1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <climits>
127 #include <cstddef>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <map>
131 #include <memory>
132 #include <tuple>
133 #include <utility>
134 #include <vector>
135 
136 using namespace llvm;
137 
138 #define DEBUG_TYPE "scalar-evolution"
139 
140 STATISTIC(NumArrayLenItCounts,
141           "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148 
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151                         cl::desc("Maximum number of iterations SCEV will "
152                                  "symbolically execute a constant "
153                                  "derived loop"),
154                         cl::init(100));
155 
156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
157 static cl::opt<bool> VerifySCEV(
158     "verify-scev", cl::Hidden,
159     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
160 static cl::opt<bool>
161     VerifySCEVMap("verify-scev-maps", cl::Hidden,
162                   cl::desc("Verify no dangling value in ScalarEvolution's "
163                            "ExprValueMap (slow)"));
164 
165 static cl::opt<bool> VerifyIR(
166     "scev-verify-ir", cl::Hidden,
167     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
168     cl::init(false));
169 
170 static cl::opt<unsigned> MulOpsInlineThreshold(
171     "scev-mulops-inline-threshold", cl::Hidden,
172     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
173     cl::init(32));
174 
175 static cl::opt<unsigned> AddOpsInlineThreshold(
176     "scev-addops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining addition operands into a SCEV"),
178     cl::init(500));
179 
180 static cl::opt<unsigned> MaxSCEVCompareDepth(
181     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
182     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
183     cl::init(32));
184 
185 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
186     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
188     cl::init(2));
189 
190 static cl::opt<unsigned> MaxValueCompareDepth(
191     "scalar-evolution-max-value-compare-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive value complexity comparisons"),
193     cl::init(2));
194 
195 static cl::opt<unsigned>
196     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
197                   cl::desc("Maximum depth of recursive arithmetics"),
198                   cl::init(32));
199 
200 static cl::opt<unsigned> MaxConstantEvolvingDepth(
201     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
202     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
203 
204 static cl::opt<unsigned>
205     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
206                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
207                  cl::init(8));
208 
209 static cl::opt<unsigned>
210     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
211                   cl::desc("Max coefficients in AddRec during evolving"),
212                   cl::init(8));
213 
214 static cl::opt<unsigned>
215     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
216                   cl::desc("Size of the expression which is considered huge"),
217                   cl::init(4096));
218 
219 //===----------------------------------------------------------------------===//
220 //                           SCEV class definitions
221 //===----------------------------------------------------------------------===//
222 
223 //===----------------------------------------------------------------------===//
224 // Implementation of the SCEV class.
225 //
226 
227 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
228 LLVM_DUMP_METHOD void SCEV::dump() const {
229   print(dbgs());
230   dbgs() << '\n';
231 }
232 #endif
233 
234 void SCEV::print(raw_ostream &OS) const {
235   switch (static_cast<SCEVTypes>(getSCEVType())) {
236   case scConstant:
237     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
238     return;
239   case scTruncate: {
240     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
241     const SCEV *Op = Trunc->getOperand();
242     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
243        << *Trunc->getType() << ")";
244     return;
245   }
246   case scZeroExtend: {
247     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
248     const SCEV *Op = ZExt->getOperand();
249     OS << "(zext " << *Op->getType() << " " << *Op << " to "
250        << *ZExt->getType() << ")";
251     return;
252   }
253   case scSignExtend: {
254     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
255     const SCEV *Op = SExt->getOperand();
256     OS << "(sext " << *Op->getType() << " " << *Op << " to "
257        << *SExt->getType() << ")";
258     return;
259   }
260   case scAddRecExpr: {
261     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
262     OS << "{" << *AR->getOperand(0);
263     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
264       OS << ",+," << *AR->getOperand(i);
265     OS << "}<";
266     if (AR->hasNoUnsignedWrap())
267       OS << "nuw><";
268     if (AR->hasNoSignedWrap())
269       OS << "nsw><";
270     if (AR->hasNoSelfWrap() &&
271         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
272       OS << "nw><";
273     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
274     OS << ">";
275     return;
276   }
277   case scAddExpr:
278   case scMulExpr:
279   case scUMaxExpr:
280   case scSMaxExpr: {
281     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
282     const char *OpStr = nullptr;
283     switch (NAry->getSCEVType()) {
284     case scAddExpr: OpStr = " + "; break;
285     case scMulExpr: OpStr = " * "; break;
286     case scUMaxExpr: OpStr = " umax "; break;
287     case scSMaxExpr: OpStr = " smax "; break;
288     }
289     OS << "(";
290     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
291          I != E; ++I) {
292       OS << **I;
293       if (std::next(I) != E)
294         OS << OpStr;
295     }
296     OS << ")";
297     switch (NAry->getSCEVType()) {
298     case scAddExpr:
299     case scMulExpr:
300       if (NAry->hasNoUnsignedWrap())
301         OS << "<nuw>";
302       if (NAry->hasNoSignedWrap())
303         OS << "<nsw>";
304     }
305     return;
306   }
307   case scUDivExpr: {
308     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
309     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
310     return;
311   }
312   case scUnknown: {
313     const SCEVUnknown *U = cast<SCEVUnknown>(this);
314     Type *AllocTy;
315     if (U->isSizeOf(AllocTy)) {
316       OS << "sizeof(" << *AllocTy << ")";
317       return;
318     }
319     if (U->isAlignOf(AllocTy)) {
320       OS << "alignof(" << *AllocTy << ")";
321       return;
322     }
323 
324     Type *CTy;
325     Constant *FieldNo;
326     if (U->isOffsetOf(CTy, FieldNo)) {
327       OS << "offsetof(" << *CTy << ", ";
328       FieldNo->printAsOperand(OS, false);
329       OS << ")";
330       return;
331     }
332 
333     // Otherwise just print it normally.
334     U->getValue()->printAsOperand(OS, false);
335     return;
336   }
337   case scCouldNotCompute:
338     OS << "***COULDNOTCOMPUTE***";
339     return;
340   }
341   llvm_unreachable("Unknown SCEV kind!");
342 }
343 
344 Type *SCEV::getType() const {
345   switch (static_cast<SCEVTypes>(getSCEVType())) {
346   case scConstant:
347     return cast<SCEVConstant>(this)->getType();
348   case scTruncate:
349   case scZeroExtend:
350   case scSignExtend:
351     return cast<SCEVCastExpr>(this)->getType();
352   case scAddRecExpr:
353   case scMulExpr:
354   case scUMaxExpr:
355   case scSMaxExpr:
356     return cast<SCEVNAryExpr>(this)->getType();
357   case scAddExpr:
358     return cast<SCEVAddExpr>(this)->getType();
359   case scUDivExpr:
360     return cast<SCEVUDivExpr>(this)->getType();
361   case scUnknown:
362     return cast<SCEVUnknown>(this)->getType();
363   case scCouldNotCompute:
364     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
365   }
366   llvm_unreachable("Unknown SCEV kind!");
367 }
368 
369 bool SCEV::isZero() const {
370   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
371     return SC->getValue()->isZero();
372   return false;
373 }
374 
375 bool SCEV::isOne() const {
376   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
377     return SC->getValue()->isOne();
378   return false;
379 }
380 
381 bool SCEV::isAllOnesValue() const {
382   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
383     return SC->getValue()->isMinusOne();
384   return false;
385 }
386 
387 bool SCEV::isNonConstantNegative() const {
388   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
389   if (!Mul) return false;
390 
391   // If there is a constant factor, it will be first.
392   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
393   if (!SC) return false;
394 
395   // Return true if the value is negative, this matches things like (-42 * V).
396   return SC->getAPInt().isNegative();
397 }
398 
399 SCEVCouldNotCompute::SCEVCouldNotCompute() :
400   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
401 
402 bool SCEVCouldNotCompute::classof(const SCEV *S) {
403   return S->getSCEVType() == scCouldNotCompute;
404 }
405 
406 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
407   FoldingSetNodeID ID;
408   ID.AddInteger(scConstant);
409   ID.AddPointer(V);
410   void *IP = nullptr;
411   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
412   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
413   UniqueSCEVs.InsertNode(S, IP);
414   return S;
415 }
416 
417 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
418   return getConstant(ConstantInt::get(getContext(), Val));
419 }
420 
421 const SCEV *
422 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
423   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
424   return getConstant(ConstantInt::get(ITy, V, isSigned));
425 }
426 
427 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
428                            unsigned SCEVTy, const SCEV *op, Type *ty)
429   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
430 
431 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
432                                    const SCEV *op, Type *ty)
433   : SCEVCastExpr(ID, scTruncate, op, ty) {
434   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
435          "Cannot truncate non-integer value!");
436 }
437 
438 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
439                                        const SCEV *op, Type *ty)
440   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
441   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
442          "Cannot zero extend non-integer value!");
443 }
444 
445 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
446                                        const SCEV *op, Type *ty)
447   : SCEVCastExpr(ID, scSignExtend, op, ty) {
448   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
449          "Cannot sign extend non-integer value!");
450 }
451 
452 void SCEVUnknown::deleted() {
453   // Clear this SCEVUnknown from various maps.
454   SE->forgetMemoizedResults(this);
455 
456   // Remove this SCEVUnknown from the uniquing map.
457   SE->UniqueSCEVs.RemoveNode(this);
458 
459   // Release the value.
460   setValPtr(nullptr);
461 }
462 
463 void SCEVUnknown::allUsesReplacedWith(Value *New) {
464   // Remove this SCEVUnknown from the uniquing map.
465   SE->UniqueSCEVs.RemoveNode(this);
466 
467   // Update this SCEVUnknown to point to the new value. This is needed
468   // because there may still be outstanding SCEVs which still point to
469   // this SCEVUnknown.
470   setValPtr(New);
471 }
472 
473 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
474   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
475     if (VCE->getOpcode() == Instruction::PtrToInt)
476       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
477         if (CE->getOpcode() == Instruction::GetElementPtr &&
478             CE->getOperand(0)->isNullValue() &&
479             CE->getNumOperands() == 2)
480           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
481             if (CI->isOne()) {
482               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
483                                  ->getElementType();
484               return true;
485             }
486 
487   return false;
488 }
489 
490 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
491   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
492     if (VCE->getOpcode() == Instruction::PtrToInt)
493       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
494         if (CE->getOpcode() == Instruction::GetElementPtr &&
495             CE->getOperand(0)->isNullValue()) {
496           Type *Ty =
497             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
498           if (StructType *STy = dyn_cast<StructType>(Ty))
499             if (!STy->isPacked() &&
500                 CE->getNumOperands() == 3 &&
501                 CE->getOperand(1)->isNullValue()) {
502               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
503                 if (CI->isOne() &&
504                     STy->getNumElements() == 2 &&
505                     STy->getElementType(0)->isIntegerTy(1)) {
506                   AllocTy = STy->getElementType(1);
507                   return true;
508                 }
509             }
510         }
511 
512   return false;
513 }
514 
515 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
516   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
517     if (VCE->getOpcode() == Instruction::PtrToInt)
518       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
519         if (CE->getOpcode() == Instruction::GetElementPtr &&
520             CE->getNumOperands() == 3 &&
521             CE->getOperand(0)->isNullValue() &&
522             CE->getOperand(1)->isNullValue()) {
523           Type *Ty =
524             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
525           // Ignore vector types here so that ScalarEvolutionExpander doesn't
526           // emit getelementptrs that index into vectors.
527           if (Ty->isStructTy() || Ty->isArrayTy()) {
528             CTy = Ty;
529             FieldNo = CE->getOperand(2);
530             return true;
531           }
532         }
533 
534   return false;
535 }
536 
537 //===----------------------------------------------------------------------===//
538 //                               SCEV Utilities
539 //===----------------------------------------------------------------------===//
540 
541 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
542 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
543 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
544 /// have been previously deemed to be "equally complex" by this routine.  It is
545 /// intended to avoid exponential time complexity in cases like:
546 ///
547 ///   %a = f(%x, %y)
548 ///   %b = f(%a, %a)
549 ///   %c = f(%b, %b)
550 ///
551 ///   %d = f(%x, %y)
552 ///   %e = f(%d, %d)
553 ///   %f = f(%e, %e)
554 ///
555 ///   CompareValueComplexity(%f, %c)
556 ///
557 /// Since we do not continue running this routine on expression trees once we
558 /// have seen unequal values, there is no need to track them in the cache.
559 static int
560 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
561                        const LoopInfo *const LI, Value *LV, Value *RV,
562                        unsigned Depth) {
563   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
564     return 0;
565 
566   // Order pointer values after integer values. This helps SCEVExpander form
567   // GEPs.
568   bool LIsPointer = LV->getType()->isPointerTy(),
569        RIsPointer = RV->getType()->isPointerTy();
570   if (LIsPointer != RIsPointer)
571     return (int)LIsPointer - (int)RIsPointer;
572 
573   // Compare getValueID values.
574   unsigned LID = LV->getValueID(), RID = RV->getValueID();
575   if (LID != RID)
576     return (int)LID - (int)RID;
577 
578   // Sort arguments by their position.
579   if (const auto *LA = dyn_cast<Argument>(LV)) {
580     const auto *RA = cast<Argument>(RV);
581     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
582     return (int)LArgNo - (int)RArgNo;
583   }
584 
585   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
586     const auto *RGV = cast<GlobalValue>(RV);
587 
588     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
589       auto LT = GV->getLinkage();
590       return !(GlobalValue::isPrivateLinkage(LT) ||
591                GlobalValue::isInternalLinkage(LT));
592     };
593 
594     // Use the names to distinguish the two values, but only if the
595     // names are semantically important.
596     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
597       return LGV->getName().compare(RGV->getName());
598   }
599 
600   // For instructions, compare their loop depth, and their operand count.  This
601   // is pretty loose.
602   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
603     const auto *RInst = cast<Instruction>(RV);
604 
605     // Compare loop depths.
606     const BasicBlock *LParent = LInst->getParent(),
607                      *RParent = RInst->getParent();
608     if (LParent != RParent) {
609       unsigned LDepth = LI->getLoopDepth(LParent),
610                RDepth = LI->getLoopDepth(RParent);
611       if (LDepth != RDepth)
612         return (int)LDepth - (int)RDepth;
613     }
614 
615     // Compare the number of operands.
616     unsigned LNumOps = LInst->getNumOperands(),
617              RNumOps = RInst->getNumOperands();
618     if (LNumOps != RNumOps)
619       return (int)LNumOps - (int)RNumOps;
620 
621     for (unsigned Idx : seq(0u, LNumOps)) {
622       int Result =
623           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
624                                  RInst->getOperand(Idx), Depth + 1);
625       if (Result != 0)
626         return Result;
627     }
628   }
629 
630   EqCacheValue.unionSets(LV, RV);
631   return 0;
632 }
633 
634 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
635 // than RHS, respectively. A three-way result allows recursive comparisons to be
636 // more efficient.
637 static int CompareSCEVComplexity(
638     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
639     EquivalenceClasses<const Value *> &EqCacheValue,
640     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
641     DominatorTree &DT, unsigned Depth = 0) {
642   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
643   if (LHS == RHS)
644     return 0;
645 
646   // Primarily, sort the SCEVs by their getSCEVType().
647   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
648   if (LType != RType)
649     return (int)LType - (int)RType;
650 
651   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
652     return 0;
653   // Aside from the getSCEVType() ordering, the particular ordering
654   // isn't very important except that it's beneficial to be consistent,
655   // so that (a + b) and (b + a) don't end up as different expressions.
656   switch (static_cast<SCEVTypes>(LType)) {
657   case scUnknown: {
658     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
659     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
660 
661     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
662                                    RU->getValue(), Depth + 1);
663     if (X == 0)
664       EqCacheSCEV.unionSets(LHS, RHS);
665     return X;
666   }
667 
668   case scConstant: {
669     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
670     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
671 
672     // Compare constant values.
673     const APInt &LA = LC->getAPInt();
674     const APInt &RA = RC->getAPInt();
675     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
676     if (LBitWidth != RBitWidth)
677       return (int)LBitWidth - (int)RBitWidth;
678     return LA.ult(RA) ? -1 : 1;
679   }
680 
681   case scAddRecExpr: {
682     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
683     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
684 
685     // There is always a dominance between two recs that are used by one SCEV,
686     // so we can safely sort recs by loop header dominance. We require such
687     // order in getAddExpr.
688     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
689     if (LLoop != RLoop) {
690       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
691       assert(LHead != RHead && "Two loops share the same header?");
692       if (DT.dominates(LHead, RHead))
693         return 1;
694       else
695         assert(DT.dominates(RHead, LHead) &&
696                "No dominance between recurrences used by one SCEV?");
697       return -1;
698     }
699 
700     // Addrec complexity grows with operand count.
701     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
702     if (LNumOps != RNumOps)
703       return (int)LNumOps - (int)RNumOps;
704 
705     // Lexicographically compare.
706     for (unsigned i = 0; i != LNumOps; ++i) {
707       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
708                                     LA->getOperand(i), RA->getOperand(i), DT,
709                                     Depth + 1);
710       if (X != 0)
711         return X;
712     }
713     EqCacheSCEV.unionSets(LHS, RHS);
714     return 0;
715   }
716 
717   case scAddExpr:
718   case scMulExpr:
719   case scSMaxExpr:
720   case scUMaxExpr: {
721     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
722     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
723 
724     // Lexicographically compare n-ary expressions.
725     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
726     if (LNumOps != RNumOps)
727       return (int)LNumOps - (int)RNumOps;
728 
729     for (unsigned i = 0; i != LNumOps; ++i) {
730       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
731                                     LC->getOperand(i), RC->getOperand(i), DT,
732                                     Depth + 1);
733       if (X != 0)
734         return X;
735     }
736     EqCacheSCEV.unionSets(LHS, RHS);
737     return 0;
738   }
739 
740   case scUDivExpr: {
741     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
742     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
743 
744     // Lexicographically compare udiv expressions.
745     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
746                                   RC->getLHS(), DT, Depth + 1);
747     if (X != 0)
748       return X;
749     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
750                               RC->getRHS(), DT, Depth + 1);
751     if (X == 0)
752       EqCacheSCEV.unionSets(LHS, RHS);
753     return X;
754   }
755 
756   case scTruncate:
757   case scZeroExtend:
758   case scSignExtend: {
759     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
760     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
761 
762     // Compare cast expressions by operand.
763     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
764                                   LC->getOperand(), RC->getOperand(), DT,
765                                   Depth + 1);
766     if (X == 0)
767       EqCacheSCEV.unionSets(LHS, RHS);
768     return X;
769   }
770 
771   case scCouldNotCompute:
772     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
773   }
774   llvm_unreachable("Unknown SCEV kind!");
775 }
776 
777 /// Given a list of SCEV objects, order them by their complexity, and group
778 /// objects of the same complexity together by value.  When this routine is
779 /// finished, we know that any duplicates in the vector are consecutive and that
780 /// complexity is monotonically increasing.
781 ///
782 /// Note that we go take special precautions to ensure that we get deterministic
783 /// results from this routine.  In other words, we don't want the results of
784 /// this to depend on where the addresses of various SCEV objects happened to
785 /// land in memory.
786 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
787                               LoopInfo *LI, DominatorTree &DT) {
788   if (Ops.size() < 2) return;  // Noop
789 
790   EquivalenceClasses<const SCEV *> EqCacheSCEV;
791   EquivalenceClasses<const Value *> EqCacheValue;
792   if (Ops.size() == 2) {
793     // This is the common case, which also happens to be trivially simple.
794     // Special case it.
795     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
796     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
797       std::swap(LHS, RHS);
798     return;
799   }
800 
801   // Do the rough sort by complexity.
802   std::stable_sort(Ops.begin(), Ops.end(),
803                    [&](const SCEV *LHS, const SCEV *RHS) {
804                      return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
805                                                   LHS, RHS, DT) < 0;
806                    });
807 
808   // Now that we are sorted by complexity, group elements of the same
809   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
810   // be extremely short in practice.  Note that we take this approach because we
811   // do not want to depend on the addresses of the objects we are grouping.
812   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
813     const SCEV *S = Ops[i];
814     unsigned Complexity = S->getSCEVType();
815 
816     // If there are any objects of the same complexity and same value as this
817     // one, group them.
818     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
819       if (Ops[j] == S) { // Found a duplicate.
820         // Move it to immediately after i'th element.
821         std::swap(Ops[i+1], Ops[j]);
822         ++i;   // no need to rescan it.
823         if (i == e-2) return;  // Done!
824       }
825     }
826   }
827 }
828 
829 // Returns the size of the SCEV S.
830 static inline int sizeOfSCEV(const SCEV *S) {
831   struct FindSCEVSize {
832     int Size = 0;
833 
834     FindSCEVSize() = default;
835 
836     bool follow(const SCEV *S) {
837       ++Size;
838       // Keep looking at all operands of S.
839       return true;
840     }
841 
842     bool isDone() const {
843       return false;
844     }
845   };
846 
847   FindSCEVSize F;
848   SCEVTraversal<FindSCEVSize> ST(F);
849   ST.visitAll(S);
850   return F.Size;
851 }
852 
853 /// Returns true if the subtree of \p S contains at least HugeExprThreshold
854 /// nodes.
855 static bool isHugeExpression(const SCEV *S) {
856   return S->getExpressionSize() >= HugeExprThreshold;
857 }
858 
859 /// Returns true of \p Ops contains a huge SCEV (see definition above).
860 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
861   return any_of(Ops, isHugeExpression);
862 }
863 
864 namespace {
865 
866 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
867 public:
868   // Computes the Quotient and Remainder of the division of Numerator by
869   // Denominator.
870   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
871                      const SCEV *Denominator, const SCEV **Quotient,
872                      const SCEV **Remainder) {
873     assert(Numerator && Denominator && "Uninitialized SCEV");
874 
875     SCEVDivision D(SE, Numerator, Denominator);
876 
877     // Check for the trivial case here to avoid having to check for it in the
878     // rest of the code.
879     if (Numerator == Denominator) {
880       *Quotient = D.One;
881       *Remainder = D.Zero;
882       return;
883     }
884 
885     if (Numerator->isZero()) {
886       *Quotient = D.Zero;
887       *Remainder = D.Zero;
888       return;
889     }
890 
891     // A simple case when N/1. The quotient is N.
892     if (Denominator->isOne()) {
893       *Quotient = Numerator;
894       *Remainder = D.Zero;
895       return;
896     }
897 
898     // Split the Denominator when it is a product.
899     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
900       const SCEV *Q, *R;
901       *Quotient = Numerator;
902       for (const SCEV *Op : T->operands()) {
903         divide(SE, *Quotient, Op, &Q, &R);
904         *Quotient = Q;
905 
906         // Bail out when the Numerator is not divisible by one of the terms of
907         // the Denominator.
908         if (!R->isZero()) {
909           *Quotient = D.Zero;
910           *Remainder = Numerator;
911           return;
912         }
913       }
914       *Remainder = D.Zero;
915       return;
916     }
917 
918     D.visit(Numerator);
919     *Quotient = D.Quotient;
920     *Remainder = D.Remainder;
921   }
922 
923   // Except in the trivial case described above, we do not know how to divide
924   // Expr by Denominator for the following functions with empty implementation.
925   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
926   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
927   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
928   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
929   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
930   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
931   void visitUnknown(const SCEVUnknown *Numerator) {}
932   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
933 
934   void visitConstant(const SCEVConstant *Numerator) {
935     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
936       APInt NumeratorVal = Numerator->getAPInt();
937       APInt DenominatorVal = D->getAPInt();
938       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
939       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
940 
941       if (NumeratorBW > DenominatorBW)
942         DenominatorVal = DenominatorVal.sext(NumeratorBW);
943       else if (NumeratorBW < DenominatorBW)
944         NumeratorVal = NumeratorVal.sext(DenominatorBW);
945 
946       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
947       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
948       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
949       Quotient = SE.getConstant(QuotientVal);
950       Remainder = SE.getConstant(RemainderVal);
951       return;
952     }
953   }
954 
955   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
956     const SCEV *StartQ, *StartR, *StepQ, *StepR;
957     if (!Numerator->isAffine())
958       return cannotDivide(Numerator);
959     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
960     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
961     // Bail out if the types do not match.
962     Type *Ty = Denominator->getType();
963     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
964         Ty != StepQ->getType() || Ty != StepR->getType())
965       return cannotDivide(Numerator);
966     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
967                                 Numerator->getNoWrapFlags());
968     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
969                                  Numerator->getNoWrapFlags());
970   }
971 
972   void visitAddExpr(const SCEVAddExpr *Numerator) {
973     SmallVector<const SCEV *, 2> Qs, Rs;
974     Type *Ty = Denominator->getType();
975 
976     for (const SCEV *Op : Numerator->operands()) {
977       const SCEV *Q, *R;
978       divide(SE, Op, Denominator, &Q, &R);
979 
980       // Bail out if types do not match.
981       if (Ty != Q->getType() || Ty != R->getType())
982         return cannotDivide(Numerator);
983 
984       Qs.push_back(Q);
985       Rs.push_back(R);
986     }
987 
988     if (Qs.size() == 1) {
989       Quotient = Qs[0];
990       Remainder = Rs[0];
991       return;
992     }
993 
994     Quotient = SE.getAddExpr(Qs);
995     Remainder = SE.getAddExpr(Rs);
996   }
997 
998   void visitMulExpr(const SCEVMulExpr *Numerator) {
999     SmallVector<const SCEV *, 2> Qs;
1000     Type *Ty = Denominator->getType();
1001 
1002     bool FoundDenominatorTerm = false;
1003     for (const SCEV *Op : Numerator->operands()) {
1004       // Bail out if types do not match.
1005       if (Ty != Op->getType())
1006         return cannotDivide(Numerator);
1007 
1008       if (FoundDenominatorTerm) {
1009         Qs.push_back(Op);
1010         continue;
1011       }
1012 
1013       // Check whether Denominator divides one of the product operands.
1014       const SCEV *Q, *R;
1015       divide(SE, Op, Denominator, &Q, &R);
1016       if (!R->isZero()) {
1017         Qs.push_back(Op);
1018         continue;
1019       }
1020 
1021       // Bail out if types do not match.
1022       if (Ty != Q->getType())
1023         return cannotDivide(Numerator);
1024 
1025       FoundDenominatorTerm = true;
1026       Qs.push_back(Q);
1027     }
1028 
1029     if (FoundDenominatorTerm) {
1030       Remainder = Zero;
1031       if (Qs.size() == 1)
1032         Quotient = Qs[0];
1033       else
1034         Quotient = SE.getMulExpr(Qs);
1035       return;
1036     }
1037 
1038     if (!isa<SCEVUnknown>(Denominator))
1039       return cannotDivide(Numerator);
1040 
1041     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1042     ValueToValueMap RewriteMap;
1043     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1044         cast<SCEVConstant>(Zero)->getValue();
1045     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1046 
1047     if (Remainder->isZero()) {
1048       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1049       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1050           cast<SCEVConstant>(One)->getValue();
1051       Quotient =
1052           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1053       return;
1054     }
1055 
1056     // Quotient is (Numerator - Remainder) divided by Denominator.
1057     const SCEV *Q, *R;
1058     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1059     // This SCEV does not seem to simplify: fail the division here.
1060     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1061       return cannotDivide(Numerator);
1062     divide(SE, Diff, Denominator, &Q, &R);
1063     if (R != Zero)
1064       return cannotDivide(Numerator);
1065     Quotient = Q;
1066   }
1067 
1068 private:
1069   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1070                const SCEV *Denominator)
1071       : SE(S), Denominator(Denominator) {
1072     Zero = SE.getZero(Denominator->getType());
1073     One = SE.getOne(Denominator->getType());
1074 
1075     // We generally do not know how to divide Expr by Denominator. We
1076     // initialize the division to a "cannot divide" state to simplify the rest
1077     // of the code.
1078     cannotDivide(Numerator);
1079   }
1080 
1081   // Convenience function for giving up on the division. We set the quotient to
1082   // be equal to zero and the remainder to be equal to the numerator.
1083   void cannotDivide(const SCEV *Numerator) {
1084     Quotient = Zero;
1085     Remainder = Numerator;
1086   }
1087 
1088   ScalarEvolution &SE;
1089   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1090 };
1091 
1092 } // end anonymous namespace
1093 
1094 //===----------------------------------------------------------------------===//
1095 //                      Simple SCEV method implementations
1096 //===----------------------------------------------------------------------===//
1097 
1098 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1099 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1100                                        ScalarEvolution &SE,
1101                                        Type *ResultTy) {
1102   // Handle the simplest case efficiently.
1103   if (K == 1)
1104     return SE.getTruncateOrZeroExtend(It, ResultTy);
1105 
1106   // We are using the following formula for BC(It, K):
1107   //
1108   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1109   //
1110   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1111   // overflow.  Hence, we must assure that the result of our computation is
1112   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1113   // safe in modular arithmetic.
1114   //
1115   // However, this code doesn't use exactly that formula; the formula it uses
1116   // is something like the following, where T is the number of factors of 2 in
1117   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1118   // exponentiation:
1119   //
1120   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1121   //
1122   // This formula is trivially equivalent to the previous formula.  However,
1123   // this formula can be implemented much more efficiently.  The trick is that
1124   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1125   // arithmetic.  To do exact division in modular arithmetic, all we have
1126   // to do is multiply by the inverse.  Therefore, this step can be done at
1127   // width W.
1128   //
1129   // The next issue is how to safely do the division by 2^T.  The way this
1130   // is done is by doing the multiplication step at a width of at least W + T
1131   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1132   // when we perform the division by 2^T (which is equivalent to a right shift
1133   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1134   // truncated out after the division by 2^T.
1135   //
1136   // In comparison to just directly using the first formula, this technique
1137   // is much more efficient; using the first formula requires W * K bits,
1138   // but this formula less than W + K bits. Also, the first formula requires
1139   // a division step, whereas this formula only requires multiplies and shifts.
1140   //
1141   // It doesn't matter whether the subtraction step is done in the calculation
1142   // width or the input iteration count's width; if the subtraction overflows,
1143   // the result must be zero anyway.  We prefer here to do it in the width of
1144   // the induction variable because it helps a lot for certain cases; CodeGen
1145   // isn't smart enough to ignore the overflow, which leads to much less
1146   // efficient code if the width of the subtraction is wider than the native
1147   // register width.
1148   //
1149   // (It's possible to not widen at all by pulling out factors of 2 before
1150   // the multiplication; for example, K=2 can be calculated as
1151   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1152   // extra arithmetic, so it's not an obvious win, and it gets
1153   // much more complicated for K > 3.)
1154 
1155   // Protection from insane SCEVs; this bound is conservative,
1156   // but it probably doesn't matter.
1157   if (K > 1000)
1158     return SE.getCouldNotCompute();
1159 
1160   unsigned W = SE.getTypeSizeInBits(ResultTy);
1161 
1162   // Calculate K! / 2^T and T; we divide out the factors of two before
1163   // multiplying for calculating K! / 2^T to avoid overflow.
1164   // Other overflow doesn't matter because we only care about the bottom
1165   // W bits of the result.
1166   APInt OddFactorial(W, 1);
1167   unsigned T = 1;
1168   for (unsigned i = 3; i <= K; ++i) {
1169     APInt Mult(W, i);
1170     unsigned TwoFactors = Mult.countTrailingZeros();
1171     T += TwoFactors;
1172     Mult.lshrInPlace(TwoFactors);
1173     OddFactorial *= Mult;
1174   }
1175 
1176   // We need at least W + T bits for the multiplication step
1177   unsigned CalculationBits = W + T;
1178 
1179   // Calculate 2^T, at width T+W.
1180   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1181 
1182   // Calculate the multiplicative inverse of K! / 2^T;
1183   // this multiplication factor will perform the exact division by
1184   // K! / 2^T.
1185   APInt Mod = APInt::getSignedMinValue(W+1);
1186   APInt MultiplyFactor = OddFactorial.zext(W+1);
1187   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1188   MultiplyFactor = MultiplyFactor.trunc(W);
1189 
1190   // Calculate the product, at width T+W
1191   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1192                                                       CalculationBits);
1193   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1194   for (unsigned i = 1; i != K; ++i) {
1195     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1196     Dividend = SE.getMulExpr(Dividend,
1197                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1198   }
1199 
1200   // Divide by 2^T
1201   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1202 
1203   // Truncate the result, and divide by K! / 2^T.
1204 
1205   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1206                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1207 }
1208 
1209 /// Return the value of this chain of recurrences at the specified iteration
1210 /// number.  We can evaluate this recurrence by multiplying each element in the
1211 /// chain by the binomial coefficient corresponding to it.  In other words, we
1212 /// can evaluate {A,+,B,+,C,+,D} as:
1213 ///
1214 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1215 ///
1216 /// where BC(It, k) stands for binomial coefficient.
1217 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1218                                                 ScalarEvolution &SE) const {
1219   const SCEV *Result = getStart();
1220   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1221     // The computation is correct in the face of overflow provided that the
1222     // multiplication is performed _after_ the evaluation of the binomial
1223     // coefficient.
1224     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1225     if (isa<SCEVCouldNotCompute>(Coeff))
1226       return Coeff;
1227 
1228     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1229   }
1230   return Result;
1231 }
1232 
1233 //===----------------------------------------------------------------------===//
1234 //                    SCEV Expression folder implementations
1235 //===----------------------------------------------------------------------===//
1236 
1237 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1238                                              unsigned Depth) {
1239   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1240          "This is not a truncating conversion!");
1241   assert(isSCEVable(Ty) &&
1242          "This is not a conversion to a SCEVable type!");
1243   Ty = getEffectiveSCEVType(Ty);
1244 
1245   FoldingSetNodeID ID;
1246   ID.AddInteger(scTruncate);
1247   ID.AddPointer(Op);
1248   ID.AddPointer(Ty);
1249   void *IP = nullptr;
1250   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1251 
1252   // Fold if the operand is constant.
1253   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1254     return getConstant(
1255       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1256 
1257   // trunc(trunc(x)) --> trunc(x)
1258   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1259     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1260 
1261   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1262   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1263     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1264 
1265   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1266   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1267     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1268 
1269   if (Depth > MaxCastDepth) {
1270     SCEV *S =
1271         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1272     UniqueSCEVs.InsertNode(S, IP);
1273     addToLoopUseLists(S);
1274     return S;
1275   }
1276 
1277   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1278   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1279   // if after transforming we have at most one truncate, not counting truncates
1280   // that replace other casts.
1281   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1282     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1283     SmallVector<const SCEV *, 4> Operands;
1284     unsigned numTruncs = 0;
1285     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1286          ++i) {
1287       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1288       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1289         numTruncs++;
1290       Operands.push_back(S);
1291     }
1292     if (numTruncs < 2) {
1293       if (isa<SCEVAddExpr>(Op))
1294         return getAddExpr(Operands);
1295       else if (isa<SCEVMulExpr>(Op))
1296         return getMulExpr(Operands);
1297       else
1298         llvm_unreachable("Unexpected SCEV type for Op.");
1299     }
1300     // Although we checked in the beginning that ID is not in the cache, it is
1301     // possible that during recursion and different modification ID was inserted
1302     // into the cache. So if we find it, just return it.
1303     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1304       return S;
1305   }
1306 
1307   // If the input value is a chrec scev, truncate the chrec's operands.
1308   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1309     SmallVector<const SCEV *, 4> Operands;
1310     for (const SCEV *Op : AddRec->operands())
1311       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1312     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1313   }
1314 
1315   // The cast wasn't folded; create an explicit cast node. We can reuse
1316   // the existing insert position since if we get here, we won't have
1317   // made any changes which would invalidate it.
1318   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1319                                                  Op, Ty);
1320   UniqueSCEVs.InsertNode(S, IP);
1321   addToLoopUseLists(S);
1322   return S;
1323 }
1324 
1325 // Get the limit of a recurrence such that incrementing by Step cannot cause
1326 // signed overflow as long as the value of the recurrence within the
1327 // loop does not exceed this limit before incrementing.
1328 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1329                                                  ICmpInst::Predicate *Pred,
1330                                                  ScalarEvolution *SE) {
1331   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1332   if (SE->isKnownPositive(Step)) {
1333     *Pred = ICmpInst::ICMP_SLT;
1334     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1335                            SE->getSignedRangeMax(Step));
1336   }
1337   if (SE->isKnownNegative(Step)) {
1338     *Pred = ICmpInst::ICMP_SGT;
1339     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1340                            SE->getSignedRangeMin(Step));
1341   }
1342   return nullptr;
1343 }
1344 
1345 // Get the limit of a recurrence such that incrementing by Step cannot cause
1346 // unsigned overflow as long as the value of the recurrence within the loop does
1347 // not exceed this limit before incrementing.
1348 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1349                                                    ICmpInst::Predicate *Pred,
1350                                                    ScalarEvolution *SE) {
1351   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1352   *Pred = ICmpInst::ICMP_ULT;
1353 
1354   return SE->getConstant(APInt::getMinValue(BitWidth) -
1355                          SE->getUnsignedRangeMax(Step));
1356 }
1357 
1358 namespace {
1359 
1360 struct ExtendOpTraitsBase {
1361   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1362                                                           unsigned);
1363 };
1364 
1365 // Used to make code generic over signed and unsigned overflow.
1366 template <typename ExtendOp> struct ExtendOpTraits {
1367   // Members present:
1368   //
1369   // static const SCEV::NoWrapFlags WrapType;
1370   //
1371   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1372   //
1373   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1374   //                                           ICmpInst::Predicate *Pred,
1375   //                                           ScalarEvolution *SE);
1376 };
1377 
1378 template <>
1379 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1380   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1381 
1382   static const GetExtendExprTy GetExtendExpr;
1383 
1384   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1385                                              ICmpInst::Predicate *Pred,
1386                                              ScalarEvolution *SE) {
1387     return getSignedOverflowLimitForStep(Step, Pred, SE);
1388   }
1389 };
1390 
1391 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1392     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1393 
1394 template <>
1395 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1396   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1397 
1398   static const GetExtendExprTy GetExtendExpr;
1399 
1400   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1401                                              ICmpInst::Predicate *Pred,
1402                                              ScalarEvolution *SE) {
1403     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1404   }
1405 };
1406 
1407 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1408     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1409 
1410 } // end anonymous namespace
1411 
1412 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1413 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1414 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1415 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1416 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1417 // expression "Step + sext/zext(PreIncAR)" is congruent with
1418 // "sext/zext(PostIncAR)"
1419 template <typename ExtendOpTy>
1420 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1421                                         ScalarEvolution *SE, unsigned Depth) {
1422   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1423   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1424 
1425   const Loop *L = AR->getLoop();
1426   const SCEV *Start = AR->getStart();
1427   const SCEV *Step = AR->getStepRecurrence(*SE);
1428 
1429   // Check for a simple looking step prior to loop entry.
1430   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1431   if (!SA)
1432     return nullptr;
1433 
1434   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1435   // subtraction is expensive. For this purpose, perform a quick and dirty
1436   // difference, by checking for Step in the operand list.
1437   SmallVector<const SCEV *, 4> DiffOps;
1438   for (const SCEV *Op : SA->operands())
1439     if (Op != Step)
1440       DiffOps.push_back(Op);
1441 
1442   if (DiffOps.size() == SA->getNumOperands())
1443     return nullptr;
1444 
1445   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1446   // `Step`:
1447 
1448   // 1. NSW/NUW flags on the step increment.
1449   auto PreStartFlags =
1450     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1451   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1452   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1453       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1454 
1455   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1456   // "S+X does not sign/unsign-overflow".
1457   //
1458 
1459   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1460   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1461       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1462     return PreStart;
1463 
1464   // 2. Direct overflow check on the step operation's expression.
1465   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1466   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1467   const SCEV *OperandExtendedStart =
1468       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1469                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1470   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1471     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1472       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1473       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1474       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1475       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1476     }
1477     return PreStart;
1478   }
1479 
1480   // 3. Loop precondition.
1481   ICmpInst::Predicate Pred;
1482   const SCEV *OverflowLimit =
1483       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1484 
1485   if (OverflowLimit &&
1486       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1487     return PreStart;
1488 
1489   return nullptr;
1490 }
1491 
1492 // Get the normalized zero or sign extended expression for this AddRec's Start.
1493 template <typename ExtendOpTy>
1494 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1495                                         ScalarEvolution *SE,
1496                                         unsigned Depth) {
1497   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1498 
1499   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1500   if (!PreStart)
1501     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1502 
1503   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1504                                              Depth),
1505                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1506 }
1507 
1508 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1509 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1510 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1511 //
1512 // Formally:
1513 //
1514 //     {S,+,X} == {S-T,+,X} + T
1515 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1516 //
1517 // If ({S-T,+,X} + T) does not overflow  ... (1)
1518 //
1519 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1520 //
1521 // If {S-T,+,X} does not overflow  ... (2)
1522 //
1523 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1524 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1525 //
1526 // If (S-T)+T does not overflow  ... (3)
1527 //
1528 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1529 //      == {Ext(S),+,Ext(X)} == LHS
1530 //
1531 // Thus, if (1), (2) and (3) are true for some T, then
1532 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1533 //
1534 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1535 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1536 // to check for (1) and (2).
1537 //
1538 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1539 // is `Delta` (defined below).
1540 template <typename ExtendOpTy>
1541 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1542                                                 const SCEV *Step,
1543                                                 const Loop *L) {
1544   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1545 
1546   // We restrict `Start` to a constant to prevent SCEV from spending too much
1547   // time here.  It is correct (but more expensive) to continue with a
1548   // non-constant `Start` and do a general SCEV subtraction to compute
1549   // `PreStart` below.
1550   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1551   if (!StartC)
1552     return false;
1553 
1554   APInt StartAI = StartC->getAPInt();
1555 
1556   for (unsigned Delta : {-2, -1, 1, 2}) {
1557     const SCEV *PreStart = getConstant(StartAI - Delta);
1558 
1559     FoldingSetNodeID ID;
1560     ID.AddInteger(scAddRecExpr);
1561     ID.AddPointer(PreStart);
1562     ID.AddPointer(Step);
1563     ID.AddPointer(L);
1564     void *IP = nullptr;
1565     const auto *PreAR =
1566       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1567 
1568     // Give up if we don't already have the add recurrence we need because
1569     // actually constructing an add recurrence is relatively expensive.
1570     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1571       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1572       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1573       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1574           DeltaS, &Pred, this);
1575       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1576         return true;
1577     }
1578   }
1579 
1580   return false;
1581 }
1582 
1583 // Finds an integer D for an expression (C + x + y + ...) such that the top
1584 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1585 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1586 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1587 // the (C + x + y + ...) expression is \p WholeAddExpr.
1588 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1589                                             const SCEVConstant *ConstantTerm,
1590                                             const SCEVAddExpr *WholeAddExpr) {
1591   const APInt C = ConstantTerm->getAPInt();
1592   const unsigned BitWidth = C.getBitWidth();
1593   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1594   uint32_t TZ = BitWidth;
1595   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1596     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1597   if (TZ) {
1598     // Set D to be as many least significant bits of C as possible while still
1599     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1600     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1601   }
1602   return APInt(BitWidth, 0);
1603 }
1604 
1605 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1606 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1607 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1608 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1609 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1610                                             const APInt &ConstantStart,
1611                                             const SCEV *Step) {
1612   const unsigned BitWidth = ConstantStart.getBitWidth();
1613   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1614   if (TZ)
1615     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1616                          : ConstantStart;
1617   return APInt(BitWidth, 0);
1618 }
1619 
1620 const SCEV *
1621 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1622   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1623          "This is not an extending conversion!");
1624   assert(isSCEVable(Ty) &&
1625          "This is not a conversion to a SCEVable type!");
1626   Ty = getEffectiveSCEVType(Ty);
1627 
1628   // Fold if the operand is constant.
1629   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1630     return getConstant(
1631       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1632 
1633   // zext(zext(x)) --> zext(x)
1634   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1635     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1636 
1637   // Before doing any expensive analysis, check to see if we've already
1638   // computed a SCEV for this Op and Ty.
1639   FoldingSetNodeID ID;
1640   ID.AddInteger(scZeroExtend);
1641   ID.AddPointer(Op);
1642   ID.AddPointer(Ty);
1643   void *IP = nullptr;
1644   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1645   if (Depth > MaxCastDepth) {
1646     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1647                                                      Op, Ty);
1648     UniqueSCEVs.InsertNode(S, IP);
1649     addToLoopUseLists(S);
1650     return S;
1651   }
1652 
1653   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1654   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1655     // It's possible the bits taken off by the truncate were all zero bits. If
1656     // so, we should be able to simplify this further.
1657     const SCEV *X = ST->getOperand();
1658     ConstantRange CR = getUnsignedRange(X);
1659     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1660     unsigned NewBits = getTypeSizeInBits(Ty);
1661     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1662             CR.zextOrTrunc(NewBits)))
1663       return getTruncateOrZeroExtend(X, Ty, Depth);
1664   }
1665 
1666   // If the input value is a chrec scev, and we can prove that the value
1667   // did not overflow the old, smaller, value, we can zero extend all of the
1668   // operands (often constants).  This allows analysis of something like
1669   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1670   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1671     if (AR->isAffine()) {
1672       const SCEV *Start = AR->getStart();
1673       const SCEV *Step = AR->getStepRecurrence(*this);
1674       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1675       const Loop *L = AR->getLoop();
1676 
1677       if (!AR->hasNoUnsignedWrap()) {
1678         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1679         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1680       }
1681 
1682       // If we have special knowledge that this addrec won't overflow,
1683       // we don't need to do any further analysis.
1684       if (AR->hasNoUnsignedWrap())
1685         return getAddRecExpr(
1686             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1687             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1688 
1689       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1690       // Note that this serves two purposes: It filters out loops that are
1691       // simply not analyzable, and it covers the case where this code is
1692       // being called from within backedge-taken count analysis, such that
1693       // attempting to ask for the backedge-taken count would likely result
1694       // in infinite recursion. In the later case, the analysis code will
1695       // cope with a conservative value, and it will take care to purge
1696       // that value once it has finished.
1697       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1698       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1699         // Manually compute the final value for AR, checking for
1700         // overflow.
1701 
1702         // Check whether the backedge-taken count can be losslessly casted to
1703         // the addrec's type. The count is always unsigned.
1704         const SCEV *CastedMaxBECount =
1705             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1706         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1707             CastedMaxBECount, MaxBECount->getType(), Depth);
1708         if (MaxBECount == RecastedMaxBECount) {
1709           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1710           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1711           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1712                                         SCEV::FlagAnyWrap, Depth + 1);
1713           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1714                                                           SCEV::FlagAnyWrap,
1715                                                           Depth + 1),
1716                                                WideTy, Depth + 1);
1717           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1718           const SCEV *WideMaxBECount =
1719             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1720           const SCEV *OperandExtendedAdd =
1721             getAddExpr(WideStart,
1722                        getMulExpr(WideMaxBECount,
1723                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1724                                   SCEV::FlagAnyWrap, Depth + 1),
1725                        SCEV::FlagAnyWrap, Depth + 1);
1726           if (ZAdd == OperandExtendedAdd) {
1727             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1728             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1729             // Return the expression with the addrec on the outside.
