // non-integer and non-pointer, don't even try to analyze them 9192 // with scev techniques. 9193 if (!isSCEVable(Op->getType())) 9194 return V; 9195 9196 const SCEV *OrigV = getSCEV(Op); 9197 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9198 MadeImprovement |= OrigV != OpV; 9199 9200 Constant *C = BuildConstantFromSCEV(OpV); 9201 if (!C) return V; 9202 if (C->getType() != Op->getType()) 9203 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9204 Op->getType(), 9205 false), 9206 C, Op->getType()); 9207 Operands.push_back(C); 9208 } 9209 9210 // Check to see if getSCEVAtScope actually made an improvement. 9211 if (MadeImprovement) { 9212 Constant *C = nullptr; 9213 const DataLayout &DL = getDataLayout(); 9214 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9215 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9216 Operands[1], DL, &TLI); 9217 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9218 if (!Load->isVolatile()) 9219 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9220 DL); 9221 } else 9222 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9223 if (!C) return V; 9224 return getSCEV(C); 9225 } 9226 } 9227 } 9228 9229 // This is some other type of SCEVUnknown, just return it. 9230 return V; 9231 } 9232 9233 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) { 9234 const auto *Comm = cast<SCEVNAryExpr>(V); 9235 // Avoid performing the look-up in the common case where the specified 9236 // expression has no loop-variant portions. 9237 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9238 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9239 if (OpAtScope != Comm->getOperand(i)) { 9240 // Okay, at least one of these operands is loop variant but might be 9241 // foldable. Build a new instance of the folded commutative expression. 9242 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9243 Comm->op_begin()+i); 9244 NewOps.push_back(OpAtScope); 9245 9246 for (++i; i != e; ++i) { 9247 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9248 NewOps.push_back(OpAtScope); 9249 } 9250 if (isa<SCEVAddExpr>(Comm)) 9251 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9252 if (isa<SCEVMulExpr>(Comm)) 9253 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9254 if (isa<SCEVMinMaxExpr>(Comm)) 9255 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9256 if (isa<SCEVSequentialMinMaxExpr>(Comm)) 9257 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps); 9258 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!"); 9259 } 9260 } 9261 // If we got here, all operands are loop invariant. 9262 return Comm; 9263 } 9264 9265 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9266 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9267 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9268 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9269 return Div; // must be loop invariant 9270 return getUDivExpr(LHS, RHS); 9271 } 9272 9273 // If this is a loop recurrence for a loop that does not contain L, then we 9274 // are dealing with the final value computed by the loop. 9275 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9276 // First, attempt to evaluate each operand. 9277 // Avoid performing the look-up in the common case where the specified 9278 // expression has no loop-variant portions. 9279 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9280 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9281 if (OpAtScope == AddRec->getOperand(i)) 9282 continue; 9283 9284 // Okay, at least one of these operands is loop variant but might be 9285 // foldable. Build a new instance of the folded commutative expression. 9286 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9287 AddRec->op_begin()+i); 9288 NewOps.push_back(OpAtScope); 9289 for (++i; i != e; ++i) 9290 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9291 9292 const SCEV *FoldedRec = 9293 getAddRecExpr(NewOps, AddRec->getLoop(), 9294 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9295 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9296 // The addrec may be folded to a nonrecurrence, for example, if the 9297 // induction variable is multiplied by zero after constant folding. Go 9298 // ahead and return the folded value. 9299 if (!AddRec) 9300 return FoldedRec; 9301 break; 9302 } 9303 9304 // If the scope is outside the addrec's loop, evaluate it by using the 9305 // loop exit value of the addrec. 9306 if (!AddRec->getLoop()->contains(L)) { 9307 // To evaluate this recurrence, we need to know how many times the AddRec 9308 // loop iterates. Compute this now. 9309 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9310 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9311 9312 // Then, evaluate the AddRec. 9313 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9314 } 9315 9316 return AddRec; 9317 } 9318 9319 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 9320 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9321 if (Op == Cast->getOperand()) 9322 return Cast; // must be loop invariant 9323 return getZeroExtendExpr(Op, Cast->getType()); 9324 } 9325 9326 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 9327 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9328 if (Op == Cast->getOperand()) 9329 return Cast; // must be loop invariant 9330 return getSignExtendExpr(Op, Cast->getType()); 9331 } 9332 9333 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 9334 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9335 if (Op == Cast->getOperand()) 9336 return Cast; // must be loop invariant 9337 return getTruncateExpr(Op, Cast->getType()); 9338 } 9339 9340 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 9341 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9342 if (Op == Cast->getOperand()) 9343 return Cast; // must be loop invariant 9344 return getPtrToIntExpr(Op, Cast->getType()); 9345 } 9346 9347 llvm_unreachable("Unknown SCEV type!"); 9348 } 9349 9350 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9351 return getSCEVAtScope(getSCEV(V), L); 9352 } 9353 9354 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9355 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9356 return stripInjectiveFunctions(ZExt->getOperand()); 9357 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9358 return stripInjectiveFunctions(SExt->getOperand()); 9359 return S; 9360 } 9361 9362 /// Finds the minimum unsigned root of the following equation: 9363 /// 9364 /// A * X = B (mod N) 9365 /// 9366 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9367 /// A and B isn't important. 9368 /// 9369 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9370 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9371 ScalarEvolution &SE) { 9372 uint32_t BW = A.getBitWidth(); 9373 assert(BW == SE.getTypeSizeInBits(B->getType())); 9374 assert(A != 0 && "A must be non-zero."); 9375 9376 // 1. D = gcd(A, N) 9377 // 9378 // The gcd of A and N may have only one prime factor: 2. The number of 9379 // trailing zeros in A is its multiplicity 9380 uint32_t Mult2 = A.countTrailingZeros(); 9381 // D = 2^Mult2 9382 9383 // 2. Check if B is divisible by D. 9384 // 9385 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9386 // is not less than multiplicity of this prime factor for D. 9387 if (SE.GetMinTrailingZeros(B) < Mult2) 9388 return SE.getCouldNotCompute(); 9389 9390 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9391 // modulo (N / D). 9392 // 9393 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9394 // (N / D) in general. The inverse itself always fits into BW bits, though, 9395 // so we immediately truncate it. 9396 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9397 APInt Mod(BW + 1, 0); 9398 Mod.setBit(BW - Mult2); // Mod = N / D 9399 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9400 9401 // 4. Compute the minimum unsigned root of the equation: 9402 // I * (B / D) mod (N / D) 9403 // To simplify the computation, we factor out the divide by D: 9404 // (I * B mod N) / D 9405 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9406 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9407 } 9408 9409 /// For a given quadratic addrec, generate coefficients of the corresponding 9410 /// quadratic equation, multiplied by a common value to ensure that they are 9411 /// integers. 9412 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9413 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9414 /// were multiplied by, and BitWidth is the bit width of the original addrec 9415 /// coefficients. 9416 /// This function returns None if the addrec coefficients are not compile- 9417 /// time constants. 9418 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9419 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9420 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9421 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9422 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9423 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9424 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9425 << *AddRec << '\n'); 9426 9427 // We currently can only solve this if the coefficients are constants. 9428 if (!LC || !MC || !NC) { 9429 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9430 return None; 9431 } 9432 9433 APInt L = LC->getAPInt(); 9434 APInt M = MC->getAPInt(); 9435 APInt N = NC->getAPInt(); 9436 assert(!N.isZero() && "This is not a quadratic addrec"); 9437 9438 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9439 unsigned NewWidth = BitWidth + 1; 9440 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9441 << BitWidth << '\n'); 9442 // The sign-extension (as opposed to a zero-extension) here matches the 9443 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9444 N = N.sext(NewWidth); 9445 M = M.sext(NewWidth); 9446 L = L.sext(NewWidth); 9447 9448 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9449 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9450 // L+M, L+2M+N, L+3M+3N, ... 9451 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9452 // 9453 // The equation Acc = 0 is then 9454 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9455 // In a quadratic form it becomes: 9456 // N n^2 + (2M-N) n + 2L = 0. 9457 9458 APInt A = N; 9459 APInt B = 2 * M - A; 9460 APInt C = 2 * L; 9461 APInt T = APInt(NewWidth, 2); 9462 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9463 << "x + " << C << ", coeff bw: " << NewWidth 9464 << ", multiplied by " << T << '\n'); 9465 return std::make_tuple(A, B, C, T, BitWidth); 9466 } 9467 9468 /// Helper function to compare optional APInts: 9469 /// (a) if X and Y both exist, return min(X, Y), 9470 /// (b) if neither X nor Y exist, return None, 9471 /// (c) if exactly one of X and Y exists, return that value. 9472 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9473 if (X.hasValue() && Y.hasValue()) { 9474 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9475 APInt XW = X->sextOrSelf(W); 9476 APInt YW = Y->sextOrSelf(W); 9477 return XW.slt(YW) ? *X : *Y; 9478 } 9479 if (!X.hasValue() && !Y.hasValue()) 9480 return None; 9481 return X.hasValue() ? *X : *Y; 9482 } 9483 9484 /// Helper function to truncate an optional APInt to a given BitWidth. 9485 /// When solving addrec-related equations, it is preferable to return a value 9486 /// that has the same bit width as the original addrec's coefficients. If the 9487 /// solution fits in the original bit width, truncate it (except for i1). 9488 /// Returning a value of a different bit width may inhibit some optimizations. 9489 /// 9490 /// In general, a solution to a quadratic equation generated from an addrec 9491 /// may require BW+1 bits, where BW is the bit width of the addrec's 9492 /// coefficients. The reason is that the coefficients of the quadratic 9493 /// equation are BW+1 bits wide (to avoid truncation when converting from 9494 /// the addrec to the equation). 9495 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9496 if (!X.hasValue()) 9497 return None; 9498 unsigned W = X->getBitWidth(); 9499 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9500 return X->trunc(BitWidth); 9501 return X; 9502 } 9503 9504 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9505 /// iterations. The values L, M, N are assumed to be signed, and they 9506 /// should all have the same bit widths. 9507 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9508 /// where BW is the bit width of the addrec's coefficients. 9509 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9510 /// returned as such, otherwise the bit width of the returned value may 9511 /// be greater than BW. 9512 /// 9513 /// This function returns None if 9514 /// (a) the addrec coefficients are not constant, or 9515 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9516 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9517 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9518 static Optional<APInt> 9519 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9520 APInt A, B, C, M; 9521 unsigned BitWidth; 9522 auto T = GetQuadraticEquation(AddRec); 9523 if (!T.hasValue()) 9524 return None; 9525 9526 std::tie(A, B, C, M, BitWidth) = *T; 9527 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9528 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9529 if (!X.hasValue()) 9530 return None; 9531 9532 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9533 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9534 if (!V->isZero()) 9535 return None; 9536 9537 return TruncIfPossible(X, BitWidth); 9538 } 9539 9540 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9541 /// iterations. The values M, N are assumed to be signed, and they 9542 /// should all have the same bit widths. 9543 /// Find the least n such that c(n) does not belong to the given range, 9544 /// while c(n-1) does. 9545 /// 9546 /// This function returns None if 9547 /// (a) the addrec coefficients are not constant, or 9548 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9549 /// bounds of the range. 9550 static Optional<APInt> 9551 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9552 const ConstantRange &Range, ScalarEvolution &SE) { 9553 assert(AddRec->getOperand(0)->isZero() && 9554 "Starting value of addrec should be 0"); 9555 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9556 << Range << ", addrec " << *AddRec << '\n'); 9557 // This case is handled in getNumIterationsInRange. Here we can assume that 9558 // we start in the range. 9559 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9560 "Addrec's initial value should be in range"); 9561 9562 APInt A, B, C, M; 9563 unsigned BitWidth; 9564 auto T = GetQuadraticEquation(AddRec); 9565 if (!T.hasValue()) 9566 return None; 9567 9568 // Be careful about the return value: there can be two reasons for not 9569 // returning an actual number. First, if no solutions to the equations 9570 // were found, and second, if the solutions don't leave the given range. 9571 // The first case means that the actual solution is "unknown", the second 9572 // means that it's known, but not valid. If the solution is unknown, we 9573 // cannot make any conclusions. 9574 // Return a pair: the optional solution and a flag indicating if the 9575 // solution was found. 9576 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9577 // Solve for signed overflow and unsigned overflow, pick the lower 9578 // solution. 9579 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9580 << Bound << " (before multiplying by " << M << ")\n"); 9581 Bound *= M; // The quadratic equation multiplier. 9582 9583 Optional<APInt> SO = None; 9584 if (BitWidth > 1) { 9585 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9586 "signed overflow\n"); 9587 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9588 } 9589 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9590 "unsigned overflow\n"); 9591 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9592 BitWidth+1); 9593 9594 auto LeavesRange = [&] (const APInt &X) { 9595 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9596 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9597 if (Range.contains(V0->getValue())) 9598 return false; 9599 // X should be at least 1, so X-1 is non-negative. 9600 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9601 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9602 if (Range.contains(V1->getValue())) 9603 return true; 9604 return false; 9605 }; 9606 9607 // If SolveQuadraticEquationWrap returns None, it means that there can 9608 // be a solution, but the function failed to find it. We cannot treat it 9609 // as "no solution". 9610 if (!SO.hasValue() || !UO.hasValue()) 9611 return { None, false }; 9612 9613 // Check the smaller value first to see if it leaves the range. 9614 // At this point, both SO and UO must have values. 9615 Optional<APInt> Min = MinOptional(SO, UO); 9616 if (LeavesRange(*Min)) 9617 return { Min, true }; 9618 Optional<APInt> Max = Min == SO ? UO : SO; 9619 if (LeavesRange(*Max)) 9620 return { Max, true }; 9621 9622 // Solutions were found, but were eliminated, hence the "true". 9623 return { None, true }; 9624 }; 9625 9626 std::tie(A, B, C, M, BitWidth) = *T; 9627 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9628 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9629 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9630 auto SL = SolveForBoundary(Lower); 9631 auto SU = SolveForBoundary(Upper); 9632 // If any of the solutions was unknown, no meaninigful conclusions can 9633 // be made. 9634 if (!SL.second || !SU.second) 9635 return None; 9636 9637 // Claim: The correct solution is not some value between Min and Max. 9638 // 9639 // Justification: Assuming that Min and Max are different values, one of 9640 // them is when the first signed overflow happens, the other is when the 9641 // first unsigned overflow happens. Crossing the range boundary is only 9642 // possible via an overflow (treating 0 as a special case of it, modeling 9643 // an overflow as crossing k*2^W for some k). 9644 // 9645 // The interesting case here is when Min was eliminated as an invalid 9646 // solution, but Max was not. The argument is that if there was another 9647 // overflow between Min and Max, it would also have been eliminated if 9648 // it was considered. 9649 // 9650 // For a given boundary, it is possible to have two overflows of the same 9651 // type (signed/unsigned) without having the other type in between: this 9652 // can happen when the vertex of the parabola is between the iterations 9653 // corresponding to the overflows. This is only possible when the two 9654 // overflows cross k*2^W for the same k. In such case, if the second one 9655 // left the range (and was the first one to do so), the first overflow 9656 // would have to enter the range, which would mean that either we had left 9657 // the range before or that we started outside of it. Both of these cases 9658 // are contradictions. 9659 // 9660 // Claim: In the case where SolveForBoundary returns None, the correct 9661 // solution is not some value between the Max for this boundary and the 9662 // Min of the other boundary. 9663 // 9664 // Justification: Assume that we had such Max_A and Min_B corresponding 9665 // to range boundaries A and B and such that Max_A < Min_B. If there was 9666 // a solution between Max_A and Min_B, it would have to be caused by an 9667 // overflow corresponding to either A or B. It cannot correspond to B, 9668 // since Min_B is the first occurrence of such an overflow. If it 9669 // corresponded to A, it would have to be either a signed or an unsigned 9670 // overflow that is larger than both eliminated overflows for A. But 9671 // between the eliminated overflows and this overflow, the values would 9672 // cover the entire value space, thus crossing the other boundary, which 9673 // is a contradiction. 9674 9675 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9676 } 9677 9678 ScalarEvolution::ExitLimit 9679 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9680 bool AllowPredicates) { 9681 9682 // This is only used for loops with a "x != y" exit test. The exit condition 9683 // is now expressed as a single expression, V = x-y. So the exit test is 9684 // effectively V != 0. We know and take advantage of the fact that this 9685 // expression only being used in a comparison by zero context. 9686 9687 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9688 // If the value is a constant 9689 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9690 // If the value is already zero, the branch will execute zero times. 9691 if (C->getValue()->isZero()) return C; 9692 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9693 } 9694 9695 const SCEVAddRecExpr *AddRec = 9696 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9697 9698 if (!AddRec && AllowPredicates) 9699 // Try to make this an AddRec using runtime tests, in the first X 9700 // iterations of this loop, where X is the SCEV expression found by the 9701 // algorithm below. 9702 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9703 9704 if (!AddRec || AddRec->getLoop() != L) 9705 return getCouldNotCompute(); 9706 9707 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9708 // the quadratic equation to solve it. 9709 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9710 // We can only use this value if the chrec ends up with an exact zero 9711 // value at this index. When solving for "X*X != 5", for example, we 9712 // should not accept a root of 2. 9713 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9714 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9715 return ExitLimit(R, R, false, Predicates); 9716 } 9717 return getCouldNotCompute(); 9718 } 9719 9720 // Otherwise we can only handle this if it is affine. 9721 if (!AddRec->isAffine()) 9722 return getCouldNotCompute(); 9723 9724 // If this is an affine expression, the execution count of this branch is 9725 // the minimum unsigned root of the following equation: 9726 // 9727 // Start + Step*N = 0 (mod 2^BW) 9728 // 9729 // equivalent to: 9730 // 9731 // Step*N = -Start (mod 2^BW) 9732 // 9733 // where BW is the common bit width of Start and Step. 9734 9735 // Get the initial value for the loop. 9736 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9737 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9738 9739 // For now we handle only constant steps. 9740 // 9741 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9742 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9743 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9744 // We have not yet seen any such cases. 9745 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9746 if (!StepC || StepC->getValue()->isZero()) 9747 return getCouldNotCompute(); 9748 9749 // For positive steps (counting up until unsigned overflow): 9750 // N = -Start/Step (as unsigned) 9751 // For negative steps (counting down to zero): 9752 // N = Start/-Step 9753 // First compute the unsigned distance from zero in the direction of Step. 9754 bool CountDown = StepC->getAPInt().isNegative(); 9755 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9756 9757 // Handle unitary steps, which cannot wraparound. 9758 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9759 // N = Distance (as unsigned) 9760 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9761 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9762 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 9763 9764 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9765 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9766 // case, and see if we can improve the bound. 