1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumTripCountsComputed, 143 "Number of loops with predictable loop counts"); 144 STATISTIC(NumTripCountsNotComputed, 145 "Number of loops without predictable loop counts"); 146 STATISTIC(NumBruteForceTripCountsComputed, 147 "Number of loops with trip counts computed by force"); 148 STATISTIC(NumFoundPhiSCCs, 149 "Number of found Phi-composed strongly connected components"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 237 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 238 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 239 "Phi strongly connected components"), 240 cl::init(8)); 241 242 static cl::opt<bool> 243 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 244 cl::desc("Handle <= and >= in finite loops"), 245 cl::init(true)); 246 247 //===----------------------------------------------------------------------===// 248 // SCEV class definitions 249 //===----------------------------------------------------------------------===// 250 251 //===----------------------------------------------------------------------===// 252 // Implementation of the SCEV class. 253 // 254 255 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 256 LLVM_DUMP_METHOD void SCEV::dump() const { 257 print(dbgs()); 258 dbgs() << '\n'; 259 } 260 #endif 261 262 void SCEV::print(raw_ostream &OS) const { 263 switch (getSCEVType()) { 264 case scConstant: 265 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 266 return; 267 case scPtrToInt: { 268 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 269 const SCEV *Op = PtrToInt->getOperand(); 270 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 271 << *PtrToInt->getType() << ")"; 272 return; 273 } 274 case scTruncate: { 275 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 276 const SCEV *Op = Trunc->getOperand(); 277 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 278 << *Trunc->getType() << ")"; 279 return; 280 } 281 case scZeroExtend: { 282 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 283 const SCEV *Op = ZExt->getOperand(); 284 OS << "(zext " << *Op->getType() << " " << *Op << " to " 285 << *ZExt->getType() << ")"; 286 return; 287 } 288 case scSignExtend: { 289 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 290 const SCEV *Op = SExt->getOperand(); 291 OS << "(sext " << *Op->getType() << " " << *Op << " to " 292 << *SExt->getType() << ")"; 293 return; 294 } 295 case scAddRecExpr: { 296 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 297 OS << "{" << *AR->getOperand(0); 298 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 299 OS << ",+," << *AR->getOperand(i); 300 OS << "}<"; 301 if (AR->hasNoUnsignedWrap()) 302 OS << "nuw><"; 303 if (AR->hasNoSignedWrap()) 304 OS << "nsw><"; 305 if (AR->hasNoSelfWrap() && 306 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 307 OS << "nw><"; 308 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 309 OS << ">"; 310 return; 311 } 312 case scAddExpr: 313 case scMulExpr: 314 case scUMaxExpr: 315 case scSMaxExpr: 316 case scUMinExpr: 317 case scSMinExpr: 318 case scSequentialUMinExpr: { 319 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 320 const char *OpStr = nullptr; 321 switch (NAry->getSCEVType()) { 322 case scAddExpr: OpStr = " + "; break; 323 case scMulExpr: OpStr = " * "; break; 324 case scUMaxExpr: OpStr = " umax "; break; 325 case scSMaxExpr: OpStr = " smax "; break; 326 case scUMinExpr: 327 OpStr = " umin "; 328 break; 329 case scSMinExpr: 330 OpStr = " smin "; 331 break; 332 case scSequentialUMinExpr: 333 OpStr = " umin_seq "; 334 break; 335 default: 336 llvm_unreachable("There are no other nary expression types."); 337 } 338 OS << "("; 339 ListSeparator LS(OpStr); 340 for (const SCEV *Op : NAry->operands()) 341 OS << LS << *Op; 342 OS << ")"; 343 switch (NAry->getSCEVType()) { 344 case scAddExpr: 345 case scMulExpr: 346 if (NAry->hasNoUnsignedWrap()) 347 OS << "<nuw>"; 348 if (NAry->hasNoSignedWrap()) 349 OS << "<nsw>"; 350 break; 351 default: 352 // Nothing to print for other nary expressions. 353 break; 354 } 355 return; 356 } 357 case scUDivExpr: { 358 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 359 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 360 return; 361 } 362 case scUnknown: { 363 const SCEVUnknown *U = cast<SCEVUnknown>(this); 364 Type *AllocTy; 365 if (U->isSizeOf(AllocTy)) { 366 OS << "sizeof(" << *AllocTy << ")"; 367 return; 368 } 369 if (U->isAlignOf(AllocTy)) { 370 OS << "alignof(" << *AllocTy << ")"; 371 return; 372 } 373 374 Type *CTy; 375 Constant *FieldNo; 376 if (U->isOffsetOf(CTy, FieldNo)) { 377 OS << "offsetof(" << *CTy << ", "; 378 FieldNo->printAsOperand(OS, false); 379 OS << ")"; 380 return; 381 } 382 383 // Otherwise just print it normally. 384 U->getValue()->printAsOperand(OS, false); 385 return; 386 } 387 case scCouldNotCompute: 388 OS << "***COULDNOTCOMPUTE***"; 389 return; 390 } 391 llvm_unreachable("Unknown SCEV kind!"); 392 } 393 394 Type *SCEV::getType() const { 395 switch (getSCEVType()) { 396 case scConstant: 397 return cast<SCEVConstant>(this)->getType(); 398 case scPtrToInt: 399 case scTruncate: 400 case scZeroExtend: 401 case scSignExtend: 402 return cast<SCEVCastExpr>(this)->getType(); 403 case scAddRecExpr: 404 return cast<SCEVAddRecExpr>(this)->getType(); 405 case scMulExpr: 406 return cast<SCEVMulExpr>(this)->getType(); 407 case scUMaxExpr: 408 case scSMaxExpr: 409 case scUMinExpr: 410 case scSMinExpr: 411 return cast<SCEVMinMaxExpr>(this)->getType(); 412 case scSequentialUMinExpr: 413 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 414 case scAddExpr: 415 return cast<SCEVAddExpr>(this)->getType(); 416 case scUDivExpr: 417 return cast<SCEVUDivExpr>(this)->getType(); 418 case scUnknown: 419 return cast<SCEVUnknown>(this)->getType(); 420 case scCouldNotCompute: 421 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 422 } 423 llvm_unreachable("Unknown SCEV kind!"); 424 } 425 426 bool SCEV::isZero() const { 427 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 428 return SC->getValue()->isZero(); 429 return false; 430 } 431 432 bool SCEV::isOne() const { 433 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 434 return SC->getValue()->isOne(); 435 return false; 436 } 437 438 bool SCEV::isAllOnesValue() const { 439 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 440 return SC->getValue()->isMinusOne(); 441 return false; 442 } 443 444 bool SCEV::isNonConstantNegative() const { 445 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 446 if (!Mul) return false; 447 448 // If there is a constant factor, it will be first. 449 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 450 if (!SC) return false; 451 452 // Return true if the value is negative, this matches things like (-42 * V). 453 return SC->getAPInt().isNegative(); 454 } 455 456 SCEVCouldNotCompute::SCEVCouldNotCompute() : 457 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 458 459 bool SCEVCouldNotCompute::classof(const SCEV *S) { 460 return S->getSCEVType() == scCouldNotCompute; 461 } 462 463 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 464 FoldingSetNodeID ID; 465 ID.AddInteger(scConstant); 466 ID.AddPointer(V); 467 void *IP = nullptr; 468 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 469 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 470 UniqueSCEVs.InsertNode(S, IP); 471 return S; 472 } 473 474 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 475 return getConstant(ConstantInt::get(getContext(), Val)); 476 } 477 478 const SCEV * 479 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 480 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 481 return getConstant(ConstantInt::get(ITy, V, isSigned)); 482 } 483 484 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 485 const SCEV *op, Type *ty) 486 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 487 Operands[0] = op; 488 } 489 490 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 491 Type *ITy) 492 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 493 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 494 "Must be a non-bit-width-changing pointer-to-integer cast!"); 495 } 496 497 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 498 SCEVTypes SCEVTy, const SCEV *op, 499 Type *ty) 500 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 501 502 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 503 Type *ty) 504 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 505 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 506 "Cannot truncate non-integer value!"); 507 } 508 509 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 510 const SCEV *op, Type *ty) 511 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 512 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 513 "Cannot zero extend non-integer value!"); 514 } 515 516 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 517 const SCEV *op, Type *ty) 518 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 519 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 520 "Cannot sign extend non-integer value!"); 521 } 522 523 void SCEVUnknown::deleted() { 524 // Clear this SCEVUnknown from various maps. 525 SE->forgetMemoizedResults(this); 526 527 // Remove this SCEVUnknown from the uniquing map. 528 SE->UniqueSCEVs.RemoveNode(this); 529 530 // Release the value. 531 setValPtr(nullptr); 532 } 533 534 void SCEVUnknown::allUsesReplacedWith(Value *New) { 535 // Remove this SCEVUnknown from the uniquing map. 536 SE->UniqueSCEVs.RemoveNode(this); 537 538 // Update this SCEVUnknown to point to the new value. This is needed 539 // because there may still be outstanding SCEVs which still point to 540 // this SCEVUnknown. 541 setValPtr(New); 542 } 543 544 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 546 if (VCE->getOpcode() == Instruction::PtrToInt) 547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 548 if (CE->getOpcode() == Instruction::GetElementPtr && 549 CE->getOperand(0)->isNullValue() && 550 CE->getNumOperands() == 2) 551 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 552 if (CI->isOne()) { 553 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 554 return true; 555 } 556 557 return false; 558 } 559 560 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 561 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 562 if (VCE->getOpcode() == Instruction::PtrToInt) 563 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 564 if (CE->getOpcode() == Instruction::GetElementPtr && 565 CE->getOperand(0)->isNullValue()) { 566 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 567 if (StructType *STy = dyn_cast<StructType>(Ty)) 568 if (!STy->isPacked() && 569 CE->getNumOperands() == 3 && 570 CE->getOperand(1)->isNullValue()) { 571 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 572 if (CI->isOne() && 573 STy->getNumElements() == 2 && 574 STy->getElementType(0)->isIntegerTy(1)) { 575 AllocTy = STy->getElementType(1); 576 return true; 577 } 578 } 579 } 580 581 return false; 582 } 583 584 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 585 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 586 if (VCE->getOpcode() == Instruction::PtrToInt) 587 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 588 if (CE->getOpcode() == Instruction::GetElementPtr && 589 CE->getNumOperands() == 3 && 590 CE->getOperand(0)->isNullValue() && 591 CE->getOperand(1)->isNullValue()) { 592 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 593 // Ignore vector types here so that ScalarEvolutionExpander doesn't 594 // emit getelementptrs that index into vectors. 595 if (Ty->isStructTy() || Ty->isArrayTy()) { 596 CTy = Ty; 597 FieldNo = CE->getOperand(2); 598 return true; 599 } 600 } 601 602 return false; 603 } 604 605 //===----------------------------------------------------------------------===// 606 // SCEV Utilities 607 //===----------------------------------------------------------------------===// 608 609 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 610 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 611 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 612 /// have been previously deemed to be "equally complex" by this routine. It is 613 /// intended to avoid exponential time complexity in cases like: 614 /// 615 /// %a = f(%x, %y) 616 /// %b = f(%a, %a) 617 /// %c = f(%b, %b) 618 /// 619 /// %d = f(%x, %y) 620 /// %e = f(%d, %d) 621 /// %f = f(%e, %e) 622 /// 623 /// CompareValueComplexity(%f, %c) 624 /// 625 /// Since we do not continue running this routine on expression trees once we 626 /// have seen unequal values, there is no need to track them in the cache. 627 static int 628 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 629 const LoopInfo *const LI, Value *LV, Value *RV, 630 unsigned Depth) { 631 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 632 return 0; 633 634 // Order pointer values after integer values. This helps SCEVExpander form 635 // GEPs. 636 bool LIsPointer = LV->getType()->isPointerTy(), 637 RIsPointer = RV->getType()->isPointerTy(); 638 if (LIsPointer != RIsPointer) 639 return (int)LIsPointer - (int)RIsPointer; 640 641 // Compare getValueID values. 642 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 643 if (LID != RID) 644 return (int)LID - (int)RID; 645 646 // Sort arguments by their position. 647 if (const auto *LA = dyn_cast<Argument>(LV)) { 648 const auto *RA = cast<Argument>(RV); 649 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 650 return (int)LArgNo - (int)RArgNo; 651 } 652 653 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 654 const auto *RGV = cast<GlobalValue>(RV); 655 656 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 657 auto LT = GV->getLinkage(); 658 return !(GlobalValue::isPrivateLinkage(LT) || 659 GlobalValue::isInternalLinkage(LT)); 660 }; 661 662 // Use the names to distinguish the two values, but only if the 663 // names are semantically important. 664 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 665 return LGV->getName().compare(RGV->getName()); 666 } 667 668 // For instructions, compare their loop depth, and their operand count. This 669 // is pretty loose. 670 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 671 const auto *RInst = cast<Instruction>(RV); 672 673 // Compare loop depths. 674 const BasicBlock *LParent = LInst->getParent(), 675 *RParent = RInst->getParent(); 676 if (LParent != RParent) { 677 unsigned LDepth = LI->getLoopDepth(LParent), 678 RDepth = LI->getLoopDepth(RParent); 679 if (LDepth != RDepth) 680 return (int)LDepth - (int)RDepth; 681 } 682 683 // Compare the number of operands. 684 unsigned LNumOps = LInst->getNumOperands(), 685 RNumOps = RInst->getNumOperands(); 686 if (LNumOps != RNumOps) 687 return (int)LNumOps - (int)RNumOps; 688 689 for (unsigned Idx : seq(0u, LNumOps)) { 690 int Result = 691 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 692 RInst->getOperand(Idx), Depth + 1); 693 if (Result != 0) 694 return Result; 695 } 696 } 697 698 EqCacheValue.unionSets(LV, RV); 699 return 0; 700 } 701 702 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 703 // than RHS, respectively. A three-way result allows recursive comparisons to be 704 // more efficient. 705 // If the max analysis depth was reached, return None, assuming we do not know 706 // if they are equivalent for sure. 707 static Optional<int> 708 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 709 EquivalenceClasses<const Value *> &EqCacheValue, 710 const LoopInfo *const LI, const SCEV *LHS, 711 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 712 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 713 if (LHS == RHS) 714 return 0; 715 716 // Primarily, sort the SCEVs by their getSCEVType(). 717 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 718 if (LType != RType) 719 return (int)LType - (int)RType; 720 721 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 722 return 0; 723 724 if (Depth > MaxSCEVCompareDepth) 725 return None; 726 727 // Aside from the getSCEVType() ordering, the particular ordering 728 // isn't very important except that it's beneficial to be consistent, 729 // so that (a + b) and (b + a) don't end up as different expressions. 730 switch (LType) { 731 case scUnknown: { 732 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 733 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 734 735 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 736 RU->getValue(), Depth + 1); 737 if (X == 0) 738 EqCacheSCEV.unionSets(LHS, RHS); 739 return X; 740 } 741 742 case scConstant: { 743 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 744 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 745 746 // Compare constant values. 747 const APInt &LA = LC->getAPInt(); 748 const APInt &RA = RC->getAPInt(); 749 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 750 if (LBitWidth != RBitWidth) 751 return (int)LBitWidth - (int)RBitWidth; 752 return LA.ult(RA) ? -1 : 1; 753 } 754 755 case scAddRecExpr: { 756 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 757 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 758 759 // There is always a dominance between two recs that are used by one SCEV, 760 // so we can safely sort recs by loop header dominance. We require such 761 // order in getAddExpr. 762 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 763 if (LLoop != RLoop) { 764 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 765 assert(LHead != RHead && "Two loops share the same header?"); 766 if (DT.dominates(LHead, RHead)) 767 return 1; 768 else 769 assert(DT.dominates(RHead, LHead) && 770 "No dominance between recurrences used by one SCEV?"); 771 return -1; 772 } 773 774 // Addrec complexity grows with operand count. 775 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 776 if (LNumOps != RNumOps) 777 return (int)LNumOps - (int)RNumOps; 778 779 // Lexicographically compare. 780 for (unsigned i = 0; i != LNumOps; ++i) { 781 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 782 LA->getOperand(i), RA->getOperand(i), DT, 783 Depth + 1); 784 if (X != 0) 785 return X; 786 } 787 EqCacheSCEV.unionSets(LHS, RHS); 788 return 0; 789 } 790 791 case scAddExpr: 792 case scMulExpr: 793 case scSMaxExpr: 794 case scUMaxExpr: 795 case scSMinExpr: 796 case scUMinExpr: 797 case scSequentialUMinExpr: { 798 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 799 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 800 801 // Lexicographically compare n-ary expressions. 802 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 803 if (LNumOps != RNumOps) 804 return (int)LNumOps - (int)RNumOps; 805 806 for (unsigned i = 0; i != LNumOps; ++i) { 807 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 808 LC->getOperand(i), RC->getOperand(i), DT, 809 Depth + 1); 810 if (X != 0) 811 return X; 812 } 813 EqCacheSCEV.unionSets(LHS, RHS); 814 return 0; 815 } 816 817 case scUDivExpr: { 818 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 819 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 820 821 // Lexicographically compare udiv expressions. 822 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 823 RC->getLHS(), DT, Depth + 1); 824 if (X != 0) 825 return X; 826 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 827 RC->getRHS(), DT, Depth + 1); 828 if (X == 0) 829 EqCacheSCEV.unionSets(LHS, RHS); 830 return X; 831 } 832 833 case scPtrToInt: 834 case scTruncate: 835 case scZeroExtend: 836 case scSignExtend: { 837 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 838 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 839 840 // Compare cast expressions by operand. 841 auto X = 842 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 843 RC->getOperand(), DT, Depth + 1); 844 if (X == 0) 845 EqCacheSCEV.unionSets(LHS, RHS); 846 return X; 847 } 848 849 case scCouldNotCompute: 850 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 851 } 852 llvm_unreachable("Unknown SCEV kind!"); 853 } 854 855 /// Given a list of SCEV objects, order them by their complexity, and group 856 /// objects of the same complexity together by value. When this routine is 857 /// finished, we know that any duplicates in the vector are consecutive and that 858 /// complexity is monotonically increasing. 859 /// 860 /// Note that we go take special precautions to ensure that we get deterministic 861 /// results from this routine. In other words, we don't want the results of 862 /// this to depend on where the addresses of various SCEV objects happened to 863 /// land in memory. 864 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 865 LoopInfo *LI, DominatorTree &DT) { 866 if (Ops.size() < 2) return; // Noop 867 868 EquivalenceClasses<const SCEV *> EqCacheSCEV; 869 EquivalenceClasses<const Value *> EqCacheValue; 870 871 // Whether LHS has provably less complexity than RHS. 872 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 873 auto Complexity = 874 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 875 return Complexity && *Complexity < 0; 876 }; 877 if (Ops.size() == 2) { 878 // This is the common case, which also happens to be trivially simple. 879 // Special case it. 880 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 881 if (IsLessComplex(RHS, LHS)) 882 std::swap(LHS, RHS); 883 return; 884 } 885 886 // Do the rough sort by complexity. 887 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 888 return IsLessComplex(LHS, RHS); 889 }); 890 891 // Now that we are sorted by complexity, group elements of the same 892 // complexity. Note that this is, at worst, N^2, but the vector is likely to 893 // be extremely short in practice. Note that we take this approach because we 894 // do not want to depend on the addresses of the objects we are grouping. 895 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 896 const SCEV *S = Ops[i]; 897 unsigned Complexity = S->getSCEVType(); 898 899 // If there are any objects of the same complexity and same value as this 900 // one, group them. 901 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 902 if (Ops[j] == S) { // Found a duplicate. 903 // Move it to immediately after i'th element. 904 std::swap(Ops[i+1], Ops[j]); 905 ++i; // no need to rescan it. 906 if (i == e-2) return; // Done! 907 } 908 } 909 } 910 } 911 912 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 913 /// least HugeExprThreshold nodes). 914 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 915 return any_of(Ops, [](const SCEV *S) { 916 return S->getExpressionSize() >= HugeExprThreshold; 917 }); 918 } 919 920 //===----------------------------------------------------------------------===// 921 // Simple SCEV method implementations 922 //===----------------------------------------------------------------------===// 923 924 /// Compute BC(It, K). The result has width W. Assume, K > 0. 925 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 926 ScalarEvolution &SE, 927 Type *ResultTy) { 928 // Handle the simplest case efficiently. 929 if (K == 1) 930 return SE.getTruncateOrZeroExtend(It, ResultTy); 931 932 // We are using the following formula for BC(It, K): 933 // 934 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 935 // 936 // Suppose, W is the bitwidth of the return value. We must be prepared for 937 // overflow. Hence, we must assure that the result of our computation is 938 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 939 // safe in modular arithmetic. 940 // 941 // However, this code doesn't use exactly that formula; the formula it uses 942 // is something like the following, where T is the number of factors of 2 in 943 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 944 // exponentiation: 945 // 946 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 947 // 948 // This formula is trivially equivalent to the previous formula. However, 949 // this formula can be implemented much more efficiently. The trick is that 950 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 951 // arithmetic. To do exact division in modular arithmetic, all we have 952 // to do is multiply by the inverse. Therefore, this step can be done at 953 // width W. 954 // 955 // The next issue is how to safely do the division by 2^T. The way this 956 // is done is by doing the multiplication step at a width of at least W + T 957 // bits. This way, the bottom W+T bits of the product are accurate. Then, 958 // when we perform the division by 2^T (which is equivalent to a right shift 959 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 960 // truncated out after the division by 2^T. 961 // 962 // In comparison to just directly using the first formula, this technique 963 // is much more efficient; using the first formula requires W * K bits, 964 // but this formula less than W + K bits. Also, the first formula requires 965 // a division step, whereas this formula only requires multiplies and shifts. 966 // 967 // It doesn't matter whether the subtraction step is done in the calculation 968 // width or the input iteration count's width; if the subtraction overflows, 969 // the result must be zero anyway. We prefer here to do it in the width of 970 // the induction variable because it helps a lot for certain cases; CodeGen 971 // isn't smart enough to ignore the overflow, which leads to much less 972 // efficient code if the width of the subtraction is wider than the native 973 // register width. 974 // 975 // (It's possible to not widen at all by pulling out factors of 2 before 976 // the multiplication; for example, K=2 can be calculated as 977 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 978 // extra arithmetic, so it's not an obvious win, and it gets 979 // much more complicated for K > 3.) 980 981 // Protection from insane SCEVs; this bound is conservative, 982 // but it probably doesn't matter. 983 if (K > 1000) 984 return SE.getCouldNotCompute(); 985 986 unsigned W = SE.getTypeSizeInBits(ResultTy); 987 988 // Calculate K! / 2^T and T; we divide out the factors of two before 989 // multiplying for calculating K! / 2^T to avoid overflow. 990 // Other overflow doesn't matter because we only care about the bottom 991 // W bits of the result. 992 APInt OddFactorial(W, 1); 993 unsigned T = 1; 994 for (unsigned i = 3; i <= K; ++i) { 995 APInt Mult(W, i); 996 unsigned TwoFactors = Mult.countTrailingZeros(); 997 T += TwoFactors; 998 Mult.lshrInPlace(TwoFactors); 999 OddFactorial *= Mult; 1000 } 1001 1002 // We need at least W + T bits for the multiplication step 1003 unsigned CalculationBits = W + T; 1004 1005 // Calculate 2^T, at width T+W. 1006 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1007 1008 // Calculate the multiplicative inverse of K! / 2^T; 1009 // this multiplication factor will perform the exact division by 1010 // K! / 2^T. 1011 APInt Mod = APInt::getSignedMinValue(W+1); 1012 APInt MultiplyFactor = OddFactorial.zext(W+1); 1013 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1014 MultiplyFactor = MultiplyFactor.trunc(W); 1015 1016 // Calculate the product, at width T+W 1017 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1018 CalculationBits); 1019 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1020 for (unsigned i = 1; i != K; ++i) { 1021 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1022 Dividend = SE.getMulExpr(Dividend, 1023 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1024 } 1025 1026 // Divide by 2^T 1027 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1028 1029 // Truncate the result, and divide by K! / 2^T. 1030 1031 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1032 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1033 } 1034 1035 /// Return the value of this chain of recurrences at the specified iteration 1036 /// number. We can evaluate this recurrence by multiplying each element in the 1037 /// chain by the binomial coefficient corresponding to it. In other words, we 1038 /// can evaluate {A,+,B,+,C,+,D} as: 1039 /// 1040 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1041 /// 1042 /// where BC(It, k) stands for binomial coefficient. 1043 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1044 ScalarEvolution &SE) const { 1045 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1046 } 1047 1048 const SCEV * 1049 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1050 const SCEV *It, ScalarEvolution &SE) { 1051 assert(Operands.size() > 0); 1052 const SCEV *Result = Operands[0]; 1053 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1054 // The computation is correct in the face of overflow provided that the 1055 // multiplication is performed _after_ the evaluation of the binomial 1056 // coefficient. 1057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1058 if (isa<SCEVCouldNotCompute>(Coeff)) 1059 return Coeff; 1060 1061 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1062 } 1063 return Result; 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // SCEV Expression folder implementations 1068 //===----------------------------------------------------------------------===// 1069 1070 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1071 unsigned Depth) { 1072 assert(Depth <= 1 && 1073 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1074 1075 // We could be called with an integer-typed operands during SCEV rewrites. 1076 // Since the operand is an integer already, just perform zext/trunc/self cast. 1077 if (!Op->getType()->isPointerTy()) 1078 return Op; 1079 1080 // What would be an ID for such a SCEV cast expression? 1081 FoldingSetNodeID ID; 1082 ID.AddInteger(scPtrToInt); 1083 ID.AddPointer(Op); 1084 1085 void *IP = nullptr; 1086 1087 // Is there already an expression for such a cast? 1088 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1089 return S; 1090 1091 // It isn't legal for optimizations to construct new ptrtoint expressions 1092 // for non-integral pointers. 1093 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1094 return getCouldNotCompute(); 1095 1096 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1097 1098 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1099 // is sufficiently wide to represent all possible pointer values. 1100 // We could theoretically teach SCEV to truncate wider pointers, but 1101 // that isn't implemented for now. 1102 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1103 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1104 return getCouldNotCompute(); 1105 1106 // If not, is this expression something we can't reduce any further? 1107 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1108 // Perform some basic constant folding. If the operand of the ptr2int cast 1109 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1110 // left as-is), but produce a zero constant. 1111 // NOTE: We could handle a more general case, but lack motivational cases. 1112 if (isa<ConstantPointerNull>(U->getValue())) 1113 return getZero(IntPtrTy); 1114 1115 // Create an explicit cast node. 1116 // We can reuse the existing insert position since if we get here, 1117 // we won't have made any changes which would invalidate it. 1118 SCEV *S = new (SCEVAllocator) 1119 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1120 UniqueSCEVs.InsertNode(S, IP); 1121 registerUser(S, Op); 1122 return S; 1123 } 1124 1125 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1126 "non-SCEVUnknown's."); 1127 1128 // Otherwise, we've got some expression that is more complex than just a 1129 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1130 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1131 // only, and the expressions must otherwise be integer-typed. 1132 // So sink the cast down to the SCEVUnknown's. 1133 1134 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1135 /// which computes a pointer-typed value, and rewrites the whole expression 1136 /// tree so that *all* the computations are done on integers, and the only 1137 /// pointer-typed operands in the expression are SCEVUnknown. 1138 class SCEVPtrToIntSinkingRewriter 1139 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1140 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1141 1142 public: 1143 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1144 1145 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1146 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1147 return Rewriter.visit(Scev); 1148 } 1149 1150 const SCEV *visit(const SCEV *S) { 1151 Type *STy = S->getType(); 1152 // If the expression is not pointer-typed, just keep it as-is. 1153 if (!STy->isPointerTy()) 1154 return S; 1155 // Else, recursively sink the cast down into it. 1156 return Base::visit(S); 1157 } 1158 1159 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1160 SmallVector<const SCEV *, 2> Operands; 1161 bool Changed = false; 1162 for (auto *Op : Expr->operands()) { 1163 Operands.push_back(visit(Op)); 1164 Changed |= Op != Operands.back(); 1165 } 1166 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1167 } 1168 1169 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1170 SmallVector<const SCEV *, 2> Operands; 1171 bool Changed = false; 1172 for (auto *Op : Expr->operands()) { 1173 Operands.push_back(visit(Op)); 1174 Changed |= Op != Operands.back(); 1175 } 1176 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1177 } 1178 1179 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1180 assert(Expr->getType()->isPointerTy() && 1181 "Should only reach pointer-typed SCEVUnknown's."); 1182 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1183 } 1184 }; 1185 1186 // And actually perform the cast sinking. 1187 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1188 assert(IntOp->getType()->isIntegerTy() && 1189 "We must have succeeded in sinking the cast, " 1190 "and ending up with an integer-typed expression!"); 1191 return IntOp; 1192 } 1193 1194 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1195 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1196 1197 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1198 if (isa<SCEVCouldNotCompute>(IntOp)) 1199 return IntOp; 1200 1201 return getTruncateOrZeroExtend(IntOp, Ty); 1202 } 1203 1204 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1205 unsigned Depth) { 1206 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1207 "This is not a truncating conversion!"); 1208 assert(isSCEVable(Ty) && 1209 "This is not a conversion to a SCEVable type!"); 1210 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1211 Ty = getEffectiveSCEVType(Ty); 1212 1213 FoldingSetNodeID ID; 1214 ID.AddInteger(scTruncate); 1215 ID.AddPointer(Op); 1216 ID.AddPointer(Ty); 1217 void *IP = nullptr; 1218 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1219 1220 // Fold if the operand is constant. 