1730             return getAddRecExpr(
1731                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1732                                                          Depth + 1),
1733                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1734                 AR->getNoWrapFlags());
1735           }
1736           // Similar to above, only this time treat the step value as signed.
1737           // This covers loops that count down.
1738           OperandExtendedAdd =
1739             getAddExpr(WideStart,
1740                        getMulExpr(WideMaxBECount,
1741                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1742                                   SCEV::FlagAnyWrap, Depth + 1),
1743                        SCEV::FlagAnyWrap, Depth + 1);
1744           if (ZAdd == OperandExtendedAdd) {
1745             // Cache knowledge of AR NW, which is propagated to this AddRec.
1746             // Negative step causes unsigned wrap, but it still can't self-wrap.
1747             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1748             // Return the expression with the addrec on the outside.
1749             return getAddRecExpr(
1750                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1751                                                          Depth + 1),
1752                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1753                 AR->getNoWrapFlags());
1754           }
1755         }
1756       }
1757 
1758       // Normally, in the cases we can prove no-overflow via a
1759       // backedge guarding condition, we can also compute a backedge
1760       // taken count for the loop.  The exceptions are assumptions and
1761       // guards present in the loop -- SCEV is not great at exploiting
1762       // these to compute max backedge taken counts, but can still use
1763       // these to prove lack of overflow.  Use this fact to avoid
1764       // doing extra work that may not pay off.
1765       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1766           !AC.assumptions().empty()) {
1767         // If the backedge is guarded by a comparison with the pre-inc
1768         // value the addrec is safe. Also, if the entry is guarded by
1769         // a comparison with the start value and the backedge is
1770         // guarded by a comparison with the post-inc value, the addrec
1771         // is safe.
1772         if (isKnownPositive(Step)) {
1773           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1774                                       getUnsignedRangeMax(Step));
1775           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1776               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1777             // Cache knowledge of AR NUW, which is propagated to this
1778             // AddRec.
1779             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1780             // Return the expression with the addrec on the outside.
1781             return getAddRecExpr(
1782                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1783                                                          Depth + 1),
1784                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1785                 AR->getNoWrapFlags());
1786           }
1787         } else if (isKnownNegative(Step)) {
1788           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1789                                       getSignedRangeMin(Step));
1790           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1791               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1792             // Cache knowledge of AR NW, which is propagated to this
1793             // AddRec.  Negative step causes unsigned wrap, but it
1794             // still can't self-wrap.
1795             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1796             // Return the expression with the addrec on the outside.
1797             return getAddRecExpr(
1798                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1799                                                          Depth + 1),
1800                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1801                 AR->getNoWrapFlags());
1802           }
1803         }
1804       }
1805 
1806       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1807       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1808       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1809       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1810         const APInt &C = SC->getAPInt();
1811         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1812         if (D != 0) {
1813           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1814           const SCEV *SResidual =
1815               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1816           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1817           return getAddExpr(SZExtD, SZExtR,
1818                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1819                             Depth + 1);
1820         }
1821       }
1822 
1823       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1824         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1825         return getAddRecExpr(
1826             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1827             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1828       }
1829     }
1830 
1831   // zext(A % B) --> zext(A) % zext(B)
1832   {
1833     const SCEV *LHS;
1834     const SCEV *RHS;
1835     if (matchURem(Op, LHS, RHS))
1836       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1837                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1838   }
1839 
1840   // zext(A / B) --> zext(A) / zext(B).
1841   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1842     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1843                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1844 
1845   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1846     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1847     if (SA->hasNoUnsignedWrap()) {
1848       // If the addition does not unsign overflow then we can, by definition,
1849       // commute the zero extension with the addition operation.
1850       SmallVector<const SCEV *, 4> Ops;
1851       for (const auto *Op : SA->operands())
1852         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1853       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1854     }
1855 
1856     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1857     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1858     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1859     //
1860     // Often address arithmetics contain expressions like
1861     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1862     // This transformation is useful while proving that such expressions are
1863     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1864     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1865       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1866       if (D != 0) {
1867         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1868         const SCEV *SResidual =
1869             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1870         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1871         return getAddExpr(SZExtD, SZExtR,
1872                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1873                           Depth + 1);
1874       }
1875     }
1876   }
1877 
1878   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1879     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1880     if (SM->hasNoUnsignedWrap()) {
1881       // If the multiply does not unsign overflow then we can, by definition,
1882       // commute the zero extension with the multiply operation.
1883       SmallVector<const SCEV *, 4> Ops;
1884       for (const auto *Op : SM->operands())
1885         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1886       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1887     }
1888 
1889     // zext(2^K * (trunc X to iN)) to iM ->
1890     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1891     //
1892     // Proof:
1893     //
1894     //     zext(2^K * (trunc X to iN)) to iM
1895     //   = zext((trunc X to iN) << K) to iM
1896     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1897     //     (because shl removes the top K bits)
1898     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1899     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1900     //
1901     if (SM->getNumOperands() == 2)
1902       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1903         if (MulLHS->getAPInt().isPowerOf2())
1904           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1905             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1906                                MulLHS->getAPInt().logBase2();
1907             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1908             return getMulExpr(
1909                 getZeroExtendExpr(MulLHS, Ty),
1910                 getZeroExtendExpr(
1911                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1912                 SCEV::FlagNUW, Depth + 1);
1913           }
1914   }
1915 
1916   // The cast wasn't folded; create an explicit cast node.
1917   // Recompute the insert position, as it may have been invalidated.
1918   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1919   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1920                                                    Op, Ty);
1921   UniqueSCEVs.InsertNode(S, IP);
1922   addToLoopUseLists(S);
1923   return S;
1924 }
1925 
1926 const SCEV *
1927 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1928   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1929          "This is not an extending conversion!");
1930   assert(isSCEVable(Ty) &&
1931          "This is not a conversion to a SCEVable type!");
1932   Ty = getEffectiveSCEVType(Ty);
1933 
1934   // Fold if the operand is constant.
1935   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1936     return getConstant(
1937       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1938 
1939   // sext(sext(x)) --> sext(x)
1940   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1941     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1942 
1943   // sext(zext(x)) --> zext(x)
1944   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1945     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1946 
1947   // Before doing any expensive analysis, check to see if we've already
1948   // computed a SCEV for this Op and Ty.
1949   FoldingSetNodeID ID;
1950   ID.AddInteger(scSignExtend);
1951   ID.AddPointer(Op);
1952   ID.AddPointer(Ty);
1953   void *IP = nullptr;
1954   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1955   // Limit recursion depth.
1956   if (Depth > MaxCastDepth) {
1957     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1958                                                      Op, Ty);
1959     UniqueSCEVs.InsertNode(S, IP);
1960     addToLoopUseLists(S);
1961     return S;
1962   }
1963 
1964   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1965   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1966     // It's possible the bits taken off by the truncate were all sign bits. If
1967     // so, we should be able to simplify this further.
1968     const SCEV *X = ST->getOperand();
1969     ConstantRange CR = getSignedRange(X);
1970     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1971     unsigned NewBits = getTypeSizeInBits(Ty);
1972     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1973             CR.sextOrTrunc(NewBits)))
1974       return getTruncateOrSignExtend(X, Ty, Depth);
1975   }
1976 
1977   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1978     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1979     if (SA->hasNoSignedWrap()) {
1980       // If the addition does not sign overflow then we can, by definition,
1981       // commute the sign extension with the addition operation.
1982       SmallVector<const SCEV *, 4> Ops;
1983       for (const auto *Op : SA->operands())
1984         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1985       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1986     }
1987 
1988     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1989     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1990     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1991     //
1992     // For instance, this will bring two seemingly different expressions:
1993     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1994     //         sext(6 + 20 * %x + 24 * %y)
1995     // to the same form:
1996     //     2 + sext(4 + 20 * %x + 24 * %y)
1997     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1998       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1999       if (D != 0) {
2000         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2001         const SCEV *SResidual =
2002             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2003         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2004         return getAddExpr(SSExtD, SSExtR,
2005                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2006                           Depth + 1);
2007       }
2008     }
2009   }
2010   // If the input value is a chrec scev, and we can prove that the value
2011   // did not overflow the old, smaller, value, we can sign extend all of the
2012   // operands (often constants).  This allows analysis of something like
2013   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
2014   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2015     if (AR->isAffine()) {
2016       const SCEV *Start = AR->getStart();
2017       const SCEV *Step = AR->getStepRecurrence(*this);
2018       unsigned BitWidth = getTypeSizeInBits(AR->getType());
2019       const Loop *L = AR->getLoop();
2020 
2021       if (!AR->hasNoSignedWrap()) {
2022         auto NewFlags = proveNoWrapViaConstantRanges(AR);
2023         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2024       }
2025 
2026       // If we have special knowledge that this addrec won't overflow,
2027       // we don't need to do any further analysis.
2028       if (AR->hasNoSignedWrap())
2029         return getAddRecExpr(
2030             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2031             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2032 
2033       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2034       // Note that this serves two purposes: It filters out loops that are
2035       // simply not analyzable, and it covers the case where this code is
2036       // being called from within backedge-taken count analysis, such that
2037       // attempting to ask for the backedge-taken count would likely result
2038       // in infinite recursion. In the later case, the analysis code will
2039       // cope with a conservative value, and it will take care to purge
2040       // that value once it has finished.
2041       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
2042       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2043         // Manually compute the final value for AR, checking for
2044         // overflow.
2045 
2046         // Check whether the backedge-taken count can be losslessly casted to
2047         // the addrec's type. The count is always unsigned.
2048         const SCEV *CastedMaxBECount =
2049             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2050         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2051             CastedMaxBECount, MaxBECount->getType(), Depth);
2052         if (MaxBECount == RecastedMaxBECount) {
2053           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2054           // Check whether Start+Step*MaxBECount has no signed overflow.
2055           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2056                                         SCEV::FlagAnyWrap, Depth + 1);
2057           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2058                                                           SCEV::FlagAnyWrap,
2059                                                           Depth + 1),
2060                                                WideTy, Depth + 1);
2061           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2062           const SCEV *WideMaxBECount =
2063             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2064           const SCEV *OperandExtendedAdd =
2065             getAddExpr(WideStart,
2066                        getMulExpr(WideMaxBECount,
2067                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2068                                   SCEV::FlagAnyWrap, Depth + 1),
2069                        SCEV::FlagAnyWrap, Depth + 1);
2070           if (SAdd == OperandExtendedAdd) {
2071             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2072             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2073             // Return the expression with the addrec on the outside.
2074             return getAddRecExpr(
2075                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2076                                                          Depth + 1),
2077                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2078                 AR->getNoWrapFlags());
2079           }
2080           // Similar to above, only this time treat the step value as unsigned.
2081           // This covers loops that count up with an unsigned step.
2082           OperandExtendedAdd =
2083             getAddExpr(WideStart,
2084                        getMulExpr(WideMaxBECount,
2085                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2086                                   SCEV::FlagAnyWrap, Depth + 1),
2087                        SCEV::FlagAnyWrap, Depth + 1);
2088           if (SAdd == OperandExtendedAdd) {
2089             // If AR wraps around then
2090             //
2091             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2092             // => SAdd != OperandExtendedAdd
2093             //
2094             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2095             // (SAdd == OperandExtendedAdd => AR is NW)
2096 
2097             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2098 
2099             // Return the expression with the addrec on the outside.
2100             return getAddRecExpr(
2101                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2102                                                          Depth + 1),
2103                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2104                 AR->getNoWrapFlags());
2105           }
2106         }
2107       }
2108 
2109       // Normally, in the cases we can prove no-overflow via a
2110       // backedge guarding condition, we can also compute a backedge
2111       // taken count for the loop.  The exceptions are assumptions and
2112       // guards present in the loop -- SCEV is not great at exploiting
2113       // these to compute max backedge taken counts, but can still use
2114       // these to prove lack of overflow.  Use this fact to avoid
2115       // doing extra work that may not pay off.
2116 
2117       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2118           !AC.assumptions().empty()) {
2119         // If the backedge is guarded by a comparison with the pre-inc
2120         // value the addrec is safe. Also, if the entry is guarded by
2121         // a comparison with the start value and the backedge is
2122         // guarded by a comparison with the post-inc value, the addrec
2123         // is safe.
2124         ICmpInst::Predicate Pred;
2125         const SCEV *OverflowLimit =
2126             getSignedOverflowLimitForStep(Step, &Pred, this);
2127         if (OverflowLimit &&
2128             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2129              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2130           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2131           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2132           return getAddRecExpr(
2133               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2134               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2135         }
2136       }
2137 
2138       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2139       // if D + (C - D + Step * n) could be proven to not signed wrap
2140       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2141       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2142         const APInt &C = SC->getAPInt();
2143         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2144         if (D != 0) {
2145           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2146           const SCEV *SResidual =
2147               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2148           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2149           return getAddExpr(SSExtD, SSExtR,
2150                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2151                             Depth + 1);
2152         }
2153       }
2154 
2155       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2156         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2157         return getAddRecExpr(
2158             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2159             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2160       }
2161     }
2162 
2163   // If the input value is provably positive and we could not simplify
2164   // away the sext build a zext instead.
2165   if (isKnownNonNegative(Op))
2166     return getZeroExtendExpr(Op, Ty, Depth + 1);
2167 
2168   // The cast wasn't folded; create an explicit cast node.
2169   // Recompute the insert position, as it may have been invalidated.
2170   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2171   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2172                                                    Op, Ty);
2173   UniqueSCEVs.InsertNode(S, IP);
2174   addToLoopUseLists(S);
2175   return S;
2176 }
2177 
2178 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2179 /// unspecified bits out to the given type.
2180 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2181                                               Type *Ty) {
2182   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2183          "This is not an extending conversion!");
2184   assert(isSCEVable(Ty) &&
2185          "This is not a conversion to a SCEVable type!");
2186   Ty = getEffectiveSCEVType(Ty);
2187 
2188   // Sign-extend negative constants.
2189   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2190     if (SC->getAPInt().isNegative())
2191       return getSignExtendExpr(Op, Ty);
2192 
2193   // Peel off a truncate cast.
2194   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2195     const SCEV *NewOp = T->getOperand();
2196     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2197       return getAnyExtendExpr(NewOp, Ty);
2198     return getTruncateOrNoop(NewOp, Ty);
2199   }
2200 
2201   // Next try a zext cast. If the cast is folded, use it.
2202   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2203   if (!isa<SCEVZeroExtendExpr>(ZExt))
2204     return ZExt;
2205 
2206   // Next try a sext cast. If the cast is folded, use it.
2207   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2208   if (!isa<SCEVSignExtendExpr>(SExt))
2209     return SExt;
2210 
2211   // Force the cast to be folded into the operands of an addrec.
2212   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2213     SmallVector<const SCEV *, 4> Ops;
2214     for (const SCEV *Op : AR->operands())
2215       Ops.push_back(getAnyExtendExpr(Op, Ty));
2216     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2217   }
2218 
2219   // If the expression is obviously signed, use the sext cast value.
2220   if (isa<SCEVSMaxExpr>(Op))
2221     return SExt;
2222 
2223   // Absent any other information, use the zext cast value.
2224   return ZExt;
2225 }
2226 
2227 /// Process the given Ops list, which is a list of operands to be added under
2228 /// the given scale, update the given map. This is a helper function for
2229 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2230 /// that would form an add expression like this:
2231 ///
2232 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2233 ///
2234 /// where A and B are constants, update the map with these values:
2235 ///
2236 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2237 ///
2238 /// and add 13 + A*B*29 to AccumulatedConstant.
2239 /// This will allow getAddRecExpr to produce this:
2240 ///
2241 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2242 ///
2243 /// This form often exposes folding opportunities that are hidden in
2244 /// the original operand list.
2245 ///
2246 /// Return true iff it appears that any interesting folding opportunities
2247 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2248 /// the common case where no interesting opportunities are present, and
2249 /// is also used as a check to avoid infinite recursion.
2250 static bool
2251 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2252                              SmallVectorImpl<const SCEV *> &NewOps,
2253                              APInt &AccumulatedConstant,
2254                              const SCEV *const *Ops, size_t NumOperands,
2255                              const APInt &Scale,
2256                              ScalarEvolution &SE) {
2257   bool Interesting = false;
2258 
2259   // Iterate over the add operands. They are sorted, with constants first.
2260   unsigned i = 0;
2261   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2262     ++i;
2263     // Pull a buried constant out to the outside.
2264     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2265       Interesting = true;
2266     AccumulatedConstant += Scale * C->getAPInt();
2267   }
2268 
2269   // Next comes everything else. We're especially interested in multiplies
2270   // here, but they're in the middle, so just visit the rest with one loop.
2271   for (; i != NumOperands; ++i) {
2272     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2273     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2274       APInt NewScale =
2275           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2276       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2277         // A multiplication of a constant with another add; recurse.
2278         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2279         Interesting |=
2280           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2281                                        Add->op_begin(), Add->getNumOperands(),
2282                                        NewScale, SE);
2283       } else {
2284         // A multiplication of a constant with some other value. Update
2285         // the map.
2286         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2287         const SCEV *Key = SE.getMulExpr(MulOps);
2288         auto Pair = M.insert({Key, NewScale});
2289         if (Pair.second) {
2290           NewOps.push_back(Pair.first->first);
2291         } else {
2292           Pair.first->second += NewScale;
2293           // The map already had an entry for this value, which may indicate
2294           // a folding opportunity.
2295           Interesting = true;
2296         }
2297       }
2298     } else {
2299       // An ordinary operand. Update the map.
2300       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2301           M.insert({Ops[i], Scale});
2302       if (Pair.second) {
2303         NewOps.push_back(Pair.first->first);
2304       } else {
2305         Pair.first->second += Scale;
2306         // The map already had an entry for this value, which may indicate
2307         // a folding opportunity.
2308         Interesting = true;
2309       }
2310     }
2311   }
2312 
2313   return Interesting;
2314 }
2315 
2316 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2317 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2318 // can't-overflow flags for the operation if possible.
2319 static SCEV::NoWrapFlags
2320 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2321                       const ArrayRef<const SCEV *> Ops,
2322                       SCEV::NoWrapFlags Flags) {
2323   using namespace std::placeholders;
2324 
2325   using OBO = OverflowingBinaryOperator;
2326 
2327   bool CanAnalyze =
2328       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2329   (void)CanAnalyze;
2330   assert(CanAnalyze && "don't call from other places!");
2331 
2332   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2333   SCEV::NoWrapFlags SignOrUnsignWrap =
2334       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2335 
2336   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2337   auto IsKnownNonNegative = [&](const SCEV *S) {
2338     return SE->isKnownNonNegative(S);
2339   };
2340 
2341   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2342     Flags =
2343         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2344 
2345   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2346 
2347   if (SignOrUnsignWrap != SignOrUnsignMask &&
2348       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2349       isa<SCEVConstant>(Ops[0])) {
2350 
2351     auto Opcode = [&] {
2352       switch (Type) {
2353       case scAddExpr:
2354         return Instruction::Add;
2355       case scMulExpr:
2356         return Instruction::Mul;
2357       default:
2358         llvm_unreachable("Unexpected SCEV op.");
2359       }
2360     }();
2361 
2362     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2363 
2364     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2365     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2366       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2367           Opcode, C, OBO::NoSignedWrap);
2368       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2369         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2370     }
2371 
2372     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2373     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2374       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2375           Opcode, C, OBO::NoUnsignedWrap);
2376       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2377         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2378     }
2379   }
2380 
2381   return Flags;
2382 }
2383 
2384 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2385   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2386 }
2387 
2388 /// Get a canonical add expression, or something simpler if possible.
2389 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2390                                         SCEV::NoWrapFlags Flags,
2391                                         unsigned Depth) {
2392   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2393          "only nuw or nsw allowed");
2394   assert(!Ops.empty() && "Cannot get empty add!");
2395   if (Ops.size() == 1) return Ops[0];
2396 #ifndef NDEBUG
2397   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2398   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2399     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2400            "SCEVAddExpr operand types don't match!");
2401 #endif
2402 
2403   // Sort by complexity, this groups all similar expression types together.
2404   GroupByComplexity(Ops, &LI, DT);
2405 
2406   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2407 
2408   // If there are any constants, fold them together.
2409   unsigned Idx = 0;
2410   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2411     ++Idx;
2412     assert(Idx < Ops.size());
2413     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2414       // We found two constants, fold them together!
2415       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2416       if (Ops.size() == 2) return Ops[0];
2417       Ops.erase(Ops.begin()+1);  // Erase the folded element
2418       LHSC = cast<SCEVConstant>(Ops[0]);
2419     }
2420 
2421     // If we are left with a constant zero being added, strip it off.
2422     if (LHSC->getValue()->isZero()) {
2423       Ops.erase(Ops.begin());
2424       --Idx;
2425     }
2426 
2427     if (Ops.size() == 1) return Ops[0];
2428   }
2429 
2430   // Limit recursion calls depth.
2431   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2432     return getOrCreateAddExpr(Ops, Flags);
2433 
2434   // Okay, check to see if the same value occurs in the operand list more than
2435   // once.  If so, merge them together into an multiply expression.  Since we
2436   // sorted the list, these values are required to be adjacent.
2437   Type *Ty = Ops[0]->getType();
2438   bool FoundMatch = false;
2439   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2440     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2441       // Scan ahead to count how many equal operands there are.
2442       unsigned Count = 2;
2443       while (i+Count != e && Ops[i+Count] == Ops[i])
2444         ++Count;
2445       // Merge the values into a multiply.
2446       const SCEV *Scale = getConstant(Ty, Count);
2447       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2448       if (Ops.size() == Count)
2449         return Mul;
2450       Ops[i] = Mul;
2451       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2452       --i; e -= Count - 1;
2453       FoundMatch = true;
2454     }
2455   if (FoundMatch)
2456     return getAddExpr(Ops, Flags, Depth + 1);
2457 
2458   // Check for truncates. If all the operands are truncated from the same
2459   // type, see if factoring out the truncate would permit the result to be
2460   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2461   // if the contents of the resulting outer trunc fold to something simple.
2462   auto FindTruncSrcType = [&]() -> Type * {
2463     // We're ultimately looking to fold an addrec of truncs and muls of only
2464     // constants and truncs, so if we find any other types of SCEV
2465     // as operands of the addrec then we bail and return nullptr here.
2466     // Otherwise, we return the type of the operand of a trunc that we find.
2467     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2468       return T->getOperand()->getType();
2469     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2470       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2471       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2472         return T->getOperand()->getType();
2473     }
2474     return nullptr;
2475   };
2476   if (auto *SrcType = FindTruncSrcType()) {
2477     SmallVector<const SCEV *, 8> LargeOps;
2478     bool Ok = true;
2479     // Check all the operands to see if they can be represented in the
2480     // source type of the truncate.
2481     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2482       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2483         if (T->getOperand()->getType() != SrcType) {
2484           Ok = false;
2485           break;
2486         }
2487         LargeOps.push_back(T->getOperand());
2488       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2489         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2490       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2491         SmallVector<const SCEV *, 8> LargeMulOps;
2492         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2493           if (const SCEVTruncateExpr *T =
2494                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2495             if (T->getOperand()->getType() != SrcType) {
2496               Ok = false;
2497               break;
2498             }
2499             LargeMulOps.push_back(T->getOperand());
2500           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2501             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2502           } else {
2503             Ok = false;
2504             break;
2505           }
2506         }
2507         if (Ok)
2508           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2509       } else {
2510         Ok = false;
2511         break;
2512       }
2513     }
2514     if (Ok) {
2515       // Evaluate the expression in the larger type.
2516       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2517       // If it folds to something simple, use it. Otherwise, don't.
2518       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2519         return getTruncateExpr(Fold, Ty);
2520     }
2521   }
2522 
2523   // Skip past any other cast SCEVs.
2524   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2525     ++Idx;
2526 
2527   // If there are add operands they would be next.
2528   if (Idx < Ops.size()) {
2529     bool DeletedAdd = false;
2530     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2531       if (Ops.size() > AddOpsInlineThreshold ||
2532           Add->getNumOperands() > AddOpsInlineThreshold)
2533         break;
2534       // If we have an add, expand the add operands onto the end of the operands
2535       // list.
2536       Ops.erase(Ops.begin()+Idx);
2537       Ops.append(Add->op_begin(), Add->op_end());
2538       DeletedAdd = true;
2539     }
2540 
2541     // If we deleted at least one add, we added operands to the end of the list,
2542     // and they are not necessarily sorted.  Recurse to resort and resimplify
2543     // any operands we just acquired.
2544     if (DeletedAdd)
2545       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2546   }
2547 
2548   // Skip over the add expression until we get to a multiply.
2549   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2550     ++Idx;
2551 
2552   // Check to see if there are any folding opportunities present with
2553   // operands multiplied by constant values.
2554   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2555     uint64_t BitWidth = getTypeSizeInBits(Ty);
2556     DenseMap<const SCEV *, APInt> M;
2557     SmallVector<const SCEV *, 8> NewOps;
2558     APInt AccumulatedConstant(BitWidth, 0);
2559     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2560                                      Ops.data(), Ops.size(),
2561                                      APInt(BitWidth, 1), *this)) {
2562       struct APIntCompare {
2563         bool operator()(const APInt &LHS, const APInt &RHS) const {
2564           return LHS.ult(RHS);
2565         }
2566       };
2567 
2568       // Some interesting folding opportunity is present, so its worthwhile to
2569       // re-generate the operands list. Group the operands by constant scale,
2570       // to avoid multiplying by the same constant scale multiple times.
2571       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2572       for (const SCEV *NewOp : NewOps)
2573         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2574       // Re-generate the operands list.
2575       Ops.clear();
2576       if (AccumulatedConstant != 0)
2577         Ops.push_back(getConstant(AccumulatedConstant));
2578       for (auto &MulOp : MulOpLists)
2579         if (MulOp.first != 0)
2580           Ops.push_back(getMulExpr(
2581               getConstant(MulOp.first),
2582               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2583               SCEV::FlagAnyWrap, Depth + 1));
2584       if (Ops.empty())
2585         return getZero(Ty);
2586       if (Ops.size() == 1)
2587         return Ops[0];
2588       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2589     }
2590   }
2591 
2592   // If we are adding something to a multiply expression, make sure the
2593   // something is not already an operand of the multiply.  If so, merge it into
2594   // the multiply.
2595   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2596     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2597     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2598       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2599       if (isa<SCEVConstant>(MulOpSCEV))
2600         continue;
2601       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2602         if (MulOpSCEV == Ops[AddOp]) {
2603           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2604           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2605           if (Mul->getNumOperands() != 2) {
2606             // If the multiply has more than two operands, we must get the
2607             // Y*Z term.
2608             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2609                                                 Mul->op_begin()+MulOp);
2610             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2611             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2612           }
2613           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2614           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2615           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2616                                             SCEV::FlagAnyWrap, Depth + 1);
2617           if (Ops.size() == 2) return OuterMul;
2618           if (AddOp < Idx) {
2619             Ops.erase(Ops.begin()+AddOp);
2620             Ops.erase(Ops.begin()+Idx-1);
2621           } else {
2622             Ops.erase(Ops.begin()+Idx);
2623             Ops.erase(Ops.begin()+AddOp-1);
2624           }
2625           Ops.push_back(OuterMul);
2626           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2627         }
2628 
2629       // Check this multiply against other multiplies being added together.
2630       for (unsigned OtherMulIdx = Idx+1;
2631            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2632            ++OtherMulIdx) {
2633         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2634         // If MulOp occurs in OtherMul, we can fold the two multiplies
2635         // together.
2636         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2637              OMulOp != e; ++OMulOp)
2638           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2639             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2640             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2641             if (Mul->getNumOperands() != 2) {
2642               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2643                                                   Mul->op_begin()+MulOp);
2644               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2645               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2646             }
2647             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2648             if (OtherMul->getNumOperands() != 2) {
2649               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2650                                                   OtherMul->op_begin()+OMulOp);
2651               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2652               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2653             }
2654             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2655             const SCEV *InnerMulSum =
2656                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2657             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2658                                               SCEV::FlagAnyWrap, Depth + 1);
2659             if (Ops.size() == 2) return OuterMul;
2660             Ops.erase(Ops.begin()+Idx);
2661             Ops.erase(Ops.begin()+OtherMulIdx-1);
2662             Ops.push_back(OuterMul);
2663             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2664           }
2665       }
2666     }
2667   }
2668 
2669   // If there are any add recurrences in the operands list, see if any other
2670   // added values are loop invariant.  If so, we can fold them into the
2671   // recurrence.
2672   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2673     ++Idx;
2674 
2675   // Scan over all recurrences, trying to fold loop invariants into them.
2676   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2677     // Scan all of the other operands to this add and add them to the vector if
2678     // they are loop invariant w.r.t. the recurrence.
2679     SmallVector<const SCEV *, 8> LIOps;
2680     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2681     const Loop *AddRecLoop = AddRec->getLoop();
2682     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2683       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2684         LIOps.push_back(Ops[i]);
2685         Ops.erase(Ops.begin()+i);
2686         --i; --e;
2687       }
2688 
2689     // If we found some loop invariants, fold them into the recurrence.
2690     if (!LIOps.empty()) {
2691       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2692       LIOps.push_back(AddRec->getStart());
2693 
2694       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2695                                              AddRec->op_end());
2696       // This follows from the fact that the no-wrap flags on the outer add
2697       // expression are applicable on the 0th iteration, when the add recurrence
2698       // will be equal to its start value.
2699       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2700 
2701       // Build the new addrec. Propagate the NUW and NSW flags if both the
2702       // outer add and the inner addrec are guaranteed to have no overflow.
2703       // Always propagate NW.
2704       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2705       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2706 
2707       // If all of the other operands were loop invariant, we are done.
2708       if (Ops.size() == 1) return NewRec;
2709 
2710       // Otherwise, add the folded AddRec by the non-invariant parts.
2711       for (unsigned i = 0;; ++i)
2712         if (Ops[i] == AddRec) {
2713           Ops[i] = NewRec;
2714           break;
2715         }
2716       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2717     }
2718 
2719     // Okay, if there weren't any loop invariants to be folded, check to see if
2720     // there are multiple AddRec's with the same loop induction variable being
2721     // added together.  If so, we can fold them.
2722     for (unsigned OtherIdx = Idx+1;
2723          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2724          ++OtherIdx) {
2725       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2726       // so that the 1st found AddRecExpr is dominated by all others.
2727       assert(DT.dominates(
2728            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2729            AddRec->getLoop()->getHeader()) &&
2730         "AddRecExprs are not sorted in reverse dominance order?");
2731       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2732         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2733         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2734                                                AddRec->op_end());
2735         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2736              ++OtherIdx) {
2737           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2738           if (OtherAddRec->getLoop() == AddRecLoop) {
2739             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2740                  i != e; ++i) {
2741               if (i >= AddRecOps.size()) {
2742                 AddRecOps.append(OtherAddRec->op_begin()+i,
2743                                  OtherAddRec->op_end());
2744                 break;
2745               }
2746               SmallVector<const SCEV *, 2> TwoOps = {
2747                   AddRecOps[i], OtherAddRec->getOperand(i)};
2748               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2749             }
2750             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2751           }
2752         }
2753         // Step size has changed, so we cannot guarantee no self-wraparound.
2754         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2755         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2756       }
2757     }
2758 
2759     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2760     // next one.
2761   }
2762 
2763   // Okay, it looks like we really DO need an add expr.  Check to see if we
2764   // already have one, otherwise create a new one.
2765   return getOrCreateAddExpr(Ops, Flags);
2766 }
2767 
2768 const SCEV *
2769 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2770                                     SCEV::NoWrapFlags Flags) {
2771   FoldingSetNodeID ID;
2772   ID.AddInteger(scAddExpr);
2773   for (const SCEV *Op : Ops)
2774     ID.AddPointer(Op);
2775   void *IP = nullptr;
2776   SCEVAddExpr *S =
2777       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2778   if (!S) {
2779     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2780     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2781     S = new (SCEVAllocator)
2782         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2783     UniqueSCEVs.InsertNode(S, IP);
2784     addToLoopUseLists(S);
2785   }
2786   S->setNoWrapFlags(Flags);
2787   return S;
2788 }
2789 
2790 const SCEV *
2791 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2792                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2793   FoldingSetNodeID ID;
2794   ID.AddInteger(scAddRecExpr);
2795   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2796     ID.AddPointer(Ops[i]);
2797   ID.AddPointer(L);
2798   void *IP = nullptr;
2799   SCEVAddRecExpr *S =
2800       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2801   if (!S) {
2802     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2803     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2804     S = new (SCEVAllocator)
2805         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2806     UniqueSCEVs.InsertNode(S, IP);
2807     addToLoopUseLists(S);
2808   }
2809   S->setNoWrapFlags(Flags);
2810   return S;
2811 }
2812 
2813 const SCEV *
2814 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2815                                     SCEV::NoWrapFlags Flags) {
2816   FoldingSetNodeID ID;
2817   ID.AddInteger(scMulExpr);
2818   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2819     ID.AddPointer(Ops[i]);
2820   void *IP = nullptr;
2821   SCEVMulExpr *S =
2822     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2823   if (!S) {
2824     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2825     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2826     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2827                                         O, Ops.size());
2828     UniqueSCEVs.InsertNode(S, IP);
2829     addToLoopUseLists(S);
2830   }
2831   S->setNoWrapFlags(Flags);
2832   return S;
2833 }
2834 
2835 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2836   uint64_t k = i*j;
2837   if (j > 1 && k / j != i) Overflow = true;
2838   return k;
2839 }
2840 
2841 /// Compute the result of "n choose k", the binomial coefficient.  If an
2842 /// intermediate computation overflows, Overflow will be set and the return will
2843 /// be garbage. Overflow is not cleared on absence of overflow.
2844 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2845   // We use the multiplicative formula:
2846   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2847   // At each iteration, we take the n-th term of the numeral and divide by the
2848   // (k-n)th term of the denominator.  This division will always produce an
2849   // integral result, and helps reduce the chance of overflow in the
2850   // intermediate computations. However, we can still overflow even when the
2851   // final result would fit.
2852 
2853   if (n == 0 || n == k) return 1;
2854   if (k > n) return 0;
2855 
2856   if (k > n/2)
2857     k = n-k;
2858 
2859   uint64_t r = 1;
2860   for (uint64_t i = 1; i <= k; ++i) {
2861     r = umul_ov(r, n-(i-1), Overflow);
2862     r /= i;
2863   }
2864   return r;
2865 }
2866 
2867 /// Determine if any of the operands in this SCEV are a constant or if
2868 /// any of the add or multiply expressions in this SCEV contain a constant.
2869 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2870   struct FindConstantInAddMulChain {
2871     bool FoundConstant = false;
2872 
2873     bool follow(const SCEV *S) {
2874       FoundConstant |= isa<SCEVConstant>(S);
2875       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2876     }
2877 
2878     bool isDone() const {
2879       return FoundConstant;
2880     }
2881   };
2882 
2883   FindConstantInAddMulChain F;
2884   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2885   ST.visitAll(StartExpr);
2886   return F.FoundConstant;
2887 }
2888 
2889 /// Get a canonical multiply expression, or something simpler if possible.
2890 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2891                                         SCEV::NoWrapFlags Flags,
2892                                         unsigned Depth) {
2893   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2894          "only nuw or nsw allowed");
2895   assert(!Ops.empty() && "Cannot get empty mul!");
2896   if (Ops.size() == 1) return Ops[0];
2897 #ifndef NDEBUG
2898   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2899   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2900     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2901            "SCEVMulExpr operand types don't match!");
2902 #endif
2903 
2904   // Sort by complexity, this groups all similar expression types together.
2905   GroupByComplexity(Ops, &LI, DT);
2906 
2907   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2908 
2909   // Limit recursion calls depth.
2910   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2911     return getOrCreateMulExpr(Ops, Flags);
2912 
2913   // If there are any constants, fold them together.
2914   unsigned Idx = 0;
2915   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2916 
2917     if (Ops.size() == 2)
2918       // C1*(C2+V) -> C1*C2 + C1*V
2919       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2920         // If any of Add's ops are Adds or Muls with a constant, apply this
2921         // transformation as well.
2922         //
2923         // TODO: There are some cases where this transformation is not
2924         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2925         // this transformation should be narrowed down.
2926         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2927           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2928                                        SCEV::FlagAnyWrap, Depth + 1),
2929                             getMulExpr(LHSC, Add->getOperand(1),
2930                                        SCEV::FlagAnyWrap, Depth + 1),
2931                             SCEV::FlagAnyWrap, Depth + 1);
2932 
2933     ++Idx;
2934     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2935       // We found two constants, fold them together!
2936       ConstantInt *Fold =
2937           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2938       Ops[0] = getConstant(Fold);
2939       Ops.erase(Ops.begin()+1);  // Erase the folded element
2940       if (Ops.size() == 1) return Ops[0];
2941       LHSC = cast<SCEVConstant>(Ops[0]);
2942     }
2943 
2944     // If we are left with a constant one being multiplied, strip it off.
2945     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2946       Ops.erase(Ops.begin());
2947       --Idx;
2948     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2949       // If we have a multiply of zero, it will always be zero.
2950       return Ops[0];
2951     } else if (Ops[0]->isAllOnesValue()) {
2952       // If we have a mul by -1 of an add, try distributing the -1 among the
2953       // add operands.
2954       if (Ops.size() == 2) {
2955         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2956           SmallVector<const SCEV *, 4> NewOps;
2957           bool AnyFolded = false;
2958           for (const SCEV *AddOp : Add->operands()) {
2959             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2960                                          Depth + 1);
2961             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2962             NewOps.push_back(Mul);
2963           }
2964           if (AnyFolded)
2965             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2966         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2967           // Negation preserves a recurrence's no self-wrap property.
2968           SmallVector<const SCEV *, 4> Operands;
2969           for (const SCEV *AddRecOp : AddRec->operands())
2970             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2971                                           Depth + 1));
2972 
2973           return getAddRecExpr(Operands, AddRec->getLoop(),
2974                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2975         }
2976       }
2977     }
2978 
2979     if (Ops.size() == 1)
2980       return Ops[0];
2981   }
2982 
2983   // Skip over the add expression until we get to a multiply.
2984   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2985     ++Idx;
2986 
2987   // If there are mul operands inline them all into this expression.
2988   if (Idx < Ops.size()) {
2989     bool DeletedMul = false;
2990     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2991       if (Ops.size() > MulOpsInlineThreshold)
2992         break;
2993       // If we have an mul, expand the mul operands onto the end of the
2994       // operands list.
2995       Ops.erase(Ops.begin()+Idx);
2996       Ops.append(Mul->op_begin(), Mul->op_end());
2997       DeletedMul = true;
2998     }
2999 
3000     // If we deleted at least one mul, we added operands to the end of the
3001     // list, and they are not necessarily sorted.  Recurse to resort and
3002     // resimplify any operands we just acquired.
3003     if (DeletedMul)
3004       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3005   }
3006 
3007   // If there are any add recurrences in the operands list, see if any other
3008   // added values are loop invariant.  If so, we can fold them into the
3009   // recurrence.
3010   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3011     ++Idx;
3012 
3013   // Scan over all recurrences, trying to fold loop invariants into them.
3014   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3015     // Scan all of the other operands to this mul and add them to the vector
3016     // if they are loop invariant w.r.t. the recurrence.
3017     SmallVector<const SCEV *, 8> LIOps;
3018     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3019     const Loop *AddRecLoop = AddRec->getLoop();
3020     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3021       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3022         LIOps.push_back(Ops[i]);
3023         Ops.erase(Ops.begin()+i);
3024         --i; --e;
3025       }
3026 
3027     // If we found some loop invariants, fold them into the recurrence.
3028     if (!LIOps.empty()) {
3029       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3030       SmallVector<const SCEV *, 4> NewOps;
3031       NewOps.reserve(AddRec->getNumOperands());
3032       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3033       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3034         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3035                                     SCEV::FlagAnyWrap, Depth + 1));
3036 
3037       // Build the new addrec. Propagate the NUW and NSW flags if both the
3038       // outer mul and the inner addrec are guaranteed to have no overflow.
3039       //
3040       // No self-wrap cannot be guaranteed after changing the step size, but
3041       // will be inferred if either NUW or NSW is true.
3042       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3043       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3044 
3045       // If all of the other operands were loop invariant, we are done.
3046       if (Ops.size() == 1) return NewRec;
3047 
3048       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3049       for (unsigned i = 0;; ++i)
3050         if (Ops[i] == AddRec) {
3051           Ops[i] = NewRec;
3052           break;
3053         }
3054       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3055     }
3056 
3057     // Okay, if there weren't any loop invariants to be folded, check to see
3058     // if there are multiple AddRec's with the same loop induction variable
3059     // being multiplied together.  If so, we can fold them.
3060 
3061     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3062     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3063     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3064     //   ]]],+,...up to x=2n}.
3065     // Note that the arguments to choose() are always integers with values
3066     // known at compile time, never SCEV objects.
3067     //
3068     // The implementation avoids pointless extra computations when the two
3069     // addrec's are of different length (mathematically, it's equivalent to
3070     // an infinite stream of zeros on the right).
3071     bool OpsModified = false;
3072     for (unsigned OtherIdx = Idx+1;
3073          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3074          ++OtherIdx) {
3075       const SCEVAddRecExpr *OtherAddRec =
3076         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3077       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3078         continue;
3079 
3080       // Limit max number of arguments to avoid creation of unreasonably big
3081       // SCEVAddRecs with very complex operands.
3082       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3083           MaxAddRecSize || isHugeExpression(AddRec) ||
3084           isHugeExpression(OtherAddRec))
3085         continue;
3086 
3087       bool Overflow = false;
3088       Type *Ty = AddRec->getType();
3089       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3090       SmallVector<const SCEV*, 7> AddRecOps;
3091       for (int x = 0, xe = AddRec->getNumOperands() +
3092              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3093         SmallVector <const SCEV *, 7> SumOps;
3094         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3095           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3096           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3097                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3098                z < ze && !Overflow; ++z) {
3099             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3100             uint64_t Coeff;
3101             if (LargerThan64Bits)
3102               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3103             else
3104               Coeff = Coeff1*Coeff2;
3105             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3106             const SCEV *Term1 = AddRec->getOperand(y-z);
3107             const SCEV *Term2 = OtherAddRec->getOperand(z);
3108             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3109                                         SCEV::FlagAnyWrap, Depth + 1));
3110           }
3111         }
3112         if (SumOps.empty())
3113           SumOps.push_back(getZero(Ty));
3114         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3115       }
3116       if (!Overflow) {
3117         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3118                                               SCEV::FlagAnyWrap);
3119         if (Ops.size() == 2) return NewAddRec;
3120         Ops[Idx] = NewAddRec;
3121         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3122         OpsModified = true;
3123         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3124         if (!AddRec)
3125           break;
3126       }
3127     }
3128     if (OpsModified)
3129       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3130 
3131     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3132     // next one.
3133   }
3134 
3135   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3136   // already have one, otherwise create a new one.
3137   return getOrCreateMulExpr(Ops, Flags);
3138 }
3139 
3140 /// Represents an unsigned remainder expression based on unsigned division.
3141 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3142                                          const SCEV *RHS) {
3143   assert(getEffectiveSCEVType(LHS->getType()) ==
3144          getEffectiveSCEVType(RHS->getType()) &&
3145          "SCEVURemExpr operand types don't match!");
3146 
3147   // Short-circuit easy cases
3148   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3149     // If constant is one, the result is trivial
3150     if (RHSC->getValue()->isOne())
3151       return getZero(LHS->getType()); // X urem 1 --> 0
3152 
3153     // If constant is a power of two, fold into a zext(trunc(LHS)).
3154     if (RHSC->getAPInt().isPowerOf2()) {
3155       Type *FullTy = LHS->getType();
3156       Type *TruncTy =
3157           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3158       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3159     }
3160   }
3161 
3162   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3163   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3164   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3165   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3166 }
3167 
3168 /// Get a canonical unsigned division expression, or something simpler if
3169 /// possible.
3170 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3171                                          const SCEV *RHS) {
3172   assert(getEffectiveSCEVType(LHS->getType()) ==
3173          getEffectiveSCEVType(RHS->getType()) &&
3174          "SCEVUDivExpr operand types don't match!");
3175 
3176   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3177     if (RHSC->getValue()->isOne())
3178       return LHS;                               // X udiv 1 --> x
3179     // If the denominator is zero, the result of the udiv is undefined. Don't
3180     // try to analyze it, because the resolution chosen here may differ from
3181     // the resolution chosen in other parts of the compiler.
3182     if (!RHSC->getValue()->isZero()) {
3183       // Determine if the division can be folded into the operands of
3184       // its operands.
3185       // TODO: Generalize this to non-constants by using known-bits information.
3186       Type *Ty = LHS->getType();
3187       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3188       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3189       // For non-power-of-two values, effectively round the value up to the
3190       // nearest power of two.
3191       if (!RHSC->getAPInt().isPowerOf2())
3192         ++MaxShiftAmt;
3193       IntegerType *ExtTy =
3194         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3195       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3196         if (const SCEVConstant *Step =
3197             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3198           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3199           const APInt &StepInt = Step->getAPInt();
3200           const APInt &DivInt = RHSC->getAPInt();
3201           if (!StepInt.urem(DivInt) &&
3202               getZeroExtendExpr(AR, ExtTy) ==
3203               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3204                             getZeroExtendExpr(Step, ExtTy),
3205                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3206             SmallVector<const SCEV *, 4> Operands;
3207             for (const SCEV *Op : AR->operands())
3208               Operands.push_back(getUDivExpr(Op, RHS));
3209             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3210           }
3211           /// Get a canonical UDivExpr for a recurrence.
3212           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3213           // We can currently only fold X%N if X is constant.
3214           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3215           if (StartC && !DivInt.urem(StepInt) &&
3216               getZeroExtendExpr(AR, ExtTy) ==
3217               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3218                             getZeroExtendExpr(Step, ExtTy),
3219                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3220             const APInt &StartInt = StartC->getAPInt();
3221             const APInt &StartRem = StartInt.urem(StepInt);
3222             if (StartRem != 0)
3223               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3224                                   AR->getLoop(), SCEV::FlagNW);
3225           }
3226         }
3227       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3228       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3229         SmallVector<const SCEV *, 4> Operands;
3230         for (const SCEV *Op : M->operands())
3231           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3232         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3233           // Find an operand that's safely divisible.