9767 // 9768 // Explicitly handling this here is necessary because getUnsignedRange 9769 // isn't context-sensitive; it doesn't know that we only care about the 9770 // range inside the loop. 9771 const SCEV *Zero = getZero(Distance->getType()); 9772 const SCEV *One = getOne(Distance->getType()); 9773 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9774 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9775 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9776 // as "unsigned_max(Distance + 1) - 1". 9777 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9778 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9779 } 9780 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9781 } 9782 9783 // If the condition controls loop exit (the loop exits only if the expression 9784 // is true) and the addition is no-wrap we can use unsigned divide to 9785 // compute the backedge count. In this case, the step may not divide the 9786 // distance, but we don't care because if the condition is "missed" the loop 9787 // will have undefined behavior due to wrapping. 9788 if (ControlsExit && AddRec->hasNoSelfWrap() && 9789 loopHasNoAbnormalExits(AddRec->getLoop())) { 9790 const SCEV *Exact = 9791 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9792 const SCEV *Max = getCouldNotCompute(); 9793 if (Exact != getCouldNotCompute()) { 9794 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9795 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 9796 } 9797 return ExitLimit(Exact, Max, false, Predicates); 9798 } 9799 9800 // Solve the general equation. 9801 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9802 getNegativeSCEV(Start), *this); 9803 9804 const SCEV *M = E; 9805 if (E != getCouldNotCompute()) { 9806 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 9807 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 9808 } 9809 return ExitLimit(E, M, false, Predicates); 9810 } 9811 9812 ScalarEvolution::ExitLimit 9813 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9814 // Loops that look like: while (X == 0) are very strange indeed. We don't 9815 // handle them yet except for the trivial case. This could be expanded in the 9816 // future as needed. 9817 9818 // If the value is a constant, check to see if it is known to be non-zero 9819 // already. If so, the backedge will execute zero times. 9820 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9821 if (!C->getValue()->isZero()) 9822 return getZero(C->getType()); 9823 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9824 } 9825 9826 // We could implement others, but I really doubt anyone writes loops like 9827 // this, and if they did, they would already be constant folded. 9828 return getCouldNotCompute(); 9829 } 9830 9831 std::pair<const BasicBlock *, const BasicBlock *> 9832 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9833 const { 9834 // If the block has a unique predecessor, then there is no path from the 9835 // predecessor to the block that does not go through the direct edge 9836 // from the predecessor to the block. 9837 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9838 return {Pred, BB}; 9839 9840 // A loop's header is defined to be a block that dominates the loop. 9841 // If the header has a unique predecessor outside the loop, it must be 9842 // a block that has exactly one successor that can reach the loop. 9843 if (const Loop *L = LI.getLoopFor(BB)) 9844 return {L->getLoopPredecessor(), L->getHeader()}; 9845 9846 return {nullptr, nullptr}; 9847 } 9848 9849 /// SCEV structural equivalence is usually sufficient for testing whether two 9850 /// expressions are equal, however for the purposes of looking for a condition 9851 /// guarding a loop, it can be useful to be a little more general, since a 9852 /// front-end may have replicated the controlling expression. 9853 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9854 // Quick check to see if they are the same SCEV. 9855 if (A == B) return true; 9856 9857 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9858 // Not all instructions that are "identical" compute the same value. For 9859 // instance, two distinct alloca instructions allocating the same type are 9860 // identical and do not read memory; but compute distinct values. 9861 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9862 }; 9863 9864 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9865 // two different instructions with the same value. Check for this case. 9866 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9867 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9868 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9869 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9870 if (ComputesEqualValues(AI, BI)) 9871 return true; 9872 9873 // Otherwise assume they may have a different value. 9874 return false; 9875 } 9876 9877 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9878 const SCEV *&LHS, const SCEV *&RHS, 9879 unsigned Depth) { 9880 bool Changed = false; 9881 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9882 // '0 != 0'. 9883 auto TrivialCase = [&](bool TriviallyTrue) { 9884 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9885 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9886 return true; 9887 }; 9888 // If we hit the max recursion limit bail out. 9889 if (Depth >= 3) 9890 return false; 9891 9892 // Canonicalize a constant to the right side. 9893 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9894 // Check for both operands constant. 9895 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9896 if (ConstantExpr::getICmp(Pred, 9897 LHSC->getValue(), 9898 RHSC->getValue())->isNullValue()) 9899 return TrivialCase(false); 9900 else 9901 return TrivialCase(true); 9902 } 9903 // Otherwise swap the operands to put the constant on the right. 9904 std::swap(LHS, RHS); 9905 Pred = ICmpInst::getSwappedPredicate(Pred); 9906 Changed = true; 9907 } 9908 9909 // If we're comparing an addrec with a value which is loop-invariant in the 9910 // addrec's loop, put the addrec on the left. Also make a dominance check, 9911 // as both operands could be addrecs loop-invariant in each other's loop. 9912 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9913 const Loop *L = AR->getLoop(); 9914 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9915 std::swap(LHS, RHS); 9916 Pred = ICmpInst::getSwappedPredicate(Pred); 9917 Changed = true; 9918 } 9919 } 9920 9921 // If there's a constant operand, canonicalize comparisons with boundary 9922 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9923 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9924 const APInt &RA = RC->getAPInt(); 9925 9926 bool SimplifiedByConstantRange = false; 9927 9928 if (!ICmpInst::isEquality(Pred)) { 9929 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9930 if (ExactCR.isFullSet()) 9931 return TrivialCase(true); 9932 else if (ExactCR.isEmptySet()) 9933 return TrivialCase(false); 9934 9935 APInt NewRHS; 9936 CmpInst::Predicate NewPred; 9937 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9938 ICmpInst::isEquality(NewPred)) { 9939 // We were able to convert an inequality to an equality. 9940 Pred = NewPred; 9941 RHS = getConstant(NewRHS); 9942 Changed = SimplifiedByConstantRange = true; 9943 } 9944 } 9945 9946 if (!SimplifiedByConstantRange) { 9947 switch (Pred) { 9948 default: 9949 break; 9950 case ICmpInst::ICMP_EQ: 9951 case ICmpInst::ICMP_NE: 9952 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9953 if (!RA) 9954 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9955 if (const SCEVMulExpr *ME = 9956 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9957 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9958 ME->getOperand(0)->isAllOnesValue()) { 9959 RHS = AE->getOperand(1); 9960 LHS = ME->getOperand(1); 9961 Changed = true; 9962 } 9963 break; 9964 9965 9966 // The "Should have been caught earlier!" messages refer to the fact 9967 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9968 // should have fired on the corresponding cases, and canonicalized the 9969 // check to trivial case. 9970 9971 case ICmpInst::ICMP_UGE: 9972 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9973 Pred = ICmpInst::ICMP_UGT; 9974 RHS = getConstant(RA - 1); 9975 Changed = true; 9976 break; 9977 case ICmpInst::ICMP_ULE: 9978 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9979 Pred = ICmpInst::ICMP_ULT; 9980 RHS = getConstant(RA + 1); 9981 Changed = true; 9982 break; 9983 case ICmpInst::ICMP_SGE: 9984 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9985 Pred = ICmpInst::ICMP_SGT; 9986 RHS = getConstant(RA - 1); 9987 Changed = true; 9988 break; 9989 case ICmpInst::ICMP_SLE: 9990 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9991 Pred = ICmpInst::ICMP_SLT; 9992 RHS = getConstant(RA + 1); 9993 Changed = true; 9994 break; 9995 } 9996 } 9997 } 9998 9999 // Check for obvious equality. 10000 if (HasSameValue(LHS, RHS)) { 10001 if (ICmpInst::isTrueWhenEqual(Pred)) 10002 return TrivialCase(true); 10003 if (ICmpInst::isFalseWhenEqual(Pred)) 10004 return TrivialCase(false); 10005 } 10006 10007 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10008 // adding or subtracting 1 from one of the operands. 10009 switch (Pred) { 10010 case ICmpInst::ICMP_SLE: 10011 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 10012 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10013 SCEV::FlagNSW); 10014 Pred = ICmpInst::ICMP_SLT; 10015 Changed = true; 10016 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10017 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10018 SCEV::FlagNSW); 10019 Pred = ICmpInst::ICMP_SLT; 10020 Changed = true; 10021 } 10022 break; 10023 case ICmpInst::ICMP_SGE: 10024 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 10025 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10026 SCEV::FlagNSW); 10027 Pred = ICmpInst::ICMP_SGT; 10028 Changed = true; 10029 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10030 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10031 SCEV::FlagNSW); 10032 Pred = ICmpInst::ICMP_SGT; 10033 Changed = true; 10034 } 10035 break; 10036 case ICmpInst::ICMP_ULE: 10037 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 10038 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10039 SCEV::FlagNUW); 10040 Pred = ICmpInst::ICMP_ULT; 10041 Changed = true; 10042 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10043 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10044 Pred = ICmpInst::ICMP_ULT; 10045 Changed = true; 10046 } 10047 break; 10048 case ICmpInst::ICMP_UGE: 10049 if (!getUnsignedRangeMin(RHS).isMinValue()) { 10050 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10051 Pred = ICmpInst::ICMP_UGT; 10052 Changed = true; 10053 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10054 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10055 SCEV::FlagNUW); 10056 Pred = ICmpInst::ICMP_UGT; 10057 Changed = true; 10058 } 10059 break; 10060 default: 10061 break; 10062 } 10063 10064 // TODO: More simplifications are possible here. 10065 10066 // Recursively simplify until we either hit a recursion limit or nothing 10067 // changes. 10068 if (Changed) 10069 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 10070 10071 return Changed; 10072 } 10073 10074 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10075 return getSignedRangeMax(S).isNegative(); 10076 } 10077 10078 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10079 return getSignedRangeMin(S).isStrictlyPositive(); 10080 } 10081 10082 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10083 return !getSignedRangeMin(S).isNegative(); 10084 } 10085 10086 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10087 return !getSignedRangeMax(S).isStrictlyPositive(); 10088 } 10089 10090 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10091 return getUnsignedRangeMin(S) != 0; 10092 } 10093 10094 std::pair<const SCEV *, const SCEV *> 10095 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10096 // Compute SCEV on entry of loop L. 10097 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10098 if (Start == getCouldNotCompute()) 10099 return { Start, Start }; 10100 // Compute post increment SCEV for loop L. 10101 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10102 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10103 return { Start, PostInc }; 10104 } 10105 10106 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10107 const SCEV *LHS, const SCEV *RHS) { 10108 // First collect all loops. 10109 SmallPtrSet<const Loop *, 8> LoopsUsed; 10110 getUsedLoops(LHS, LoopsUsed); 10111 getUsedLoops(RHS, LoopsUsed); 10112 10113 if (LoopsUsed.empty()) 10114 return false; 10115 10116 // Domination relationship must be a linear order on collected loops. 10117 #ifndef NDEBUG 10118 for (auto *L1 : LoopsUsed) 10119 for (auto *L2 : LoopsUsed) 10120 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10121 DT.dominates(L2->getHeader(), L1->getHeader())) && 10122 "Domination relationship is not a linear order"); 10123 #endif 10124 10125 const Loop *MDL = 10126 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10127 [&](const Loop *L1, const Loop *L2) { 10128 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10129 }); 10130 10131 // Get init and post increment value for LHS. 10132 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10133 // if LHS contains unknown non-invariant SCEV then bail out. 10134 if (SplitLHS.first == getCouldNotCompute()) 10135 return false; 10136 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10137 // Get init and post increment value for RHS. 10138 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10139 // if RHS contains unknown non-invariant SCEV then bail out. 10140 if (SplitRHS.first == getCouldNotCompute()) 10141 return false; 10142 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10143 // It is possible that init SCEV contains an invariant load but it does 10144 // not dominate MDL and is not available at MDL loop entry, so we should 10145 // check it here. 10146 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10147 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10148 return false; 10149 10150 // It seems backedge guard check is faster than entry one so in some cases 10151 // it can speed up whole estimation by short circuit 10152 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10153 SplitRHS.second) && 10154 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10155 } 10156 10157 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10158 const SCEV *LHS, const SCEV *RHS) { 10159 // Canonicalize the inputs first. 10160 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10161 10162 if (isKnownViaInduction(Pred, LHS, RHS)) 10163 return true; 10164 10165 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10166 return true; 10167 10168 // Otherwise see what can be done with some simple reasoning. 10169 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10170 } 10171 10172 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10173 const SCEV *LHS, 10174 const SCEV *RHS) { 10175 if (isKnownPredicate(Pred, LHS, RHS)) 10176 return true; 10177 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10178 return false; 10179 return None; 10180 } 10181 10182 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10183 const SCEV *LHS, const SCEV *RHS, 10184 const Instruction *CtxI) { 10185 // TODO: Analyze guards and assumes from Context's block. 10186 return isKnownPredicate(Pred, LHS, RHS) || 10187 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10188 } 10189 10190 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10191 const SCEV *LHS, 10192 const SCEV *RHS, 10193 const Instruction *CtxI) { 10194 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10195 if (KnownWithoutContext) 10196 return KnownWithoutContext; 10197 10198 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10199 return true; 10200 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10201 ICmpInst::getInversePredicate(Pred), 10202 LHS, RHS)) 10203 return false; 10204 return None; 10205 } 10206 10207 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10208 const SCEVAddRecExpr *LHS, 10209 const SCEV *RHS) { 10210 const Loop *L = LHS->getLoop(); 10211 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10212 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10213 } 10214 10215 Optional<ScalarEvolution::MonotonicPredicateType> 10216 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10217 ICmpInst::Predicate Pred) { 10218 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10219 10220 #ifndef NDEBUG 10221 // Verify an invariant: inverting the predicate should turn a monotonically 10222 // increasing change to a monotonically decreasing one, and vice versa. 10223 if (Result) { 10224 auto ResultSwapped = 10225 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10226 10227 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10228 assert(ResultSwapped.getValue() != Result.getValue() && 10229 "monotonicity should flip as we flip the predicate"); 10230 } 10231 #endif 10232 10233 return Result; 10234 } 10235 10236 Optional<ScalarEvolution::MonotonicPredicateType> 10237 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10238 ICmpInst::Predicate Pred) { 10239 // A zero step value for LHS means the induction variable is essentially a 10240 // loop invariant value. We don't really depend on the predicate actually 10241 // flipping from false to true (for increasing predicates, and the other way 10242 // around for decreasing predicates), all we care about is that *if* the 10243 // predicate changes then it only changes from false to true. 10244 // 10245 // A zero step value in itself is not very useful, but there may be places 10246 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10247 // as general as possible. 10248 10249 // Only handle LE/LT/GE/GT predicates. 10250 if (!ICmpInst::isRelational(Pred)) 10251 return None; 10252 10253 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10254 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10255 "Should be greater or less!"); 10256 10257 // Check that AR does not wrap. 10258 if (ICmpInst::isUnsigned(Pred)) { 10259 if (!LHS->hasNoUnsignedWrap()) 10260 return None; 10261 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10262 } else { 10263 assert(ICmpInst::isSigned(Pred) && 10264 "Relational predicate is either signed or unsigned!"); 10265 if (!LHS->hasNoSignedWrap()) 10266 return None; 10267 10268 const SCEV *Step = LHS->getStepRecurrence(*this); 10269 10270 if (isKnownNonNegative(Step)) 10271 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10272 10273 if (isKnownNonPositive(Step)) 10274 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10275 10276 return None; 10277 } 10278 } 10279 10280 Optional<ScalarEvolution::LoopInvariantPredicate> 10281 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10282 const SCEV *LHS, const SCEV *RHS, 10283 const Loop *L) { 10284 10285 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10286 if (!isLoopInvariant(RHS, L)) { 10287 if (!isLoopInvariant(LHS, L)) 10288 return None; 10289 10290 std::swap(LHS, RHS); 10291 Pred = ICmpInst::getSwappedPredicate(Pred); 10292 } 10293 10294 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10295 if (!ArLHS || ArLHS->getLoop() != L) 10296 return None; 10297 10298 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10299 if (!MonotonicType) 10300 return None; 10301 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10302 // true as the loop iterates, and the backedge is control dependent on 10303 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10304 // 10305 // * if the predicate was false in the first iteration then the predicate 10306 // is never evaluated again, since the loop exits without taking the 10307 // backedge. 10308 // * if the predicate was true in the first iteration then it will 10309 // continue to be true for all future iterations since it is 10310 // monotonically increasing. 10311 // 10312 // For both the above possibilities, we can replace the loop varying 10313 // predicate with its value on the first iteration of the loop (which is 10314 // loop invariant). 10315 // 10316 // A similar reasoning applies for a monotonically decreasing predicate, by 10317 // replacing true with false and false with true in the above two bullets. 10318 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10319 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10320 10321 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10322 return None; 10323 10324 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10325 } 10326 10327 Optional<ScalarEvolution::LoopInvariantPredicate> 10328 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10329 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10330 const Instruction *CtxI, const SCEV *MaxIter) { 10331 // Try to prove the following set of facts: 10332 // - The predicate is monotonic in the iteration space. 10333 // - If the check does not fail on the 1st iteration: 10334 // - No overflow will happen during first MaxIter iterations; 10335 // - It will not fail on the MaxIter'th iteration. 10336 // If the check does fail on the 1st iteration, we leave the loop and no 10337 // other checks matter. 10338 10339 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10340 if (!isLoopInvariant(RHS, L)) { 10341 if (!isLoopInvariant(LHS, L)) 10342 return None; 10343 10344 std::swap(LHS, RHS); 10345 Pred = ICmpInst::getSwappedPredicate(Pred); 10346 } 10347 10348 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10349 if (!AR || AR->getLoop() != L) 10350 return None; 10351 10352 // The predicate must be relational (i.e. <, <=, >=, >). 10353 if (!ICmpInst::isRelational(Pred)) 10354 return None; 10355 10356 // TODO: Support steps other than +/- 1. 10357 const SCEV *Step = AR->getStepRecurrence(*this); 10358 auto *One = getOne(Step->getType()); 10359 auto *MinusOne = getNegativeSCEV(One); 10360 if (Step != One && Step != MinusOne) 10361 return None; 10362 10363 // Type mismatch here means that MaxIter is potentially larger than max 10364 // unsigned value in start type, which mean we cannot prove no wrap for the 10365 // indvar. 10366 if (AR->getType() != MaxIter->getType()) 10367 return None; 10368 10369 // Value of IV on suggested last iteration. 10370 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10371 // Does it still meet the requirement? 10372 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10373 return None; 10374 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10375 // not exceed max unsigned value of this type), this effectively proves 10376 // that there is no wrap during the iteration. To prove that there is no 10377 // signed/unsigned wrap, we need to check that 10378 // Start <= Last for step = 1 or Start >= Last for step = -1. 10379 ICmpInst::Predicate NoOverflowPred = 10380 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10381 if (Step == MinusOne) 10382 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10383 const SCEV *Start = AR->getStart(); 10384 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10385 return None; 10386 10387 // Everything is fine. 10388 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10389 } 10390 10391 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10392 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10393 if (HasSameValue(LHS, RHS)) 10394 return ICmpInst::isTrueWhenEqual(Pred); 10395 10396 // This code is split out from isKnownPredicate because it is called from 10397 // within isLoopEntryGuardedByCond. 