1221 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1222 return getConstant( 1223 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1224 1225 // trunc(trunc(x)) --> trunc(x) 1226 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1227 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1228 1229 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1230 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1231 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1232 1233 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1234 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1235 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1236 1237 if (Depth > MaxCastDepth) { 1238 SCEV *S = 1239 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1240 UniqueSCEVs.InsertNode(S, IP); 1241 registerUser(S, Op); 1242 return S; 1243 } 1244 1245 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1246 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1247 // if after transforming we have at most one truncate, not counting truncates 1248 // that replace other casts. 1249 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1250 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1251 SmallVector<const SCEV *, 4> Operands; 1252 unsigned numTruncs = 0; 1253 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1254 ++i) { 1255 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1256 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1257 isa<SCEVTruncateExpr>(S)) 1258 numTruncs++; 1259 Operands.push_back(S); 1260 } 1261 if (numTruncs < 2) { 1262 if (isa<SCEVAddExpr>(Op)) 1263 return getAddExpr(Operands); 1264 else if (isa<SCEVMulExpr>(Op)) 1265 return getMulExpr(Operands); 1266 else 1267 llvm_unreachable("Unexpected SCEV type for Op."); 1268 } 1269 // Although we checked in the beginning that ID is not in the cache, it is 1270 // possible that during recursion and different modification ID was inserted 1271 // into the cache. So if we find it, just return it. 1272 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1273 return S; 1274 } 1275 1276 // If the input value is a chrec scev, truncate the chrec's operands. 1277 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1278 SmallVector<const SCEV *, 4> Operands; 1279 for (const SCEV *Op : AddRec->operands()) 1280 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1281 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1282 } 1283 1284 // Return zero if truncating to known zeros. 1285 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1286 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1287 return getZero(Ty); 1288 1289 // The cast wasn't folded; create an explicit cast node. We can reuse 1290 // the existing insert position since if we get here, we won't have 1291 // made any changes which would invalidate it. 1292 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1293 Op, Ty); 1294 UniqueSCEVs.InsertNode(S, IP); 1295 registerUser(S, Op); 1296 return S; 1297 } 1298 1299 // Get the limit of a recurrence such that incrementing by Step cannot cause 1300 // signed overflow as long as the value of the recurrence within the 1301 // loop does not exceed this limit before incrementing. 1302 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1306 if (SE->isKnownPositive(Step)) { 1307 *Pred = ICmpInst::ICMP_SLT; 1308 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1309 SE->getSignedRangeMax(Step)); 1310 } 1311 if (SE->isKnownNegative(Step)) { 1312 *Pred = ICmpInst::ICMP_SGT; 1313 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1314 SE->getSignedRangeMin(Step)); 1315 } 1316 return nullptr; 1317 } 1318 1319 // Get the limit of a recurrence such that incrementing by Step cannot cause 1320 // unsigned overflow as long as the value of the recurrence within the loop does 1321 // not exceed this limit before incrementing. 1322 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1323 ICmpInst::Predicate *Pred, 1324 ScalarEvolution *SE) { 1325 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1326 *Pred = ICmpInst::ICMP_ULT; 1327 1328 return SE->getConstant(APInt::getMinValue(BitWidth) - 1329 SE->getUnsignedRangeMax(Step)); 1330 } 1331 1332 namespace { 1333 1334 struct ExtendOpTraitsBase { 1335 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1336 unsigned); 1337 }; 1338 1339 // Used to make code generic over signed and unsigned overflow. 1340 template <typename ExtendOp> struct ExtendOpTraits { 1341 // Members present: 1342 // 1343 // static const SCEV::NoWrapFlags WrapType; 1344 // 1345 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1346 // 1347 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1348 // ICmpInst::Predicate *Pred, 1349 // ScalarEvolution *SE); 1350 }; 1351 1352 template <> 1353 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1354 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1355 1356 static const GetExtendExprTy GetExtendExpr; 1357 1358 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1359 ICmpInst::Predicate *Pred, 1360 ScalarEvolution *SE) { 1361 return getSignedOverflowLimitForStep(Step, Pred, SE); 1362 } 1363 }; 1364 1365 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1366 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1367 1368 template <> 1369 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1370 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1371 1372 static const GetExtendExprTy GetExtendExpr; 1373 1374 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1375 ICmpInst::Predicate *Pred, 1376 ScalarEvolution *SE) { 1377 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1378 } 1379 }; 1380 1381 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1382 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1383 1384 } // end anonymous namespace 1385 1386 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1387 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1388 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1389 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1390 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1391 // expression "Step + sext/zext(PreIncAR)" is congruent with 1392 // "sext/zext(PostIncAR)" 1393 template <typename ExtendOpTy> 1394 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1395 ScalarEvolution *SE, unsigned Depth) { 1396 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1397 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1398 1399 const Loop *L = AR->getLoop(); 1400 const SCEV *Start = AR->getStart(); 1401 const SCEV *Step = AR->getStepRecurrence(*SE); 1402 1403 // Check for a simple looking step prior to loop entry. 1404 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1405 if (!SA) 1406 return nullptr; 1407 1408 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1409 // subtraction is expensive. For this purpose, perform a quick and dirty 1410 // difference, by checking for Step in the operand list. 1411 SmallVector<const SCEV *, 4> DiffOps; 1412 for (const SCEV *Op : SA->operands()) 1413 if (Op != Step) 1414 DiffOps.push_back(Op); 1415 1416 if (DiffOps.size() == SA->getNumOperands()) 1417 return nullptr; 1418 1419 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1420 // `Step`: 1421 1422 // 1. NSW/NUW flags on the step increment. 1423 auto PreStartFlags = 1424 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1425 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1426 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1427 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1428 1429 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1430 // "S+X does not sign/unsign-overflow". 1431 // 1432 1433 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1434 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1435 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1436 return PreStart; 1437 1438 // 2. Direct overflow check on the step operation's expression. 1439 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1440 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1441 const SCEV *OperandExtendedStart = 1442 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1443 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1444 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1445 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1446 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1447 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1448 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1449 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1450 } 1451 return PreStart; 1452 } 1453 1454 // 3. Loop precondition. 1455 ICmpInst::Predicate Pred; 1456 const SCEV *OverflowLimit = 1457 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1458 1459 if (OverflowLimit && 1460 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1461 return PreStart; 1462 1463 return nullptr; 1464 } 1465 1466 // Get the normalized zero or sign extended expression for this AddRec's Start. 1467 template <typename ExtendOpTy> 1468 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1469 ScalarEvolution *SE, 1470 unsigned Depth) { 1471 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1472 1473 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1474 if (!PreStart) 1475 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1476 1477 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1478 Depth), 1479 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1480 } 1481 1482 // Try to prove away overflow by looking at "nearby" add recurrences. A 1483 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1484 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1485 // 1486 // Formally: 1487 // 1488 // {S,+,X} == {S-T,+,X} + T 1489 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1490 // 1491 // If ({S-T,+,X} + T) does not overflow ... (1) 1492 // 1493 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1494 // 1495 // If {S-T,+,X} does not overflow ... (2) 1496 // 1497 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1498 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1499 // 1500 // If (S-T)+T does not overflow ... (3) 1501 // 1502 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1503 // == {Ext(S),+,Ext(X)} == LHS 1504 // 1505 // Thus, if (1), (2) and (3) are true for some T, then 1506 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1507 // 1508 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1509 // does not overflow" restricted to the 0th iteration. Therefore we only need 1510 // to check for (1) and (2). 1511 // 1512 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1513 // is `Delta` (defined below). 1514 template <typename ExtendOpTy> 1515 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1516 const SCEV *Step, 1517 const Loop *L) { 1518 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1519 1520 // We restrict `Start` to a constant to prevent SCEV from spending too much 1521 // time here. It is correct (but more expensive) to continue with a 1522 // non-constant `Start` and do a general SCEV subtraction to compute 1523 // `PreStart` below. 1524 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1525 if (!StartC) 1526 return false; 1527 1528 APInt StartAI = StartC->getAPInt(); 1529 1530 for (unsigned Delta : {-2, -1, 1, 2}) { 1531 const SCEV *PreStart = getConstant(StartAI - Delta); 1532 1533 FoldingSetNodeID ID; 1534 ID.AddInteger(scAddRecExpr); 1535 ID.AddPointer(PreStart); 1536 ID.AddPointer(Step); 1537 ID.AddPointer(L); 1538 void *IP = nullptr; 1539 const auto *PreAR = 1540 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1541 1542 // Give up if we don't already have the add recurrence we need because 1543 // actually constructing an add recurrence is relatively expensive. 1544 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1545 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1546 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1547 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1548 DeltaS, &Pred, this); 1549 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1550 return true; 1551 } 1552 } 1553 1554 return false; 1555 } 1556 1557 // Finds an integer D for an expression (C + x + y + ...) such that the top 1558 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1559 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1560 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1561 // the (C + x + y + ...) expression is \p WholeAddExpr. 1562 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1563 const SCEVConstant *ConstantTerm, 1564 const SCEVAddExpr *WholeAddExpr) { 1565 const APInt &C = ConstantTerm->getAPInt(); 1566 const unsigned BitWidth = C.getBitWidth(); 1567 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1568 uint32_t TZ = BitWidth; 1569 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1570 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1571 if (TZ) { 1572 // Set D to be as many least significant bits of C as possible while still 1573 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1574 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1575 } 1576 return APInt(BitWidth, 0); 1577 } 1578 1579 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1580 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1581 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1582 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1583 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1584 const APInt &ConstantStart, 1585 const SCEV *Step) { 1586 const unsigned BitWidth = ConstantStart.getBitWidth(); 1587 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1588 if (TZ) 1589 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1590 : ConstantStart; 1591 return APInt(BitWidth, 0); 1592 } 1593 1594 const SCEV * 1595 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1596 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1597 "This is not an extending conversion!"); 1598 assert(isSCEVable(Ty) && 1599 "This is not a conversion to a SCEVable type!"); 1600 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1601 Ty = getEffectiveSCEVType(Ty); 1602 1603 // Fold if the operand is constant. 1604 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1605 return getConstant( 1606 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1607 1608 // zext(zext(x)) --> zext(x) 1609 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1610 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1611 1612 // Before doing any expensive analysis, check to see if we've already 1613 // computed a SCEV for this Op and Ty. 1614 FoldingSetNodeID ID; 1615 ID.AddInteger(scZeroExtend); 1616 ID.AddPointer(Op); 1617 ID.AddPointer(Ty); 1618 void *IP = nullptr; 1619 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1620 if (Depth > MaxCastDepth) { 1621 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1622 Op, Ty); 1623 UniqueSCEVs.InsertNode(S, IP); 1624 registerUser(S, Op); 1625 return S; 1626 } 1627 1628 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1629 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1630 // It's possible the bits taken off by the truncate were all zero bits. If 1631 // so, we should be able to simplify this further. 1632 const SCEV *X = ST->getOperand(); 1633 ConstantRange CR = getUnsignedRange(X); 1634 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1635 unsigned NewBits = getTypeSizeInBits(Ty); 1636 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1637 CR.zextOrTrunc(NewBits))) 1638 return getTruncateOrZeroExtend(X, Ty, Depth); 1639 } 1640 1641 // If the input value is a chrec scev, and we can prove that the value 1642 // did not overflow the old, smaller, value, we can zero extend all of the 1643 // operands (often constants). This allows analysis of something like 1644 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1645 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1646 if (AR->isAffine()) { 1647 const SCEV *Start = AR->getStart(); 1648 const SCEV *Step = AR->getStepRecurrence(*this); 1649 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1650 const Loop *L = AR->getLoop(); 1651 1652 if (!AR->hasNoUnsignedWrap()) { 1653 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1654 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1655 } 1656 1657 // If we have special knowledge that this addrec won't overflow, 1658 // we don't need to do any further analysis. 1659 if (AR->hasNoUnsignedWrap()) 1660 return getAddRecExpr( 1661 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1662 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1663 1664 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1665 // Note that this serves two purposes: It filters out loops that are 1666 // simply not analyzable, and it covers the case where this code is 1667 // being called from within backedge-taken count analysis, such that 1668 // attempting to ask for the backedge-taken count would likely result 1669 // in infinite recursion. In the later case, the analysis code will 1670 // cope with a conservative value, and it will take care to purge 1671 // that value once it has finished. 1672 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1673 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1674 // Manually compute the final value for AR, checking for overflow. 1675 1676 // Check whether the backedge-taken count can be losslessly casted to 1677 // the addrec's type. The count is always unsigned. 1678 const SCEV *CastedMaxBECount = 1679 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1680 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1681 CastedMaxBECount, MaxBECount->getType(), Depth); 1682 if (MaxBECount == RecastedMaxBECount) { 1683 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1684 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1685 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1686 SCEV::FlagAnyWrap, Depth + 1); 1687 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1688 SCEV::FlagAnyWrap, 1689 Depth + 1), 1690 WideTy, Depth + 1); 1691 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1692 const SCEV *WideMaxBECount = 1693 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1694 const SCEV *OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getZeroExtendExpr(Step, WideTy, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1); 1700 if (ZAdd == OperandExtendedAdd) { 1701 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1702 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1703 // Return the expression with the addrec on the outside. 1704 return getAddRecExpr( 1705 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1706 Depth + 1), 1707 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1708 AR->getNoWrapFlags()); 1709 } 1710 // Similar to above, only this time treat the step value as signed. 1711 // This covers loops that count down. 1712 OperandExtendedAdd = 1713 getAddExpr(WideStart, 1714 getMulExpr(WideMaxBECount, 1715 getSignExtendExpr(Step, WideTy, Depth + 1), 1716 SCEV::FlagAnyWrap, Depth + 1), 1717 SCEV::FlagAnyWrap, Depth + 1); 1718 if (ZAdd == OperandExtendedAdd) { 1719 // Cache knowledge of AR NW, which is propagated to this AddRec. 1720 // Negative step causes unsigned wrap, but it still can't self-wrap. 1721 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1722 // Return the expression with the addrec on the outside. 1723 return getAddRecExpr( 1724 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1725 Depth + 1), 1726 getSignExtendExpr(Step, Ty, Depth + 1), L, 1727 AR->getNoWrapFlags()); 1728 } 1729 } 1730 } 1731 1732 // Normally, in the cases we can prove no-overflow via a 1733 // backedge guarding condition, we can also compute a backedge 1734 // taken count for the loop. The exceptions are assumptions and 1735 // guards present in the loop -- SCEV is not great at exploiting 1736 // these to compute max backedge taken counts, but can still use 1737 // these to prove lack of overflow. Use this fact to avoid 1738 // doing extra work that may not pay off. 1739 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1740 !AC.assumptions().empty()) { 1741 1742 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1743 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1744 if (AR->hasNoUnsignedWrap()) { 1745 // Same as nuw case above - duplicated here to avoid a compile time 1746 // issue. It's not clear that the order of checks does matter, but 1747 // it's one of two issue possible causes for a change which was 1748 // reverted. Be conservative for the moment. 1749 return getAddRecExpr( 1750 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1751 Depth + 1), 1752 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1753 AR->getNoWrapFlags()); 1754 } 1755 1756 // For a negative step, we can extend the operands iff doing so only 1757 // traverses values in the range zext([0,UINT_MAX]). 1758 if (isKnownNegative(Step)) { 1759 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1760 getSignedRangeMin(Step)); 1761 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1762 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1763 // Cache knowledge of AR NW, which is propagated to this 1764 // AddRec. Negative step causes unsigned wrap, but it 1765 // still can't self-wrap. 1766 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1767 // Return the expression with the addrec on the outside. 1768 return getAddRecExpr( 1769 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1770 Depth + 1), 1771 getSignExtendExpr(Step, Ty, Depth + 1), L, 1772 AR->getNoWrapFlags()); 1773 } 1774 } 1775 } 1776 1777 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1778 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1779 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1780 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1781 const APInt &C = SC->getAPInt(); 1782 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1783 if (D != 0) { 1784 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1785 const SCEV *SResidual = 1786 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1787 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1788 return getAddExpr(SZExtD, SZExtR, 1789 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1790 Depth + 1); 1791 } 1792 } 1793 1794 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1795 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1796 return getAddRecExpr( 1797 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1798 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1799 } 1800 } 1801 1802 // zext(A % B) --> zext(A) % zext(B) 1803 { 1804 const SCEV *LHS; 1805 const SCEV *RHS; 1806 if (matchURem(Op, LHS, RHS)) 1807 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1808 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1809 } 1810 1811 // zext(A / B) --> zext(A) / zext(B). 1812 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1813 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1814 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1815 1816 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1817 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1818 if (SA->hasNoUnsignedWrap()) { 1819 // If the addition does not unsign overflow then we can, by definition, 1820 // commute the zero extension with the addition operation. 1821 SmallVector<const SCEV *, 4> Ops; 1822 for (const auto *Op : SA->operands()) 1823 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1824 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1825 } 1826 1827 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1828 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1829 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1830 // 1831 // Often address arithmetics contain expressions like 1832 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1833 // This transformation is useful while proving that such expressions are 1834 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1835 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1836 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1837 if (D != 0) { 1838 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1839 const SCEV *SResidual = 1840 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1841 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1842 return getAddExpr(SZExtD, SZExtR, 1843 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1844 Depth + 1); 1845 } 1846 } 1847 } 1848 1849 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1850 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1851 if (SM->hasNoUnsignedWrap()) { 1852 // If the multiply does not unsign overflow then we can, by definition, 1853 // commute the zero extension with the multiply operation. 1854 SmallVector<const SCEV *, 4> Ops; 1855 for (const auto *Op : SM->operands()) 1856 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1857 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1858 } 1859 1860 // zext(2^K * (trunc X to iN)) to iM -> 1861 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1862 // 1863 // Proof: 1864 // 1865 // zext(2^K * (trunc X to iN)) to iM 1866 // = zext((trunc X to iN) << K) to iM 1867 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1868 // (because shl removes the top K bits) 1869 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1870 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1871 // 1872 if (SM->getNumOperands() == 2) 1873 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1874 if (MulLHS->getAPInt().isPowerOf2()) 1875 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1876 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1877 MulLHS->getAPInt().logBase2(); 1878 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1879 return getMulExpr( 1880 getZeroExtendExpr(MulLHS, Ty), 1881 getZeroExtendExpr( 1882 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1883 SCEV::FlagNUW, Depth + 1); 1884 } 1885 } 1886 1887 // The cast wasn't folded; create an explicit cast node. 1888 // Recompute the insert position, as it may have been invalidated. 1889 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1890 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1891 Op, Ty); 1892 UniqueSCEVs.InsertNode(S, IP); 1893 registerUser(S, Op); 1894 return S; 1895 } 1896 1897 const SCEV * 1898 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1900 "This is not an extending conversion!"); 1901 assert(isSCEVable(Ty) && 1902 "This is not a conversion to a SCEVable type!"); 1903 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1904 Ty = getEffectiveSCEVType(Ty); 1905 1906 // Fold if the operand is constant. 1907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1908 return getConstant( 1909 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1910 1911 // sext(sext(x)) --> sext(x) 1912 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1913 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1914 1915 // sext(zext(x)) --> zext(x) 1916 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1917 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1918 1919 // Before doing any expensive analysis, check to see if we've already 1920 // computed a SCEV for this Op and Ty. 1921 FoldingSetNodeID ID; 1922 ID.AddInteger(scSignExtend); 1923 ID.AddPointer(Op); 1924 ID.AddPointer(Ty); 1925 void *IP = nullptr; 1926 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1927 // Limit recursion depth. 1928 if (Depth > MaxCastDepth) { 1929 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1930 Op, Ty); 1931 UniqueSCEVs.InsertNode(S, IP); 1932 registerUser(S, Op); 1933 return S; 1934 } 1935 1936 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1937 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1938 // It's possible the bits taken off by the truncate were all sign bits. If 1939 // so, we should be able to simplify this further. 1940 const SCEV *X = ST->getOperand(); 1941 ConstantRange CR = getSignedRange(X); 1942 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1943 unsigned NewBits = getTypeSizeInBits(Ty); 1944 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1945 CR.sextOrTrunc(NewBits))) 1946 return getTruncateOrSignExtend(X, Ty, Depth); 1947 } 1948 1949 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1950 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1951 if (SA->hasNoSignedWrap()) { 1952 // If the addition does not sign overflow then we can, by definition, 1953 // commute the sign extension with the addition operation. 1954 SmallVector<const SCEV *, 4> Ops; 1955 for (const auto *Op : SA->operands()) 1956 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1957 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1958 } 1959 1960 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1961 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1962 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1963 // 1964 // For instance, this will bring two seemingly different expressions: 1965 // 1 + sext(5 + 20 * %x + 24 * %y) and 1966 // sext(6 + 20 * %x + 24 * %y) 1967 // to the same form: 1968 // 2 + sext(4 + 20 * %x + 24 * %y) 1969 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1970 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1971 if (D != 0) { 1972 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1973 const SCEV *SResidual = 1974 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1975 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1976 return getAddExpr(SSExtD, SSExtR, 1977 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1978 Depth + 1); 1979 } 1980 } 1981 } 1982 // If the input value is a chrec scev, and we can prove that the value 1983 // did not overflow the old, smaller, value, we can sign extend all of the 1984 // operands (often constants). This allows analysis of something like 1985 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1986 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1987 if (AR->isAffine()) { 1988 const SCEV *Start = AR->getStart(); 1989 const SCEV *Step = AR->getStepRecurrence(*this); 1990 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1991 const Loop *L = AR->getLoop(); 1992 1993 if (!AR->hasNoSignedWrap()) { 1994 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1995 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1996 } 1997 1998 // If we have special knowledge that this addrec won't overflow, 1999 // we don't need to do any further analysis. 2000 if (AR->hasNoSignedWrap()) 2001 return getAddRecExpr( 2002 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2003 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 2004 2005 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2006 // Note that this serves two purposes: It filters out loops that are 2007 // simply not analyzable, and it covers the case where this code is 2008 // being called from within backedge-taken count analysis, such that 2009 // attempting to ask for the backedge-taken count would likely result 2010 // in infinite recursion. In the later case, the analysis code will 2011 // cope with a conservative value, and it will take care to purge 2012 // that value once it has finished. 2013 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2014 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2015 // Manually compute the final value for AR, checking for 2016 // overflow. 2017 2018 // Check whether the backedge-taken count can be losslessly casted to 2019 // the addrec's type. The count is always unsigned. 2020 const SCEV *CastedMaxBECount = 2021 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2022 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2023 CastedMaxBECount, MaxBECount->getType(), Depth); 2024 if (MaxBECount == RecastedMaxBECount) { 2025 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2026 // Check whether Start+Step*MaxBECount has no signed overflow. 2027 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2030 SCEV::FlagAnyWrap, 2031 Depth + 1), 2032 WideTy, Depth + 1); 2033 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2034 const SCEV *WideMaxBECount = 2035 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2036 const SCEV *OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getSignExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2044 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2045 // Return the expression with the addrec on the outside. 2046 return getAddRecExpr( 2047 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2048 Depth + 1), 2049 getSignExtendExpr(Step, Ty, Depth + 1), L, 2050 AR->getNoWrapFlags()); 2051 } 2052 // Similar to above, only this time treat the step value as unsigned. 2053 // This covers loops that count up with an unsigned step. 2054 OperandExtendedAdd = 2055 getAddExpr(WideStart, 2056 getMulExpr(WideMaxBECount, 2057 getZeroExtendExpr(Step, WideTy, Depth + 1), 2058 SCEV::FlagAnyWrap, Depth + 1), 2059 SCEV::FlagAnyWrap, Depth + 1); 2060 if (SAdd == OperandExtendedAdd) { 2061 // If AR wraps around then 2062 // 2063 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2064 // => SAdd != OperandExtendedAdd 2065 // 2066 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2067 // (SAdd == OperandExtendedAdd => AR is NW) 2068 2069 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2070 2071 // Return the expression with the addrec on the outside. 2072 return getAddRecExpr( 2073 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2074 Depth + 1), 2075 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2076 AR->getNoWrapFlags()); 2077 } 2078 } 2079 } 2080 2081 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2082 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2083 if (AR->hasNoSignedWrap()) { 2084 // Same as nsw case above - duplicated here to avoid a compile time 2085 // issue. It's not clear that the order of checks does matter, but 2086 // it's one of two issue possible causes for a change which was 2087 // reverted. Be conservative for the moment. 2088 return getAddRecExpr( 2089 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2090 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2091 } 2092 2093 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2094 // if D + (C - D + Step * n) could be proven to not signed wrap 2095 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2096 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2097 const APInt &C = SC->getAPInt(); 2098 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2099 if (D != 0) { 2100 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2101 const SCEV *SResidual = 2102 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2103 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2104 return getAddExpr(SSExtD, SSExtR, 2105 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2106 Depth + 1); 2107 } 2108 } 2109 2110 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2111 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2112 return getAddRecExpr( 2113 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2114 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2115 } 2116 } 2117 2118 // If the input value is provably positive and we could not simplify 2119 // away the sext build a zext instead. 