3234           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3235             const SCEV *Op = M->getOperand(i);
3236             const SCEV *Div = getUDivExpr(Op, RHSC);
3237             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3238               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3239                                                       M->op_end());
3240               Operands[i] = Div;
3241               return getMulExpr(Operands);
3242             }
3243           }
3244       }
3245 
3246       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3247       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3248         if (auto *DivisorConstant =
3249                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3250           bool Overflow = false;
3251           APInt NewRHS =
3252               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3253           if (Overflow) {
3254             return getConstant(RHSC->getType(), 0, false);
3255           }
3256           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3257         }
3258       }
3259 
3260       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3261       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3262         SmallVector<const SCEV *, 4> Operands;
3263         for (const SCEV *Op : A->operands())
3264           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3265         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3266           Operands.clear();
3267           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3268             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3269             if (isa<SCEVUDivExpr>(Op) ||
3270                 getMulExpr(Op, RHS) != A->getOperand(i))
3271               break;
3272             Operands.push_back(Op);
3273           }
3274           if (Operands.size() == A->getNumOperands())
3275             return getAddExpr(Operands);
3276         }
3277       }
3278 
3279       // Fold if both operands are constant.
3280       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3281         Constant *LHSCV = LHSC->getValue();
3282         Constant *RHSCV = RHSC->getValue();
3283         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3284                                                                    RHSCV)));
3285       }
3286     }
3287   }
3288 
3289   FoldingSetNodeID ID;
3290   ID.AddInteger(scUDivExpr);
3291   ID.AddPointer(LHS);
3292   ID.AddPointer(RHS);
3293   void *IP = nullptr;
3294   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3295   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3296                                              LHS, RHS);
3297   UniqueSCEVs.InsertNode(S, IP);
3298   addToLoopUseLists(S);
3299   return S;
3300 }
3301 
3302 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3303   APInt A = C1->getAPInt().abs();
3304   APInt B = C2->getAPInt().abs();
3305   uint32_t ABW = A.getBitWidth();
3306   uint32_t BBW = B.getBitWidth();
3307 
3308   if (ABW > BBW)
3309     B = B.zext(ABW);
3310   else if (ABW < BBW)
3311     A = A.zext(BBW);
3312 
3313   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3314 }
3315 
3316 /// Get a canonical unsigned division expression, or something simpler if
3317 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3318 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3319 /// it's not exact because the udiv may be clearing bits.
3320 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3321                                               const SCEV *RHS) {
3322   // TODO: we could try to find factors in all sorts of things, but for now we
3323   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3324   // end of this file for inspiration.
3325 
3326   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3327   if (!Mul || !Mul->hasNoUnsignedWrap())
3328     return getUDivExpr(LHS, RHS);
3329 
3330   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3331     // If the mulexpr multiplies by a constant, then that constant must be the
3332     // first element of the mulexpr.
3333     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3334       if (LHSCst == RHSCst) {
3335         SmallVector<const SCEV *, 2> Operands;
3336         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3337         return getMulExpr(Operands);
3338       }
3339 
3340       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3341       // that there's a factor provided by one of the other terms. We need to
3342       // check.
3343       APInt Factor = gcd(LHSCst, RHSCst);
3344       if (!Factor.isIntN(1)) {
3345         LHSCst =
3346             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3347         RHSCst =
3348             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3349         SmallVector<const SCEV *, 2> Operands;
3350         Operands.push_back(LHSCst);
3351         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3352         LHS = getMulExpr(Operands);
3353         RHS = RHSCst;
3354         Mul = dyn_cast<SCEVMulExpr>(LHS);
3355         if (!Mul)
3356           return getUDivExactExpr(LHS, RHS);
3357       }
3358     }
3359   }
3360 
3361   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3362     if (Mul->getOperand(i) == RHS) {
3363       SmallVector<const SCEV *, 2> Operands;
3364       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3365       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3366       return getMulExpr(Operands);
3367     }
3368   }
3369 
3370   return getUDivExpr(LHS, RHS);
3371 }
3372 
3373 /// Get an add recurrence expression for the specified loop.  Simplify the
3374 /// expression as much as possible.
3375 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3376                                            const Loop *L,
3377                                            SCEV::NoWrapFlags Flags) {
3378   SmallVector<const SCEV *, 4> Operands;
3379   Operands.push_back(Start);
3380   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3381     if (StepChrec->getLoop() == L) {
3382       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3383       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3384     }
3385 
3386   Operands.push_back(Step);
3387   return getAddRecExpr(Operands, L, Flags);
3388 }
3389 
3390 /// Get an add recurrence expression for the specified loop.  Simplify the
3391 /// expression as much as possible.
3392 const SCEV *
3393 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3394                                const Loop *L, SCEV::NoWrapFlags Flags) {
3395   if (Operands.size() == 1) return Operands[0];
3396 #ifndef NDEBUG
3397   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3398   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3399     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3400            "SCEVAddRecExpr operand types don't match!");
3401   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3402     assert(isLoopInvariant(Operands[i], L) &&
3403            "SCEVAddRecExpr operand is not loop-invariant!");
3404 #endif
3405 
3406   if (Operands.back()->isZero()) {
3407     Operands.pop_back();
3408     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3409   }
3410 
3411   // It's tempting to want to call getMaxBackedgeTakenCount count here and
3412   // use that information to infer NUW and NSW flags. However, computing a
3413   // BE count requires calling getAddRecExpr, so we may not yet have a
3414   // meaningful BE count at this point (and if we don't, we'd be stuck
3415   // with a SCEVCouldNotCompute as the cached BE count).
3416 
3417   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3418 
3419   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3420   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3421     const Loop *NestedLoop = NestedAR->getLoop();
3422     if (L->contains(NestedLoop)
3423             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3424             : (!NestedLoop->contains(L) &&
3425                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3426       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3427                                                   NestedAR->op_end());
3428       Operands[0] = NestedAR->getStart();
3429       // AddRecs require their operands be loop-invariant with respect to their
3430       // loops. Don't perform this transformation if it would break this
3431       // requirement.
3432       bool AllInvariant = all_of(
3433           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3434 
3435       if (AllInvariant) {
3436         // Create a recurrence for the outer loop with the same step size.
3437         //
3438         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3439         // inner recurrence has the same property.
3440         SCEV::NoWrapFlags OuterFlags =
3441           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3442 
3443         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3444         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3445           return isLoopInvariant(Op, NestedLoop);
3446         });
3447 
3448         if (AllInvariant) {
3449           // Ok, both add recurrences are valid after the transformation.
3450           //
3451           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3452           // the outer recurrence has the same property.
3453           SCEV::NoWrapFlags InnerFlags =
3454             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3455           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3456         }
3457       }
3458       // Reset Operands to its original state.
3459       Operands[0] = NestedAR;
3460     }
3461   }
3462 
3463   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3464   // already have one, otherwise create a new one.
3465   return getOrCreateAddRecExpr(Operands, L, Flags);
3466 }
3467 
3468 const SCEV *
3469 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3470                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3471   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3472   // getSCEV(Base)->getType() has the same address space as Base->getType()
3473   // because SCEV::getType() preserves the address space.
3474   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3475   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3476   // instruction to its SCEV, because the Instruction may be guarded by control
3477   // flow and the no-overflow bits may not be valid for the expression in any
3478   // context. This can be fixed similarly to how these flags are handled for
3479   // adds.
3480   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3481                                              : SCEV::FlagAnyWrap;
3482 
3483   const SCEV *TotalOffset = getZero(IntPtrTy);
3484   // The array size is unimportant. The first thing we do on CurTy is getting
3485   // its element type.
3486   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3487   for (const SCEV *IndexExpr : IndexExprs) {
3488     // Compute the (potentially symbolic) offset in bytes for this index.
3489     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3490       // For a struct, add the member offset.
3491       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3492       unsigned FieldNo = Index->getZExtValue();
3493       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3494 
3495       // Add the field offset to the running total offset.
3496       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3497 
3498       // Update CurTy to the type of the field at Index.
3499       CurTy = STy->getTypeAtIndex(Index);
3500     } else {
3501       // Update CurTy to its element type.
3502       CurTy = cast<SequentialType>(CurTy)->getElementType();
3503       // For an array, add the element offset, explicitly scaled.
3504       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3505       // Getelementptr indices are signed.
3506       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3507 
3508       // Multiply the index by the element size to compute the element offset.
3509       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3510 
3511       // Add the element offset to the running total offset.
3512       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3513     }
3514   }
3515 
3516   // Add the total offset from all the GEP indices to the base.
3517   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3518 }
3519 
3520 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3521                                          const SCEV *RHS) {
3522   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3523   return getSMaxExpr(Ops);
3524 }
3525 
3526 std::tuple<const SCEV *, FoldingSetNodeID, void *>
3527 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3528                                          ArrayRef<const SCEV *> Ops) {
3529   FoldingSetNodeID ID;
3530   void *IP = nullptr;
3531   ID.AddInteger(SCEVType);
3532   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3533     ID.AddPointer(Ops[i]);
3534   return std::tuple<const SCEV *, FoldingSetNodeID, void *>(
3535       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3536 }
3537 
3538 const SCEV *
3539 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3540   assert(!Ops.empty() && "Cannot get empty smax!");
3541   if (Ops.size() == 1) return Ops[0];
3542 #ifndef NDEBUG
3543   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3544   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3545     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3546            "SCEVSMaxExpr operand types don't match!");
3547 #endif
3548 
3549   // Sort by complexity, this groups all similar expression types together.
3550   GroupByComplexity(Ops, &LI, DT);
3551 
3552   // Check if we have created the same SMax expression before.
3553   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(scSMaxExpr, Ops))) {
3554     return S;
3555   }
3556 
3557   // If there are any constants, fold them together.
3558   unsigned Idx = 0;
3559   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3560     ++Idx;
3561     assert(Idx < Ops.size());
3562     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3563       // We found two constants, fold them together!
3564       ConstantInt *Fold = ConstantInt::get(
3565           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3566       Ops[0] = getConstant(Fold);
3567       Ops.erase(Ops.begin()+1);  // Erase the folded element
3568       if (Ops.size() == 1) return Ops[0];
3569       LHSC = cast<SCEVConstant>(Ops[0]);
3570     }
3571 
3572     // If we are left with a constant minimum-int, strip it off.
3573     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3574       Ops.erase(Ops.begin());
3575       --Idx;
3576     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3577       // If we have an smax with a constant maximum-int, it will always be
3578       // maximum-int.
3579       return Ops[0];
3580     }
3581 
3582     if (Ops.size() == 1) return Ops[0];
3583   }
3584 
3585   // Find the first SMax
3586   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3587     ++Idx;
3588 
3589   // Check to see if one of the operands is an SMax. If so, expand its operands
3590   // onto our operand list, and recurse to simplify.
3591   if (Idx < Ops.size()) {
3592     bool DeletedSMax = false;
3593     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3594       Ops.erase(Ops.begin()+Idx);
3595       Ops.append(SMax->op_begin(), SMax->op_end());
3596       DeletedSMax = true;
3597     }
3598 
3599     if (DeletedSMax)
3600       return getSMaxExpr(Ops);
3601   }
3602 
3603   // Okay, check to see if the same value occurs in the operand list twice.  If
3604   // so, delete one.  Since we sorted the list, these values are required to
3605   // be adjacent.
3606   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3607     //  X smax Y smax Y  -->  X smax Y
3608     //  X smax Y         -->  X, if X is always greater than Y
3609     if (Ops[i] == Ops[i+1] ||
3610         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3611       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3612       --i; --e;
3613     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3614       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3615       --i; --e;
3616     }
3617 
3618   if (Ops.size() == 1) return Ops[0];
3619 
3620   assert(!Ops.empty() && "Reduced smax down to nothing!");
3621 
3622   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3623   // already have one, otherwise create a new one.
3624   const SCEV *ExistingSCEV;
3625   FoldingSetNodeID ID;
3626   void *IP;
3627   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(scSMaxExpr, Ops);
3628   if (ExistingSCEV)
3629     return ExistingSCEV;
3630   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3631   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3632   SCEV *S =
3633       new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), O, Ops.size());
3634   UniqueSCEVs.InsertNode(S, IP);
3635   addToLoopUseLists(S);
3636   return S;
3637 }
3638 
3639 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3640                                          const SCEV *RHS) {
3641   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3642   return getUMaxExpr(Ops);
3643 }
3644 
3645 const SCEV *
3646 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3647   assert(!Ops.empty() && "Cannot get empty umax!");
3648   if (Ops.size() == 1) return Ops[0];
3649 #ifndef NDEBUG
3650   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3651   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3652     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3653            "SCEVUMaxExpr operand types don't match!");
3654 #endif
3655 
3656   // Sort by complexity, this groups all similar expression types together.
3657   GroupByComplexity(Ops, &LI, DT);
3658 
3659   // Check if we have created the same UMax expression before.
3660   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(scUMaxExpr, Ops))) {
3661     return S;
3662   }
3663 
3664   // If there are any constants, fold them together.
3665   unsigned Idx = 0;
3666   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3667     ++Idx;
3668     assert(Idx < Ops.size());
3669     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3670       // We found two constants, fold them together!
3671       ConstantInt *Fold = ConstantInt::get(
3672           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3673       Ops[0] = getConstant(Fold);
3674       Ops.erase(Ops.begin()+1);  // Erase the folded element
3675       if (Ops.size() == 1) return Ops[0];
3676       LHSC = cast<SCEVConstant>(Ops[0]);
3677     }
3678 
3679     // If we are left with a constant minimum-int, strip it off.
3680     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3681       Ops.erase(Ops.begin());
3682       --Idx;
3683     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3684       // If we have an umax with a constant maximum-int, it will always be
3685       // maximum-int.
3686       return Ops[0];
3687     }
3688 
3689     if (Ops.size() == 1) return Ops[0];
3690   }
3691 
3692   // Find the first UMax
3693   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3694     ++Idx;
3695 
3696   // Check to see if one of the operands is a UMax. If so, expand its operands
3697   // onto our operand list, and recurse to simplify.
3698   if (Idx < Ops.size()) {
3699     bool DeletedUMax = false;
3700     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3701       Ops.erase(Ops.begin()+Idx);
3702       Ops.append(UMax->op_begin(), UMax->op_end());
3703       DeletedUMax = true;
3704     }
3705 
3706     if (DeletedUMax)
3707       return getUMaxExpr(Ops);
3708   }
3709 
3710   // Okay, check to see if the same value occurs in the operand list twice.  If
3711   // so, delete one.  Since we sorted the list, these values are required to
3712   // be adjacent.
3713   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3714     //  X umax Y umax Y  -->  X umax Y
3715     //  X umax Y         -->  X, if X is always greater than Y
3716     if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning(
3717                                     ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) {
3718       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3719       --i; --e;
3720     } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i],
3721                                                Ops[i + 1])) {
3722       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3723       --i; --e;
3724     }
3725 
3726   if (Ops.size() == 1) return Ops[0];
3727 
3728   assert(!Ops.empty() && "Reduced umax down to nothing!");
3729 
3730   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3731   // already have one, otherwise create a new one.
3732   const SCEV *ExistingSCEV;
3733   FoldingSetNodeID ID;
3734   void *IP;
3735   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(scUMaxExpr, Ops);
3736   if (ExistingSCEV)
3737     return ExistingSCEV;
3738   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3739   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3740   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3741                                              O, Ops.size());
3742   UniqueSCEVs.InsertNode(S, IP);
3743   addToLoopUseLists(S);
3744   return S;
3745 }
3746 
3747 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3748                                          const SCEV *RHS) {
3749   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3750   return getSMinExpr(Ops);
3751 }
3752 
3753 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3754   // ~smax(~x, ~y, ~z) == smin(x, y, z).
3755   SmallVector<const SCEV *, 2> NotOps;
3756   for (auto *S : Ops)
3757     NotOps.push_back(getNotSCEV(S));
3758   return getNotSCEV(getSMaxExpr(NotOps));
3759 }
3760 
3761 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3762                                          const SCEV *RHS) {
3763   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3764   return getUMinExpr(Ops);
3765 }
3766 
3767 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3768   assert(!Ops.empty() && "At least one operand must be!");
3769   // Trivial case.
3770   if (Ops.size() == 1)
3771     return Ops[0];
3772 
3773   // ~umax(~x, ~y, ~z) == umin(x, y, z).
3774   SmallVector<const SCEV *, 2> NotOps;
3775   for (auto *S : Ops)
3776     NotOps.push_back(getNotSCEV(S));
3777   return getNotSCEV(getUMaxExpr(NotOps));
3778 }
3779 
3780 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3781   // We can bypass creating a target-independent
3782   // constant expression and then folding it back into a ConstantInt.
3783   // This is just a compile-time optimization.
3784   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3785 }
3786 
3787 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3788                                              StructType *STy,
3789                                              unsigned FieldNo) {
3790   // We can bypass creating a target-independent
3791   // constant expression and then folding it back into a ConstantInt.
3792   // This is just a compile-time optimization.
3793   return getConstant(
3794       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3795 }
3796 
3797 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3798   // Don't attempt to do anything other than create a SCEVUnknown object
3799   // here.  createSCEV only calls getUnknown after checking for all other
3800   // interesting possibilities, and any other code that calls getUnknown
3801   // is doing so in order to hide a value from SCEV canonicalization.
3802 
3803   FoldingSetNodeID ID;
3804   ID.AddInteger(scUnknown);
3805   ID.AddPointer(V);
3806   void *IP = nullptr;
3807   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3808     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3809            "Stale SCEVUnknown in uniquing map!");
3810     return S;
3811   }
3812   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3813                                             FirstUnknown);
3814   FirstUnknown = cast<SCEVUnknown>(S);
3815   UniqueSCEVs.InsertNode(S, IP);
3816   return S;
3817 }
3818 
3819 //===----------------------------------------------------------------------===//
3820 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3821 //
3822 
3823 /// Test if values of the given type are analyzable within the SCEV
3824 /// framework. This primarily includes integer types, and it can optionally
3825 /// include pointer types if the ScalarEvolution class has access to
3826 /// target-specific information.
3827 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3828   // Integers and pointers are always SCEVable.
3829   return Ty->isIntOrPtrTy();
3830 }
3831 
3832 /// Return the size in bits of the specified type, for which isSCEVable must
3833 /// return true.
3834 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3835   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3836   if (Ty->isPointerTy())
3837     return getDataLayout().getIndexTypeSizeInBits(Ty);
3838   return getDataLayout().getTypeSizeInBits(Ty);
3839 }
3840 
3841 /// Return a type with the same bitwidth as the given type and which represents
3842 /// how SCEV will treat the given type, for which isSCEVable must return
3843 /// true. For pointer types, this is the pointer-sized integer type.
3844 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3845   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3846 
3847   if (Ty->isIntegerTy())
3848     return Ty;
3849 
3850   // The only other support type is pointer.
3851   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3852   return getDataLayout().getIntPtrType(Ty);
3853 }
3854 
3855 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3856   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3857 }
3858 
3859 const SCEV *ScalarEvolution::getCouldNotCompute() {
3860   return CouldNotCompute.get();
3861 }
3862 
3863 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3864   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3865     auto *SU = dyn_cast<SCEVUnknown>(S);
3866     return SU && SU->getValue() == nullptr;
3867   });
3868 
3869   return !ContainsNulls;
3870 }
3871 
3872 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3873   HasRecMapType::iterator I = HasRecMap.find(S);
3874   if (I != HasRecMap.end())
3875     return I->second;
3876 
3877   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3878   HasRecMap.insert({S, FoundAddRec});
3879   return FoundAddRec;
3880 }
3881 
3882 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3883 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3884 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3885 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3886   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3887   if (!Add)
3888     return {S, nullptr};
3889 
3890   if (Add->getNumOperands() != 2)
3891     return {S, nullptr};
3892 
3893   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3894   if (!ConstOp)
3895     return {S, nullptr};
3896 
3897   return {Add->getOperand(1), ConstOp->getValue()};
3898 }
3899 
3900 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3901 /// by the value and offset from any ValueOffsetPair in the set.
3902 SetVector<ScalarEvolution::ValueOffsetPair> *
3903 ScalarEvolution::getSCEVValues(const SCEV *S) {
3904   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3905   if (SI == ExprValueMap.end())
3906     return nullptr;
3907 #ifndef NDEBUG
3908   if (VerifySCEVMap) {
3909     // Check there is no dangling Value in the set returned.
3910     for (const auto &VE : SI->second)
3911       assert(ValueExprMap.count(VE.first));
3912   }
3913 #endif
3914   return &SI->second;
3915 }
3916 
3917 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3918 /// cannot be used separately. eraseValueFromMap should be used to remove
3919 /// V from ValueExprMap and ExprValueMap at the same time.
3920 void ScalarEvolution::eraseValueFromMap(Value *V) {
3921   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3922   if (I != ValueExprMap.end()) {
3923     const SCEV *S = I->second;
3924     // Remove {V, 0} from the set of ExprValueMap[S]
3925     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3926       SV->remove({V, nullptr});
3927 
3928     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3929     const SCEV *Stripped;
3930     ConstantInt *Offset;
3931     std::tie(Stripped, Offset) = splitAddExpr(S);
3932     if (Offset != nullptr) {
3933       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3934         SV->remove({V, Offset});
3935     }
3936     ValueExprMap.erase(V);
3937   }
3938 }
3939 
3940 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3941 /// TODO: In reality it is better to check the poison recursively
3942 /// but this is better than nothing.
3943 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3944   if (auto *I = dyn_cast<Instruction>(V)) {
3945     if (isa<OverflowingBinaryOperator>(I)) {
3946       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3947         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3948           return true;
3949         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3950           return true;
3951       }
3952     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3953       return true;
3954   }
3955   return false;
3956 }
3957 
3958 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3959 /// create a new one.
3960 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3961   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3962 
3963   const SCEV *S = getExistingSCEV(V);
3964   if (S == nullptr) {
3965     S = createSCEV(V);
3966     // During PHI resolution, it is possible to create two SCEVs for the same
3967     // V, so it is needed to double check whether V->S is inserted into
3968     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3969     std::pair<ValueExprMapType::iterator, bool> Pair =
3970         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3971     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3972       ExprValueMap[S].insert({V, nullptr});
3973 
3974       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3975       // ExprValueMap.
3976       const SCEV *Stripped = S;
3977       ConstantInt *Offset = nullptr;
3978       std::tie(Stripped, Offset) = splitAddExpr(S);
3979       // If stripped is SCEVUnknown, don't bother to save
3980       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3981       // increase the complexity of the expansion code.
3982       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3983       // because it may generate add/sub instead of GEP in SCEV expansion.
3984       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3985           !isa<GetElementPtrInst>(V))
3986         ExprValueMap[Stripped].insert({V, Offset});
3987     }
3988   }
3989   return S;
3990 }
3991 
3992 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3993   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3994 
3995   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3996   if (I != ValueExprMap.end()) {
3997     const SCEV *S = I->second;
3998     if (checkValidity(S))
3999       return S;
4000     eraseValueFromMap(V);
4001     forgetMemoizedResults(S);
4002   }
4003   return nullptr;
4004 }
4005 
4006 /// Return a SCEV corresponding to -V = -1*V
4007 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4008                                              SCEV::NoWrapFlags Flags) {
4009   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4010     return getConstant(
4011                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4012 
4013   Type *Ty = V->getType();
4014   Ty = getEffectiveSCEVType(Ty);
4015   return getMulExpr(
4016       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
4017 }
4018 
4019 /// Return a SCEV corresponding to ~V = -1-V
4020 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4021   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4022     return getConstant(
4023                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4024 
4025   Type *Ty = V->getType();
4026   Ty = getEffectiveSCEVType(Ty);
4027   const SCEV *AllOnes =
4028                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
4029   return getMinusSCEV(AllOnes, V);
4030 }
4031 
4032 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4033                                           SCEV::NoWrapFlags Flags,
4034                                           unsigned Depth) {
4035   // Fast path: X - X --> 0.
4036   if (LHS == RHS)
4037     return getZero(LHS->getType());
4038 
4039   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4040   // makes it so that we cannot make much use of NUW.
4041   auto AddFlags = SCEV::FlagAnyWrap;
4042   const bool RHSIsNotMinSigned =
4043       !getSignedRangeMin(RHS).isMinSignedValue();
4044   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4045     // Let M be the minimum representable signed value. Then (-1)*RHS
4046     // signed-wraps if and only if RHS is M. That can happen even for
4047     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4048     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4049     // (-1)*RHS, we need to prove that RHS != M.
4050     //
4051     // If LHS is non-negative and we know that LHS - RHS does not
4052     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4053     // either by proving that RHS > M or that LHS >= 0.
4054     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4055       AddFlags = SCEV::FlagNSW;
4056     }
4057   }
4058 
4059   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4060   // RHS is NSW and LHS >= 0.
4061   //
4062   // The difficulty here is that the NSW flag may have been proven
4063   // relative to a loop that is to be found in a recurrence in LHS and
4064   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4065   // larger scope than intended.
4066   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4067 
4068   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4069 }
4070 
4071 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4072                                                      unsigned Depth) {
4073   Type *SrcTy = V->getType();
4074   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4075          "Cannot truncate or zero extend with non-integer arguments!");
4076   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4077     return V;  // No conversion
4078   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4079     return getTruncateExpr(V, Ty, Depth);
4080   return getZeroExtendExpr(V, Ty, Depth);
4081 }
4082 
4083 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4084                                                      unsigned Depth) {
4085   Type *SrcTy = V->getType();
4086   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4087          "Cannot truncate or zero extend with non-integer arguments!");
4088   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4089     return V;  // No conversion
4090   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4091     return getTruncateExpr(V, Ty, Depth);
4092   return getSignExtendExpr(V, Ty, Depth);
4093 }
4094 
4095 const SCEV *
4096 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4097   Type *SrcTy = V->getType();
4098   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4099          "Cannot noop or zero extend with non-integer arguments!");
4100   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4101          "getNoopOrZeroExtend cannot truncate!");
4102   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4103     return V;  // No conversion
4104   return getZeroExtendExpr(V, Ty);
4105 }
4106 
4107 const SCEV *
4108 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4109   Type *SrcTy = V->getType();
4110   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4111          "Cannot noop or sign extend with non-integer arguments!");
4112   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4113          "getNoopOrSignExtend cannot truncate!");
4114   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4115     return V;  // No conversion
4116   return getSignExtendExpr(V, Ty);
4117 }
4118 
4119 const SCEV *
4120 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4121   Type *SrcTy = V->getType();
4122   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4123          "Cannot noop or any extend with non-integer arguments!");
4124   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4125          "getNoopOrAnyExtend cannot truncate!");
4126   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4127     return V;  // No conversion
4128   return getAnyExtendExpr(V, Ty);
4129 }
4130 
4131 const SCEV *
4132 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4133   Type *SrcTy = V->getType();
4134   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4135          "Cannot truncate or noop with non-integer arguments!");
4136   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4137          "getTruncateOrNoop cannot extend!");
4138   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4139     return V;  // No conversion
4140   return getTruncateExpr(V, Ty);
4141 }
4142 
4143 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4144                                                         const SCEV *RHS) {
4145   const SCEV *PromotedLHS = LHS;
4146   const SCEV *PromotedRHS = RHS;
4147 
4148   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4149     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4150   else
4151     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4152 
4153   return getUMaxExpr(PromotedLHS, PromotedRHS);
4154 }
4155 
4156 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4157                                                         const SCEV *RHS) {
4158   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4159   return getUMinFromMismatchedTypes(Ops);
4160 }
4161 
4162 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4163     SmallVectorImpl<const SCEV *> &Ops) {
4164   assert(!Ops.empty() && "At least one operand must be!");
4165   // Trivial case.
4166   if (Ops.size() == 1)
4167     return Ops[0];
4168 
4169   // Find the max type first.
4170   Type *MaxType = nullptr;
4171   for (auto *S : Ops)
4172     if (MaxType)
4173       MaxType = getWiderType(MaxType, S->getType());
4174     else
4175       MaxType = S->getType();
4176 
4177   // Extend all ops to max type.
4178   SmallVector<const SCEV *, 2> PromotedOps;
4179   for (auto *S : Ops)
4180     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4181 
4182   // Generate umin.
4183   return getUMinExpr(PromotedOps);
4184 }
4185 
4186 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4187   // A pointer operand may evaluate to a nonpointer expression, such as null.
4188   if (!V->getType()->isPointerTy())
4189     return V;
4190 
4191   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4192     return getPointerBase(Cast->getOperand());
4193   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4194     const SCEV *PtrOp = nullptr;
4195     for (const SCEV *NAryOp : NAry->operands()) {
4196       if (NAryOp->getType()->isPointerTy()) {
4197         // Cannot find the base of an expression with multiple pointer operands.
4198         if (PtrOp)
4199           return V;
4200         PtrOp = NAryOp;
4201       }
4202     }
4203     if (!PtrOp)
4204       return V;
4205     return getPointerBase(PtrOp);
4206   }
4207   return V;
4208 }
4209 
4210 /// Push users of the given Instruction onto the given Worklist.
4211 static void
4212 PushDefUseChildren(Instruction *I,
4213                    SmallVectorImpl<Instruction *> &Worklist) {
4214   // Push the def-use children onto the Worklist stack.
4215   for (User *U : I->users())
4216     Worklist.push_back(cast<Instruction>(U));
4217 }
4218 
4219 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4220   SmallVector<Instruction *, 16> Worklist;
4221   PushDefUseChildren(PN, Worklist);
4222 
4223   SmallPtrSet<Instruction *, 8> Visited;
4224   Visited.insert(PN);
4225   while (!Worklist.empty()) {
4226     Instruction *I = Worklist.pop_back_val();
4227     if (!Visited.insert(I).second)
4228       continue;
4229 
4230     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4231     if (It != ValueExprMap.end()) {
4232       const SCEV *Old = It->second;
4233 
4234       // Short-circuit the def-use traversal if the symbolic name
4235       // ceases to appear in expressions.
4236       if (Old != SymName && !hasOperand(Old, SymName))
4237         continue;
4238 
4239       // SCEVUnknown for a PHI either means that it has an unrecognized
4240       // structure, it's a PHI that's in the progress of being computed
4241       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4242       // additional loop trip count information isn't going to change anything.
4243       // In the second case, createNodeForPHI will perform the necessary
4244       // updates on its own when it gets to that point. In the third, we do
4245       // want to forget the SCEVUnknown.
4246       if (!isa<PHINode>(I) ||
4247           !isa<SCEVUnknown>(Old) ||
4248           (I != PN && Old == SymName)) {
4249         eraseValueFromMap(It->first);
4250         forgetMemoizedResults(Old);
4251       }
4252     }
4253 
4254     PushDefUseChildren(I, Worklist);
4255   }
4256 }
4257 
4258 namespace {
4259 
4260 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4261 /// expression in case its Loop is L. If it is not L then
4262 /// if IgnoreOtherLoops is true then use AddRec itself
4263 /// otherwise rewrite cannot be done.
4264 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4265 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4266 public:
4267   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4268                              bool IgnoreOtherLoops = true) {
4269     SCEVInitRewriter Rewriter(L, SE);
4270     const SCEV *Result = Rewriter.visit(S);
4271     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4272       return SE.getCouldNotCompute();
4273     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4274                ? SE.getCouldNotCompute()
4275                : Result;
4276   }
4277 
4278   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4279     if (!SE.isLoopInvariant(Expr, L))
4280       SeenLoopVariantSCEVUnknown = true;
4281     return Expr;
4282   }
4283 
4284   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4285     // Only re-write AddRecExprs for this loop.
4286     if (Expr->getLoop() == L)
4287       return Expr->getStart();
4288     SeenOtherLoops = true;
4289     return Expr;
4290   }
4291 
4292   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4293 
4294   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4295 
4296 private:
4297   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4298       : SCEVRewriteVisitor(SE), L(L) {}
4299 
4300   const Loop *L;
4301   bool SeenLoopVariantSCEVUnknown = false;
4302   bool SeenOtherLoops = false;
4303 };
4304 
4305 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4306 /// increment expression in case its Loop is L. If it is not L then
4307 /// use AddRec itself.
4308 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4309 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4310 public:
4311   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4312     SCEVPostIncRewriter Rewriter(L, SE);
4313     const SCEV *Result = Rewriter.visit(S);
4314     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4315         ? SE.getCouldNotCompute()
4316         : Result;
4317   }
4318 
4319   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4320     if (!SE.isLoopInvariant(Expr, L))
4321       SeenLoopVariantSCEVUnknown = true;
4322     return Expr;
4323   }
4324 
4325   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4326     // Only re-write AddRecExprs for this loop.
4327     if (Expr->getLoop() == L)
4328       return Expr->getPostIncExpr(SE);
4329     SeenOtherLoops = true;
4330     return Expr;
4331   }
4332 
4333   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4334 
4335   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4336 
4337 private:
4338   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4339       : SCEVRewriteVisitor(SE), L(L) {}
4340 
4341   const Loop *L;
4342   bool SeenLoopVariantSCEVUnknown = false;
4343   bool SeenOtherLoops = false;
4344 };
4345 
4346 /// This class evaluates the compare condition by matching it against the
4347 /// condition of loop latch. If there is a match we assume a true value
4348 /// for the condition while building SCEV nodes.
4349 class SCEVBackedgeConditionFolder
4350     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4351 public:
4352   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4353                              ScalarEvolution &SE) {
4354     bool IsPosBECond = false;
4355     Value *BECond = nullptr;
4356     if (BasicBlock *Latch = L->getLoopLatch()) {
4357       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4358       if (BI && BI->isConditional()) {
4359         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4360                "Both outgoing branches should not target same header!");
4361         BECond = BI->getCondition();
4362         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4363       } else {
4364         return S;
4365       }
4366     }
4367     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4368     return Rewriter.visit(S);
4369   }
4370 
4371   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4372     const SCEV *Result = Expr;
4373     bool InvariantF = SE.isLoopInvariant(Expr, L);
4374 
4375     if (!InvariantF) {
4376       Instruction *I = cast<Instruction>(Expr->getValue());
4377       switch (I->getOpcode()) {
4378       case Instruction::Select: {
4379         SelectInst *SI = cast<SelectInst>(I);
4380         Optional<const SCEV *> Res =
4381             compareWithBackedgeCondition(SI->getCondition());
4382         if (Res.hasValue()) {
4383           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4384           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4385         }
4386         break;
4387       }
4388       default: {
4389         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4390         if (Res.hasValue())
4391           Result = Res.getValue();
4392         break;
4393       }
4394       }
4395     }
4396     return Result;
4397   }
4398 
4399 private:
4400   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4401                                        bool IsPosBECond, ScalarEvolution &SE)
4402       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4403         IsPositiveBECond(IsPosBECond) {}
4404 
4405   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4406 
4407   const Loop *L;
4408   /// Loop back condition.
4409   Value *BackedgeCond = nullptr;
4410   /// Set to true if loop back is on positive branch condition.
4411   bool IsPositiveBECond;
4412 };
4413 
4414 Optional<const SCEV *>
4415 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4416 
4417   // If value matches the backedge condition for loop latch,
4418   // then return a constant evolution node based on loopback
4419   // branch taken.
4420   if (BackedgeCond == IC)
4421     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4422                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4423   return None;
4424 }
4425 
4426 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4427 public:
4428   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4429                              ScalarEvolution &SE) {
4430     SCEVShiftRewriter Rewriter(L, SE);
4431     const SCEV *Result = Rewriter.visit(S);
4432     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4433   }
4434 
4435   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4436     // Only allow AddRecExprs for this loop.
4437     if (!SE.isLoopInvariant(Expr, L))
4438       Valid = false;
4439     return Expr;
4440   }
4441 
4442   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4443     if (Expr->getLoop() == L && Expr->isAffine())
4444       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4445     Valid = false;
4446     return Expr;
4447   }
4448 
4449   bool isValid() { return Valid; }
4450 
4451 private:
4452   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4453       : SCEVRewriteVisitor(SE), L(L) {}
4454 
4455   const Loop *L;
4456   bool Valid = true;
4457 };
4458 
4459 } // end anonymous namespace
4460 
4461 SCEV::NoWrapFlags
4462 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4463   if (!AR->isAffine())
4464     return SCEV::FlagAnyWrap;
4465 
4466   using OBO = OverflowingBinaryOperator;
4467 
4468   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4469 
4470   if (!AR->hasNoSignedWrap()) {
4471     ConstantRange AddRecRange = getSignedRange(AR);
4472     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4473 
4474     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4475         Instruction::Add, IncRange, OBO::NoSignedWrap);
4476     if (NSWRegion.contains(AddRecRange))
4477       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4478   }
4479 
4480   if (!AR->hasNoUnsignedWrap()) {
4481     ConstantRange AddRecRange = getUnsignedRange(AR);
4482     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4483 
4484     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4485         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4486     if (NUWRegion.contains(AddRecRange))
4487       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4488   }
4489 
4490   return Result;
4491 }
4492 
4493 namespace {
4494 
4495 /// Represents an abstract binary operation.  This may exist as a
4496 /// normal instruction or constant expression, or may have been
4497 /// derived from an expression tree.
4498 struct BinaryOp {
4499   unsigned Opcode;
4500   Value *LHS;
4501   Value *RHS;
4502   bool IsNSW = false;
4503   bool IsNUW = false;
4504 
4505   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4506   /// constant expression.
4507   Operator *Op = nullptr;
4508 
4509   explicit BinaryOp(Operator *Op)
4510       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4511         Op(Op) {
4512     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4513       IsNSW = OBO->hasNoSignedWrap();
4514       IsNUW = OBO->hasNoUnsignedWrap();
4515     }
4516   }
4517 
4518   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4519                     bool IsNUW = false)
4520       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4521 };
4522 
4523 } // end anonymous namespace
4524 
4525 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4526 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4527   auto *Op = dyn_cast<Operator>(V);
4528   if (!Op)
4529     return None;
4530 
4531   // Implementation detail: all the cleverness here should happen without
4532   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4533   // SCEV expressions when possible, and we should not break that.
4534 
4535   switch (Op->getOpcode()) {
4536   case Instruction::Add:
4537   case Instruction::Sub:
4538   case Instruction::Mul:
4539   case Instruction::UDiv:
4540   case Instruction::URem:
4541   case Instruction::And:
4542   case Instruction::Or:
4543   case Instruction::AShr:
4544   case Instruction::Shl:
4545     return BinaryOp(Op);
4546 
4547   case Instruction::Xor:
4548     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4549       // If the RHS of the xor is a signmask, then this is just an add.
4550       // Instcombine turns add of signmask into xor as a strength reduction step.
4551       if (RHSC->getValue().isSignMask())
4552         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4553     return BinaryOp(Op);
4554 
4555   case Instruction::LShr:
4556     // Turn logical shift right of a constant into a unsigned divide.
4557     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4558       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4559 
4560       // If the shift count is not less than the bitwidth, the result of
4561       // the shift is undefined. Don't try to analyze it, because the
4562       // resolution chosen here may differ from the resolution chosen in
4563       // other parts of the compiler.
4564       if (SA->getValue().ult(BitWidth)) {
4565         Constant *X =
4566             ConstantInt::get(SA->getContext(),
4567                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4568         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4569       }
4570     }
4571     return BinaryOp(Op);
4572 
4573   case Instruction::ExtractValue: {
4574     auto *EVI = cast<ExtractValueInst>(Op);
4575     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4576       break;
4577 
4578     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
4579     if (!CI)
4580       break;
4581 
4582     if (auto *F = CI->getCalledFunction())
4583       switch (F->getIntrinsicID()) {
4584       case Intrinsic::sadd_with_overflow:
4585       case Intrinsic::uadd_with_overflow:
4586         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4587           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4588                           CI->getArgOperand(1));
4589 
4590         // Now that we know that all uses of the arithmetic-result component of
4591         // CI are guarded by the overflow check, we can go ahead and pretend
4592         // that the arithmetic is non-overflowing.
4593         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
4594           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4595                           CI->getArgOperand(1), /* IsNSW = */ true,
4596                           /* IsNUW = */ false);
4597         else
4598           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4599                           CI->getArgOperand(1), /* IsNSW = */ false,
4600                           /* IsNUW*/ true);
4601       case Intrinsic::ssub_with_overflow:
4602       case Intrinsic::usub_with_overflow:
4603         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4604           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4605                           CI->getArgOperand(1));
4606 
4607         // The same reasoning as sadd/uadd above.
4608         if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow)
4609           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4610                           CI->getArgOperand(1), /* IsNSW = */ true,
4611                           /* IsNUW = */ false);
4612         else
4613           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4614                           CI->getArgOperand(1), /* IsNSW = */ false,
4615                           /* IsNUW = */ true);
4616       case Intrinsic::smul_with_overflow:
4617       case Intrinsic::umul_with_overflow:
4618         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
4619                         CI->getArgOperand(1));
4620       default:
4621         break;
4622       }
4623     break;
4624   }
4625 
4626   default:
4627     break;
4628   }
4629 
4630   return None;
4631 }
4632 
4633 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4634 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4635 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4636 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4637 /// follows one of the following patterns:
4638 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4639 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4640 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4641 /// we return the type of the truncation operation, and indicate whether the
4642 /// truncated type should be treated as signed/unsigned by setting
4643 /// \p Signed to true/false, respectively.
4644 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4645                                bool &Signed, ScalarEvolution &SE) {
4646   // The case where Op == SymbolicPHI (that is, with no type conversions on
4647   // the way) is handled by the regular add recurrence creating logic and
4648   // would have already been triggered in createAddRecForPHI. Reaching it here
4649   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4650   // because one of the other operands of the SCEVAddExpr updating this PHI is
4651   // not invariant).
4652   //
4653   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4654   // this case predicates that allow us to prove that Op == SymbolicPHI will
4655   // be added.
4656   if (Op == SymbolicPHI)
4657     return nullptr;
4658 
4659   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4660   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4661   if (SourceBits != NewBits)
4662     return nullptr;
4663 
4664   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4665   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4666   if (!SExt && !ZExt)
4667     return nullptr;
4668   const SCEVTruncateExpr *Trunc =
4669       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4670            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4671   if (!Trunc)
4672     return nullptr;
4673   const SCEV *X = Trunc->getOperand();
4674   if (X != SymbolicPHI)
4675     return nullptr;
4676   Signed = SExt != nullptr;
4677   return Trunc->getType();
4678 }
4679 
4680 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4681   if (!PN->getType()->isIntegerTy())
4682     return nullptr;
4683   const Loop *L = LI.getLoopFor(PN->getParent());
4684   if (!L || L->getHeader() != PN->getParent())
4685     return nullptr;
4686   return L;
4687 }
4688 
4689 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4690 // computation that updates the phi follows the following pattern:
4691 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4692 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4693 // If so, try to see if it can be rewritten as an AddRecExpr under some
4694 // Predicates. If successful, return them as a pair. Also cache the results
4695 // of the analysis.
4696 //
4697 // Example usage scenario:
4698 //    Say the Rewriter is called for the following SCEV:
4699 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4700 //    where:
4701 //         %X = phi i64 (%Start, %BEValue)
4702 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4703 //    and call this function with %SymbolicPHI = %X.
4704 //
4705 //    The analysis will find that the value coming around the backedge has
4706 //    the following SCEV:
4707 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4708 //    Upon concluding that this matches the desired pattern, the function
4709 //    will return the pair {NewAddRec, SmallPredsVec} where:
4710 //         NewAddRec = {%Start,+,%Step}
4711 //         SmallPredsVec = {P1, P2, P3} as follows:
4712 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4713 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4714 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4715 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4716 //    under the predicates {P1,P2,P3}.
4717 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4718 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4719 //
4720 // TODO's:
4721 //
4722 // 1) Extend the Induction descriptor to also support inductions that involve
4723 //    casts: When needed (namely, when we are called in the context of the
4724 //    vectorizer induction analysis), a Set of cast instructions will be
4725 //    populated by this method, and provided back to isInductionPHI. This is
4726 //    needed to allow the vectorizer to properly record them to be ignored by
4727 //    the cost model and to avoid vectorizing them (otherwise these casts,
4728 //    which are redundant under the runtime overflow checks, will be
4729 //    vectorized, which can be costly).
4730 //
4731 // 2) Support additional induction/PHISCEV patterns: We also want to support
4732 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4733 //    after the induction update operation (the induction increment):
4734 //
4735 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4736 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4737 //
4738 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4739 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4740 //
4741 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4742 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4743 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4744   SmallVector<const SCEVPredicate *, 3> Predicates;
4745 
4746   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4747   // return an AddRec expression under some predicate.
4748 
4749   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4750   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4751   assert(L && "Expecting an integer loop header phi");
4752 
4753   // The loop may have multiple entrances or multiple exits; we can analyze
4754   // this phi as an addrec if it has a unique entry value and a unique
4755   // backedge value.
4756   Value *BEValueV = nullptr, *StartValueV = nullptr;
4757   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4758     Value *V = PN->getIncomingValue(i);
4759     if (L->contains(PN->getIncomingBlock(i))) {
4760       if (!BEValueV) {
4761         BEValueV = V;
4762       } else if (BEValueV != V) {
4763         BEValueV = nullptr;
4764         break;
4765       }
4766     } else if (!StartValueV) {
4767       StartValueV = V;
4768     } else if (StartValueV != V) {
4769       StartValueV = nullptr;
4770       break;
4771     }
4772   }
4773   if (!BEValueV || !StartValueV)
4774     return None;
4775 
4776   const SCEV *BEValue = getSCEV(BEValueV);
4777 
4778   // If the value coming around the backedge is an add with the symbolic
4779   // value we just inserted, possibly with casts that we can ignore under
4780   // an appropriate runtime guard, then we found a simple induction variable!
4781   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4782   if (!Add)
4783     return None;
4784 
4785   // If there is a single occurrence of the symbolic value, possibly
4786   // casted, replace it with a recurrence.
4787   unsigned FoundIndex = Add->getNumOperands();
4788   Type *TruncTy = nullptr;
4789   bool Signed;
4790   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4791     if ((TruncTy =
4792              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4793       if (FoundIndex == e) {
4794         FoundIndex = i;
4795         break;
4796       }
4797 
4798   if (FoundIndex == Add->getNumOperands())
4799     return None;
4800 
4801   // Create an add with everything but the specified operand.
4802   SmallVector<const SCEV *, 8> Ops;
4803   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4804     if (i != FoundIndex)
4805       Ops.push_back(Add->getOperand(i));
4806   const SCEV *Accum = getAddExpr(Ops);
4807 
4808   // The runtime checks will not be valid if the step amount is
4809   // varying inside the loop.