10398 10399 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10400 const ConstantRange &RangeRHS) { 10401 return RangeLHS.icmp(Pred, RangeRHS); 10402 }; 10403 10404 // The check at the top of the function catches the case where the values are 10405 // known to be equal. 10406 if (Pred == CmpInst::ICMP_EQ) 10407 return false; 10408 10409 if (Pred == CmpInst::ICMP_NE) { 10410 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10411 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10412 return true; 10413 auto *Diff = getMinusSCEV(LHS, RHS); 10414 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10415 } 10416 10417 if (CmpInst::isSigned(Pred)) 10418 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10419 10420 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10421 } 10422 10423 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10424 const SCEV *LHS, 10425 const SCEV *RHS) { 10426 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10427 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10428 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10429 // OutC1 and OutC2. 10430 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10431 APInt &OutC1, APInt &OutC2, 10432 SCEV::NoWrapFlags ExpectedFlags) { 10433 const SCEV *XNonConstOp, *XConstOp; 10434 const SCEV *YNonConstOp, *YConstOp; 10435 SCEV::NoWrapFlags XFlagsPresent; 10436 SCEV::NoWrapFlags YFlagsPresent; 10437 10438 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10439 XConstOp = getZero(X->getType()); 10440 XNonConstOp = X; 10441 XFlagsPresent = ExpectedFlags; 10442 } 10443 if (!isa<SCEVConstant>(XConstOp) || 10444 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10445 return false; 10446 10447 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10448 YConstOp = getZero(Y->getType()); 10449 YNonConstOp = Y; 10450 YFlagsPresent = ExpectedFlags; 10451 } 10452 10453 if (!isa<SCEVConstant>(YConstOp) || 10454 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10455 return false; 10456 10457 if (YNonConstOp != XNonConstOp) 10458 return false; 10459 10460 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10461 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10462 10463 return true; 10464 }; 10465 10466 APInt C1; 10467 APInt C2; 10468 10469 switch (Pred) { 10470 default: 10471 break; 10472 10473 case ICmpInst::ICMP_SGE: 10474 std::swap(LHS, RHS); 10475 LLVM_FALLTHROUGH; 10476 case ICmpInst::ICMP_SLE: 10477 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10478 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10479 return true; 10480 10481 break; 10482 10483 case ICmpInst::ICMP_SGT: 10484 std::swap(LHS, RHS); 10485 LLVM_FALLTHROUGH; 10486 case ICmpInst::ICMP_SLT: 10487 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10488 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10489 return true; 10490 10491 break; 10492 10493 case ICmpInst::ICMP_UGE: 10494 std::swap(LHS, RHS); 10495 LLVM_FALLTHROUGH; 10496 case ICmpInst::ICMP_ULE: 10497 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10498 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10499 return true; 10500 10501 break; 10502 10503 case ICmpInst::ICMP_UGT: 10504 std::swap(LHS, RHS); 10505 LLVM_FALLTHROUGH; 10506 case ICmpInst::ICMP_ULT: 10507 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10508 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10509 return true; 10510 break; 10511 } 10512 10513 return false; 10514 } 10515 10516 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10517 const SCEV *LHS, 10518 const SCEV *RHS) { 10519 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10520 return false; 10521 10522 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10523 // the stack can result in exponential time complexity. 10524 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10525 10526 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10527 // 10528 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10529 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10530 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10531 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10532 // use isKnownPredicate later if needed. 10533 return isKnownNonNegative(RHS) && 10534 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10535 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10536 } 10537 10538 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10539 ICmpInst::Predicate Pred, 10540 const SCEV *LHS, const SCEV *RHS) { 10541 // No need to even try if we know the module has no guards. 10542 if (!HasGuards) 10543 return false; 10544 10545 return any_of(*BB, [&](const Instruction &I) { 10546 using namespace llvm::PatternMatch; 10547 10548 Value *Condition; 10549 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10550 m_Value(Condition))) && 10551 isImpliedCond(Pred, LHS, RHS, Condition, false); 10552 }); 10553 } 10554 10555 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10556 /// protected by a conditional between LHS and RHS. This is used to 10557 /// to eliminate casts. 10558 bool 10559 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10560 ICmpInst::Predicate Pred, 10561 const SCEV *LHS, const SCEV *RHS) { 10562 // Interpret a null as meaning no loop, where there is obviously no guard 10563 // (interprocedural conditions notwithstanding). 10564 if (!L) return true; 10565 10566 if (VerifyIR) 10567 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10568 "This cannot be done on broken IR!"); 10569 10570 10571 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10572 return true; 10573 10574 BasicBlock *Latch = L->getLoopLatch(); 10575 if (!Latch) 10576 return false; 10577 10578 BranchInst *LoopContinuePredicate = 10579 dyn_cast<BranchInst>(Latch->getTerminator()); 10580 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10581 isImpliedCond(Pred, LHS, RHS, 10582 LoopContinuePredicate->getCondition(), 10583 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10584 return true; 10585 10586 // We don't want more than one activation of the following loops on the stack 10587 // -- that can lead to O(n!) time complexity. 10588 if (WalkingBEDominatingConds) 10589 return false; 10590 10591 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10592 10593 // See if we can exploit a trip count to prove the predicate. 10594 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10595 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10596 if (LatchBECount != getCouldNotCompute()) { 10597 // We know that Latch branches back to the loop header exactly 10598 // LatchBECount times. This means the backdege condition at Latch is 10599 // equivalent to "{0,+,1} u< LatchBECount". 10600 Type *Ty = LatchBECount->getType(); 10601 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10602 const SCEV *LoopCounter = 10603 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10604 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10605 LatchBECount)) 10606 return true; 10607 } 10608 10609 // Check conditions due to any @llvm.assume intrinsics. 10610 for (auto &AssumeVH : AC.assumptions()) { 10611 if (!AssumeVH) 10612 continue; 10613 auto *CI = cast<CallInst>(AssumeVH); 10614 if (!DT.dominates(CI, Latch->getTerminator())) 10615 continue; 10616 10617 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10618 return true; 10619 } 10620 10621 // If the loop is not reachable from the entry block, we risk running into an 10622 // infinite loop as we walk up into the dom tree. These loops do not matter 10623 // anyway, so we just return a conservative answer when we see them. 10624 if (!DT.isReachableFromEntry(L->getHeader())) 10625 return false; 10626 10627 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10628 return true; 10629 10630 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10631 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10632 assert(DTN && "should reach the loop header before reaching the root!"); 10633 10634 BasicBlock *BB = DTN->getBlock(); 10635 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10636 return true; 10637 10638 BasicBlock *PBB = BB->getSinglePredecessor(); 10639 if (!PBB) 10640 continue; 10641 10642 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10643 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10644 continue; 10645 10646 Value *Condition = ContinuePredicate->getCondition(); 10647 10648 // If we have an edge `E` within the loop body that dominates the only 10649 // latch, the condition guarding `E` also guards the backedge. This 10650 // reasoning works only for loops with a single latch. 10651 10652 BasicBlockEdge DominatingEdge(PBB, BB); 10653 if (DominatingEdge.isSingleEdge()) { 10654 // We're constructively (and conservatively) enumerating edges within the 10655 // loop body that dominate the latch. The dominator tree better agree 10656 // with us on this: 10657 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10658 10659 if (isImpliedCond(Pred, LHS, RHS, Condition, 10660 BB != ContinuePredicate->getSuccessor(0))) 10661 return true; 10662 } 10663 } 10664 10665 return false; 10666 } 10667 10668 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10669 ICmpInst::Predicate Pred, 10670 const SCEV *LHS, 10671 const SCEV *RHS) { 10672 if (VerifyIR) 10673 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10674 "This cannot be done on broken IR!"); 10675 10676 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10677 // the facts (a >= b && a != b) separately. A typical situation is when the 10678 // non-strict comparison is known from ranges and non-equality is known from 10679 // dominating predicates. If we are proving strict comparison, we always try 10680 // to prove non-equality and non-strict comparison separately. 10681 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10682 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10683 bool ProvedNonStrictComparison = false; 10684 bool ProvedNonEquality = false; 10685 10686 auto SplitAndProve = 10687 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10688 if (!ProvedNonStrictComparison) 10689 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10690 if (!ProvedNonEquality) 10691 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10692 if (ProvedNonStrictComparison && ProvedNonEquality) 10693 return true; 10694 return false; 10695 }; 10696 10697 if (ProvingStrictComparison) { 10698 auto ProofFn = [&](ICmpInst::Predicate P) { 10699 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10700 }; 10701 if (SplitAndProve(ProofFn)) 10702 return true; 10703 } 10704 10705 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10706 auto ProveViaGuard = [&](const BasicBlock *Block) { 10707 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10708 return true; 10709 if (ProvingStrictComparison) { 10710 auto ProofFn = [&](ICmpInst::Predicate P) { 10711 return isImpliedViaGuard(Block, P, LHS, RHS); 10712 }; 10713 if (SplitAndProve(ProofFn)) 10714 return true; 10715 } 10716 return false; 10717 }; 10718 10719 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10720 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10721 const Instruction *CtxI = &BB->front(); 10722 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10723 return true; 10724 if (ProvingStrictComparison) { 10725 auto ProofFn = [&](ICmpInst::Predicate P) { 10726 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10727 }; 10728 if (SplitAndProve(ProofFn)) 10729 return true; 10730 } 10731 return false; 10732 }; 10733 10734 // Starting at the block's predecessor, climb up the predecessor chain, as long 10735 // as there are predecessors that can be found that have unique successors 10736 // leading to the original block. 10737 const Loop *ContainingLoop = LI.getLoopFor(BB); 10738 const BasicBlock *PredBB; 10739 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10740 PredBB = ContainingLoop->getLoopPredecessor(); 10741 else 10742 PredBB = BB->getSinglePredecessor(); 10743 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10744 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10745 if (ProveViaGuard(Pair.first)) 10746 return true; 10747 10748 const BranchInst *LoopEntryPredicate = 10749 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10750 if (!LoopEntryPredicate || 10751 LoopEntryPredicate->isUnconditional()) 10752 continue; 10753 10754 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10755 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10756 return true; 10757 } 10758 10759 // Check conditions due to any @llvm.assume intrinsics. 10760 for (auto &AssumeVH : AC.assumptions()) { 10761 if (!AssumeVH) 10762 continue; 10763 auto *CI = cast<CallInst>(AssumeVH); 10764 if (!DT.dominates(CI, BB)) 10765 continue; 10766 10767 if (ProveViaCond(CI->getArgOperand(0), false)) 10768 return true; 10769 } 10770 10771 return false; 10772 } 10773 10774 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10775 ICmpInst::Predicate Pred, 10776 const SCEV *LHS, 10777 const SCEV *RHS) { 10778 // Interpret a null as meaning no loop, where there is obviously no guard 10779 // (interprocedural conditions notwithstanding). 10780 if (!L) 10781 return false; 10782 10783 // Both LHS and RHS must be available at loop entry. 10784 assert(isAvailableAtLoopEntry(LHS, L) && 10785 "LHS is not available at Loop Entry"); 10786 assert(isAvailableAtLoopEntry(RHS, L) && 10787 "RHS is not available at Loop Entry"); 10788 10789 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10790 return true; 10791 10792 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10793 } 10794 10795 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10796 const SCEV *RHS, 10797 const Value *FoundCondValue, bool Inverse, 10798 const Instruction *CtxI) { 10799 // False conditions implies anything. Do not bother analyzing it further. 10800 if (FoundCondValue == 10801 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10802 return true; 10803 10804 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10805 return false; 10806 10807 auto ClearOnExit = 10808 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10809 10810 // Recursively handle And and Or conditions. 10811 const Value *Op0, *Op1; 10812 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10813 if (!Inverse) 10814 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10815 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10816 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10817 if (Inverse) 10818 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10819 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10820 } 10821 10822 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10823 if (!ICI) return false; 10824 10825 // Now that we found a conditional branch that dominates the loop or controls 10826 // the loop latch. Check to see if it is the comparison we are looking for. 10827 ICmpInst::Predicate FoundPred; 10828 if (Inverse) 10829 FoundPred = ICI->getInversePredicate(); 10830 else 10831 FoundPred = ICI->getPredicate(); 10832 10833 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10834 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10835 10836 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 10837 } 10838 10839 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10840 const SCEV *RHS, 10841 ICmpInst::Predicate FoundPred, 10842 const SCEV *FoundLHS, const SCEV *FoundRHS, 10843 const Instruction *CtxI) { 10844 // Balance the types. 10845 if (getTypeSizeInBits(LHS->getType()) < 10846 getTypeSizeInBits(FoundLHS->getType())) { 10847 // For unsigned and equality predicates, try to prove that both found 10848 // operands fit into narrow unsigned range. If so, try to prove facts in 10849 // narrow types. 10850 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) { 10851 auto *NarrowType = LHS->getType(); 10852 auto *WideType = FoundLHS->getType(); 10853 auto BitWidth = getTypeSizeInBits(NarrowType); 10854 const SCEV *MaxValue = getZeroExtendExpr( 10855 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10856 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 10857 MaxValue) && 10858 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 10859 MaxValue)) { 10860 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10861 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10862 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10863 TruncFoundRHS, CtxI)) 10864 return true; 10865 } 10866 } 10867 10868 if (LHS->getType()->isPointerTy()) 10869 return false; 10870 if (CmpInst::isSigned(Pred)) { 10871 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10872 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10873 } else { 10874 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10875 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10876 } 10877 } else if (getTypeSizeInBits(LHS->getType()) > 10878 getTypeSizeInBits(FoundLHS->getType())) { 10879 if (FoundLHS->getType()->isPointerTy()) 10880 return false; 10881 if (CmpInst::isSigned(FoundPred)) { 10882 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10883 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10884 } else { 10885 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10886 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10887 } 10888 } 10889 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10890 FoundRHS, CtxI); 10891 } 10892 10893 bool ScalarEvolution::isImpliedCondBalancedTypes( 10894 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10895 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10896 const Instruction *CtxI) { 10897 assert(getTypeSizeInBits(LHS->getType()) == 10898 getTypeSizeInBits(FoundLHS->getType()) && 10899 "Types should be balanced!"); 10900 // Canonicalize the query to match the way instcombine will have 10901 // canonicalized the comparison. 10902 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10903 if (LHS == RHS) 10904 return CmpInst::isTrueWhenEqual(Pred); 10905 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10906 if (FoundLHS == FoundRHS) 10907 return CmpInst::isFalseWhenEqual(FoundPred); 10908 10909 // Check to see if we can make the LHS or RHS match. 10910 if (LHS == FoundRHS || RHS == FoundLHS) { 10911 if (isa<SCEVConstant>(RHS)) { 10912 std::swap(FoundLHS, FoundRHS); 10913 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10914 } else { 10915 std::swap(LHS, RHS); 10916 Pred = ICmpInst::getSwappedPredicate(Pred); 10917 } 10918 } 10919 10920 // Check whether the found predicate is the same as the desired predicate. 10921 if (FoundPred == Pred) 10922 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10923 10924 // Check whether swapping the found predicate makes it the same as the 10925 // desired predicate. 10926 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10927 // We can write the implication 10928 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10929 // using one of the following ways: 10930 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10931 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10932 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10933 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10934 // Forms 1. and 2. require swapping the operands of one condition. Don't 10935 // do this if it would break canonical constant/addrec ordering. 10936 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10937 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10938 CtxI); 10939 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10940 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 10941 10942 // There's no clear preference between forms 3. and 4., try both. Avoid 10943 // forming getNotSCEV of pointer values as the resulting subtract is 10944 // not legal. 10945 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 10946 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10947 FoundLHS, FoundRHS, CtxI)) 10948 return true; 10949 10950 if (!FoundLHS->getType()->isPointerTy() && 10951 !FoundRHS->getType()->isPointerTy() && 10952 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10953 getNotSCEV(FoundRHS), CtxI)) 10954 return true; 10955 10956 return false; 10957 } 10958 10959 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 10960 CmpInst::Predicate P2) { 10961 assert(P1 != P2 && "Handled earlier!"); 10962 return CmpInst::isRelational(P2) && 10963 P1 == CmpInst::getFlippedSignednessPredicate(P2); 10964 }; 10965 if (IsSignFlippedPredicate(Pred, FoundPred)) { 10966 // Unsigned comparison is the same as signed comparison when both the 10967 // operands are non-negative or negative. 10968 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 10969 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 10970 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10971 // Create local copies that we can freely swap and canonicalize our 10972 // conditions to "le/lt". 10973 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 10974 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 10975 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 10976 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 10977 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 10978 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 10979 std::swap(CanonicalLHS, CanonicalRHS); 10980 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 10981 } 10982 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 10983 "Must be!"); 10984 assert((ICmpInst::isLT(CanonicalFoundPred) || 10985 ICmpInst::isLE(CanonicalFoundPred)) && 10986 "Must be!"); 10987 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 10988 // Use implication: 10989 // x <u y && y >=s 0 --> x <s y. 10990 // If we can prove the left part, the right part is also proven. 10991 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 10992 CanonicalRHS, CanonicalFoundLHS, 10993 CanonicalFoundRHS); 10994 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 10995 // Use implication: 10996 // x <s y && y <s 0 --> x <u y. 10997 // If we can prove the left part, the right part is also proven. 10998 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 10999 CanonicalRHS, CanonicalFoundLHS, 11000 CanonicalFoundRHS); 11001 } 11002 11003 // Check if we can make progress by sharpening ranges. 11004 if (FoundPred == ICmpInst::ICMP_NE && 11005 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11006 11007 const SCEVConstant *C = nullptr; 11008 const SCEV *V = nullptr; 11009 11010 if (isa<SCEVConstant>(FoundLHS)) { 11011 C = cast<SCEVConstant>(FoundLHS); 11012 V = FoundRHS; 11013 } else { 11014 C = cast<SCEVConstant>(FoundRHS); 11015 V = FoundLHS; 11016 } 11017 11018 // The guarding predicate tells us that C != V. If the known range 11019 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11020 // range we consider has to correspond to same signedness as the 11021 // predicate we're interested in folding. 11022 11023 APInt Min = ICmpInst::isSigned(Pred) ? 11024 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11025 11026 if (Min == C->getAPInt()) { 11027 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11028 // This is true even if (Min + 1) wraps around -- in case of 11029 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11030 11031 APInt SharperMin = Min + 1; 11032 11033 switch (Pred) { 11034 case ICmpInst::ICMP_SGE: 11035 case ICmpInst::ICMP_UGE: 11036 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11037 // RHS, we're done. 11038 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11039 CtxI)) 11040 return true; 11041 LLVM_FALLTHROUGH; 11042 11043 case ICmpInst::ICMP_SGT: 11044 case ICmpInst::ICMP_UGT: 11045 // We know from the range information that (V `Pred` Min || 11046 // V == Min). We know from the guarding condition that !(V 11047 // == Min). This gives us 11048 // 11049 // V `Pred` Min || V == Min && !