2120 if (isKnownNonNegative(Op)) 2121 return getZeroExtendExpr(Op, Ty, Depth + 1); 2122 2123 // The cast wasn't folded; create an explicit cast node. 2124 // Recompute the insert position, as it may have been invalidated. 2125 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2126 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2127 Op, Ty); 2128 UniqueSCEVs.InsertNode(S, IP); 2129 registerUser(S, { Op }); 2130 return S; 2131 } 2132 2133 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2134 Type *Ty) { 2135 switch (Kind) { 2136 case scTruncate: 2137 return getTruncateExpr(Op, Ty); 2138 case scZeroExtend: 2139 return getZeroExtendExpr(Op, Ty); 2140 case scSignExtend: 2141 return getSignExtendExpr(Op, Ty); 2142 case scPtrToInt: 2143 return getPtrToIntExpr(Op, Ty); 2144 default: 2145 llvm_unreachable("Not a SCEV cast expression!"); 2146 } 2147 } 2148 2149 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2150 /// unspecified bits out to the given type. 2151 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2152 Type *Ty) { 2153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2154 "This is not an extending conversion!"); 2155 assert(isSCEVable(Ty) && 2156 "This is not a conversion to a SCEVable type!"); 2157 Ty = getEffectiveSCEVType(Ty); 2158 2159 // Sign-extend negative constants. 2160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2161 if (SC->getAPInt().isNegative()) 2162 return getSignExtendExpr(Op, Ty); 2163 2164 // Peel off a truncate cast. 2165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2166 const SCEV *NewOp = T->getOperand(); 2167 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2168 return getAnyExtendExpr(NewOp, Ty); 2169 return getTruncateOrNoop(NewOp, Ty); 2170 } 2171 2172 // Next try a zext cast. If the cast is folded, use it. 2173 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2174 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2175 return ZExt; 2176 2177 // Next try a sext cast. If the cast is folded, use it. 2178 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2179 if (!isa<SCEVSignExtendExpr>(SExt)) 2180 return SExt; 2181 2182 // Force the cast to be folded into the operands of an addrec. 2183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2184 SmallVector<const SCEV *, 4> Ops; 2185 for (const SCEV *Op : AR->operands()) 2186 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2187 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2188 } 2189 2190 // If the expression is obviously signed, use the sext cast value. 2191 if (isa<SCEVSMaxExpr>(Op)) 2192 return SExt; 2193 2194 // Absent any other information, use the zext cast value. 2195 return ZExt; 2196 } 2197 2198 /// Process the given Ops list, which is a list of operands to be added under 2199 /// the given scale, update the given map. This is a helper function for 2200 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2201 /// that would form an add expression like this: 2202 /// 2203 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2204 /// 2205 /// where A and B are constants, update the map with these values: 2206 /// 2207 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2208 /// 2209 /// and add 13 + A*B*29 to AccumulatedConstant. 2210 /// This will allow getAddRecExpr to produce this: 2211 /// 2212 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2213 /// 2214 /// This form often exposes folding opportunities that are hidden in 2215 /// the original operand list. 2216 /// 2217 /// Return true iff it appears that any interesting folding opportunities 2218 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2219 /// the common case where no interesting opportunities are present, and 2220 /// is also used as a check to avoid infinite recursion. 2221 static bool 2222 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2223 SmallVectorImpl<const SCEV *> &NewOps, 2224 APInt &AccumulatedConstant, 2225 const SCEV *const *Ops, size_t NumOperands, 2226 const APInt &Scale, 2227 ScalarEvolution &SE) { 2228 bool Interesting = false; 2229 2230 // Iterate over the add operands. They are sorted, with constants first. 2231 unsigned i = 0; 2232 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2233 ++i; 2234 // Pull a buried constant out to the outside. 2235 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2236 Interesting = true; 2237 AccumulatedConstant += Scale * C->getAPInt(); 2238 } 2239 2240 // Next comes everything else. We're especially interested in multiplies 2241 // here, but they're in the middle, so just visit the rest with one loop. 2242 for (; i != NumOperands; ++i) { 2243 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2244 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2245 APInt NewScale = 2246 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2247 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2248 // A multiplication of a constant with another add; recurse. 2249 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2250 Interesting |= 2251 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2252 Add->op_begin(), Add->getNumOperands(), 2253 NewScale, SE); 2254 } else { 2255 // A multiplication of a constant with some other value. Update 2256 // the map. 2257 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2258 const SCEV *Key = SE.getMulExpr(MulOps); 2259 auto Pair = M.insert({Key, NewScale}); 2260 if (Pair.second) { 2261 NewOps.push_back(Pair.first->first); 2262 } else { 2263 Pair.first->second += NewScale; 2264 // The map already had an entry for this value, which may indicate 2265 // a folding opportunity. 2266 Interesting = true; 2267 } 2268 } 2269 } else { 2270 // An ordinary operand. Update the map. 2271 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2272 M.insert({Ops[i], Scale}); 2273 if (Pair.second) { 2274 NewOps.push_back(Pair.first->first); 2275 } else { 2276 Pair.first->second += Scale; 2277 // The map already had an entry for this value, which may indicate 2278 // a folding opportunity. 2279 Interesting = true; 2280 } 2281 } 2282 } 2283 2284 return Interesting; 2285 } 2286 2287 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2288 const SCEV *LHS, const SCEV *RHS) { 2289 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2290 SCEV::NoWrapFlags, unsigned); 2291 switch (BinOp) { 2292 default: 2293 llvm_unreachable("Unsupported binary op"); 2294 case Instruction::Add: 2295 Operation = &ScalarEvolution::getAddExpr; 2296 break; 2297 case Instruction::Sub: 2298 Operation = &ScalarEvolution::getMinusSCEV; 2299 break; 2300 case Instruction::Mul: 2301 Operation = &ScalarEvolution::getMulExpr; 2302 break; 2303 } 2304 2305 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2306 Signed ? &ScalarEvolution::getSignExtendExpr 2307 : &ScalarEvolution::getZeroExtendExpr; 2308 2309 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2310 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2311 auto *WideTy = 2312 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2313 2314 const SCEV *A = (this->*Extension)( 2315 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2316 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2317 (this->*Extension)(RHS, WideTy, 0), 2318 SCEV::FlagAnyWrap, 0); 2319 return A == B; 2320 } 2321 2322 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2323 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2324 const OverflowingBinaryOperator *OBO) { 2325 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2326 2327 if (OBO->hasNoUnsignedWrap()) 2328 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2329 if (OBO->hasNoSignedWrap()) 2330 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2331 2332 bool Deduced = false; 2333 2334 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2335 return {Flags, Deduced}; 2336 2337 if (OBO->getOpcode() != Instruction::Add && 2338 OBO->getOpcode() != Instruction::Sub && 2339 OBO->getOpcode() != Instruction::Mul) 2340 return {Flags, Deduced}; 2341 2342 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2343 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2344 2345 if (!OBO->hasNoUnsignedWrap() && 2346 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2347 /* Signed */ false, LHS, RHS)) { 2348 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2349 Deduced = true; 2350 } 2351 2352 if (!OBO->hasNoSignedWrap() && 2353 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2354 /* Signed */ true, LHS, RHS)) { 2355 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2356 Deduced = true; 2357 } 2358 2359 return {Flags, Deduced}; 2360 } 2361 2362 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2363 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2364 // can't-overflow flags for the operation if possible. 2365 static SCEV::NoWrapFlags 2366 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2367 const ArrayRef<const SCEV *> Ops, 2368 SCEV::NoWrapFlags Flags) { 2369 using namespace std::placeholders; 2370 2371 using OBO = OverflowingBinaryOperator; 2372 2373 bool CanAnalyze = 2374 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2375 (void)CanAnalyze; 2376 assert(CanAnalyze && "don't call from other places!"); 2377 2378 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2379 SCEV::NoWrapFlags SignOrUnsignWrap = 2380 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2381 2382 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2383 auto IsKnownNonNegative = [&](const SCEV *S) { 2384 return SE->isKnownNonNegative(S); 2385 }; 2386 2387 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2388 Flags = 2389 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2390 2391 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2392 2393 if (SignOrUnsignWrap != SignOrUnsignMask && 2394 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2395 isa<SCEVConstant>(Ops[0])) { 2396 2397 auto Opcode = [&] { 2398 switch (Type) { 2399 case scAddExpr: 2400 return Instruction::Add; 2401 case scMulExpr: 2402 return Instruction::Mul; 2403 default: 2404 llvm_unreachable("Unexpected SCEV op."); 2405 } 2406 }(); 2407 2408 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2409 2410 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2411 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2412 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2413 Opcode, C, OBO::NoSignedWrap); 2414 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2415 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2416 } 2417 2418 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2419 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2420 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2421 Opcode, C, OBO::NoUnsignedWrap); 2422 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2423 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2424 } 2425 } 2426 2427 // <0,+,nonnegative><nw> is also nuw 2428 // TODO: Add corresponding nsw case 2429 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2430 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2431 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2432 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2433 2434 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2435 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2436 Ops.size() == 2) { 2437 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2438 if (UDiv->getOperand(1) == Ops[1]) 2439 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2440 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2441 if (UDiv->getOperand(1) == Ops[0]) 2442 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2443 } 2444 2445 return Flags; 2446 } 2447 2448 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2449 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2450 } 2451 2452 /// Get a canonical add expression, or something simpler if possible. 2453 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2454 SCEV::NoWrapFlags OrigFlags, 2455 unsigned Depth) { 2456 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2457 "only nuw or nsw allowed"); 2458 assert(!Ops.empty() && "Cannot get empty add!"); 2459 if (Ops.size() == 1) return Ops[0]; 2460 #ifndef NDEBUG 2461 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2462 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2463 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2464 "SCEVAddExpr operand types don't match!"); 2465 unsigned NumPtrs = count_if( 2466 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2467 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2468 #endif 2469 2470 // Sort by complexity, this groups all similar expression types together. 2471 GroupByComplexity(Ops, &LI, DT); 2472 2473 // If there are any constants, fold them together. 2474 unsigned Idx = 0; 2475 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2476 ++Idx; 2477 assert(Idx < Ops.size()); 2478 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2479 // We found two constants, fold them together! 2480 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2481 if (Ops.size() == 2) return Ops[0]; 2482 Ops.erase(Ops.begin()+1); // Erase the folded element 2483 LHSC = cast<SCEVConstant>(Ops[0]); 2484 } 2485 2486 // If we are left with a constant zero being added, strip it off. 2487 if (LHSC->getValue()->isZero()) { 2488 Ops.erase(Ops.begin()); 2489 --Idx; 2490 } 2491 2492 if (Ops.size() == 1) return Ops[0]; 2493 } 2494 2495 // Delay expensive flag strengthening until necessary. 2496 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2497 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2498 }; 2499 2500 // Limit recursion calls depth. 2501 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2502 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2503 2504 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2505 // Don't strengthen flags if we have no new information. 2506 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2507 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2508 Add->setNoWrapFlags(ComputeFlags(Ops)); 2509 return S; 2510 } 2511 2512 // Okay, check to see if the same value occurs in the operand list more than 2513 // once. If so, merge them together into an multiply expression. Since we 2514 // sorted the list, these values are required to be adjacent. 2515 Type *Ty = Ops[0]->getType(); 2516 bool FoundMatch = false; 2517 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2518 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2519 // Scan ahead to count how many equal operands there are. 2520 unsigned Count = 2; 2521 while (i+Count != e && Ops[i+Count] == Ops[i]) 2522 ++Count; 2523 // Merge the values into a multiply. 2524 const SCEV *Scale = getConstant(Ty, Count); 2525 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2526 if (Ops.size() == Count) 2527 return Mul; 2528 Ops[i] = Mul; 2529 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2530 --i; e -= Count - 1; 2531 FoundMatch = true; 2532 } 2533 if (FoundMatch) 2534 return getAddExpr(Ops, OrigFlags, Depth + 1); 2535 2536 // Check for truncates. If all the operands are truncated from the same 2537 // type, see if factoring out the truncate would permit the result to be 2538 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2539 // if the contents of the resulting outer trunc fold to something simple. 2540 auto FindTruncSrcType = [&]() -> Type * { 2541 // We're ultimately looking to fold an addrec of truncs and muls of only 2542 // constants and truncs, so if we find any other types of SCEV 2543 // as operands of the addrec then we bail and return nullptr here. 2544 // Otherwise, we return the type of the operand of a trunc that we find. 2545 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2546 return T->getOperand()->getType(); 2547 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2548 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2549 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2550 return T->getOperand()->getType(); 2551 } 2552 return nullptr; 2553 }; 2554 if (auto *SrcType = FindTruncSrcType()) { 2555 SmallVector<const SCEV *, 8> LargeOps; 2556 bool Ok = true; 2557 // Check all the operands to see if they can be represented in the 2558 // source type of the truncate. 2559 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2560 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2561 if (T->getOperand()->getType() != SrcType) { 2562 Ok = false; 2563 break; 2564 } 2565 LargeOps.push_back(T->getOperand()); 2566 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2567 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2568 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2569 SmallVector<const SCEV *, 8> LargeMulOps; 2570 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2571 if (const SCEVTruncateExpr *T = 2572 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2573 if (T->getOperand()->getType() != SrcType) { 2574 Ok = false; 2575 break; 2576 } 2577 LargeMulOps.push_back(T->getOperand()); 2578 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2579 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2580 } else { 2581 Ok = false; 2582 break; 2583 } 2584 } 2585 if (Ok) 2586 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2587 } else { 2588 Ok = false; 2589 break; 2590 } 2591 } 2592 if (Ok) { 2593 // Evaluate the expression in the larger type. 2594 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2595 // If it folds to something simple, use it. Otherwise, don't. 2596 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2597 return getTruncateExpr(Fold, Ty); 2598 } 2599 } 2600 2601 if (Ops.size() == 2) { 2602 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2603 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2604 // C1). 2605 const SCEV *A = Ops[0]; 2606 const SCEV *B = Ops[1]; 2607 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2608 auto *C = dyn_cast<SCEVConstant>(A); 2609 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2610 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2611 auto C2 = C->getAPInt(); 2612 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2613 2614 APInt ConstAdd = C1 + C2; 2615 auto AddFlags = AddExpr->getNoWrapFlags(); 2616 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2617 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2618 ConstAdd.ule(C1)) { 2619 PreservedFlags = 2620 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2621 } 2622 2623 // Adding a constant with the same sign and small magnitude is NSW, if the 2624 // original AddExpr was NSW. 2625 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2626 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2627 ConstAdd.abs().ule(C1.abs())) { 2628 PreservedFlags = 2629 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2630 } 2631 2632 if (PreservedFlags != SCEV::FlagAnyWrap) { 2633 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2634 NewOps[0] = getConstant(ConstAdd); 2635 return getAddExpr(NewOps, PreservedFlags); 2636 } 2637 } 2638 } 2639 2640 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2641 if (Ops.size() == 2) { 2642 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2643 if (Mul && Mul->getNumOperands() == 2 && 2644 Mul->getOperand(0)->isAllOnesValue()) { 2645 const SCEV *X; 2646 const SCEV *Y; 2647 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2648 return getMulExpr(Y, getUDivExpr(X, Y)); 2649 } 2650 } 2651 } 2652 2653 // Skip past any other cast SCEVs. 2654 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2655 ++Idx; 2656 2657 // If there are add operands they would be next. 2658 if (Idx < Ops.size()) { 2659 bool DeletedAdd = false; 2660 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2661 // common NUW flag for expression after inlining. Other flags cannot be 2662 // preserved, because they may depend on the original order of operations. 2663 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2664 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2665 if (Ops.size() > AddOpsInlineThreshold || 2666 Add->getNumOperands() > AddOpsInlineThreshold) 2667 break; 2668 // If we have an add, expand the add operands onto the end of the operands 2669 // list. 2670 Ops.erase(Ops.begin()+Idx); 2671 Ops.append(Add->op_begin(), Add->op_end()); 2672 DeletedAdd = true; 2673 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2674 } 2675 2676 // If we deleted at least one add, we added operands to the end of the list, 2677 // and they are not necessarily sorted. Recurse to resort and resimplify 2678 // any operands we just acquired. 2679 if (DeletedAdd) 2680 return getAddExpr(Ops, CommonFlags, Depth + 1); 2681 } 2682 2683 // Skip over the add expression until we get to a multiply. 2684 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2685 ++Idx; 2686 2687 // Check to see if there are any folding opportunities present with 2688 // operands multiplied by constant values. 2689 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2690 uint64_t BitWidth = getTypeSizeInBits(Ty); 2691 DenseMap<const SCEV *, APInt> M; 2692 SmallVector<const SCEV *, 8> NewOps; 2693 APInt AccumulatedConstant(BitWidth, 0); 2694 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2695 Ops.data(), Ops.size(), 2696 APInt(BitWidth, 1), *this)) { 2697 struct APIntCompare { 2698 bool operator()(const APInt &LHS, const APInt &RHS) const { 2699 return LHS.ult(RHS); 2700 } 2701 }; 2702 2703 // Some interesting folding opportunity is present, so its worthwhile to 2704 // re-generate the operands list. Group the operands by constant scale, 2705 // to avoid multiplying by the same constant scale multiple times. 2706 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2707 for (const SCEV *NewOp : NewOps) 2708 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2709 // Re-generate the operands list. 2710 Ops.clear(); 2711 if (AccumulatedConstant != 0) 2712 Ops.push_back(getConstant(AccumulatedConstant)); 2713 for (auto &MulOp : MulOpLists) { 2714 if (MulOp.first == 1) { 2715 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2716 } else if (MulOp.first != 0) { 2717 Ops.push_back(getMulExpr( 2718 getConstant(MulOp.first), 2719 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2720 SCEV::FlagAnyWrap, Depth + 1)); 2721 } 2722 } 2723 if (Ops.empty()) 2724 return getZero(Ty); 2725 if (Ops.size() == 1) 2726 return Ops[0]; 2727 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2728 } 2729 } 2730 2731 // If we are adding something to a multiply expression, make sure the 2732 // something is not already an operand of the multiply. If so, merge it into 2733 // the multiply. 2734 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2735 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2736 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2737 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2738 if (isa<SCEVConstant>(MulOpSCEV)) 2739 continue; 2740 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2741 if (MulOpSCEV == Ops[AddOp]) { 2742 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2743 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2744 if (Mul->getNumOperands() != 2) { 2745 // If the multiply has more than two operands, we must get the 2746 // Y*Z term. 2747 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2748 Mul->op_begin()+MulOp); 2749 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2750 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2751 } 2752 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2753 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2754 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2755 SCEV::FlagAnyWrap, Depth + 1); 2756 if (Ops.size() == 2) return OuterMul; 2757 if (AddOp < Idx) { 2758 Ops.erase(Ops.begin()+AddOp); 2759 Ops.erase(Ops.begin()+Idx-1); 2760 } else { 2761 Ops.erase(Ops.begin()+Idx); 2762 Ops.erase(Ops.begin()+AddOp-1); 2763 } 2764 Ops.push_back(OuterMul); 2765 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2766 } 2767 2768 // Check this multiply against other multiplies being added together. 2769 for (unsigned OtherMulIdx = Idx+1; 2770 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2771 ++OtherMulIdx) { 2772 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2773 // If MulOp occurs in OtherMul, we can fold the two multiplies 2774 // together. 2775 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2776 OMulOp != e; ++OMulOp) 2777 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2778 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2779 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2780 if (Mul->getNumOperands() != 2) { 2781 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2782 Mul->op_begin()+MulOp); 2783 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2784 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2785 } 2786 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2787 if (OtherMul->getNumOperands() != 2) { 2788 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2789 OtherMul->op_begin()+OMulOp); 2790 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2791 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2792 } 2793 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2794 const SCEV *InnerMulSum = 2795 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2796 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2797 SCEV::FlagAnyWrap, Depth + 1); 2798 if (Ops.size() == 2) return OuterMul; 2799 Ops.erase(Ops.begin()+Idx); 2800 Ops.erase(Ops.begin()+OtherMulIdx-1); 2801 Ops.push_back(OuterMul); 2802 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2803 } 2804 } 2805 } 2806 } 2807 2808 // If there are any add recurrences in the operands list, see if any other 2809 // added values are loop invariant. If so, we can fold them into the 2810 // recurrence. 2811 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2812 ++Idx; 2813 2814 // Scan over all recurrences, trying to fold loop invariants into them. 2815 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2816 // Scan all of the other operands to this add and add them to the vector if 2817 // they are loop invariant w.r.t. the recurrence. 2818 SmallVector<const SCEV *, 8> LIOps; 2819 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2820 const Loop *AddRecLoop = AddRec->getLoop(); 2821 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2822 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2823 LIOps.push_back(Ops[i]); 2824 Ops.erase(Ops.begin()+i); 2825 --i; --e; 2826 } 2827 2828 // If we found some loop invariants, fold them into the recurrence. 2829 if (!LIOps.empty()) { 2830 // Compute nowrap flags for the addition of the loop-invariant ops and 2831 // the addrec. Temporarily push it as an operand for that purpose. These 2832 // flags are valid in the scope of the addrec only. 2833 LIOps.push_back(AddRec); 2834 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2835 LIOps.pop_back(); 2836 2837 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2838 LIOps.push_back(AddRec->getStart()); 2839 2840 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2841 2842 // It is not in general safe to propagate flags valid on an add within 2843 // the addrec scope to one outside it. We must prove that the inner 2844 // scope is guaranteed to execute if the outer one does to be able to 2845 // safely propagate. We know the program is undefined if poison is 2846 // produced on the inner scoped addrec. We also know that *for this use* 2847 // the outer scoped add can't overflow (because of the flags we just 2848 // computed for the inner scoped add) without the program being undefined. 2849 // Proving that entry to the outer scope neccesitates entry to the inner 2850 // scope, thus proves the program undefined if the flags would be violated 2851 // in the outer scope. 2852 SCEV::NoWrapFlags AddFlags = Flags; 2853 if (AddFlags != SCEV::FlagAnyWrap) { 2854 auto *DefI = getDefiningScopeBound(LIOps); 2855 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2856 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2857 AddFlags = SCEV::FlagAnyWrap; 2858 } 2859 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2860 2861 // Build the new addrec. Propagate the NUW and NSW flags if both the 2862 // outer add and the inner addrec are guaranteed to have no overflow. 2863 // Always propagate NW. 2864 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2865 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2866 2867 // If all of the other operands were loop invariant, we are done. 2868 if (Ops.size() == 1) return NewRec; 2869 2870 // Otherwise, add the folded AddRec by the non-invariant parts. 2871 for (unsigned i = 0;; ++i) 2872 if (Ops[i] == AddRec) { 2873 Ops[i] = NewRec; 2874 break; 2875 } 2876 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2877 } 2878 2879 // Okay, if there weren't any loop invariants to be folded, check to see if 2880 // there are multiple AddRec's with the same loop induction variable being 2881 // added together. If so, we can fold them. 2882 for (unsigned OtherIdx = Idx+1; 2883 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2884 ++OtherIdx) { 2885 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2886 // so that the 1st found AddRecExpr is dominated by all others. 2887 assert(DT.dominates( 2888 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2889 AddRec->getLoop()->getHeader()) && 2890 "AddRecExprs are not sorted in reverse dominance order?"); 2891 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2892 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2893 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2894 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2895 ++OtherIdx) { 2896 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2897 if (OtherAddRec->getLoop() == AddRecLoop) { 2898 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2899 i != e; ++i) { 2900 if (i >= AddRecOps.size()) { 2901 AddRecOps.append(OtherAddRec->op_begin()+i, 2902 OtherAddRec->op_end()); 2903 break; 2904 } 2905 SmallVector<const SCEV *, 2> TwoOps = { 2906 AddRecOps[i], OtherAddRec->getOperand(i)}; 2907 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2908 } 2909 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2910 } 2911 } 2912 // Step size has changed, so we cannot guarantee no self-wraparound. 2913 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2914 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2915 } 2916 } 2917 2918 // Otherwise couldn't fold anything into this recurrence. Move onto the 2919 // next one. 2920 } 2921 2922 // Okay, it looks like we really DO need an add expr. Check to see if we 2923 // already have one, otherwise create a new one. 2924 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2925 } 2926 2927 const SCEV * 2928 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2929 SCEV::NoWrapFlags Flags) { 2930 FoldingSetNodeID ID; 2931 ID.AddInteger(scAddExpr); 2932 for (const SCEV *Op : Ops) 2933 ID.AddPointer(Op); 2934 void *IP = nullptr; 2935 SCEVAddExpr *S = 2936 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2937 if (!S) { 2938 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2939 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2940 S = new (SCEVAllocator) 2941 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2942 UniqueSCEVs.InsertNode(S, IP); 2943 registerUser(S, Ops); 2944 } 2945 S->setNoWrapFlags(Flags); 2946 return S; 2947 } 2948 2949 const SCEV * 2950 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2951 const Loop *L, SCEV::NoWrapFlags Flags) { 2952 FoldingSetNodeID ID; 2953 ID.AddInteger(scAddRecExpr); 2954 for (const SCEV *Op : Ops) 2955 ID.AddPointer(Op); 2956 ID.AddPointer(L); 2957 void *IP = nullptr; 2958 SCEVAddRecExpr *S = 2959 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2960 if (!S) { 2961 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2962 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2963 S = new (SCEVAllocator) 2964 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2965 UniqueSCEVs.InsertNode(S, IP); 2966 LoopUsers[L].push_back(S); 2967 registerUser(S, Ops); 2968 } 2969 setNoWrapFlags(S, Flags); 2970 return S; 2971 } 2972 2973 const SCEV * 2974 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2975 SCEV::NoWrapFlags Flags) { 2976 FoldingSetNodeID ID; 2977 ID.AddInteger(scMulExpr); 2978 for (const SCEV *Op : Ops) 2979 ID.AddPointer(Op); 2980 void *IP = nullptr; 2981 SCEVMulExpr *S = 2982 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2983 if (!S) { 2984 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2985 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2986 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2987 O, Ops.size()); 2988 UniqueSCEVs.InsertNode(S, IP); 2989 registerUser(S, Ops); 2990 } 2991 S->setNoWrapFlags(Flags); 2992 return S; 2993 } 2994 2995 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2996 uint64_t k = i*j; 2997 if (j > 1 && k / j != i) Overflow = true; 2998 return k; 2999 } 3000 3001 /// Compute the result of "n choose k", the binomial coefficient. If an 3002 /// intermediate computation overflows, Overflow will be set and the return will 3003 /// be garbage. Overflow is not cleared on absence of overflow. 3004 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3005 // We use the multiplicative formula: 3006 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3007 // At each iteration, we take the n-th term of the numeral and divide by the 3008 // (k-n)th term of the denominator. This division will always produce an 3009 // integral result, and helps reduce the chance of overflow in the 3010 // intermediate computations. However, we can still overflow even when the 3011 // final result would fit. 3012 3013 if (n == 0 || n == k) return 1; 3014 if (k > n) return 0; 3015 3016 if (k > n/2) 3017 k = n-k; 3018 3019 uint64_t r = 1; 3020 for (uint64_t i = 1; i <= k; ++i) { 3021 r = umul_ov(r, n-(i-1), Overflow); 3022 r /= i; 3023 } 3024 return r; 3025 } 3026 3027 /// Determine if any of the operands in this SCEV are a constant or if 3028 /// any of the add or multiply expressions in this SCEV contain a constant. 3029 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3030 struct FindConstantInAddMulChain { 3031 bool FoundConstant = false; 3032 3033 bool follow(const SCEV *S) { 3034 FoundConstant |= isa<SCEVConstant>(S); 3035 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3036 } 3037 3038 bool isDone() const { 3039 return FoundConstant; 3040 } 3041 }; 3042 3043 FindConstantInAddMulChain F; 3044 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3045 ST.visitAll(StartExpr); 3046 return F.FoundConstant; 3047 } 3048 3049 /// Get a canonical multiply expression, or something simpler if possible. 