4810   if (!isLoopInvariant(Accum, L))
4811     return None;
4812 
4813   // *** Part2: Create the predicates
4814 
4815   // Analysis was successful: we have a phi-with-cast pattern for which we
4816   // can return an AddRec expression under the following predicates:
4817   //
4818   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4819   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4820   // P2: An Equal predicate that guarantees that
4821   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4822   // P3: An Equal predicate that guarantees that
4823   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4824   //
4825   // As we next prove, the above predicates guarantee that:
4826   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4827   //
4828   //
4829   // More formally, we want to prove that:
4830   //     Expr(i+1) = Start + (i+1) * Accum
4831   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4832   //
4833   // Given that:
4834   // 1) Expr(0) = Start
4835   // 2) Expr(1) = Start + Accum
4836   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4837   // 3) Induction hypothesis (step i):
4838   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4839   //
4840   // Proof:
4841   //  Expr(i+1) =
4842   //   = Start + (i+1)*Accum
4843   //   = (Start + i*Accum) + Accum
4844   //   = Expr(i) + Accum
4845   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4846   //                                                             :: from step i
4847   //
4848   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4849   //
4850   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4851   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4852   //     + Accum                                                     :: from P3
4853   //
4854   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4855   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4856   //
4857   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4858   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4859   //
4860   // By induction, the same applies to all iterations 1<=i<n:
4861   //
4862 
4863   // Create a truncated addrec for which we will add a no overflow check (P1).
4864   const SCEV *StartVal = getSCEV(StartValueV);
4865   const SCEV *PHISCEV =
4866       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4867                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4868 
4869   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4870   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4871   // will be constant.
4872   //
4873   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4874   // add P1.
4875   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4876     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4877         Signed ? SCEVWrapPredicate::IncrementNSSW
4878                : SCEVWrapPredicate::IncrementNUSW;
4879     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4880     Predicates.push_back(AddRecPred);
4881   }
4882 
4883   // Create the Equal Predicates P2,P3:
4884 
4885   // It is possible that the predicates P2 and/or P3 are computable at
4886   // compile time due to StartVal and/or Accum being constants.
4887   // If either one is, then we can check that now and escape if either P2
4888   // or P3 is false.
4889 
4890   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4891   // for each of StartVal and Accum
4892   auto getExtendedExpr = [&](const SCEV *Expr,
4893                              bool CreateSignExtend) -> const SCEV * {
4894     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4895     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4896     const SCEV *ExtendedExpr =
4897         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4898                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4899     return ExtendedExpr;
4900   };
4901 
4902   // Given:
4903   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4904   //               = getExtendedExpr(Expr)
4905   // Determine whether the predicate P: Expr == ExtendedExpr
4906   // is known to be false at compile time
4907   auto PredIsKnownFalse = [&](const SCEV *Expr,
4908                               const SCEV *ExtendedExpr) -> bool {
4909     return Expr != ExtendedExpr &&
4910            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4911   };
4912 
4913   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4914   if (PredIsKnownFalse(StartVal, StartExtended)) {
4915     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4916     return None;
4917   }
4918 
4919   // The Step is always Signed (because the overflow checks are either
4920   // NSSW or NUSW)
4921   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4922   if (PredIsKnownFalse(Accum, AccumExtended)) {
4923     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4924     return None;
4925   }
4926 
4927   auto AppendPredicate = [&](const SCEV *Expr,
4928                              const SCEV *ExtendedExpr) -> void {
4929     if (Expr != ExtendedExpr &&
4930         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4931       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4932       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4933       Predicates.push_back(Pred);
4934     }
4935   };
4936 
4937   AppendPredicate(StartVal, StartExtended);
4938   AppendPredicate(Accum, AccumExtended);
4939 
4940   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4941   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4942   // into NewAR if it will also add the runtime overflow checks specified in
4943   // Predicates.
4944   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4945 
4946   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4947       std::make_pair(NewAR, Predicates);
4948   // Remember the result of the analysis for this SCEV at this locayyytion.
4949   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4950   return PredRewrite;
4951 }
4952 
4953 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4954 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4955   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4956   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4957   if (!L)
4958     return None;
4959 
4960   // Check to see if we already analyzed this PHI.
4961   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4962   if (I != PredicatedSCEVRewrites.end()) {
4963     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4964         I->second;
4965     // Analysis was done before and failed to create an AddRec:
4966     if (Rewrite.first == SymbolicPHI)
4967       return None;
4968     // Analysis was done before and succeeded to create an AddRec under
4969     // a predicate:
4970     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4971     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4972     return Rewrite;
4973   }
4974 
4975   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4976     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4977 
4978   // Record in the cache that the analysis failed
4979   if (!Rewrite) {
4980     SmallVector<const SCEVPredicate *, 3> Predicates;
4981     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4982     return None;
4983   }
4984 
4985   return Rewrite;
4986 }
4987 
4988 // FIXME: This utility is currently required because the Rewriter currently
4989 // does not rewrite this expression:
4990 // {0, +, (sext ix (trunc iy to ix) to iy)}
4991 // into {0, +, %step},
4992 // even when the following Equal predicate exists:
4993 // "%step == (sext ix (trunc iy to ix) to iy)".
4994 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4995     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4996   if (AR1 == AR2)
4997     return true;
4998 
4999   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5000     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5001         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5002       return false;
5003     return true;
5004   };
5005 
5006   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5007       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5008     return false;
5009   return true;
5010 }
5011 
5012 /// A helper function for createAddRecFromPHI to handle simple cases.
5013 ///
5014 /// This function tries to find an AddRec expression for the simplest (yet most
5015 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5016 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5017 /// technique for finding the AddRec expression.
5018 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5019                                                       Value *BEValueV,
5020                                                       Value *StartValueV) {
5021   const Loop *L = LI.getLoopFor(PN->getParent());
5022   assert(L && L->getHeader() == PN->getParent());
5023   assert(BEValueV && StartValueV);
5024 
5025   auto BO = MatchBinaryOp(BEValueV, DT);
5026   if (!BO)
5027     return nullptr;
5028 
5029   if (BO->Opcode != Instruction::Add)
5030     return nullptr;
5031 
5032   const SCEV *Accum = nullptr;
5033   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5034     Accum = getSCEV(BO->RHS);
5035   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5036     Accum = getSCEV(BO->LHS);
5037 
5038   if (!Accum)
5039     return nullptr;
5040 
5041   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5042   if (BO->IsNUW)
5043     Flags = setFlags(Flags, SCEV::FlagNUW);
5044   if (BO->IsNSW)
5045     Flags = setFlags(Flags, SCEV::FlagNSW);
5046 
5047   const SCEV *StartVal = getSCEV(StartValueV);
5048   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5049 
5050   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5051 
5052   // We can add Flags to the post-inc expression only if we
5053   // know that it is *undefined behavior* for BEValueV to
5054   // overflow.
5055   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5056     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5057       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5058 
5059   return PHISCEV;
5060 }
5061 
5062 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5063   const Loop *L = LI.getLoopFor(PN->getParent());
5064   if (!L || L->getHeader() != PN->getParent())
5065     return nullptr;
5066 
5067   // The loop may have multiple entrances or multiple exits; we can analyze
5068   // this phi as an addrec if it has a unique entry value and a unique
5069   // backedge value.
5070   Value *BEValueV = nullptr, *StartValueV = nullptr;
5071   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5072     Value *V = PN->getIncomingValue(i);
5073     if (L->contains(PN->getIncomingBlock(i))) {
5074       if (!BEValueV) {
5075         BEValueV = V;
5076       } else if (BEValueV != V) {
5077         BEValueV = nullptr;
5078         break;
5079       }
5080     } else if (!StartValueV) {
5081       StartValueV = V;
5082     } else if (StartValueV != V) {
5083       StartValueV = nullptr;
5084       break;
5085     }
5086   }
5087   if (!BEValueV || !StartValueV)
5088     return nullptr;
5089 
5090   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5091          "PHI node already processed?");
5092 
5093   // First, try to find AddRec expression without creating a fictituos symbolic
5094   // value for PN.
5095   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5096     return S;
5097 
5098   // Handle PHI node value symbolically.
5099   const SCEV *SymbolicName = getUnknown(PN);
5100   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5101 
5102   // Using this symbolic name for the PHI, analyze the value coming around
5103   // the back-edge.
5104   const SCEV *BEValue = getSCEV(BEValueV);
5105 
5106   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5107   // has a special value for the first iteration of the loop.
5108 
5109   // If the value coming around the backedge is an add with the symbolic
5110   // value we just inserted, then we found a simple induction variable!
5111   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5112     // If there is a single occurrence of the symbolic value, replace it
5113     // with a recurrence.
5114     unsigned FoundIndex = Add->getNumOperands();
5115     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5116       if (Add->getOperand(i) == SymbolicName)
5117         if (FoundIndex == e) {
5118           FoundIndex = i;
5119           break;
5120         }
5121 
5122     if (FoundIndex != Add->getNumOperands()) {
5123       // Create an add with everything but the specified operand.
5124       SmallVector<const SCEV *, 8> Ops;
5125       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5126         if (i != FoundIndex)
5127           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5128                                                              L, *this));
5129       const SCEV *Accum = getAddExpr(Ops);
5130 
5131       // This is not a valid addrec if the step amount is varying each
5132       // loop iteration, but is not itself an addrec in this loop.
5133       if (isLoopInvariant(Accum, L) ||
5134           (isa<SCEVAddRecExpr>(Accum) &&
5135            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5136         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5137 
5138         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5139           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5140             if (BO->IsNUW)
5141               Flags = setFlags(Flags, SCEV::FlagNUW);
5142             if (BO->IsNSW)
5143               Flags = setFlags(Flags, SCEV::FlagNSW);
5144           }
5145         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5146           // If the increment is an inbounds GEP, then we know the address
5147           // space cannot be wrapped around. We cannot make any guarantee
5148           // about signed or unsigned overflow because pointers are
5149           // unsigned but we may have a negative index from the base
5150           // pointer. We can guarantee that no unsigned wrap occurs if the
5151           // indices form a positive value.
5152           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5153             Flags = setFlags(Flags, SCEV::FlagNW);
5154 
5155             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5156             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5157               Flags = setFlags(Flags, SCEV::FlagNUW);
5158           }
5159 
5160           // We cannot transfer nuw and nsw flags from subtraction
5161           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5162           // for instance.
5163         }
5164 
5165         const SCEV *StartVal = getSCEV(StartValueV);
5166         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5167 
5168         // Okay, for the entire analysis of this edge we assumed the PHI
5169         // to be symbolic.  We now need to go back and purge all of the
5170         // entries for the scalars that use the symbolic expression.
5171         forgetSymbolicName(PN, SymbolicName);
5172         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5173 
5174         // We can add Flags to the post-inc expression only if we
5175         // know that it is *undefined behavior* for BEValueV to
5176         // overflow.
5177         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5178           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5179             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5180 
5181         return PHISCEV;
5182       }
5183     }
5184   } else {
5185     // Otherwise, this could be a loop like this:
5186     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5187     // In this case, j = {1,+,1}  and BEValue is j.
5188     // Because the other in-value of i (0) fits the evolution of BEValue
5189     // i really is an addrec evolution.
5190     //
5191     // We can generalize this saying that i is the shifted value of BEValue
5192     // by one iteration:
5193     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5194     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5195     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5196     if (Shifted != getCouldNotCompute() &&
5197         Start != getCouldNotCompute()) {
5198       const SCEV *StartVal = getSCEV(StartValueV);
5199       if (Start == StartVal) {
5200         // Okay, for the entire analysis of this edge we assumed the PHI
5201         // to be symbolic.  We now need to go back and purge all of the
5202         // entries for the scalars that use the symbolic expression.
5203         forgetSymbolicName(PN, SymbolicName);
5204         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5205         return Shifted;
5206       }
5207     }
5208   }
5209 
5210   // Remove the temporary PHI node SCEV that has been inserted while intending
5211   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5212   // as it will prevent later (possibly simpler) SCEV expressions to be added
5213   // to the ValueExprMap.
5214   eraseValueFromMap(PN);
5215 
5216   return nullptr;
5217 }
5218 
5219 // Checks if the SCEV S is available at BB.  S is considered available at BB
5220 // if S can be materialized at BB without introducing a fault.
5221 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5222                                BasicBlock *BB) {
5223   struct CheckAvailable {
5224     bool TraversalDone = false;
5225     bool Available = true;
5226 
5227     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5228     BasicBlock *BB = nullptr;
5229     DominatorTree &DT;
5230 
5231     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5232       : L(L), BB(BB), DT(DT) {}
5233 
5234     bool setUnavailable() {
5235       TraversalDone = true;
5236       Available = false;
5237       return false;
5238     }
5239 
5240     bool follow(const SCEV *S) {
5241       switch (S->getSCEVType()) {
5242       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5243       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5244         // These expressions are available if their operand(s) is/are.
5245         return true;
5246 
5247       case scAddRecExpr: {
5248         // We allow add recurrences that are on the loop BB is in, or some
5249         // outer loop.  This guarantees availability because the value of the
5250         // add recurrence at BB is simply the "current" value of the induction
5251         // variable.  We can relax this in the future; for instance an add
5252         // recurrence on a sibling dominating loop is also available at BB.
5253         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5254         if (L && (ARLoop == L || ARLoop->contains(L)))
5255           return true;
5256 
5257         return setUnavailable();
5258       }
5259 
5260       case scUnknown: {
5261         // For SCEVUnknown, we check for simple dominance.
5262         const auto *SU = cast<SCEVUnknown>(S);
5263         Value *V = SU->getValue();
5264 
5265         if (isa<Argument>(V))
5266           return false;
5267 
5268         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5269           return false;
5270 
5271         return setUnavailable();
5272       }
5273 
5274       case scUDivExpr:
5275       case scCouldNotCompute:
5276         // We do not try to smart about these at all.
5277         return setUnavailable();
5278       }
5279       llvm_unreachable("switch should be fully covered!");
5280     }
5281 
5282     bool isDone() { return TraversalDone; }
5283   };
5284 
5285   CheckAvailable CA(L, BB, DT);
5286   SCEVTraversal<CheckAvailable> ST(CA);
5287 
5288   ST.visitAll(S);
5289   return CA.Available;
5290 }
5291 
5292 // Try to match a control flow sequence that branches out at BI and merges back
5293 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5294 // match.
5295 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5296                           Value *&C, Value *&LHS, Value *&RHS) {
5297   C = BI->getCondition();
5298 
5299   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5300   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5301 
5302   if (!LeftEdge.isSingleEdge())
5303     return false;
5304 
5305   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5306 
5307   Use &LeftUse = Merge->getOperandUse(0);
5308   Use &RightUse = Merge->getOperandUse(1);
5309 
5310   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5311     LHS = LeftUse;
5312     RHS = RightUse;
5313     return true;
5314   }
5315 
5316   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5317     LHS = RightUse;
5318     RHS = LeftUse;
5319     return true;
5320   }
5321 
5322   return false;
5323 }
5324 
5325 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5326   auto IsReachable =
5327       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5328   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5329     const Loop *L = LI.getLoopFor(PN->getParent());
5330 
5331     // We don't want to break LCSSA, even in a SCEV expression tree.
5332     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5333       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5334         return nullptr;
5335 
5336     // Try to match
5337     //
5338     //  br %cond, label %left, label %right
5339     // left:
5340     //  br label %merge
5341     // right:
5342     //  br label %merge
5343     // merge:
5344     //  V = phi [ %x, %left ], [ %y, %right ]
5345     //
5346     // as "select %cond, %x, %y"
5347 
5348     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5349     assert(IDom && "At least the entry block should dominate PN");
5350 
5351     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5352     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5353 
5354     if (BI && BI->isConditional() &&
5355         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5356         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5357         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5358       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5359   }
5360 
5361   return nullptr;
5362 }
5363 
5364 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5365   if (const SCEV *S = createAddRecFromPHI(PN))
5366     return S;
5367 
5368   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5369     return S;
5370 
5371   // If the PHI has a single incoming value, follow that value, unless the
5372   // PHI's incoming blocks are in a different loop, in which case doing so
5373   // risks breaking LCSSA form. Instcombine would normally zap these, but
5374   // it doesn't have DominatorTree information, so it may miss cases.
5375   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5376     if (LI.replacementPreservesLCSSAForm(PN, V))
5377       return getSCEV(V);
5378 
5379   // If it's not a loop phi, we can't handle it yet.
5380   return getUnknown(PN);
5381 }
5382 
5383 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5384                                                       Value *Cond,
5385                                                       Value *TrueVal,
5386                                                       Value *FalseVal) {
5387   // Handle "constant" branch or select. This can occur for instance when a
5388   // loop pass transforms an inner loop and moves on to process the outer loop.
5389   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5390     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5391 
5392   // Try to match some simple smax or umax patterns.
5393   auto *ICI = dyn_cast<ICmpInst>(Cond);
5394   if (!ICI)
5395     return getUnknown(I);
5396 
5397   Value *LHS = ICI->getOperand(0);
5398   Value *RHS = ICI->getOperand(1);
5399 
5400   switch (ICI->getPredicate()) {
5401   case ICmpInst::ICMP_SLT:
5402   case ICmpInst::ICMP_SLE:
5403     std::swap(LHS, RHS);
5404     LLVM_FALLTHROUGH;
5405   case ICmpInst::ICMP_SGT:
5406   case ICmpInst::ICMP_SGE:
5407     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5408     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5409     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5410       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5411       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5412       const SCEV *LA = getSCEV(TrueVal);
5413       const SCEV *RA = getSCEV(FalseVal);
5414       const SCEV *LDiff = getMinusSCEV(LA, LS);
5415       const SCEV *RDiff = getMinusSCEV(RA, RS);
5416       if (LDiff == RDiff)
5417         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5418       LDiff = getMinusSCEV(LA, RS);
5419       RDiff = getMinusSCEV(RA, LS);
5420       if (LDiff == RDiff)
5421         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5422     }
5423     break;
5424   case ICmpInst::ICMP_ULT:
5425   case ICmpInst::ICMP_ULE:
5426     std::swap(LHS, RHS);
5427     LLVM_FALLTHROUGH;
5428   case ICmpInst::ICMP_UGT:
5429   case ICmpInst::ICMP_UGE:
5430     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5431     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5432     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5433       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5434       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5435       const SCEV *LA = getSCEV(TrueVal);
5436       const SCEV *RA = getSCEV(FalseVal);
5437       const SCEV *LDiff = getMinusSCEV(LA, LS);
5438       const SCEV *RDiff = getMinusSCEV(RA, RS);
5439       if (LDiff == RDiff)
5440         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5441       LDiff = getMinusSCEV(LA, RS);
5442       RDiff = getMinusSCEV(RA, LS);
5443       if (LDiff == RDiff)
5444         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5445     }
5446     break;
5447   case ICmpInst::ICMP_NE:
5448     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5449     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5450         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5451       const SCEV *One = getOne(I->getType());
5452       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5453       const SCEV *LA = getSCEV(TrueVal);
5454       const SCEV *RA = getSCEV(FalseVal);
5455       const SCEV *LDiff = getMinusSCEV(LA, LS);
5456       const SCEV *RDiff = getMinusSCEV(RA, One);
5457       if (LDiff == RDiff)
5458         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5459     }
5460     break;
5461   case ICmpInst::ICMP_EQ:
5462     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5463     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5464         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5465       const SCEV *One = getOne(I->getType());
5466       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5467       const SCEV *LA = getSCEV(TrueVal);
5468       const SCEV *RA = getSCEV(FalseVal);
5469       const SCEV *LDiff = getMinusSCEV(LA, One);
5470       const SCEV *RDiff = getMinusSCEV(RA, LS);
5471       if (LDiff == RDiff)
5472         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5473     }
5474     break;
5475   default:
5476     break;
5477   }
5478 
5479   return getUnknown(I);
5480 }
5481 
5482 /// Expand GEP instructions into add and multiply operations. This allows them
5483 /// to be analyzed by regular SCEV code.
5484 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5485   // Don't attempt to analyze GEPs over unsized objects.
5486   if (!GEP->getSourceElementType()->isSized())
5487     return getUnknown(GEP);
5488 
5489   SmallVector<const SCEV *, 4> IndexExprs;
5490   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5491     IndexExprs.push_back(getSCEV(*Index));
5492   return getGEPExpr(GEP, IndexExprs);
5493 }
5494 
5495 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5496   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5497     return C->getAPInt().countTrailingZeros();
5498 
5499   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5500     return std::min(GetMinTrailingZeros(T->getOperand()),
5501                     (uint32_t)getTypeSizeInBits(T->getType()));
5502 
5503   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5504     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5505     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5506                ? getTypeSizeInBits(E->getType())
5507                : OpRes;
5508   }
5509 
5510   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5511     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5512     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5513                ? getTypeSizeInBits(E->getType())
5514                : OpRes;
5515   }
5516 
5517   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5518     // The result is the min of all operands results.
5519     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5520     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5521       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5522     return MinOpRes;
5523   }
5524 
5525   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5526     // The result is the sum of all operands results.
5527     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5528     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5529     for (unsigned i = 1, e = M->getNumOperands();
5530          SumOpRes != BitWidth && i != e; ++i)
5531       SumOpRes =
5532           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5533     return SumOpRes;
5534   }
5535 
5536   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5537     // The result is the min of all operands results.
5538     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5539     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5540       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5541     return MinOpRes;
5542   }
5543 
5544   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5545     // The result is the min of all operands results.
5546     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5547     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5548       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5549     return MinOpRes;
5550   }
5551 
5552   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5553     // The result is the min of all operands results.
5554     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5555     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5556       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5557     return MinOpRes;
5558   }
5559 
5560   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5561     // For a SCEVUnknown, ask ValueTracking.
5562     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5563     return Known.countMinTrailingZeros();
5564   }
5565 
5566   // SCEVUDivExpr
5567   return 0;
5568 }
5569 
5570 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5571   auto I = MinTrailingZerosCache.find(S);
5572   if (I != MinTrailingZerosCache.end())
5573     return I->second;
5574 
5575   uint32_t Result = GetMinTrailingZerosImpl(S);
5576   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5577   assert(InsertPair.second && "Should insert a new key");
5578   return InsertPair.first->second;
5579 }
5580 
5581 /// Helper method to assign a range to V from metadata present in the IR.
5582 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5583   if (Instruction *I = dyn_cast<Instruction>(V))
5584     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5585       return getConstantRangeFromMetadata(*MD);
5586 
5587   return None;
5588 }
5589 
5590 /// Determine the range for a particular SCEV.  If SignHint is
5591 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5592 /// with a "cleaner" unsigned (resp. signed) representation.
5593 const ConstantRange &
5594 ScalarEvolution::getRangeRef(const SCEV *S,
5595                              ScalarEvolution::RangeSignHint SignHint) {
5596   DenseMap<const SCEV *, ConstantRange> &Cache =
5597       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5598                                                        : SignedRanges;
5599 
5600   // See if we've computed this range already.
5601   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5602   if (I != Cache.end())
5603     return I->second;
5604 
5605   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5606     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5607 
5608   unsigned BitWidth = getTypeSizeInBits(S->getType());
5609   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5610 
5611   // If the value has known zeros, the maximum value will have those known zeros
5612   // as well.
5613   uint32_t TZ = GetMinTrailingZeros(S);
5614   if (TZ != 0) {
5615     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5616       ConservativeResult =
5617           ConstantRange(APInt::getMinValue(BitWidth),
5618                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5619     else
5620       ConservativeResult = ConstantRange(
5621           APInt::getSignedMinValue(BitWidth),
5622           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5623   }
5624 
5625   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5626     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5627     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5628       X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5629     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
5630   }
5631 
5632   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5633     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5634     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5635       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5636     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
5637   }
5638 
5639   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5640     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5641     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5642       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5643     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
5644   }
5645 
5646   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5647     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5648     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5649       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5650     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
5651   }
5652 
5653   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5654     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5655     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5656     return setRange(UDiv, SignHint,
5657                     ConservativeResult.intersectWith(X.udiv(Y)));
5658   }
5659 
5660   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5661     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5662     return setRange(ZExt, SignHint,
5663                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
5664   }
5665 
5666   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5667     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5668     return setRange(SExt, SignHint,
5669                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
5670   }
5671 
5672   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5673     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5674     return setRange(Trunc, SignHint,
5675                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
5676   }
5677 
5678   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5679     // If there's no unsigned wrap, the value will never be less than its
5680     // initial value.
5681     if (AddRec->hasNoUnsignedWrap())
5682       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5683         if (!C->getValue()->isZero())
5684           ConservativeResult = ConservativeResult.intersectWith(
5685               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
5686 
5687     // If there's no signed wrap, and all the operands have the same sign or
5688     // zero, the value won't ever change sign.
5689     if (AddRec->hasNoSignedWrap()) {
5690       bool AllNonNeg = true;
5691       bool AllNonPos = true;
5692       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5693         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5694         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5695       }
5696       if (AllNonNeg)
5697         ConservativeResult = ConservativeResult.intersectWith(
5698           ConstantRange(APInt(BitWidth, 0),
5699                         APInt::getSignedMinValue(BitWidth)));
5700       else if (AllNonPos)
5701         ConservativeResult = ConservativeResult.intersectWith(
5702           ConstantRange(APInt::getSignedMinValue(BitWidth),
5703                         APInt(BitWidth, 1)));
5704     }
5705 
5706     // TODO: non-affine addrec
5707     if (AddRec->isAffine()) {
5708       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
5709       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5710           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5711         auto RangeFromAffine = getRangeForAffineAR(
5712             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5713             BitWidth);
5714         if (!RangeFromAffine.isFullSet())
5715           ConservativeResult =
5716               ConservativeResult.intersectWith(RangeFromAffine);
5717 
5718         auto RangeFromFactoring = getRangeViaFactoring(
5719             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5720             BitWidth);
5721         if (!RangeFromFactoring.isFullSet())
5722           ConservativeResult =
5723               ConservativeResult.intersectWith(RangeFromFactoring);
5724       }
5725     }
5726 
5727     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5728   }
5729 
5730   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5731     // Check if the IR explicitly contains !range metadata.
5732     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5733     if (MDRange.hasValue())
5734       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
5735 
5736     // Split here to avoid paying the compile-time cost of calling both
5737     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5738     // if needed.
5739     const DataLayout &DL = getDataLayout();
5740     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5741       // For a SCEVUnknown, ask ValueTracking.
5742       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5743       if (Known.One != ~Known.Zero + 1)
5744         ConservativeResult =
5745             ConservativeResult.intersectWith(ConstantRange(Known.One,
5746                                                            ~Known.Zero + 1));
5747     } else {
5748       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5749              "generalize as needed!");
5750       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5751       if (NS > 1)
5752         ConservativeResult = ConservativeResult.intersectWith(
5753             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5754                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
5755     }
5756 
5757     // A range of Phi is a subset of union of all ranges of its input.
5758     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5759       // Make sure that we do not run over cycled Phis.
5760       if (PendingPhiRanges.insert(Phi).second) {
5761         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5762         for (auto &Op : Phi->operands()) {
5763           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5764           RangeFromOps = RangeFromOps.unionWith(OpRange);
5765           // No point to continue if we already have a full set.
5766           if (RangeFromOps.isFullSet())
5767             break;
5768         }
5769         ConservativeResult = ConservativeResult.intersectWith(RangeFromOps);
5770         bool Erased = PendingPhiRanges.erase(Phi);
5771         assert(Erased && "Failed to erase Phi properly?");
5772         (void) Erased;
5773       }
5774     }
5775 
5776     return setRange(U, SignHint, std::move(ConservativeResult));
5777   }
5778 
5779   return setRange(S, SignHint, std::move(ConservativeResult));
5780 }
5781 
5782 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5783 // values that the expression can take. Initially, the expression has a value
5784 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5785 // argument defines if we treat Step as signed or unsigned.
5786 static ConstantRange getRangeForAffineARHelper(APInt Step,
5787                                                const ConstantRange &StartRange,
5788                                                const APInt &MaxBECount,
5789                                                unsigned BitWidth, bool Signed) {
5790   // If either Step or MaxBECount is 0, then the expression won't change, and we
5791   // just need to return the initial range.
5792   if (Step == 0 || MaxBECount == 0)
5793     return StartRange;
5794 
5795   // If we don't know anything about the initial value (i.e. StartRange is
5796   // FullRange), then we don't know anything about the final range either.
5797   // Return FullRange.
5798   if (StartRange.isFullSet())
5799     return ConstantRange::getFull(BitWidth);
5800 
5801   // If Step is signed and negative, then we use its absolute value, but we also
5802   // note that we're moving in the opposite direction.
5803   bool Descending = Signed && Step.isNegative();
5804 
5805   if (Signed)
5806     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5807     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5808     // This equations hold true due to the well-defined wrap-around behavior of
5809     // APInt.
5810     Step = Step.abs();
5811 
5812   // Check if Offset is more than full span of BitWidth. If it is, the
5813   // expression is guaranteed to overflow.
5814   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5815     return ConstantRange::getFull(BitWidth);
5816 
5817   // Offset is by how much the expression can change. Checks above guarantee no
5818   // overflow here.
5819   APInt Offset = Step * MaxBECount;
5820 
5821   // Minimum value of the final range will match the minimal value of StartRange
5822   // if the expression is increasing and will be decreased by Offset otherwise.
5823   // Maximum value of the final range will match the maximal value of StartRange
5824   // if the expression is decreasing and will be increased by Offset otherwise.
5825   APInt StartLower = StartRange.getLower();
5826   APInt StartUpper = StartRange.getUpper() - 1;
5827   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5828                                    : (StartUpper + std::move(Offset));
5829 
5830   // It's possible that the new minimum/maximum value will fall into the initial
5831   // range (due to wrap around). This means that the expression can take any
5832   // value in this bitwidth, and we have to return full range.
5833   if (StartRange.contains(MovedBoundary))
5834     return ConstantRange::getFull(BitWidth);
5835 
5836   APInt NewLower =
5837       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5838   APInt NewUpper =
5839       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5840   NewUpper += 1;
5841 
5842   // If we end up with full range, return a proper full range.
5843   if (NewLower == NewUpper)
5844     return ConstantRange::getFull(BitWidth);
5845 
5846   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5847   return ConstantRange(std::move(NewLower), std::move(NewUpper));
5848 }
5849 
5850 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5851                                                    const SCEV *Step,
5852                                                    const SCEV *MaxBECount,
5853                                                    unsigned BitWidth) {
5854   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5855          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5856          "Precondition!");
5857 
5858   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5859   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5860 
5861   // First, consider step signed.
5862   ConstantRange StartSRange = getSignedRange(Start);
5863   ConstantRange StepSRange = getSignedRange(Step);
5864 
5865   // If Step can be both positive and negative, we need to find ranges for the
5866   // maximum absolute step values in both directions and union them.
5867   ConstantRange SR =
5868       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5869                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5870   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5871                                               StartSRange, MaxBECountValue,
5872                                               BitWidth, /* Signed = */ true));
5873 
5874   // Next, consider step unsigned.
5875   ConstantRange UR = getRangeForAffineARHelper(
5876       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5877       MaxBECountValue, BitWidth, /* Signed = */ false);
5878 
5879   // Finally, intersect signed and unsigned ranges.
5880   return SR.intersectWith(UR);
5881 }
5882 
5883 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5884                                                     const SCEV *Step,
5885                                                     const SCEV *MaxBECount,
5886                                                     unsigned BitWidth) {
5887   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5888   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5889 
5890   struct SelectPattern {
5891     Value *Condition = nullptr;
5892     APInt TrueValue;
5893     APInt FalseValue;
5894 
5895     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5896                            const SCEV *S) {
5897       Optional<unsigned> CastOp;
5898       APInt Offset(BitWidth, 0);
5899 
5900       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5901              "Should be!");
5902 
5903       // Peel off a constant offset:
5904       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5905         // In the future we could consider being smarter here and handle
5906         // {Start+Step,+,Step} too.
5907         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5908           return;
5909 
5910         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5911         S = SA->getOperand(1);
5912       }
5913 
5914       // Peel off a cast operation
5915       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5916         CastOp = SCast->getSCEVType();
5917         S = SCast->getOperand();
5918       }
5919 
5920       using namespace llvm::PatternMatch;
5921 
5922       auto *SU = dyn_cast<SCEVUnknown>(S);
5923       const APInt *TrueVal, *FalseVal;
5924       if (!SU ||
5925           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5926                                           m_APInt(FalseVal)))) {
5927         Condition = nullptr;
5928         return;
5929       }
5930 
5931       TrueValue = *TrueVal;
5932       FalseValue = *FalseVal;
5933 
5934       // Re-apply the cast we peeled off earlier
5935       if (CastOp.hasValue())
5936         switch (*CastOp) {
5937         default:
5938           llvm_unreachable("Unknown SCEV cast type!");
5939 
5940         case scTruncate:
5941           TrueValue = TrueValue.trunc(BitWidth);
5942           FalseValue = FalseValue.trunc(BitWidth);
5943           break;
5944         case scZeroExtend:
5945           TrueValue = TrueValue.zext(BitWidth);
5946           FalseValue = FalseValue.zext(BitWidth);
5947           break;
5948         case scSignExtend:
5949           TrueValue = TrueValue.sext(BitWidth);
5950           FalseValue = FalseValue.sext(BitWidth);
5951           break;
5952         }
5953 
5954       // Re-apply the constant offset we peeled off earlier
5955       TrueValue += Offset;
5956       FalseValue += Offset;
5957     }
5958 
5959     bool isRecognized() { return Condition != nullptr; }
5960   };
5961 
5962   SelectPattern StartPattern(*this, BitWidth, Start);
5963   if (!StartPattern.isRecognized())
5964     return ConstantRange::getFull(BitWidth);
5965 
5966   SelectPattern StepPattern(*this, BitWidth, Step);
5967   if (!StepPattern.isRecognized())
5968     return ConstantRange::getFull(BitWidth);
5969 
5970   if (StartPattern.Condition != StepPattern.Condition) {
5971     // We don't handle this case today; but we could, by considering four
5972     // possibilities below instead of two. I'm not sure if there are cases where
5973     // that will help over what getRange already does, though.
5974     return ConstantRange::getFull(BitWidth);
5975   }
5976 
5977   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5978   // construct arbitrary general SCEV expressions here.  This function is called
5979   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5980   // say) can end up caching a suboptimal value.
5981 
5982   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5983   // C2352 and C2512 (otherwise it isn't needed).
5984 
5985   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5986   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5987   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5988   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5989 
5990   ConstantRange TrueRange =
5991       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5992   ConstantRange FalseRange =
5993       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5994 
5995   return TrueRange.unionWith(FalseRange);
5996 }
5997 
5998 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5999   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6000   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6001 
6002   // Return early if there are no flags to propagate to the SCEV.
6003   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6004   if (BinOp->hasNoUnsignedWrap())
6005     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6006   if (BinOp->hasNoSignedWrap())
6007     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6008   if (Flags == SCEV::FlagAnyWrap)
6009     return SCEV::FlagAnyWrap;
6010 
6011   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6012 }
6013 
6014 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6015   // Here we check that I is in the header of the innermost loop containing I,
6016   // since we only deal with instructions in the loop header. The actual loop we
6017   // need to check later will come from an add recurrence, but getting that
6018   // requires computing the SCEV of the operands, which can be expensive. This
6019   // check we can do cheaply to rule out some cases early.
6020   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6021   if (InnermostContainingLoop == nullptr ||
6022       InnermostContainingLoop->getHeader() != I->getParent())
6023     return false;
6024 
6025   // Only proceed if we can prove that I does not yield poison.
6026   if (!programUndefinedIfFullPoison(I))
6027     return false;
6028 
6029   // At this point we know that if I is executed, then it does not wrap
6030   // according to at least one of NSW or NUW. If I is not executed, then we do
6031   // not know if the calculation that I represents would wrap. Multiple
6032   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6033   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6034   // derived from other instructions that map to the same SCEV. We cannot make
6035   // that guarantee for cases where I is not executed. So we need to find the
6036   // loop that I is considered in relation to and prove that I is executed for
6037   // every iteration of that loop. That implies that the value that I
6038   // calculates does not wrap anywhere in the loop, so then we can apply the
6039   // flags to the SCEV.
6040   //
6041   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6042   // from different loops, so that we know which loop to prove that I is
6043   // executed in.
6044   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6045     // I could be an extractvalue from a call to an overflow intrinsic.
6046     // TODO: We can do better here in some cases.
6047     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6048       return false;
6049     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6050     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6051       bool AllOtherOpsLoopInvariant = true;
6052       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6053            ++OtherOpIndex) {
6054         if (OtherOpIndex != OpIndex) {
6055           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6056           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6057             AllOtherOpsLoopInvariant = false;
6058             break;
6059           }
6060         }
6061       }
6062       if (AllOtherOpsLoopInvariant &&
6063           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6064         return true;
6065     }
6066   }
6067   return false;
6068 }
6069 
6070 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6071   // If we know that \c I can never be poison period, then that's enough.
6072   if (isSCEVExprNeverPoison(I))
6073     return true;
6074 
6075   // For an add recurrence specifically, we assume that infinite loops without
6076   // side effects are undefined behavior, and then reason as follows:
6077   //
6078   // If the add recurrence is poison in any iteration, it is poison on all
6079   // future iterations (since incrementing poison yields poison). If the result
6080   // of the add recurrence is fed into the loop latch condition and the loop
6081   // does not contain any throws or exiting blocks other than the latch, we now
6082   // have the ability to "choose" whether the backedge is taken or not (by
6083   // choosing a sufficiently evil value for the poison feeding into the branch)
6084   // for every iteration including and after the one in which \p I first became
6085   // poison.  There are two possibilities (let's call the iteration in which \p
6086   // I first became poison as K):
6087   //
6088   //  1. In the set of iterations including and after K, the loop body executes
6089   //     no side effects.  In this case executing the backege an infinte number
6090   //     of times will yield undefined behavior.
6091   //
6092   //  2. In the set of iterations including and after K, the loop body executes
6093   //     at least one side effect.  In this case, that specific instance of side
6094   //     effect is control dependent on poison, which also yields undefined
6095   //     behavior.
6096 
6097   auto *ExitingBB = L->getExitingBlock();
6098   auto *LatchBB = L->getLoopLatch();
6099   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6100     return false;
6101 
6102   SmallPtrSet<const Instruction *, 16> Pushed;
6103   SmallVector<const Instruction *, 8> PoisonStack;
6104 
6105   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6106   // things that are known to be fully poison under that assumption go on the
6107   // PoisonStack.
6108   Pushed.insert(I);
6109   PoisonStack.push_back(I);
6110 
6111   bool LatchControlDependentOnPoison = false;
6112   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6113     const Instruction *Poison = PoisonStack.pop_back_val();
6114 
6115     for (auto *PoisonUser : Poison->users()) {
6116       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6117         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6118           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6119       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6120         assert(BI->isConditional() && "Only possibility!");
6121         if (BI->getParent() == LatchBB) {
6122           LatchControlDependentOnPoison = true;
6123           break;
6124         }
6125       }
6126     }
6127   }
6128 
6129   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6130 }
6131 
6132 ScalarEvolution::LoopProperties
6133 ScalarEvolution::getLoopProperties(const Loop *L) {
6134   using LoopProperties = ScalarEvolution::LoopProperties;
6135 
6136   auto Itr = LoopPropertiesCache.find(L);
6137   if (Itr == LoopPropertiesCache.end()) {
6138     auto HasSideEffects = [](Instruction *I) {
6139       if (auto *SI = dyn_cast<StoreInst>(I))
6140         return !SI->isSimple();
6141 
6142       return I->mayHaveSideEffects();
6143     };
6144 
6145     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6146                          /*HasNoSideEffects*/ true};
6147 
6148     for (auto *BB : L->getBlocks())
6149       for (auto &I : *BB) {
6150         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6151           LP.HasNoAbnormalExits = false;
6152         if (HasSideEffects(&I))
6153           LP.HasNoSideEffects = false;
6154         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6155           break; // We're already as pessimistic as we can get.
6156       }
6157 
6158     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6159     assert(InsertPair.second && "We just checked!");
6160     Itr = InsertPair.first;
6161   }
6162 
6163   return Itr->second;
6164 }
6165 
6166 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6167   if (!isSCEVable(V->getType()))
6168     return getUnknown(V);
6169 
6170   if (Instruction *I = dyn_cast<Instruction>(V)) {
6171     // Don't attempt to analyze instructions in blocks that aren't
6172     // reachable. Such instructions don't matter, and they aren't required
6173     // to obey basic rules for definitions dominating uses which this
6174     // analysis depends on.
6175     if (!DT.isReachableFromEntry(I->getParent()))
6176       return getUnknown(UndefValue::get(V->getType()));
6177   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6178     return getConstant(CI);
6179   else if (isa<ConstantPointerNull>(V))
6180     return getZero(V->getType());
6181   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6182     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6183   else if (!isa<ConstantExpr>(V))
6184     return getUnknown(V);
6185 
6186   Operator *U = cast<Operator>(V);
6187   if (auto BO = MatchBinaryOp(U, DT)) {
6188     switch (BO->Opcode) {
6189     case Instruction::Add: {
6190       // The simple thing to do would be to just call getSCEV on both operands
6191       // and call getAddExpr with the result. However if we're looking at a
6192       // bunch of things all added together, this can be quite inefficient,
6193       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6194       // Instead, gather up all the operands and make a single getAddExpr call.
6195       // LLVM IR canonical form means we need only traverse the left operands.
6196       SmallVector<const SCEV *, 4> AddOps;
6197       do {
6198         if (BO->Op) {
6199           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6200             AddOps.push_back(OpSCEV);
6201             break;
6202           }
6203 
6204           // If a NUW or NSW flag can be applied to the SCEV for this
6205           // addition, then compute the SCEV for this addition by itself
6206           // with a separate call to getAddExpr. We need to do that
6207           // instead of pushing the operands of the addition onto AddOps,
6208           // since the flags are only known to apply to this particular
6209           // addition - they may not apply to other additions that can be
6210           // formed with operands from AddOps.
6211           const SCEV *RHS = getSCEV(BO->RHS);
6212           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6213           if (Flags != SCEV::FlagAnyWrap) {
6214             const SCEV *LHS = getSCEV(BO->LHS);
6215             if (BO->Opcode == Instruction::Sub)
6216               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6217             else
6218               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6219             break;
6220           }
6221         }
6222 
6223         if (BO->Opcode == Instruction::Sub)
6224           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6225         else
6226           AddOps.push_back(getSCEV(BO->RHS));
6227 
6228         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6229         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6230                        NewBO->Opcode != Instruction::Sub)) {
6231           AddOps.push_back(getSCEV(BO->LHS));
6232           break;
6233         }
6234         BO = NewBO;
6235       } while (true);
6236 
6237       return getAddExpr(AddOps);
6238     }
6239 
6240     case Instruction::Mul: {
6241       SmallVector<const SCEV *, 4> MulOps;
6242       do {
6243         if (BO->Op) {
6244           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6245             MulOps.push_back(OpSCEV);
6246             break;
6247           }
6248 
6249           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6250           if (Flags != SCEV::FlagAnyWrap) {
6251             MulOps.push_back(
6252                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6253             break;
6254           }
6255         }
6256 
6257         MulOps.push_back(getSCEV(BO->RHS));
6258         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6259         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6260           MulOps.push_back(getSCEV(BO->LHS));
6261           break;
6262         }
6263         BO = NewBO;
6264       } while (true);
6265 
6266       return getMulExpr(MulOps);
6267     }
6268     case Instruction::UDiv:
6269       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6270     case Instruction::URem:
6271       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6272     case Instruction::Sub: {
6273       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6274       if (BO->Op)
6275         Flags = getNoWrapFlagsFromUB(BO->Op);
6276       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6277     }
6278     case Instruction::And:
6279       // For an expression like x&255 that merely masks off the high bits,
6280       // use zext(trunc(x)) as the SCEV expression.
6281       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6282         if (CI->isZero())
6283           return getSCEV(BO->RHS);
6284         if (CI->isMinusOne())
6285           return getSCEV(BO->LHS);
6286         const APInt &A = CI->getValue();
6287 
6288         // Instcombine's ShrinkDemandedConstant may strip bits out of
6289         // constants, obscuring what would otherwise be a low-bits mask.
6290         // Use computeKnownBits to compute what ShrinkDemandedConstant
6291         // knew about to reconstruct a low-bits mask value.
6292         unsigned LZ = A.countLeadingZeros();
6293         unsigned TZ = A.countTrailingZeros();
6294         unsigned BitWidth = A.getBitWidth();
6295         KnownBits Known(BitWidth);
6296         computeKnownBits(BO->LHS, Known, getDataLayout(),
6297                          0, &AC, nullptr, &DT);
6298 
6299         APInt EffectiveMask =
6300             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6301         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6302           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6303           const SCEV *LHS = getSCEV(BO->LHS);
6304           const SCEV *ShiftedLHS = nullptr;
6305           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6306             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6307               // For an expression like (x * 8) & 8, simplify the multiply.
6308               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6309               unsigned GCD = std::min(MulZeros, TZ);
6310               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6311               SmallVector<const SCEV*, 4> MulOps;
6312               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6313               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6314               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6315               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6316             }
6317           }
6318           if (!ShiftedLHS)
6319             ShiftedLHS = getUDivExpr(LHS, MulCount);
6320           return getMulExpr(
6321               getZeroExtendExpr(
6322                   getTruncateExpr(ShiftedLHS,
6323                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6324                   BO->LHS->getType()),
6325               MulCount);
6326         }
6327       }
6328       break;
6329 
6330     case Instruction::Or:
6331       // If the RHS of the Or is a constant, we may have something like:
6332       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6333       // optimizations will transparently handle this case.
6334       //
6335       // In order for this transformation to be safe, the LHS must be of the
6336       // form X*(2^n) and the Or constant must be less than 2^n.
6337       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6338         const SCEV *LHS = getSCEV(BO->LHS);
6339         const APInt &CIVal = CI->getValue();
6340         if (GetMinTrailingZeros(LHS) >=
6341             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6342           // Build a plain add SCEV.
6343           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6344           // If the LHS of the add was an addrec and it has no-wrap flags,
6345           // transfer the no-wrap flags, since an or won't introduce a wrap.
6346           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6347             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6348             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6349                 OldAR->getNoWrapFlags());
6350           }
6351           return S;
6352         }
6353       }
6354       break;
6355 
6356     case Instruction::Xor:
6357       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6358         // If the RHS of xor is -1, then this is a not operation.
6359         if (CI->isMinusOne())
6360           return getNotSCEV(getSCEV(BO->LHS));
6361 
6362         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6363         // This is a variant of the check for xor with -1, and it handles
6364         // the case where instcombine has trimmed non-demanded bits out
6365         // of an xor with -1.