(V == Min) 11050 // => V `Pred` Min 11051 // 11052 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11053 11054 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11055 return true; 11056 break; 11057 11058 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11059 case ICmpInst::ICMP_SLE: 11060 case ICmpInst::ICMP_ULE: 11061 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11062 LHS, V, getConstant(SharperMin), CtxI)) 11063 return true; 11064 LLVM_FALLTHROUGH; 11065 11066 case ICmpInst::ICMP_SLT: 11067 case ICmpInst::ICMP_ULT: 11068 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11069 LHS, V, getConstant(Min), CtxI)) 11070 return true; 11071 break; 11072 11073 default: 11074 // No change 11075 break; 11076 } 11077 } 11078 } 11079 11080 // Check whether the actual condition is beyond sufficient. 11081 if (FoundPred == ICmpInst::ICMP_EQ) 11082 if (ICmpInst::isTrueWhenEqual(Pred)) 11083 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11084 return true; 11085 if (Pred == ICmpInst::ICMP_NE) 11086 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11087 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11088 return true; 11089 11090 // Otherwise assume the worst. 11091 return false; 11092 } 11093 11094 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11095 const SCEV *&L, const SCEV *&R, 11096 SCEV::NoWrapFlags &Flags) { 11097 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11098 if (!AE || AE->getNumOperands() != 2) 11099 return false; 11100 11101 L = AE->getOperand(0); 11102 R = AE->getOperand(1); 11103 Flags = AE->getNoWrapFlags(); 11104 return true; 11105 } 11106 11107 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11108 const SCEV *Less) { 11109 // We avoid subtracting expressions here because this function is usually 11110 // fairly deep in the call stack (i.e. is called many times). 11111 11112 // X - X = 0. 11113 if (More == Less) 11114 return APInt(getTypeSizeInBits(More->getType()), 0); 11115 11116 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11117 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11118 const auto *MAR = cast<SCEVAddRecExpr>(More); 11119 11120 if (LAR->getLoop() != MAR->getLoop()) 11121 return None; 11122 11123 // We look at affine expressions only; not for correctness but to keep 11124 // getStepRecurrence cheap. 11125 if (!LAR->isAffine() || !MAR->isAffine()) 11126 return None; 11127 11128 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11129 return None; 11130 11131 Less = LAR->getStart(); 11132 More = MAR->getStart(); 11133 11134 // fall through 11135 } 11136 11137 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11138 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11139 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11140 return M - L; 11141 } 11142 11143 SCEV::NoWrapFlags Flags; 11144 const SCEV *LLess = nullptr, *RLess = nullptr; 11145 const SCEV *LMore = nullptr, *RMore = nullptr; 11146 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11147 // Compare (X + C1) vs X. 11148 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11149 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11150 if (RLess == More) 11151 return -(C1->getAPInt()); 11152 11153 // Compare X vs (X + C2). 11154 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11155 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11156 if (RMore == Less) 11157 return C2->getAPInt(); 11158 11159 // Compare (X + C1) vs (X + C2). 11160 if (C1 && C2 && RLess == RMore) 11161 return C2->getAPInt() - C1->getAPInt(); 11162 11163 return None; 11164 } 11165 11166 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11167 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11168 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11169 // Try to recognize the following pattern: 11170 // 11171 // FoundRHS = ... 11172 // ... 11173 // loop: 11174 // FoundLHS = {Start,+,W} 11175 // context_bb: // Basic block from the same loop 11176 // known(Pred, FoundLHS, FoundRHS) 11177 // 11178 // If some predicate is known in the context of a loop, it is also known on 11179 // each iteration of this loop, including the first iteration. Therefore, in 11180 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11181 // prove the original pred using this fact. 11182 if (!CtxI) 11183 return false; 11184 const BasicBlock *ContextBB = CtxI->getParent(); 11185 // Make sure AR varies in the context block. 11186 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11187 const Loop *L = AR->getLoop(); 11188 // Make sure that context belongs to the loop and executes on 1st iteration 11189 // (if it ever executes at all). 11190 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11191 return false; 11192 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11193 return false; 11194 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11195 } 11196 11197 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11198 const Loop *L = AR->getLoop(); 11199 // Make sure that context belongs to the loop and executes on 1st iteration 11200 // (if it ever executes at all). 11201 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11202 return false; 11203 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11204 return false; 11205 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11206 } 11207 11208 return false; 11209 } 11210 11211 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11212 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11213 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11214 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11215 return false; 11216 11217 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11218 if (!AddRecLHS) 11219 return false; 11220 11221 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11222 if (!AddRecFoundLHS) 11223 return false; 11224 11225 // We'd like to let SCEV reason about control dependencies, so we constrain 11226 // both the inequalities to be about add recurrences on the same loop. This 11227 // way we can use isLoopEntryGuardedByCond later. 11228 11229 const Loop *L = AddRecFoundLHS->getLoop(); 11230 if (L != AddRecLHS->getLoop()) 11231 return false; 11232 11233 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11234 // 11235 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11236 // ... (2) 11237 // 11238 // Informal proof for (2), assuming (1) [*]: 11239 // 11240 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11241 // 11242 // Then 11243 // 11244 // FoundLHS s< FoundRHS s< INT_MIN - C 11245 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11246 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11247 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11248 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11249 // <=> FoundLHS + C s< FoundRHS + C 11250 // 11251 // [*]: (1) can be proved by ruling out overflow. 11252 // 11253 // [**]: This can be proved by analyzing all the four possibilities: 11254 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11255 // (A s>= 0, B s>= 0). 11256 // 11257 // Note: 11258 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11259 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11260 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11261 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11262 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11263 // C)". 11264 11265 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11266 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11267 if (!LDiff || !RDiff || *LDiff != *RDiff) 11268 return false; 11269 11270 if (LDiff->isMinValue()) 11271 return true; 11272 11273 APInt FoundRHSLimit; 11274 11275 if (Pred == CmpInst::ICMP_ULT) { 11276 FoundRHSLimit = -(*RDiff); 11277 } else { 11278 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11279 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11280 } 11281 11282 // Try to prove (1) or (2), as needed. 11283 return isAvailableAtLoopEntry(FoundRHS, L) && 11284 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11285 getConstant(FoundRHSLimit)); 11286 } 11287 11288 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11289 const SCEV *LHS, const SCEV *RHS, 11290 const SCEV *FoundLHS, 11291 const SCEV *FoundRHS, unsigned Depth) { 11292 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11293 11294 auto ClearOnExit = make_scope_exit([&]() { 11295 if (LPhi) { 11296 bool Erased = PendingMerges.erase(LPhi); 11297 assert(Erased && "Failed to erase LPhi!"); 11298 (void)Erased; 11299 } 11300 if (RPhi) { 11301 bool Erased = PendingMerges.erase(RPhi); 11302 assert(Erased && "Failed to erase RPhi!"); 11303 (void)Erased; 11304 } 11305 }); 11306 11307 // Find respective Phis and check that they are not being pending. 11308 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11309 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11310 if (!PendingMerges.insert(Phi).second) 11311 return false; 11312 LPhi = Phi; 11313 } 11314 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11315 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11316 // If we detect a loop of Phi nodes being processed by this method, for 11317 // example: 11318 // 11319 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11320 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11321 // 11322 // we don't want to deal with a case that complex, so return conservative 11323 // answer false. 11324 if (!PendingMerges.insert(Phi).second) 11325 return false; 11326 RPhi = Phi; 11327 } 11328 11329 // If none of LHS, RHS is a Phi, nothing to do here. 11330 if (!LPhi && !RPhi) 11331 return false; 11332 11333 // If there is a SCEVUnknown Phi we are interested in, make it left. 11334 if (!LPhi) { 11335 std::swap(LHS, RHS); 11336 std::swap(FoundLHS, FoundRHS); 11337 std::swap(LPhi, RPhi); 11338 Pred = ICmpInst::getSwappedPredicate(Pred); 11339 } 11340 11341 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11342 const BasicBlock *LBB = LPhi->getParent(); 11343 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11344 11345 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11346 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11347 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11348 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11349 }; 11350 11351 if (RPhi && RPhi->getParent() == LBB) { 11352 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11353 // If we compare two Phis from the same block, and for each entry block 11354 // the predicate is true for incoming values from this block, then the 11355 // predicate is also true for the Phis. 11356 for (const BasicBlock *IncBB : predecessors(LBB)) { 11357 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11358 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11359 if (!ProvedEasily(L, R)) 11360 return false; 11361 } 11362 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11363 // Case two: RHS is also a Phi from the same basic block, and it is an 11364 // AddRec. It means that there is a loop which has both AddRec and Unknown 11365 // PHIs, for it we can compare incoming values of AddRec from above the loop 11366 // and latch with their respective incoming values of LPhi. 11367 // TODO: Generalize to handle loops with many inputs in a header. 11368 if (LPhi->getNumIncomingValues() != 2) return false; 11369 11370 auto *RLoop = RAR->getLoop(); 11371 auto *Predecessor = RLoop->getLoopPredecessor(); 11372 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11373 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11374 if (!ProvedEasily(L1, RAR->getStart())) 11375 return false; 11376 auto *Latch = RLoop->getLoopLatch(); 11377 assert(Latch && "Loop with AddRec with no latch?"); 11378 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11379 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11380 return false; 11381 } else { 11382 // In all other cases go over inputs of LHS and compare each of them to RHS, 11383 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11384 // At this point RHS is either a non-Phi, or it is a Phi from some block 11385 // different from LBB. 11386 for (const BasicBlock *IncBB : predecessors(LBB)) { 11387 // Check that RHS is available in this block. 11388 if (!dominates(RHS, IncBB)) 11389 return false; 11390 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11391 // Make sure L does not refer to a value from a potentially previous 11392 // iteration of a loop. 11393 if (!properlyDominates(L, IncBB)) 11394 return false; 11395 if (!ProvedEasily(L, RHS)) 11396 return false; 11397 } 11398 } 11399 return true; 11400 } 11401 11402 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11403 const SCEV *LHS, const SCEV *RHS, 11404 const SCEV *FoundLHS, 11405 const SCEV *FoundRHS, 11406 const Instruction *CtxI) { 11407 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11408 return true; 11409 11410 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11411 return true; 11412 11413 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11414 CtxI)) 11415 return true; 11416 11417 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11418 FoundLHS, FoundRHS); 11419 } 11420 11421 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11422 template <typename MinMaxExprType> 11423 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11424 const SCEV *Candidate) { 11425 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11426 if (!MinMaxExpr) 11427 return false; 11428 11429 return is_contained(MinMaxExpr->operands(), Candidate); 11430 } 11431 11432 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11433 ICmpInst::Predicate Pred, 11434 const SCEV *LHS, const SCEV *RHS) { 11435 // If both sides are affine addrecs for the same loop, with equal 11436 // steps, and we know the recurrences don't wrap, then we only 11437 // need to check the predicate on the starting values. 11438 11439 if (!ICmpInst::isRelational(Pred)) 11440 return false; 11441 11442 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11443 if (!LAR) 11444 return false; 11445 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11446 if (!RAR) 11447 return false; 11448 if (LAR->getLoop() != RAR->getLoop()) 11449 return false; 11450 if (!LAR->isAffine() || !RAR->isAffine()) 11451 return false; 11452 11453 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11454 return false; 11455 11456 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11457 SCEV::FlagNSW : SCEV::FlagNUW; 11458 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11459 return false; 11460 11461 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11462 } 11463 11464 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11465 /// expression? 11466 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11467 ICmpInst::Predicate Pred, 11468 const SCEV *LHS, const SCEV *RHS) { 11469 switch (Pred) { 11470 default: 11471 return false; 11472 11473 case ICmpInst::ICMP_SGE: 11474 std::swap(LHS, RHS); 11475 LLVM_FALLTHROUGH; 11476 case ICmpInst::ICMP_SLE: 11477 return 11478 // min(A, ...) <= A 11479 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11480 // A <= max(A, ...) 11481 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11482 11483 case ICmpInst::ICMP_UGE: 11484 std::swap(LHS, RHS); 11485 LLVM_FALLTHROUGH; 11486 case ICmpInst::ICMP_ULE: 11487 return 11488 // min(A, ...) <= A 11489 // FIXME: what about umin_seq? 11490 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11491 // A <= max(A, ...) 11492 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11493 } 11494 11495 llvm_unreachable("covered switch fell through?!"); 11496 } 11497 11498 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11499 const SCEV *LHS, const SCEV *RHS, 11500 const SCEV *FoundLHS, 11501 const SCEV *FoundRHS, 11502 unsigned Depth) { 11503 assert(getTypeSizeInBits(LHS->getType()) == 11504 getTypeSizeInBits(RHS->getType()) && 11505 "LHS and RHS have different sizes?"); 11506 assert(getTypeSizeInBits(FoundLHS->getType()) == 11507 getTypeSizeInBits(FoundRHS->getType()) && 11508 "FoundLHS and FoundRHS have different sizes?"); 11509 // We want to avoid hurting the compile time with analysis of too big trees. 11510 if (Depth > MaxSCEVOperationsImplicationDepth) 11511 return false; 11512 11513 // We only want to work with GT comparison so far. 11514 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11515 Pred = CmpInst::getSwappedPredicate(Pred); 11516 std::swap(LHS, RHS); 11517 std::swap(FoundLHS, FoundRHS); 11518 } 11519 11520 // For unsigned, try to reduce it to corresponding signed comparison. 11521 if (Pred == ICmpInst::ICMP_UGT) 11522 // We can replace unsigned predicate with its signed counterpart if all 11523 // involved values are non-negative. 11524 // TODO: We could have better support for unsigned. 11525 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11526 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11527 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11528 // use this fact to prove that LHS and RHS are non-negative. 11529 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11530 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11531 FoundRHS) && 11532 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11533 FoundRHS)) 11534 Pred = ICmpInst::ICMP_SGT; 11535 } 11536 11537 if (Pred != ICmpInst::ICMP_SGT) 11538 return false; 11539 11540 auto GetOpFromSExt = [&](const SCEV *S) { 11541 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11542 return Ext->getOperand(); 11543 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11544 // the constant in some cases. 11545 return S; 11546 }; 11547 11548 // Acquire values from extensions. 11549 auto *OrigLHS = LHS; 11550 auto *OrigFoundLHS = FoundLHS; 11551 LHS = GetOpFromSExt(LHS); 11552 FoundLHS = GetOpFromSExt(FoundLHS); 11553 11554 // Is the SGT predicate can be proved trivially or using the found context. 11555 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11556 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11557 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11558 FoundRHS, Depth + 1); 11559 }; 11560 11561 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11562 // We want to avoid creation of any new non-constant SCEV. Since we are 11563 // going to compare the operands to RHS, we should be certain that we don't 11564 // need any size extensions for this. So let's decline all cases when the 11565 // sizes of types of LHS and RHS do not match. 11566 // TODO: Maybe try to get RHS from sext to catch more cases? 11567 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11568 return false; 11569 11570 // Should not overflow. 11571 if (!LHSAddExpr->hasNoSignedWrap()) 11572 return false; 11573 11574 auto *LL = LHSAddExpr->getOperand(0); 11575 auto *LR = LHSAddExpr->getOperand(1); 11576 auto *MinusOne = getMinusOne(RHS->getType()); 11577 11578 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11579 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11580 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11581 }; 11582 // Try to prove the following rule: 11583 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11584 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11585 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11586 return true; 11587 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11588 Value *LL, *LR; 11589 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11590 11591 using namespace llvm::PatternMatch; 11592 11593 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11594 // Rules for division. 11595 // We are going to perform some comparisons with Denominator and its 11596 // derivative expressions. In general case, creating a SCEV for it may 11597 // lead to a complex analysis of the entire graph, and in particular it 11598 // can request trip count recalculation for the same loop. This would 11599 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11600 // this, we only want to create SCEVs that are constants in this section. 11601 // So we bail if Denominator is not a constant. 11602 if (!isa<ConstantInt>(LR)) 11603 return false; 11604 11605 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11606 11607 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11608 // then a SCEV for the numerator already exists and matches with FoundLHS. 11609 auto *Numerator = getExistingSCEV(LL); 11610 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11611 return false; 11612 11613 // Make sure that the numerator matches with FoundLHS and the denominator 11614 // is positive. 11615 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11616 return false; 11617 11618 auto *DTy = Denominator->getType(); 11619 auto *FRHSTy = FoundRHS->getType(); 11620 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11621 // One of types is a pointer and another one is not. We cannot extend 11622 // them properly to a wider type, so let us just reject this case. 11623 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11624 // to avoid this check. 11625 return false; 11626 11627 // Given that: 11628 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11629 auto *WTy = getWiderType(DTy, FRHSTy); 11630 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11631 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11632 11633 // Try to prove the following rule: 11634 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11635 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11636 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11637 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11638 if (isKnownNonPositive(RHS) && 11639 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11640 return true; 11641 11642 // Try to prove the following rule: 11643 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11644 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11645 // If we divide it by Denominator > 2, then: 11646 // 1. If FoundLHS is negative, then the result is 0. 11647 // 2. If FoundLHS is non-negative, then the result is non-negative. 11648 // Anyways, the result is non-negative. 