3050 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3051 SCEV::NoWrapFlags OrigFlags, 3052 unsigned Depth) { 3053 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3054 "only nuw or nsw allowed"); 3055 assert(!Ops.empty() && "Cannot get empty mul!"); 3056 if (Ops.size() == 1) return Ops[0]; 3057 #ifndef NDEBUG 3058 Type *ETy = Ops[0]->getType(); 3059 assert(!ETy->isPointerTy()); 3060 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3061 assert(Ops[i]->getType() == ETy && 3062 "SCEVMulExpr operand types don't match!"); 3063 #endif 3064 3065 // Sort by complexity, this groups all similar expression types together. 3066 GroupByComplexity(Ops, &LI, DT); 3067 3068 // If there are any constants, fold them together. 3069 unsigned Idx = 0; 3070 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3071 ++Idx; 3072 assert(Idx < Ops.size()); 3073 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3074 // We found two constants, fold them together! 3075 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3076 if (Ops.size() == 2) return Ops[0]; 3077 Ops.erase(Ops.begin()+1); // Erase the folded element 3078 LHSC = cast<SCEVConstant>(Ops[0]); 3079 } 3080 3081 // If we have a multiply of zero, it will always be zero. 3082 if (LHSC->getValue()->isZero()) 3083 return LHSC; 3084 3085 // If we are left with a constant one being multiplied, strip it off. 3086 if (LHSC->getValue()->isOne()) { 3087 Ops.erase(Ops.begin()); 3088 --Idx; 3089 } 3090 3091 if (Ops.size() == 1) 3092 return Ops[0]; 3093 } 3094 3095 // Delay expensive flag strengthening until necessary. 3096 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3097 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3098 }; 3099 3100 // Limit recursion calls depth. 3101 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3102 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3103 3104 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3105 // Don't strengthen flags if we have no new information. 3106 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3107 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3108 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3109 return S; 3110 } 3111 3112 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3113 if (Ops.size() == 2) { 3114 // C1*(C2+V) -> C1*C2 + C1*V 3115 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3116 // If any of Add's ops are Adds or Muls with a constant, apply this 3117 // transformation as well. 3118 // 3119 // TODO: There are some cases where this transformation is not 3120 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3121 // this transformation should be narrowed down. 3122 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3123 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3124 SCEV::FlagAnyWrap, Depth + 1), 3125 getMulExpr(LHSC, Add->getOperand(1), 3126 SCEV::FlagAnyWrap, Depth + 1), 3127 SCEV::FlagAnyWrap, Depth + 1); 3128 3129 if (Ops[0]->isAllOnesValue()) { 3130 // If we have a mul by -1 of an add, try distributing the -1 among the 3131 // add operands. 3132 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3133 SmallVector<const SCEV *, 4> NewOps; 3134 bool AnyFolded = false; 3135 for (const SCEV *AddOp : Add->operands()) { 3136 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3137 Depth + 1); 3138 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3139 NewOps.push_back(Mul); 3140 } 3141 if (AnyFolded) 3142 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3143 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3144 // Negation preserves a recurrence's no self-wrap property. 3145 SmallVector<const SCEV *, 4> Operands; 3146 for (const SCEV *AddRecOp : AddRec->operands()) 3147 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3148 Depth + 1)); 3149 3150 return getAddRecExpr(Operands, AddRec->getLoop(), 3151 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3152 } 3153 } 3154 } 3155 } 3156 3157 // Skip over the add expression until we get to a multiply. 3158 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3159 ++Idx; 3160 3161 // If there are mul operands inline them all into this expression. 3162 if (Idx < Ops.size()) { 3163 bool DeletedMul = false; 3164 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3165 if (Ops.size() > MulOpsInlineThreshold) 3166 break; 3167 // If we have an mul, expand the mul operands onto the end of the 3168 // operands list. 3169 Ops.erase(Ops.begin()+Idx); 3170 Ops.append(Mul->op_begin(), Mul->op_end()); 3171 DeletedMul = true; 3172 } 3173 3174 // If we deleted at least one mul, we added operands to the end of the 3175 // list, and they are not necessarily sorted. Recurse to resort and 3176 // resimplify any operands we just acquired. 3177 if (DeletedMul) 3178 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3179 } 3180 3181 // If there are any add recurrences in the operands list, see if any other 3182 // added values are loop invariant. If so, we can fold them into the 3183 // recurrence. 3184 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3185 ++Idx; 3186 3187 // Scan over all recurrences, trying to fold loop invariants into them. 3188 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3189 // Scan all of the other operands to this mul and add them to the vector 3190 // if they are loop invariant w.r.t. the recurrence. 3191 SmallVector<const SCEV *, 8> LIOps; 3192 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3193 const Loop *AddRecLoop = AddRec->getLoop(); 3194 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3195 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3196 LIOps.push_back(Ops[i]); 3197 Ops.erase(Ops.begin()+i); 3198 --i; --e; 3199 } 3200 3201 // If we found some loop invariants, fold them into the recurrence. 3202 if (!LIOps.empty()) { 3203 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3204 SmallVector<const SCEV *, 4> NewOps; 3205 NewOps.reserve(AddRec->getNumOperands()); 3206 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3207 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3208 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3209 SCEV::FlagAnyWrap, Depth + 1)); 3210 3211 // Build the new addrec. Propagate the NUW and NSW flags if both the 3212 // outer mul and the inner addrec are guaranteed to have no overflow. 3213 // 3214 // No self-wrap cannot be guaranteed after changing the step size, but 3215 // will be inferred if either NUW or NSW is true. 3216 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3217 const SCEV *NewRec = getAddRecExpr( 3218 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3219 3220 // If all of the other operands were loop invariant, we are done. 3221 if (Ops.size() == 1) return NewRec; 3222 3223 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3224 for (unsigned i = 0;; ++i) 3225 if (Ops[i] == AddRec) { 3226 Ops[i] = NewRec; 3227 break; 3228 } 3229 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3230 } 3231 3232 // Okay, if there weren't any loop invariants to be folded, check to see 3233 // if there are multiple AddRec's with the same loop induction variable 3234 // being multiplied together. If so, we can fold them. 3235 3236 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3237 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3238 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3239 // ]]],+,...up to x=2n}. 3240 // Note that the arguments to choose() are always integers with values 3241 // known at compile time, never SCEV objects. 3242 // 3243 // The implementation avoids pointless extra computations when the two 3244 // addrec's are of different length (mathematically, it's equivalent to 3245 // an infinite stream of zeros on the right). 3246 bool OpsModified = false; 3247 for (unsigned OtherIdx = Idx+1; 3248 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3249 ++OtherIdx) { 3250 const SCEVAddRecExpr *OtherAddRec = 3251 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3252 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3253 continue; 3254 3255 // Limit max number of arguments to avoid creation of unreasonably big 3256 // SCEVAddRecs with very complex operands. 3257 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3258 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3259 continue; 3260 3261 bool Overflow = false; 3262 Type *Ty = AddRec->getType(); 3263 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3264 SmallVector<const SCEV*, 7> AddRecOps; 3265 for (int x = 0, xe = AddRec->getNumOperands() + 3266 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3267 SmallVector <const SCEV *, 7> SumOps; 3268 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3269 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3270 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3271 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3272 z < ze && !Overflow; ++z) { 3273 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3274 uint64_t Coeff; 3275 if (LargerThan64Bits) 3276 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3277 else 3278 Coeff = Coeff1*Coeff2; 3279 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3280 const SCEV *Term1 = AddRec->getOperand(y-z); 3281 const SCEV *Term2 = OtherAddRec->getOperand(z); 3282 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3283 SCEV::FlagAnyWrap, Depth + 1)); 3284 } 3285 } 3286 if (SumOps.empty()) 3287 SumOps.push_back(getZero(Ty)); 3288 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3289 } 3290 if (!Overflow) { 3291 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3292 SCEV::FlagAnyWrap); 3293 if (Ops.size() == 2) return NewAddRec; 3294 Ops[Idx] = NewAddRec; 3295 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3296 OpsModified = true; 3297 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3298 if (!AddRec) 3299 break; 3300 } 3301 } 3302 if (OpsModified) 3303 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3304 3305 // Otherwise couldn't fold anything into this recurrence. Move onto the 3306 // next one. 3307 } 3308 3309 // Okay, it looks like we really DO need an mul expr. Check to see if we 3310 // already have one, otherwise create a new one. 3311 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3312 } 3313 3314 /// Represents an unsigned remainder expression based on unsigned division. 3315 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3316 const SCEV *RHS) { 3317 assert(getEffectiveSCEVType(LHS->getType()) == 3318 getEffectiveSCEVType(RHS->getType()) && 3319 "SCEVURemExpr operand types don't match!"); 3320 3321 // Short-circuit easy cases 3322 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3323 // If constant is one, the result is trivial 3324 if (RHSC->getValue()->isOne()) 3325 return getZero(LHS->getType()); // X urem 1 --> 0 3326 3327 // If constant is a power of two, fold into a zext(trunc(LHS)). 3328 if (RHSC->getAPInt().isPowerOf2()) { 3329 Type *FullTy = LHS->getType(); 3330 Type *TruncTy = 3331 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3332 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3333 } 3334 } 3335 3336 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3337 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3338 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3339 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3340 } 3341 3342 /// Get a canonical unsigned division expression, or something simpler if 3343 /// possible. 3344 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3345 const SCEV *RHS) { 3346 assert(!LHS->getType()->isPointerTy() && 3347 "SCEVUDivExpr operand can't be pointer!"); 3348 assert(LHS->getType() == RHS->getType() && 3349 "SCEVUDivExpr operand types don't match!"); 3350 3351 FoldingSetNodeID ID; 3352 ID.AddInteger(scUDivExpr); 3353 ID.AddPointer(LHS); 3354 ID.AddPointer(RHS); 3355 void *IP = nullptr; 3356 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3357 return S; 3358 3359 // 0 udiv Y == 0 3360 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3361 if (LHSC->getValue()->isZero()) 3362 return LHS; 3363 3364 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3365 if (RHSC->getValue()->isOne()) 3366 return LHS; // X udiv 1 --> x 3367 // If the denominator is zero, the result of the udiv is undefined. Don't 3368 // try to analyze it, because the resolution chosen here may differ from 3369 // the resolution chosen in other parts of the compiler. 3370 if (!RHSC->getValue()->isZero()) { 3371 // Determine if the division can be folded into the operands of 3372 // its operands. 3373 // TODO: Generalize this to non-constants by using known-bits information. 3374 Type *Ty = LHS->getType(); 3375 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3376 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3377 // For non-power-of-two values, effectively round the value up to the 3378 // nearest power of two. 3379 if (!RHSC->getAPInt().isPowerOf2()) 3380 ++MaxShiftAmt; 3381 IntegerType *ExtTy = 3382 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3383 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3384 if (const SCEVConstant *Step = 3385 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3386 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3387 const APInt &StepInt = Step->getAPInt(); 3388 const APInt &DivInt = RHSC->getAPInt(); 3389 if (!StepInt.urem(DivInt) && 3390 getZeroExtendExpr(AR, ExtTy) == 3391 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3392 getZeroExtendExpr(Step, ExtTy), 3393 AR->getLoop(), SCEV::FlagAnyWrap)) { 3394 SmallVector<const SCEV *, 4> Operands; 3395 for (const SCEV *Op : AR->operands()) 3396 Operands.push_back(getUDivExpr(Op, RHS)); 3397 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3398 } 3399 /// Get a canonical UDivExpr for a recurrence. 3400 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3401 // We can currently only fold X%N if X is constant. 3402 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3403 if (StartC && !DivInt.urem(StepInt) && 3404 getZeroExtendExpr(AR, ExtTy) == 3405 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3406 getZeroExtendExpr(Step, ExtTy), 3407 AR->getLoop(), SCEV::FlagAnyWrap)) { 3408 const APInt &StartInt = StartC->getAPInt(); 3409 const APInt &StartRem = StartInt.urem(StepInt); 3410 if (StartRem != 0) { 3411 const SCEV *NewLHS = 3412 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3413 AR->getLoop(), SCEV::FlagNW); 3414 if (LHS != NewLHS) { 3415 LHS = NewLHS; 3416 3417 // Reset the ID to include the new LHS, and check if it is 3418 // already cached. 3419 ID.clear(); 3420 ID.AddInteger(scUDivExpr); 3421 ID.AddPointer(LHS); 3422 ID.AddPointer(RHS); 3423 IP = nullptr; 3424 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3425 return S; 3426 } 3427 } 3428 } 3429 } 3430 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3431 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3432 SmallVector<const SCEV *, 4> Operands; 3433 for (const SCEV *Op : M->operands()) 3434 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3435 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3436 // Find an operand that's safely divisible. 3437 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3438 const SCEV *Op = M->getOperand(i); 3439 const SCEV *Div = getUDivExpr(Op, RHSC); 3440 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3441 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3442 Operands[i] = Div; 3443 return getMulExpr(Operands); 3444 } 3445 } 3446 } 3447 3448 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3449 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3450 if (auto *DivisorConstant = 3451 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3452 bool Overflow = false; 3453 APInt NewRHS = 3454 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3455 if (Overflow) { 3456 return getConstant(RHSC->getType(), 0, false); 3457 } 3458 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3459 } 3460 } 3461 3462 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3463 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3464 SmallVector<const SCEV *, 4> Operands; 3465 for (const SCEV *Op : A->operands()) 3466 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3467 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3468 Operands.clear(); 3469 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3470 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3471 if (isa<SCEVUDivExpr>(Op) || 3472 getMulExpr(Op, RHS) != A->getOperand(i)) 3473 break; 3474 Operands.push_back(Op); 3475 } 3476 if (Operands.size() == A->getNumOperands()) 3477 return getAddExpr(Operands); 3478 } 3479 } 3480 3481 // Fold if both operands are constant. 3482 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3483 Constant *LHSCV = LHSC->getValue(); 3484 Constant *RHSCV = RHSC->getValue(); 3485 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3486 RHSCV))); 3487 } 3488 } 3489 } 3490 3491 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3492 // changes). Make sure we get a new one. 3493 IP = nullptr; 3494 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3495 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3496 LHS, RHS); 3497 UniqueSCEVs.InsertNode(S, IP); 3498 registerUser(S, {LHS, RHS}); 3499 return S; 3500 } 3501 3502 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3503 APInt A = C1->getAPInt().abs(); 3504 APInt B = C2->getAPInt().abs(); 3505 uint32_t ABW = A.getBitWidth(); 3506 uint32_t BBW = B.getBitWidth(); 3507 3508 if (ABW > BBW) 3509 B = B.zext(ABW); 3510 else if (ABW < BBW) 3511 A = A.zext(BBW); 3512 3513 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3514 } 3515 3516 /// Get a canonical unsigned division expression, or something simpler if 3517 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3518 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3519 /// it's not exact because the udiv may be clearing bits. 3520 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3521 const SCEV *RHS) { 3522 // TODO: we could try to find factors in all sorts of things, but for now we 3523 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3524 // end of this file for inspiration. 3525 3526 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3527 if (!Mul || !Mul->hasNoUnsignedWrap()) 3528 return getUDivExpr(LHS, RHS); 3529 3530 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3531 // If the mulexpr multiplies by a constant, then that constant must be the 3532 // first element of the mulexpr. 3533 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3534 if (LHSCst == RHSCst) { 3535 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3536 return getMulExpr(Operands); 3537 } 3538 3539 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3540 // that there's a factor provided by one of the other terms. We need to 3541 // check. 3542 APInt Factor = gcd(LHSCst, RHSCst); 3543 if (!Factor.isIntN(1)) { 3544 LHSCst = 3545 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3546 RHSCst = 3547 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3548 SmallVector<const SCEV *, 2> Operands; 3549 Operands.push_back(LHSCst); 3550 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3551 LHS = getMulExpr(Operands); 3552 RHS = RHSCst; 3553 Mul = dyn_cast<SCEVMulExpr>(LHS); 3554 if (!Mul) 3555 return getUDivExactExpr(LHS, RHS); 3556 } 3557 } 3558 } 3559 3560 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3561 if (Mul->getOperand(i) == RHS) { 3562 SmallVector<const SCEV *, 2> Operands; 3563 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3564 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3565 return getMulExpr(Operands); 3566 } 3567 } 3568 3569 return getUDivExpr(LHS, RHS); 3570 } 3571 3572 /// Get an add recurrence expression for the specified loop. Simplify the 3573 /// expression as much as possible. 3574 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3575 const Loop *L, 3576 SCEV::NoWrapFlags Flags) { 3577 SmallVector<const SCEV *, 4> Operands; 3578 Operands.push_back(Start); 3579 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3580 if (StepChrec->getLoop() == L) { 3581 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3582 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3583 } 3584 3585 Operands.push_back(Step); 3586 return getAddRecExpr(Operands, L, Flags); 3587 } 3588 3589 /// Get an add recurrence expression for the specified loop. Simplify the 3590 /// expression as much as possible. 3591 const SCEV * 3592 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3593 const Loop *L, SCEV::NoWrapFlags Flags) { 3594 if (Operands.size() == 1) return Operands[0]; 3595 #ifndef NDEBUG 3596 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3597 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3598 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3599 "SCEVAddRecExpr operand types don't match!"); 3600 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3601 } 3602 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3603 assert(isLoopInvariant(Operands[i], L) && 3604 "SCEVAddRecExpr operand is not loop-invariant!"); 3605 #endif 3606 3607 if (Operands.back()->isZero()) { 3608 Operands.pop_back(); 3609 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3610 } 3611 3612 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3613 // use that information to infer NUW and NSW flags. However, computing a 3614 // BE count requires calling getAddRecExpr, so we may not yet have a 3615 // meaningful BE count at this point (and if we don't, we'd be stuck 3616 // with a SCEVCouldNotCompute as the cached BE count). 3617 3618 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3619 3620 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3621 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3622 const Loop *NestedLoop = NestedAR->getLoop(); 3623 if (L->contains(NestedLoop) 3624 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3625 : (!NestedLoop->contains(L) && 3626 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3627 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3628 Operands[0] = NestedAR->getStart(); 3629 // AddRecs require their operands be loop-invariant with respect to their 3630 // loops. Don't perform this transformation if it would break this 3631 // requirement. 3632 bool AllInvariant = all_of( 3633 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3634 3635 if (AllInvariant) { 3636 // Create a recurrence for the outer loop with the same step size. 3637 // 3638 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3639 // inner recurrence has the same property. 3640 SCEV::NoWrapFlags OuterFlags = 3641 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3642 3643 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3644 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3645 return isLoopInvariant(Op, NestedLoop); 3646 }); 3647 3648 if (AllInvariant) { 3649 // Ok, both add recurrences are valid after the transformation. 3650 // 3651 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3652 // the outer recurrence has the same property. 3653 SCEV::NoWrapFlags InnerFlags = 3654 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3655 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3656 } 3657 } 3658 // Reset Operands to its original state. 3659 Operands[0] = NestedAR; 3660 } 3661 } 3662 3663 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3664 // already have one, otherwise create a new one. 3665 return getOrCreateAddRecExpr(Operands, L, Flags); 3666 } 3667 3668 const SCEV * 3669 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3670 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3671 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3672 // getSCEV(Base)->getType() has the same address space as Base->getType() 3673 // because SCEV::getType() preserves the address space. 3674 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3675 const bool AssumeInBoundsFlags = [&]() { 3676 if (!GEP->isInBounds()) 3677 return false; 3678 3679 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3680 // but to do that, we have to ensure that said flag is valid in the entire 3681 // defined scope of the SCEV. 3682 auto *GEPI = dyn_cast<Instruction>(GEP); 3683 // TODO: non-instructions have global scope. We might be able to prove 3684 // some global scope cases 3685 return GEPI && isSCEVExprNeverPoison(GEPI); 3686 }(); 3687 3688 SCEV::NoWrapFlags OffsetWrap = 3689 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3690 3691 Type *CurTy = GEP->getType(); 3692 bool FirstIter = true; 3693 SmallVector<const SCEV *, 4> Offsets; 3694 for (const SCEV *IndexExpr : IndexExprs) { 3695 // Compute the (potentially symbolic) offset in bytes for this index. 3696 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3697 // For a struct, add the member offset. 3698 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3699 unsigned FieldNo = Index->getZExtValue(); 3700 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3701 Offsets.push_back(FieldOffset); 3702 3703 // Update CurTy to the type of the field at Index. 3704 CurTy = STy->getTypeAtIndex(Index); 3705 } else { 3706 // Update CurTy to its element type. 3707 if (FirstIter) { 3708 assert(isa<PointerType>(CurTy) && 3709 "The first index of a GEP indexes a pointer"); 3710 CurTy = GEP->getSourceElementType(); 3711 FirstIter = false; 3712 } else { 3713 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3714 } 3715 // For an array, add the element offset, explicitly scaled. 3716 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3717 // Getelementptr indices are signed. 3718 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3719 3720 // Multiply the index by the element size to compute the element offset. 3721 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3722 Offsets.push_back(LocalOffset); 3723 } 3724 } 3725 3726 // Handle degenerate case of GEP without offsets. 3727 if (Offsets.empty()) 3728 return BaseExpr; 3729 3730 // Add the offsets together, assuming nsw if inbounds. 3731 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3732 // Add the base address and the offset. We cannot use the nsw flag, as the 3733 // base address is unsigned. However, if we know that the offset is 3734 // non-negative, we can use nuw. 3735 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3736 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3737 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3738 assert(BaseExpr->getType() == GEPExpr->getType() && 3739 "GEP should not change type mid-flight."); 3740 return GEPExpr; 3741 } 3742 3743 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3744 ArrayRef<const SCEV *> Ops) { 3745 FoldingSetNodeID ID; 3746 ID.AddInteger(SCEVType); 3747 for (const SCEV *Op : Ops) 3748 ID.AddPointer(Op); 3749 void *IP = nullptr; 3750 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3751 } 3752 3753 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3754 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3755 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3756 } 3757 3758 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3759 SmallVectorImpl<const SCEV *> &Ops) { 3760 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3761 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3762 if (Ops.size() == 1) return Ops[0]; 3763 #ifndef NDEBUG 3764 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3765 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3766 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3767 "Operand types don't match!"); 3768 assert(Ops[0]->getType()->isPointerTy() == 3769 Ops[i]->getType()->isPointerTy() && 3770 "min/max should be consistently pointerish"); 3771 } 3772 #endif 3773 3774 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3775 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3776 3777 // Sort by complexity, this groups all similar expression types together. 3778 GroupByComplexity(Ops, &LI, DT); 3779 3780 // Check if we have created the same expression before. 3781 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3782 return S; 3783 } 3784 3785 // If there are any constants, fold them together. 3786 unsigned Idx = 0; 3787 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3788 ++Idx; 3789 assert(Idx < Ops.size()); 3790 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3791 if (Kind == scSMaxExpr) 3792 return APIntOps::smax(LHS, RHS); 3793 else if (Kind == scSMinExpr) 3794 return APIntOps::smin(LHS, RHS); 3795 else if (Kind == scUMaxExpr) 3796 return APIntOps::umax(LHS, RHS); 3797 else if (Kind == scUMinExpr) 3798 return APIntOps::umin(LHS, RHS); 3799 llvm_unreachable("Unknown SCEV min/max opcode"); 3800 }; 3801 3802 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3803 // We found two constants, fold them together! 3804 ConstantInt *Fold = ConstantInt::get( 3805 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3806 Ops[0] = getConstant(Fold); 3807 Ops.erase(Ops.begin()+1); // Erase the folded element 3808 if (Ops.size() == 1) return Ops[0]; 3809 LHSC = cast<SCEVConstant>(Ops[0]); 3810 } 3811 3812 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3813 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3814 3815 if (IsMax ? IsMinV : IsMaxV) { 3816 // If we are left with a constant minimum(/maximum)-int, strip it off. 3817 Ops.erase(Ops.begin()); 3818 --Idx; 3819 } else if (IsMax ? IsMaxV : IsMinV) { 3820 // If we have a max(/min) with a constant maximum(/minimum)-int, 3821 // it will always be the extremum. 3822 return LHSC; 3823 } 3824 3825 if (Ops.size() == 1) return Ops[0]; 3826 } 3827 3828 // Find the first operation of the same kind 3829 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3830 ++Idx; 3831 3832 // Check to see if one of the operands is of the same kind. If so, expand its 3833 // operands onto our operand list, and recurse to simplify. 3834 if (Idx < Ops.size()) { 3835 bool DeletedAny = false; 3836 while (Ops[Idx]->getSCEVType() == Kind) { 3837 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3838 Ops.erase(Ops.begin()+Idx); 3839 Ops.append(SMME->op_begin(), SMME->op_end()); 3840 DeletedAny = true; 3841 } 3842 3843 if (DeletedAny) 3844 return getMinMaxExpr(Kind, Ops); 3845 } 3846 3847 // Okay, check to see if the same value occurs in the operand list twice. If 3848 // so, delete one. Since we sorted the list, these values are required to 3849 // be adjacent. 3850 llvm::CmpInst::Predicate GEPred = 3851 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3852 llvm::CmpInst::Predicate LEPred = 3853 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3854 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3855 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3856 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3857 if (Ops[i] == Ops[i + 1] || 3858 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3859 // X op Y op Y --> X op Y 3860 // X op Y --> X, if we know X, Y are ordered appropriately 3861 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3862 --i; 3863 --e; 3864 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3865 Ops[i + 1])) { 3866 // X op Y --> Y, if we know X, Y are ordered appropriately 3867 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3868 --i; 3869 --e; 3870 } 3871 } 3872 3873 if (Ops.size() == 1) return Ops[0]; 3874 3875 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3876 3877 // Okay, it looks like we really DO need an expr. Check to see if we 3878 // already have one, otherwise create a new one. 3879 FoldingSetNodeID ID; 3880 ID.AddInteger(Kind); 3881 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3882 ID.AddPointer(Ops[i]); 3883 void *IP = nullptr; 3884 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3885 if (ExistingSCEV) 3886 return ExistingSCEV; 3887 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3888 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3889 SCEV *S = new (SCEVAllocator) 3890 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3891 3892 UniqueSCEVs.InsertNode(S, IP); 3893 registerUser(S, Ops); 3894 return S; 3895 } 3896 3897 namespace { 3898 3899 class SCEVSequentialMinMaxDeduplicatingVisitor final 3900 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3901 Optional<const SCEV *>> { 3902 using RetVal = Optional<const SCEV *>; 3903 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3904 3905 ScalarEvolution &SE; 3906 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3907 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3908 SmallPtrSet<const SCEV *, 16> SeenOps; 3909 3910 bool canRecurseInto(SCEVTypes Kind) const { 3911 // We can only recurse into the SCEV expression of the same effective type 3912 // as the type of our root SCEV expression. 3913 return RootKind == Kind || NonSequentialRootKind == Kind; 3914 }; 3915 3916 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3917 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3918 "Only for min/max expressions."); 3919 SCEVTypes Kind = S->getSCEVType(); 3920 3921 if (!canRecurseInto(Kind)) 3922 return S; 3923 3924 auto *NAry = cast<SCEVNAryExpr>(S); 3925 SmallVector<const SCEV *> NewOps; 3926 bool Changed = 3927 visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps); 3928 3929 if (!Changed) 3930 return S; 3931 if (NewOps.empty()) 3932 return None; 3933 3934 return isa<SCEVSequentialMinMaxExpr>(S) 3935 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3936 : SE.getMinMaxExpr(Kind, NewOps); 3937 } 3938 3939 RetVal visit(const SCEV *S) { 3940 // Has the whole operand been seen already? 