6366         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6367           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6368             if (LBO->getOpcode() == Instruction::And &&
6369                 LCI->getValue() == CI->getValue())
6370               if (const SCEVZeroExtendExpr *Z =
6371                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6372                 Type *UTy = BO->LHS->getType();
6373                 const SCEV *Z0 = Z->getOperand();
6374                 Type *Z0Ty = Z0->getType();
6375                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6376 
6377                 // If C is a low-bits mask, the zero extend is serving to
6378                 // mask off the high bits. Complement the operand and
6379                 // re-apply the zext.
6380                 if (CI->getValue().isMask(Z0TySize))
6381                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6382 
6383                 // If C is a single bit, it may be in the sign-bit position
6384                 // before the zero-extend. In this case, represent the xor
6385                 // using an add, which is equivalent, and re-apply the zext.
6386                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6387                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6388                     Trunc.isSignMask())
6389                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6390                                            UTy);
6391               }
6392       }
6393       break;
6394 
6395     case Instruction::Shl:
6396       // Turn shift left of a constant amount into a multiply.
6397       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6398         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6399 
6400         // If the shift count is not less than the bitwidth, the result of
6401         // the shift is undefined. Don't try to analyze it, because the
6402         // resolution chosen here may differ from the resolution chosen in
6403         // other parts of the compiler.
6404         if (SA->getValue().uge(BitWidth))
6405           break;
6406 
6407         // It is currently not resolved how to interpret NSW for left
6408         // shift by BitWidth - 1, so we avoid applying flags in that
6409         // case. Remove this check (or this comment) once the situation
6410         // is resolved. See
6411         // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6412         // and http://reviews.llvm.org/D8890 .
6413         auto Flags = SCEV::FlagAnyWrap;
6414         if (BO->Op && SA->getValue().ult(BitWidth - 1))
6415           Flags = getNoWrapFlagsFromUB(BO->Op);
6416 
6417         Constant *X = ConstantInt::get(
6418             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6419         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6420       }
6421       break;
6422 
6423     case Instruction::AShr: {
6424       // AShr X, C, where C is a constant.
6425       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6426       if (!CI)
6427         break;
6428 
6429       Type *OuterTy = BO->LHS->getType();
6430       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6431       // If the shift count is not less than the bitwidth, the result of
6432       // the shift is undefined. Don't try to analyze it, because the
6433       // resolution chosen here may differ from the resolution chosen in
6434       // other parts of the compiler.
6435       if (CI->getValue().uge(BitWidth))
6436         break;
6437 
6438       if (CI->isZero())
6439         return getSCEV(BO->LHS); // shift by zero --> noop
6440 
6441       uint64_t AShrAmt = CI->getZExtValue();
6442       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6443 
6444       Operator *L = dyn_cast<Operator>(BO->LHS);
6445       if (L && L->getOpcode() == Instruction::Shl) {
6446         // X = Shl A, n
6447         // Y = AShr X, m
6448         // Both n and m are constant.
6449 
6450         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6451         if (L->getOperand(1) == BO->RHS)
6452           // For a two-shift sext-inreg, i.e. n = m,
6453           // use sext(trunc(x)) as the SCEV expression.
6454           return getSignExtendExpr(
6455               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6456 
6457         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6458         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6459           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6460           if (ShlAmt > AShrAmt) {
6461             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6462             // expression. We already checked that ShlAmt < BitWidth, so
6463             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6464             // ShlAmt - AShrAmt < Amt.
6465             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6466                                             ShlAmt - AShrAmt);
6467             return getSignExtendExpr(
6468                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6469                 getConstant(Mul)), OuterTy);
6470           }
6471         }
6472       }
6473       break;
6474     }
6475     }
6476   }
6477 
6478   switch (U->getOpcode()) {
6479   case Instruction::Trunc:
6480     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6481 
6482   case Instruction::ZExt:
6483     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6484 
6485   case Instruction::SExt:
6486     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6487       // The NSW flag of a subtract does not always survive the conversion to
6488       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6489       // more likely to preserve NSW and allow later AddRec optimisations.
6490       //
6491       // NOTE: This is effectively duplicating this logic from getSignExtend:
6492       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6493       // but by that point the NSW information has potentially been lost.
6494       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6495         Type *Ty = U->getType();
6496         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6497         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6498         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6499       }
6500     }
6501     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6502 
6503   case Instruction::BitCast:
6504     // BitCasts are no-op casts so we just eliminate the cast.
6505     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6506       return getSCEV(U->getOperand(0));
6507     break;
6508 
6509   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6510   // lead to pointer expressions which cannot safely be expanded to GEPs,
6511   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6512   // simplifying integer expressions.
6513 
6514   case Instruction::GetElementPtr:
6515     return createNodeForGEP(cast<GEPOperator>(U));
6516 
6517   case Instruction::PHI:
6518     return createNodeForPHI(cast<PHINode>(U));
6519 
6520   case Instruction::Select:
6521     // U can also be a select constant expr, which let fall through.  Since
6522     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6523     // constant expressions cannot have instructions as operands, we'd have
6524     // returned getUnknown for a select constant expressions anyway.
6525     if (isa<Instruction>(U))
6526       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6527                                       U->getOperand(1), U->getOperand(2));
6528     break;
6529 
6530   case Instruction::Call:
6531   case Instruction::Invoke:
6532     if (Value *RV = CallSite(U).getReturnedArgOperand())
6533       return getSCEV(RV);
6534     break;
6535   }
6536 
6537   return getUnknown(V);
6538 }
6539 
6540 //===----------------------------------------------------------------------===//
6541 //                   Iteration Count Computation Code
6542 //
6543 
6544 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6545   if (!ExitCount)
6546     return 0;
6547 
6548   ConstantInt *ExitConst = ExitCount->getValue();
6549 
6550   // Guard against huge trip counts.
6551   if (ExitConst->getValue().getActiveBits() > 32)
6552     return 0;
6553 
6554   // In case of integer overflow, this returns 0, which is correct.
6555   return ((unsigned)ExitConst->getZExtValue()) + 1;
6556 }
6557 
6558 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6559   if (BasicBlock *ExitingBB = L->getExitingBlock())
6560     return getSmallConstantTripCount(L, ExitingBB);
6561 
6562   // No trip count information for multiple exits.
6563   return 0;
6564 }
6565 
6566 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6567                                                     BasicBlock *ExitingBlock) {
6568   assert(ExitingBlock && "Must pass a non-null exiting block!");
6569   assert(L->isLoopExiting(ExitingBlock) &&
6570          "Exiting block must actually branch out of the loop!");
6571   const SCEVConstant *ExitCount =
6572       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6573   return getConstantTripCount(ExitCount);
6574 }
6575 
6576 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6577   const auto *MaxExitCount =
6578       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
6579   return getConstantTripCount(MaxExitCount);
6580 }
6581 
6582 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6583   if (BasicBlock *ExitingBB = L->getExitingBlock())
6584     return getSmallConstantTripMultiple(L, ExitingBB);
6585 
6586   // No trip multiple information for multiple exits.
6587   return 0;
6588 }
6589 
6590 /// Returns the largest constant divisor of the trip count of this loop as a
6591 /// normal unsigned value, if possible. This means that the actual trip count is
6592 /// always a multiple of the returned value (don't forget the trip count could
6593 /// very well be zero as well!).
6594 ///
6595 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6596 /// multiple of a constant (which is also the case if the trip count is simply
6597 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6598 /// if the trip count is very large (>= 2^32).
6599 ///
6600 /// As explained in the comments for getSmallConstantTripCount, this assumes
6601 /// that control exits the loop via ExitingBlock.
6602 unsigned
6603 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6604                                               BasicBlock *ExitingBlock) {
6605   assert(ExitingBlock && "Must pass a non-null exiting block!");
6606   assert(L->isLoopExiting(ExitingBlock) &&
6607          "Exiting block must actually branch out of the loop!");
6608   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6609   if (ExitCount == getCouldNotCompute())
6610     return 1;
6611 
6612   // Get the trip count from the BE count by adding 1.
6613   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6614 
6615   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6616   if (!TC)
6617     // Attempt to factor more general cases. Returns the greatest power of
6618     // two divisor. If overflow happens, the trip count expression is still
6619     // divisible by the greatest power of 2 divisor returned.
6620     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6621 
6622   ConstantInt *Result = TC->getValue();
6623 
6624   // Guard against huge trip counts (this requires checking
6625   // for zero to handle the case where the trip count == -1 and the
6626   // addition wraps).
6627   if (!Result || Result->getValue().getActiveBits() > 32 ||
6628       Result->getValue().getActiveBits() == 0)
6629     return 1;
6630 
6631   return (unsigned)Result->getZExtValue();
6632 }
6633 
6634 /// Get the expression for the number of loop iterations for which this loop is
6635 /// guaranteed not to exit via ExitingBlock. Otherwise return
6636 /// SCEVCouldNotCompute.
6637 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6638                                           BasicBlock *ExitingBlock) {
6639   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6640 }
6641 
6642 const SCEV *
6643 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6644                                                  SCEVUnionPredicate &Preds) {
6645   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6646 }
6647 
6648 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6649   return getBackedgeTakenInfo(L).getExact(L, this);
6650 }
6651 
6652 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6653 /// known never to be less than the actual backedge taken count.
6654 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
6655   return getBackedgeTakenInfo(L).getMax(this);
6656 }
6657 
6658 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6659   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6660 }
6661 
6662 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6663 static void
6664 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6665   BasicBlock *Header = L->getHeader();
6666 
6667   // Push all Loop-header PHIs onto the Worklist stack.
6668   for (PHINode &PN : Header->phis())
6669     Worklist.push_back(&PN);
6670 }
6671 
6672 const ScalarEvolution::BackedgeTakenInfo &
6673 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6674   auto &BTI = getBackedgeTakenInfo(L);
6675   if (BTI.hasFullInfo())
6676     return BTI;
6677 
6678   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6679 
6680   if (!Pair.second)
6681     return Pair.first->second;
6682 
6683   BackedgeTakenInfo Result =
6684       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6685 
6686   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6687 }
6688 
6689 const ScalarEvolution::BackedgeTakenInfo &
6690 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6691   // Initially insert an invalid entry for this loop. If the insertion
6692   // succeeds, proceed to actually compute a backedge-taken count and
6693   // update the value. The temporary CouldNotCompute value tells SCEV
6694   // code elsewhere that it shouldn't attempt to request a new
6695   // backedge-taken count, which could result in infinite recursion.
6696   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6697       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6698   if (!Pair.second)
6699     return Pair.first->second;
6700 
6701   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6702   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6703   // must be cleared in this scope.
6704   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6705 
6706   // In product build, there are no usage of statistic.
6707   (void)NumTripCountsComputed;
6708   (void)NumTripCountsNotComputed;
6709 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6710   const SCEV *BEExact = Result.getExact(L, this);
6711   if (BEExact != getCouldNotCompute()) {
6712     assert(isLoopInvariant(BEExact, L) &&
6713            isLoopInvariant(Result.getMax(this), L) &&
6714            "Computed backedge-taken count isn't loop invariant for loop!");
6715     ++NumTripCountsComputed;
6716   }
6717   else if (Result.getMax(this) == getCouldNotCompute() &&
6718            isa<PHINode>(L->getHeader()->begin())) {
6719     // Only count loops that have phi nodes as not being computable.
6720     ++NumTripCountsNotComputed;
6721   }
6722 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6723 
6724   // Now that we know more about the trip count for this loop, forget any
6725   // existing SCEV values for PHI nodes in this loop since they are only
6726   // conservative estimates made without the benefit of trip count
6727   // information. This is similar to the code in forgetLoop, except that
6728   // it handles SCEVUnknown PHI nodes specially.
6729   if (Result.hasAnyInfo()) {
6730     SmallVector<Instruction *, 16> Worklist;
6731     PushLoopPHIs(L, Worklist);
6732 
6733     SmallPtrSet<Instruction *, 8> Discovered;
6734     while (!Worklist.empty()) {
6735       Instruction *I = Worklist.pop_back_val();
6736 
6737       ValueExprMapType::iterator It =
6738         ValueExprMap.find_as(static_cast<Value *>(I));
6739       if (It != ValueExprMap.end()) {
6740         const SCEV *Old = It->second;
6741 
6742         // SCEVUnknown for a PHI either means that it has an unrecognized
6743         // structure, or it's a PHI that's in the progress of being computed
6744         // by createNodeForPHI.  In the former case, additional loop trip
6745         // count information isn't going to change anything. In the later
6746         // case, createNodeForPHI will perform the necessary updates on its
6747         // own when it gets to that point.
6748         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6749           eraseValueFromMap(It->first);
6750           forgetMemoizedResults(Old);
6751         }
6752         if (PHINode *PN = dyn_cast<PHINode>(I))
6753           ConstantEvolutionLoopExitValue.erase(PN);
6754       }
6755 
6756       // Since we don't need to invalidate anything for correctness and we're
6757       // only invalidating to make SCEV's results more precise, we get to stop
6758       // early to avoid invalidating too much.  This is especially important in
6759       // cases like:
6760       //
6761       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6762       // loop0:
6763       //   %pn0 = phi
6764       //   ...
6765       // loop1:
6766       //   %pn1 = phi
6767       //   ...
6768       //
6769       // where both loop0 and loop1's backedge taken count uses the SCEV
6770       // expression for %v.  If we don't have the early stop below then in cases
6771       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6772       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6773       // count for loop1, effectively nullifying SCEV's trip count cache.
6774       for (auto *U : I->users())
6775         if (auto *I = dyn_cast<Instruction>(U)) {
6776           auto *LoopForUser = LI.getLoopFor(I->getParent());
6777           if (LoopForUser && L->contains(LoopForUser) &&
6778               Discovered.insert(I).second)
6779             Worklist.push_back(I);
6780         }
6781     }
6782   }
6783 
6784   // Re-lookup the insert position, since the call to
6785   // computeBackedgeTakenCount above could result in a
6786   // recusive call to getBackedgeTakenInfo (on a different
6787   // loop), which would invalidate the iterator computed
6788   // earlier.
6789   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6790 }
6791 
6792 void ScalarEvolution::forgetLoop(const Loop *L) {
6793   // Drop any stored trip count value.
6794   auto RemoveLoopFromBackedgeMap =
6795       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6796         auto BTCPos = Map.find(L);
6797         if (BTCPos != Map.end()) {
6798           BTCPos->second.clear();
6799           Map.erase(BTCPos);
6800         }
6801       };
6802 
6803   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6804   SmallVector<Instruction *, 32> Worklist;
6805   SmallPtrSet<Instruction *, 16> Visited;
6806 
6807   // Iterate over all the loops and sub-loops to drop SCEV information.
6808   while (!LoopWorklist.empty()) {
6809     auto *CurrL = LoopWorklist.pop_back_val();
6810 
6811     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6812     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6813 
6814     // Drop information about predicated SCEV rewrites for this loop.
6815     for (auto I = PredicatedSCEVRewrites.begin();
6816          I != PredicatedSCEVRewrites.end();) {
6817       std::pair<const SCEV *, const Loop *> Entry = I->first;
6818       if (Entry.second == CurrL)
6819         PredicatedSCEVRewrites.erase(I++);
6820       else
6821         ++I;
6822     }
6823 
6824     auto LoopUsersItr = LoopUsers.find(CurrL);
6825     if (LoopUsersItr != LoopUsers.end()) {
6826       for (auto *S : LoopUsersItr->second)
6827         forgetMemoizedResults(S);
6828       LoopUsers.erase(LoopUsersItr);
6829     }
6830 
6831     // Drop information about expressions based on loop-header PHIs.
6832     PushLoopPHIs(CurrL, Worklist);
6833 
6834     while (!Worklist.empty()) {
6835       Instruction *I = Worklist.pop_back_val();
6836       if (!Visited.insert(I).second)
6837         continue;
6838 
6839       ValueExprMapType::iterator It =
6840           ValueExprMap.find_as(static_cast<Value *>(I));
6841       if (It != ValueExprMap.end()) {
6842         eraseValueFromMap(It->first);
6843         forgetMemoizedResults(It->second);
6844         if (PHINode *PN = dyn_cast<PHINode>(I))
6845           ConstantEvolutionLoopExitValue.erase(PN);
6846       }
6847 
6848       PushDefUseChildren(I, Worklist);
6849     }
6850 
6851     LoopPropertiesCache.erase(CurrL);
6852     // Forget all contained loops too, to avoid dangling entries in the
6853     // ValuesAtScopes map.
6854     LoopWorklist.append(CurrL->begin(), CurrL->end());
6855   }
6856 }
6857 
6858 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6859   while (Loop *Parent = L->getParentLoop())
6860     L = Parent;
6861   forgetLoop(L);
6862 }
6863 
6864 void ScalarEvolution::forgetValue(Value *V) {
6865   Instruction *I = dyn_cast<Instruction>(V);
6866   if (!I) return;
6867 
6868   // Drop information about expressions based on loop-header PHIs.
6869   SmallVector<Instruction *, 16> Worklist;
6870   Worklist.push_back(I);
6871 
6872   SmallPtrSet<Instruction *, 8> Visited;
6873   while (!Worklist.empty()) {
6874     I = Worklist.pop_back_val();
6875     if (!Visited.insert(I).second)
6876       continue;
6877 
6878     ValueExprMapType::iterator It =
6879       ValueExprMap.find_as(static_cast<Value *>(I));
6880     if (It != ValueExprMap.end()) {
6881       eraseValueFromMap(It->first);
6882       forgetMemoizedResults(It->second);
6883       if (PHINode *PN = dyn_cast<PHINode>(I))
6884         ConstantEvolutionLoopExitValue.erase(PN);
6885     }
6886 
6887     PushDefUseChildren(I, Worklist);
6888   }
6889 }
6890 
6891 /// Get the exact loop backedge taken count considering all loop exits. A
6892 /// computable result can only be returned for loops with all exiting blocks
6893 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6894 /// is never skipped. This is a valid assumption as long as the loop exits via
6895 /// that test. For precise results, it is the caller's responsibility to specify
6896 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6897 const SCEV *
6898 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6899                                              SCEVUnionPredicate *Preds) const {
6900   // If any exits were not computable, the loop is not computable.
6901   if (!isComplete() || ExitNotTaken.empty())
6902     return SE->getCouldNotCompute();
6903 
6904   const BasicBlock *Latch = L->getLoopLatch();
6905   // All exiting blocks we have collected must dominate the only backedge.
6906   if (!Latch)
6907     return SE->getCouldNotCompute();
6908 
6909   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6910   // count is simply a minimum out of all these calculated exit counts.
6911   SmallVector<const SCEV *, 2> Ops;
6912   for (auto &ENT : ExitNotTaken) {
6913     const SCEV *BECount = ENT.ExactNotTaken;
6914     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6915     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6916            "We should only have known counts for exiting blocks that dominate "
6917            "latch!");
6918 
6919     Ops.push_back(BECount);
6920 
6921     if (Preds && !ENT.hasAlwaysTruePredicate())
6922       Preds->add(ENT.Predicate.get());
6923 
6924     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6925            "Predicate should be always true!");
6926   }
6927 
6928   return SE->getUMinFromMismatchedTypes(Ops);
6929 }
6930 
6931 /// Get the exact not taken count for this loop exit.
6932 const SCEV *
6933 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6934                                              ScalarEvolution *SE) const {
6935   for (auto &ENT : ExitNotTaken)
6936     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6937       return ENT.ExactNotTaken;
6938 
6939   return SE->getCouldNotCompute();
6940 }
6941 
6942 /// getMax - Get the max backedge taken count for the loop.
6943 const SCEV *
6944 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6945   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6946     return !ENT.hasAlwaysTruePredicate();
6947   };
6948 
6949   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6950     return SE->getCouldNotCompute();
6951 
6952   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6953          "No point in having a non-constant max backedge taken count!");
6954   return getMax();
6955 }
6956 
6957 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6958   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6959     return !ENT.hasAlwaysTruePredicate();
6960   };
6961   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6962 }
6963 
6964 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6965                                                     ScalarEvolution *SE) const {
6966   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6967       SE->hasOperand(getMax(), S))
6968     return true;
6969 
6970   for (auto &ENT : ExitNotTaken)
6971     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6972         SE->hasOperand(ENT.ExactNotTaken, S))
6973       return true;
6974 
6975   return false;
6976 }
6977 
6978 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6979     : ExactNotTaken(E), MaxNotTaken(E) {
6980   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6981           isa<SCEVConstant>(MaxNotTaken)) &&
6982          "No point in having a non-constant max backedge taken count!");
6983 }
6984 
6985 ScalarEvolution::ExitLimit::ExitLimit(
6986     const SCEV *E, const SCEV *M, bool MaxOrZero,
6987     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6988     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6989   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6990           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6991          "Exact is not allowed to be less precise than Max");
6992   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6993           isa<SCEVConstant>(MaxNotTaken)) &&
6994          "No point in having a non-constant max backedge taken count!");
6995   for (auto *PredSet : PredSetList)
6996     for (auto *P : *PredSet)
6997       addPredicate(P);
6998 }
6999 
7000 ScalarEvolution::ExitLimit::ExitLimit(
7001     const SCEV *E, const SCEV *M, bool MaxOrZero,
7002     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7003     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7004   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7005           isa<SCEVConstant>(MaxNotTaken)) &&
7006          "No point in having a non-constant max backedge taken count!");
7007 }
7008 
7009 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7010                                       bool MaxOrZero)
7011     : ExitLimit(E, M, MaxOrZero, None) {
7012   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7013           isa<SCEVConstant>(MaxNotTaken)) &&
7014          "No point in having a non-constant max backedge taken count!");
7015 }
7016 
7017 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7018 /// computable exit into a persistent ExitNotTakenInfo array.
7019 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7020     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
7021         ExitCounts,
7022     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
7023     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
7024   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7025 
7026   ExitNotTaken.reserve(ExitCounts.size());
7027   std::transform(
7028       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7029       [&](const EdgeExitInfo &EEI) {
7030         BasicBlock *ExitBB = EEI.first;
7031         const ExitLimit &EL = EEI.second;
7032         if (EL.Predicates.empty())
7033           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
7034 
7035         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7036         for (auto *Pred : EL.Predicates)
7037           Predicate->add(Pred);
7038 
7039         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
7040       });
7041   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
7042          "No point in having a non-constant max backedge taken count!");
7043 }
7044 
7045 /// Invalidate this result and free the ExitNotTakenInfo array.
7046 void ScalarEvolution::BackedgeTakenInfo::clear() {
7047   ExitNotTaken.clear();
7048 }
7049 
7050 /// Compute the number of times the backedge of the specified loop will execute.
7051 ScalarEvolution::BackedgeTakenInfo
7052 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7053                                            bool AllowPredicates) {
7054   SmallVector<BasicBlock *, 8> ExitingBlocks;
7055   L->getExitingBlocks(ExitingBlocks);
7056 
7057   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7058 
7059   SmallVector<EdgeExitInfo, 4> ExitCounts;
7060   bool CouldComputeBECount = true;
7061   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7062   const SCEV *MustExitMaxBECount = nullptr;
7063   const SCEV *MayExitMaxBECount = nullptr;
7064   bool MustExitMaxOrZero = false;
7065 
7066   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7067   // and compute maxBECount.
7068   // Do a union of all the predicates here.
7069   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7070     BasicBlock *ExitBB = ExitingBlocks[i];
7071     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7072 
7073     assert((AllowPredicates || EL.Predicates.empty()) &&
7074            "Predicated exit limit when predicates are not allowed!");
7075 
7076     // 1. For each exit that can be computed, add an entry to ExitCounts.
7077     // CouldComputeBECount is true only if all exits can be computed.
7078     if (EL.ExactNotTaken == getCouldNotCompute())
7079       // We couldn't compute an exact value for this exit, so
7080       // we won't be able to compute an exact value for the loop.
7081       CouldComputeBECount = false;
7082     else
7083       ExitCounts.emplace_back(ExitBB, EL);
7084 
7085     // 2. Derive the loop's MaxBECount from each exit's max number of
7086     // non-exiting iterations. Partition the loop exits into two kinds:
7087     // LoopMustExits and LoopMayExits.
7088     //
7089     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7090     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7091     // MaxBECount is the minimum EL.MaxNotTaken of computable
7092     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7093     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7094     // computable EL.MaxNotTaken.
7095     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7096         DT.dominates(ExitBB, Latch)) {
7097       if (!MustExitMaxBECount) {
7098         MustExitMaxBECount = EL.MaxNotTaken;
7099         MustExitMaxOrZero = EL.MaxOrZero;
7100       } else {
7101         MustExitMaxBECount =
7102             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7103       }
7104     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7105       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7106         MayExitMaxBECount = EL.MaxNotTaken;
7107       else {
7108         MayExitMaxBECount =
7109             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7110       }
7111     }
7112   }
7113   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7114     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7115   // The loop backedge will be taken the maximum or zero times if there's
7116   // a single exit that must be taken the maximum or zero times.
7117   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7118   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7119                            MaxBECount, MaxOrZero);
7120 }
7121 
7122 ScalarEvolution::ExitLimit
7123 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7124                                       bool AllowPredicates) {
7125   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7126   // If our exiting block does not dominate the latch, then its connection with
7127   // loop's exit limit may be far from trivial.
7128   const BasicBlock *Latch = L->getLoopLatch();
7129   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7130     return getCouldNotCompute();
7131 
7132   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7133   Instruction *Term = ExitingBlock->getTerminator();
7134   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7135     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7136     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7137     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7138            "It should have one successor in loop and one exit block!");
7139     // Proceed to the next level to examine the exit condition expression.
7140     return computeExitLimitFromCond(
7141         L, BI->getCondition(), ExitIfTrue,
7142         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7143   }
7144 
7145   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7146     // For switch, make sure that there is a single exit from the loop.
7147     BasicBlock *Exit = nullptr;
7148     for (auto *SBB : successors(ExitingBlock))
7149       if (!L->contains(SBB)) {
7150         if (Exit) // Multiple exit successors.
7151           return getCouldNotCompute();
7152         Exit = SBB;
7153       }
7154     assert(Exit && "Exiting block must have at least one exit");
7155     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7156                                                 /*ControlsExit=*/IsOnlyExit);
7157   }
7158 
7159   return getCouldNotCompute();
7160 }
7161 
7162 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7163     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7164     bool ControlsExit, bool AllowPredicates) {
7165   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7166   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7167                                         ControlsExit, AllowPredicates);
7168 }
7169 
7170 Optional<ScalarEvolution::ExitLimit>
7171 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7172                                       bool ExitIfTrue, bool ControlsExit,
7173                                       bool AllowPredicates) {
7174   (void)this->L;
7175   (void)this->ExitIfTrue;
7176   (void)this->AllowPredicates;
7177 
7178   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7179          this->AllowPredicates == AllowPredicates &&
7180          "Variance in assumed invariant key components!");
7181   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7182   if (Itr == TripCountMap.end())
7183     return None;
7184   return Itr->second;
7185 }
7186 
7187 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7188                                              bool ExitIfTrue,
7189                                              bool ControlsExit,
7190                                              bool AllowPredicates,
7191                                              const ExitLimit &EL) {
7192   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7193          this->AllowPredicates == AllowPredicates &&
7194          "Variance in assumed invariant key components!");
7195 
7196   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7197   assert(InsertResult.second && "Expected successful insertion!");
7198   (void)InsertResult;
7199   (void)ExitIfTrue;
7200 }
7201 
7202 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7203     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7204     bool ControlsExit, bool AllowPredicates) {
7205 
7206   if (auto MaybeEL =
7207           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7208     return *MaybeEL;
7209 
7210   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7211                                               ControlsExit, AllowPredicates);
7212   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7213   return EL;
7214 }
7215 
7216 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7217     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7218     bool ControlsExit, bool AllowPredicates) {
7219   // Check if the controlling expression for this loop is an And or Or.
7220   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7221     if (BO->getOpcode() == Instruction::And) {
7222       // Recurse on the operands of the and.
7223       bool EitherMayExit = !ExitIfTrue;
7224       ExitLimit EL0 = computeExitLimitFromCondCached(
7225           Cache, L, BO->getOperand(0), ExitIfTrue,
7226           ControlsExit && !EitherMayExit, AllowPredicates);
7227       ExitLimit EL1 = computeExitLimitFromCondCached(
7228           Cache, L, BO->getOperand(1), ExitIfTrue,
7229           ControlsExit && !EitherMayExit, AllowPredicates);
7230       const SCEV *BECount = getCouldNotCompute();
7231       const SCEV *MaxBECount = getCouldNotCompute();
7232       if (EitherMayExit) {
7233         // Both conditions must be true for the loop to continue executing.
7234         // Choose the less conservative count.
7235         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7236             EL1.ExactNotTaken == getCouldNotCompute())
7237           BECount = getCouldNotCompute();
7238         else
7239           BECount =
7240               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7241         if (EL0.MaxNotTaken == getCouldNotCompute())
7242           MaxBECount = EL1.MaxNotTaken;
7243         else if (EL1.MaxNotTaken == getCouldNotCompute())
7244           MaxBECount = EL0.MaxNotTaken;
7245         else
7246           MaxBECount =
7247               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7248       } else {
7249         // Both conditions must be true at the same time for the loop to exit.
7250         // For now, be conservative.
7251         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7252           MaxBECount = EL0.MaxNotTaken;
7253         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7254           BECount = EL0.ExactNotTaken;
7255       }
7256 
7257       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7258       // to be more aggressive when computing BECount than when computing
7259       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7260       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7261       // to not.
7262       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7263           !isa<SCEVCouldNotCompute>(BECount))
7264         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7265 
7266       return ExitLimit(BECount, MaxBECount, false,
7267                        {&EL0.Predicates, &EL1.Predicates});
7268     }
7269     if (BO->getOpcode() == Instruction::Or) {
7270       // Recurse on the operands of the or.
7271       bool EitherMayExit = ExitIfTrue;
7272       ExitLimit EL0 = computeExitLimitFromCondCached(
7273           Cache, L, BO->getOperand(0), ExitIfTrue,
7274           ControlsExit && !EitherMayExit, AllowPredicates);
7275       ExitLimit EL1 = computeExitLimitFromCondCached(
7276           Cache, L, BO->getOperand(1), ExitIfTrue,
7277           ControlsExit && !EitherMayExit, AllowPredicates);
7278       const SCEV *BECount = getCouldNotCompute();
7279       const SCEV *MaxBECount = getCouldNotCompute();
7280       if (EitherMayExit) {
7281         // Both conditions must be false for the loop to continue executing.
7282         // Choose the less conservative count.
7283         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7284             EL1.ExactNotTaken == getCouldNotCompute())
7285           BECount = getCouldNotCompute();
7286         else
7287           BECount =
7288               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7289         if (EL0.MaxNotTaken == getCouldNotCompute())
7290           MaxBECount = EL1.MaxNotTaken;
7291         else if (EL1.MaxNotTaken == getCouldNotCompute())
7292           MaxBECount = EL0.MaxNotTaken;
7293         else
7294           MaxBECount =
7295               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7296       } else {
7297         // Both conditions must be false at the same time for the loop to exit.
7298         // For now, be conservative.
7299         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7300           MaxBECount = EL0.MaxNotTaken;
7301         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7302           BECount = EL0.ExactNotTaken;
7303       }
7304       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7305       // to be more aggressive when computing BECount than when computing
7306       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7307       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7308       // to not.
7309       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7310           !isa<SCEVCouldNotCompute>(BECount))
7311         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7312 
7313       return ExitLimit(BECount, MaxBECount, false,
7314                        {&EL0.Predicates, &EL1.Predicates});
7315     }
7316   }
7317 
7318   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7319   // Proceed to the next level to examine the icmp.
7320   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7321     ExitLimit EL =
7322         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7323     if (EL.hasFullInfo() || !AllowPredicates)
7324       return EL;
7325 
7326     // Try again, but use SCEV predicates this time.
7327     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7328                                     /*AllowPredicates=*/true);
7329   }
7330 
7331   // Check for a constant condition. These are normally stripped out by
7332   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7333   // preserve the CFG and is temporarily leaving constant conditions
7334   // in place.
7335   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7336     if (ExitIfTrue == !CI->getZExtValue())
7337       // The backedge is always taken.
7338       return getCouldNotCompute();
7339     else
7340       // The backedge is never taken.
7341       return getZero(CI->getType());
7342   }
7343 
7344   // If it's not an integer or pointer comparison then compute it the hard way.
7345   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7346 }
7347 
7348 ScalarEvolution::ExitLimit
7349 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7350                                           ICmpInst *ExitCond,
7351                                           bool ExitIfTrue,
7352                                           bool ControlsExit,
7353                                           bool AllowPredicates) {
7354   // If the condition was exit on true, convert the condition to exit on false
7355   ICmpInst::Predicate Pred;
7356   if (!ExitIfTrue)
7357     Pred = ExitCond->getPredicate();
7358   else
7359     Pred = ExitCond->getInversePredicate();
7360   const ICmpInst::Predicate OriginalPred = Pred;
7361 
7362   // Handle common loops like: for (X = "string"; *X; ++X)
7363   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7364     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7365       ExitLimit ItCnt =
7366         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7367       if (ItCnt.hasAnyInfo())
7368         return ItCnt;
7369     }
7370 
7371   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7372   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7373 
7374   // Try to evaluate any dependencies out of the loop.
7375   LHS = getSCEVAtScope(LHS, L);
7376   RHS = getSCEVAtScope(RHS, L);
7377 
7378   // At this point, we would like to compute how many iterations of the
7379   // loop the predicate will return true for these inputs.
7380   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7381     // If there is a loop-invariant, force it into the RHS.
7382     std::swap(LHS, RHS);
7383     Pred = ICmpInst::getSwappedPredicate(Pred);
7384   }
7385 
7386   // Simplify the operands before analyzing them.
7387   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7388 
7389   // If we have a comparison of a chrec against a constant, try to use value
7390   // ranges to answer this query.
7391   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7392     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7393       if (AddRec->getLoop() == L) {
7394         // Form the constant range.
7395         ConstantRange CompRange =
7396             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7397 
7398         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7399         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7400       }
7401 
7402   switch (Pred) {
7403   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7404     // Convert to: while (X-Y != 0)
7405     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7406                                 AllowPredicates);
7407     if (EL.hasAnyInfo()) return EL;
7408     break;
7409   }
7410   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7411     // Convert to: while (X-Y == 0)
7412     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7413     if (EL.hasAnyInfo()) return EL;
7414     break;
7415   }
7416   case ICmpInst::ICMP_SLT:
7417   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7418     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7419     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7420                                     AllowPredicates);
7421     if (EL.hasAnyInfo()) return EL;
7422     break;
7423   }
7424   case ICmpInst::ICMP_SGT:
7425   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7426     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7427     ExitLimit EL =
7428         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7429                             AllowPredicates);
7430     if (EL.hasAnyInfo()) return EL;
7431     break;
7432   }
7433   default:
7434     break;
7435   }
7436 
7437   auto *ExhaustiveCount =
7438       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7439 
7440   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7441     return ExhaustiveCount;
7442 
7443   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7444                                       ExitCond->getOperand(1), L, OriginalPred);
7445 }
7446 
7447 ScalarEvolution::ExitLimit
7448 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7449                                                       SwitchInst *Switch,
7450                                                       BasicBlock *ExitingBlock,
7451                                                       bool ControlsExit) {
7452   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7453 
7454   // Give up if the exit is the default dest of a switch.
7455   if (Switch->getDefaultDest() == ExitingBlock)
7456     return getCouldNotCompute();
7457 
7458   assert(L->contains(Switch->getDefaultDest()) &&
7459          "Default case must not exit the loop!");
7460   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7461   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7462 
7463   // while (X != Y) --> while (X-Y != 0)
7464   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7465   if (EL.hasAnyInfo())
7466     return EL;
7467 
7468   return getCouldNotCompute();
7469 }
7470 
7471 static ConstantInt *
7472 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7473                                 ScalarEvolution &SE) {
7474   const SCEV *InVal = SE.getConstant(C);
7475   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7476   assert(isa<SCEVConstant>(Val) &&
7477          "Evaluation of SCEV at constant didn't fold correctly?");
7478   return cast<SCEVConstant>(Val)->getValue();
7479 }
7480 
7481 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7482 /// compute the backedge execution count.
7483 ScalarEvolution::ExitLimit
7484 ScalarEvolution::computeLoadConstantCompareExitLimit(
7485   LoadInst *LI,
7486   Constant *RHS,
7487   const Loop *L,
7488   ICmpInst::Predicate predicate) {
7489   if (LI->isVolatile()) return getCouldNotCompute();
7490 
7491   // Check to see if the loaded pointer is a getelementptr of a global.
7492   // TODO: Use SCEV instead of manually grubbing with GEPs.
7493   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7494   if (!GEP) return getCouldNotCompute();
7495 
7496   // Make sure that it is really a constant global we are gepping, with an
7497   // initializer, and make sure the first IDX is really 0.
7498   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7499   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7500       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7501       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7502     return getCouldNotCompute();
7503 
7504   // Okay, we allow one non-constant index into the GEP instruction.
7505   Value *VarIdx = nullptr;
7506   std::vector<Constant*> Indexes;
7507   unsigned VarIdxNum = 0;
7508   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7509     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7510       Indexes.push_back(CI);
7511     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7512       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7513       VarIdx = GEP->getOperand(i);
7514       VarIdxNum = i-2;
7515       Indexes.push_back(nullptr);
7516     }
7517 
7518   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7519   if (!VarIdx)
7520     return getCouldNotCompute();
7521 
7522   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7523   // Check to see if X is a loop variant variable value now.
7524   const SCEV *Idx = getSCEV(VarIdx);
7525   Idx = getSCEVAtScope(Idx, L);
7526 
7527   // We can only recognize very limited forms of loop index expressions, in
7528   // particular, only affine AddRec's like {C1,+,C2}.
7529   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7530   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7531       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7532       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7533     return getCouldNotCompute();
7534 
7535   unsigned MaxSteps = MaxBruteForceIterations;
7536   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7537     ConstantInt *ItCst = ConstantInt::get(
7538                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7539     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7540 
7541     // Form the GEP offset.
7542     Indexes[VarIdxNum] = Val;
7543 
7544     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7545                                                          Indexes);
7546     if (!Result) break;  // Cannot compute!
7547 
7548     // Evaluate the condition for this iteration.
7549     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7550     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7551     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7552       ++NumArrayLenItCounts;
7553       return getConstant(ItCst);   // Found terminating iteration!
7554     }
7555   }
7556   return getCouldNotCompute();
7557 }
7558 
7559 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7560     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7561   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7562   if (!RHS)
7563     return getCouldNotCompute();
7564 
7565   const BasicBlock *Latch = L->getLoopLatch();
7566   if (!Latch)
7567     return getCouldNotCompute();
7568 
7569   const BasicBlock *Predecessor = L->getLoopPredecessor();
7570   if (!Predecessor)
7571     return getCouldNotCompute();
7572 
7573   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7574   // Return LHS in OutLHS and shift_opt in OutOpCode.
7575   auto MatchPositiveShift =
7576       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7577 
7578     using namespace PatternMatch;
7579 
7580     ConstantInt *ShiftAmt;
7581     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7582       OutOpCode = Instruction::LShr;
7583     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7584       OutOpCode = Instruction::AShr;
7585     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7586       OutOpCode = Instruction::Shl;
7587     else
7588       return false;
7589 
7590     return ShiftAmt->getValue().isStrictlyPositive();
7591   };
7592 
7593   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7594   //
7595   // loop:
7596   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7597   //   %iv.shifted = lshr i32 %iv, <positive constant>
7598   //
7599   // Return true on a successful match.  Return the corresponding PHI node (%iv
7600   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7601   auto MatchShiftRecurrence =
7602       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7603     Optional<Instruction::BinaryOps> PostShiftOpCode;
7604 
7605     {
7606       Instruction::BinaryOps OpC;
7607       Value *V;
7608 
7609       // If we encounter a shift instruction, "peel off" the shift operation,
7610       // and remember that we did so.  Later when we inspect %iv's backedge
7611       // value, we will make sure that the backedge value uses the same
7612       // operation.
7613       //
7614       // Note: the peeled shift operation does not have to be the same
7615       // instruction as the one feeding into the PHI's backedge value.  We only
7616       // really care about it being the same *kind* of shift instruction --
7617       // that's all that is required for our later inferences to hold.
7618       if (MatchPositiveShift(LHS, V, OpC)) {
7619         PostShiftOpCode = OpC;
7620         LHS = V;
7621       }
7622     }
7623 
7624     PNOut = dyn_cast<PHINode>(LHS);
7625     if (!PNOut || PNOut->getParent() != L->getHeader())
7626       return false;
7627 
7628     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7629     Value *OpLHS;
7630 
7631     return
7632         // The backedge value for the PHI node must be a shift by a positive
7633         // amount
7634         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7635 
7636         // of the PHI node itself
7637         OpLHS == PNOut &&
7638 
7639         // and the kind of shift should be match the kind of shift we peeled
7640         // off, if any.
7641         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7642   };
7643 
7644   PHINode *PN;
7645   Instruction::BinaryOps OpCode;
7646   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7647     return getCouldNotCompute();
7648 
7649   const DataLayout &DL = getDataLayout();
7650 
7651   // The key rationale for this optimization is that for some kinds of shift
7652   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7653   // within a finite number of iterations.  If the condition guarding the
7654   // backedge (in the sense that the backedge is taken if the condition is true)
7655   // is false for the value the shift recurrence stabilizes to, then we know
7656   // that the backedge is taken only a finite number of times.
7657 
7658   ConstantInt *StableValue = nullptr;
7659   switch (OpCode) {
7660   default:
7661     llvm_unreachable("Impossible case!");
7662 
7663   case Instruction::AShr: {
7664     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7665     // bitwidth(K) iterations.
7666     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7667     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7668                                        Predecessor->getTerminator(), &DT);
7669     auto *Ty = cast<IntegerType>(RHS->getType());
7670     if (Known.isNonNegative())
7671       StableValue = ConstantInt::get(Ty, 0);
7672     else if (Known.isNegative())
7673       StableValue = ConstantInt::get(Ty, -1, true);
7674     else
7675       return getCouldNotCompute();
7676 
7677     break;
7678   }
7679   case Instruction::LShr:
7680   case Instruction::Shl:
7681     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7682     // stabilize to 0 in at most bitwidth(K) iterations.
7683     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7684     break;
7685   }
7686 
7687   auto *Result =
7688       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7689   assert(Result->getType()->isIntegerTy(1) &&
7690          "Otherwise cannot be an operand to a branch instruction");
7691 
7692   if (Result->isZeroValue()) {
7693     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7694     const SCEV *UpperBound =
7695         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7696     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7697   }
7698 
7699   return getCouldNotCompute();
7700 }
7701 
7702 /// Return true if we can constant fold an instruction of the specified type,
7703 /// assuming that all operands were constants.
7704 static bool CanConstantFold(const Instruction *I) {
7705   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7706       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7707       isa<LoadInst>(I))
7708     return true;
7709 
7710   if (const CallInst *CI = dyn_cast<CallInst>(I))
7711     if (const Function *F = CI->getCalledFunction())
7712       return canConstantFoldCallTo(CI, F);
7713   return false;
7714 }
7715 
7716 /// Determine whether this instruction can constant evolve within this loop
7717 /// assuming its operands can all constant evolve.
7718 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7719   // An instruction outside of the loop can't be derived from a loop PHI.
7720   if (!L->contains(I)) return false;
7721 
7722   if (isa<PHINode>(I)) {
7723     // We don't currently keep track of the control flow needed to evaluate
7724     // PHIs, so we cannot handle PHIs inside of loops.
7725     return L->getHeader() == I->getParent();
7726   }
7727 
7728   // If we won't be able to constant fold this expression even if the operands
7729   // are constants, bail early.
7730   return CanConstantFold(I);
7731 }
7732 
7733 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7734 /// recursing through each instruction operand until reaching a loop header phi.
7735 static PHINode *
7736 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7737                                DenseMap<Instruction *, PHINode *> &PHIMap,
7738                                unsigned Depth) {
7739   if (Depth > MaxConstantEvolvingDepth)
7740     return nullptr;
7741 
7742   // Otherwise, we can evaluate this instruction if all of its operands are
7743   // constant or derived from a PHI node themselves.
7744   PHINode *PHI = nullptr;
7745   for (Value *Op : UseInst->operands()) {
7746     if (isa<Constant>(Op)) continue;
7747 
7748     Instruction *OpInst = dyn_cast<Instruction>(Op);
7749     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7750 
7751     PHINode *P = dyn_cast<PHINode>(OpInst);
7752     if (!P)
7753       // If this operand is already visited, reuse the prior result.
7754       // We may have P != PHI if this is the deepest point at which the
7755       // inconsistent paths meet.
7756       P = PHIMap.lookup(OpInst);
7757     if (!P) {
7758       // Recurse and memoize the results, whether a phi is found or not.
7759       // This recursive call invalidates pointers into PHIMap.
7760       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7761       PHIMap[OpInst] = P;
7762     }
7763     if (!P)
7764       return nullptr;  // Not evolving from PHI
7765     if (PHI && PHI != P)
7766       return nullptr;  // Evolving from multiple different PHIs.
7767     PHI = P;
7768   }
7769   // This is a expression evolving from a constant PHI!
7770   return PHI;
7771 }
7772 
7773 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7774 /// in the loop that V is derived from.  We allow arbitrary operations along the
7775 /// way, but the operands of an operation must either be constants or a value
7776 /// derived from a constant PHI.  If this expression does not fit with these
7777 /// constraints, return null.
7778 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7779   Instruction *I = dyn_cast<Instruction>(V);
7780   if (!I || !canConstantEvolve(I, L)) return nullptr;
7781 
7782   if (PHINode *PN = dyn_cast<PHINode>(I))
7783     return PN;
7784 
7785   // Record non-constant instructions contained by the loop.
7786   DenseMap<Instruction *, PHINode *> PHIMap;
7787   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7788 }
7789 
7790 /// EvaluateExpression - Given an expression that passes the
7791 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7792 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7793 /// reason, return null.
7794 static Constant *EvaluateExpression(Value *V, const Loop *L,
7795                                     DenseMap<Instruction *, Constant *> &Vals,
7796                                     const DataLayout &DL,
7797                                     const TargetLibraryInfo *TLI) {
7798   // Convenient constant check, but redundant for recursive calls.
7799   if (Constant *C = dyn_cast<Constant>(V)) return C;
7800   Instruction *I = dyn_cast<Instruction>(V);
7801   if (!I) return nullptr;
7802 
7803   if (Constant *C = Vals.lookup(I)) return C;
7804 
7805   // An instruction inside the loop depends on a value outside the loop that we
7806   // weren't given a mapping for, or a value such as a call inside the loop.