11649 auto *MinusOne = getMinusOne(WTy); 11650 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11651 if (isKnownNegative(RHS) && 11652 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11653 return true; 11654 } 11655 } 11656 11657 // If our expression contained SCEVUnknown Phis, and we split it down and now 11658 // need to prove something for them, try to prove the predicate for every 11659 // possible incoming values of those Phis. 11660 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11661 return true; 11662 11663 return false; 11664 } 11665 11666 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11667 const SCEV *LHS, const SCEV *RHS) { 11668 // zext x u<= sext x, sext x s<= zext x 11669 switch (Pred) { 11670 case ICmpInst::ICMP_SGE: 11671 std::swap(LHS, RHS); 11672 LLVM_FALLTHROUGH; 11673 case ICmpInst::ICMP_SLE: { 11674 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11675 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11676 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11677 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11678 return true; 11679 break; 11680 } 11681 case ICmpInst::ICMP_UGE: 11682 std::swap(LHS, RHS); 11683 LLVM_FALLTHROUGH; 11684 case ICmpInst::ICMP_ULE: { 11685 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11686 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11687 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11688 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11689 return true; 11690 break; 11691 } 11692 default: 11693 break; 11694 }; 11695 return false; 11696 } 11697 11698 bool 11699 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11700 const SCEV *LHS, const SCEV *RHS) { 11701 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11702 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11703 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11704 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11705 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11706 } 11707 11708 bool 11709 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11710 const SCEV *LHS, const SCEV *RHS, 11711 const SCEV *FoundLHS, 11712 const SCEV *FoundRHS) { 11713 switch (Pred) { 11714 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11715 case ICmpInst::ICMP_EQ: 11716 case ICmpInst::ICMP_NE: 11717 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11718 return true; 11719 break; 11720 case ICmpInst::ICMP_SLT: 11721 case ICmpInst::ICMP_SLE: 11722 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11723 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11724 return true; 11725 break; 11726 case ICmpInst::ICMP_SGT: 11727 case ICmpInst::ICMP_SGE: 11728 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11729 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11730 return true; 11731 break; 11732 case ICmpInst::ICMP_ULT: 11733 case ICmpInst::ICMP_ULE: 11734 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11735 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11736 return true; 11737 break; 11738 case ICmpInst::ICMP_UGT: 11739 case ICmpInst::ICMP_UGE: 11740 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11741 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11742 return true; 11743 break; 11744 } 11745 11746 // Maybe it can be proved via operations? 11747 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11748 return true; 11749 11750 return false; 11751 } 11752 11753 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11754 const SCEV *LHS, 11755 const SCEV *RHS, 11756 const SCEV *FoundLHS, 11757 const SCEV *FoundRHS) { 11758 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11759 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11760 // reduce the compile time impact of this optimization. 11761 return false; 11762 11763 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11764 if (!Addend) 11765 return false; 11766 11767 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11768 11769 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11770 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11771 ConstantRange FoundLHSRange = 11772 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11773 11774 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11775 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11776 11777 // We can also compute the range of values for `LHS` that satisfy the 11778 // consequent, "`LHS` `Pred` `RHS`": 11779 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11780 // The antecedent implies the consequent if every value of `LHS` that 11781 // satisfies the antecedent also satisfies the consequent. 11782 return LHSRange.icmp(Pred, ConstRHS); 11783 } 11784 11785 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11786 bool IsSigned) { 11787 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11788 11789 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11790 const SCEV *One = getOne(Stride->getType()); 11791 11792 if (IsSigned) { 11793 APInt MaxRHS = getSignedRangeMax(RHS); 11794 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11795 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11796 11797 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11798 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11799 } 11800 11801 APInt MaxRHS = getUnsignedRangeMax(RHS); 11802 APInt MaxValue = APInt::getMaxValue(BitWidth); 11803 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11804 11805 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11806 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11807 } 11808 11809 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11810 bool IsSigned) { 11811 11812 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11813 const SCEV *One = getOne(Stride->getType()); 11814 11815 if (IsSigned) { 11816 APInt MinRHS = getSignedRangeMin(RHS); 11817 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11818 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11819 11820 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11821 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11822 } 11823 11824 APInt MinRHS = getUnsignedRangeMin(RHS); 11825 APInt MinValue = APInt::getMinValue(BitWidth); 11826 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11827 11828 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11829 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11830 } 11831 11832 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 11833 // umin(N, 1) + floor((N - umin(N, 1)) / D) 11834 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 11835 // expression fixes the case of N=0. 11836 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 11837 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 11838 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 11839 } 11840 11841 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11842 const SCEV *Stride, 11843 const SCEV *End, 11844 unsigned BitWidth, 11845 bool IsSigned) { 11846 // The logic in this function assumes we can represent a positive stride. 11847 // If we can't, the backedge-taken count must be zero. 11848 if (IsSigned && BitWidth == 1) 11849 return getZero(Stride->getType()); 11850 11851 // This code has only been closely audited for negative strides in the 11852 // unsigned comparison case, it may be correct for signed comparison, but 11853 // that needs to be established. 11854 assert((!IsSigned || !isKnownNonPositive(Stride)) && 11855 "Stride is expected strictly positive for signed case!"); 11856 11857 // Calculate the maximum backedge count based on the range of values 11858 // permitted by Start, End, and Stride. 11859 APInt MinStart = 11860 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11861 11862 APInt MinStride = 11863 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11864 11865 // We assume either the stride is positive, or the backedge-taken count 11866 // is zero. So force StrideForMaxBECount to be at least one. 11867 APInt One(BitWidth, 1); 11868 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 11869 : APIntOps::umax(One, MinStride); 11870 11871 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11872 : APInt::getMaxValue(BitWidth); 11873 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11874 11875 // Although End can be a MAX expression we estimate MaxEnd considering only 11876 // the case End = RHS of the loop termination condition. This is safe because 11877 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11878 // taken count. 11879 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11880 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11881 11882 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 11883 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 11884 : APIntOps::umax(MaxEnd, MinStart); 11885 11886 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 11887 getConstant(StrideForMaxBECount) /* Step */); 11888 } 11889 11890 ScalarEvolution::ExitLimit 11891 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11892 const Loop *L, bool IsSigned, 11893 bool ControlsExit, bool AllowPredicates) { 11894 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11895 11896 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11897 bool PredicatedIV = false; 11898 11899 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 11900 // Can we prove this loop *must* be UB if overflow of IV occurs? 11901 // Reasoning goes as follows: 11902 // * Suppose the IV did self wrap. 11903 // * If Stride evenly divides the iteration space, then once wrap 11904 // occurs, the loop must revisit the same values. 11905 // * We know that RHS is invariant, and that none of those values 11906 // caused this exit to be taken previously. Thus, this exit is 11907 // dynamically dead. 11908 // * If this is the sole exit, then a dead exit implies the loop 11909 // must be infinite if there are no abnormal exits. 11910 // * If the loop were infinite, then it must either not be mustprogress 11911 // or have side effects. Otherwise, it must be UB. 11912 // * It can't (by assumption), be UB so we have contradicted our 11913 // premise and can conclude the IV did not in fact self-wrap. 11914 if (!isLoopInvariant(RHS, L)) 11915 return false; 11916 11917 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 11918 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11919 return false; 11920 11921 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11922 return false; 11923 11924 return loopIsFiniteByAssumption(L); 11925 }; 11926 11927 if (!IV) { 11928 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 11929 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 11930 if (AR && AR->getLoop() == L && AR->isAffine()) { 11931 auto canProveNUW = [&]() { 11932 if (!isLoopInvariant(RHS, L)) 11933 return false; 11934 11935 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 11936 // We need the sequence defined by AR to strictly increase in the 11937 // unsigned integer domain for the logic below to hold. 11938 return false; 11939 11940 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 11941 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 11942 // If RHS <=u Limit, then there must exist a value V in the sequence 11943 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 11944 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 11945 // overflow occurs. This limit also implies that a signed comparison 11946 // (in the wide bitwidth) is equivalent to an unsigned comparison as 11947 // the high bits on both sides must be zero. 11948 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 11949 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 11950 Limit = Limit.zext(OuterBitWidth); 11951 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 11952 }; 11953 auto Flags = AR->getNoWrapFlags(); 11954 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 11955 Flags = setFlags(Flags, SCEV::FlagNUW); 11956 11957 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 11958 if (AR->hasNoUnsignedWrap()) { 11959 // Emulate what getZeroExtendExpr would have done during construction 11960 // if we'd been able to infer the fact just above at that time. 11961 const SCEV *Step = AR->getStepRecurrence(*this); 11962 Type *Ty = ZExt->getType(); 11963 auto *S = getAddRecExpr( 11964 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 11965 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 11966 IV = dyn_cast<SCEVAddRecExpr>(S); 11967 } 11968 } 11969 } 11970 } 11971 11972 11973 if (!IV && AllowPredicates) { 11974 // Try to make this an AddRec using runtime tests, in the first X 11975 // iterations of this loop, where X is the SCEV expression found by the 11976 // algorithm below. 11977 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11978 PredicatedIV = true; 11979 } 11980 11981 // Avoid weird loops 11982 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11983 return getCouldNotCompute(); 11984 11985 // A precondition of this method is that the condition being analyzed 11986 // reaches an exiting branch which dominates the latch. Given that, we can 11987 // assume that an increment which violates the nowrap specification and 11988 // produces poison must cause undefined behavior when the resulting poison 11989 // value is branched upon and thus we can conclude that the backedge is 11990 // taken no more often than would be required to produce that poison value. 11991 // Note that a well defined loop can exit on the iteration which violates 11992 // the nowrap specification if there is another exit (either explicit or 11993 // implicit/exceptional) which causes the loop to execute before the 11994 // exiting instruction we're analyzing would trigger UB. 11995 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11996 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11997 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11998 11999 const SCEV *Stride = IV->getStepRecurrence(*this); 12000 12001 bool PositiveStride = isKnownPositive(Stride); 12002 12003 // Avoid negative or zero stride values. 12004 if (!PositiveStride) { 12005 // We can compute the correct backedge taken count for loops with unknown 12006 // strides if we can prove that the loop is not an infinite loop with side 12007 // effects. Here's the loop structure we are trying to handle - 12008 // 12009 // i = start 12010 // do { 12011 // A[i] = i; 12012 // i += s; 12013 // } while (i < end); 12014 // 12015 // The backedge taken count for such loops is evaluated as - 12016 // (max(end, start + stride) - start - 1) /u stride 12017 // 12018 // The additional preconditions that we need to check to prove correctness 12019 // of the above formula is as follows - 12020 // 12021 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12022 // NoWrap flag). 12023 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12024 // no side effects within the loop) 12025 // c) loop has a single static exit (with no abnormal exits) 12026 // 12027 // Precondition a) implies that if the stride is negative, this is a single 12028 // trip loop. The backedge taken count formula reduces to zero in this case. 12029 // 12030 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12031 // then a zero stride means the backedge can't be taken without executing 12032 // undefined behavior. 12033 // 12034 // The positive stride case is the same as isKnownPositive(Stride) returning 12035 // true (original behavior of the function). 12036 // 12037 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12038 !loopHasNoAbnormalExits(L)) 12039 return getCouldNotCompute(); 12040 12041 // This bailout is protecting the logic in computeMaxBECountForLT which 12042 // has not yet been sufficiently auditted or tested with negative strides. 12043 // We used to filter out all known-non-positive cases here, we're in the 12044 // process of being less restrictive bit by bit. 12045 if (IsSigned && isKnownNonPositive(Stride)) 12046 return getCouldNotCompute(); 12047 12048 if (!isKnownNonZero(Stride)) { 12049 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12050 // if it might eventually be greater than start and if so, on which 12051 // iteration. We can't even produce a useful upper bound. 12052 if (!isLoopInvariant(RHS, L)) 12053 return getCouldNotCompute(); 12054 12055 // We allow a potentially zero stride, but we need to divide by stride 12056 // below. Since the loop can't be infinite and this check must control 12057 // the sole exit, we can infer the exit must be taken on the first 12058 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12059 // we know the numerator in the divides below must be zero, so we can 12060 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12061 // and produce the right result. 12062 // FIXME: Handle the case where Stride is poison? 12063 auto wouldZeroStrideBeUB = [&]() { 12064 // Proof by contradiction. Suppose the stride were zero. If we can 12065 // prove that the backedge *is* taken on the first iteration, then since 12066 // we know this condition controls the sole exit, we must have an 12067 // infinite loop. We can't have a (well defined) infinite loop per 12068 // check just above. 12069 // Note: The (Start - Stride) term is used to get the start' term from 12070 // (start' + stride,+,stride). Remember that we only care about the 12071 // result of this expression when stride == 0 at runtime. 12072 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12073 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12074 }; 12075 if (!wouldZeroStrideBeUB()) { 12076 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12077 } 12078 } 12079 } else if (!Stride->isOne() && !NoWrap) { 12080 auto isUBOnWrap = [&]() { 12081 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12082 // follows trivially from the fact that every (un)signed-wrapped, but 12083 // not self-wrapped value must be LT than the last value before 12084 // (un)signed wrap. Since we know that last value didn't exit, nor 12085 // will any smaller one. 12086 return canAssumeNoSelfWrap(IV); 12087 }; 12088 12089 // Avoid proven overflow cases: this will ensure that the backedge taken 12090 // count will not generate any unsigned overflow. Relaxed no-overflow 12091 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12092 // undefined behaviors like the case of C language. 12093 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12094 return getCouldNotCompute(); 12095 } 12096 12097 // On all paths just preceeding, we established the following invariant: 12098 // IV can be assumed not to overflow up to and including the exiting 12099 // iteration. We proved this in one of two ways: 12100 // 1) We can show overflow doesn't occur before the exiting iteration 12101 // 1a) canIVOverflowOnLT, and b) step of one 12102 // 2) We can show that if overflow occurs, the loop must execute UB 12103 // before any possible exit. 12104 // Note that we have not yet proved RHS invariant (in general). 12105 12106 const SCEV *Start = IV->getStart(); 12107 12108 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12109 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12110 // Use integer-typed versions for actual computation; we can't subtract 12111 // pointers in general. 12112 const SCEV *OrigStart = Start; 12113 const SCEV *OrigRHS = RHS; 12114 if (Start->getType()->isPointerTy()) { 12115 Start = getLosslessPtrToIntExpr(Start); 12116 if (isa<SCEVCouldNotCompute>(Start)) 12117 return Start; 12118 } 12119 if (RHS->getType()->isPointerTy()) { 12120 RHS = getLosslessPtrToIntExpr(RHS); 12121 if (isa<SCEVCouldNotCompute>(RHS)) 12122 return RHS; 12123 } 12124 12125 // When the RHS is not invariant, we do not know the end bound of the loop and 12126 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12127 // calculate the MaxBECount, given the start, stride and max value for the end 12128 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12129 // checked above). 12130 if (!isLoopInvariant(RHS, L)) { 12131 const SCEV *MaxBECount = computeMaxBECountForLT( 12132 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12133 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12134 false /*MaxOrZero*/, Predicates); 12135 } 12136 12137 // We use the expression (max(End,Start)-Start)/Stride to describe the 12138 // backedge count, as if the backedge is taken at least once max(End,Start) 12139 // is End and so the result is as above, and if not max(End,Start) is Start 12140 // so we get a backedge count of zero. 12141 const SCEV *BECount = nullptr; 12142 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12143 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12144 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12145 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12146 // Can we prove (max(RHS,Start) > Start - Stride? 12147 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12148 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12149 // In this case, we can use a refined formula for computing backedge taken 12150 // count. The general formula remains: 12151 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12152 // We want to use the alternate formula: 12153 // "((End - 1) - (Start - Stride)) /u Stride" 12154 // Let's do a quick case analysis to show these are equivalent under 12155 // our precondition that max(RHS,Start) > Start - Stride. 12156 // * For RHS <= Start, the backedge-taken count must be zero. 12157 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12158 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12159 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12160 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12161 // this to the stride of 1 case. 12162 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12163 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12164 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12165 // "((RHS - (Start - Stride) - 1) /u Stride". 12166 // Our preconditions trivially imply no overflow in that form. 12167 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12168 const SCEV *Numerator = 12169 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12170 BECount = getUDivExpr(Numerator, Stride); 12171 } 12172 12173 const SCEV *BECountIfBackedgeTaken = nullptr; 12174 if (!BECount) { 12175 auto canProveRHSGreaterThanEqualStart = [&]() { 12176 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12177 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12178 return true; 12179 12180 // (RHS > Start - 1) implies RHS >= Start. 12181 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12182 // "Start - 1" doesn't overflow. 12183 // * For signed comparison, if Start - 1 does overflow, it's equal 12184 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12185 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12186 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12187 // 12188 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12189 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12190 auto *StartMinusOne = getAddExpr(OrigStart, 12191 getMinusOne(OrigStart->getType())); 12192 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12193 }; 12194 12195 // If we know that RHS >= Start in the context of loop, then we know that 12196 // max(RHS, Start) = RHS at this point. 12197 const SCEV *End; 12198 if (canProveRHSGreaterThanEqualStart()) { 12199 End = RHS; 12200 } else { 12201 // If RHS < Start, the backedge will be taken zero times. So in 12202 // general, we can write the backedge-taken count as: 12203 // 12204 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12205 // 12206 // We convert it to the following to make it more convenient for SCEV: 12207 // 12208 // ceil(max(RHS, Start) - Start) / Stride 12209 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12210 12211 // See what would happen if we assume the backedge is taken. This is 12212 // used to compute MaxBECount. 12213 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12214 } 12215 12216 // At this point, we know: 12217 // 12218 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12219 // 2. The index variable doesn't overflow. 12220 // 12221 // Therefore, we know N exists such that 12222 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12223 // doesn't overflow. 12224 // 12225 // Using this information, try to prove whether the addition in 12226 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12227 const SCEV *One = getOne(Stride->getType()); 12228 bool MayAddOverflow = [&] { 12229 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12230 if (StrideC->getAPInt().isPowerOf2()) { 12231 // Suppose Stride is a power of two, and Start/End are unsigned 12232 // integers. Let UMAX be the largest representable unsigned 12233 // integer. 12234 // 12235 // By the preconditions of this function, we know 12236 // "(Start + Stride * N) >= End", and this doesn't overflow. 