3941 if (!SeenOps.insert(S).second) 3942 return None; 3943 return Base::visit(S); 3944 } 3945 3946 public: 3947 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 3948 SCEVTypes RootKind) 3949 : SE(SE), RootKind(RootKind), 3950 NonSequentialRootKind( 3951 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 3952 RootKind)) {} 3953 3954 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 3955 SmallVectorImpl<const SCEV *> &NewOps) { 3956 bool Changed = false; 3957 SmallVector<const SCEV *> Ops; 3958 Ops.reserve(OrigOps.size()); 3959 3960 for (const SCEV *Op : OrigOps) { 3961 RetVal NewOp = visit(Op); 3962 if (NewOp != Op) 3963 Changed = true; 3964 if (NewOp) 3965 Ops.emplace_back(*NewOp); 3966 } 3967 3968 if (Changed) 3969 NewOps = std::move(Ops); 3970 return Changed; 3971 } 3972 3973 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 3974 3975 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 3976 3977 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 3978 3979 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 3980 3981 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 3982 3983 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 3984 3985 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 3986 3987 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 3988 3989 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 3990 3991 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 3992 return visitAnyMinMaxExpr(Expr); 3993 } 3994 3995 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 3996 return visitAnyMinMaxExpr(Expr); 3997 } 3998 3999 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 4000 return visitAnyMinMaxExpr(Expr); 4001 } 4002 4003 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4004 return visitAnyMinMaxExpr(Expr); 4005 } 4006 4007 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4008 return visitAnyMinMaxExpr(Expr); 4009 } 4010 4011 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4012 4013 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4014 }; 4015 4016 } // namespace 4017 4018 const SCEV * 4019 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4020 SmallVectorImpl<const SCEV *> &Ops) { 4021 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4022 "Not a SCEVSequentialMinMaxExpr!"); 4023 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4024 if (Ops.size() == 1) 4025 return Ops[0]; 4026 if (Ops.size() == 2 && 4027 any_of(Ops, [](const SCEV *Op) { return isa<SCEVConstant>(Op); })) 4028 return getMinMaxExpr( 4029 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4030 Ops); 4031 #ifndef NDEBUG 4032 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4033 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4034 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4035 "Operand types don't match!"); 4036 assert(Ops[0]->getType()->isPointerTy() == 4037 Ops[i]->getType()->isPointerTy() && 4038 "min/max should be consistently pointerish"); 4039 } 4040 #endif 4041 4042 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4043 // so we can *NOT* do any kind of sorting of the expressions! 4044 4045 // Check if we have created the same expression before. 4046 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4047 return S; 4048 4049 // FIXME: there are *some* simplifications that we can do here. 4050 4051 // Keep only the first instance of an operand. 4052 { 4053 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4054 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4055 if (Changed) 4056 return getSequentialMinMaxExpr(Kind, Ops); 4057 } 4058 4059 // Check to see if one of the operands is of the same kind. If so, expand its 4060 // operands onto our operand list, and recurse to simplify. 4061 { 4062 unsigned Idx = 0; 4063 bool DeletedAny = false; 4064 while (Idx < Ops.size()) { 4065 if (Ops[Idx]->getSCEVType() != Kind) { 4066 ++Idx; 4067 continue; 4068 } 4069 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4070 Ops.erase(Ops.begin() + Idx); 4071 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end()); 4072 DeletedAny = true; 4073 } 4074 4075 if (DeletedAny) 4076 return getSequentialMinMaxExpr(Kind, Ops); 4077 } 4078 4079 // Okay, it looks like we really DO need an expr. Check to see if we 4080 // already have one, otherwise create a new one. 4081 FoldingSetNodeID ID; 4082 ID.AddInteger(Kind); 4083 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4084 ID.AddPointer(Ops[i]); 4085 void *IP = nullptr; 4086 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4087 if (ExistingSCEV) 4088 return ExistingSCEV; 4089 4090 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4091 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4092 SCEV *S = new (SCEVAllocator) 4093 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4094 4095 UniqueSCEVs.InsertNode(S, IP); 4096 registerUser(S, Ops); 4097 return S; 4098 } 4099 4100 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4101 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4102 return getSMaxExpr(Ops); 4103 } 4104 4105 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4106 return getMinMaxExpr(scSMaxExpr, Ops); 4107 } 4108 4109 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4110 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4111 return getUMaxExpr(Ops); 4112 } 4113 4114 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4115 return getMinMaxExpr(scUMaxExpr, Ops); 4116 } 4117 4118 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4119 const SCEV *RHS) { 4120 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4121 return getSMinExpr(Ops); 4122 } 4123 4124 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4125 return getMinMaxExpr(scSMinExpr, Ops); 4126 } 4127 4128 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4129 bool Sequential) { 4130 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4131 return getUMinExpr(Ops, Sequential); 4132 } 4133 4134 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4135 bool Sequential) { 4136 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4137 : getMinMaxExpr(scUMinExpr, Ops); 4138 } 4139 4140 const SCEV * 4141 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4142 ScalableVectorType *ScalableTy) { 4143 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4144 Constant *One = ConstantInt::get(IntTy, 1); 4145 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4146 // Note that the expression we created is the final expression, we don't 4147 // want to simplify it any further Also, if we call a normal getSCEV(), 4148 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4149 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4150 } 4151 4152 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4153 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4154 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4155 // We can bypass creating a target-independent constant expression and then 4156 // folding it back into a ConstantInt. This is just a compile-time 4157 // optimization. 4158 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4159 } 4160 4161 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4162 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4163 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4164 // We can bypass creating a target-independent constant expression and then 4165 // folding it back into a ConstantInt. This is just a compile-time 4166 // optimization. 4167 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4168 } 4169 4170 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4171 StructType *STy, 4172 unsigned FieldNo) { 4173 // We can bypass creating a target-independent constant expression and then 4174 // folding it back into a ConstantInt. This is just a compile-time 4175 // optimization. 4176 return getConstant( 4177 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4178 } 4179 4180 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4181 // Don't attempt to do anything other than create a SCEVUnknown object 4182 // here. createSCEV only calls getUnknown after checking for all other 4183 // interesting possibilities, and any other code that calls getUnknown 4184 // is doing so in order to hide a value from SCEV canonicalization. 4185 4186 FoldingSetNodeID ID; 4187 ID.AddInteger(scUnknown); 4188 ID.AddPointer(V); 4189 void *IP = nullptr; 4190 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4191 assert(cast<SCEVUnknown>(S)->getValue() == V && 4192 "Stale SCEVUnknown in uniquing map!"); 4193 return S; 4194 } 4195 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4196 FirstUnknown); 4197 FirstUnknown = cast<SCEVUnknown>(S); 4198 UniqueSCEVs.InsertNode(S, IP); 4199 return S; 4200 } 4201 4202 //===----------------------------------------------------------------------===// 4203 // Basic SCEV Analysis and PHI Idiom Recognition Code 4204 // 4205 4206 /// Test if values of the given type are analyzable within the SCEV 4207 /// framework. This primarily includes integer types, and it can optionally 4208 /// include pointer types if the ScalarEvolution class has access to 4209 /// target-specific information. 4210 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4211 // Integers and pointers are always SCEVable. 4212 return Ty->isIntOrPtrTy(); 4213 } 4214 4215 /// Return the size in bits of the specified type, for which isSCEVable must 4216 /// return true. 4217 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4218 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4219 if (Ty->isPointerTy()) 4220 return getDataLayout().getIndexTypeSizeInBits(Ty); 4221 return getDataLayout().getTypeSizeInBits(Ty); 4222 } 4223 4224 /// Return a type with the same bitwidth as the given type and which represents 4225 /// how SCEV will treat the given type, for which isSCEVable must return 4226 /// true. For pointer types, this is the pointer index sized integer type. 4227 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4228 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4229 4230 if (Ty->isIntegerTy()) 4231 return Ty; 4232 4233 // The only other support type is pointer. 4234 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4235 return getDataLayout().getIndexType(Ty); 4236 } 4237 4238 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4239 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4240 } 4241 4242 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4243 const SCEV *B) { 4244 /// For a valid use point to exist, the defining scope of one operand 4245 /// must dominate the other. 4246 bool PreciseA, PreciseB; 4247 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4248 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4249 if (!PreciseA || !PreciseB) 4250 // Can't tell. 4251 return false; 4252 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4253 DT.dominates(ScopeB, ScopeA); 4254 } 4255 4256 4257 const SCEV *ScalarEvolution::getCouldNotCompute() { 4258 return CouldNotCompute.get(); 4259 } 4260 4261 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4262 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4263 auto *SU = dyn_cast<SCEVUnknown>(S); 4264 return SU && SU->getValue() == nullptr; 4265 }); 4266 4267 return !ContainsNulls; 4268 } 4269 4270 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4271 HasRecMapType::iterator I = HasRecMap.find(S); 4272 if (I != HasRecMap.end()) 4273 return I->second; 4274 4275 bool FoundAddRec = 4276 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4277 HasRecMap.insert({S, FoundAddRec}); 4278 return FoundAddRec; 4279 } 4280 4281 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4282 /// by the value and offset from any ValueOffsetPair in the set. 4283 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4284 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4285 if (SI == ExprValueMap.end()) 4286 return None; 4287 #ifndef NDEBUG 4288 if (VerifySCEVMap) { 4289 // Check there is no dangling Value in the set returned. 4290 for (Value *V : SI->second) 4291 assert(ValueExprMap.count(V)); 4292 } 4293 #endif 4294 return SI->second.getArrayRef(); 4295 } 4296 4297 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4298 /// cannot be used separately. eraseValueFromMap should be used to remove 4299 /// V from ValueExprMap and ExprValueMap at the same time. 4300 void ScalarEvolution::eraseValueFromMap(Value *V) { 4301 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4302 if (I != ValueExprMap.end()) { 4303 auto EVIt = ExprValueMap.find(I->second); 4304 bool Removed = EVIt->second.remove(V); 4305 (void) Removed; 4306 assert(Removed && "Value not in ExprValueMap?"); 4307 ValueExprMap.erase(I); 4308 } 4309 } 4310 4311 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4312 // A recursive query may have already computed the SCEV. It should be 4313 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4314 // inferred nowrap flags. 4315 auto It = ValueExprMap.find_as(V); 4316 if (It == ValueExprMap.end()) { 4317 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4318 ExprValueMap[S].insert(V); 4319 } 4320 } 4321 4322 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4323 /// create a new one. 4324 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4325 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4326 4327 const SCEV *S = getExistingSCEV(V); 4328 if (S == nullptr) { 4329 S = createSCEV(V); 4330 // During PHI resolution, it is possible to create two SCEVs for the same 4331 // V, so it is needed to double check whether V->S is inserted into 4332 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4333 std::pair<ValueExprMapType::iterator, bool> Pair = 4334 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4335 if (Pair.second) 4336 ExprValueMap[S].insert(V); 4337 } 4338 return S; 4339 } 4340 4341 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4342 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4343 4344 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4345 if (I != ValueExprMap.end()) { 4346 const SCEV *S = I->second; 4347 assert(checkValidity(S) && 4348 "existing SCEV has not been properly invalidated"); 4349 return S; 4350 } 4351 return nullptr; 4352 } 4353 4354 /// Return a SCEV corresponding to -V = -1*V 4355 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4356 SCEV::NoWrapFlags Flags) { 4357 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4358 return getConstant( 4359 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4360 4361 Type *Ty = V->getType(); 4362 Ty = getEffectiveSCEVType(Ty); 4363 return getMulExpr(V, getMinusOne(Ty), Flags); 4364 } 4365 4366 /// If Expr computes ~A, return A else return nullptr 4367 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4368 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4369 if (!Add || Add->getNumOperands() != 2 || 4370 !Add->getOperand(0)->isAllOnesValue()) 4371 return nullptr; 4372 4373 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4374 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4375 !AddRHS->getOperand(0)->isAllOnesValue()) 4376 return nullptr; 4377 4378 return AddRHS->getOperand(1); 4379 } 4380 4381 /// Return a SCEV corresponding to ~V = -1-V 4382 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4383 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4384 4385 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4386 return getConstant( 4387 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4388 4389 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4390 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4391 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4392 SmallVector<const SCEV *, 2> MatchedOperands; 4393 for (const SCEV *Operand : MME->operands()) { 4394 const SCEV *Matched = MatchNotExpr(Operand); 4395 if (!Matched) 4396 return (const SCEV *)nullptr; 4397 MatchedOperands.push_back(Matched); 4398 } 4399 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4400 MatchedOperands); 4401 }; 4402 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4403 return Replaced; 4404 } 4405 4406 Type *Ty = V->getType(); 4407 Ty = getEffectiveSCEVType(Ty); 4408 return getMinusSCEV(getMinusOne(Ty), V); 4409 } 4410 4411 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4412 assert(P->getType()->isPointerTy()); 4413 4414 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4415 // The base of an AddRec is the first operand. 4416 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4417 Ops[0] = removePointerBase(Ops[0]); 4418 // Don't try to transfer nowrap flags for now. We could in some cases 4419 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4420 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4421 } 4422 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4423 // The base of an Add is the pointer operand. 4424 SmallVector<const SCEV *> Ops{Add->operands()}; 4425 const SCEV **PtrOp = nullptr; 4426 for (const SCEV *&AddOp : Ops) { 4427 if (AddOp->getType()->isPointerTy()) { 4428 assert(!PtrOp && "Cannot have multiple pointer ops"); 4429 PtrOp = &AddOp; 4430 } 4431 } 4432 *PtrOp = removePointerBase(*PtrOp); 4433 // Don't try to transfer nowrap flags for now. We could in some cases 4434 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4435 return getAddExpr(Ops); 4436 } 4437 // Any other expression must be a pointer base. 4438 return getZero(P->getType()); 4439 } 4440 4441 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4442 SCEV::NoWrapFlags Flags, 4443 unsigned Depth) { 4444 // Fast path: X - X --> 0. 4445 if (LHS == RHS) 4446 return getZero(LHS->getType()); 4447 4448 // If we subtract two pointers with different pointer bases, bail. 4449 // Eventually, we're going to add an assertion to getMulExpr that we 4450 // can't multiply by a pointer. 4451 if (RHS->getType()->isPointerTy()) { 4452 if (!LHS->getType()->isPointerTy() || 4453 getPointerBase(LHS) != getPointerBase(RHS)) 4454 return getCouldNotCompute(); 4455 LHS = removePointerBase(LHS); 4456 RHS = removePointerBase(RHS); 4457 } 4458 4459 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4460 // makes it so that we cannot make much use of NUW. 4461 auto AddFlags = SCEV::FlagAnyWrap; 4462 const bool RHSIsNotMinSigned = 4463 !getSignedRangeMin(RHS).isMinSignedValue(); 4464 if (hasFlags(Flags, SCEV::FlagNSW)) { 4465 // Let M be the minimum representable signed value. Then (-1)*RHS 4466 // signed-wraps if and only if RHS is M. That can happen even for 4467 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4468 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4469 // (-1)*RHS, we need to prove that RHS != M. 4470 // 4471 // If LHS is non-negative and we know that LHS - RHS does not 4472 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4473 // either by proving that RHS > M or that LHS >= 0. 4474 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4475 AddFlags = SCEV::FlagNSW; 4476 } 4477 } 4478 4479 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4480 // RHS is NSW and LHS >= 0. 4481 // 4482 // The difficulty here is that the NSW flag may have been proven 4483 // relative to a loop that is to be found in a recurrence in LHS and 4484 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4485 // larger scope than intended. 4486 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4487 4488 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4489 } 4490 4491 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4492 unsigned Depth) { 4493 Type *SrcTy = V->getType(); 4494 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4495 "Cannot truncate or zero extend with non-integer arguments!"); 4496 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4497 return V; // No conversion 4498 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4499 return getTruncateExpr(V, Ty, Depth); 4500 return getZeroExtendExpr(V, Ty, Depth); 4501 } 4502 4503 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4504 unsigned Depth) { 4505 Type *SrcTy = V->getType(); 4506 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4507 "Cannot truncate or zero extend with non-integer arguments!"); 4508 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4509 return V; // No conversion 4510 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4511 return getTruncateExpr(V, Ty, Depth); 4512 return getSignExtendExpr(V, Ty, Depth); 4513 } 4514 4515 const SCEV * 4516 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4517 Type *SrcTy = V->getType(); 4518 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4519 "Cannot noop or zero extend with non-integer arguments!"); 4520 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4521 "getNoopOrZeroExtend cannot truncate!"); 4522 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4523 return V; // No conversion 4524 return getZeroExtendExpr(V, Ty); 4525 } 4526 4527 const SCEV * 4528 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4529 Type *SrcTy = V->getType(); 4530 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4531 "Cannot noop or sign extend with non-integer arguments!"); 4532 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4533 "getNoopOrSignExtend cannot truncate!"); 4534 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4535 return V; // No conversion 4536 return getSignExtendExpr(V, Ty); 4537 } 4538 4539 const SCEV * 4540 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4541 Type *SrcTy = V->getType(); 4542 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4543 "Cannot noop or any extend with non-integer arguments!"); 4544 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4545 "getNoopOrAnyExtend cannot truncate!"); 4546 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4547 return V; // No conversion 4548 return getAnyExtendExpr(V, Ty); 4549 } 4550 4551 const SCEV * 4552 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4553 Type *SrcTy = V->getType(); 4554 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4555 "Cannot truncate or noop with non-integer arguments!"); 4556 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4557 "getTruncateOrNoop cannot extend!"); 4558 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4559 return V; // No conversion 4560 return getTruncateExpr(V, Ty); 4561 } 4562 4563 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4564 const SCEV *RHS) { 4565 const SCEV *PromotedLHS = LHS; 4566 const SCEV *PromotedRHS = RHS; 4567 4568 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4569 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4570 else 4571 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4572 4573 return getUMaxExpr(PromotedLHS, PromotedRHS); 4574 } 4575 4576 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4577 const SCEV *RHS, 4578 bool Sequential) { 4579 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4580 return getUMinFromMismatchedTypes(Ops, Sequential); 4581 } 4582 4583 const SCEV * 4584 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4585 bool Sequential) { 4586 assert(!Ops.empty() && "At least one operand must be!"); 4587 // Trivial case. 4588 if (Ops.size() == 1) 4589 return Ops[0]; 4590 4591 // Find the max type first. 4592 Type *MaxType = nullptr; 4593 for (auto *S : Ops) 4594 if (MaxType) 4595 MaxType = getWiderType(MaxType, S->getType()); 4596 else 4597 MaxType = S->getType(); 4598 assert(MaxType && "Failed to find maximum type!"); 4599 4600 // Extend all ops to max type. 4601 SmallVector<const SCEV *, 2> PromotedOps; 4602 for (auto *S : Ops) 4603 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4604 4605 // Generate umin. 4606 return getUMinExpr(PromotedOps, Sequential); 4607 } 4608 4609 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4610 // A pointer operand may evaluate to a nonpointer expression, such as null. 4611 if (!V->getType()->isPointerTy()) 4612 return V; 4613 4614 while (true) { 4615 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4616 V = AddRec->getStart(); 4617 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4618 const SCEV *PtrOp = nullptr; 4619 for (const SCEV *AddOp : Add->operands()) { 4620 if (AddOp->getType()->isPointerTy()) { 4621 assert(!PtrOp && "Cannot have multiple pointer ops"); 4622 PtrOp = AddOp; 4623 } 4624 } 4625 assert(PtrOp && "Must have pointer op"); 4626 V = PtrOp; 4627 } else // Not something we can look further into. 4628 return V; 4629 } 4630 } 4631 4632 /// Push users of the given Instruction onto the given Worklist. 4633 static void PushDefUseChildren(Instruction *I, 4634 SmallVectorImpl<Instruction *> &Worklist, 4635 SmallPtrSetImpl<Instruction *> &Visited) { 4636 // Push the def-use children onto the Worklist stack. 4637 for (User *U : I->users()) { 4638 auto *UserInsn = cast<Instruction>(U); 4639 if (Visited.insert(UserInsn).second) 4640 Worklist.push_back(UserInsn); 4641 } 4642 } 4643 4644 namespace { 4645 4646 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4647 /// expression in case its Loop is L. If it is not L then 4648 /// if IgnoreOtherLoops is true then use AddRec itself 4649 /// otherwise rewrite cannot be done. 4650 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4651 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4652 public: 4653 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4654 bool IgnoreOtherLoops = true) { 4655 SCEVInitRewriter Rewriter(L, SE); 4656 const SCEV *Result = Rewriter.visit(S); 4657 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4658 return SE.getCouldNotCompute(); 4659 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4660 ? SE.getCouldNotCompute() 4661 : Result; 4662 } 4663 4664 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4665 if (!SE.isLoopInvariant(Expr, L)) 4666 SeenLoopVariantSCEVUnknown = true; 4667 return Expr; 4668 } 4669 4670 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4671 // Only re-write AddRecExprs for this loop. 4672 if (Expr->getLoop() == L) 4673 return Expr->getStart(); 4674 SeenOtherLoops = true; 4675 return Expr; 4676 } 4677 4678 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4679 4680 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4681 4682 private: 4683 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4684 : SCEVRewriteVisitor(SE), L(L) {} 4685 4686 const Loop *L; 4687 bool SeenLoopVariantSCEVUnknown = false; 4688 bool SeenOtherLoops = false; 4689 }; 4690 4691 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4692 /// increment expression in case its Loop is L. If it is not L then 4693 /// use AddRec itself. 4694 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4695 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4696 public: 4697 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4698 SCEVPostIncRewriter Rewriter(L, SE); 4699 const SCEV *Result = Rewriter.visit(S); 4700 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4701 ? SE.getCouldNotCompute() 4702 : Result; 4703 } 4704 4705 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4706 if (!SE.isLoopInvariant(Expr, L)) 4707 SeenLoopVariantSCEVUnknown = true; 4708 return Expr; 4709 } 4710 4711 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4712 // Only re-write AddRecExprs for this loop. 4713 if (Expr->getLoop() == L) 4714 return Expr->getPostIncExpr(SE); 4715 SeenOtherLoops = true; 4716 return Expr; 4717 } 4718 4719 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4720 4721 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4722 4723 private: 4724 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4725 : SCEVRewriteVisitor(SE), L(L) {} 4726 4727 const Loop *L; 4728 bool SeenLoopVariantSCEVUnknown = false; 4729 bool SeenOtherLoops = false; 4730 }; 4731 4732 /// This class evaluates the compare condition by matching it against the 4733 /// condition of loop latch. If there is a match we assume a true value 4734 /// for the condition while building SCEV nodes. 4735 class SCEVBackedgeConditionFolder 4736 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4737 public: 4738 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4739 ScalarEvolution &SE) { 4740 bool IsPosBECond = false; 4741 Value *BECond = nullptr; 4742 if (BasicBlock *Latch = L->getLoopLatch()) { 4743 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4744 if (BI && BI->isConditional()) { 4745 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4746 "Both outgoing branches should not target same header!"); 4747 BECond = BI->getCondition(); 4748 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4749 } else { 4750 return S; 4751 } 4752 } 4753 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4754 return Rewriter.visit(S); 4755 } 4756 4757 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4758 const SCEV *Result = Expr; 4759 bool InvariantF = SE.isLoopInvariant(Expr, L); 4760 4761 if (!InvariantF) { 4762 Instruction *I = cast<Instruction>(Expr->getValue()); 4763 switch (I->getOpcode()) { 4764 case Instruction::Select: { 4765 SelectInst *SI = cast<SelectInst>(I); 4766 Optional<const SCEV *> Res = 4767 compareWithBackedgeCondition(SI->getCondition()); 4768 if (Res.hasValue()) { 4769 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4770 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4771 } 4772 break; 4773 } 4774 default: { 4775 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4776 if (Res.hasValue()) 4777 Result = Res.getValue(); 4778 break; 4779 } 4780 } 4781 } 4782 return Result; 4783 } 4784 4785 private: 4786 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4787 bool IsPosBECond, ScalarEvolution &SE) 4788 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4789 IsPositiveBECond(IsPosBECond) {} 4790 4791 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4792 4793 const Loop *L; 4794 /// Loop back condition. 4795 Value *BackedgeCond = nullptr; 4796 /// Set to true if loop back is on positive branch condition. 4797 bool IsPositiveBECond; 4798 }; 4799 4800 Optional<const SCEV *> 4801 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4802 4803 // If value matches the backedge condition for loop latch, 4804 // then return a constant evolution node based on loopback 4805 // branch taken. 4806 if (BackedgeCond == IC) 4807 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4808 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4809 return None; 4810 } 4811 4812 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4813 public: 4814 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4815 ScalarEvolution &SE) { 4816 SCEVShiftRewriter Rewriter(L, SE); 4817 const SCEV *Result = Rewriter.visit(S); 4818 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4819 } 4820 4821 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4822 // Only allow AddRecExprs for this loop. 4823 if (!SE.isLoopInvariant(Expr, L)) 4824 Valid = false; 4825 return Expr; 4826 } 4827 4828 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4829 if (Expr->getLoop() == L && Expr->isAffine()) 4830 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4831 Valid = false; 4832 return Expr; 4833 } 4834 4835 bool isValid() { return Valid; } 4836 4837 private: 4838 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4839 : SCEVRewriteVisitor(SE), L(L) {} 4840 4841 const Loop *L; 4842 bool Valid = true; 4843 }; 4844 4845 } // end anonymous namespace 4846 4847 SCEV::NoWrapFlags 4848 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4849 if (!AR->isAffine()) 4850 return SCEV::FlagAnyWrap; 4851 4852 using OBO = OverflowingBinaryOperator; 4853 4854 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4855 4856 if (!AR->hasNoSignedWrap()) { 4857 ConstantRange AddRecRange = getSignedRange(AR); 4858 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4859 4860 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4861 Instruction::Add, IncRange, OBO::NoSignedWrap); 4862 if (NSWRegion.contains(AddRecRange)) 4863 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4864 } 4865 4866 if (!AR->hasNoUnsignedWrap()) { 4867 ConstantRange AddRecRange = getUnsignedRange(AR); 4868 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4869 4870 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4871 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4872 if (NUWRegion.contains(AddRecRange)) 4873 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4874 } 4875 4876 return Result; 4877 } 4878 4879 SCEV::NoWrapFlags 4880 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4881 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4882 4883 if (AR->hasNoSignedWrap()) 4884 return Result; 4885 4886 if (!AR->isAffine()) 4887 return Result; 4888 4889 const SCEV *Step = AR->getStepRecurrence(*this); 4890 const Loop *L = AR->getLoop(); 4891 4892 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4893 // Note that this serves two purposes: It filters out loops that are 4894 // simply not analyzable, and it covers the case where this code is 4895 // being called from within backedge-taken count analysis, such that 4896 // attempting to ask for the backedge-taken count would likely result 4897 // in infinite recursion. In the later case, the analysis code will 4898 // cope with a conservative value, and it will take care to purge 4899 // that value once it has finished. 4900 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4901 4902 // Normally, in the cases we can prove no-overflow via a 4903 // backedge guarding condition, we can also compute a backedge 4904 // taken count for the loop. The exceptions are assumptions and 4905 // guards present in the loop -- SCEV is not great at exploiting 4906 // these to compute max backedge taken counts, but can still use 4907 // these to prove lack of overflow. Use this fact to avoid 4908 // doing extra work that may not pay off. 4909 4910 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4911 AC.assumptions().empty()) 4912 return Result; 4913 4914 // If the backedge is guarded by a comparison with the pre-inc value the 4915 // addrec is safe. Also, if the entry is guarded by a comparison with the 4916 // start value and the backedge is guarded by a comparison with the post-inc 4917 // value, the addrec is safe. 4918 ICmpInst::Predicate Pred; 4919 const SCEV *OverflowLimit = 4920 getSignedOverflowLimitForStep(Step, &Pred, this); 4921 if (OverflowLimit && 4922 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4923 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4924 Result = setFlags(Result, SCEV::FlagNSW); 4925 } 4926 return Result; 4927 } 4928 SCEV::NoWrapFlags 4929 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4930 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4931 4932 if (AR->hasNoUnsignedWrap()) 4933 return Result; 4934 4935 if (!AR->isAffine()) 4936 return Result; 4937 4938 const SCEV *Step = AR->getStepRecurrence(*this); 4939 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4940 const Loop *L = AR->getLoop(); 4941 4942 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4943 // Note that this serves two purposes: It filters out loops that are 4944 // simply not analyzable, and it covers the case where this code is 4945 // being called from within backedge-taken count analysis, such that 4946 // attempting to ask for the backedge-taken count would likely result 4947 // in infinite recursion. In the later case, the analysis code will 4948 // cope with a conservative value, and it will take care to purge 4949 // that value once it has finished. 4950 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4951 4952 // Normally, in the cases we can prove no-overflow via a 4953 // backedge guarding condition, we can also compute a backedge 4954 // taken count for the loop. The exceptions are assumptions and 4955 // guards present in the loop -- SCEV is not great at exploiting 4956 // these to compute max backedge taken counts, but can still use 4957 // these to prove lack of overflow. Use this fact to avoid 4958 // doing extra work that may not pay off. 4959 4960 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4961 AC.assumptions().empty()) 4962 return Result; 4963 4964 // If the backedge is guarded by a comparison with the pre-inc value the 4965 // addrec is safe. Also, if the entry is guarded by a comparison with the 4966 // start value and the backedge is guarded by a comparison with the post-inc 4967 // value, the addrec is safe. 4968 if (isKnownPositive(Step)) { 4969 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4970 getUnsignedRangeMax(Step)); 4971 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4972 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4973 Result = setFlags(Result, SCEV::FlagNUW); 4974 } 4975 } 4976 4977 return Result; 4978 } 4979 4980 namespace { 4981 4982 /// Represents an abstract binary operation. This may exist as a 4983 /// normal instruction or constant expression, or may have been 4984 /// derived from an expression tree. 4985 struct BinaryOp { 4986 unsigned Opcode; 4987 Value *LHS; 4988 Value *RHS; 4989 bool IsNSW = false; 4990 bool IsNUW = false; 4991 4992 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4993 /// constant expression. 