7807   if (!canConstantEvolve(I, L)) return nullptr;
7808 
7809   // An unmapped PHI can be due to a branch or another loop inside this loop,
7810   // or due to this not being the initial iteration through a loop where we
7811   // couldn't compute the evolution of this particular PHI last time.
7812   if (isa<PHINode>(I)) return nullptr;
7813 
7814   std::vector<Constant*> Operands(I->getNumOperands());
7815 
7816   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7817     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7818     if (!Operand) {
7819       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7820       if (!Operands[i]) return nullptr;
7821       continue;
7822     }
7823     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7824     Vals[Operand] = C;
7825     if (!C) return nullptr;
7826     Operands[i] = C;
7827   }
7828 
7829   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7830     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7831                                            Operands[1], DL, TLI);
7832   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7833     if (!LI->isVolatile())
7834       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7835   }
7836   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7837 }
7838 
7839 
7840 // If every incoming value to PN except the one for BB is a specific Constant,
7841 // return that, else return nullptr.
7842 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7843   Constant *IncomingVal = nullptr;
7844 
7845   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7846     if (PN->getIncomingBlock(i) == BB)
7847       continue;
7848 
7849     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7850     if (!CurrentVal)
7851       return nullptr;
7852 
7853     if (IncomingVal != CurrentVal) {
7854       if (IncomingVal)
7855         return nullptr;
7856       IncomingVal = CurrentVal;
7857     }
7858   }
7859 
7860   return IncomingVal;
7861 }
7862 
7863 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7864 /// in the header of its containing loop, we know the loop executes a
7865 /// constant number of times, and the PHI node is just a recurrence
7866 /// involving constants, fold it.
7867 Constant *
7868 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7869                                                    const APInt &BEs,
7870                                                    const Loop *L) {
7871   auto I = ConstantEvolutionLoopExitValue.find(PN);
7872   if (I != ConstantEvolutionLoopExitValue.end())
7873     return I->second;
7874 
7875   if (BEs.ugt(MaxBruteForceIterations))
7876     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7877 
7878   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7879 
7880   DenseMap<Instruction *, Constant *> CurrentIterVals;
7881   BasicBlock *Header = L->getHeader();
7882   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7883 
7884   BasicBlock *Latch = L->getLoopLatch();
7885   if (!Latch)
7886     return nullptr;
7887 
7888   for (PHINode &PHI : Header->phis()) {
7889     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7890       CurrentIterVals[&PHI] = StartCST;
7891   }
7892   if (!CurrentIterVals.count(PN))
7893     return RetVal = nullptr;
7894 
7895   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7896 
7897   // Execute the loop symbolically to determine the exit value.
7898   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7899          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7900 
7901   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7902   unsigned IterationNum = 0;
7903   const DataLayout &DL = getDataLayout();
7904   for (; ; ++IterationNum) {
7905     if (IterationNum == NumIterations)
7906       return RetVal = CurrentIterVals[PN];  // Got exit value!
7907 
7908     // Compute the value of the PHIs for the next iteration.
7909     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7910     DenseMap<Instruction *, Constant *> NextIterVals;
7911     Constant *NextPHI =
7912         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7913     if (!NextPHI)
7914       return nullptr;        // Couldn't evaluate!
7915     NextIterVals[PN] = NextPHI;
7916 
7917     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7918 
7919     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7920     // cease to be able to evaluate one of them or if they stop evolving,
7921     // because that doesn't necessarily prevent us from computing PN.
7922     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7923     for (const auto &I : CurrentIterVals) {
7924       PHINode *PHI = dyn_cast<PHINode>(I.first);
7925       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7926       PHIsToCompute.emplace_back(PHI, I.second);
7927     }
7928     // We use two distinct loops because EvaluateExpression may invalidate any
7929     // iterators into CurrentIterVals.
7930     for (const auto &I : PHIsToCompute) {
7931       PHINode *PHI = I.first;
7932       Constant *&NextPHI = NextIterVals[PHI];
7933       if (!NextPHI) {   // Not already computed.
7934         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7935         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7936       }
7937       if (NextPHI != I.second)
7938         StoppedEvolving = false;
7939     }
7940 
7941     // If all entries in CurrentIterVals == NextIterVals then we can stop
7942     // iterating, the loop can't continue to change.
7943     if (StoppedEvolving)
7944       return RetVal = CurrentIterVals[PN];
7945 
7946     CurrentIterVals.swap(NextIterVals);
7947   }
7948 }
7949 
7950 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7951                                                           Value *Cond,
7952                                                           bool ExitWhen) {
7953   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7954   if (!PN) return getCouldNotCompute();
7955 
7956   // If the loop is canonicalized, the PHI will have exactly two entries.
7957   // That's the only form we support here.
7958   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7959 
7960   DenseMap<Instruction *, Constant *> CurrentIterVals;
7961   BasicBlock *Header = L->getHeader();
7962   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7963 
7964   BasicBlock *Latch = L->getLoopLatch();
7965   assert(Latch && "Should follow from NumIncomingValues == 2!");
7966 
7967   for (PHINode &PHI : Header->phis()) {
7968     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7969       CurrentIterVals[&PHI] = StartCST;
7970   }
7971   if (!CurrentIterVals.count(PN))
7972     return getCouldNotCompute();
7973 
7974   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7975   // the loop symbolically to determine when the condition gets a value of
7976   // "ExitWhen".
7977   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7978   const DataLayout &DL = getDataLayout();
7979   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7980     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7981         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7982 
7983     // Couldn't symbolically evaluate.
7984     if (!CondVal) return getCouldNotCompute();
7985 
7986     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7987       ++NumBruteForceTripCountsComputed;
7988       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7989     }
7990 
7991     // Update all the PHI nodes for the next iteration.
7992     DenseMap<Instruction *, Constant *> NextIterVals;
7993 
7994     // Create a list of which PHIs we need to compute. We want to do this before
7995     // calling EvaluateExpression on them because that may invalidate iterators
7996     // into CurrentIterVals.
7997     SmallVector<PHINode *, 8> PHIsToCompute;
7998     for (const auto &I : CurrentIterVals) {
7999       PHINode *PHI = dyn_cast<PHINode>(I.first);
8000       if (!PHI || PHI->getParent() != Header) continue;
8001       PHIsToCompute.push_back(PHI);
8002     }
8003     for (PHINode *PHI : PHIsToCompute) {
8004       Constant *&NextPHI = NextIterVals[PHI];
8005       if (NextPHI) continue;    // Already computed!
8006 
8007       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8008       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8009     }
8010     CurrentIterVals.swap(NextIterVals);
8011   }
8012 
8013   // Too many iterations were needed to evaluate.
8014   return getCouldNotCompute();
8015 }
8016 
8017 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8018   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8019       ValuesAtScopes[V];
8020   // Check to see if we've folded this expression at this loop before.
8021   for (auto &LS : Values)
8022     if (LS.first == L)
8023       return LS.second ? LS.second : V;
8024 
8025   Values.emplace_back(L, nullptr);
8026 
8027   // Otherwise compute it.
8028   const SCEV *C = computeSCEVAtScope(V, L);
8029   for (auto &LS : reverse(ValuesAtScopes[V]))
8030     if (LS.first == L) {
8031       LS.second = C;
8032       break;
8033     }
8034   return C;
8035 }
8036 
8037 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8038 /// will return Constants for objects which aren't represented by a
8039 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8040 /// Returns NULL if the SCEV isn't representable as a Constant.
8041 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8042   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
8043     case scCouldNotCompute:
8044     case scAddRecExpr:
8045       break;
8046     case scConstant:
8047       return cast<SCEVConstant>(V)->getValue();
8048     case scUnknown:
8049       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8050     case scSignExtend: {
8051       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8052       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8053         return ConstantExpr::getSExt(CastOp, SS->getType());
8054       break;
8055     }
8056     case scZeroExtend: {
8057       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8058       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8059         return ConstantExpr::getZExt(CastOp, SZ->getType());
8060       break;
8061     }
8062     case scTruncate: {
8063       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8064       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8065         return ConstantExpr::getTrunc(CastOp, ST->getType());
8066       break;
8067     }
8068     case scAddExpr: {
8069       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8070       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8071         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8072           unsigned AS = PTy->getAddressSpace();
8073           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8074           C = ConstantExpr::getBitCast(C, DestPtrTy);
8075         }
8076         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8077           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8078           if (!C2) return nullptr;
8079 
8080           // First pointer!
8081           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8082             unsigned AS = C2->getType()->getPointerAddressSpace();
8083             std::swap(C, C2);
8084             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8085             // The offsets have been converted to bytes.  We can add bytes to an
8086             // i8* by GEP with the byte count in the first index.
8087             C = ConstantExpr::getBitCast(C, DestPtrTy);
8088           }
8089 
8090           // Don't bother trying to sum two pointers. We probably can't
8091           // statically compute a load that results from it anyway.
8092           if (C2->getType()->isPointerTy())
8093             return nullptr;
8094 
8095           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8096             if (PTy->getElementType()->isStructTy())
8097               C2 = ConstantExpr::getIntegerCast(
8098                   C2, Type::getInt32Ty(C->getContext()), true);
8099             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8100           } else
8101             C = ConstantExpr::getAdd(C, C2);
8102         }
8103         return C;
8104       }
8105       break;
8106     }
8107     case scMulExpr: {
8108       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8109       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8110         // Don't bother with pointers at all.
8111         if (C->getType()->isPointerTy()) return nullptr;
8112         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8113           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8114           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8115           C = ConstantExpr::getMul(C, C2);
8116         }
8117         return C;
8118       }
8119       break;
8120     }
8121     case scUDivExpr: {
8122       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8123       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8124         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8125           if (LHS->getType() == RHS->getType())
8126             return ConstantExpr::getUDiv(LHS, RHS);
8127       break;
8128     }
8129     case scSMaxExpr:
8130     case scUMaxExpr:
8131       break; // TODO: smax, umax.
8132   }
8133   return nullptr;
8134 }
8135 
8136 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8137   if (isa<SCEVConstant>(V)) return V;
8138 
8139   // If this instruction is evolved from a constant-evolving PHI, compute the
8140   // exit value from the loop without using SCEVs.
8141   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8142     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8143       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8144         const Loop *LI = this->LI[I->getParent()];
8145         // Looking for loop exit value.
8146         if (LI && LI->getParentLoop() == L &&
8147             PN->getParent() == LI->getHeader()) {
8148           // Okay, there is no closed form solution for the PHI node.  Check
8149           // to see if the loop that contains it has a known backedge-taken
8150           // count.  If so, we may be able to force computation of the exit
8151           // value.
8152           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8153           if (const SCEVConstant *BTCC =
8154                 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8155 
8156             // This trivial case can show up in some degenerate cases where
8157             // the incoming IR has not yet been fully simplified.
8158             if (BTCC->getValue()->isZero()) {
8159               Value *InitValue = nullptr;
8160               bool MultipleInitValues = false;
8161               for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8162                 if (!LI->contains(PN->getIncomingBlock(i))) {
8163                   if (!InitValue)
8164                     InitValue = PN->getIncomingValue(i);
8165                   else if (InitValue != PN->getIncomingValue(i)) {
8166                     MultipleInitValues = true;
8167                     break;
8168                   }
8169                 }
8170                 if (!MultipleInitValues && InitValue)
8171                   return getSCEV(InitValue);
8172               }
8173             }
8174             // Okay, we know how many times the containing loop executes.  If
8175             // this is a constant evolving PHI node, get the final value at
8176             // the specified iteration number.
8177             Constant *RV =
8178                 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8179             if (RV) return getSCEV(RV);
8180           }
8181         }
8182       }
8183 
8184       // Okay, this is an expression that we cannot symbolically evaluate
8185       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8186       // the arguments into constants, and if so, try to constant propagate the
8187       // result.  This is particularly useful for computing loop exit values.
8188       if (CanConstantFold(I)) {
8189         SmallVector<Constant *, 4> Operands;
8190         bool MadeImprovement = false;
8191         for (Value *Op : I->operands()) {
8192           if (Constant *C = dyn_cast<Constant>(Op)) {
8193             Operands.push_back(C);
8194             continue;
8195           }
8196 
8197           // If any of the operands is non-constant and if they are
8198           // non-integer and non-pointer, don't even try to analyze them
8199           // with scev techniques.
8200           if (!isSCEVable(Op->getType()))
8201             return V;
8202 
8203           const SCEV *OrigV = getSCEV(Op);
8204           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8205           MadeImprovement |= OrigV != OpV;
8206 
8207           Constant *C = BuildConstantFromSCEV(OpV);
8208           if (!C) return V;
8209           if (C->getType() != Op->getType())
8210             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8211                                                               Op->getType(),
8212                                                               false),
8213                                       C, Op->getType());
8214           Operands.push_back(C);
8215         }
8216 
8217         // Check to see if getSCEVAtScope actually made an improvement.
8218         if (MadeImprovement) {
8219           Constant *C = nullptr;
8220           const DataLayout &DL = getDataLayout();
8221           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8222             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8223                                                 Operands[1], DL, &TLI);
8224           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8225             if (!LI->isVolatile())
8226               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8227           } else
8228             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8229           if (!C) return V;
8230           return getSCEV(C);
8231         }
8232       }
8233     }
8234 
8235     // This is some other type of SCEVUnknown, just return it.
8236     return V;
8237   }
8238 
8239   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8240     // Avoid performing the look-up in the common case where the specified
8241     // expression has no loop-variant portions.
8242     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8243       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8244       if (OpAtScope != Comm->getOperand(i)) {
8245         // Okay, at least one of these operands is loop variant but might be
8246         // foldable.  Build a new instance of the folded commutative expression.
8247         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8248                                             Comm->op_begin()+i);
8249         NewOps.push_back(OpAtScope);
8250 
8251         for (++i; i != e; ++i) {
8252           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8253           NewOps.push_back(OpAtScope);
8254         }
8255         if (isa<SCEVAddExpr>(Comm))
8256           return getAddExpr(NewOps);
8257         if (isa<SCEVMulExpr>(Comm))
8258           return getMulExpr(NewOps);
8259         if (isa<SCEVSMaxExpr>(Comm))
8260           return getSMaxExpr(NewOps);
8261         if (isa<SCEVUMaxExpr>(Comm))
8262           return getUMaxExpr(NewOps);
8263         llvm_unreachable("Unknown commutative SCEV type!");
8264       }
8265     }
8266     // If we got here, all operands are loop invariant.
8267     return Comm;
8268   }
8269 
8270   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8271     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8272     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8273     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8274       return Div;   // must be loop invariant
8275     return getUDivExpr(LHS, RHS);
8276   }
8277 
8278   // If this is a loop recurrence for a loop that does not contain L, then we
8279   // are dealing with the final value computed by the loop.
8280   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8281     // First, attempt to evaluate each operand.
8282     // Avoid performing the look-up in the common case where the specified
8283     // expression has no loop-variant portions.
8284     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8285       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8286       if (OpAtScope == AddRec->getOperand(i))
8287         continue;
8288 
8289       // Okay, at least one of these operands is loop variant but might be
8290       // foldable.  Build a new instance of the folded commutative expression.
8291       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8292                                           AddRec->op_begin()+i);
8293       NewOps.push_back(OpAtScope);
8294       for (++i; i != e; ++i)
8295         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8296 
8297       const SCEV *FoldedRec =
8298         getAddRecExpr(NewOps, AddRec->getLoop(),
8299                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8300       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8301       // The addrec may be folded to a nonrecurrence, for example, if the
8302       // induction variable is multiplied by zero after constant folding. Go
8303       // ahead and return the folded value.
8304       if (!AddRec)
8305         return FoldedRec;
8306       break;
8307     }
8308 
8309     // If the scope is outside the addrec's loop, evaluate it by using the
8310     // loop exit value of the addrec.
8311     if (!AddRec->getLoop()->contains(L)) {
8312       // To evaluate this recurrence, we need to know how many times the AddRec
8313       // loop iterates.  Compute this now.
8314       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8315       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8316 
8317       // Then, evaluate the AddRec.
8318       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8319     }
8320 
8321     return AddRec;
8322   }
8323 
8324   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8325     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8326     if (Op == Cast->getOperand())
8327       return Cast;  // must be loop invariant
8328     return getZeroExtendExpr(Op, Cast->getType());
8329   }
8330 
8331   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8332     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8333     if (Op == Cast->getOperand())
8334       return Cast;  // must be loop invariant
8335     return getSignExtendExpr(Op, Cast->getType());
8336   }
8337 
8338   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8339     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8340     if (Op == Cast->getOperand())
8341       return Cast;  // must be loop invariant
8342     return getTruncateExpr(Op, Cast->getType());
8343   }
8344 
8345   llvm_unreachable("Unknown SCEV type!");
8346 }
8347 
8348 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8349   return getSCEVAtScope(getSCEV(V), L);
8350 }
8351 
8352 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8353   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8354     return stripInjectiveFunctions(ZExt->getOperand());
8355   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8356     return stripInjectiveFunctions(SExt->getOperand());
8357   return S;
8358 }
8359 
8360 /// Finds the minimum unsigned root of the following equation:
8361 ///
8362 ///     A * X = B (mod N)
8363 ///
8364 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8365 /// A and B isn't important.
8366 ///
8367 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8368 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8369                                                ScalarEvolution &SE) {
8370   uint32_t BW = A.getBitWidth();
8371   assert(BW == SE.getTypeSizeInBits(B->getType()));
8372   assert(A != 0 && "A must be non-zero.");
8373 
8374   // 1. D = gcd(A, N)
8375   //
8376   // The gcd of A and N may have only one prime factor: 2. The number of
8377   // trailing zeros in A is its multiplicity
8378   uint32_t Mult2 = A.countTrailingZeros();
8379   // D = 2^Mult2
8380 
8381   // 2. Check if B is divisible by D.
8382   //
8383   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8384   // is not less than multiplicity of this prime factor for D.
8385   if (SE.GetMinTrailingZeros(B) < Mult2)
8386     return SE.getCouldNotCompute();
8387 
8388   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8389   // modulo (N / D).
8390   //
8391   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8392   // (N / D) in general. The inverse itself always fits into BW bits, though,
8393   // so we immediately truncate it.
8394   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8395   APInt Mod(BW + 1, 0);
8396   Mod.setBit(BW - Mult2);  // Mod = N / D
8397   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8398 
8399   // 4. Compute the minimum unsigned root of the equation:
8400   // I * (B / D) mod (N / D)
8401   // To simplify the computation, we factor out the divide by D:
8402   // (I * B mod N) / D
8403   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8404   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8405 }
8406 
8407 /// For a given quadratic addrec, generate coefficients of the corresponding
8408 /// quadratic equation, multiplied by a common value to ensure that they are
8409 /// integers.
8410 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8411 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8412 /// were multiplied by, and BitWidth is the bit width of the original addrec
8413 /// coefficients.
8414 /// This function returns None if the addrec coefficients are not compile-
8415 /// time constants.
8416 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8417 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8418   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8419   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8420   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8421   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8422   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8423                     << *AddRec << '\n');
8424 
8425   // We currently can only solve this if the coefficients are constants.
8426   if (!LC || !MC || !NC) {
8427     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8428     return None;
8429   }
8430 
8431   APInt L = LC->getAPInt();
8432   APInt M = MC->getAPInt();
8433   APInt N = NC->getAPInt();
8434   assert(!N.isNullValue() && "This is not a quadratic addrec");
8435 
8436   unsigned BitWidth = LC->getAPInt().getBitWidth();
8437   unsigned NewWidth = BitWidth + 1;
8438   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8439                     << BitWidth << '\n');
8440   // The sign-extension (as opposed to a zero-extension) here matches the
8441   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8442   N = N.sext(NewWidth);
8443   M = M.sext(NewWidth);
8444   L = L.sext(NewWidth);
8445 
8446   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8447   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8448   //   L+M, L+2M+N, L+3M+3N, ...
8449   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8450   //
8451   // The equation Acc = 0 is then
8452   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8453   // In a quadratic form it becomes:
8454   //   N n^2 + (2M-N) n + 2L = 0.
8455 
8456   APInt A = N;
8457   APInt B = 2 * M - A;
8458   APInt C = 2 * L;
8459   APInt T = APInt(NewWidth, 2);
8460   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8461                     << "x + " << C << ", coeff bw: " << NewWidth
8462                     << ", multiplied by " << T << '\n');
8463   return std::make_tuple(A, B, C, T, BitWidth);
8464 }
8465 
8466 /// Helper function to compare optional APInts:
8467 /// (a) if X and Y both exist, return min(X, Y),
8468 /// (b) if neither X nor Y exist, return None,
8469 /// (c) if exactly one of X and Y exists, return that value.
8470 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8471   if (X.hasValue() && Y.hasValue()) {
8472     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8473     APInt XW = X->sextOrSelf(W);
8474     APInt YW = Y->sextOrSelf(W);
8475     return XW.slt(YW) ? *X : *Y;
8476   }
8477   if (!X.hasValue() && !Y.hasValue())
8478     return None;
8479   return X.hasValue() ? *X : *Y;
8480 }
8481 
8482 /// Helper function to truncate an optional APInt to a given BitWidth.
8483 /// When solving addrec-related equations, it is preferable to return a value
8484 /// that has the same bit width as the original addrec's coefficients. If the
8485 /// solution fits in the original bit width, truncate it (except for i1).
8486 /// Returning a value of a different bit width may inhibit some optimizations.
8487 ///
8488 /// In general, a solution to a quadratic equation generated from an addrec
8489 /// may require BW+1 bits, where BW is the bit width of the addrec's
8490 /// coefficients. The reason is that the coefficients of the quadratic
8491 /// equation are BW+1 bits wide (to avoid truncation when converting from
8492 /// the addrec to the equation).
8493 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8494   if (!X.hasValue())
8495     return None;
8496   unsigned W = X->getBitWidth();
8497   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8498     return X->trunc(BitWidth);
8499   return X;
8500 }
8501 
8502 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8503 /// iterations. The values L, M, N are assumed to be signed, and they
8504 /// should all have the same bit widths.
8505 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8506 /// where BW is the bit width of the addrec's coefficients.
8507 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8508 /// returned as such, otherwise the bit width of the returned value may
8509 /// be greater than BW.
8510 ///
8511 /// This function returns None if
8512 /// (a) the addrec coefficients are not constant, or
8513 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8514 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8515 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8516 static Optional<APInt>
8517 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8518   APInt A, B, C, M;
8519   unsigned BitWidth;
8520   auto T = GetQuadraticEquation(AddRec);
8521   if (!T.hasValue())
8522     return None;
8523 
8524   std::tie(A, B, C, M, BitWidth) = *T;
8525   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8526   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8527   if (!X.hasValue())
8528     return None;
8529 
8530   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8531   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8532   if (!V->isZero())
8533     return None;
8534 
8535   return TruncIfPossible(X, BitWidth);
8536 }
8537 
8538 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8539 /// iterations. The values M, N are assumed to be signed, and they
8540 /// should all have the same bit widths.
8541 /// Find the least n such that c(n) does not belong to the given range,
8542 /// while c(n-1) does.
8543 ///
8544 /// This function returns None if
8545 /// (a) the addrec coefficients are not constant, or
8546 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8547 ///     bounds of the range.
8548 static Optional<APInt>
8549 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8550                           const ConstantRange &Range, ScalarEvolution &SE) {
8551   assert(AddRec->getOperand(0)->isZero() &&
8552          "Starting value of addrec should be 0");
8553   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8554                     << Range << ", addrec " << *AddRec << '\n');
8555   // This case is handled in getNumIterationsInRange. Here we can assume that
8556   // we start in the range.
8557   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8558          "Addrec's initial value should be in range");
8559 
8560   APInt A, B, C, M;
8561   unsigned BitWidth;
8562   auto T = GetQuadraticEquation(AddRec);
8563   if (!T.hasValue())
8564     return None;
8565 
8566   // Be careful about the return value: there can be two reasons for not
8567   // returning an actual number. First, if no solutions to the equations
8568   // were found, and second, if the solutions don't leave the given range.
8569   // The first case means that the actual solution is "unknown", the second
8570   // means that it's known, but not valid. If the solution is unknown, we
8571   // cannot make any conclusions.
8572   // Return a pair: the optional solution and a flag indicating if the
8573   // solution was found.
8574   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8575     // Solve for signed overflow and unsigned overflow, pick the lower
8576     // solution.
8577     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8578                       << Bound << " (before multiplying by " << M << ")\n");
8579     Bound *= M; // The quadratic equation multiplier.
8580 
8581     Optional<APInt> SO = None;
8582     if (BitWidth > 1) {
8583       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8584                            "signed overflow\n");
8585       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8586     }
8587     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8588                          "unsigned overflow\n");
8589     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8590                                                               BitWidth+1);
8591 
8592     auto LeavesRange = [&] (const APInt &X) {
8593       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8594       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8595       if (Range.contains(V0->getValue()))
8596         return false;
8597       // X should be at least 1, so X-1 is non-negative.
8598       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8599       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8600       if (Range.contains(V1->getValue()))
8601         return true;
8602       return false;
8603     };
8604 
8605     // If SolveQuadraticEquationWrap returns None, it means that there can
8606     // be a solution, but the function failed to find it. We cannot treat it
8607     // as "no solution".
8608     if (!SO.hasValue() || !UO.hasValue())
8609       return { None, false };
8610 
8611     // Check the smaller value first to see if it leaves the range.
8612     // At this point, both SO and UO must have values.
8613     Optional<APInt> Min = MinOptional(SO, UO);
8614     if (LeavesRange(*Min))
8615       return { Min, true };
8616     Optional<APInt> Max = Min == SO ? UO : SO;
8617     if (LeavesRange(*Max))
8618       return { Max, true };
8619 
8620     // Solutions were found, but were eliminated, hence the "true".
8621     return { None, true };
8622   };
8623 
8624   std::tie(A, B, C, M, BitWidth) = *T;
8625   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8626   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8627   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8628   auto SL = SolveForBoundary(Lower);
8629   auto SU = SolveForBoundary(Upper);
8630   // If any of the solutions was unknown, no meaninigful conclusions can
8631   // be made.
8632   if (!SL.second || !SU.second)
8633     return None;
8634 
8635   // Claim: The correct solution is not some value between Min and Max.
8636   //
8637   // Justification: Assuming that Min and Max are different values, one of
8638   // them is when the first signed overflow happens, the other is when the
8639   // first unsigned overflow happens. Crossing the range boundary is only
8640   // possible via an overflow (treating 0 as a special case of it, modeling
8641   // an overflow as crossing k*2^W for some k).
8642   //
8643   // The interesting case here is when Min was eliminated as an invalid
8644   // solution, but Max was not. The argument is that if there was another
8645   // overflow between Min and Max, it would also have been eliminated if
8646   // it was considered.
8647   //
8648   // For a given boundary, it is possible to have two overflows of the same
8649   // type (signed/unsigned) without having the other type in between: this
8650   // can happen when the vertex of the parabola is between the iterations
8651   // corresponding to the overflows. This is only possible when the two
8652   // overflows cross k*2^W for the same k. In such case, if the second one
8653   // left the range (and was the first one to do so), the first overflow
8654   // would have to enter the range, which would mean that either we had left
8655   // the range before or that we started outside of it. Both of these cases
8656   // are contradictions.
8657   //
8658   // Claim: In the case where SolveForBoundary returns None, the correct
8659   // solution is not some value between the Max for this boundary and the
8660   // Min of the other boundary.
8661   //
8662   // Justification: Assume that we had such Max_A and Min_B corresponding
8663   // to range boundaries A and B and such that Max_A < Min_B. If there was
8664   // a solution between Max_A and Min_B, it would have to be caused by an
8665   // overflow corresponding to either A or B. It cannot correspond to B,
8666   // since Min_B is the first occurrence of such an overflow. If it
8667   // corresponded to A, it would have to be either a signed or an unsigned
8668   // overflow that is larger than both eliminated overflows for A. But
8669   // between the eliminated overflows and this overflow, the values would
8670   // cover the entire value space, thus crossing the other boundary, which
8671   // is a contradiction.
8672 
8673   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8674 }
8675 
8676 ScalarEvolution::ExitLimit
8677 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8678                               bool AllowPredicates) {
8679 
8680   // This is only used for loops with a "x != y" exit test. The exit condition
8681   // is now expressed as a single expression, V = x-y. So the exit test is
8682   // effectively V != 0.  We know and take advantage of the fact that this
8683   // expression only being used in a comparison by zero context.
8684 
8685   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8686   // If the value is a constant
8687   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8688     // If the value is already zero, the branch will execute zero times.
8689     if (C->getValue()->isZero()) return C;
8690     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8691   }
8692 
8693   const SCEVAddRecExpr *AddRec =
8694       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8695 
8696   if (!AddRec && AllowPredicates)
8697     // Try to make this an AddRec using runtime tests, in the first X
8698     // iterations of this loop, where X is the SCEV expression found by the
8699     // algorithm below.
8700     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8701 
8702   if (!AddRec || AddRec->getLoop() != L)
8703     return getCouldNotCompute();
8704 
8705   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8706   // the quadratic equation to solve it.
8707   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8708     // We can only use this value if the chrec ends up with an exact zero
8709     // value at this index.  When solving for "X*X != 5", for example, we
8710     // should not accept a root of 2.
8711     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8712       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8713       return ExitLimit(R, R, false, Predicates);
8714     }
8715     return getCouldNotCompute();
8716   }
8717 
8718   // Otherwise we can only handle this if it is affine.
8719   if (!AddRec->isAffine())
8720     return getCouldNotCompute();
8721 
8722   // If this is an affine expression, the execution count of this branch is
8723   // the minimum unsigned root of the following equation:
8724   //
8725   //     Start + Step*N = 0 (mod 2^BW)
8726   //
8727   // equivalent to:
8728   //
8729   //             Step*N = -Start (mod 2^BW)
8730   //
8731   // where BW is the common bit width of Start and Step.
8732 
8733   // Get the initial value for the loop.
8734   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8735   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8736 
8737   // For now we handle only constant steps.
8738   //
8739   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8740   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8741   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8742   // We have not yet seen any such cases.
8743   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8744   if (!StepC || StepC->getValue()->isZero())
8745     return getCouldNotCompute();
8746 
8747   // For positive steps (counting up until unsigned overflow):
8748   //   N = -Start/Step (as unsigned)
8749   // For negative steps (counting down to zero):
8750   //   N = Start/-Step
8751   // First compute the unsigned distance from zero in the direction of Step.
8752   bool CountDown = StepC->getAPInt().isNegative();
8753   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8754 
8755   // Handle unitary steps, which cannot wraparound.
8756   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8757   //   N = Distance (as unsigned)
8758   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8759     APInt MaxBECount = getUnsignedRangeMax(Distance);
8760 
8761     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8762     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8763     // case, and see if we can improve the bound.
8764     //
8765     // Explicitly handling this here is necessary because getUnsignedRange
8766     // isn't context-sensitive; it doesn't know that we only care about the
8767     // range inside the loop.
8768     const SCEV *Zero = getZero(Distance->getType());
8769     const SCEV *One = getOne(Distance->getType());
8770     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8771     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8772       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8773       // as "unsigned_max(Distance + 1) - 1".
8774       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8775       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8776     }
8777     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8778   }
8779 
8780   // If the condition controls loop exit (the loop exits only if the expression
8781   // is true) and the addition is no-wrap we can use unsigned divide to
8782   // compute the backedge count.  In this case, the step may not divide the
8783   // distance, but we don't care because if the condition is "missed" the loop
8784   // will have undefined behavior due to wrapping.
8785   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8786       loopHasNoAbnormalExits(AddRec->getLoop())) {
8787     const SCEV *Exact =
8788         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8789     const SCEV *Max =
8790         Exact == getCouldNotCompute()
8791             ? Exact
8792             : getConstant(getUnsignedRangeMax(Exact));
8793     return ExitLimit(Exact, Max, false, Predicates);
8794   }
8795 
8796   // Solve the general equation.
8797   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8798                                                getNegativeSCEV(Start), *this);
8799   const SCEV *M = E == getCouldNotCompute()
8800                       ? E
8801                       : getConstant(getUnsignedRangeMax(E));
8802   return ExitLimit(E, M, false, Predicates);
8803 }
8804 
8805 ScalarEvolution::ExitLimit
8806 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8807   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8808   // handle them yet except for the trivial case.  This could be expanded in the
8809   // future as needed.
8810 
8811   // If the value is a constant, check to see if it is known to be non-zero
8812   // already.  If so, the backedge will execute zero times.
8813   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8814     if (!C->getValue()->isZero())
8815       return getZero(C->getType());
8816     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8817   }
8818 
8819   // We could implement others, but I really doubt anyone writes loops like
8820   // this, and if they did, they would already be constant folded.
8821   return getCouldNotCompute();
8822 }
8823 
8824 std::pair<BasicBlock *, BasicBlock *>
8825 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8826   // If the block has a unique predecessor, then there is no path from the
8827   // predecessor to the block that does not go through the direct edge
8828   // from the predecessor to the block.
8829   if (BasicBlock *Pred = BB->getSinglePredecessor())
8830     return {Pred, BB};
8831 
8832   // A loop's header is defined to be a block that dominates the loop.
8833   // If the header has a unique predecessor outside the loop, it must be
8834   // a block that has exactly one successor that can reach the loop.
8835   if (Loop *L = LI.getLoopFor(BB))
8836     return {L->getLoopPredecessor(), L->getHeader()};
8837 
8838   return {nullptr, nullptr};
8839 }
8840 
8841 /// SCEV structural equivalence is usually sufficient for testing whether two
8842 /// expressions are equal, however for the purposes of looking for a condition
8843 /// guarding a loop, it can be useful to be a little more general, since a
8844 /// front-end may have replicated the controlling expression.
8845 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8846   // Quick check to see if they are the same SCEV.
8847   if (A == B) return true;
8848 
8849   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8850     // Not all instructions that are "identical" compute the same value.  For
8851     // instance, two distinct alloca instructions allocating the same type are
8852     // identical and do not read memory; but compute distinct values.
8853     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8854   };
8855 
8856   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8857   // two different instructions with the same value. Check for this case.
8858   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8859     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8860       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8861         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8862           if (ComputesEqualValues(AI, BI))
8863             return true;
8864 
8865   // Otherwise assume they may have a different value.
8866   return false;
8867 }
8868 
8869 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8870                                            const SCEV *&LHS, const SCEV *&RHS,
8871                                            unsigned Depth) {
8872   bool Changed = false;
8873   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8874   // '0 != 0'.
8875   auto TrivialCase = [&](bool TriviallyTrue) {
8876     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8877     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8878     return true;
8879   };
8880   // If we hit the max recursion limit bail out.
8881   if (Depth >= 3)
8882     return false;
8883 
8884   // Canonicalize a constant to the right side.
8885   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8886     // Check for both operands constant.
8887     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8888       if (ConstantExpr::getICmp(Pred,
8889                                 LHSC->getValue(),
8890                                 RHSC->getValue())->isNullValue())
8891         return TrivialCase(false);
8892       else
8893         return TrivialCase(true);
8894     }
8895     // Otherwise swap the operands to put the constant on the right.
8896     std::swap(LHS, RHS);
8897     Pred = ICmpInst::getSwappedPredicate(Pred);
8898     Changed = true;
8899   }
8900 
8901   // If we're comparing an addrec with a value which is loop-invariant in the
8902   // addrec's loop, put the addrec on the left. Also make a dominance check,
8903   // as both operands could be addrecs loop-invariant in each other's loop.
8904   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8905     const Loop *L = AR->getLoop();
8906     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8907       std::swap(LHS, RHS);
8908       Pred = ICmpInst::getSwappedPredicate(Pred);
8909       Changed = true;
8910     }
8911   }
8912 
8913   // If there's a constant operand, canonicalize comparisons with boundary
8914   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8915   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8916     const APInt &RA = RC->getAPInt();
8917 
8918     bool SimplifiedByConstantRange = false;
8919 
8920     if (!ICmpInst::isEquality(Pred)) {
8921       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8922       if (ExactCR.isFullSet())
8923         return TrivialCase(true);
8924       else if (ExactCR.isEmptySet())
8925         return TrivialCase(false);
8926 
8927       APInt NewRHS;
8928       CmpInst::Predicate NewPred;
8929       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8930           ICmpInst::isEquality(NewPred)) {
8931         // We were able to convert an inequality to an equality.
8932         Pred = NewPred;
8933         RHS = getConstant(NewRHS);
8934         Changed = SimplifiedByConstantRange = true;
8935       }
8936     }
8937 
8938     if (!SimplifiedByConstantRange) {
8939       switch (Pred) {
8940       default:
8941         break;
8942       case ICmpInst::ICMP_EQ:
8943       case ICmpInst::ICMP_NE:
8944         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8945         if (!RA)
8946           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8947             if (const SCEVMulExpr *ME =
8948                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8949               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8950                   ME->getOperand(0)->isAllOnesValue()) {
8951                 RHS = AE->getOperand(1);
8952                 LHS = ME->getOperand(1);
8953                 Changed = true;
8954               }
8955         break;
8956 
8957 
8958         // The "Should have been caught earlier!" messages refer to the fact
8959         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8960         // should have fired on the corresponding cases, and canonicalized the
8961         // check to trivial case.
8962 
8963       case ICmpInst::ICMP_UGE:
8964         assert(!RA.isMinValue() && "Should have been caught earlier!");
8965         Pred = ICmpInst::ICMP_UGT;
8966         RHS = getConstant(RA - 1);
8967         Changed = true;
8968         break;
8969       case ICmpInst::ICMP_ULE:
8970         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8971         Pred = ICmpInst::ICMP_ULT;
8972         RHS = getConstant(RA + 1);
8973         Changed = true;
8974         break;
8975       case ICmpInst::ICMP_SGE:
8976         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8977         Pred = ICmpInst::ICMP_SGT;
8978         RHS = getConstant(RA - 1);
8979         Changed = true;
8980         break;
8981       case ICmpInst::ICMP_SLE:
8982         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8983         Pred = ICmpInst::ICMP_SLT;
8984         RHS = getConstant(RA + 1);
8985         Changed = true;
8986         break;
8987       }
8988     }
8989   }
8990 
8991   // Check for obvious equality.
8992   if (HasSameValue(LHS, RHS)) {
8993     if (ICmpInst::isTrueWhenEqual(Pred))
8994       return TrivialCase(true);
8995     if (ICmpInst::isFalseWhenEqual(Pred))
8996       return TrivialCase(false);
8997   }
8998 
8999   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9000   // adding or subtracting 1 from one of the operands.
9001   switch (Pred) {
9002   case ICmpInst::ICMP_SLE:
9003     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9004       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9005                        SCEV::FlagNSW);
9006       Pred = ICmpInst::ICMP_SLT;
9007       Changed = true;
9008     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9009       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9010                        SCEV::FlagNSW);
9011       Pred = ICmpInst::ICMP_SLT;
9012       Changed = true;
9013     }
9014     break;
9015   case ICmpInst::ICMP_SGE:
9016     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9017       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9018                        SCEV::FlagNSW);
9019       Pred = ICmpInst::ICMP_SGT;
9020       Changed = true;
9021     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9022       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9023                        SCEV::FlagNSW);
9024       Pred = ICmpInst::ICMP_SGT;
9025       Changed = true;
9026     }
9027     break;
9028   case ICmpInst::ICMP_ULE:
9029     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9030       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9031                        SCEV::FlagNUW);
9032       Pred = ICmpInst::ICMP_ULT;
9033       Changed = true;
9034     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9035       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9036       Pred = ICmpInst::ICMP_ULT;
9037       Changed = true;
9038     }
9039     break;
9040   case ICmpInst::ICMP_UGE:
9041     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9042       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9043       Pred = ICmpInst::ICMP_UGT;
9044       Changed = true;
9045     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9046       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9047                        SCEV::FlagNUW);
9048       Pred = ICmpInst::ICMP_UGT;
9049       Changed = true;
9050     }
9051     break;
9052   default:
9053     break;
9054   }
9055 
9056   // TODO: More simplifications are possible here.
9057 
9058   // Recursively simplify until we either hit a recursion limit or nothing
9059   // changes.
9060   if (Changed)
9061     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9062 
9063   return Changed;
9064 }
9065 
9066 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9067   return getSignedRangeMax(S).isNegative();
9068 }
9069 
9070 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9071   return getSignedRangeMin(S).isStrictlyPositive();
9072 }
9073 
9074 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9075   return !getSignedRangeMin(S).isNegative();
9076 }
9077 
9078 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9079   return !getSignedRangeMax(S).isStrictlyPositive();
9080 }
9081 
9082 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9083   return isKnownNegative(S) || isKnownPositive(S);
9084 }
9085 
9086 std::pair<const SCEV *, const SCEV *>
9087 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9088   // Compute SCEV on entry of loop L.
9089   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9090   if (Start == getCouldNotCompute())
9091     return { Start, Start };
9092   // Compute post increment SCEV for loop L.
9093   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9094   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9095   return { Start, PostInc };
9096 }
9097 
9098 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9099                                           const SCEV *LHS, const SCEV *RHS) {
9100   // First collect all loops.
9101   SmallPtrSet<const Loop *, 8> LoopsUsed;
9102   getUsedLoops(LHS, LoopsUsed);
9103   getUsedLoops(RHS, LoopsUsed);
9104 
9105   if (LoopsUsed.empty())
9106     return false;
9107 
9108   // Domination relationship must be a linear order on collected loops.
9109 #ifndef NDEBUG
9110   for (auto *L1 : LoopsUsed)
9111     for (auto *L2 : LoopsUsed)
9112       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9113               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9114              "Domination relationship is not a linear order");
9115 #endif
9116 
9117   const Loop *MDL =
9118       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9119                         [&](const Loop *L1, const Loop *L2) {
9120          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9121        });
9122 
9123   // Get init and post increment value for LHS.
9124   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9125   // if LHS contains unknown non-invariant SCEV then bail out.
9126   if (SplitLHS.first == getCouldNotCompute())
9127     return false;
9128   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9129   // Get init and post increment value for RHS.
9130   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9131   // if RHS contains unknown non-invariant SCEV then bail out.
9132   if (SplitRHS.first == getCouldNotCompute())
9133     return false;
9134   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9135   // It is possible that init SCEV contains an invariant load but it does
9136   // not dominate MDL and is not available at MDL loop entry, so we should
9137   // check it here.
9138   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9139       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9140     return false;
9141 
9142   return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
9143          isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9144                                      SplitRHS.second);
9145 }
9146 
9147 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9148                                        const SCEV *LHS, const SCEV *RHS) {
9149   // Canonicalize the inputs first.
9150   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9151 
9152   if (isKnownViaInduction(Pred, LHS, RHS))
9153     return true;
9154 
9155   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9156     return true;
9157 
9158   // Otherwise see what can be done with some simple reasoning.
9159   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9160 }
9161 
9162 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9163                                               const SCEVAddRecExpr *LHS,
9164                                               const SCEV *RHS) {
9165   const Loop *L = LHS->getLoop();
9166   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9167          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9168 }
9169 
9170 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9171                                            ICmpInst::Predicate Pred,
9172                                            bool &Increasing) {
9173   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9174 
9175 #ifndef NDEBUG
9176   // Verify an invariant: inverting the predicate should turn a monotonically
9177   // increasing change to a monotonically decreasing one, and vice versa.
9178   bool IncreasingSwapped;
9179   bool ResultSwapped = isMonotonicPredicateImpl(
9180       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9181 
9182   assert(Result == ResultSwapped && "should be able to analyze both!");
9183   if (ResultSwapped)
9184     assert(Increasing == !IncreasingSwapped &&
9185            "monotonicity should flip as we flip the predicate");
9186 #endif
9187 
9188   return Result;
9189 }
9190 
9191 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9192                                                ICmpInst::Predicate Pred,
9193                                                bool &Increasing) {
9194 
9195   // A zero step value for LHS means the induction variable is essentially a
9196   // loop invariant value. We don't really depend on the predicate actually
9197   // flipping from false to true (for increasing predicates, and the other way
9198   // around for decreasing predicates), all we care about is that *if* the
9199   // predicate changes then it only changes from false to true.
9200   //
9201   // A zero step value in itself is not very useful, but there may be places
9202   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9203   // as general as possible.
9204 
9205   switch (Pred) {
9206   default:
9207     return false; // Conservative answer
9208 
9209   case ICmpInst::ICMP_UGT:
9210   case ICmpInst::ICMP_UGE:
9211   case ICmpInst::ICMP_ULT:
9212   case ICmpInst::ICMP_ULE:
9213     if (!LHS->hasNoUnsignedWrap())
9214       return false;
9215 
9216     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9217     return true;
9218 
9219   case ICmpInst::ICMP_SGT:
9220   case ICmpInst::ICMP_SGE:
9221   case ICmpInst::ICMP_SLT:
9222   case ICmpInst::ICMP_SLE: {
9223     if (!LHS->hasNoSignedWrap())
9224       return false;
9225 
9226     const SCEV *Step = LHS->getStepRecurrence(*this);
9227 
9228     if (isKnownNonNegative(Step)) {
9229       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9230       return true;
9231     }
9232 
9233     if (isKnownNonPositive(Step)) {
9234       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9235       return true;
9236     }
9237 
9238     return false;
9239   }
9240 
9241   }
9242 
9243   llvm_unreachable("switch has default clause!");
9244 }
9245 
9246 bool ScalarEvolution::isLoopInvariantPredicate(
9247     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9248     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9249     const SCEV *&InvariantRHS) {
9250 
9251   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9252   if (!isLoopInvariant(RHS, L)) {
9253     if (!isLoopInvariant(LHS, L))
9254       return false;
9255 
9256     std::swap(LHS, RHS);
9257     Pred = ICmpInst::getSwappedPredicate(Pred);
9258   }
9259 
9260   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9261   if (!ArLHS || ArLHS->getLoop() != L)
9262     return false;
9263 
9264   bool Increasing;
9265   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9266     return false;
9267 
9268   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9269   // true as the loop iterates, and the backedge is control dependent on
9270   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9271   //
9272   //   * if the predicate was false in the first iteration then the predicate
9273   //     is never evaluated again, since the loop exits without taking the
9274   //     backedge.
9275   //   * if the predicate was true in the first iteration then it will
9276   //     continue to be true for all future iterations since it is
9277   //     monotonically increasing.
9278   //
9279   // For both the above possibilities, we can replace the loop varying
9280   // predicate with its value on the first iteration of the loop (which is
9281   // loop invariant).
9282   //
9283   // A similar reasoning applies for a monotonically decreasing predicate, by
9284   // replacing true with false and false with true in the above two bullets.