12237 // As a formula: 12238 // 12239 // End <= (Start + Stride * N) <= UMAX 12240 // 12241 // Subtracting Start from all the terms: 12242 // 12243 // End - Start <= Stride * N <= UMAX - Start 12244 // 12245 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12246 // 12247 // End - Start <= Stride * N <= UMAX 12248 // 12249 // Stride * N is a multiple of Stride. Therefore, 12250 // 12251 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12252 // 12253 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12254 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12255 // 12256 // End - Start <= Stride * N <= UMAX - Stride - 1 12257 // 12258 // Dropping the middle term: 12259 // 12260 // End - Start <= UMAX - Stride - 1 12261 // 12262 // Adding Stride - 1 to both sides: 12263 // 12264 // (End - Start) + (Stride - 1) <= UMAX 12265 // 12266 // In other words, the addition doesn't have unsigned overflow. 12267 // 12268 // A similar proof works if we treat Start/End as signed values. 12269 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12270 // use signed max instead of unsigned max. Note that we're trying 12271 // to prove a lack of unsigned overflow in either case. 12272 return false; 12273 } 12274 } 12275 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12276 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12277 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12278 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12279 // 12280 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12281 return false; 12282 } 12283 return true; 12284 }(); 12285 12286 const SCEV *Delta = getMinusSCEV(End, Start); 12287 if (!MayAddOverflow) { 12288 // floor((D + (S - 1)) / S) 12289 // We prefer this formulation if it's legal because it's fewer operations. 12290 BECount = 12291 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12292 } else { 12293 BECount = getUDivCeilSCEV(Delta, Stride); 12294 } 12295 } 12296 12297 const SCEV *MaxBECount; 12298 bool MaxOrZero = false; 12299 if (isa<SCEVConstant>(BECount)) { 12300 MaxBECount = BECount; 12301 } else if (BECountIfBackedgeTaken && 12302 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12303 // If we know exactly how many times the backedge will be taken if it's 12304 // taken at least once, then the backedge count will either be that or 12305 // zero. 12306 MaxBECount = BECountIfBackedgeTaken; 12307 MaxOrZero = true; 12308 } else { 12309 MaxBECount = computeMaxBECountForLT( 12310 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12311 } 12312 12313 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12314 !isa<SCEVCouldNotCompute>(BECount)) 12315 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12316 12317 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12318 } 12319 12320 ScalarEvolution::ExitLimit 12321 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12322 const Loop *L, bool IsSigned, 12323 bool ControlsExit, bool AllowPredicates) { 12324 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12325 // We handle only IV > Invariant 12326 if (!isLoopInvariant(RHS, L)) 12327 return getCouldNotCompute(); 12328 12329 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12330 if (!IV && AllowPredicates) 12331 // Try to make this an AddRec using runtime tests, in the first X 12332 // iterations of this loop, where X is the SCEV expression found by the 12333 // algorithm below. 12334 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12335 12336 // Avoid weird loops 12337 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12338 return getCouldNotCompute(); 12339 12340 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12341 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12342 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12343 12344 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12345 12346 // Avoid negative or zero stride values 12347 if (!isKnownPositive(Stride)) 12348 return getCouldNotCompute(); 12349 12350 // Avoid proven overflow cases: this will ensure that the backedge taken count 12351 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12352 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12353 // behaviors like the case of C language. 12354 if (!Stride->isOne() && !NoWrap) 12355 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12356 return getCouldNotCompute(); 12357 12358 const SCEV *Start = IV->getStart(); 12359 const SCEV *End = RHS; 12360 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12361 // If we know that Start >= RHS in the context of loop, then we know that 12362 // min(RHS, Start) = RHS at this point. 12363 if (isLoopEntryGuardedByCond( 12364 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12365 End = RHS; 12366 else 12367 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12368 } 12369 12370 if (Start->getType()->isPointerTy()) { 12371 Start = getLosslessPtrToIntExpr(Start); 12372 if (isa<SCEVCouldNotCompute>(Start)) 12373 return Start; 12374 } 12375 if (End->getType()->isPointerTy()) { 12376 End = getLosslessPtrToIntExpr(End); 12377 if (isa<SCEVCouldNotCompute>(End)) 12378 return End; 12379 } 12380 12381 // Compute ((Start - End) + (Stride - 1)) / Stride. 12382 // FIXME: This can overflow. Holding off on fixing this for now; 12383 // howManyGreaterThans will hopefully be gone soon. 12384 const SCEV *One = getOne(Stride->getType()); 12385 const SCEV *BECount = getUDivExpr( 12386 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12387 12388 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12389 : getUnsignedRangeMax(Start); 12390 12391 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12392 : getUnsignedRangeMin(Stride); 12393 12394 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12395 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12396 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12397 12398 // Although End can be a MIN expression we estimate MinEnd considering only 12399 // the case End = RHS. This is safe because in the other case (Start - End) 12400 // is zero, leading to a zero maximum backedge taken count. 12401 APInt MinEnd = 12402 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12403 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12404 12405 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12406 ? BECount 12407 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12408 getConstant(MinStride)); 12409 12410 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12411 MaxBECount = BECount; 12412 12413 return ExitLimit(BECount, MaxBECount, false, Predicates); 12414 } 12415 12416 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12417 ScalarEvolution &SE) const { 12418 if (Range.isFullSet()) // Infinite loop. 12419 return SE.getCouldNotCompute(); 12420 12421 // If the start is a non-zero constant, shift the range to simplify things. 12422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12423 if (!SC->getValue()->isZero()) { 12424 SmallVector<const SCEV *, 4> Operands(operands()); 12425 Operands[0] = SE.getZero(SC->getType()); 12426 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12427 getNoWrapFlags(FlagNW)); 12428 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12429 return ShiftedAddRec->getNumIterationsInRange( 12430 Range.subtract(SC->getAPInt()), SE); 12431 // This is strange and shouldn't happen. 12432 return SE.getCouldNotCompute(); 12433 } 12434 12435 // The only time we can solve this is when we have all constant indices. 12436 // Otherwise, we cannot determine the overflow conditions. 12437 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12438 return SE.getCouldNotCompute(); 12439 12440 // Okay at this point we know that all elements of the chrec are constants and 12441 // that the start element is zero. 12442 12443 // First check to see if the range contains zero. If not, the first 12444 // iteration exits. 12445 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12446 if (!Range.contains(APInt(BitWidth, 0))) 12447 return SE.getZero(getType()); 12448 12449 if (isAffine()) { 12450 // If this is an affine expression then we have this situation: 12451 // Solve {0,+,A} in Range === Ax in Range 12452 12453 // We know that zero is in the range. If A is positive then we know that 12454 // the upper value of the range must be the first possible exit value. 12455 // If A is negative then the lower of the range is the last possible loop 12456 // value. Also note that we already checked for a full range. 12457 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12458 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12459 12460 // The exit value should be (End+A)/A. 12461 APInt ExitVal = (End + A).udiv(A); 12462 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12463 12464 // Evaluate at the exit value. If we really did fall out of the valid 12465 // range, then we computed our trip count, otherwise wrap around or other 12466 // things must have happened. 12467 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12468 if (Range.contains(Val->getValue())) 12469 return SE.getCouldNotCompute(); // Something strange happened 12470 12471 // Ensure that the previous value is in the range. 12472 assert(Range.contains( 12473 EvaluateConstantChrecAtConstant(this, 12474 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12475 "Linear scev computation is off in a bad way!"); 12476 return SE.getConstant(ExitValue); 12477 } 12478 12479 if (isQuadratic()) { 12480 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12481 return SE.getConstant(S.getValue()); 12482 } 12483 12484 return SE.getCouldNotCompute(); 12485 } 12486 12487 const SCEVAddRecExpr * 12488 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12489 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12490 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12491 // but in this case we cannot guarantee that the value returned will be an 12492 // AddRec because SCEV does not have a fixed point where it stops 12493 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12494 // may happen if we reach arithmetic depth limit while simplifying. So we 12495 // construct the returned value explicitly. 12496 SmallVector<const SCEV *, 3> Ops; 12497 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12498 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12499 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12500 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12501 // We know that the last operand is not a constant zero (otherwise it would 12502 // have been popped out earlier). This guarantees us that if the result has 12503 // the same last operand, then it will also not be popped out, meaning that 12504 // the returned value will be an AddRec. 12505 const SCEV *Last = getOperand(getNumOperands() - 1); 12506 assert(!Last->isZero() && "Recurrency with zero step?"); 12507 Ops.push_back(Last); 12508 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12509 SCEV::FlagAnyWrap)); 12510 } 12511 12512 // Return true when S contains at least an undef value. 12513 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12514 return SCEVExprContains(S, [](const SCEV *S) { 12515 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12516 return isa<UndefValue>(SU->getValue()); 12517 return false; 12518 }); 12519 } 12520 12521 /// Return the size of an element read or written by Inst. 12522 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12523 Type *Ty; 12524 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12525 Ty = Store->getValueOperand()->getType(); 12526 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12527 Ty = Load->getType(); 12528 else 12529 return nullptr; 12530 12531 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12532 return getSizeOfExpr(ETy, Ty); 12533 } 12534 12535 //===----------------------------------------------------------------------===// 12536 // SCEVCallbackVH Class Implementation 12537 //===----------------------------------------------------------------------===// 12538 12539 void ScalarEvolution::SCEVCallbackVH::deleted() { 12540 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12541 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12542 SE->ConstantEvolutionLoopExitValue.erase(PN); 12543 SE->eraseValueFromMap(getValPtr()); 12544 // this now dangles! 12545 } 12546 12547 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12548 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12549 12550 // Forget all the expressions associated with users of the old value, 12551 // so that future queries will recompute the expressions using the new 12552 // value. 12553 Value *Old = getValPtr(); 12554 SmallVector<User *, 16> Worklist(Old->users()); 12555 SmallPtrSet<User *, 8> Visited; 12556 while (!Worklist.empty()) { 12557 User *U = Worklist.pop_back_val(); 12558 // Deleting the Old value will cause this to dangle. Postpone 12559 // that until everything else is done. 12560 if (U == Old) 12561 continue; 12562 if (!Visited.insert(U).second) 12563 continue; 12564 if (PHINode *PN = dyn_cast<PHINode>(U)) 12565 SE->ConstantEvolutionLoopExitValue.erase(PN); 12566 SE->eraseValueFromMap(U); 12567 llvm::append_range(Worklist, U->users()); 12568 } 12569 // Delete the Old value. 12570 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12571 SE->ConstantEvolutionLoopExitValue.erase(PN); 12572 SE->eraseValueFromMap(Old); 12573 // this now dangles! 12574 } 12575 12576 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12577 : CallbackVH(V), SE(se) {} 12578 12579 //===----------------------------------------------------------------------===// 12580 // ScalarEvolution Class Implementation 12581 //===----------------------------------------------------------------------===// 12582 12583 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12584 AssumptionCache &AC, DominatorTree &DT, 12585 LoopInfo &LI) 12586 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12587 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12588 LoopDispositions(64), BlockDispositions(64) { 12589 // To use guards for proving predicates, we need to scan every instruction in 12590 // relevant basic blocks, and not just terminators. Doing this is a waste of 12591 // time if the IR does not actually contain any calls to 12592 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12593 // 12594 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12595 // to _add_ guards to the module when there weren't any before, and wants 12596 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12597 // efficient in lieu of being smart in that rather obscure case. 12598 12599 auto *GuardDecl = F.getParent()->getFunction( 12600 Intrinsic::getName(Intrinsic::experimental_guard)); 12601 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12602 } 12603 12604 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12605 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12606 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12607 ValueExprMap(std::move(Arg.ValueExprMap)), 12608 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12609 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12610 PendingMerges(std::move(Arg.PendingMerges)), 12611 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12612 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12613 PredicatedBackedgeTakenCounts( 12614 std::move(Arg.PredicatedBackedgeTakenCounts)), 12615 BECountUsers(std::move(Arg.BECountUsers)), 12616 ConstantEvolutionLoopExitValue( 12617 std::move(Arg.ConstantEvolutionLoopExitValue)), 12618 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12619 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 12620 LoopDispositions(std::move(Arg.LoopDispositions)), 12621 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12622 BlockDispositions(std::move(Arg.BlockDispositions)), 12623 SCEVUsers(std::move(Arg.SCEVUsers)), 12624 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12625 SignedRanges(std::move(Arg.SignedRanges)), 12626 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12627 UniquePreds(std::move(Arg.UniquePreds)), 12628 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12629 LoopUsers(std::move(Arg.LoopUsers)), 12630 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12631 FirstUnknown(Arg.FirstUnknown) { 12632 Arg.FirstUnknown = nullptr; 12633 } 12634 12635 ScalarEvolution::~ScalarEvolution() { 12636 // Iterate through all the SCEVUnknown instances and call their 12637 // destructors, so that they release their references to their values. 12638 for (SCEVUnknown *U = FirstUnknown; U;) { 12639 SCEVUnknown *Tmp = U; 12640 U = U->Next; 12641 Tmp->~SCEVUnknown(); 12642 } 12643 FirstUnknown = nullptr; 12644 12645 ExprValueMap.clear(); 12646 ValueExprMap.clear(); 12647 HasRecMap.clear(); 12648 BackedgeTakenCounts.clear(); 12649 PredicatedBackedgeTakenCounts.clear(); 12650 12651 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12652 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12653 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12654 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12655 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12656 } 12657 12658 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12659 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12660 } 12661 12662 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12663 const Loop *L) { 12664 // Print all inner loops first 12665 for (Loop *I : *L) 12666 PrintLoopInfo(OS, SE, I); 12667 12668 OS << "Loop "; 12669 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12670 OS << ": "; 12671 12672 SmallVector<BasicBlock *, 8> ExitingBlocks; 12673 L->getExitingBlocks(ExitingBlocks); 12674 if (ExitingBlocks.size() != 1) 12675 OS << "<multiple exits> "; 12676 12677 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12678 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12679 else 12680 OS << "Unpredictable backedge-taken count.\n"; 12681 12682 if (ExitingBlocks.size() > 1) 12683 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12684 OS << " exit count for " << ExitingBlock->getName() << ": " 12685 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12686 } 12687 12688 OS << "Loop "; 12689 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12690 OS << ": "; 12691 12692 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12693 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12694 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12695 OS << ", actual taken count either this or zero."; 12696 } else { 12697 OS << "Unpredictable max backedge-taken count. "; 12698 } 12699 12700 OS << "\n" 12701 "Loop "; 12702 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12703 OS << ": "; 12704 12705 SCEVUnionPredicate Pred; 12706 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12707 if (!isa<SCEVCouldNotCompute>(PBT)) { 12708 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12709 OS << " Predicates:\n"; 12710 Pred.print(OS, 4); 12711 } else { 12712 OS << "Unpredictable predicated backedge-taken count. "; 12713 } 12714 OS << "\n"; 12715 12716 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12717 OS << "Loop "; 12718 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12719 OS << ": "; 12720 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12721 } 12722 } 12723 12724 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12725 switch (LD) { 12726 case ScalarEvolution::LoopVariant: 12727 return "Variant"; 12728 case ScalarEvolution::LoopInvariant: 12729 return "Invariant"; 12730 case ScalarEvolution::LoopComputable: 12731 return "Computable"; 12732 } 12733 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12734 } 12735 12736 void ScalarEvolution::print(raw_ostream &OS) const { 12737 // ScalarEvolution's implementation of the print method is to print 12738 // out SCEV values of all instructions that are interesting. Doing 12739 // this potentially causes it to create new SCEV objects though, 12740 // which technically conflicts with the const qualifier. This isn't 12741 // observable from outside the class though, so casting away the 12742 // const isn't dangerous. 12743 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12744 12745 if (ClassifyExpressions) { 12746 OS << "Classifying expressions for: "; 12747 F.printAsOperand(OS, /*PrintType=*/false); 12748 OS << "\n"; 12749 for (Instruction &I : instructions(F)) 12750 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12751 OS << I << '\n'; 12752 OS << " --> "; 12753 const SCEV *SV = SE.getSCEV(&I); 12754 SV->print(OS); 12755 if (!isa<SCEVCouldNotCompute>(SV)) { 12756 OS << " U: "; 12757 SE.getUnsignedRange(SV).print(OS); 12758 OS << " S: "; 12759 SE.getSignedRange(SV).print(OS); 12760 } 12761 12762 const Loop *L = LI.getLoopFor(I.getParent()); 12763 12764 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12765 if (AtUse != SV) { 12766 OS << " --> "; 12767 AtUse->print(OS); 12768 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12769 OS << " U: "; 12770 SE.getUnsignedRange(AtUse).print(OS); 12771 OS << " S: "; 12772 SE.getSignedRange(AtUse).print(OS); 12773 } 12774 } 12775 12776 if (L) { 12777 OS << "\t\t" "Exits: "; 12778 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12779 if (!SE.isLoopInvariant(ExitValue, L)) { 12780 OS << "<<Unknown>>"; 12781 } else { 12782 OS << *ExitValue; 12783 } 12784 12785 bool First = true; 12786 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12787 if (First) { 12788 OS << "\t\t" "LoopDispositions: { "; 12789 First = false; 12790 } else { 12791 OS << ", "; 12792 } 12793 12794 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12795 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12796 } 12797 12798 for (auto *InnerL : depth_first(L)) { 12799 if (InnerL == L) 12800 continue; 12801 if (First) { 12802 OS << "\t\t" "LoopDispositions: { "; 12803 First = false; 12804 } else { 12805 OS << ", "; 12806 } 12807 12808 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12809 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12810 } 12811 12812 OS << " }"; 12813 } 12814 12815 OS << "\n"; 12816 } 12817 } 12818 12819 OS << "Determining loop execution counts for: "; 12820 F.printAsOperand(OS, /*PrintType=*/false); 12821 OS << "\n"; 12822 for (Loop *I : LI) 12823 PrintLoopInfo(OS, &SE, I); 12824 } 12825 12826 ScalarEvolution::LoopDisposition 12827 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12828 auto &Values = LoopDispositions[S]; 12829 for (auto &V : Values) { 12830 if (V.getPointer() == L) 12831 return V.getInt(); 12832 } 12833 Values.emplace_back(L, LoopVariant); 12834 LoopDisposition D = computeLoopDisposition(S, L); 12835 auto &Values2 = LoopDispositions[S]; 12836 for (auto &V : llvm::reverse(Values2)) { 12837 if (V.getPointer() == L) { 12838 V.setInt(D); 12839 break; 12840 } 12841 } 12842 return D; 12843 } 12844 12845 ScalarEvolution::LoopDisposition 12846 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12847 switch (S->getSCEVType()) { 12848 case scConstant: 12849 return LoopInvariant; 12850 case scPtrToInt: 12851 case scTruncate: 12852 case scZeroExtend: 12853 case scSignExtend: 12854 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12855 case scAddRecExpr: { 12856 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12857 12858 // If L is the addrec's loop, it's computable. 12859 if (AR->getLoop() == L) 12860 return LoopComputable; 12861 12862 // Add recurrences are never invariant in the function-body (null loop). 12863 if (!L) 12864 return LoopVariant; 12865 12866 // Everything that is not defined at loop entry is variant. 12867 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12868 return LoopVariant; 12869 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12870 " dominate the contained loop's header?"); 12871 12872 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12873 if (AR->getLoop()->contains(L)) 12874 return LoopInvariant; 12875 12876 // This recurrence is variant w.r.t. L if any of its operands 12877 // are variant. 12878 for (auto *Op : AR->operands()) 12879 if (!isLoopInvariant(Op, L)) 12880 return LoopVariant; 12881 12882 // Otherwise it's loop-invariant. 