4994 Operator *Op = nullptr; 4995 4996 explicit BinaryOp(Operator *Op) 4997 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4998 Op(Op) { 4999 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5000 IsNSW = OBO->hasNoSignedWrap(); 5001 IsNUW = OBO->hasNoUnsignedWrap(); 5002 } 5003 } 5004 5005 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5006 bool IsNUW = false) 5007 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5008 }; 5009 5010 } // end anonymous namespace 5011 5012 /// Try to map \p V into a BinaryOp, and return \c None on failure. 5013 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 5014 auto *Op = dyn_cast<Operator>(V); 5015 if (!Op) 5016 return None; 5017 5018 // Implementation detail: all the cleverness here should happen without 5019 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5020 // SCEV expressions when possible, and we should not break that. 5021 5022 switch (Op->getOpcode()) { 5023 case Instruction::Add: 5024 case Instruction::Sub: 5025 case Instruction::Mul: 5026 case Instruction::UDiv: 5027 case Instruction::URem: 5028 case Instruction::And: 5029 case Instruction::Or: 5030 case Instruction::AShr: 5031 case Instruction::Shl: 5032 return BinaryOp(Op); 5033 5034 case Instruction::Xor: 5035 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5036 // If the RHS of the xor is a signmask, then this is just an add. 5037 // Instcombine turns add of signmask into xor as a strength reduction step. 5038 if (RHSC->getValue().isSignMask()) 5039 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5040 // Binary `xor` is a bit-wise `add`. 5041 if (V->getType()->isIntegerTy(1)) 5042 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5043 return BinaryOp(Op); 5044 5045 case Instruction::LShr: 5046 // Turn logical shift right of a constant into a unsigned divide. 5047 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5048 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5049 5050 // If the shift count is not less than the bitwidth, the result of 5051 // the shift is undefined. Don't try to analyze it, because the 5052 // resolution chosen here may differ from the resolution chosen in 5053 // other parts of the compiler. 5054 if (SA->getValue().ult(BitWidth)) { 5055 Constant *X = 5056 ConstantInt::get(SA->getContext(), 5057 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5058 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5059 } 5060 } 5061 return BinaryOp(Op); 5062 5063 case Instruction::ExtractValue: { 5064 auto *EVI = cast<ExtractValueInst>(Op); 5065 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5066 break; 5067 5068 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5069 if (!WO) 5070 break; 5071 5072 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5073 bool Signed = WO->isSigned(); 5074 // TODO: Should add nuw/nsw flags for mul as well. 5075 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5076 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5077 5078 // Now that we know that all uses of the arithmetic-result component of 5079 // CI are guarded by the overflow check, we can go ahead and pretend 5080 // that the arithmetic is non-overflowing. 5081 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5082 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5083 } 5084 5085 default: 5086 break; 5087 } 5088 5089 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5090 // semantics as a Sub, return a binary sub expression. 5091 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5092 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5093 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5094 5095 return None; 5096 } 5097 5098 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5099 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5100 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5101 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5102 /// follows one of the following patterns: 5103 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5104 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5105 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5106 /// we return the type of the truncation operation, and indicate whether the 5107 /// truncated type should be treated as signed/unsigned by setting 5108 /// \p Signed to true/false, respectively. 5109 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5110 bool &Signed, ScalarEvolution &SE) { 5111 // The case where Op == SymbolicPHI (that is, with no type conversions on 5112 // the way) is handled by the regular add recurrence creating logic and 5113 // would have already been triggered in createAddRecForPHI. Reaching it here 5114 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5115 // because one of the other operands of the SCEVAddExpr updating this PHI is 5116 // not invariant). 5117 // 5118 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5119 // this case predicates that allow us to prove that Op == SymbolicPHI will 5120 // be added. 5121 if (Op == SymbolicPHI) 5122 return nullptr; 5123 5124 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5125 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5126 if (SourceBits != NewBits) 5127 return nullptr; 5128 5129 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5130 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5131 if (!SExt && !ZExt) 5132 return nullptr; 5133 const SCEVTruncateExpr *Trunc = 5134 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5135 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5136 if (!Trunc) 5137 return nullptr; 5138 const SCEV *X = Trunc->getOperand(); 5139 if (X != SymbolicPHI) 5140 return nullptr; 5141 Signed = SExt != nullptr; 5142 return Trunc->getType(); 5143 } 5144 5145 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5146 if (!PN->getType()->isIntegerTy()) 5147 return nullptr; 5148 const Loop *L = LI.getLoopFor(PN->getParent()); 5149 if (!L || L->getHeader() != PN->getParent()) 5150 return nullptr; 5151 return L; 5152 } 5153 5154 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5155 // computation that updates the phi follows the following pattern: 5156 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5157 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5158 // If so, try to see if it can be rewritten as an AddRecExpr under some 5159 // Predicates. If successful, return them as a pair. Also cache the results 5160 // of the analysis. 5161 // 5162 // Example usage scenario: 5163 // Say the Rewriter is called for the following SCEV: 5164 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5165 // where: 5166 // %X = phi i64 (%Start, %BEValue) 5167 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5168 // and call this function with %SymbolicPHI = %X. 5169 // 5170 // The analysis will find that the value coming around the backedge has 5171 // the following SCEV: 5172 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5173 // Upon concluding that this matches the desired pattern, the function 5174 // will return the pair {NewAddRec, SmallPredsVec} where: 5175 // NewAddRec = {%Start,+,%Step} 5176 // SmallPredsVec = {P1, P2, P3} as follows: 5177 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5178 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5179 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5180 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5181 // under the predicates {P1,P2,P3}. 5182 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5183 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5184 // 5185 // TODO's: 5186 // 5187 // 1) Extend the Induction descriptor to also support inductions that involve 5188 // casts: When needed (namely, when we are called in the context of the 5189 // vectorizer induction analysis), a Set of cast instructions will be 5190 // populated by this method, and provided back to isInductionPHI. This is 5191 // needed to allow the vectorizer to properly record them to be ignored by 5192 // the cost model and to avoid vectorizing them (otherwise these casts, 5193 // which are redundant under the runtime overflow checks, will be 5194 // vectorized, which can be costly). 5195 // 5196 // 2) Support additional induction/PHISCEV patterns: We also want to support 5197 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5198 // after the induction update operation (the induction increment): 5199 // 5200 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5201 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5202 // 5203 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5204 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5205 // 5206 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5207 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5208 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5209 SmallVector<const SCEVPredicate *, 3> Predicates; 5210 5211 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5212 // return an AddRec expression under some predicate. 5213 5214 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5215 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5216 assert(L && "Expecting an integer loop header phi"); 5217 5218 // The loop may have multiple entrances or multiple exits; we can analyze 5219 // this phi as an addrec if it has a unique entry value and a unique 5220 // backedge value. 5221 Value *BEValueV = nullptr, *StartValueV = nullptr; 5222 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5223 Value *V = PN->getIncomingValue(i); 5224 if (L->contains(PN->getIncomingBlock(i))) { 5225 if (!BEValueV) { 5226 BEValueV = V; 5227 } else if (BEValueV != V) { 5228 BEValueV = nullptr; 5229 break; 5230 } 5231 } else if (!StartValueV) { 5232 StartValueV = V; 5233 } else if (StartValueV != V) { 5234 StartValueV = nullptr; 5235 break; 5236 } 5237 } 5238 if (!BEValueV || !StartValueV) 5239 return None; 5240 5241 const SCEV *BEValue = getSCEV(BEValueV); 5242 5243 // If the value coming around the backedge is an add with the symbolic 5244 // value we just inserted, possibly with casts that we can ignore under 5245 // an appropriate runtime guard, then we found a simple induction variable! 5246 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5247 if (!Add) 5248 return None; 5249 5250 // If there is a single occurrence of the symbolic value, possibly 5251 // casted, replace it with a recurrence. 5252 unsigned FoundIndex = Add->getNumOperands(); 5253 Type *TruncTy = nullptr; 5254 bool Signed; 5255 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5256 if ((TruncTy = 5257 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5258 if (FoundIndex == e) { 5259 FoundIndex = i; 5260 break; 5261 } 5262 5263 if (FoundIndex == Add->getNumOperands()) 5264 return None; 5265 5266 // Create an add with everything but the specified operand. 5267 SmallVector<const SCEV *, 8> Ops; 5268 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5269 if (i != FoundIndex) 5270 Ops.push_back(Add->getOperand(i)); 5271 const SCEV *Accum = getAddExpr(Ops); 5272 5273 // The runtime checks will not be valid if the step amount is 5274 // varying inside the loop. 5275 if (!isLoopInvariant(Accum, L)) 5276 return None; 5277 5278 // *** Part2: Create the predicates 5279 5280 // Analysis was successful: we have a phi-with-cast pattern for which we 5281 // can return an AddRec expression under the following predicates: 5282 // 5283 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5284 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5285 // P2: An Equal predicate that guarantees that 5286 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5287 // P3: An Equal predicate that guarantees that 5288 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5289 // 5290 // As we next prove, the above predicates guarantee that: 5291 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5292 // 5293 // 5294 // More formally, we want to prove that: 5295 // Expr(i+1) = Start + (i+1) * Accum 5296 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5297 // 5298 // Given that: 5299 // 1) Expr(0) = Start 5300 // 2) Expr(1) = Start + Accum 5301 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5302 // 3) Induction hypothesis (step i): 5303 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5304 // 5305 // Proof: 5306 // Expr(i+1) = 5307 // = Start + (i+1)*Accum 5308 // = (Start + i*Accum) + Accum 5309 // = Expr(i) + Accum 5310 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5311 // :: from step i 5312 // 5313 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5314 // 5315 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5316 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5317 // + Accum :: from P3 5318 // 5319 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5320 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5321 // 5322 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5323 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5324 // 5325 // By induction, the same applies to all iterations 1<=i<n: 5326 // 5327 5328 // Create a truncated addrec for which we will add a no overflow check (P1). 5329 const SCEV *StartVal = getSCEV(StartValueV); 5330 const SCEV *PHISCEV = 5331 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5332 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5333 5334 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5335 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5336 // will be constant. 5337 // 5338 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5339 // add P1. 5340 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5341 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5342 Signed ? SCEVWrapPredicate::IncrementNSSW 5343 : SCEVWrapPredicate::IncrementNUSW; 5344 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5345 Predicates.push_back(AddRecPred); 5346 } 5347 5348 // Create the Equal Predicates P2,P3: 5349 5350 // It is possible that the predicates P2 and/or P3 are computable at 5351 // compile time due to StartVal and/or Accum being constants. 5352 // If either one is, then we can check that now and escape if either P2 5353 // or P3 is false. 5354 5355 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5356 // for each of StartVal and Accum 5357 auto getExtendedExpr = [&](const SCEV *Expr, 5358 bool CreateSignExtend) -> const SCEV * { 5359 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5360 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5361 const SCEV *ExtendedExpr = 5362 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5363 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5364 return ExtendedExpr; 5365 }; 5366 5367 // Given: 5368 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5369 // = getExtendedExpr(Expr) 5370 // Determine whether the predicate P: Expr == ExtendedExpr 5371 // is known to be false at compile time 5372 auto PredIsKnownFalse = [&](const SCEV *Expr, 5373 const SCEV *ExtendedExpr) -> bool { 5374 return Expr != ExtendedExpr && 5375 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5376 }; 5377 5378 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5379 if (PredIsKnownFalse(StartVal, StartExtended)) { 5380 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5381 return None; 5382 } 5383 5384 // The Step is always Signed (because the overflow checks are either 5385 // NSSW or NUSW) 5386 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5387 if (PredIsKnownFalse(Accum, AccumExtended)) { 5388 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5389 return None; 5390 } 5391 5392 auto AppendPredicate = [&](const SCEV *Expr, 5393 const SCEV *ExtendedExpr) -> void { 5394 if (Expr != ExtendedExpr && 5395 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5396 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5397 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5398 Predicates.push_back(Pred); 5399 } 5400 }; 5401 5402 AppendPredicate(StartVal, StartExtended); 5403 AppendPredicate(Accum, AccumExtended); 5404 5405 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5406 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5407 // into NewAR if it will also add the runtime overflow checks specified in 5408 // Predicates. 5409 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5410 5411 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5412 std::make_pair(NewAR, Predicates); 5413 // Remember the result of the analysis for this SCEV at this locayyytion. 5414 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5415 return PredRewrite; 5416 } 5417 5418 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5419 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5420 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5421 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5422 if (!L) 5423 return None; 5424 5425 // Check to see if we already analyzed this PHI. 5426 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5427 if (I != PredicatedSCEVRewrites.end()) { 5428 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5429 I->second; 5430 // Analysis was done before and failed to create an AddRec: 5431 if (Rewrite.first == SymbolicPHI) 5432 return None; 5433 // Analysis was done before and succeeded to create an AddRec under 5434 // a predicate: 5435 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5436 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5437 return Rewrite; 5438 } 5439 5440 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5441 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5442 5443 // Record in the cache that the analysis failed 5444 if (!Rewrite) { 5445 SmallVector<const SCEVPredicate *, 3> Predicates; 5446 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5447 return None; 5448 } 5449 5450 return Rewrite; 5451 } 5452 5453 // FIXME: This utility is currently required because the Rewriter currently 5454 // does not rewrite this expression: 5455 // {0, +, (sext ix (trunc iy to ix) to iy)} 5456 // into {0, +, %step}, 5457 // even when the following Equal predicate exists: 5458 // "%step == (sext ix (trunc iy to ix) to iy)". 5459 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5460 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5461 if (AR1 == AR2) 5462 return true; 5463 5464 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5465 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5466 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5467 return false; 5468 return true; 5469 }; 5470 5471 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5472 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5473 return false; 5474 return true; 5475 } 5476 5477 /// A helper function for createAddRecFromPHI to handle simple cases. 5478 /// 5479 /// This function tries to find an AddRec expression for the simplest (yet most 5480 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5481 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5482 /// technique for finding the AddRec expression. 5483 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5484 Value *BEValueV, 5485 Value *StartValueV) { 5486 const Loop *L = LI.getLoopFor(PN->getParent()); 5487 assert(L && L->getHeader() == PN->getParent()); 5488 assert(BEValueV && StartValueV); 5489 5490 auto BO = MatchBinaryOp(BEValueV, DT); 5491 if (!BO) 5492 return nullptr; 5493 5494 if (BO->Opcode != Instruction::Add) 5495 return nullptr; 5496 5497 const SCEV *Accum = nullptr; 5498 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5499 Accum = getSCEV(BO->RHS); 5500 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5501 Accum = getSCEV(BO->LHS); 5502 5503 if (!Accum) 5504 return nullptr; 5505 5506 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5507 if (BO->IsNUW) 5508 Flags = setFlags(Flags, SCEV::FlagNUW); 5509 if (BO->IsNSW) 5510 Flags = setFlags(Flags, SCEV::FlagNSW); 5511 5512 const SCEV *StartVal = getSCEV(StartValueV); 5513 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5514 insertValueToMap(PN, PHISCEV); 5515 5516 // We can add Flags to the post-inc expression only if we 5517 // know that it is *undefined behavior* for BEValueV to 5518 // overflow. 5519 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5520 assert(isLoopInvariant(Accum, L) && 5521 "Accum is defined outside L, but is not invariant?"); 5522 if (isAddRecNeverPoison(BEInst, L)) 5523 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5524 } 5525 5526 return PHISCEV; 5527 } 5528 5529 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5530 const Loop *L = LI.getLoopFor(PN->getParent()); 5531 if (!L || L->getHeader() != PN->getParent()) 5532 return nullptr; 5533 5534 // The loop may have multiple entrances or multiple exits; we can analyze 5535 // this phi as an addrec if it has a unique entry value and a unique 5536 // backedge value. 5537 Value *BEValueV = nullptr, *StartValueV = nullptr; 5538 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5539 Value *V = PN->getIncomingValue(i); 5540 if (L->contains(PN->getIncomingBlock(i))) { 5541 if (!BEValueV) { 5542 BEValueV = V; 5543 } else if (BEValueV != V) { 5544 BEValueV = nullptr; 5545 break; 5546 } 5547 } else if (!StartValueV) { 5548 StartValueV = V; 5549 } else if (StartValueV != V) { 5550 StartValueV = nullptr; 5551 break; 5552 } 5553 } 5554 if (!BEValueV || !StartValueV) 5555 return nullptr; 5556 5557 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5558 "PHI node already processed?"); 5559 5560 // First, try to find AddRec expression without creating a fictituos symbolic 5561 // value for PN. 5562 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5563 return S; 5564 5565 // Handle PHI node value symbolically. 5566 const SCEV *SymbolicName = getUnknown(PN); 5567 insertValueToMap(PN, SymbolicName); 5568 5569 // Using this symbolic name for the PHI, analyze the value coming around 5570 // the back-edge. 5571 const SCEV *BEValue = getSCEV(BEValueV); 5572 5573 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5574 // has a special value for the first iteration of the loop. 5575 5576 // If the value coming around the backedge is an add with the symbolic 5577 // value we just inserted, then we found a simple induction variable! 5578 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5579 // If there is a single occurrence of the symbolic value, replace it 5580 // with a recurrence. 5581 unsigned FoundIndex = Add->getNumOperands(); 5582 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5583 if (Add->getOperand(i) == SymbolicName) 5584 if (FoundIndex == e) { 5585 FoundIndex = i; 5586 break; 5587 } 5588 5589 if (FoundIndex != Add->getNumOperands()) { 5590 // Create an add with everything but the specified operand. 5591 SmallVector<const SCEV *, 8> Ops; 5592 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5593 if (i != FoundIndex) 5594 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5595 L, *this)); 5596 const SCEV *Accum = getAddExpr(Ops); 5597 5598 // This is not a valid addrec if the step amount is varying each 5599 // loop iteration, but is not itself an addrec in this loop. 5600 if (isLoopInvariant(Accum, L) || 5601 (isa<SCEVAddRecExpr>(Accum) && 5602 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5603 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5604 5605 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5606 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5607 if (BO->IsNUW) 5608 Flags = setFlags(Flags, SCEV::FlagNUW); 5609 if (BO->IsNSW) 5610 Flags = setFlags(Flags, SCEV::FlagNSW); 5611 } 5612 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5613 // If the increment is an inbounds GEP, then we know the address 5614 // space cannot be wrapped around. We cannot make any guarantee 5615 // about signed or unsigned overflow because pointers are 5616 // unsigned but we may have a negative index from the base 5617 // pointer. We can guarantee that no unsigned wrap occurs if the 5618 // indices form a positive value. 5619 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5620 Flags = setFlags(Flags, SCEV::FlagNW); 5621 5622 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5623 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5624 Flags = setFlags(Flags, SCEV::FlagNUW); 5625 } 5626 5627 // We cannot transfer nuw and nsw flags from subtraction 5628 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5629 // for instance. 5630 } 5631 5632 const SCEV *StartVal = getSCEV(StartValueV); 5633 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5634 5635 // Okay, for the entire analysis of this edge we assumed the PHI 5636 // to be symbolic. We now need to go back and purge all of the 5637 // entries for the scalars that use the symbolic expression. 5638 forgetMemoizedResults(SymbolicName); 5639 insertValueToMap(PN, PHISCEV); 5640 5641 // We can add Flags to the post-inc expression only if we 5642 // know that it is *undefined behavior* for BEValueV to 5643 // overflow. 5644 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5645 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5646 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5647 5648 return PHISCEV; 5649 } 5650 } 5651 } else { 5652 // Otherwise, this could be a loop like this: 5653 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5654 // In this case, j = {1,+,1} and BEValue is j. 5655 // Because the other in-value of i (0) fits the evolution of BEValue 5656 // i really is an addrec evolution. 5657 // 5658 // We can generalize this saying that i is the shifted value of BEValue 5659 // by one iteration: 5660 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5661 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5662 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5663 if (Shifted != getCouldNotCompute() && 5664 Start != getCouldNotCompute()) { 5665 const SCEV *StartVal = getSCEV(StartValueV); 5666 if (Start == StartVal) { 5667 // Okay, for the entire analysis of this edge we assumed the PHI 5668 // to be symbolic. We now need to go back and purge all of the 5669 // entries for the scalars that use the symbolic expression. 5670 forgetMemoizedResults(SymbolicName); 5671 insertValueToMap(PN, Shifted); 5672 return Shifted; 5673 } 5674 } 5675 } 5676 5677 // Remove the temporary PHI node SCEV that has been inserted while intending 5678 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5679 // as it will prevent later (possibly simpler) SCEV expressions to be added 5680 // to the ValueExprMap. 5681 eraseValueFromMap(PN); 5682 5683 return nullptr; 5684 } 5685 5686 // Checks if the SCEV S is available at BB. S is considered available at BB 5687 // if S can be materialized at BB without introducing a fault. 5688 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5689 BasicBlock *BB) { 5690 struct CheckAvailable { 5691 bool TraversalDone = false; 5692 bool Available = true; 5693 5694 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5695 BasicBlock *BB = nullptr; 5696 DominatorTree &DT; 5697 5698 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5699 : L(L), BB(BB), DT(DT) {} 5700 5701 bool setUnavailable() { 5702 TraversalDone = true; 5703 Available = false; 5704 return false; 5705 } 5706 5707 bool follow(const SCEV *S) { 5708 switch (S->getSCEVType()) { 5709 case scConstant: 5710 case scPtrToInt: 5711 case scTruncate: 5712 case scZeroExtend: 5713 case scSignExtend: 5714 case scAddExpr: 5715 case scMulExpr: 5716 case scUMaxExpr: 5717 case scSMaxExpr: 5718 case scUMinExpr: 5719 case scSMinExpr: 5720 case scSequentialUMinExpr: 5721 // These expressions are available if their operand(s) is/are. 5722 return true; 5723 5724 case scAddRecExpr: { 5725 // We allow add recurrences that are on the loop BB is in, or some 5726 // outer loop. This guarantees availability because the value of the 5727 // add recurrence at BB is simply the "current" value of the induction 5728 // variable. We can relax this in the future; for instance an add 5729 // recurrence on a sibling dominating loop is also available at BB. 5730 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5731 if (L && (ARLoop == L || ARLoop->contains(L))) 5732 return true; 5733 5734 return setUnavailable(); 5735 } 5736 5737 case scUnknown: { 5738 // For SCEVUnknown, we check for simple dominance. 5739 const auto *SU = cast<SCEVUnknown>(S); 5740 Value *V = SU->getValue(); 5741 5742 if (isa<Argument>(V)) 5743 return false; 5744 5745 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5746 return false; 5747 5748 return setUnavailable(); 5749 } 5750 5751 case scUDivExpr: 5752 case scCouldNotCompute: 5753 // We do not try to smart about these at all. 5754 return setUnavailable(); 5755 } 5756 llvm_unreachable("Unknown SCEV kind!"); 5757 } 5758 5759 bool isDone() { return TraversalDone; } 5760 }; 5761 5762 CheckAvailable CA(L, BB, DT); 5763 SCEVTraversal<CheckAvailable> ST(CA); 5764 5765 ST.visitAll(S); 5766 return CA.Available; 5767 } 5768 5769 // Try to match a control flow sequence that branches out at BI and merges back 5770 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5771 // match. 5772 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5773 Value *&C, Value *&LHS, Value *&RHS) { 5774 C = BI->getCondition(); 5775 5776 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5777 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5778 5779 if (!LeftEdge.isSingleEdge()) 5780 return false; 5781 5782 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5783 5784 Use &LeftUse = Merge->getOperandUse(0); 5785 Use &RightUse = Merge->getOperandUse(1); 5786 5787 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5788 LHS = LeftUse; 5789 RHS = RightUse; 5790 return true; 5791 } 5792 5793 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5794 LHS = RightUse; 5795 RHS = LeftUse; 5796 return true; 5797 } 5798 5799 return false; 5800 } 5801 5802 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5803 auto IsReachable = 5804 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5805 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5806 const Loop *L = LI.getLoopFor(PN->getParent()); 5807 5808 // We don't want to break LCSSA, even in a SCEV expression tree. 5809 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5810 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5811 return nullptr; 5812 5813 // Try to match 5814 // 5815 // br %cond, label %left, label %right 5816 // left: 5817 // br label %merge 5818 // right: 5819 // br label %merge 5820 // merge: 5821 // V = phi [ %x, %left ], [ %y, %right ] 5822 // 5823 // as "select %cond, %x, %y" 5824 5825 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5826 assert(IDom && "At least the entry block should dominate PN"); 5827 5828 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5829 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5830 5831 if (BI && BI->isConditional() && 5832 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5833 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5834 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5835 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5836 } 5837 5838 return nullptr; 5839 } 5840 5841 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5842 if (const SCEV *S = createAddRecFromPHI(PN)) 5843 return S; 5844 5845 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5846 return S; 5847 5848 // If the PHI has a single incoming value, follow that value, unless the 5849 // PHI's incoming blocks are in a different loop, in which case doing so 5850 // risks breaking LCSSA form. Instcombine would normally zap these, but 5851 // it doesn't have DominatorTree information, so it may miss cases. 5852 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5853 if (LI.replacementPreservesLCSSAForm(PN, V)) 5854 return getSCEV(V); 5855 5856 // If it's not a loop phi, we can't handle it yet. 5857 return getUnknown(PN); 5858 } 5859 5860 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 5861 SCEVTypes RootKind) { 5862 struct FindClosure { 5863 const SCEV *OperandToFind; 5864 const SCEVTypes RootKind; // Must be a sequential min/max expression. 5865 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 5866 5867 bool Found = false; 5868 5869 bool canRecurseInto(SCEVTypes Kind) const { 5870 // We can only recurse into the SCEV expression of the same effective type 5871 // as the type of our root SCEV expression, and into zero-extensions. 5872 return RootKind == Kind || NonSequentialRootKind == Kind || 5873 scZeroExtend == Kind; 5874 }; 5875 5876 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 5877 : OperandToFind(OperandToFind), RootKind(RootKind), 5878 NonSequentialRootKind( 5879 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 5880 RootKind)) {} 5881 5882 bool follow(const SCEV *S) { 5883 Found = S == OperandToFind; 5884 5885 return !isDone() && canRecurseInto(S->getSCEVType()); 5886 } 5887 5888 bool isDone() const { return Found; } 5889 }; 5890 5891 FindClosure FC(OperandToFind, RootKind); 5892 visitAll(Root, FC); 5893 return FC.Found; 5894 } 5895 5896 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond( 5897 Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) { 5898 // Try to match some simple smax or umax patterns. 5899 auto *ICI = Cond; 5900 5901 Value *LHS = ICI->getOperand(0); 5902 Value *RHS = ICI->getOperand(1); 5903 5904 switch (ICI->getPredicate()) { 5905 case ICmpInst::ICMP_SLT: 5906 case ICmpInst::ICMP_SLE: 5907 case ICmpInst::ICMP_ULT: 5908 case ICmpInst::ICMP_ULE: 5909 std::swap(LHS, RHS); 5910 LLVM_FALLTHROUGH; 5911 case ICmpInst::ICMP_SGT: 5912 case ICmpInst::ICMP_SGE: 5913 case ICmpInst::ICMP_UGT: 5914 case ICmpInst::ICMP_UGE: 5915 // a > b ? a+x : b+x -> max(a, b)+x 5916 // a > b ? b+x : a+x -> min(a, b)+x 5917 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5918 bool Signed = ICI->isSigned(); 5919 const SCEV *LA = getSCEV(TrueVal); 5920 const SCEV *RA = getSCEV(FalseVal); 5921 const SCEV *LS = getSCEV(LHS); 5922 const SCEV *RS = getSCEV(RHS); 5923 if (LA->getType()->isPointerTy()) { 5924 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5925 // Need to make sure we can't produce weird expressions involving 5926 // negated pointers. 