9285 
9286   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9287 
9288   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9289     return false;
9290 
9291   InvariantPred = Pred;
9292   InvariantLHS = ArLHS->getStart();
9293   InvariantRHS = RHS;
9294   return true;
9295 }
9296 
9297 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9298     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9299   if (HasSameValue(LHS, RHS))
9300     return ICmpInst::isTrueWhenEqual(Pred);
9301 
9302   // This code is split out from isKnownPredicate because it is called from
9303   // within isLoopEntryGuardedByCond.
9304 
9305   auto CheckRanges =
9306       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9307     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9308         .contains(RangeLHS);
9309   };
9310 
9311   // The check at the top of the function catches the case where the values are
9312   // known to be equal.
9313   if (Pred == CmpInst::ICMP_EQ)
9314     return false;
9315 
9316   if (Pred == CmpInst::ICMP_NE)
9317     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9318            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9319            isKnownNonZero(getMinusSCEV(LHS, RHS));
9320 
9321   if (CmpInst::isSigned(Pred))
9322     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9323 
9324   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9325 }
9326 
9327 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9328                                                     const SCEV *LHS,
9329                                                     const SCEV *RHS) {
9330   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9331   // Return Y via OutY.
9332   auto MatchBinaryAddToConst =
9333       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9334              SCEV::NoWrapFlags ExpectedFlags) {
9335     const SCEV *NonConstOp, *ConstOp;
9336     SCEV::NoWrapFlags FlagsPresent;
9337 
9338     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9339         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9340       return false;
9341 
9342     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9343     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9344   };
9345 
9346   APInt C;
9347 
9348   switch (Pred) {
9349   default:
9350     break;
9351 
9352   case ICmpInst::ICMP_SGE:
9353     std::swap(LHS, RHS);
9354     LLVM_FALLTHROUGH;
9355   case ICmpInst::ICMP_SLE:
9356     // X s<= (X + C)<nsw> if C >= 0
9357     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9358       return true;
9359 
9360     // (X + C)<nsw> s<= X if C <= 0
9361     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9362         !C.isStrictlyPositive())
9363       return true;
9364     break;
9365 
9366   case ICmpInst::ICMP_SGT:
9367     std::swap(LHS, RHS);
9368     LLVM_FALLTHROUGH;
9369   case ICmpInst::ICMP_SLT:
9370     // X s< (X + C)<nsw> if C > 0
9371     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9372         C.isStrictlyPositive())
9373       return true;
9374 
9375     // (X + C)<nsw> s< X if C < 0
9376     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9377       return true;
9378     break;
9379   }
9380 
9381   return false;
9382 }
9383 
9384 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9385                                                    const SCEV *LHS,
9386                                                    const SCEV *RHS) {
9387   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9388     return false;
9389 
9390   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9391   // the stack can result in exponential time complexity.
9392   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9393 
9394   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9395   //
9396   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9397   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9398   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9399   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9400   // use isKnownPredicate later if needed.
9401   return isKnownNonNegative(RHS) &&
9402          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9403          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9404 }
9405 
9406 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9407                                         ICmpInst::Predicate Pred,
9408                                         const SCEV *LHS, const SCEV *RHS) {
9409   // No need to even try if we know the module has no guards.
9410   if (!HasGuards)
9411     return false;
9412 
9413   return any_of(*BB, [&](Instruction &I) {
9414     using namespace llvm::PatternMatch;
9415 
9416     Value *Condition;
9417     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9418                          m_Value(Condition))) &&
9419            isImpliedCond(Pred, LHS, RHS, Condition, false);
9420   });
9421 }
9422 
9423 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9424 /// protected by a conditional between LHS and RHS.  This is used to
9425 /// to eliminate casts.
9426 bool
9427 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9428                                              ICmpInst::Predicate Pred,
9429                                              const SCEV *LHS, const SCEV *RHS) {
9430   // Interpret a null as meaning no loop, where there is obviously no guard
9431   // (interprocedural conditions notwithstanding).
9432   if (!L) return true;
9433 
9434   if (VerifyIR)
9435     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9436            "This cannot be done on broken IR!");
9437 
9438 
9439   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9440     return true;
9441 
9442   BasicBlock *Latch = L->getLoopLatch();
9443   if (!Latch)
9444     return false;
9445 
9446   BranchInst *LoopContinuePredicate =
9447     dyn_cast<BranchInst>(Latch->getTerminator());
9448   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9449       isImpliedCond(Pred, LHS, RHS,
9450                     LoopContinuePredicate->getCondition(),
9451                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9452     return true;
9453 
9454   // We don't want more than one activation of the following loops on the stack
9455   // -- that can lead to O(n!) time complexity.
9456   if (WalkingBEDominatingConds)
9457     return false;
9458 
9459   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9460 
9461   // See if we can exploit a trip count to prove the predicate.
9462   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9463   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9464   if (LatchBECount != getCouldNotCompute()) {
9465     // We know that Latch branches back to the loop header exactly
9466     // LatchBECount times.  This means the backdege condition at Latch is
9467     // equivalent to  "{0,+,1} u< LatchBECount".
9468     Type *Ty = LatchBECount->getType();
9469     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9470     const SCEV *LoopCounter =
9471       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9472     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9473                       LatchBECount))
9474       return true;
9475   }
9476 
9477   // Check conditions due to any @llvm.assume intrinsics.
9478   for (auto &AssumeVH : AC.assumptions()) {
9479     if (!AssumeVH)
9480       continue;
9481     auto *CI = cast<CallInst>(AssumeVH);
9482     if (!DT.dominates(CI, Latch->getTerminator()))
9483       continue;
9484 
9485     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9486       return true;
9487   }
9488 
9489   // If the loop is not reachable from the entry block, we risk running into an
9490   // infinite loop as we walk up into the dom tree.  These loops do not matter
9491   // anyway, so we just return a conservative answer when we see them.
9492   if (!DT.isReachableFromEntry(L->getHeader()))
9493     return false;
9494 
9495   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9496     return true;
9497 
9498   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9499        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9500     assert(DTN && "should reach the loop header before reaching the root!");
9501 
9502     BasicBlock *BB = DTN->getBlock();
9503     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9504       return true;
9505 
9506     BasicBlock *PBB = BB->getSinglePredecessor();
9507     if (!PBB)
9508       continue;
9509 
9510     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9511     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9512       continue;
9513 
9514     Value *Condition = ContinuePredicate->getCondition();
9515 
9516     // If we have an edge `E` within the loop body that dominates the only
9517     // latch, the condition guarding `E` also guards the backedge.  This
9518     // reasoning works only for loops with a single latch.
9519 
9520     BasicBlockEdge DominatingEdge(PBB, BB);
9521     if (DominatingEdge.isSingleEdge()) {
9522       // We're constructively (and conservatively) enumerating edges within the
9523       // loop body that dominate the latch.  The dominator tree better agree
9524       // with us on this:
9525       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9526 
9527       if (isImpliedCond(Pred, LHS, RHS, Condition,
9528                         BB != ContinuePredicate->getSuccessor(0)))
9529         return true;
9530     }
9531   }
9532 
9533   return false;
9534 }
9535 
9536 bool
9537 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9538                                           ICmpInst::Predicate Pred,
9539                                           const SCEV *LHS, const SCEV *RHS) {
9540   // Interpret a null as meaning no loop, where there is obviously no guard
9541   // (interprocedural conditions notwithstanding).
9542   if (!L) return false;
9543 
9544   if (VerifyIR)
9545     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9546            "This cannot be done on broken IR!");
9547 
9548   // Both LHS and RHS must be available at loop entry.
9549   assert(isAvailableAtLoopEntry(LHS, L) &&
9550          "LHS is not available at Loop Entry");
9551   assert(isAvailableAtLoopEntry(RHS, L) &&
9552          "RHS is not available at Loop Entry");
9553 
9554   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9555     return true;
9556 
9557   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9558   // the facts (a >= b && a != b) separately. A typical situation is when the
9559   // non-strict comparison is known from ranges and non-equality is known from
9560   // dominating predicates. If we are proving strict comparison, we always try
9561   // to prove non-equality and non-strict comparison separately.
9562   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9563   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9564   bool ProvedNonStrictComparison = false;
9565   bool ProvedNonEquality = false;
9566 
9567   if (ProvingStrictComparison) {
9568     ProvedNonStrictComparison =
9569         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9570     ProvedNonEquality =
9571         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9572     if (ProvedNonStrictComparison && ProvedNonEquality)
9573       return true;
9574   }
9575 
9576   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9577   auto ProveViaGuard = [&](BasicBlock *Block) {
9578     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9579       return true;
9580     if (ProvingStrictComparison) {
9581       if (!ProvedNonStrictComparison)
9582         ProvedNonStrictComparison =
9583             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9584       if (!ProvedNonEquality)
9585         ProvedNonEquality =
9586             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9587       if (ProvedNonStrictComparison && ProvedNonEquality)
9588         return true;
9589     }
9590     return false;
9591   };
9592 
9593   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9594   auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9595     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9596       return true;
9597     if (ProvingStrictComparison) {
9598       if (!ProvedNonStrictComparison)
9599         ProvedNonStrictComparison =
9600             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9601       if (!ProvedNonEquality)
9602         ProvedNonEquality =
9603             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9604       if (ProvedNonStrictComparison && ProvedNonEquality)
9605         return true;
9606     }
9607     return false;
9608   };
9609 
9610   // Starting at the loop predecessor, climb up the predecessor chain, as long
9611   // as there are predecessors that can be found that have unique successors
9612   // leading to the original header.
9613   for (std::pair<BasicBlock *, BasicBlock *>
9614          Pair(L->getLoopPredecessor(), L->getHeader());
9615        Pair.first;
9616        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9617 
9618     if (ProveViaGuard(Pair.first))
9619       return true;
9620 
9621     BranchInst *LoopEntryPredicate =
9622       dyn_cast<BranchInst>(Pair.first->getTerminator());
9623     if (!LoopEntryPredicate ||
9624         LoopEntryPredicate->isUnconditional())
9625       continue;
9626 
9627     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9628                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9629       return true;
9630   }
9631 
9632   // Check conditions due to any @llvm.assume intrinsics.
9633   for (auto &AssumeVH : AC.assumptions()) {
9634     if (!AssumeVH)
9635       continue;
9636     auto *CI = cast<CallInst>(AssumeVH);
9637     if (!DT.dominates(CI, L->getHeader()))
9638       continue;
9639 
9640     if (ProveViaCond(CI->getArgOperand(0), false))
9641       return true;
9642   }
9643 
9644   return false;
9645 }
9646 
9647 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9648                                     const SCEV *LHS, const SCEV *RHS,
9649                                     Value *FoundCondValue,
9650                                     bool Inverse) {
9651   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9652     return false;
9653 
9654   auto ClearOnExit =
9655       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9656 
9657   // Recursively handle And and Or conditions.
9658   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9659     if (BO->getOpcode() == Instruction::And) {
9660       if (!Inverse)
9661         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9662                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9663     } else if (BO->getOpcode() == Instruction::Or) {
9664       if (Inverse)
9665         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9666                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9667     }
9668   }
9669 
9670   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9671   if (!ICI) return false;
9672 
9673   // Now that we found a conditional branch that dominates the loop or controls
9674   // the loop latch. Check to see if it is the comparison we are looking for.
9675   ICmpInst::Predicate FoundPred;
9676   if (Inverse)
9677     FoundPred = ICI->getInversePredicate();
9678   else
9679     FoundPred = ICI->getPredicate();
9680 
9681   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9682   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9683 
9684   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9685 }
9686 
9687 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9688                                     const SCEV *RHS,
9689                                     ICmpInst::Predicate FoundPred,
9690                                     const SCEV *FoundLHS,
9691                                     const SCEV *FoundRHS) {
9692   // Balance the types.
9693   if (getTypeSizeInBits(LHS->getType()) <
9694       getTypeSizeInBits(FoundLHS->getType())) {
9695     if (CmpInst::isSigned(Pred)) {
9696       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9697       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9698     } else {
9699       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9700       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9701     }
9702   } else if (getTypeSizeInBits(LHS->getType()) >
9703       getTypeSizeInBits(FoundLHS->getType())) {
9704     if (CmpInst::isSigned(FoundPred)) {
9705       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9706       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9707     } else {
9708       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9709       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9710     }
9711   }
9712 
9713   // Canonicalize the query to match the way instcombine will have
9714   // canonicalized the comparison.
9715   if (SimplifyICmpOperands(Pred, LHS, RHS))
9716     if (LHS == RHS)
9717       return CmpInst::isTrueWhenEqual(Pred);
9718   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9719     if (FoundLHS == FoundRHS)
9720       return CmpInst::isFalseWhenEqual(FoundPred);
9721 
9722   // Check to see if we can make the LHS or RHS match.
9723   if (LHS == FoundRHS || RHS == FoundLHS) {
9724     if (isa<SCEVConstant>(RHS)) {
9725       std::swap(FoundLHS, FoundRHS);
9726       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9727     } else {
9728       std::swap(LHS, RHS);
9729       Pred = ICmpInst::getSwappedPredicate(Pred);
9730     }
9731   }
9732 
9733   // Check whether the found predicate is the same as the desired predicate.
9734   if (FoundPred == Pred)
9735     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9736 
9737   // Check whether swapping the found predicate makes it the same as the
9738   // desired predicate.
9739   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9740     if (isa<SCEVConstant>(RHS))
9741       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9742     else
9743       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9744                                    RHS, LHS, FoundLHS, FoundRHS);
9745   }
9746 
9747   // Unsigned comparison is the same as signed comparison when both the operands
9748   // are non-negative.
9749   if (CmpInst::isUnsigned(FoundPred) &&
9750       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9751       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9752     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9753 
9754   // Check if we can make progress by sharpening ranges.
9755   if (FoundPred == ICmpInst::ICMP_NE &&
9756       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9757 
9758     const SCEVConstant *C = nullptr;
9759     const SCEV *V = nullptr;
9760 
9761     if (isa<SCEVConstant>(FoundLHS)) {
9762       C = cast<SCEVConstant>(FoundLHS);
9763       V = FoundRHS;
9764     } else {
9765       C = cast<SCEVConstant>(FoundRHS);
9766       V = FoundLHS;
9767     }
9768 
9769     // The guarding predicate tells us that C != V. If the known range
9770     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9771     // range we consider has to correspond to same signedness as the
9772     // predicate we're interested in folding.
9773 
9774     APInt Min = ICmpInst::isSigned(Pred) ?
9775         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9776 
9777     if (Min == C->getAPInt()) {
9778       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9779       // This is true even if (Min + 1) wraps around -- in case of
9780       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9781 
9782       APInt SharperMin = Min + 1;
9783 
9784       switch (Pred) {
9785         case ICmpInst::ICMP_SGE:
9786         case ICmpInst::ICMP_UGE:
9787           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9788           // RHS, we're done.
9789           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9790                                     getConstant(SharperMin)))
9791             return true;
9792           LLVM_FALLTHROUGH;
9793 
9794         case ICmpInst::ICMP_SGT:
9795         case ICmpInst::ICMP_UGT:
9796           // We know from the range information that (V `Pred` Min ||
9797           // V == Min).  We know from the guarding condition that !(V
9798           // == Min).  This gives us
9799           //
9800           //       V `Pred` Min || V == Min && !(V == Min)
9801           //   =>  V `Pred` Min
9802           //
9803           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9804 
9805           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9806             return true;
9807           LLVM_FALLTHROUGH;
9808 
9809         default:
9810           // No change
9811           break;
9812       }
9813     }
9814   }
9815 
9816   // Check whether the actual condition is beyond sufficient.
9817   if (FoundPred == ICmpInst::ICMP_EQ)
9818     if (ICmpInst::isTrueWhenEqual(Pred))
9819       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9820         return true;
9821   if (Pred == ICmpInst::ICMP_NE)
9822     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9823       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9824         return true;
9825 
9826   // Otherwise assume the worst.
9827   return false;
9828 }
9829 
9830 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9831                                      const SCEV *&L, const SCEV *&R,
9832                                      SCEV::NoWrapFlags &Flags) {
9833   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9834   if (!AE || AE->getNumOperands() != 2)
9835     return false;
9836 
9837   L = AE->getOperand(0);
9838   R = AE->getOperand(1);
9839   Flags = AE->getNoWrapFlags();
9840   return true;
9841 }
9842 
9843 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9844                                                            const SCEV *Less) {
9845   // We avoid subtracting expressions here because this function is usually
9846   // fairly deep in the call stack (i.e. is called many times).
9847 
9848   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9849     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9850     const auto *MAR = cast<SCEVAddRecExpr>(More);
9851 
9852     if (LAR->getLoop() != MAR->getLoop())
9853       return None;
9854 
9855     // We look at affine expressions only; not for correctness but to keep
9856     // getStepRecurrence cheap.
9857     if (!LAR->isAffine() || !MAR->isAffine())
9858       return None;
9859 
9860     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9861       return None;
9862 
9863     Less = LAR->getStart();
9864     More = MAR->getStart();
9865 
9866     // fall through
9867   }
9868 
9869   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9870     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9871     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9872     return M - L;
9873   }
9874 
9875   SCEV::NoWrapFlags Flags;
9876   const SCEV *LLess = nullptr, *RLess = nullptr;
9877   const SCEV *LMore = nullptr, *RMore = nullptr;
9878   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9879   // Compare (X + C1) vs X.
9880   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9881     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9882       if (RLess == More)
9883         return -(C1->getAPInt());
9884 
9885   // Compare X vs (X + C2).
9886   if (splitBinaryAdd(More, LMore, RMore, Flags))
9887     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9888       if (RMore == Less)
9889         return C2->getAPInt();
9890 
9891   // Compare (X + C1) vs (X + C2).
9892   if (C1 && C2 && RLess == RMore)
9893     return C2->getAPInt() - C1->getAPInt();
9894 
9895   return None;
9896 }
9897 
9898 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9899     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9900     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9901   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9902     return false;
9903 
9904   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9905   if (!AddRecLHS)
9906     return false;
9907 
9908   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9909   if (!AddRecFoundLHS)
9910     return false;
9911 
9912   // We'd like to let SCEV reason about control dependencies, so we constrain
9913   // both the inequalities to be about add recurrences on the same loop.  This
9914   // way we can use isLoopEntryGuardedByCond later.
9915 
9916   const Loop *L = AddRecFoundLHS->getLoop();
9917   if (L != AddRecLHS->getLoop())
9918     return false;
9919 
9920   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9921   //
9922   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9923   //                                                                  ... (2)
9924   //
9925   // Informal proof for (2), assuming (1) [*]:
9926   //
9927   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9928   //
9929   // Then
9930   //
9931   //       FoundLHS s< FoundRHS s< INT_MIN - C
9932   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9933   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9934   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9935   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9936   // <=>  FoundLHS + C s< FoundRHS + C
9937   //
9938   // [*]: (1) can be proved by ruling out overflow.
9939   //
9940   // [**]: This can be proved by analyzing all the four possibilities:
9941   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9942   //    (A s>= 0, B s>= 0).
9943   //
9944   // Note:
9945   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9946   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9947   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9948   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9949   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9950   // C)".
9951 
9952   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9953   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9954   if (!LDiff || !RDiff || *LDiff != *RDiff)
9955     return false;
9956 
9957   if (LDiff->isMinValue())
9958     return true;
9959 
9960   APInt FoundRHSLimit;
9961 
9962   if (Pred == CmpInst::ICMP_ULT) {
9963     FoundRHSLimit = -(*RDiff);
9964   } else {
9965     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9966     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9967   }
9968 
9969   // Try to prove (1) or (2), as needed.
9970   return isAvailableAtLoopEntry(FoundRHS, L) &&
9971          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9972                                   getConstant(FoundRHSLimit));
9973 }
9974 
9975 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9976                                         const SCEV *LHS, const SCEV *RHS,
9977                                         const SCEV *FoundLHS,
9978                                         const SCEV *FoundRHS, unsigned Depth) {
9979   const PHINode *LPhi = nullptr, *RPhi = nullptr;
9980 
9981   auto ClearOnExit = make_scope_exit([&]() {
9982     if (LPhi) {
9983       bool Erased = PendingMerges.erase(LPhi);
9984       assert(Erased && "Failed to erase LPhi!");
9985       (void)Erased;
9986     }
9987     if (RPhi) {
9988       bool Erased = PendingMerges.erase(RPhi);
9989       assert(Erased && "Failed to erase RPhi!");
9990       (void)Erased;
9991     }
9992   });
9993 
9994   // Find respective Phis and check that they are not being pending.
9995   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9996     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9997       if (!PendingMerges.insert(Phi).second)
9998         return false;
9999       LPhi = Phi;
10000     }
10001   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10002     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10003       // If we detect a loop of Phi nodes being processed by this method, for
10004       // example:
10005       //
10006       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10007       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10008       //
10009       // we don't want to deal with a case that complex, so return conservative
10010       // answer false.
10011       if (!PendingMerges.insert(Phi).second)
10012         return false;
10013       RPhi = Phi;
10014     }
10015 
10016   // If none of LHS, RHS is a Phi, nothing to do here.
10017   if (!LPhi && !RPhi)
10018     return false;
10019 
10020   // If there is a SCEVUnknown Phi we are interested in, make it left.
10021   if (!LPhi) {
10022     std::swap(LHS, RHS);
10023     std::swap(FoundLHS, FoundRHS);
10024     std::swap(LPhi, RPhi);
10025     Pred = ICmpInst::getSwappedPredicate(Pred);
10026   }
10027 
10028   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10029   const BasicBlock *LBB = LPhi->getParent();
10030   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10031 
10032   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10033     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10034            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10035            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10036   };
10037 
10038   if (RPhi && RPhi->getParent() == LBB) {
10039     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10040     // If we compare two Phis from the same block, and for each entry block
10041     // the predicate is true for incoming values from this block, then the
10042     // predicate is also true for the Phis.
10043     for (const BasicBlock *IncBB : predecessors(LBB)) {
10044       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10045       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10046       if (!ProvedEasily(L, R))
10047         return false;
10048     }
10049   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10050     // Case two: RHS is also a Phi from the same basic block, and it is an
10051     // AddRec. It means that there is a loop which has both AddRec and Unknown
10052     // PHIs, for it we can compare incoming values of AddRec from above the loop
10053     // and latch with their respective incoming values of LPhi.
10054     // TODO: Generalize to handle loops with many inputs in a header.
10055     if (LPhi->getNumIncomingValues() != 2) return false;
10056 
10057     auto *RLoop = RAR->getLoop();
10058     auto *Predecessor = RLoop->getLoopPredecessor();
10059     assert(Predecessor && "Loop with AddRec with no predecessor?");
10060     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10061     if (!ProvedEasily(L1, RAR->getStart()))
10062       return false;
10063     auto *Latch = RLoop->getLoopLatch();
10064     assert(Latch && "Loop with AddRec with no latch?");
10065     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10066     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10067       return false;
10068   } else {
10069     // In all other cases go over inputs of LHS and compare each of them to RHS,
10070     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10071     // At this point RHS is either a non-Phi, or it is a Phi from some block
10072     // different from LBB.
10073     for (const BasicBlock *IncBB : predecessors(LBB)) {
10074       // Check that RHS is available in this block.
10075       if (!dominates(RHS, IncBB))
10076         return false;
10077       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10078       if (!ProvedEasily(L, RHS))
10079         return false;
10080     }
10081   }
10082   return true;
10083 }
10084 
10085 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10086                                             const SCEV *LHS, const SCEV *RHS,
10087                                             const SCEV *FoundLHS,
10088                                             const SCEV *FoundRHS) {
10089   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10090     return true;
10091 
10092   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10093     return true;
10094 
10095   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10096                                      FoundLHS, FoundRHS) ||
10097          // ~x < ~y --> x > y
10098          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10099                                      getNotSCEV(FoundRHS),
10100                                      getNotSCEV(FoundLHS));
10101 }
10102 
10103 /// If Expr computes ~A, return A else return nullptr
10104 static const SCEV *MatchNotExpr(const SCEV *Expr) {
10105   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
10106   if (!Add || Add->getNumOperands() != 2 ||
10107       !Add->getOperand(0)->isAllOnesValue())
10108     return nullptr;
10109 
10110   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
10111   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
10112       !AddRHS->getOperand(0)->isAllOnesValue())
10113     return nullptr;
10114 
10115   return AddRHS->getOperand(1);
10116 }
10117 
10118 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
10119 template<typename MaxExprType>
10120 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
10121                               const SCEV *Candidate) {
10122   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
10123   if (!MaxExpr) return false;
10124 
10125   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
10126 }
10127 
10128 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
10129 template<typename MaxExprType>
10130 static bool IsMinConsistingOf(ScalarEvolution &SE,
10131                               const SCEV *MaybeMinExpr,
10132                               const SCEV *Candidate) {
10133   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
10134   if (!MaybeMaxExpr)
10135     return false;
10136 
10137   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
10138 }
10139 
10140 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10141                                            ICmpInst::Predicate Pred,
10142                                            const SCEV *LHS, const SCEV *RHS) {
10143   // If both sides are affine addrecs for the same loop, with equal
10144   // steps, and we know the recurrences don't wrap, then we only
10145   // need to check the predicate on the starting values.
10146 
10147   if (!ICmpInst::isRelational(Pred))
10148     return false;
10149 
10150   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10151   if (!LAR)
10152     return false;
10153   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10154   if (!RAR)
10155     return false;
10156   if (LAR->getLoop() != RAR->getLoop())
10157     return false;
10158   if (!LAR->isAffine() || !RAR->isAffine())
10159     return false;
10160 
10161   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10162     return false;
10163 
10164   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10165                          SCEV::FlagNSW : SCEV::FlagNUW;
10166   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10167     return false;
10168 
10169   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10170 }
10171 
10172 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10173 /// expression?
10174 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10175                                         ICmpInst::Predicate Pred,
10176                                         const SCEV *LHS, const SCEV *RHS) {
10177   switch (Pred) {
10178   default:
10179     return false;
10180 
10181   case ICmpInst::ICMP_SGE:
10182     std::swap(LHS, RHS);
10183     LLVM_FALLTHROUGH;
10184   case ICmpInst::ICMP_SLE:
10185     return
10186       // min(A, ...) <= A
10187       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
10188       // A <= max(A, ...)
10189       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10190 
10191   case ICmpInst::ICMP_UGE:
10192     std::swap(LHS, RHS);
10193     LLVM_FALLTHROUGH;
10194   case ICmpInst::ICMP_ULE:
10195     return
10196       // min(A, ...) <= A
10197       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
10198       // A <= max(A, ...)
10199       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10200   }
10201 
10202   llvm_unreachable("covered switch fell through?!");
10203 }
10204 
10205 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10206                                              const SCEV *LHS, const SCEV *RHS,
10207                                              const SCEV *FoundLHS,
10208                                              const SCEV *FoundRHS,
10209                                              unsigned Depth) {
10210   assert(getTypeSizeInBits(LHS->getType()) ==
10211              getTypeSizeInBits(RHS->getType()) &&
10212          "LHS and RHS have different sizes?");
10213   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10214              getTypeSizeInBits(FoundRHS->getType()) &&
10215          "FoundLHS and FoundRHS have different sizes?");
10216   // We want to avoid hurting the compile time with analysis of too big trees.
10217   if (Depth > MaxSCEVOperationsImplicationDepth)
10218     return false;
10219   // We only want to work with ICMP_SGT comparison so far.
10220   // TODO: Extend to ICMP_UGT?
10221   if (Pred == ICmpInst::ICMP_SLT) {
10222     Pred = ICmpInst::ICMP_SGT;
10223     std::swap(LHS, RHS);
10224     std::swap(FoundLHS, FoundRHS);
10225   }
10226   if (Pred != ICmpInst::ICMP_SGT)
10227     return false;
10228 
10229   auto GetOpFromSExt = [&](const SCEV *S) {
10230     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10231       return Ext->getOperand();
10232     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10233     // the constant in some cases.
10234     return S;
10235   };
10236 
10237   // Acquire values from extensions.
10238   auto *OrigLHS = LHS;
10239   auto *OrigFoundLHS = FoundLHS;
10240   LHS = GetOpFromSExt(LHS);
10241   FoundLHS = GetOpFromSExt(FoundLHS);
10242 
10243   // Is the SGT predicate can be proved trivially or using the found context.
10244   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10245     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10246            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10247                                   FoundRHS, Depth + 1);
10248   };
10249 
10250   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10251     // We want to avoid creation of any new non-constant SCEV. Since we are
10252     // going to compare the operands to RHS, we should be certain that we don't
10253     // need any size extensions for this. So let's decline all cases when the
10254     // sizes of types of LHS and RHS do not match.
10255     // TODO: Maybe try to get RHS from sext to catch more cases?
10256     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10257       return false;
10258 
10259     // Should not overflow.
10260     if (!LHSAddExpr->hasNoSignedWrap())
10261       return false;
10262 
10263     auto *LL = LHSAddExpr->getOperand(0);
10264     auto *LR = LHSAddExpr->getOperand(1);
10265     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10266 
10267     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10268     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10269       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10270     };
10271     // Try to prove the following rule:
10272     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10273     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10274     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10275       return true;
10276   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10277     Value *LL, *LR;
10278     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10279 
10280     using namespace llvm::PatternMatch;
10281 
10282     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10283       // Rules for division.
10284       // We are going to perform some comparisons with Denominator and its
10285       // derivative expressions. In general case, creating a SCEV for it may
10286       // lead to a complex analysis of the entire graph, and in particular it
10287       // can request trip count recalculation for the same loop. This would
10288       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10289       // this, we only want to create SCEVs that are constants in this section.
10290       // So we bail if Denominator is not a constant.
10291       if (!isa<ConstantInt>(LR))
10292         return false;
10293 
10294       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10295 
10296       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10297       // then a SCEV for the numerator already exists and matches with FoundLHS.
10298       auto *Numerator = getExistingSCEV(LL);
10299       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10300         return false;
10301 
10302       // Make sure that the numerator matches with FoundLHS and the denominator
10303       // is positive.
10304       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10305         return false;
10306 
10307       auto *DTy = Denominator->getType();
10308       auto *FRHSTy = FoundRHS->getType();
10309       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10310         // One of types is a pointer and another one is not. We cannot extend
10311         // them properly to a wider type, so let us just reject this case.
10312         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10313         // to avoid this check.
10314         return false;
10315 
10316       // Given that:
10317       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10318       auto *WTy = getWiderType(DTy, FRHSTy);
10319       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10320       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10321 
10322       // Try to prove the following rule:
10323       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10324       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10325       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10326       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10327       if (isKnownNonPositive(RHS) &&
10328           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10329         return true;
10330 
10331       // Try to prove the following rule:
10332       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10333       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10334       // If we divide it by Denominator > 2, then:
10335       // 1. If FoundLHS is negative, then the result is 0.
10336       // 2. If FoundLHS is non-negative, then the result is non-negative.
10337       // Anyways, the result is non-negative.
10338       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10339       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10340       if (isKnownNegative(RHS) &&
10341           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10342         return true;
10343     }
10344   }
10345 
10346   // If our expression contained SCEVUnknown Phis, and we split it down and now
10347   // need to prove something for them, try to prove the predicate for every
10348   // possible incoming values of those Phis.
10349   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10350     return true;
10351 
10352   return false;
10353 }
10354 
10355 bool
10356 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10357                                            const SCEV *LHS, const SCEV *RHS) {
10358   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10359          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10360          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10361          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10362 }
10363 
10364 bool
10365 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10366                                              const SCEV *LHS, const SCEV *RHS,
10367                                              const SCEV *FoundLHS,
10368                                              const SCEV *FoundRHS) {
10369   switch (Pred) {
10370   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10371   case ICmpInst::ICMP_EQ:
10372   case ICmpInst::ICMP_NE:
10373     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10374       return true;
10375     break;
10376   case ICmpInst::ICMP_SLT:
10377   case ICmpInst::ICMP_SLE:
10378     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10379         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10380       return true;
10381     break;
10382   case ICmpInst::ICMP_SGT:
10383   case ICmpInst::ICMP_SGE:
10384     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10385         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10386       return true;
10387     break;
10388   case ICmpInst::ICMP_ULT:
10389   case ICmpInst::ICMP_ULE:
10390     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10391         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10392       return true;
10393     break;
10394   case ICmpInst::ICMP_UGT:
10395   case ICmpInst::ICMP_UGE:
10396     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10397         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10398       return true;
10399     break;
10400   }
10401 
10402   // Maybe it can be proved via operations?
10403   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10404     return true;
10405 
10406   return false;
10407 }
10408 
10409 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10410                                                      const SCEV *LHS,
10411                                                      const SCEV *RHS,
10412                                                      const SCEV *FoundLHS,
10413                                                      const SCEV *FoundRHS) {
10414   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10415     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10416     // reduce the compile time impact of this optimization.
10417     return false;
10418 
10419   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10420   if (!Addend)
10421     return false;
10422 
10423   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10424 
10425   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10426   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10427   ConstantRange FoundLHSRange =
10428       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10429 
10430   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10431   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10432 
10433   // We can also compute the range of values for `LHS` that satisfy the
10434   // consequent, "`LHS` `Pred` `RHS`":
10435   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10436   ConstantRange SatisfyingLHSRange =
10437       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10438 
10439   // The antecedent implies the consequent if every value of `LHS` that
10440   // satisfies the antecedent also satisfies the consequent.
10441   return SatisfyingLHSRange.contains(LHSRange);
10442 }
10443 
10444 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10445                                          bool IsSigned, bool NoWrap) {
10446   assert(isKnownPositive(Stride) && "Positive stride expected!");
10447 
10448   if (NoWrap) return false;
10449 
10450   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10451   const SCEV *One = getOne(Stride->getType());
10452 
10453   if (IsSigned) {
10454     APInt MaxRHS = getSignedRangeMax(RHS);
10455     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10456     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10457 
10458     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10459     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10460   }
10461 
10462   APInt MaxRHS = getUnsignedRangeMax(RHS);
10463   APInt MaxValue = APInt::getMaxValue(BitWidth);
10464   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10465 
10466   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10467   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10468 }
10469 
10470 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10471                                          bool IsSigned, bool NoWrap) {
10472   if (NoWrap) return false;
10473 
10474   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10475   const SCEV *One = getOne(Stride->getType());
10476 
10477   if (IsSigned) {
10478     APInt MinRHS = getSignedRangeMin(RHS);
10479     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10480     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10481 
10482     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10483     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10484   }
10485 
10486   APInt MinRHS = getUnsignedRangeMin(RHS);
10487   APInt MinValue = APInt::getMinValue(BitWidth);
10488   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10489 
10490   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10491   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10492 }
10493 
10494 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10495                                             bool Equality) {
10496   const SCEV *One = getOne(Step->getType());
10497   Delta = Equality ? getAddExpr(Delta, Step)
10498                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10499   return getUDivExpr(Delta, Step);
10500 }
10501 
10502 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10503                                                     const SCEV *Stride,
10504                                                     const SCEV *End,
10505                                                     unsigned BitWidth,
10506                                                     bool IsSigned) {
10507 
10508   assert(!isKnownNonPositive(Stride) &&
10509          "Stride is expected strictly positive!");
10510   // Calculate the maximum backedge count based on the range of values
10511   // permitted by Start, End, and Stride.
10512   const SCEV *MaxBECount;
10513   APInt MinStart =
10514       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10515 
10516   APInt StrideForMaxBECount =
10517       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10518 
10519   // We already know that the stride is positive, so we paper over conservatism
10520   // in our range computation by forcing StrideForMaxBECount to be at least one.
10521   // In theory this is unnecessary, but we expect MaxBECount to be a
10522   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10523   // is nothing to constant fold it to).
10524   APInt One(BitWidth, 1, IsSigned);
10525   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10526 
10527   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10528                             : APInt::getMaxValue(BitWidth);
10529   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10530 
10531   // Although End can be a MAX expression we estimate MaxEnd considering only
10532   // the case End = RHS of the loop termination condition. This is safe because
10533   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10534   // taken count.
10535   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10536                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10537 
10538   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10539                               getConstant(StrideForMaxBECount) /* Step */,
10540                               false /* Equality */);
10541 
10542   return MaxBECount;
10543 }
10544 
10545 ScalarEvolution::ExitLimit
10546 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10547                                   const Loop *L, bool IsSigned,
10548                                   bool ControlsExit, bool AllowPredicates) {
10549   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10550 
10551   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10552   bool PredicatedIV = false;
10553 
10554   if (!IV && AllowPredicates) {
10555     // Try to make this an AddRec using runtime tests, in the first X
10556     // iterations of this loop, where X is the SCEV expression found by the
10557     // algorithm below.
10558     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10559     PredicatedIV = true;
10560   }
10561 
10562   // Avoid weird loops
10563   if (!IV || IV->getLoop() != L || !IV->isAffine())
10564     return getCouldNotCompute();
10565 
10566   bool NoWrap = ControlsExit &&
10567                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10568 
10569   const SCEV *Stride = IV->getStepRecurrence(*this);
10570 
10571   bool PositiveStride = isKnownPositive(Stride);
10572 
10573   // Avoid negative or zero stride values.
10574   if (!PositiveStride) {
10575     // We can compute the correct backedge taken count for loops with unknown
10576     // strides if we can prove that the loop is not an infinite loop with side
10577     // effects. Here's the loop structure we are trying to handle -
10578     //
10579     // i = start
10580     // do {
10581     //   A[i] = i;
10582     //   i += s;
10583     // } while (i < end);
10584     //
10585     // The backedge taken count for such loops is evaluated as -
10586     // (max(end, start + stride) - start - 1) /u stride
10587     //
10588     // The additional preconditions that we need to check to prove correctness
10589     // of the above formula is as follows -
10590     //
10591     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10592     //    NoWrap flag).
10593     // b) loop is single exit with no side effects.
10594     //
10595     //
10596     // Precondition a) implies that if the stride is negative, this is a single
10597     // trip loop. The backedge taken count formula reduces to zero in this case.
10598     //
10599     // Precondition b) implies that the unknown stride cannot be zero otherwise
10600     // we have UB.
10601     //
10602     // The positive stride case is the same as isKnownPositive(Stride) returning
10603     // true (original behavior of the function).
10604     //
10605     // We want to make sure that the stride is truly unknown as there are edge
10606     // cases where ScalarEvolution propagates no wrap flags to the
10607     // post-increment/decrement IV even though the increment/decrement operation
10608     // itself is wrapping. The computed backedge taken count may be wrong in
10609     // such cases. This is prevented by checking that the stride is not known to
10610     // be either positive or non-positive. For example, no wrap flags are
10611     // propagated to the post-increment IV of this loop with a trip count of 2 -
10612     //
10613     // unsigned char i;
10614     // for(i=127; i<128; i+=129)
10615     //   A[i] = i;
10616     //
10617     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10618         !loopHasNoSideEffects(L))
10619       return getCouldNotCompute();
10620   } else if (!Stride->isOne() &&
10621              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10622     // Avoid proven overflow cases: this will ensure that the backedge taken
10623     // count will not generate any unsigned overflow. Relaxed no-overflow
10624     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10625     // undefined behaviors like the case of C language.
10626     return getCouldNotCompute();
10627 
10628   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10629                                       : ICmpInst::ICMP_ULT;
10630   const SCEV *Start = IV->getStart();
10631   const SCEV *End = RHS;
10632   // When the RHS is not invariant, we do not know the end bound of the loop and
10633   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10634   // calculate the MaxBECount, given the start, stride and max value for the end
10635   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10636   // checked above).
10637   if (!isLoopInvariant(RHS, L)) {
10638     const SCEV *MaxBECount = computeMaxBECountForLT(
10639         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10640     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10641                      false /*MaxOrZero*/, Predicates);
10642   }
10643   // If the backedge is taken at least once, then it will be taken
10644   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10645   // is the LHS value of the less-than comparison the first time it is evaluated
10646   // and End is the RHS.
10647   const SCEV *BECountIfBackedgeTaken =
10648     computeBECount(getMinusSCEV(End, Start), Stride, false);
10649   // If the loop entry is guarded by the result of the backedge test of the
10650   // first loop iteration, then we know the backedge will be taken at least
10651   // once and so the backedge taken count is as above. If not then we use the
10652   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10653   // as if the backedge is taken at least once max(End,Start) is End and so the
10654   // result is as above, and if not max(End,Start) is Start so we get a backedge
10655   // count of zero.
10656   const SCEV *BECount;
10657   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10658     BECount = BECountIfBackedgeTaken;
10659   else {
10660     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10661     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10662   }
10663 
10664   const SCEV *MaxBECount;
10665   bool MaxOrZero = false;
10666   if (isa<SCEVConstant>(BECount))
10667     MaxBECount = BECount;
10668   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10669     // If we know exactly how many times the backedge will be taken if it's
10670     // taken at least once, then the backedge count will either be that or
10671     // zero.
10672     MaxBECount = BECountIfBackedgeTaken;
10673     MaxOrZero = true;
10674   } else {
10675     MaxBECount = computeMaxBECountForLT(
10676         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10677   }
10678 
10679   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10680       !isa<SCEVCouldNotCompute>(BECount))
10681     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10682 
10683   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10684 }
10685 
10686 ScalarEvolution::ExitLimit
10687 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10688                                      const Loop *L, bool IsSigned,
10689                                      bool ControlsExit, bool AllowPredicates) {
10690   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10691   // We handle only IV > Invariant
10692   if (!isLoopInvariant(RHS, L))
10693     return getCouldNotCompute();
10694 
10695   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10696   if (!IV && AllowPredicates)
10697     // Try to make this an AddRec using runtime tests, in the first X
10698     // iterations of this loop, where X is the SCEV expression found by the
10699     // algorithm below.
10700     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10701 
10702   // Avoid weird loops
10703   if (!IV || IV->getLoop() != L || !IV->isAffine())
10704     return getCouldNotCompute();
10705 
10706   bool NoWrap = ControlsExit &&
10707                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10708 
10709   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10710 
10711   // Avoid negative or zero stride values
10712   if (!isKnownPositive(Stride))
10713     return getCouldNotCompute();
10714 
10715   // Avoid proven overflow cases: this will ensure that the backedge taken count
10716   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10717   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10718   // behaviors like the case of C language.
10719   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10720     return getCouldNotCompute();
10721 
10722   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10723                                       : ICmpInst::ICMP_UGT;
10724 
10725   const SCEV *Start = IV->getStart();
10726   const SCEV *End = RHS;
10727   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10728     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10729 
10730   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10731 
10732   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10733                             : getUnsignedRangeMax(Start);
10734 
10735   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10736                              : getUnsignedRangeMin(Stride);
10737 
10738   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10739   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10740                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10741 
10742   // Although End can be a MIN expression we estimate MinEnd considering only
10743   // the case End = RHS. This is safe because in the other case (Start - End)
10744   // is zero, leading to a zero maximum backedge taken count.
10745   APInt MinEnd =
10746     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10747              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10748 
10749 
10750   const SCEV *MaxBECount = getCouldNotCompute();
10751   if (isa<SCEVConstant>(BECount))
10752     MaxBECount = BECount;
10753   else
10754     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
10755                                 getConstant(MinStride), false);
10756 
10757   if (isa<SCEVCouldNotCompute>(MaxBECount))
10758     MaxBECount = BECount;
10759 
10760   return ExitLimit(BECount, MaxBECount, false, Predicates);
10761 }
10762 
10763 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10764                                                     ScalarEvolution &SE) const {
10765   if (Range.isFullSet())  // Infinite loop.
10766     return SE.getCouldNotCompute();
10767 
10768   // If the start is a non-zero constant, shift the range to simplify things.
10769   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10770     if (!SC->getValue()->isZero()) {
10771       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10772       Operands[0] = SE.getZero(SC->getType());
10773       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10774                                              getNoWrapFlags(FlagNW));
10775       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10776         return ShiftedAddRec->getNumIterationsInRange(
10777             Range.subtract(SC->getAPInt()), SE);
10778       // This is strange and shouldn't happen.
10779       return SE.getCouldNotCompute();
10780     }
10781 
10782   // The only time we can solve this is when we have all constant indices.
10783   // Otherwise, we cannot determine the overflow conditions.
10784   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10785     return SE.getCouldNotCompute();
10786 
10787   // Okay at this point we know that all elements of the chrec are constants and
10788   // that the start element is zero.
10789 
10790   // First check to see if the range contains zero.  If not, the first
10791   // iteration exits.
10792   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10793   if (!Range.contains(APInt(BitWidth, 0)))
10794     return SE.getZero(getType());
10795 
10796   if (isAffine()) {
10797     // If this is an affine expression then we have this situation:
10798     //   Solve {0,+,A} in Range  ===  Ax in Range
10799 
10800     // We know that zero is in the range.  If A is positive then we know that
10801     // the upper value of the range must be the first possible exit value.
10802     // If A is negative then the lower of the range is the last possible loop
10803     // value.  Also note that we already checked for a full range.
10804     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10805     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10806 
10807     // The exit value should be (End+A)/A.
10808     APInt ExitVal = (End + A).udiv(A);
10809     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10810 
10811     // Evaluate at the exit value.  If we really did fall out of the valid
10812     // range, then we computed our trip count, otherwise wrap around or other
10813     // things must have happened.
10814     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10815     if (Range.contains(Val->getValue()))
10816       return SE.getCouldNotCompute();  // Something strange happened
10817 
10818     // Ensure that the previous value is in the range.  This is a sanity check.
10819     assert(Range.contains(
10820            EvaluateConstantChrecAtConstant(this,
10821            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10822            "Linear scev computation is off in a bad way!");
10823     return SE.getConstant(ExitValue);
10824   }
10825 
10826   if (isQuadratic()) {
10827     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10828       return SE.getConstant(S.getValue());
10829   }
10830 
10831   return SE.getCouldNotCompute();
10832 }
10833 
10834 const SCEVAddRecExpr *
10835 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10836   assert(getNumOperands() > 1 && "AddRec with zero step?");
10837   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10838   // but in this case we cannot guarantee that the value returned will be an
10839   // AddRec because SCEV does not have a fixed point where it stops
10840   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10841   // may happen if we reach arithmetic depth limit while simplifying. So we
10842   // construct the returned value explicitly.
10843   SmallVector<const SCEV *, 3> Ops;
10844   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10845   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10846   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10847     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10848   // We know that the last operand is not a constant zero (otherwise it would
10849   // have been popped out earlier). This guarantees us that if the result has
10850   // the same last operand, then it will also not be popped out, meaning that
10851   // the returned value will be an AddRec.
10852   const SCEV *Last = getOperand(getNumOperands() - 1);
10853   assert(!Last->isZero() && "Recurrency with zero step?");
10854   Ops.push_back(Last);
10855   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10856                                                SCEV::FlagAnyWrap));
10857 }
10858 
10859 // Return true when S contains at least an undef value.
10860 static inline bool containsUndefs(const SCEV *S) {
10861   return SCEVExprContains(S, [](const SCEV *S) {
10862     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10863       return isa<UndefValue>(SU->getValue());
10864     return false;
10865   });
10866 }
10867 
10868 namespace {
10869 
10870 // Collect all steps of SCEV expressions.