12883 return LoopInvariant; 12884 } 12885 case scAddExpr: 12886 case scMulExpr: 12887 case scUMaxExpr: 12888 case scSMaxExpr: 12889 case scUMinExpr: 12890 case scSMinExpr: 12891 case scSequentialUMinExpr: { 12892 bool HasVarying = false; 12893 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12894 LoopDisposition D = getLoopDisposition(Op, L); 12895 if (D == LoopVariant) 12896 return LoopVariant; 12897 if (D == LoopComputable) 12898 HasVarying = true; 12899 } 12900 return HasVarying ? LoopComputable : LoopInvariant; 12901 } 12902 case scUDivExpr: { 12903 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12904 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12905 if (LD == LoopVariant) 12906 return LoopVariant; 12907 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12908 if (RD == LoopVariant) 12909 return LoopVariant; 12910 return (LD == LoopInvariant && RD == LoopInvariant) ? 12911 LoopInvariant : LoopComputable; 12912 } 12913 case scUnknown: 12914 // All non-instruction values are loop invariant. All instructions are loop 12915 // invariant if they are not contained in the specified loop. 12916 // Instructions are never considered invariant in the function body 12917 // (null loop) because they are defined within the "loop". 12918 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12919 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12920 return LoopInvariant; 12921 case scCouldNotCompute: 12922 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12923 } 12924 llvm_unreachable("Unknown SCEV kind!"); 12925 } 12926 12927 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12928 return getLoopDisposition(S, L) == LoopInvariant; 12929 } 12930 12931 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12932 return getLoopDisposition(S, L) == LoopComputable; 12933 } 12934 12935 ScalarEvolution::BlockDisposition 12936 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12937 auto &Values = BlockDispositions[S]; 12938 for (auto &V : Values) { 12939 if (V.getPointer() == BB) 12940 return V.getInt(); 12941 } 12942 Values.emplace_back(BB, DoesNotDominateBlock); 12943 BlockDisposition D = computeBlockDisposition(S, BB); 12944 auto &Values2 = BlockDispositions[S]; 12945 for (auto &V : llvm::reverse(Values2)) { 12946 if (V.getPointer() == BB) { 12947 V.setInt(D); 12948 break; 12949 } 12950 } 12951 return D; 12952 } 12953 12954 ScalarEvolution::BlockDisposition 12955 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12956 switch (S->getSCEVType()) { 12957 case scConstant: 12958 return ProperlyDominatesBlock; 12959 case scPtrToInt: 12960 case scTruncate: 12961 case scZeroExtend: 12962 case scSignExtend: 12963 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12964 case scAddRecExpr: { 12965 // This uses a "dominates" query instead of "properly dominates" query 12966 // to test for proper dominance too, because the instruction which 12967 // produces the addrec's value is a PHI, and a PHI effectively properly 12968 // dominates its entire containing block. 12969 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12970 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12971 return DoesNotDominateBlock; 12972 12973 // Fall through into SCEVNAryExpr handling. 12974 LLVM_FALLTHROUGH; 12975 } 12976 case scAddExpr: 12977 case scMulExpr: 12978 case scUMaxExpr: 12979 case scSMaxExpr: 12980 case scUMinExpr: 12981 case scSMinExpr: 12982 case scSequentialUMinExpr: { 12983 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12984 bool Proper = true; 12985 for (const SCEV *NAryOp : NAry->operands()) { 12986 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12987 if (D == DoesNotDominateBlock) 12988 return DoesNotDominateBlock; 12989 if (D == DominatesBlock) 12990 Proper = false; 12991 } 12992 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12993 } 12994 case scUDivExpr: { 12995 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12996 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12997 BlockDisposition LD = getBlockDisposition(LHS, BB); 12998 if (LD == DoesNotDominateBlock) 12999 return DoesNotDominateBlock; 13000 BlockDisposition RD = getBlockDisposition(RHS, BB); 13001 if (RD == DoesNotDominateBlock) 13002 return DoesNotDominateBlock; 13003 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13004 ProperlyDominatesBlock : DominatesBlock; 13005 } 13006 case scUnknown: 13007 if (Instruction *I = 13008 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13009 if (I->getParent() == BB) 13010 return DominatesBlock; 13011 if (DT.properlyDominates(I->getParent(), BB)) 13012 return ProperlyDominatesBlock; 13013 return DoesNotDominateBlock; 13014 } 13015 return ProperlyDominatesBlock; 13016 case scCouldNotCompute: 13017 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13018 } 13019 llvm_unreachable("Unknown SCEV kind!"); 13020 } 13021 13022 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13023 return getBlockDisposition(S, BB) >= DominatesBlock; 13024 } 13025 13026 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13027 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13028 } 13029 13030 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13031 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13032 } 13033 13034 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13035 bool Predicated) { 13036 auto &BECounts = 13037 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13038 auto It = BECounts.find(L); 13039 if (It != BECounts.end()) { 13040 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13041 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13042 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13043 assert(UserIt != BECountUsers.end()); 13044 UserIt->second.erase({L, Predicated}); 13045 } 13046 } 13047 BECounts.erase(It); 13048 } 13049 } 13050 13051 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13052 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13053 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13054 13055 while (!Worklist.empty()) { 13056 const SCEV *Curr = Worklist.pop_back_val(); 13057 auto Users = SCEVUsers.find(Curr); 13058 if (Users != SCEVUsers.end()) 13059 for (auto *User : Users->second) 13060 if (ToForget.insert(User).second) 13061 Worklist.push_back(User); 13062 } 13063 13064 for (auto *S : ToForget) 13065 forgetMemoizedResultsImpl(S); 13066 13067 for (auto I = PredicatedSCEVRewrites.begin(); 13068 I != PredicatedSCEVRewrites.end();) { 13069 std::pair<const SCEV *, const Loop *> Entry = I->first; 13070 if (ToForget.count(Entry.first)) 13071 PredicatedSCEVRewrites.erase(I++); 13072 else 13073 ++I; 13074 } 13075 } 13076 13077 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13078 LoopDispositions.erase(S); 13079 BlockDispositions.erase(S); 13080 UnsignedRanges.erase(S); 13081 SignedRanges.erase(S); 13082 HasRecMap.erase(S); 13083 MinTrailingZerosCache.erase(S); 13084 13085 auto ExprIt = ExprValueMap.find(S); 13086 if (ExprIt != ExprValueMap.end()) { 13087 for (auto &ValueAndOffset : ExprIt->second) { 13088 if (ValueAndOffset.second == nullptr) { 13089 auto ValueIt = ValueExprMap.find_as(ValueAndOffset.first); 13090 if (ValueIt != ValueExprMap.end()) 13091 ValueExprMap.erase(ValueIt); 13092 } 13093 } 13094 ExprValueMap.erase(ExprIt); 13095 } 13096 13097 auto ScopeIt = ValuesAtScopes.find(S); 13098 if (ScopeIt != ValuesAtScopes.end()) { 13099 for (const auto &Pair : ScopeIt->second) 13100 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13101 erase_value(ValuesAtScopesUsers[Pair.second], 13102 std::make_pair(Pair.first, S)); 13103 ValuesAtScopes.erase(ScopeIt); 13104 } 13105 13106 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13107 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13108 for (const auto &Pair : ScopeUserIt->second) 13109 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13110 ValuesAtScopesUsers.erase(ScopeUserIt); 13111 } 13112 13113 auto BEUsersIt = BECountUsers.find(S); 13114 if (BEUsersIt != BECountUsers.end()) { 13115 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13116 auto Copy = BEUsersIt->second; 13117 for (const auto &Pair : Copy) 13118 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13119 BECountUsers.erase(BEUsersIt); 13120 } 13121 } 13122 13123 void 13124 ScalarEvolution::getUsedLoops(const SCEV *S, 13125 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13126 struct FindUsedLoops { 13127 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13128 : LoopsUsed(LoopsUsed) {} 13129 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13130 bool follow(const SCEV *S) { 13131 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13132 LoopsUsed.insert(AR->getLoop()); 13133 return true; 13134 } 13135 13136 bool isDone() const { return false; } 13137 }; 13138 13139 FindUsedLoops F(LoopsUsed); 13140 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13141 } 13142 13143 void ScalarEvolution::verify() const { 13144 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13145 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13146 13147 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13148 13149 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13150 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13151 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13152 13153 const SCEV *visitConstant(const SCEVConstant *Constant) { 13154 return SE.getConstant(Constant->getAPInt()); 13155 } 13156 13157 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13158 return SE.getUnknown(Expr->getValue()); 13159 } 13160 13161 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13162 return SE.getCouldNotCompute(); 13163 } 13164 }; 13165 13166 SCEVMapper SCM(SE2); 13167 13168 while (!LoopStack.empty()) { 13169 auto *L = LoopStack.pop_back_val(); 13170 llvm::append_range(LoopStack, *L); 13171 13172 auto *CurBECount = SCM.visit( 13173 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13174 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13175 13176 if (CurBECount == SE2.getCouldNotCompute() || 13177 NewBECount == SE2.getCouldNotCompute()) { 13178 // NB! This situation is legal, but is very suspicious -- whatever pass 13179 // change the loop to make a trip count go from could not compute to 13180 // computable or vice-versa *should have* invalidated SCEV. However, we 13181 // choose not to assert here (for now) since we don't want false 13182 // positives. 13183 continue; 13184 } 13185 13186 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13187 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13188 // not propagate undef aggressively). This means we can (and do) fail 13189 // verification in cases where a transform makes the trip count of a loop 13190 // go from "undef" to "undef+1" (say). The transform is fine, since in 13191 // both cases the loop iterates "undef" times, but SCEV thinks we 13192 // increased the trip count of the loop by 1 incorrectly. 13193 continue; 13194 } 13195 13196 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13197 SE.getTypeSizeInBits(NewBECount->getType())) 13198 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13199 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13200 SE.getTypeSizeInBits(NewBECount->getType())) 13201 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13202 13203 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13204 13205 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13206 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13207 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13208 dbgs() << "Old: " << *CurBECount << "\n"; 13209 dbgs() << "New: " << *NewBECount << "\n"; 13210 dbgs() << "Delta: " << *Delta << "\n"; 13211 std::abort(); 13212 } 13213 } 13214 13215 // Collect all valid loops currently in LoopInfo. 13216 SmallPtrSet<Loop *, 32> ValidLoops; 13217 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13218 while (!Worklist.empty()) { 13219 Loop *L = Worklist.pop_back_val(); 13220 if (ValidLoops.contains(L)) 13221 continue; 13222 ValidLoops.insert(L); 13223 Worklist.append(L->begin(), L->end()); 13224 } 13225 for (auto &KV : ValueExprMap) { 13226 #ifndef NDEBUG 13227 // Check for SCEV expressions referencing invalid/deleted loops. 13228 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13229 assert(ValidLoops.contains(AR->getLoop()) && 13230 "AddRec references invalid loop"); 13231 } 13232 #endif 13233 13234 // Check that the value is also part of the reverse map. 13235 auto It = ExprValueMap.find(KV.second); 13236 if (It == ExprValueMap.end() || !It->second.contains({KV.first, nullptr})) { 13237 dbgs() << "Value " << *KV.first 13238 << " is in ValueExprMap but not in ExprValueMap\n"; 13239 std::abort(); 13240 } 13241 } 13242 13243 for (const auto &KV : ExprValueMap) { 13244 for (const auto &ValueAndOffset : KV.second) { 13245 if (ValueAndOffset.second != nullptr) 13246 continue; 13247 13248 auto It = ValueExprMap.find_as(ValueAndOffset.first); 13249 if (It == ValueExprMap.end()) { 13250 dbgs() << "Value " << *ValueAndOffset.first 13251 << " is in ExprValueMap but not in ValueExprMap\n"; 13252 std::abort(); 13253 } 13254 if (It->second != KV.first) { 13255 dbgs() << "Value " << *ValueAndOffset.first 13256 << " mapped to " << *It->second 13257 << " rather than " << *KV.first << "\n"; 13258 std::abort(); 13259 } 13260 } 13261 } 13262 13263 // Verify integrity of SCEV users. 13264 for (const auto &S : UniqueSCEVs) { 13265 SmallVector<const SCEV *, 4> Ops; 13266 collectUniqueOps(&S, Ops); 13267 for (const auto *Op : Ops) { 13268 // We do not store dependencies of constants. 13269 if (isa<SCEVConstant>(Op)) 13270 continue; 13271 auto It = SCEVUsers.find(Op); 13272 if (It != SCEVUsers.end() && It->second.count(&S)) 13273 continue; 13274 dbgs() << "Use of operand " << *Op << " by user " << S 13275 << " is not being tracked!\n"; 13276 std::abort(); 13277 } 13278 } 13279 13280 // Verify integrity of ValuesAtScopes users. 13281 for (const auto &ValueAndVec : ValuesAtScopes) { 13282 const SCEV *Value = ValueAndVec.first; 13283 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13284 const Loop *L = LoopAndValueAtScope.first; 13285 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13286 if (!isa<SCEVConstant>(ValueAtScope)) { 13287 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13288 if (It != ValuesAtScopesUsers.end() && 13289 is_contained(It->second, std::make_pair(L, Value))) 13290 continue; 13291 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13292 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13293 std::abort(); 13294 } 13295 } 13296 } 13297 13298 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13299 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13300 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13301 const Loop *L = LoopAndValue.first; 13302 const SCEV *Value = LoopAndValue.second; 13303 assert(!isa<SCEVConstant>(Value)); 13304 auto It = ValuesAtScopes.find(Value); 13305 if (It != ValuesAtScopes.end() && 13306 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13307 continue; 13308 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13309 << *ValueAtScope << " missing in ValuesAtScopes\n"; 13310 std::abort(); 13311 } 13312 } 13313 13314 // Verify integrity of BECountUsers. 13315 auto VerifyBECountUsers = [&](bool Predicated) { 13316 auto &BECounts = 13317 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13318 for (const auto &LoopAndBEInfo : BECounts) { 13319 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13320 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13321 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13322 if (UserIt != BECountUsers.end() && 13323 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13324 continue; 13325 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13326 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13327 std::abort(); 13328 } 13329 } 13330 } 13331 }; 13332 VerifyBECountUsers(/* Predicated */ false); 13333 VerifyBECountUsers(/* Predicated */ true); 13334 } 13335 13336 bool ScalarEvolution::invalidate( 13337 Function &F, const PreservedAnalyses &PA, 13338 FunctionAnalysisManager::Invalidator &Inv) { 13339 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13340 // of its dependencies is invalidated. 13341 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13342 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13343 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13344 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13345 Inv.invalidate<LoopAnalysis>(F, PA); 13346 } 13347 13348 AnalysisKey ScalarEvolutionAnalysis::Key; 13349 13350 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13351 FunctionAnalysisManager &AM) { 13352 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13353 AM.getResult<AssumptionAnalysis>(F), 13354 AM.getResult<DominatorTreeAnalysis>(F), 13355 AM.getResult<LoopAnalysis>(F)); 13356 } 13357 13358 PreservedAnalyses 13359 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13360 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13361 return PreservedAnalyses::all(); 13362 } 13363 13364 PreservedAnalyses 13365 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13366 // For compatibility with opt's -analyze feature under legacy pass manager 13367 // which was not ported to NPM. This keeps tests using 13368 // update_analyze_test_checks.py working. 13369 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13370 << F.getName() << "':\n"; 13371 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13372 return PreservedAnalyses::all(); 13373 } 13374 13375 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13376 "Scalar Evolution Analysis", false, true) 13377 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13378 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13379 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13380 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13381 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13382 "Scalar Evolution Analysis", false, true) 13383 13384 char ScalarEvolutionWrapperPass::ID = 0; 13385 13386 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13387 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13388 } 13389 13390 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13391 SE.reset(new ScalarEvolution( 13392 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13393 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13394 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13395 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13396 return false; 13397 } 13398 13399 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13400 13401 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13402 SE->print(OS); 13403 } 13404 13405 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13406 if (!VerifySCEV) 13407 return; 13408 13409 SE->verify(); 13410 } 13411 13412 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13413 AU.setPreservesAll(); 13414 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13415 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13416 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13417 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13418 } 13419 13420 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13421 const SCEV *RHS) { 13422 FoldingSetNodeID ID; 13423 assert(LHS->getType() == RHS->getType() && 13424 "Type mismatch between LHS and RHS"); 13425 // Unique this node based on the arguments 13426 ID.AddInteger(SCEVPredicate::P_Equal); 13427 ID.AddPointer(LHS); 13428 ID.AddPointer(RHS); 13429 void *IP = nullptr; 13430 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13431 return S; 13432 SCEVEqualPredicate *Eq = new (SCEVAllocator) 13433 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 13434 UniquePreds.InsertNode(Eq, IP); 13435 return Eq; 13436 } 13437 13438 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13439 const SCEVAddRecExpr *AR, 13440 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13441 FoldingSetNodeID ID; 13442 // Unique this node based on the arguments 13443 ID.AddInteger(SCEVPredicate::P_Wrap); 13444 ID.AddPointer(AR); 13445 ID.AddInteger(AddedFlags); 13446 void *IP = nullptr; 13447 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13448 return S; 13449 auto *OF = new (SCEVAllocator) 13450 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13451 UniquePreds.InsertNode(OF, IP); 13452 return OF; 13453 } 13454 13455 namespace { 13456 13457 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13458 public: 13459 13460 /// Rewrites \p S in the context of a loop L and the SCEV predication 13461 /// infrastructure. 13462 /// 13463 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13464 /// equivalences present in \p Pred. 13465 /// 13466 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13467 /// \p NewPreds such that the result will be an AddRecExpr. 13468 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13469 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13470 SCEVUnionPredicate *Pred) { 13471 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13472 return Rewriter.visit(S); 13473 } 13474 13475 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13476 if (Pred) { 13477 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13478 for (auto *Pred : ExprPreds) 13479 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13480 if (IPred->getLHS() == Expr) 13481 return IPred->getRHS(); 13482 } 13483 return convertToAddRecWithPreds(Expr); 13484 } 13485 13486 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13487 const SCEV *Operand = visit(Expr->getOperand()); 13488 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13489 if (AR && AR->getLoop() == L && AR->isAffine()) { 13490 // This couldn't be folded because the operand didn't have the nuw 13491 // flag. Add the nusw flag as an assumption that we could make. 13492 const SCEV *Step = AR->getStepRecurrence(SE); 13493 Type *Ty = Expr->getType(); 13494 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13495 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13496 SE.getSignExtendExpr(Step, Ty), L, 13497 AR->getNoWrapFlags()); 13498 } 13499 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13500 } 13501 13502 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13503 const SCEV *Operand = visit(Expr->getOperand()); 13504 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13505 if (AR && AR->getLoop() == L && AR->isAffine()) { 13506 // This couldn't be folded because the operand didn't have the nsw 13507 // flag. Add the nssw flag as an assumption that we could make. 13508 const SCEV *Step = AR->getStepRecurrence(SE); 13509 Type *Ty = Expr->getType(); 13510 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13511 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13512 SE.getSignExtendExpr(Step, Ty), L, 13513 AR->getNoWrapFlags()); 13514 } 13515 return SE.getSignExtendExpr(Operand, Expr->getType()); 13516 } 13517 13518 private: 13519 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13520 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13521 SCEVUnionPredicate *Pred) 13522 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13523 13524 bool addOverflowAssumption(const SCEVPredicate *P) { 13525 if (!NewPreds) { 13526 // Check if we've already made this assumption. 13527 return Pred && Pred->implies(P); 13528 } 13529 NewPreds->insert(P); 13530 return true; 13531 } 13532 13533 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13534 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13535 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13536 return addOverflowAssumption(A); 13537 } 13538 13539 // If \p Expr represents a PHINode, we try to see if it can be represented 13540 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13541 // to add this predicate as a runtime overflow check, we return the AddRec. 