5927 if (LA == LS && RA == RS) 5928 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5929 if (LA == RS && RA == LS) 5930 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5931 } 5932 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5933 if (Op->getType()->isPointerTy()) { 5934 Op = getLosslessPtrToIntExpr(Op); 5935 if (isa<SCEVCouldNotCompute>(Op)) 5936 return Op; 5937 } 5938 if (Signed) 5939 Op = getNoopOrSignExtend(Op, I->getType()); 5940 else 5941 Op = getNoopOrZeroExtend(Op, I->getType()); 5942 return Op; 5943 }; 5944 LS = CoerceOperand(LS); 5945 RS = CoerceOperand(RS); 5946 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5947 break; 5948 const SCEV *LDiff = getMinusSCEV(LA, LS); 5949 const SCEV *RDiff = getMinusSCEV(RA, RS); 5950 if (LDiff == RDiff) 5951 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5952 LDiff); 5953 LDiff = getMinusSCEV(LA, RS); 5954 RDiff = getMinusSCEV(RA, LS); 5955 if (LDiff == RDiff) 5956 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5957 LDiff); 5958 } 5959 break; 5960 case ICmpInst::ICMP_NE: 5961 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 5962 std::swap(TrueVal, FalseVal); 5963 LLVM_FALLTHROUGH; 5964 case ICmpInst::ICMP_EQ: 5965 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 5966 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5967 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5968 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5969 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 5970 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 5971 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 5972 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 5973 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 5974 return getAddExpr(getUMaxExpr(X, C), Y); 5975 } 5976 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 5977 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 5978 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 5979 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 5980 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 5981 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 5982 const SCEV *X = getSCEV(LHS); 5983 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 5984 X = ZExt->getOperand(); 5985 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) { 5986 const SCEV *FalseValExpr = getSCEV(FalseVal); 5987 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 5988 return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr, 5989 /*Sequential=*/true); 5990 } 5991 } 5992 break; 5993 default: 5994 break; 5995 } 5996 5997 return getUnknown(I); 5998 } 5999 6000 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6001 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6002 // For now, only deal with i1-typed `select`s. 6003 if (!V->getType()->isIntegerTy(1) || !Cond->getType()->isIntegerTy(1) || 6004 !TrueVal->getType()->isIntegerTy(1) || 6005 !FalseVal->getType()->isIntegerTy(1)) 6006 return getUnknown(V); 6007 6008 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6009 // --> C + (umin_seq cond, x - C) 6010 // 6011 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6012 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6013 // --> C + (umin_seq ~cond, x - C) 6014 if (isa<ConstantInt>(TrueVal) || isa<ConstantInt>(FalseVal)) { 6015 const SCEV *CondExpr = getSCEV(Cond); 6016 const SCEV *TrueExpr = getSCEV(TrueVal); 6017 const SCEV *FalseExpr = getSCEV(FalseVal); 6018 const SCEV *X, *C; 6019 if (isa<ConstantInt>(TrueVal)) { 6020 CondExpr = getNotSCEV(CondExpr); 6021 X = FalseExpr; 6022 C = TrueExpr; 6023 } else { 6024 X = TrueExpr; 6025 C = FalseExpr; 6026 } 6027 return getAddExpr( 6028 C, getUMinExpr(CondExpr, getMinusSCEV(X, C), /*Sequential=*/true)); 6029 } 6030 6031 return getUnknown(V); 6032 } 6033 6034 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6035 Value *TrueVal, 6036 Value *FalseVal) { 6037 // Handle "constant" branch or select. This can occur for instance when a 6038 // loop pass transforms an inner loop and moves on to process the outer loop. 6039 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6040 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6041 6042 if (auto *I = dyn_cast<Instruction>(V)) { 6043 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6044 const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond( 6045 I, ICI, TrueVal, FalseVal); 6046 if (!isa<SCEVUnknown>(S)) 6047 return S; 6048 } 6049 } 6050 6051 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6052 } 6053 6054 /// Expand GEP instructions into add and multiply operations. This allows them 6055 /// to be analyzed by regular SCEV code. 6056 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6057 // Don't attempt to analyze GEPs over unsized objects. 6058 if (!GEP->getSourceElementType()->isSized()) 6059 return getUnknown(GEP); 6060 6061 SmallVector<const SCEV *, 4> IndexExprs; 6062 for (Value *Index : GEP->indices()) 6063 IndexExprs.push_back(getSCEV(Index)); 6064 return getGEPExpr(GEP, IndexExprs); 6065 } 6066 6067 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 6068 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6069 return C->getAPInt().countTrailingZeros(); 6070 6071 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 6072 return GetMinTrailingZeros(I->getOperand()); 6073 6074 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 6075 return std::min(GetMinTrailingZeros(T->getOperand()), 6076 (uint32_t)getTypeSizeInBits(T->getType())); 6077 6078 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 6079 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6080 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6081 ? getTypeSizeInBits(E->getType()) 6082 : OpRes; 6083 } 6084 6085 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 6086 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6087 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6088 ? getTypeSizeInBits(E->getType()) 6089 : OpRes; 6090 } 6091 6092 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 6093 // The result is the min of all operands results. 6094 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6095 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6096 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6097 return MinOpRes; 6098 } 6099 6100 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 6101 // The result is the sum of all operands results. 6102 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 6103 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 6104 for (unsigned i = 1, e = M->getNumOperands(); 6105 SumOpRes != BitWidth && i != e; ++i) 6106 SumOpRes = 6107 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 6108 return SumOpRes; 6109 } 6110 6111 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 6112 // The result is the min of all operands results. 6113 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6114 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6115 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6116 return MinOpRes; 6117 } 6118 6119 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 6120 // The result is the min of all operands results. 6121 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6122 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6123 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6124 return MinOpRes; 6125 } 6126 6127 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 6128 // The result is the min of all operands results. 6129 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6130 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6131 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6132 return MinOpRes; 6133 } 6134 6135 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6136 // For a SCEVUnknown, ask ValueTracking. 6137 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 6138 return Known.countMinTrailingZeros(); 6139 } 6140 6141 // SCEVUDivExpr 6142 return 0; 6143 } 6144 6145 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 6146 auto I = MinTrailingZerosCache.find(S); 6147 if (I != MinTrailingZerosCache.end()) 6148 return I->second; 6149 6150 uint32_t Result = GetMinTrailingZerosImpl(S); 6151 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 6152 assert(InsertPair.second && "Should insert a new key"); 6153 return InsertPair.first->second; 6154 } 6155 6156 /// Helper method to assign a range to V from metadata present in the IR. 6157 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6158 if (Instruction *I = dyn_cast<Instruction>(V)) 6159 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6160 return getConstantRangeFromMetadata(*MD); 6161 6162 return None; 6163 } 6164 6165 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6166 SCEV::NoWrapFlags Flags) { 6167 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6168 AddRec->setNoWrapFlags(Flags); 6169 UnsignedRanges.erase(AddRec); 6170 SignedRanges.erase(AddRec); 6171 } 6172 } 6173 6174 ConstantRange ScalarEvolution:: 6175 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6176 const DataLayout &DL = getDataLayout(); 6177 6178 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6179 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6180 6181 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6182 // use information about the trip count to improve our available range. Note 6183 // that the trip count independent cases are already handled by known bits. 6184 // WARNING: The definition of recurrence used here is subtly different than 6185 // the one used by AddRec (and thus most of this file). Step is allowed to 6186 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6187 // and other addrecs in the same loop (for non-affine addrecs). The code 6188 // below intentionally handles the case where step is not loop invariant. 6189 auto *P = dyn_cast<PHINode>(U->getValue()); 6190 if (!P) 6191 return FullSet; 6192 6193 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6194 // even the values that are not available in these blocks may come from them, 6195 // and this leads to false-positive recurrence test. 6196 for (auto *Pred : predecessors(P->getParent())) 6197 if (!DT.isReachableFromEntry(Pred)) 6198 return FullSet; 6199 6200 BinaryOperator *BO; 6201 Value *Start, *Step; 6202 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6203 return FullSet; 6204 6205 // If we found a recurrence in reachable code, we must be in a loop. Note 6206 // that BO might be in some subloop of L, and that's completely okay. 6207 auto *L = LI.getLoopFor(P->getParent()); 6208 assert(L && L->getHeader() == P->getParent()); 6209 if (!L->contains(BO->getParent())) 6210 // NOTE: This bailout should be an assert instead. However, asserting 6211 // the condition here exposes a case where LoopFusion is querying SCEV 6212 // with malformed loop information during the midst of the transform. 6213 // There doesn't appear to be an obvious fix, so for the moment bailout 6214 // until the caller issue can be fixed. PR49566 tracks the bug. 6215 return FullSet; 6216 6217 // TODO: Extend to other opcodes such as mul, and div 6218 switch (BO->getOpcode()) { 6219 default: 6220 return FullSet; 6221 case Instruction::AShr: 6222 case Instruction::LShr: 6223 case Instruction::Shl: 6224 break; 6225 }; 6226 6227 if (BO->getOperand(0) != P) 6228 // TODO: Handle the power function forms some day. 6229 return FullSet; 6230 6231 unsigned TC = getSmallConstantMaxTripCount(L); 6232 if (!TC || TC >= BitWidth) 6233 return FullSet; 6234 6235 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6236 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6237 assert(KnownStart.getBitWidth() == BitWidth && 6238 KnownStep.getBitWidth() == BitWidth); 6239 6240 // Compute total shift amount, being careful of overflow and bitwidths. 6241 auto MaxShiftAmt = KnownStep.getMaxValue(); 6242 APInt TCAP(BitWidth, TC-1); 6243 bool Overflow = false; 6244 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6245 if (Overflow) 6246 return FullSet; 6247 6248 switch (BO->getOpcode()) { 6249 default: 6250 llvm_unreachable("filtered out above"); 6251 case Instruction::AShr: { 6252 // For each ashr, three cases: 6253 // shift = 0 => unchanged value 6254 // saturation => 0 or -1 6255 // other => a value closer to zero (of the same sign) 6256 // Thus, the end value is closer to zero than the start. 6257 auto KnownEnd = KnownBits::ashr(KnownStart, 6258 KnownBits::makeConstant(TotalShift)); 6259 if (KnownStart.isNonNegative()) 6260 // Analogous to lshr (simply not yet canonicalized) 6261 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6262 KnownStart.getMaxValue() + 1); 6263 if (KnownStart.isNegative()) 6264 // End >=u Start && End <=s Start 6265 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6266 KnownEnd.getMaxValue() + 1); 6267 break; 6268 } 6269 case Instruction::LShr: { 6270 // For each lshr, three cases: 6271 // shift = 0 => unchanged value 6272 // saturation => 0 6273 // other => a smaller positive number 6274 // Thus, the low end of the unsigned range is the last value produced. 6275 auto KnownEnd = KnownBits::lshr(KnownStart, 6276 KnownBits::makeConstant(TotalShift)); 6277 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6278 KnownStart.getMaxValue() + 1); 6279 } 6280 case Instruction::Shl: { 6281 // Iff no bits are shifted out, value increases on every shift. 6282 auto KnownEnd = KnownBits::shl(KnownStart, 6283 KnownBits::makeConstant(TotalShift)); 6284 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6285 return ConstantRange(KnownStart.getMinValue(), 6286 KnownEnd.getMaxValue() + 1); 6287 break; 6288 } 6289 }; 6290 return FullSet; 6291 } 6292 6293 /// Determine the range for a particular SCEV. If SignHint is 6294 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6295 /// with a "cleaner" unsigned (resp. signed) representation. 6296 const ConstantRange & 6297 ScalarEvolution::getRangeRef(const SCEV *S, 6298 ScalarEvolution::RangeSignHint SignHint) { 6299 DenseMap<const SCEV *, ConstantRange> &Cache = 6300 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6301 : SignedRanges; 6302 ConstantRange::PreferredRangeType RangeType = 6303 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6304 ? ConstantRange::Unsigned : ConstantRange::Signed; 6305 6306 // See if we've computed this range already. 6307 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6308 if (I != Cache.end()) 6309 return I->second; 6310 6311 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6312 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6313 6314 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6315 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6316 using OBO = OverflowingBinaryOperator; 6317 6318 // If the value has known zeros, the maximum value will have those known zeros 6319 // as well. 6320 uint32_t TZ = GetMinTrailingZeros(S); 6321 if (TZ != 0) { 6322 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6323 ConservativeResult = 6324 ConstantRange(APInt::getMinValue(BitWidth), 6325 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6326 else 6327 ConservativeResult = ConstantRange( 6328 APInt::getSignedMinValue(BitWidth), 6329 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6330 } 6331 6332 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6333 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6334 unsigned WrapType = OBO::AnyWrap; 6335 if (Add->hasNoSignedWrap()) 6336 WrapType |= OBO::NoSignedWrap; 6337 if (Add->hasNoUnsignedWrap()) 6338 WrapType |= OBO::NoUnsignedWrap; 6339 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6340 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6341 WrapType, RangeType); 6342 return setRange(Add, SignHint, 6343 ConservativeResult.intersectWith(X, RangeType)); 6344 } 6345 6346 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6347 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6348 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6349 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6350 return setRange(Mul, SignHint, 6351 ConservativeResult.intersectWith(X, RangeType)); 6352 } 6353 6354 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) { 6355 Intrinsic::ID ID; 6356 switch (S->getSCEVType()) { 6357 case scUMaxExpr: 6358 ID = Intrinsic::umax; 6359 break; 6360 case scSMaxExpr: 6361 ID = Intrinsic::smax; 6362 break; 6363 case scUMinExpr: 6364 case scSequentialUMinExpr: 6365 ID = Intrinsic::umin; 6366 break; 6367 case scSMinExpr: 6368 ID = Intrinsic::smin; 6369 break; 6370 default: 6371 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6372 } 6373 6374 const auto *NAry = cast<SCEVNAryExpr>(S); 6375 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint); 6376 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6377 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)}); 6378 return setRange(S, SignHint, 6379 ConservativeResult.intersectWith(X, RangeType)); 6380 } 6381 6382 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6383 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6384 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6385 return setRange(UDiv, SignHint, 6386 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6387 } 6388 6389 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6390 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6391 return setRange(ZExt, SignHint, 6392 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6393 RangeType)); 6394 } 6395 6396 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6397 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6398 return setRange(SExt, SignHint, 6399 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6400 RangeType)); 6401 } 6402 6403 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6404 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6405 return setRange(PtrToInt, SignHint, X); 6406 } 6407 6408 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6409 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6410 return setRange(Trunc, SignHint, 6411 ConservativeResult.intersectWith(X.truncate(BitWidth), 6412 RangeType)); 6413 } 6414 6415 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6416 // If there's no unsigned wrap, the value will never be less than its 6417 // initial value. 6418 if (AddRec->hasNoUnsignedWrap()) { 6419 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6420 if (!UnsignedMinValue.isZero()) 6421 ConservativeResult = ConservativeResult.intersectWith( 6422 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6423 } 6424 6425 // If there's no signed wrap, and all the operands except initial value have 6426 // the same sign or zero, the value won't ever be: 6427 // 1: smaller than initial value if operands are non negative, 6428 // 2: bigger than initial value if operands are non positive. 6429 // For both cases, value can not cross signed min/max boundary. 6430 if (AddRec->hasNoSignedWrap()) { 6431 bool AllNonNeg = true; 6432 bool AllNonPos = true; 6433 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6434 if (!isKnownNonNegative(AddRec->getOperand(i))) 6435 AllNonNeg = false; 6436 if (!isKnownNonPositive(AddRec->getOperand(i))) 6437 AllNonPos = false; 6438 } 6439 if (AllNonNeg) 6440 ConservativeResult = ConservativeResult.intersectWith( 6441 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6442 APInt::getSignedMinValue(BitWidth)), 6443 RangeType); 6444 else if (AllNonPos) 6445 ConservativeResult = ConservativeResult.intersectWith( 6446 ConstantRange::getNonEmpty( 6447 APInt::getSignedMinValue(BitWidth), 6448 getSignedRangeMax(AddRec->getStart()) + 1), 6449 RangeType); 6450 } 6451 6452 // TODO: non-affine addrec 6453 if (AddRec->isAffine()) { 6454 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6455 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6456 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6457 auto RangeFromAffine = getRangeForAffineAR( 6458 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6459 BitWidth); 6460 ConservativeResult = 6461 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6462 6463 auto RangeFromFactoring = getRangeViaFactoring( 6464 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6465 BitWidth); 6466 ConservativeResult = 6467 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6468 } 6469 6470 // Now try symbolic BE count and more powerful methods. 6471 if (UseExpensiveRangeSharpening) { 6472 const SCEV *SymbolicMaxBECount = 6473 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6474 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6475 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6476 AddRec->hasNoSelfWrap()) { 6477 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6478 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6479 ConservativeResult = 6480 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6481 } 6482 } 6483 } 6484 6485 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6486 } 6487 6488 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6489 6490 // Check if the IR explicitly contains !range metadata. 6491 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6492 if (MDRange.hasValue()) 6493 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6494 RangeType); 6495 6496 // Use facts about recurrences in the underlying IR. Note that add 6497 // recurrences are AddRecExprs and thus don't hit this path. This 6498 // primarily handles shift recurrences. 6499 auto CR = getRangeForUnknownRecurrence(U); 6500 ConservativeResult = ConservativeResult.intersectWith(CR); 6501 6502 // See if ValueTracking can give us a useful range. 6503 const DataLayout &DL = getDataLayout(); 6504 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6505 if (Known.getBitWidth() != BitWidth) 6506 Known = Known.zextOrTrunc(BitWidth); 6507 6508 // ValueTracking may be able to compute a tighter result for the number of 6509 // sign bits than for the value of those sign bits. 6510 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6511 if (U->getType()->isPointerTy()) { 6512 // If the pointer size is larger than the index size type, this can cause 6513 // NS to be larger than BitWidth. So compensate for this. 6514 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6515 int ptrIdxDiff = ptrSize - BitWidth; 6516 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6517 NS -= ptrIdxDiff; 6518 } 6519 6520 if (NS > 1) { 6521 // If we know any of the sign bits, we know all of the sign bits. 6522 if (!Known.Zero.getHiBits(NS).isZero()) 6523 Known.Zero.setHighBits(NS); 6524 if (!Known.One.getHiBits(NS).isZero()) 6525 Known.One.setHighBits(NS); 6526 } 6527 6528 if (Known.getMinValue() != Known.getMaxValue() + 1) 6529 ConservativeResult = ConservativeResult.intersectWith( 6530 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6531 RangeType); 6532 if (NS > 1) 6533 ConservativeResult = ConservativeResult.intersectWith( 6534 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6535 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6536 RangeType); 6537 6538 // A range of Phi is a subset of union of all ranges of its input. 6539 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) 6540 if (!PendingPhiRanges.count(Phi)) 6541 sharpenPhiSCCRange(Phi, ConservativeResult, SignHint); 6542 6543 return setRange(U, SignHint, std::move(ConservativeResult)); 6544 } 6545 6546 return setRange(S, SignHint, std::move(ConservativeResult)); 6547 } 6548 6549 bool ScalarEvolution::collectSCC(const PHINode *Phi, 6550 SmallVectorImpl<const PHINode *> &SCC) const { 6551 assert(SCC.empty() && "Precondition: SCC should be empty."); 6552 auto Bail = [&]() { 6553 SCC.clear(); 6554 SCC.push_back(Phi); 6555 return false; 6556 }; 6557 SmallPtrSet<const PHINode *, 4> Reachable; 6558 { 6559 // First, find all PHI nodes that are reachable from Phi. 6560 SmallVector<const PHINode *, 4> Worklist; 6561 Reachable.insert(Phi); 6562 Worklist.push_back(Phi); 6563 while (!Worklist.empty()) { 6564 if (Reachable.size() > MaxPhiSCCAnalysisSize) 6565 // Too many nodes to process. Assume that SCC is composed of Phi alone. 6566 return Bail(); 6567 auto *Curr = Worklist.pop_back_val(); 6568 for (auto &Op : Curr->operands()) { 6569 if (auto *PhiOp = dyn_cast<PHINode>(&*Op)) { 6570 if (PendingPhiRanges.count(PhiOp)) 6571 // Do not want to deal with this situation, so conservatively bail. 6572 return Bail(); 6573 if (Reachable.insert(PhiOp).second) 6574 Worklist.push_back(PhiOp); 6575 } 6576 } 6577 } 6578 } 6579 { 6580 // Out of reachable nodes, find those from which Phi is also reachable. This 6581 // defines a SCC. 6582 SmallVector<const PHINode *, 4> Worklist; 6583 SmallPtrSet<const PHINode *, 4> SCCSet; 6584 SCCSet.insert(Phi); 6585 SCC.push_back(Phi); 6586 Worklist.push_back(Phi); 6587 while (!Worklist.empty()) { 6588 auto *Curr = Worklist.pop_back_val(); 6589 for (auto *User : Curr->users()) 6590 if (auto *PN = dyn_cast<PHINode>(User)) 6591 if (Reachable.count(PN) && SCCSet.insert(PN).second) { 6592 Worklist.push_back(PN); 6593 SCC.push_back(PN); 6594 } 6595 } 6596 } 6597 return true; 6598 } 6599 6600 void 6601 ScalarEvolution::sharpenPhiSCCRange(const PHINode *Phi, 6602 ConstantRange &ConservativeResult, 6603 ScalarEvolution::RangeSignHint SignHint) { 6604 // Collect strongly connected component (further on - SCC ) composed of Phis. 6605 // Analyze all values that are incoming to this SCC (we call them roots). 6606 // All SCC elements have range that is not wider than union of ranges of 6607 // roots. 6608 SmallVector<const PHINode *, 8> SCC; 6609 if (collectSCC(Phi, SCC)) 6610 ++NumFoundPhiSCCs; 6611 6612 // Collect roots: inputs of SCC nodes that come from outside of SCC. 6613 SmallPtrSet<Value *, 4> Roots; 6614 const SmallPtrSet<const PHINode *, 8> SCCSet(SCC.begin(), SCC.end()); 6615 for (auto *PN : SCC) 6616 for (auto &Op : PN->operands()) { 6617 auto *PhiInput = dyn_cast<PHINode>(Op); 6618 if (!PhiInput || !SCCSet.count(PhiInput)) 6619 Roots.insert(Op); 6620 } 6621 6622 // Mark SCC elements as pending to avoid infinite recursion if there is a 6623 // cyclic dependency through some instruction that is not a PHI. 6624 for (auto *PN : SCC) { 6625 bool Inserted = PendingPhiRanges.insert(PN).second; 6626 assert(Inserted && "PHI is already pending?"); 6627 (void)Inserted; 6628 } 6629 6630 auto BitWidth = ConservativeResult.getBitWidth(); 6631 ConstantRange RangeFromRoots(BitWidth, /*isFullSet=*/false); 6632 for (auto *Root : Roots) { 6633 auto OpRange = getRangeRef(getSCEV(Root), SignHint); 6634 RangeFromRoots = RangeFromRoots.unionWith(OpRange); 6635 // No point to continue if we already have a full set. 6636 if (RangeFromRoots.isFullSet()) 6637 break; 6638 } 6639 ConstantRange::PreferredRangeType RangeType = 6640 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned 6641 : ConstantRange::Signed; 6642 ConservativeResult = 6643 ConservativeResult.intersectWith(RangeFromRoots, RangeType); 6644 6645 DenseMap<const SCEV *, ConstantRange> &Cache = 6646 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6647 : SignedRanges; 6648 // Entire SCC has the same range. 6649 for (auto *PN : SCC) { 6650 bool Erased = PendingPhiRanges.erase(PN); 6651 assert(Erased && "Failed to erase Phi properly?"); 6652 (void)Erased; 6653 auto *PNSCEV = getSCEV(const_cast<PHINode *>(PN)); 6654 auto I = Cache.find(PNSCEV); 6655 if (I == Cache.end()) 6656 setRange(PNSCEV, SignHint, ConservativeResult); 6657 else { 6658 auto SharpenedRange = 6659 I->second.intersectWith(ConservativeResult, RangeType); 6660 setRange(PNSCEV, SignHint, SharpenedRange); 6661 } 6662 } 6663 } 6664 6665 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6666 // values that the expression can take. Initially, the expression has a value 6667 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6668 // argument defines if we treat Step as signed or unsigned. 6669 static ConstantRange getRangeForAffineARHelper(APInt Step, 6670 const ConstantRange &StartRange, 6671 const APInt &MaxBECount, 6672 unsigned BitWidth, bool Signed) { 6673 // If either Step or MaxBECount is 0, then the expression won't change, and we 6674 // just need to return the initial range. 6675 if (Step == 0 || MaxBECount == 0) 6676 return StartRange; 6677 6678 // If we don't know anything about the initial value (i.e. StartRange is 6679 // FullRange), then we don't know anything about the final range either. 6680 // Return FullRange. 6681 if (StartRange.isFullSet()) 6682 return ConstantRange::getFull(BitWidth); 6683 6684 // If Step is signed and negative, then we use its absolute value, but we also 6685 // note that we're moving in the opposite direction. 6686 bool Descending = Signed && Step.isNegative(); 6687 6688 if (Signed) 6689 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6690 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6691 // This equations hold true due to the well-defined wrap-around behavior of 6692 // APInt. 6693 Step = Step.abs(); 6694 6695 // Check if Offset is more than full span of BitWidth. If it is, the 6696 // expression is guaranteed to overflow. 6697 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6698 return ConstantRange::getFull(BitWidth); 6699 6700 // Offset is by how much the expression can change. Checks above guarantee no 6701 // overflow here. 6702 APInt Offset = Step * MaxBECount; 6703 6704 // Minimum value of the final range will match the minimal value of StartRange 6705 // if the expression is increasing and will be decreased by Offset otherwise. 6706 // Maximum value of the final range will match the maximal value of StartRange 6707 // if the expression is decreasing and will be increased by Offset otherwise. 6708 APInt StartLower = StartRange.getLower(); 6709 APInt StartUpper = StartRange.getUpper() - 1; 6710 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6711 : (StartUpper + std::move(Offset)); 6712 6713 // It's possible that the new minimum/maximum value will fall into the initial 6714 // range (due to wrap around). This means that the expression can take any 6715 // value in this bitwidth, and we have to return full range. 6716 if (StartRange.contains(MovedBoundary)) 6717 return ConstantRange::getFull(BitWidth); 6718 6719 APInt NewLower = 6720 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6721 APInt NewUpper = 6722 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6723 NewUpper += 1; 6724 6725 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6726 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6727 } 6728 6729 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6730 const SCEV *Step, 6731 const SCEV *MaxBECount, 6732 unsigned BitWidth) { 6733 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6734 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6735 "Precondition!"); 6736 6737 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6738 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6739 6740 // First, consider step signed. 6741 ConstantRange StartSRange = getSignedRange(Start); 6742 ConstantRange StepSRange = getSignedRange(Step); 6743 6744 // If Step can be both positive and negative, we need to find ranges for the 6745 // maximum absolute step values in both directions and union them. 6746 ConstantRange SR = 6747 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6748 MaxBECountValue, BitWidth, /* Signed = */ true); 6749 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6750 StartSRange, MaxBECountValue, 6751 BitWidth, /* Signed = */ true)); 6752 6753 // Next, consider step unsigned. 6754 ConstantRange UR = getRangeForAffineARHelper( 6755 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6756 MaxBECountValue, BitWidth, /* Signed = */ false); 6757 6758 // Finally, intersect signed and unsigned ranges. 6759 return SR.intersectWith(UR, ConstantRange::Smallest); 6760 } 6761 6762 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6763 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6764 ScalarEvolution::RangeSignHint SignHint) { 6765 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6766 assert(AddRec->hasNoSelfWrap() && 6767 "This only works for non-self-wrapping AddRecs!"); 6768 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6769 const SCEV *Step = AddRec->getStepRecurrence(*this); 6770 // Only deal with constant step to save compile time. 6771 if (!isa<SCEVConstant>(Step)) 6772 return ConstantRange::getFull(BitWidth); 6773 // Let's make sure that we can prove that we do not self-wrap during 6774 // MaxBECount iterations. We need this because MaxBECount is a maximum 6775 // iteration count estimate, and we might infer nw from some exit for which we 6776 // do not know max exit count (or any other side reasoning). 6777 // TODO: Turn into assert at some point. 6778 if (getTypeSizeInBits(MaxBECount->getType()) > 6779 getTypeSizeInBits(AddRec->getType())) 6780 return ConstantRange::getFull(BitWidth); 6781 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6782 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6783 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6784 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6785 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6786 MaxItersWithoutWrap)) 6787 return ConstantRange::getFull(BitWidth); 6788 6789 ICmpInst::Predicate LEPred = 6790 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6791 ICmpInst::Predicate GEPred = 6792 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6793 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6794 6795 // We know that there is no self-wrap. Let's take Start and End values and 6796 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6797 // the iteration. They either lie inside the range [Min(Start, End), 6798 // Max(Start, End)] or outside it: 6799 // 6800 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6801 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6802 // 6803 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6804 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6805 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6806 // Start <= End and step is positive, or Start >= End and step is negative. 6807 const SCEV *Start = AddRec->getStart(); 6808 ConstantRange StartRange = getRangeRef(Start, SignHint); 6809 ConstantRange EndRange = getRangeRef(End, SignHint); 6810 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6811 // If they already cover full iteration space, we will know nothing useful 6812 // even if we prove what we want to prove. 