10871 struct SCEVCollectStrides {
10872   ScalarEvolution &SE;
10873   SmallVectorImpl<const SCEV *> &Strides;
10874 
10875   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10876       : SE(SE), Strides(S) {}
10877 
10878   bool follow(const SCEV *S) {
10879     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10880       Strides.push_back(AR->getStepRecurrence(SE));
10881     return true;
10882   }
10883 
10884   bool isDone() const { return false; }
10885 };
10886 
10887 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10888 struct SCEVCollectTerms {
10889   SmallVectorImpl<const SCEV *> &Terms;
10890 
10891   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10892 
10893   bool follow(const SCEV *S) {
10894     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10895         isa<SCEVSignExtendExpr>(S)) {
10896       if (!containsUndefs(S))
10897         Terms.push_back(S);
10898 
10899       // Stop recursion: once we collected a term, do not walk its operands.
10900       return false;
10901     }
10902 
10903     // Keep looking.
10904     return true;
10905   }
10906 
10907   bool isDone() const { return false; }
10908 };
10909 
10910 // Check if a SCEV contains an AddRecExpr.
10911 struct SCEVHasAddRec {
10912   bool &ContainsAddRec;
10913 
10914   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10915     ContainsAddRec = false;
10916   }
10917 
10918   bool follow(const SCEV *S) {
10919     if (isa<SCEVAddRecExpr>(S)) {
10920       ContainsAddRec = true;
10921 
10922       // Stop recursion: once we collected a term, do not walk its operands.
10923       return false;
10924     }
10925 
10926     // Keep looking.
10927     return true;
10928   }
10929 
10930   bool isDone() const { return false; }
10931 };
10932 
10933 // Find factors that are multiplied with an expression that (possibly as a
10934 // subexpression) contains an AddRecExpr. In the expression:
10935 //
10936 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10937 //
10938 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10939 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10940 // parameters as they form a product with an induction variable.
10941 //
10942 // This collector expects all array size parameters to be in the same MulExpr.
10943 // It might be necessary to later add support for collecting parameters that are
10944 // spread over different nested MulExpr.
10945 struct SCEVCollectAddRecMultiplies {
10946   SmallVectorImpl<const SCEV *> &Terms;
10947   ScalarEvolution &SE;
10948 
10949   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10950       : Terms(T), SE(SE) {}
10951 
10952   bool follow(const SCEV *S) {
10953     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10954       bool HasAddRec = false;
10955       SmallVector<const SCEV *, 0> Operands;
10956       for (auto Op : Mul->operands()) {
10957         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10958         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10959           Operands.push_back(Op);
10960         } else if (Unknown) {
10961           HasAddRec = true;
10962         } else {
10963           bool ContainsAddRec;
10964           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10965           visitAll(Op, ContiansAddRec);
10966           HasAddRec |= ContainsAddRec;
10967         }
10968       }
10969       if (Operands.size() == 0)
10970         return true;
10971 
10972       if (!HasAddRec)
10973         return false;
10974 
10975       Terms.push_back(SE.getMulExpr(Operands));
10976       // Stop recursion: once we collected a term, do not walk its operands.
10977       return false;
10978     }
10979 
10980     // Keep looking.
10981     return true;
10982   }
10983 
10984   bool isDone() const { return false; }
10985 };
10986 
10987 } // end anonymous namespace
10988 
10989 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10990 /// two places:
10991 ///   1) The strides of AddRec expressions.
10992 ///   2) Unknowns that are multiplied with AddRec expressions.
10993 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10994     SmallVectorImpl<const SCEV *> &Terms) {
10995   SmallVector<const SCEV *, 4> Strides;
10996   SCEVCollectStrides StrideCollector(*this, Strides);
10997   visitAll(Expr, StrideCollector);
10998 
10999   LLVM_DEBUG({
11000     dbgs() << "Strides:\n";
11001     for (const SCEV *S : Strides)
11002       dbgs() << *S << "\n";
11003   });
11004 
11005   for (const SCEV *S : Strides) {
11006     SCEVCollectTerms TermCollector(Terms);
11007     visitAll(S, TermCollector);
11008   }
11009 
11010   LLVM_DEBUG({
11011     dbgs() << "Terms:\n";
11012     for (const SCEV *T : Terms)
11013       dbgs() << *T << "\n";
11014   });
11015 
11016   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11017   visitAll(Expr, MulCollector);
11018 }
11019 
11020 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11021                                    SmallVectorImpl<const SCEV *> &Terms,
11022                                    SmallVectorImpl<const SCEV *> &Sizes) {
11023   int Last = Terms.size() - 1;
11024   const SCEV *Step = Terms[Last];
11025 
11026   // End of recursion.
11027   if (Last == 0) {
11028     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11029       SmallVector<const SCEV *, 2> Qs;
11030       for (const SCEV *Op : M->operands())
11031         if (!isa<SCEVConstant>(Op))
11032           Qs.push_back(Op);
11033 
11034       Step = SE.getMulExpr(Qs);
11035     }
11036 
11037     Sizes.push_back(Step);
11038     return true;
11039   }
11040 
11041   for (const SCEV *&Term : Terms) {
11042     // Normalize the terms before the next call to findArrayDimensionsRec.
11043     const SCEV *Q, *R;
11044     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11045 
11046     // Bail out when GCD does not evenly divide one of the terms.
11047     if (!R->isZero())
11048       return false;
11049 
11050     Term = Q;
11051   }
11052 
11053   // Remove all SCEVConstants.
11054   Terms.erase(
11055       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11056       Terms.end());
11057 
11058   if (Terms.size() > 0)
11059     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11060       return false;
11061 
11062   Sizes.push_back(Step);
11063   return true;
11064 }
11065 
11066 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11067 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11068   for (const SCEV *T : Terms)
11069     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11070       return true;
11071   return false;
11072 }
11073 
11074 // Return the number of product terms in S.
11075 static inline int numberOfTerms(const SCEV *S) {
11076   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11077     return Expr->getNumOperands();
11078   return 1;
11079 }
11080 
11081 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11082   if (isa<SCEVConstant>(T))
11083     return nullptr;
11084 
11085   if (isa<SCEVUnknown>(T))
11086     return T;
11087 
11088   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11089     SmallVector<const SCEV *, 2> Factors;
11090     for (const SCEV *Op : M->operands())
11091       if (!isa<SCEVConstant>(Op))
11092         Factors.push_back(Op);
11093 
11094     return SE.getMulExpr(Factors);
11095   }
11096 
11097   return T;
11098 }
11099 
11100 /// Return the size of an element read or written by Inst.
11101 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11102   Type *Ty;
11103   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11104     Ty = Store->getValueOperand()->getType();
11105   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11106     Ty = Load->getType();
11107   else
11108     return nullptr;
11109 
11110   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11111   return getSizeOfExpr(ETy, Ty);
11112 }
11113 
11114 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11115                                           SmallVectorImpl<const SCEV *> &Sizes,
11116                                           const SCEV *ElementSize) {
11117   if (Terms.size() < 1 || !ElementSize)
11118     return;
11119 
11120   // Early return when Terms do not contain parameters: we do not delinearize
11121   // non parametric SCEVs.
11122   if (!containsParameters(Terms))
11123     return;
11124 
11125   LLVM_DEBUG({
11126     dbgs() << "Terms:\n";
11127     for (const SCEV *T : Terms)
11128       dbgs() << *T << "\n";
11129   });
11130 
11131   // Remove duplicates.
11132   array_pod_sort(Terms.begin(), Terms.end());
11133   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11134 
11135   // Put larger terms first.
11136   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11137     return numberOfTerms(LHS) > numberOfTerms(RHS);
11138   });
11139 
11140   // Try to divide all terms by the element size. If term is not divisible by
11141   // element size, proceed with the original term.
11142   for (const SCEV *&Term : Terms) {
11143     const SCEV *Q, *R;
11144     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11145     if (!Q->isZero())
11146       Term = Q;
11147   }
11148 
11149   SmallVector<const SCEV *, 4> NewTerms;
11150 
11151   // Remove constant factors.
11152   for (const SCEV *T : Terms)
11153     if (const SCEV *NewT = removeConstantFactors(*this, T))
11154       NewTerms.push_back(NewT);
11155 
11156   LLVM_DEBUG({
11157     dbgs() << "Terms after sorting:\n";
11158     for (const SCEV *T : NewTerms)
11159       dbgs() << *T << "\n";
11160   });
11161 
11162   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11163     Sizes.clear();
11164     return;
11165   }
11166 
11167   // The last element to be pushed into Sizes is the size of an element.
11168   Sizes.push_back(ElementSize);
11169 
11170   LLVM_DEBUG({
11171     dbgs() << "Sizes:\n";
11172     for (const SCEV *S : Sizes)
11173       dbgs() << *S << "\n";
11174   });
11175 }
11176 
11177 void ScalarEvolution::computeAccessFunctions(
11178     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11179     SmallVectorImpl<const SCEV *> &Sizes) {
11180   // Early exit in case this SCEV is not an affine multivariate function.
11181   if (Sizes.empty())
11182     return;
11183 
11184   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11185     if (!AR->isAffine())
11186       return;
11187 
11188   const SCEV *Res = Expr;
11189   int Last = Sizes.size() - 1;
11190   for (int i = Last; i >= 0; i--) {
11191     const SCEV *Q, *R;
11192     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11193 
11194     LLVM_DEBUG({
11195       dbgs() << "Res: " << *Res << "\n";
11196       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11197       dbgs() << "Res divided by Sizes[i]:\n";
11198       dbgs() << "Quotient: " << *Q << "\n";
11199       dbgs() << "Remainder: " << *R << "\n";
11200     });
11201 
11202     Res = Q;
11203 
11204     // Do not record the last subscript corresponding to the size of elements in
11205     // the array.
11206     if (i == Last) {
11207 
11208       // Bail out if the remainder is too complex.
11209       if (isa<SCEVAddRecExpr>(R)) {
11210         Subscripts.clear();
11211         Sizes.clear();
11212         return;
11213       }
11214 
11215       continue;
11216     }
11217 
11218     // Record the access function for the current subscript.
11219     Subscripts.push_back(R);
11220   }
11221 
11222   // Also push in last position the remainder of the last division: it will be
11223   // the access function of the innermost dimension.
11224   Subscripts.push_back(Res);
11225 
11226   std::reverse(Subscripts.begin(), Subscripts.end());
11227 
11228   LLVM_DEBUG({
11229     dbgs() << "Subscripts:\n";
11230     for (const SCEV *S : Subscripts)
11231       dbgs() << *S << "\n";
11232   });
11233 }
11234 
11235 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11236 /// sizes of an array access. Returns the remainder of the delinearization that
11237 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11238 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11239 /// expressions in the stride and base of a SCEV corresponding to the
11240 /// computation of a GCD (greatest common divisor) of base and stride.  When
11241 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11242 ///
11243 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11244 ///
11245 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11246 ///
11247 ///    for (long i = 0; i < n; i++)
11248 ///      for (long j = 0; j < m; j++)
11249 ///        for (long k = 0; k < o; k++)
11250 ///          A[i][j][k] = 1.0;
11251 ///  }
11252 ///
11253 /// the delinearization input is the following AddRec SCEV:
11254 ///
11255 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11256 ///
11257 /// From this SCEV, we are able to say that the base offset of the access is %A
11258 /// because it appears as an offset that does not divide any of the strides in
11259 /// the loops:
11260 ///
11261 ///  CHECK: Base offset: %A
11262 ///
11263 /// and then SCEV->delinearize determines the size of some of the dimensions of
11264 /// the array as these are the multiples by which the strides are happening:
11265 ///
11266 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11267 ///
11268 /// Note that the outermost dimension remains of UnknownSize because there are
11269 /// no strides that would help identifying the size of the last dimension: when
11270 /// the array has been statically allocated, one could compute the size of that
11271 /// dimension by dividing the overall size of the array by the size of the known
11272 /// dimensions: %m * %o * 8.
11273 ///
11274 /// Finally delinearize provides the access functions for the array reference
11275 /// that does correspond to A[i][j][k] of the above C testcase:
11276 ///
11277 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11278 ///
11279 /// The testcases are checking the output of a function pass:
11280 /// DelinearizationPass that walks through all loads and stores of a function
11281 /// asking for the SCEV of the memory access with respect to all enclosing
11282 /// loops, calling SCEV->delinearize on that and printing the results.
11283 void ScalarEvolution::delinearize(const SCEV *Expr,
11284                                  SmallVectorImpl<const SCEV *> &Subscripts,
11285                                  SmallVectorImpl<const SCEV *> &Sizes,
11286                                  const SCEV *ElementSize) {
11287   // First step: collect parametric terms.
11288   SmallVector<const SCEV *, 4> Terms;
11289   collectParametricTerms(Expr, Terms);
11290 
11291   if (Terms.empty())
11292     return;
11293 
11294   // Second step: find subscript sizes.
11295   findArrayDimensions(Terms, Sizes, ElementSize);
11296 
11297   if (Sizes.empty())
11298     return;
11299 
11300   // Third step: compute the access functions for each subscript.
11301   computeAccessFunctions(Expr, Subscripts, Sizes);
11302 
11303   if (Subscripts.empty())
11304     return;
11305 
11306   LLVM_DEBUG({
11307     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11308     dbgs() << "ArrayDecl[UnknownSize]";
11309     for (const SCEV *S : Sizes)
11310       dbgs() << "[" << *S << "]";
11311 
11312     dbgs() << "\nArrayRef";
11313     for (const SCEV *S : Subscripts)
11314       dbgs() << "[" << *S << "]";
11315     dbgs() << "\n";
11316   });
11317 }
11318 
11319 //===----------------------------------------------------------------------===//
11320 //                   SCEVCallbackVH Class Implementation
11321 //===----------------------------------------------------------------------===//
11322 
11323 void ScalarEvolution::SCEVCallbackVH::deleted() {
11324   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11325   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11326     SE->ConstantEvolutionLoopExitValue.erase(PN);
11327   SE->eraseValueFromMap(getValPtr());
11328   // this now dangles!
11329 }
11330 
11331 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11332   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11333 
11334   // Forget all the expressions associated with users of the old value,
11335   // so that future queries will recompute the expressions using the new
11336   // value.
11337   Value *Old = getValPtr();
11338   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11339   SmallPtrSet<User *, 8> Visited;
11340   while (!Worklist.empty()) {
11341     User *U = Worklist.pop_back_val();
11342     // Deleting the Old value will cause this to dangle. Postpone
11343     // that until everything else is done.
11344     if (U == Old)
11345       continue;
11346     if (!Visited.insert(U).second)
11347       continue;
11348     if (PHINode *PN = dyn_cast<PHINode>(U))
11349       SE->ConstantEvolutionLoopExitValue.erase(PN);
11350     SE->eraseValueFromMap(U);
11351     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11352   }
11353   // Delete the Old value.
11354   if (PHINode *PN = dyn_cast<PHINode>(Old))
11355     SE->ConstantEvolutionLoopExitValue.erase(PN);
11356   SE->eraseValueFromMap(Old);
11357   // this now dangles!
11358 }
11359 
11360 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11361   : CallbackVH(V), SE(se) {}
11362 
11363 //===----------------------------------------------------------------------===//
11364 //                   ScalarEvolution Class Implementation
11365 //===----------------------------------------------------------------------===//
11366 
11367 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11368                                  AssumptionCache &AC, DominatorTree &DT,
11369                                  LoopInfo &LI)
11370     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11371       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11372       LoopDispositions(64), BlockDispositions(64) {
11373   // To use guards for proving predicates, we need to scan every instruction in
11374   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11375   // time if the IR does not actually contain any calls to
11376   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11377   //
11378   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11379   // to _add_ guards to the module when there weren't any before, and wants
11380   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11381   // efficient in lieu of being smart in that rather obscure case.
11382 
11383   auto *GuardDecl = F.getParent()->getFunction(
11384       Intrinsic::getName(Intrinsic::experimental_guard));
11385   HasGuards = GuardDecl && !GuardDecl->use_empty();
11386 }
11387 
11388 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11389     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11390       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11391       ValueExprMap(std::move(Arg.ValueExprMap)),
11392       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11393       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11394       PendingMerges(std::move(Arg.PendingMerges)),
11395       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11396       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11397       PredicatedBackedgeTakenCounts(
11398           std::move(Arg.PredicatedBackedgeTakenCounts)),
11399       ConstantEvolutionLoopExitValue(
11400           std::move(Arg.ConstantEvolutionLoopExitValue)),
11401       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11402       LoopDispositions(std::move(Arg.LoopDispositions)),
11403       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11404       BlockDispositions(std::move(Arg.BlockDispositions)),
11405       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11406       SignedRanges(std::move(Arg.SignedRanges)),
11407       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11408       UniquePreds(std::move(Arg.UniquePreds)),
11409       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11410       LoopUsers(std::move(Arg.LoopUsers)),
11411       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11412       FirstUnknown(Arg.FirstUnknown) {
11413   Arg.FirstUnknown = nullptr;
11414 }
11415 
11416 ScalarEvolution::~ScalarEvolution() {
11417   // Iterate through all the SCEVUnknown instances and call their
11418   // destructors, so that they release their references to their values.
11419   for (SCEVUnknown *U = FirstUnknown; U;) {
11420     SCEVUnknown *Tmp = U;
11421     U = U->Next;
11422     Tmp->~SCEVUnknown();
11423   }
11424   FirstUnknown = nullptr;
11425 
11426   ExprValueMap.clear();
11427   ValueExprMap.clear();
11428   HasRecMap.clear();
11429 
11430   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11431   // that a loop had multiple computable exits.
11432   for (auto &BTCI : BackedgeTakenCounts)
11433     BTCI.second.clear();
11434   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11435     BTCI.second.clear();
11436 
11437   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11438   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11439   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11440   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11441   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11442 }
11443 
11444 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11445   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11446 }
11447 
11448 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11449                           const Loop *L) {
11450   // Print all inner loops first
11451   for (Loop *I : *L)
11452     PrintLoopInfo(OS, SE, I);
11453 
11454   OS << "Loop ";
11455   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11456   OS << ": ";
11457 
11458   SmallVector<BasicBlock *, 8> ExitBlocks;
11459   L->getExitBlocks(ExitBlocks);
11460   if (ExitBlocks.size() != 1)
11461     OS << "<multiple exits> ";
11462 
11463   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11464     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
11465   } else {
11466     OS << "Unpredictable backedge-taken count. ";
11467   }
11468 
11469   OS << "\n"
11470         "Loop ";
11471   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11472   OS << ": ";
11473 
11474   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
11475     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
11476     if (SE->isBackedgeTakenCountMaxOrZero(L))
11477       OS << ", actual taken count either this or zero.";
11478   } else {
11479     OS << "Unpredictable max backedge-taken count. ";
11480   }
11481 
11482   OS << "\n"
11483         "Loop ";
11484   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11485   OS << ": ";
11486 
11487   SCEVUnionPredicate Pred;
11488   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11489   if (!isa<SCEVCouldNotCompute>(PBT)) {
11490     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11491     OS << " Predicates:\n";
11492     Pred.print(OS, 4);
11493   } else {
11494     OS << "Unpredictable predicated backedge-taken count. ";
11495   }
11496   OS << "\n";
11497 
11498   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11499     OS << "Loop ";
11500     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11501     OS << ": ";
11502     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11503   }
11504 }
11505 
11506 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11507   switch (LD) {
11508   case ScalarEvolution::LoopVariant:
11509     return "Variant";
11510   case ScalarEvolution::LoopInvariant:
11511     return "Invariant";
11512   case ScalarEvolution::LoopComputable:
11513     return "Computable";
11514   }
11515   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11516 }
11517 
11518 void ScalarEvolution::print(raw_ostream &OS) const {
11519   // ScalarEvolution's implementation of the print method is to print
11520   // out SCEV values of all instructions that are interesting. Doing
11521   // this potentially causes it to create new SCEV objects though,
11522   // which technically conflicts with the const qualifier. This isn't
11523   // observable from outside the class though, so casting away the
11524   // const isn't dangerous.
11525   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11526 
11527   OS << "Classifying expressions for: ";
11528   F.printAsOperand(OS, /*PrintType=*/false);
11529   OS << "\n";
11530   for (Instruction &I : instructions(F))
11531     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11532       OS << I << '\n';
11533       OS << "  -->  ";
11534       const SCEV *SV = SE.getSCEV(&I);
11535       SV->print(OS);
11536       if (!isa<SCEVCouldNotCompute>(SV)) {
11537         OS << " U: ";
11538         SE.getUnsignedRange(SV).print(OS);
11539         OS << " S: ";
11540         SE.getSignedRange(SV).print(OS);
11541       }
11542 
11543       const Loop *L = LI.getLoopFor(I.getParent());
11544 
11545       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11546       if (AtUse != SV) {
11547         OS << "  -->  ";
11548         AtUse->print(OS);
11549         if (!isa<SCEVCouldNotCompute>(AtUse)) {
11550           OS << " U: ";
11551           SE.getUnsignedRange(AtUse).print(OS);
11552           OS << " S: ";
11553           SE.getSignedRange(AtUse).print(OS);
11554         }
11555       }
11556 
11557       if (L) {
11558         OS << "\t\t" "Exits: ";
11559         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11560         if (!SE.isLoopInvariant(ExitValue, L)) {
11561           OS << "<<Unknown>>";
11562         } else {
11563           OS << *ExitValue;
11564         }
11565 
11566         bool First = true;
11567         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11568           if (First) {
11569             OS << "\t\t" "LoopDispositions: { ";
11570             First = false;
11571           } else {
11572             OS << ", ";
11573           }
11574 
11575           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11576           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11577         }
11578 
11579         for (auto *InnerL : depth_first(L)) {
11580           if (InnerL == L)
11581             continue;
11582           if (First) {
11583             OS << "\t\t" "LoopDispositions: { ";
11584             First = false;
11585           } else {
11586             OS << ", ";
11587           }
11588 
11589           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11590           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11591         }
11592 
11593         OS << " }";
11594       }
11595 
11596       OS << "\n";
11597     }
11598 
11599   OS << "Determining loop execution counts for: ";
11600   F.printAsOperand(OS, /*PrintType=*/false);
11601   OS << "\n";
11602   for (Loop *I : LI)
11603     PrintLoopInfo(OS, &SE, I);
11604 }
11605 
11606 ScalarEvolution::LoopDisposition
11607 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11608   auto &Values = LoopDispositions[S];
11609   for (auto &V : Values) {
11610     if (V.getPointer() == L)
11611       return V.getInt();
11612   }
11613   Values.emplace_back(L, LoopVariant);
11614   LoopDisposition D = computeLoopDisposition(S, L);
11615   auto &Values2 = LoopDispositions[S];
11616   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11617     if (V.getPointer() == L) {
11618       V.setInt(D);
11619       break;
11620     }
11621   }
11622   return D;
11623 }
11624 
11625 ScalarEvolution::LoopDisposition
11626 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11627   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11628   case scConstant:
11629     return LoopInvariant;
11630   case scTruncate:
11631   case scZeroExtend:
11632   case scSignExtend:
11633     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11634   case scAddRecExpr: {
11635     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11636 
11637     // If L is the addrec's loop, it's computable.
11638     if (AR->getLoop() == L)
11639       return LoopComputable;
11640 
11641     // Add recurrences are never invariant in the function-body (null loop).
11642     if (!L)
11643       return LoopVariant;
11644 
11645     // Everything that is not defined at loop entry is variant.
11646     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11647       return LoopVariant;
11648     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11649            " dominate the contained loop's header?");
11650 
11651     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11652     if (AR->getLoop()->contains(L))
11653       return LoopInvariant;
11654 
11655     // This recurrence is variant w.r.t. L if any of its operands
11656     // are variant.
11657     for (auto *Op : AR->operands())
11658       if (!isLoopInvariant(Op, L))
11659         return LoopVariant;
11660 
11661     // Otherwise it's loop-invariant.
11662     return LoopInvariant;
11663   }
11664   case scAddExpr:
11665   case scMulExpr:
11666   case scUMaxExpr:
11667   case scSMaxExpr: {
11668     bool HasVarying = false;
11669     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11670       LoopDisposition D = getLoopDisposition(Op, L);
11671       if (D == LoopVariant)
11672         return LoopVariant;
11673       if (D == LoopComputable)
11674         HasVarying = true;
11675     }
11676     return HasVarying ? LoopComputable : LoopInvariant;
11677   }
11678   case scUDivExpr: {
11679     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11680     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11681     if (LD == LoopVariant)
11682       return LoopVariant;
11683     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11684     if (RD == LoopVariant)
11685       return LoopVariant;
11686     return (LD == LoopInvariant && RD == LoopInvariant) ?
11687            LoopInvariant : LoopComputable;
11688   }
11689   case scUnknown:
11690     // All non-instruction values are loop invariant.  All instructions are loop
11691     // invariant if they are not contained in the specified loop.
11692     // Instructions are never considered invariant in the function body
11693     // (null loop) because they are defined within the "loop".
11694     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11695       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11696     return LoopInvariant;
11697   case scCouldNotCompute:
11698     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11699   }
11700   llvm_unreachable("Unknown SCEV kind!");
11701 }
11702 
11703 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11704   return getLoopDisposition(S, L) == LoopInvariant;
11705 }
11706 
11707 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11708   return getLoopDisposition(S, L) == LoopComputable;
11709 }
11710 
11711 ScalarEvolution::BlockDisposition
11712 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11713   auto &Values = BlockDispositions[S];
11714   for (auto &V : Values) {
11715     if (V.getPointer() == BB)
11716       return V.getInt();
11717   }
11718   Values.emplace_back(BB, DoesNotDominateBlock);
11719   BlockDisposition D = computeBlockDisposition(S, BB);
11720   auto &Values2 = BlockDispositions[S];
11721   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11722     if (V.getPointer() == BB) {
11723       V.setInt(D);
11724       break;
11725     }
11726   }
11727   return D;
11728 }
11729 
11730 ScalarEvolution::BlockDisposition
11731 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11732   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11733   case scConstant:
11734     return ProperlyDominatesBlock;
11735   case scTruncate:
11736   case scZeroExtend:
11737   case scSignExtend:
11738     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11739   case scAddRecExpr: {
11740     // This uses a "dominates" query instead of "properly dominates" query
11741     // to test for proper dominance too, because the instruction which
11742     // produces the addrec's value is a PHI, and a PHI effectively properly
11743     // dominates its entire containing block.
11744     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11745     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11746       return DoesNotDominateBlock;
11747 
11748     // Fall through into SCEVNAryExpr handling.
11749     LLVM_FALLTHROUGH;
11750   }
11751   case scAddExpr:
11752   case scMulExpr:
11753   case scUMaxExpr:
11754   case scSMaxExpr: {
11755     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11756     bool Proper = true;
11757     for (const SCEV *NAryOp : NAry->operands()) {
11758       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11759       if (D == DoesNotDominateBlock)
11760         return DoesNotDominateBlock;
11761       if (D == DominatesBlock)
11762         Proper = false;
11763     }
11764     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11765   }
11766   case scUDivExpr: {
11767     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11768     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11769     BlockDisposition LD = getBlockDisposition(LHS, BB);
11770     if (LD == DoesNotDominateBlock)
11771       return DoesNotDominateBlock;
11772     BlockDisposition RD = getBlockDisposition(RHS, BB);
11773     if (RD == DoesNotDominateBlock)
11774       return DoesNotDominateBlock;
11775     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11776       ProperlyDominatesBlock : DominatesBlock;
11777   }
11778   case scUnknown:
11779     if (Instruction *I =
11780           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11781       if (I->getParent() == BB)
11782         return DominatesBlock;
11783       if (DT.properlyDominates(I->getParent(), BB))
11784         return ProperlyDominatesBlock;
11785       return DoesNotDominateBlock;
11786     }
11787     return ProperlyDominatesBlock;
11788   case scCouldNotCompute:
11789     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11790   }
11791   llvm_unreachable("Unknown SCEV kind!");
11792 }
11793 
11794 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11795   return getBlockDisposition(S, BB) >= DominatesBlock;
11796 }
11797 
11798 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11799   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11800 }
11801 
11802 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11803   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11804 }
11805 
11806 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11807   auto IsS = [&](const SCEV *X) { return S == X; };
11808   auto ContainsS = [&](const SCEV *X) {
11809     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11810   };
11811   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11812 }
11813 
11814 void
11815 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11816   ValuesAtScopes.erase(S);
11817   LoopDispositions.erase(S);
11818   BlockDispositions.erase(S);
11819   UnsignedRanges.erase(S);
11820   SignedRanges.erase(S);
11821   ExprValueMap.erase(S);
11822   HasRecMap.erase(S);
11823   MinTrailingZerosCache.erase(S);
11824 
11825   for (auto I = PredicatedSCEVRewrites.begin();
11826        I != PredicatedSCEVRewrites.end();) {
11827     std::pair<const SCEV *, const Loop *> Entry = I->first;
11828     if (Entry.first == S)
11829       PredicatedSCEVRewrites.erase(I++);
11830     else
11831       ++I;
11832   }
11833 
11834   auto RemoveSCEVFromBackedgeMap =
11835       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11836         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11837           BackedgeTakenInfo &BEInfo = I->second;
11838           if (BEInfo.hasOperand(S, this)) {
11839             BEInfo.clear();
11840             Map.erase(I++);
11841           } else
11842             ++I;
11843         }
11844       };
11845 
11846   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11847   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11848 }
11849 
11850 void
11851 ScalarEvolution::getUsedLoops(const SCEV *S,
11852                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11853   struct FindUsedLoops {
11854     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11855         : LoopsUsed(LoopsUsed) {}
11856     SmallPtrSetImpl<const Loop *> &LoopsUsed;
11857     bool follow(const SCEV *S) {
11858       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11859         LoopsUsed.insert(AR->getLoop());
11860       return true;
11861     }
11862 
11863     bool isDone() const { return false; }
11864   };
11865 
11866   FindUsedLoops F(LoopsUsed);
11867   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11868 }
11869 
11870 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11871   SmallPtrSet<const Loop *, 8> LoopsUsed;
11872   getUsedLoops(S, LoopsUsed);
11873   for (auto *L : LoopsUsed)
11874     LoopUsers[L].push_back(S);
11875 }
11876 
11877 void ScalarEvolution::verify() const {
11878   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11879   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11880 
11881   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11882 
11883   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11884   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11885     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11886 
11887     const SCEV *visitConstant(const SCEVConstant *Constant) {
11888       return SE.getConstant(Constant->getAPInt());
11889     }
11890 
11891     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11892       return SE.getUnknown(Expr->getValue());
11893     }
11894 
11895     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11896       return SE.getCouldNotCompute();
11897     }
11898   };
11899 
11900   SCEVMapper SCM(SE2);
11901 
11902   while (!LoopStack.empty()) {
11903     auto *L = LoopStack.pop_back_val();
11904     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11905 
11906     auto *CurBECount = SCM.visit(
11907         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11908     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11909 
11910     if (CurBECount == SE2.getCouldNotCompute() ||
11911         NewBECount == SE2.getCouldNotCompute()) {
11912       // NB! This situation is legal, but is very suspicious -- whatever pass
11913       // change the loop to make a trip count go from could not compute to
11914       // computable or vice-versa *should have* invalidated SCEV.  However, we
11915       // choose not to assert here (for now) since we don't want false
11916       // positives.
11917       continue;
11918     }
11919 
11920     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11921       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11922       // not propagate undef aggressively).  This means we can (and do) fail
11923       // verification in cases where a transform makes the trip count of a loop
11924       // go from "undef" to "undef+1" (say).  The transform is fine, since in
11925       // both cases the loop iterates "undef" times, but SCEV thinks we
11926       // increased the trip count of the loop by 1 incorrectly.
11927       continue;
11928     }
11929 
11930     if (SE.getTypeSizeInBits(CurBECount->getType()) >
11931         SE.getTypeSizeInBits(NewBECount->getType()))
11932       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11933     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11934              SE.getTypeSizeInBits(NewBECount->getType()))
11935       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11936 
11937     auto *ConstantDelta =
11938         dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
11939 
11940     if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
11941       dbgs() << "Trip Count Changed!\n";
11942       dbgs() << "Old: " << *CurBECount << "\n";
11943       dbgs() << "New: " << *NewBECount << "\n";
11944       dbgs() << "Delta: " << *ConstantDelta << "\n";
11945       std::abort();
11946     }
11947   }
11948 }
11949 
11950 bool ScalarEvolution::invalidate(
11951     Function &F, const PreservedAnalyses &PA,
11952     FunctionAnalysisManager::Invalidator &Inv) {
11953   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11954   // of its dependencies is invalidated.
11955   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11956   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11957          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11958          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11959          Inv.invalidate<LoopAnalysis>(F, PA);
11960 }
11961 
11962 AnalysisKey ScalarEvolutionAnalysis::Key;
11963 
11964 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11965                                              FunctionAnalysisManager &AM) {
11966   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11967                          AM.getResult<AssumptionAnalysis>(F),
11968                          AM.getResult<DominatorTreeAnalysis>(F),
11969                          AM.getResult<LoopAnalysis>(F));
11970 }
11971 
11972 PreservedAnalyses
11973 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11974   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11975   return PreservedAnalyses::all();
11976 }
11977 
11978 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11979                       "Scalar Evolution Analysis", false, true)
11980 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11981 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11982 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11983 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11984 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11985                     "Scalar Evolution Analysis", false, true)
11986 
11987 char ScalarEvolutionWrapperPass::ID = 0;
11988 
11989 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11990   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11991 }
11992 
11993 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11994   SE.reset(new ScalarEvolution(
11995       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11996       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11997       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11998       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11999   return false;
12000 }
12001 
12002 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12003 
12004 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12005   SE->print(OS);
12006 }
12007 
12008 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12009   if (!VerifySCEV)
12010     return;
12011 
12012   SE->verify();
12013 }
12014 
12015 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12016   AU.setPreservesAll();
12017   AU.addRequiredTransitive<AssumptionCacheTracker>();
12018   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12019   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12020   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12021 }
12022 
12023 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12024                                                         const SCEV *RHS) {
12025   FoldingSetNodeID ID;
12026   assert(LHS->getType() == RHS->getType() &&
12027          "Type mismatch between LHS and RHS");
12028   // Unique this node based on the arguments
12029   ID.AddInteger(SCEVPredicate::P_Equal);
12030   ID.AddPointer(LHS);
12031   ID.AddPointer(RHS);
12032   void *IP = nullptr;
12033   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12034     return S;
12035   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12036       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12037   UniquePreds.InsertNode(Eq, IP);
12038   return Eq;
12039 }
12040 
12041 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12042     const SCEVAddRecExpr *AR,
12043     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12044   FoldingSetNodeID ID;
12045   // Unique this node based on the arguments
12046   ID.AddInteger(SCEVPredicate::P_Wrap);
12047   ID.AddPointer(AR);
12048   ID.AddInteger(AddedFlags);
12049   void *IP = nullptr;
12050   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12051     return S;
12052   auto *OF = new (SCEVAllocator)
12053       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12054   UniquePreds.InsertNode(OF, IP);
12055   return OF;
12056 }
12057 
12058 namespace {
12059 
12060 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12061 public:
12062 
12063   /// Rewrites \p S in the context of a loop L and the SCEV predication
12064   /// infrastructure.
12065   ///
12066   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12067   /// equivalences present in \p Pred.
12068   ///
12069   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12070   /// \p NewPreds such that the result will be an AddRecExpr.
12071   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12072                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12073                              SCEVUnionPredicate *Pred) {
12074     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12075     return Rewriter.visit(S);
12076   }
12077 
12078   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12079     if (Pred) {
12080       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12081       for (auto *Pred : ExprPreds)
12082         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12083           if (IPred->getLHS() == Expr)
12084             return IPred->getRHS();
12085     }
12086     return convertToAddRecWithPreds(Expr);
12087   }
12088 
12089   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12090     const SCEV *Operand = visit(Expr->getOperand());
12091     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12092     if (AR && AR->getLoop() == L && AR->isAffine()) {
12093       // This couldn't be folded because the operand didn't have the nuw
12094       // flag. Add the nusw flag as an assumption that we could make.
12095       const SCEV *Step = AR->getStepRecurrence(SE);
12096       Type *Ty = Expr->getType();
12097       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12098         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12099                                 SE.getSignExtendExpr(Step, Ty), L,
12100                                 AR->getNoWrapFlags());
12101     }
12102     return SE.getZeroExtendExpr(Operand, Expr->getType());
12103   }
12104 
12105   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12106     const SCEV *Operand = visit(Expr->getOperand());
12107     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12108     if (AR && AR->getLoop() == L && AR->isAffine()) {
12109       // This couldn't be folded because the operand didn't have the nsw
12110       // flag. Add the nssw flag as an assumption that we could make.
12111       const SCEV *Step = AR->getStepRecurrence(SE);
12112       Type *Ty = Expr->getType();
12113       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12114         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12115                                 SE.getSignExtendExpr(Step, Ty), L,
12116                                 AR->getNoWrapFlags());
12117     }
12118     return SE.getSignExtendExpr(Operand, Expr->getType());
12119   }
12120 
12121 private:
12122   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12123                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12124                         SCEVUnionPredicate *Pred)
12125       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12126 
12127   bool addOverflowAssumption(const SCEVPredicate *P) {
12128     if (!NewPreds) {
12129       // Check if we've already made this assumption.
12130       return Pred && Pred->implies(P);
12131     }
12132     NewPreds->insert(P);
12133     return true;
12134   }
12135 
12136   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12137                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12138     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12139     return addOverflowAssumption(A);
12140   }
12141 
12142   // If \p Expr represents a PHINode, we try to see if it can be represented
12143   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12144   // to add this predicate as a runtime overflow check, we return the AddRec.
12145   // If \p Expr does not meet these conditions (is not a PHI node, or we
12146   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12147   // return \p Expr.
12148   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12149     if (!isa<PHINode>(Expr->getValue()))
12150       return Expr;
12151     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12152     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12153     if (!PredicatedRewrite)
12154       return Expr;
12155     for (auto *P : PredicatedRewrite->second){
12156       // Wrap predicates from outer loops are not supported.
12157       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12158         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12159         if (L != AR->getLoop())
12160           return Expr;
12161       }
12162       if (!addOverflowAssumption(P))
12163         return Expr;
12164     }
12165     return PredicatedRewrite->first;
12166   }
12167 
12168   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12169   SCEVUnionPredicate *Pred;
12170   const Loop *L;
12171 };
12172 
12173 } // end anonymous namespace
12174 
12175 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12176                                                    SCEVUnionPredicate &Preds) {
12177   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12178 }
12179 
12180 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12181     const SCEV *S, const Loop *L,
12182     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12183   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12184   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12185   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12186 
12187   if (!AddRec)
12188     return nullptr;
12189 
12190   // Since the transformation was successful, we can now transfer the SCEV
12191   // predicates.
12192   for (auto *P : TransformPreds)
12193     Preds.insert(P);
12194 
12195   return AddRec;
12196 }
12197 
12198 /// SCEV predicates
12199 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12200                              SCEVPredicateKind Kind)
12201     : FastID(ID), Kind(Kind) {}
12202 
12203 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12204                                        const SCEV *LHS, const SCEV *RHS)
12205     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12206   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12207   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12208 }
12209 
12210 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12211   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12212 
12213   if (!Op)
12214     return false;
12215 
12216   return Op->LHS == LHS && Op->RHS == RHS;
12217 }
12218 
12219 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12220 
12221 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12222 
12223 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12224   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12225 }
12226 
12227 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12228                                      const SCEVAddRecExpr *AR,
12229                                      IncrementWrapFlags Flags)
12230     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12231 
12232 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12233 
12234 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12235   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12236 
12237   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12238 }
12239 
12240 bool SCEVWrapPredicate::isAlwaysTrue() const {
12241   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12242   IncrementWrapFlags IFlags = Flags;
12243 
12244   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12245     IFlags = clearFlags(IFlags, IncrementNSSW);
12246 
12247   return IFlags == IncrementAnyWrap;
12248 }
12249 
12250 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12251   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12252   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12253     OS << "<nusw>";
12254   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12255     OS << "<nssw>";
12256   OS << "\n";
12257 }
12258 
12259 SCEVWrapPredicate::IncrementWrapFlags
12260 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12261                                    ScalarEvolution &SE) {
12262   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12263   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12264 
12265   // We can safely transfer the NSW flag as NSSW.
12266   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12267     ImpliedFlags = IncrementNSSW;
12268 
12269   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12270     // If the increment is positive, the SCEV NUW flag will also imply the
12271     // WrapPredicate NUSW flag.
12272     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12273       if (Step->getValue()->getValue().isNonNegative())
12274         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12275   }
12276 
12277   return ImpliedFlags;
12278 }
12279 
12280 /// Union predicates don't get cached so create a dummy set ID for it.
12281 SCEVUnionPredicate::SCEVUnionPredicate()
12282     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12283 
12284 bool SCEVUnionPredicate::isAlwaysTrue() const {
12285   return all_of(Preds,
12286                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12287 }
12288 
12289 ArrayRef<const SCEVPredicate *>
12290 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12291   auto I = SCEVToPreds.find(Expr);
12292   if (I == SCEVToPreds.end())
12293     return ArrayRef<const SCEVPredicate *>();
12294   return I->second;
12295 }
12296 
12297 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12298   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12299     return all_of(Set->Preds,
12300                   [this](const SCEVPredicate *I) { return this->implies(I); });
12301 
12302   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12303   if (ScevPredsIt == SCEVToPreds.end())
12304     return false;
12305   auto &SCEVPreds = ScevPredsIt->second;
12306 
12307   return any_of(SCEVPreds,
12308                 [N](const SCEVPredicate *I) { return I->implies(N); });
12309 }
12310 
12311 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12312 
12313 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12314   for (auto Pred : Preds)
12315     Pred->print(OS, Depth);
12316 }
12317 
12318 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12319   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12320     for (auto Pred : Set->Preds)
12321       add(Pred);
12322     return;
12323   }
12324 
12325   if (implies(N))
12326     return;
12327 
12328   const SCEV *Key = N->getExpr();
12329   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12330                 " associated expression!");
12331 
12332   SCEVToPreds[Key].push_back(N);
12333   Preds.push_back(N);
12334 }
12335 
12336 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12337                                                      Loop &L)
12338     : SE(SE), L(L) {}
12339 
12340 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12341   const SCEV *Expr = SE.getSCEV(V);
12342   RewriteEntry &Entry = RewriteMap[Expr];
12343 
12344   // If we already have an entry and the version matches, return it.
12345   if (Entry.second && Generation == Entry.first)
12346     return Entry.second;
12347 
12348   // We found an entry but it's stale. Rewrite the stale entry
12349   // according to the current predicate.
12350   if (Entry.second)
12351     Expr = Entry.second;
12352 
12353   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12354   Entry = {Generation, NewSCEV};
12355 
12356   return NewSCEV;
12357 }
12358 
12359 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12360   if (!BackedgeCount) {
12361     SCEVUnionPredicate BackedgePred;
12362     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12363     addPredicate(BackedgePred);
12364   }
12365   return BackedgeCount;
12366 }
12367 
12368 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12369   if (Preds.implies(&Pred))
12370     return;
12371   Preds.add(&Pred);
12372   updateGeneration();
12373 }
12374 
12375 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12376   return Preds;
12377 }
12378 
12379 void PredicatedScalarEvolution::updateGeneration() {
12380   // If the generation number wrapped recompute everything.
12381   if (++Generation == 0) {
12382     for (auto &II : RewriteMap) {
12383       const SCEV *Rewritten = II.second.second;
12384       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12385     }
12386   }
12387 }
12388 
12389 void PredicatedScalarEvolution::setNoOverflow(
12390     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12391   const SCEV *Expr = getSCEV(V);
12392   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12393 
12394   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12395 
12396   // Clear the statically implied flags.
12397   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12398   addPredicate(*SE.getWrapPredicate(AR, Flags));
12399 
12400   auto II = FlagsMap.insert({V, Flags});
12401   if (!II.second)
12402     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12403 }
12404 
12405 bool PredicatedScalarEvolution::hasNoOverflow(
12406     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12407   const SCEV *Expr = getSCEV(V);
12408   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12409 
12410   Flags = SCEVWrapPredicate::clearFlags(
12411       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12412 
12413   auto II = FlagsMap.find(V);
12414 
12415   if (II != FlagsMap.end())
12416     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12417 
12418   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12419 }
12420 
12421 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12422   const SCEV *Expr = this->getSCEV(V);
12423   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12424   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12425 
12426   if (!New)
12427     return nullptr;
12428 
12429   for (auto *P : NewPreds)
12430     Preds.add(P);
12431 
12432   updateGeneration();
12433   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12434   return New;
12435 }
12436 
12437 PredicatedScalarEvolution::PredicatedScalarEvolution(
12438     const PredicatedScalarEvolution &Init)
12439     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12440       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12441   for (const auto &I : Init.FlagsMap)
12442     FlagsMap.insert(I);
12443 }
12444 
12445 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12446   // For each block.
12447   for (auto *BB : L.getBlocks())
12448     for (auto &I : *BB) {
12449       if (!SE.isSCEVable(I.getType()))
12450         continue;
12451 
12452       auto *Expr = SE.getSCEV(&I);
12453       auto II = RewriteMap.find(Expr);
12454 
12455       if (II == RewriteMap.end())
12456         continue;
12457 
12458       // Don't print things that are not interesting.
12459       if (II->second.second == Expr)
12460         continue;
12461 
12462       OS.indent(Depth) << "[PSE]" << I << ":\n";
12463       OS.indent(Depth + 2) << *Expr << "\n";
12464       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12465     }
12466 }
12467 
12468 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12469 // arbitrary expressions.
12470 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12471 // 4, A / B becomes X / 8).
12472 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12473                                 const SCEV *&RHS) {
12474   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12475   if (Add == nullptr || Add->getNumOperands() != 2)
12476     return false;
12477 
12478   const SCEV *A = Add->getOperand(1);
12479   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12480 
12481   if (Mul == nullptr)
12482     return false;
12483 
12484   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12485     // (SomeExpr + (-(SomeExpr / B) * B)).
12486     if (Expr == getURemExpr(A, B)) {
12487       LHS = A;
12488       RHS = B;
12489       return true;
12490     }
12491     return false;
12492   };
12493 
12494   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12495   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12496     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12497            MatchURemWithDivisor(Mul->getOperand(2));
12498 
12499   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12500   if (Mul->getNumOperands() == 2)
12501     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12502            MatchURemWithDivisor(Mul->getOperand(0)) ||
12503            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12504            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12505   return false;
12506 }
12507