13542 // If \p Expr does not meet these conditions (is not a PHI node, or we 13543 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13544 // return \p Expr. 13545 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13546 if (!isa<PHINode>(Expr->getValue())) 13547 return Expr; 13548 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13549 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13550 if (!PredicatedRewrite) 13551 return Expr; 13552 for (auto *P : PredicatedRewrite->second){ 13553 // Wrap predicates from outer loops are not supported. 13554 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13555 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13556 if (L != AR->getLoop()) 13557 return Expr; 13558 } 13559 if (!addOverflowAssumption(P)) 13560 return Expr; 13561 } 13562 return PredicatedRewrite->first; 13563 } 13564 13565 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13566 SCEVUnionPredicate *Pred; 13567 const Loop *L; 13568 }; 13569 13570 } // end anonymous namespace 13571 13572 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13573 SCEVUnionPredicate &Preds) { 13574 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13575 } 13576 13577 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13578 const SCEV *S, const Loop *L, 13579 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13580 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13581 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13582 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13583 13584 if (!AddRec) 13585 return nullptr; 13586 13587 // Since the transformation was successful, we can now transfer the SCEV 13588 // predicates. 13589 for (auto *P : TransformPreds) 13590 Preds.insert(P); 13591 13592 return AddRec; 13593 } 13594 13595 /// SCEV predicates 13596 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13597 SCEVPredicateKind Kind) 13598 : FastID(ID), Kind(Kind) {} 13599 13600 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13601 const SCEV *LHS, const SCEV *RHS) 13602 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13603 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13604 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13605 } 13606 13607 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13608 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13609 13610 if (!Op) 13611 return false; 13612 13613 return Op->LHS == LHS && Op->RHS == RHS; 13614 } 13615 13616 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13617 13618 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13619 13620 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13621 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13622 } 13623 13624 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13625 const SCEVAddRecExpr *AR, 13626 IncrementWrapFlags Flags) 13627 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13628 13629 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13630 13631 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13632 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13633 13634 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13635 } 13636 13637 bool SCEVWrapPredicate::isAlwaysTrue() const { 13638 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13639 IncrementWrapFlags IFlags = Flags; 13640 13641 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13642 IFlags = clearFlags(IFlags, IncrementNSSW); 13643 13644 return IFlags == IncrementAnyWrap; 13645 } 13646 13647 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13648 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13649 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13650 OS << "<nusw>"; 13651 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13652 OS << "<nssw>"; 13653 OS << "\n"; 13654 } 13655 13656 SCEVWrapPredicate::IncrementWrapFlags 13657 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13658 ScalarEvolution &SE) { 13659 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13660 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13661 13662 // We can safely transfer the NSW flag as NSSW. 13663 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13664 ImpliedFlags = IncrementNSSW; 13665 13666 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13667 // If the increment is positive, the SCEV NUW flag will also imply the 13668 // WrapPredicate NUSW flag. 13669 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13670 if (Step->getValue()->getValue().isNonNegative()) 13671 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13672 } 13673 13674 return ImpliedFlags; 13675 } 13676 13677 /// Union predicates don't get cached so create a dummy set ID for it. 13678 SCEVUnionPredicate::SCEVUnionPredicate() 13679 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13680 13681 bool SCEVUnionPredicate::isAlwaysTrue() const { 13682 return all_of(Preds, 13683 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13684 } 13685 13686 ArrayRef<const SCEVPredicate *> 13687 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13688 auto I = SCEVToPreds.find(Expr); 13689 if (I == SCEVToPreds.end()) 13690 return ArrayRef<const SCEVPredicate *>(); 13691 return I->second; 13692 } 13693 13694 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13695 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13696 return all_of(Set->Preds, 13697 [this](const SCEVPredicate *I) { return this->implies(I); }); 13698 13699 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13700 if (ScevPredsIt == SCEVToPreds.end()) 13701 return false; 13702 auto &SCEVPreds = ScevPredsIt->second; 13703 13704 return any_of(SCEVPreds, 13705 [N](const SCEVPredicate *I) { return I->implies(N); }); 13706 } 13707 13708 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13709 13710 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13711 for (auto Pred : Preds) 13712 Pred->print(OS, Depth); 13713 } 13714 13715 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13716 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13717 for (auto Pred : Set->Preds) 13718 add(Pred); 13719 return; 13720 } 13721 13722 if (implies(N)) 13723 return; 13724 13725 const SCEV *Key = N->getExpr(); 13726 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13727 " associated expression!"); 13728 13729 SCEVToPreds[Key].push_back(N); 13730 Preds.push_back(N); 13731 } 13732 13733 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13734 Loop &L) 13735 : SE(SE), L(L) {} 13736 13737 void ScalarEvolution::registerUser(const SCEV *User, 13738 ArrayRef<const SCEV *> Ops) { 13739 for (auto *Op : Ops) 13740 // We do not expect that forgetting cached data for SCEVConstants will ever 13741 // open any prospects for sharpening or introduce any correctness issues, 13742 // so we don't bother storing their dependencies. 13743 if (!isa<SCEVConstant>(Op)) 13744 SCEVUsers[Op].insert(User); 13745 } 13746 13747 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13748 const SCEV *Expr = SE.getSCEV(V); 13749 RewriteEntry &Entry = RewriteMap[Expr]; 13750 13751 // If we already have an entry and the version matches, return it. 13752 if (Entry.second && Generation == Entry.first) 13753 return Entry.second; 13754 13755 // We found an entry but it's stale. Rewrite the stale entry 13756 // according to the current predicate. 13757 if (Entry.second) 13758 Expr = Entry.second; 13759 13760 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13761 Entry = {Generation, NewSCEV}; 13762 13763 return NewSCEV; 13764 } 13765 13766 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13767 if (!BackedgeCount) { 13768 SCEVUnionPredicate BackedgePred; 13769 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13770 addPredicate(BackedgePred); 13771 } 13772 return BackedgeCount; 13773 } 13774 13775 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13776 if (Preds.implies(&Pred)) 13777 return; 13778 Preds.add(&Pred); 13779 updateGeneration(); 13780 } 13781 13782 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13783 return Preds; 13784 } 13785 13786 void PredicatedScalarEvolution::updateGeneration() { 13787 // If the generation number wrapped recompute everything. 13788 if (++Generation == 0) { 13789 for (auto &II : RewriteMap) { 13790 const SCEV *Rewritten = II.second.second; 13791 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13792 } 13793 } 13794 } 13795 13796 void PredicatedScalarEvolution::setNoOverflow( 13797 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13798 const SCEV *Expr = getSCEV(V); 13799 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13800 13801 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13802 13803 // Clear the statically implied flags. 13804 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13805 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13806 13807 auto II = FlagsMap.insert({V, Flags}); 13808 if (!II.second) 13809 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13810 } 13811 13812 bool PredicatedScalarEvolution::hasNoOverflow( 13813 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13814 const SCEV *Expr = getSCEV(V); 13815 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13816 13817 Flags = SCEVWrapPredicate::clearFlags( 13818 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13819 13820 auto II = FlagsMap.find(V); 13821 13822 if (II != FlagsMap.end()) 13823 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13824 13825 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13826 } 13827 13828 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13829 const SCEV *Expr = this->getSCEV(V); 13830 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13831 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13832 13833 if (!New) 13834 return nullptr; 13835 13836 for (auto *P : NewPreds) 13837 Preds.add(P); 13838 13839 updateGeneration(); 13840 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13841 return New; 13842 } 13843 13844 PredicatedScalarEvolution::PredicatedScalarEvolution( 13845 const PredicatedScalarEvolution &Init) 13846 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13847 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13848 for (auto I : Init.FlagsMap) 13849 FlagsMap.insert(I); 13850 } 13851 13852 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13853 // For each block. 13854 for (auto *BB : L.getBlocks()) 13855 for (auto &I : *BB) { 13856 if (!SE.isSCEVable(I.getType())) 13857 continue; 13858 13859 auto *Expr = SE.getSCEV(&I); 13860 auto II = RewriteMap.find(Expr); 13861 13862 if (II == RewriteMap.end()) 13863 continue; 13864 13865 // Don't print things that are not interesting. 13866 if (II->second.second == Expr) 13867 continue; 13868 13869 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13870 OS.indent(Depth + 2) << *Expr << "\n"; 13871 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13872 } 13873 } 13874 13875 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13876 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13877 // for URem with constant power-of-2 second operands. 13878 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13879 // 4, A / B becomes X / 8). 13880 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13881 const SCEV *&RHS) { 13882 // Try to match 'zext (trunc A to iB) to iY', which is used 13883 // for URem with constant power-of-2 second operands. Make sure the size of 13884 // the operand A matches the size of the whole expressions. 13885 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13886 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13887 LHS = Trunc->getOperand(); 13888 // Bail out if the type of the LHS is larger than the type of the 13889 // expression for now. 13890 if (getTypeSizeInBits(LHS->getType()) > 13891 getTypeSizeInBits(Expr->getType())) 13892 return false; 13893 if (LHS->getType() != Expr->getType()) 13894 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13895 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13896 << getTypeSizeInBits(Trunc->getType())); 13897 return true; 13898 } 13899 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13900 if (Add == nullptr || Add->getNumOperands() != 2) 13901 return false; 13902 13903 const SCEV *A = Add->getOperand(1); 13904 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13905 13906 if (Mul == nullptr) 13907 return false; 13908 13909 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13910 // (SomeExpr + (-(SomeExpr / B) * B)). 13911 if (Expr == getURemExpr(A, B)) { 13912 LHS = A; 13913 RHS = B; 13914 return true; 13915 } 13916 return false; 13917 }; 13918 13919 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13920 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13921 return MatchURemWithDivisor(Mul->getOperand(1)) || 13922 MatchURemWithDivisor(Mul->getOperand(2)); 13923 13924 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13925 if (Mul->getNumOperands() == 2) 13926 return MatchURemWithDivisor(Mul->getOperand(1)) || 13927 MatchURemWithDivisor(Mul->getOperand(0)) || 13928 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13929 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13930 return false; 13931 } 13932 13933 const SCEV * 13934 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13935 SmallVector<BasicBlock*, 16> ExitingBlocks; 13936 L->getExitingBlocks(ExitingBlocks); 13937 13938 // Form an expression for the maximum exit count possible for this loop. We 13939 // merge the max and exact information to approximate a version of 13940 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13941 SmallVector<const SCEV*, 4> ExitCounts; 13942 for (BasicBlock *ExitingBB : ExitingBlocks) { 13943 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13944 if (isa<SCEVCouldNotCompute>(ExitCount)) 13945 ExitCount = getExitCount(L, ExitingBB, 13946 ScalarEvolution::ConstantMaximum); 13947 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13948 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13949 "We should only have known counts for exiting blocks that " 13950 "dominate latch!"); 13951 ExitCounts.push_back(ExitCount); 13952 } 13953 } 13954 if (ExitCounts.empty()) 13955 return getCouldNotCompute(); 13956 return getUMinFromMismatchedTypes(ExitCounts); 13957 } 13958 13959 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 13960 /// in the map. It skips AddRecExpr because we cannot guarantee that the 13961 /// replacement is loop invariant in the loop of the AddRec. 13962 /// 13963 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 13964 /// supported. 13965 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13966 const DenseMap<const SCEV *, const SCEV *> ⤅ 13967 13968 public: 13969 SCEVLoopGuardRewriter(ScalarEvolution &SE, 13970 DenseMap<const SCEV *, const SCEV *> &M) 13971 : SCEVRewriteVisitor(SE), Map(M) {} 13972 13973 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13974 13975 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13976 auto I = Map.find(Expr); 13977 if (I == Map.end()) 13978 return Expr; 13979 return I->second; 13980 } 13981 13982 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13983 auto I = Map.find(Expr); 13984 if (I == Map.end()) 13985 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 13986 Expr); 13987 return I->second; 13988 } 13989 }; 13990 13991 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13992 SmallVector<const SCEV *> ExprsToRewrite; 13993 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13994 const SCEV *RHS, 13995 DenseMap<const SCEV *, const SCEV *> 13996 &RewriteMap) { 13997 // WARNING: It is generally unsound to apply any wrap flags to the proposed 13998 // replacement SCEV which isn't directly implied by the structure of that 13999 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14000 // legal. See the scoping rules for flags in the header to understand why. 14001 14002 // If LHS is a constant, apply information to the other expression. 14003 if (isa<SCEVConstant>(LHS)) { 14004 std::swap(LHS, RHS); 14005 Predicate = CmpInst::getSwappedPredicate(Predicate); 14006 } 14007 14008 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14009 // create this form when combining two checks of the form (X u< C2 + C1) and 14010 // (X >=u C1). 14011 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14012 &ExprsToRewrite]() { 14013 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14014 if (!AddExpr || AddExpr->getNumOperands() != 2) 14015 return false; 14016 14017 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14018 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14019 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14020 if (!C1 || !C2 || !LHSUnknown) 14021 return false; 14022 14023 auto ExactRegion = 14024 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14025 .sub(C1->getAPInt()); 14026 14027 // Bail out, unless we have a non-wrapping, monotonic range. 14028 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14029 return false; 14030 auto I = RewriteMap.find(LHSUnknown); 14031 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14032 RewriteMap[LHSUnknown] = getUMaxExpr( 14033 getConstant(ExactRegion.getUnsignedMin()), 14034 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14035 ExprsToRewrite.push_back(LHSUnknown); 14036 return true; 14037 }; 14038 if (MatchRangeCheckIdiom()) 14039 return; 14040 14041 // If we have LHS == 0, check if LHS is computing a property of some unknown 14042 // SCEV %v which we can rewrite %v to express explicitly. 14043 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 14044 if (Predicate == CmpInst::ICMP_EQ && RHSC && 14045 RHSC->getValue()->isNullValue()) { 14046 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 14047 // explicitly express that. 14048 const SCEV *URemLHS = nullptr; 14049 const SCEV *URemRHS = nullptr; 14050 if (matchURem(LHS, URemLHS, URemRHS)) { 14051 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 14052 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 14053 RewriteMap[LHSUnknown] = Multiple; 14054 ExprsToRewrite.push_back(LHSUnknown); 14055 return; 14056 } 14057 } 14058 } 14059 14060 // Do not apply information for constants or if RHS contains an AddRec. 14061 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 14062 return; 14063 14064 // If RHS is SCEVUnknown, make sure the information is applied to it. 14065 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 14066 std::swap(LHS, RHS); 14067 Predicate = CmpInst::getSwappedPredicate(Predicate); 14068 } 14069 14070 // Limit to expressions that can be rewritten. 14071 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 14072 return; 14073 14074 // Check whether LHS has already been rewritten. In that case we want to 14075 // chain further rewrites onto the already rewritten value. 14076 auto I = RewriteMap.find(LHS); 14077 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 14078 14079 const SCEV *RewrittenRHS = nullptr; 14080 switch (Predicate) { 14081 case CmpInst::ICMP_ULT: 14082 RewrittenRHS = 14083 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14084 break; 14085 case CmpInst::ICMP_SLT: 14086 RewrittenRHS = 14087 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14088 break; 14089 case CmpInst::ICMP_ULE: 14090 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14091 break; 14092 case CmpInst::ICMP_SLE: 14093 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14094 break; 14095 case CmpInst::ICMP_UGT: 14096 RewrittenRHS = 14097 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14098 break; 14099 case CmpInst::ICMP_SGT: 14100 RewrittenRHS = 14101 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14102 break; 14103 case CmpInst::ICMP_UGE: 14104 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14105 break; 14106 case CmpInst::ICMP_SGE: 14107 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14108 break; 14109 case CmpInst::ICMP_EQ: 14110 if (isa<SCEVConstant>(RHS)) 14111 RewrittenRHS = RHS; 14112 break; 14113 case CmpInst::ICMP_NE: 14114 if (isa<SCEVConstant>(RHS) && 14115 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14116 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14117 break; 14118 default: 14119 break; 14120 } 14121 14122 if (RewrittenRHS) { 14123 RewriteMap[LHS] = RewrittenRHS; 14124 if (LHS == RewrittenLHS) 14125 ExprsToRewrite.push_back(LHS); 14126 } 14127 }; 14128 // First, collect conditions from dominating branches. Starting at the loop 14129 // predecessor, climb up the predecessor chain, as long as there are 14130 // predecessors that can be found that have unique successors leading to the 14131 // original header. 14132 // TODO: share this logic with isLoopEntryGuardedByCond. 14133 SmallVector<std::pair<Value *, bool>> Terms; 14134 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14135 L->getLoopPredecessor(), L->getHeader()); 14136 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14137 14138 const BranchInst *LoopEntryPredicate = 14139 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14140 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14141 continue; 14142 14143 Terms.emplace_back(LoopEntryPredicate->getCondition(), 14144 LoopEntryPredicate->getSuccessor(0) == Pair.second); 14145 } 14146 14147 // Now apply the information from the collected conditions to RewriteMap. 14148 // Conditions are processed in reverse order, so the earliest conditions is 14149 // processed first. This ensures the SCEVs with the shortest dependency chains 14150 // are constructed first. 14151 DenseMap<const SCEV *, const SCEV *> RewriteMap; 14152 for (auto &E : reverse(Terms)) { 14153 bool EnterIfTrue = E.second; 14154 SmallVector<Value *, 8> Worklist; 14155 SmallPtrSet<Value *, 8> Visited; 14156 Worklist.push_back(E.first); 14157 while (!Worklist.empty()) { 14158 Value *Cond = Worklist.pop_back_val(); 14159 if (!Visited.insert(Cond).second) 14160 continue; 14161 14162 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14163 auto Predicate = 14164 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14165 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 14166 getSCEV(Cmp->getOperand(1)), RewriteMap); 14167 continue; 14168 } 14169 14170 Value *L, *R; 14171 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14172 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14173 Worklist.push_back(L); 14174 Worklist.push_back(R); 14175 } 14176 } 14177 } 14178 14179 // Also collect information from assumptions dominating the loop. 14180 for (auto &AssumeVH : AC.assumptions()) { 14181 if (!AssumeVH) 14182 continue; 14183 auto *AssumeI = cast<CallInst>(AssumeVH); 14184 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14185 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14186 continue; 14187 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14188 getSCEV(Cmp->getOperand(1)), RewriteMap); 14189 } 14190 14191 if (RewriteMap.empty()) 14192 return Expr; 14193 14194 // Now that all rewrite information is collect, rewrite the collected 14195 // expressions with the information in the map. This applies information to 14196 // sub-expressions. 14197 if (ExprsToRewrite.size() > 1) { 14198 for (const SCEV *Expr : ExprsToRewrite) { 14199 const SCEV *RewriteTo = RewriteMap[Expr]; 14200 RewriteMap.erase(Expr); 14201 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14202 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14203 } 14204 } 14205 14206 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14207 return Rewriter.visit(Expr); 14208 } 14209