6813 if (RangeBetween.isFullSet()) 6814 return RangeBetween; 6815 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6816 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6817 : RangeBetween.isWrappedSet(); 6818 if (IsWrappedSet) 6819 return ConstantRange::getFull(BitWidth); 6820 6821 if (isKnownPositive(Step) && 6822 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6823 return RangeBetween; 6824 else if (isKnownNegative(Step) && 6825 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6826 return RangeBetween; 6827 return ConstantRange::getFull(BitWidth); 6828 } 6829 6830 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6831 const SCEV *Step, 6832 const SCEV *MaxBECount, 6833 unsigned BitWidth) { 6834 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6835 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6836 6837 struct SelectPattern { 6838 Value *Condition = nullptr; 6839 APInt TrueValue; 6840 APInt FalseValue; 6841 6842 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6843 const SCEV *S) { 6844 Optional<unsigned> CastOp; 6845 APInt Offset(BitWidth, 0); 6846 6847 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6848 "Should be!"); 6849 6850 // Peel off a constant offset: 6851 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6852 // In the future we could consider being smarter here and handle 6853 // {Start+Step,+,Step} too. 6854 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6855 return; 6856 6857 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6858 S = SA->getOperand(1); 6859 } 6860 6861 // Peel off a cast operation 6862 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6863 CastOp = SCast->getSCEVType(); 6864 S = SCast->getOperand(); 6865 } 6866 6867 using namespace llvm::PatternMatch; 6868 6869 auto *SU = dyn_cast<SCEVUnknown>(S); 6870 const APInt *TrueVal, *FalseVal; 6871 if (!SU || 6872 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6873 m_APInt(FalseVal)))) { 6874 Condition = nullptr; 6875 return; 6876 } 6877 6878 TrueValue = *TrueVal; 6879 FalseValue = *FalseVal; 6880 6881 // Re-apply the cast we peeled off earlier 6882 if (CastOp.hasValue()) 6883 switch (*CastOp) { 6884 default: 6885 llvm_unreachable("Unknown SCEV cast type!"); 6886 6887 case scTruncate: 6888 TrueValue = TrueValue.trunc(BitWidth); 6889 FalseValue = FalseValue.trunc(BitWidth); 6890 break; 6891 case scZeroExtend: 6892 TrueValue = TrueValue.zext(BitWidth); 6893 FalseValue = FalseValue.zext(BitWidth); 6894 break; 6895 case scSignExtend: 6896 TrueValue = TrueValue.sext(BitWidth); 6897 FalseValue = FalseValue.sext(BitWidth); 6898 break; 6899 } 6900 6901 // Re-apply the constant offset we peeled off earlier 6902 TrueValue += Offset; 6903 FalseValue += Offset; 6904 } 6905 6906 bool isRecognized() { return Condition != nullptr; } 6907 }; 6908 6909 SelectPattern StartPattern(*this, BitWidth, Start); 6910 if (!StartPattern.isRecognized()) 6911 return ConstantRange::getFull(BitWidth); 6912 6913 SelectPattern StepPattern(*this, BitWidth, Step); 6914 if (!StepPattern.isRecognized()) 6915 return ConstantRange::getFull(BitWidth); 6916 6917 if (StartPattern.Condition != StepPattern.Condition) { 6918 // We don't handle this case today; but we could, by considering four 6919 // possibilities below instead of two. I'm not sure if there are cases where 6920 // that will help over what getRange already does, though. 6921 return ConstantRange::getFull(BitWidth); 6922 } 6923 6924 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6925 // construct arbitrary general SCEV expressions here. This function is called 6926 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6927 // say) can end up caching a suboptimal value. 6928 6929 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6930 // C2352 and C2512 (otherwise it isn't needed). 6931 6932 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6933 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6934 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6935 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6936 6937 ConstantRange TrueRange = 6938 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6939 ConstantRange FalseRange = 6940 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6941 6942 return TrueRange.unionWith(FalseRange); 6943 } 6944 6945 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6946 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6947 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6948 6949 // Return early if there are no flags to propagate to the SCEV. 6950 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6951 if (BinOp->hasNoUnsignedWrap()) 6952 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6953 if (BinOp->hasNoSignedWrap()) 6954 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6955 if (Flags == SCEV::FlagAnyWrap) 6956 return SCEV::FlagAnyWrap; 6957 6958 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6959 } 6960 6961 const Instruction * 6962 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6963 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6964 return &*AddRec->getLoop()->getHeader()->begin(); 6965 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6966 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6967 return I; 6968 return nullptr; 6969 } 6970 6971 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6972 /// \p Ops remains unmodified. 6973 static void collectUniqueOps(const SCEV *S, 6974 SmallVectorImpl<const SCEV *> &Ops) { 6975 SmallPtrSet<const SCEV *, 4> Unique; 6976 auto InsertUnique = [&](const SCEV *S) { 6977 if (Unique.insert(S).second) 6978 Ops.push_back(S); 6979 }; 6980 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6981 for (auto *Op : S2->operands()) 6982 InsertUnique(Op); 6983 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6984 for (auto *Op : S2->operands()) 6985 InsertUnique(Op); 6986 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6987 for (auto *Op : S2->operands()) 6988 InsertUnique(Op); 6989 } 6990 6991 const Instruction * 6992 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6993 bool &Precise) { 6994 Precise = true; 6995 // Do a bounded search of the def relation of the requested SCEVs. 6996 SmallSet<const SCEV *, 16> Visited; 6997 SmallVector<const SCEV *> Worklist; 6998 auto pushOp = [&](const SCEV *S) { 6999 if (!Visited.insert(S).second) 7000 return; 7001 // Threshold of 30 here is arbitrary. 7002 if (Visited.size() > 30) { 7003 Precise = false; 7004 return; 7005 } 7006 Worklist.push_back(S); 7007 }; 7008 7009 for (auto *S : Ops) 7010 pushOp(S); 7011 7012 const Instruction *Bound = nullptr; 7013 while (!Worklist.empty()) { 7014 auto *S = Worklist.pop_back_val(); 7015 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7016 if (!Bound || DT.dominates(Bound, DefI)) 7017 Bound = DefI; 7018 } else { 7019 SmallVector<const SCEV *, 4> Ops; 7020 collectUniqueOps(S, Ops); 7021 for (auto *Op : Ops) 7022 pushOp(Op); 7023 } 7024 } 7025 return Bound ? Bound : &*F.getEntryBlock().begin(); 7026 } 7027 7028 const Instruction * 7029 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7030 bool Discard; 7031 return getDefiningScopeBound(Ops, Discard); 7032 } 7033 7034 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7035 const Instruction *B) { 7036 if (A->getParent() == B->getParent() && 7037 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7038 B->getIterator())) 7039 return true; 7040 7041 auto *BLoop = LI.getLoopFor(B->getParent()); 7042 if (BLoop && BLoop->getHeader() == B->getParent() && 7043 BLoop->getLoopPreheader() == A->getParent() && 7044 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7045 A->getParent()->end()) && 7046 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7047 B->getIterator())) 7048 return true; 7049 return false; 7050 } 7051 7052 7053 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7054 // Only proceed if we can prove that I does not yield poison. 7055 if (!programUndefinedIfPoison(I)) 7056 return false; 7057 7058 // At this point we know that if I is executed, then it does not wrap 7059 // according to at least one of NSW or NUW. If I is not executed, then we do 7060 // not know if the calculation that I represents would wrap. Multiple 7061 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7062 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7063 // derived from other instructions that map to the same SCEV. We cannot make 7064 // that guarantee for cases where I is not executed. So we need to find a 7065 // upper bound on the defining scope for the SCEV, and prove that I is 7066 // executed every time we enter that scope. When the bounding scope is a 7067 // loop (the common case), this is equivalent to proving I executes on every 7068 // iteration of that loop. 7069 SmallVector<const SCEV *> SCEVOps; 7070 for (const Use &Op : I->operands()) { 7071 // I could be an extractvalue from a call to an overflow intrinsic. 7072 // TODO: We can do better here in some cases. 7073 if (isSCEVable(Op->getType())) 7074 SCEVOps.push_back(getSCEV(Op)); 7075 } 7076 auto *DefI = getDefiningScopeBound(SCEVOps); 7077 return isGuaranteedToTransferExecutionTo(DefI, I); 7078 } 7079 7080 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7081 // If we know that \c I can never be poison period, then that's enough. 7082 if (isSCEVExprNeverPoison(I)) 7083 return true; 7084 7085 // For an add recurrence specifically, we assume that infinite loops without 7086 // side effects are undefined behavior, and then reason as follows: 7087 // 7088 // If the add recurrence is poison in any iteration, it is poison on all 7089 // future iterations (since incrementing poison yields poison). If the result 7090 // of the add recurrence is fed into the loop latch condition and the loop 7091 // does not contain any throws or exiting blocks other than the latch, we now 7092 // have the ability to "choose" whether the backedge is taken or not (by 7093 // choosing a sufficiently evil value for the poison feeding into the branch) 7094 // for every iteration including and after the one in which \p I first became 7095 // poison. There are two possibilities (let's call the iteration in which \p 7096 // I first became poison as K): 7097 // 7098 // 1. In the set of iterations including and after K, the loop body executes 7099 // no side effects. In this case executing the backege an infinte number 7100 // of times will yield undefined behavior. 7101 // 7102 // 2. In the set of iterations including and after K, the loop body executes 7103 // at least one side effect. In this case, that specific instance of side 7104 // effect is control dependent on poison, which also yields undefined 7105 // behavior. 7106 7107 auto *ExitingBB = L->getExitingBlock(); 7108 auto *LatchBB = L->getLoopLatch(); 7109 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 7110 return false; 7111 7112 SmallPtrSet<const Instruction *, 16> Pushed; 7113 SmallVector<const Instruction *, 8> PoisonStack; 7114 7115 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7116 // things that are known to be poison under that assumption go on the 7117 // PoisonStack. 7118 Pushed.insert(I); 7119 PoisonStack.push_back(I); 7120 7121 bool LatchControlDependentOnPoison = false; 7122 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 7123 const Instruction *Poison = PoisonStack.pop_back_val(); 7124 7125 for (auto *PoisonUser : Poison->users()) { 7126 if (propagatesPoison(cast<Operator>(PoisonUser))) { 7127 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 7128 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 7129 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 7130 assert(BI->isConditional() && "Only possibility!"); 7131 if (BI->getParent() == LatchBB) { 7132 LatchControlDependentOnPoison = true; 7133 break; 7134 } 7135 } 7136 } 7137 } 7138 7139 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 7140 } 7141 7142 ScalarEvolution::LoopProperties 7143 ScalarEvolution::getLoopProperties(const Loop *L) { 7144 using LoopProperties = ScalarEvolution::LoopProperties; 7145 7146 auto Itr = LoopPropertiesCache.find(L); 7147 if (Itr == LoopPropertiesCache.end()) { 7148 auto HasSideEffects = [](Instruction *I) { 7149 if (auto *SI = dyn_cast<StoreInst>(I)) 7150 return !SI->isSimple(); 7151 7152 return I->mayThrow() || I->mayWriteToMemory(); 7153 }; 7154 7155 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7156 /*HasNoSideEffects*/ true}; 7157 7158 for (auto *BB : L->getBlocks()) 7159 for (auto &I : *BB) { 7160 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7161 LP.HasNoAbnormalExits = false; 7162 if (HasSideEffects(&I)) 7163 LP.HasNoSideEffects = false; 7164 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7165 break; // We're already as pessimistic as we can get. 7166 } 7167 7168 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7169 assert(InsertPair.second && "We just checked!"); 7170 Itr = InsertPair.first; 7171 } 7172 7173 return Itr->second; 7174 } 7175 7176 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7177 // A mustprogress loop without side effects must be finite. 7178 // TODO: The check used here is very conservative. It's only *specific* 7179 // side effects which are well defined in infinite loops. 7180 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7181 } 7182 7183 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7184 if (!isSCEVable(V->getType())) 7185 return getUnknown(V); 7186 7187 if (Instruction *I = dyn_cast<Instruction>(V)) { 7188 // Don't attempt to analyze instructions in blocks that aren't 7189 // reachable. Such instructions don't matter, and they aren't required 7190 // to obey basic rules for definitions dominating uses which this 7191 // analysis depends on. 7192 if (!DT.isReachableFromEntry(I->getParent())) 7193 return getUnknown(UndefValue::get(V->getType())); 7194 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7195 return getConstant(CI); 7196 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 7197 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 7198 else if (!isa<ConstantExpr>(V)) 7199 return getUnknown(V); 7200 7201 Operator *U = cast<Operator>(V); 7202 if (auto BO = MatchBinaryOp(U, DT)) { 7203 switch (BO->Opcode) { 7204 case Instruction::Add: { 7205 // The simple thing to do would be to just call getSCEV on both operands 7206 // and call getAddExpr with the result. However if we're looking at a 7207 // bunch of things all added together, this can be quite inefficient, 7208 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7209 // Instead, gather up all the operands and make a single getAddExpr call. 7210 // LLVM IR canonical form means we need only traverse the left operands. 7211 SmallVector<const SCEV *, 4> AddOps; 7212 do { 7213 if (BO->Op) { 7214 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7215 AddOps.push_back(OpSCEV); 7216 break; 7217 } 7218 7219 // If a NUW or NSW flag can be applied to the SCEV for this 7220 // addition, then compute the SCEV for this addition by itself 7221 // with a separate call to getAddExpr. We need to do that 7222 // instead of pushing the operands of the addition onto AddOps, 7223 // since the flags are only known to apply to this particular 7224 // addition - they may not apply to other additions that can be 7225 // formed with operands from AddOps. 7226 const SCEV *RHS = getSCEV(BO->RHS); 7227 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7228 if (Flags != SCEV::FlagAnyWrap) { 7229 const SCEV *LHS = getSCEV(BO->LHS); 7230 if (BO->Opcode == Instruction::Sub) 7231 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7232 else 7233 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7234 break; 7235 } 7236 } 7237 7238 if (BO->Opcode == Instruction::Sub) 7239 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7240 else 7241 AddOps.push_back(getSCEV(BO->RHS)); 7242 7243 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7244 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7245 NewBO->Opcode != Instruction::Sub)) { 7246 AddOps.push_back(getSCEV(BO->LHS)); 7247 break; 7248 } 7249 BO = NewBO; 7250 } while (true); 7251 7252 return getAddExpr(AddOps); 7253 } 7254 7255 case Instruction::Mul: { 7256 SmallVector<const SCEV *, 4> MulOps; 7257 do { 7258 if (BO->Op) { 7259 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7260 MulOps.push_back(OpSCEV); 7261 break; 7262 } 7263 7264 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7265 if (Flags != SCEV::FlagAnyWrap) { 7266 MulOps.push_back( 7267 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 7268 break; 7269 } 7270 } 7271 7272 MulOps.push_back(getSCEV(BO->RHS)); 7273 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7274 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7275 MulOps.push_back(getSCEV(BO->LHS)); 7276 break; 7277 } 7278 BO = NewBO; 7279 } while (true); 7280 7281 return getMulExpr(MulOps); 7282 } 7283 case Instruction::UDiv: 7284 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7285 case Instruction::URem: 7286 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7287 case Instruction::Sub: { 7288 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7289 if (BO->Op) 7290 Flags = getNoWrapFlagsFromUB(BO->Op); 7291 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 7292 } 7293 case Instruction::And: 7294 // For an expression like x&255 that merely masks off the high bits, 7295 // use zext(trunc(x)) as the SCEV expression. 7296 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7297 if (CI->isZero()) 7298 return getSCEV(BO->RHS); 7299 if (CI->isMinusOne()) 7300 return getSCEV(BO->LHS); 7301 const APInt &A = CI->getValue(); 7302 7303 // Instcombine's ShrinkDemandedConstant may strip bits out of 7304 // constants, obscuring what would otherwise be a low-bits mask. 7305 // Use computeKnownBits to compute what ShrinkDemandedConstant 7306 // knew about to reconstruct a low-bits mask value. 7307 unsigned LZ = A.countLeadingZeros(); 7308 unsigned TZ = A.countTrailingZeros(); 7309 unsigned BitWidth = A.getBitWidth(); 7310 KnownBits Known(BitWidth); 7311 computeKnownBits(BO->LHS, Known, getDataLayout(), 7312 0, &AC, nullptr, &DT); 7313 7314 APInt EffectiveMask = 7315 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7316 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7317 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7318 const SCEV *LHS = getSCEV(BO->LHS); 7319 const SCEV *ShiftedLHS = nullptr; 7320 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7321 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7322 // For an expression like (x * 8) & 8, simplify the multiply. 7323 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7324 unsigned GCD = std::min(MulZeros, TZ); 7325 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7326 SmallVector<const SCEV*, 4> MulOps; 7327 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7328 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 7329 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7330 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7331 } 7332 } 7333 if (!ShiftedLHS) 7334 ShiftedLHS = getUDivExpr(LHS, MulCount); 7335 return getMulExpr( 7336 getZeroExtendExpr( 7337 getTruncateExpr(ShiftedLHS, 7338 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7339 BO->LHS->getType()), 7340 MulCount); 7341 } 7342 } 7343 // Binary `and` is a bit-wise `umin`. 7344 if (BO->LHS->getType()->isIntegerTy(1)) 7345 return getUMinExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7346 break; 7347 7348 case Instruction::Or: 7349 // If the RHS of the Or is a constant, we may have something like: 7350 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 7351 // optimizations will transparently handle this case. 7352 // 7353 // In order for this transformation to be safe, the LHS must be of the 7354 // form X*(2^n) and the Or constant must be less than 2^n. 7355 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7356 const SCEV *LHS = getSCEV(BO->LHS); 7357 const APInt &CIVal = CI->getValue(); 7358 if (GetMinTrailingZeros(LHS) >= 7359 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 7360 // Build a plain add SCEV. 7361 return getAddExpr(LHS, getSCEV(CI), 7362 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 7363 } 7364 } 7365 // Binary `or` is a bit-wise `umax`. 7366 if (BO->LHS->getType()->isIntegerTy(1)) 7367 return getUMaxExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7368 break; 7369 7370 case Instruction::Xor: 7371 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7372 // If the RHS of xor is -1, then this is a not operation. 7373 if (CI->isMinusOne()) 7374 return getNotSCEV(getSCEV(BO->LHS)); 7375 7376 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7377 // This is a variant of the check for xor with -1, and it handles 7378 // the case where instcombine has trimmed non-demanded bits out 7379 // of an xor with -1. 7380 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7381 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7382 if (LBO->getOpcode() == Instruction::And && 7383 LCI->getValue() == CI->getValue()) 7384 if (const SCEVZeroExtendExpr *Z = 7385 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7386 Type *UTy = BO->LHS->getType(); 7387 const SCEV *Z0 = Z->getOperand(); 7388 Type *Z0Ty = Z0->getType(); 7389 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7390 7391 // If C is a low-bits mask, the zero extend is serving to 7392 // mask off the high bits. Complement the operand and 7393 // re-apply the zext. 7394 if (CI->getValue().isMask(Z0TySize)) 7395 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7396 7397 // If C is a single bit, it may be in the sign-bit position 7398 // before the zero-extend. In this case, represent the xor 7399 // using an add, which is equivalent, and re-apply the zext. 7400 APInt Trunc = CI->getValue().trunc(Z0TySize); 7401 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7402 Trunc.isSignMask()) 7403 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7404 UTy); 7405 } 7406 } 7407 break; 7408 7409 case Instruction::Shl: 7410 // Turn shift left of a constant amount into a multiply. 7411 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7412 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7413 7414 // If the shift count is not less than the bitwidth, the result of 7415 // the shift is undefined. Don't try to analyze it, because the 7416 // resolution chosen here may differ from the resolution chosen in 7417 // other parts of the compiler. 7418 if (SA->getValue().uge(BitWidth)) 7419 break; 7420 7421 // We can safely preserve the nuw flag in all cases. It's also safe to 7422 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7423 // requires special handling. It can be preserved as long as we're not 7424 // left shifting by bitwidth - 1. 7425 auto Flags = SCEV::FlagAnyWrap; 7426 if (BO->Op) { 7427 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7428 if ((MulFlags & SCEV::FlagNSW) && 7429 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7430 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7431 if (MulFlags & SCEV::FlagNUW) 7432 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7433 } 7434 7435 Constant *X = ConstantInt::get( 7436 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7437 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 7438 } 7439 break; 7440 7441 case Instruction::AShr: { 7442 // AShr X, C, where C is a constant. 7443 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7444 if (!CI) 7445 break; 7446 7447 Type *OuterTy = BO->LHS->getType(); 7448 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7449 // If the shift count is not less than the bitwidth, the result of 7450 // the shift is undefined. Don't try to analyze it, because the 7451 // resolution chosen here may differ from the resolution chosen in 7452 // other parts of the compiler. 7453 if (CI->getValue().uge(BitWidth)) 7454 break; 7455 7456 if (CI->isZero()) 7457 return getSCEV(BO->LHS); // shift by zero --> noop 7458 7459 uint64_t AShrAmt = CI->getZExtValue(); 7460 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7461 7462 Operator *L = dyn_cast<Operator>(BO->LHS); 7463 if (L && L->getOpcode() == Instruction::Shl) { 7464 // X = Shl A, n 7465 // Y = AShr X, m 7466 // Both n and m are constant. 7467 7468 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7469 if (L->getOperand(1) == BO->RHS) 7470 // For a two-shift sext-inreg, i.e. n = m, 7471 // use sext(trunc(x)) as the SCEV expression. 7472 return getSignExtendExpr( 7473 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7474 7475 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7476 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7477 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7478 if (ShlAmt > AShrAmt) { 7479 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7480 // expression. We already checked that ShlAmt < BitWidth, so 7481 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7482 // ShlAmt - AShrAmt < Amt. 7483 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7484 ShlAmt - AShrAmt); 7485 return getSignExtendExpr( 7486 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7487 getConstant(Mul)), OuterTy); 7488 } 7489 } 7490 } 7491 break; 7492 } 7493 } 7494 } 7495 7496 switch (U->getOpcode()) { 7497 case Instruction::Trunc: 7498 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7499 7500 case Instruction::ZExt: 7501 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7502 7503 case Instruction::SExt: 7504 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7505 // The NSW flag of a subtract does not always survive the conversion to 7506 // A + (-1)*B. By pushing sign extension onto its operands we are much 7507 // more likely to preserve NSW and allow later AddRec optimisations. 7508 // 7509 // NOTE: This is effectively duplicating this logic from getSignExtend: 7510 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7511 // but by that point the NSW information has potentially been lost. 7512 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7513 Type *Ty = U->getType(); 7514 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7515 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7516 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7517 } 7518 } 7519 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7520 7521 case Instruction::BitCast: 7522 // BitCasts are no-op casts so we just eliminate the cast. 7523 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7524 return getSCEV(U->getOperand(0)); 7525 break; 7526 7527 case Instruction::PtrToInt: { 7528 // Pointer to integer cast is straight-forward, so do model it. 7529 const SCEV *Op = getSCEV(U->getOperand(0)); 7530 Type *DstIntTy = U->getType(); 7531 // But only if effective SCEV (integer) type is wide enough to represent 7532 // all possible pointer values. 7533 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7534 if (isa<SCEVCouldNotCompute>(IntOp)) 7535 return getUnknown(V); 7536 return IntOp; 7537 } 7538 case Instruction::IntToPtr: 7539 // Just don't deal with inttoptr casts. 7540 return getUnknown(V); 7541 7542 case Instruction::SDiv: 7543 // If both operands are non-negative, this is just an udiv. 7544 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7545 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7546 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7547 break; 7548 7549 case Instruction::SRem: 7550 // If both operands are non-negative, this is just an urem. 7551 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7552 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7553 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7554 break; 7555 7556 case Instruction::GetElementPtr: 7557 return createNodeForGEP(cast<GEPOperator>(U)); 7558 7559 case Instruction::PHI: 7560 return createNodeForPHI(cast<PHINode>(U)); 7561 7562 case Instruction::Select: 7563 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 7564 U->getOperand(2)); 7565 7566 case Instruction::Call: 7567 case Instruction::Invoke: 7568 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7569 return getSCEV(RV); 7570 7571 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7572 switch (II->getIntrinsicID()) { 7573 case Intrinsic::abs: 7574 return getAbsExpr( 7575 getSCEV(II->getArgOperand(0)), 7576 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7577 case Intrinsic::umax: 7578 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7579 getSCEV(II->getArgOperand(1))); 7580 case Intrinsic::umin: 7581 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7582 getSCEV(II->getArgOperand(1))); 7583 case Intrinsic::smax: 7584 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7585 getSCEV(II->getArgOperand(1))); 7586 case Intrinsic::smin: 7587 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7588 getSCEV(II->getArgOperand(1))); 7589 case Intrinsic::usub_sat: { 7590 const SCEV *X = getSCEV(II->getArgOperand(0)); 7591 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7592 const SCEV *ClampedY = getUMinExpr(X, Y); 7593 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7594 } 7595 case Intrinsic::uadd_sat: { 7596 const SCEV *X = getSCEV(II->getArgOperand(0)); 7597 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7598 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7599 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7600 } 7601 case Intrinsic::start_loop_iterations: 7602 // A start_loop_iterations is just equivalent to the first operand for 7603 // SCEV purposes. 7604 return getSCEV(II->getArgOperand(0)); 7605 default: 7606 break; 7607 } 7608 } 7609 break; 7610 } 7611 7612 return getUnknown(V); 7613 } 7614 7615 //===----------------------------------------------------------------------===// 7616 // Iteration Count Computation Code 7617 // 7618 7619 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7620 bool Extend) { 7621 if (isa<SCEVCouldNotCompute>(ExitCount)) 7622 return getCouldNotCompute(); 7623 7624 auto *ExitCountType = ExitCount->getType(); 7625 assert(ExitCountType->isIntegerTy()); 7626 7627 if (!Extend) 7628 return getAddExpr(ExitCount, getOne(ExitCountType)); 7629 7630 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7631 1 + ExitCountType->getScalarSizeInBits()); 7632 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7633 getOne(WiderType)); 7634 } 7635 7636 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7637 if (!ExitCount) 7638 return 0; 7639 7640 ConstantInt *ExitConst = ExitCount->getValue(); 7641 7642 // Guard against huge trip counts. 7643 if (ExitConst->getValue().getActiveBits() > 32) 7644 return 0; 7645 7646 // In case of integer overflow, this returns 0, which is correct. 7647 return ((unsigned)ExitConst->getZExtValue()) + 1; 7648 } 7649 7650 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7651 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7652 return getConstantTripCount(ExitCount); 7653 } 7654 7655 unsigned 7656 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7657 const BasicBlock *ExitingBlock) { 7658 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7659 assert(L->isLoopExiting(ExitingBlock) && 7660 "Exiting block must actually branch out of the loop!"); 7661 const SCEVConstant *ExitCount = 7662 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7663 return getConstantTripCount(ExitCount); 7664 } 7665 7666 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7667 const auto *MaxExitCount = 7668 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7669 return getConstantTripCount(MaxExitCount); 7670 } 7671 7672 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7673 // We can't infer from Array in Irregular Loop. 7674 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7675 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7676 return getCouldNotCompute(); 7677 7678 // FIXME: To make the scene more typical, we only analysis loops that have 7679 // one exiting block and that block must be the latch. To make it easier to 7680 // capture loops that have memory access and memory access will be executed 7681 // in each iteration. 7682 const BasicBlock *LoopLatch = L->getLoopLatch(); 7683 assert(LoopLatch && "See defination of simplify form loop."); 7684 if (L->getExitingBlock() != LoopLatch) 7685 return getCouldNotCompute(); 7686 7687 const DataLayout &DL = getDataLayout(); 7688 SmallVector<const SCEV *> InferCountColl; 7689 for (auto *BB : L->getBlocks()) { 7690 // Go here, we can know that Loop is a single exiting and simplified form 7691 // loop. Make sure that infer from Memory Operation in those BBs must be 7692 // executed in loop. First step, we can make sure that max execution time 7693 // of MemAccessBB in loop represents latch max excution time. 7694 // If MemAccessBB does not dom Latch, skip. 7695 // Entry 7696 // │ 7697 // ┌─────▼─────┐ 7698 // │Loop Header◄─────┐ 7699 // └──┬──────┬─┘ │ 7700 // │ │ │ 7701 // ┌────────▼──┐ ┌─▼─────┐ │ 7702 // │MemAccessBB│ │OtherBB│ │ 7703 // └────────┬──┘ └─┬─────┘ │ 7704 // │ │ │ 7705 // ┌─▼──────▼─┐ │ 7706 // │Loop Latch├─────┘ 7707 // └────┬─────┘ 7708 // ▼ 7709 // Exit 7710 if (!DT.dominates(BB, LoopLatch)) 7711 continue; 7712 7713 for (Instruction &Inst : *BB) { 7714 // Find Memory Operation Instruction. 7715 auto *GEP = getLoadStorePointerOperand(&Inst); 7716 if (!GEP) 7717 continue; 7718 7719 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7720 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7721 if (!ElemSize) 7722 continue; 7723 7724 // Use a existing polynomial recurrence on the trip count. 7725 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7726 if (!AddRec) 7727 continue; 7728 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7729 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7730 if (!ArrBase || !Step) 7731 continue; 7732 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7733 7734 // Only handle { %array + step }, 7735 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7736 if (AddRec->getStart() != ArrBase) 7737 continue; 7738 7739 // Memory operation pattern which have gaps. 7740 // Or repeat memory opreation. 7741 // And index of GEP wraps arround. 7742 if (Step->getAPInt().getActiveBits() > 32 || 7743 Step->getAPInt().getZExtValue() != 7744 ElemSize->getAPInt().getZExtValue() || 7745 Step->isZero() || Step->getAPInt().isNegative()) 7746 continue; 7747 7748 // Only infer from stack array which has certain size. 7749 // Make sure alloca instruction is not excuted in loop. 7750 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7751 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7752 continue; 7753 7754 // Make sure only handle normal array. 7755 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7756 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7757 if (!Ty || !ArrSize || !ArrSize->isOne()) 7758 continue; 7759 7760 // FIXME: Since gep indices are silently zext to the indexing type, 7761 // we will have a narrow gep index which wraps around rather than 7762 // increasing strictly, we shoule ensure that step is increasing 7763 // strictly by the loop iteration. 7764 // Now we can infer a max execution time by MemLength/StepLength. 7765 const SCEV *MemSize = 7766 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7767 auto *MaxExeCount = 7768 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7769 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7770 continue; 7771 7772 // If the loop reaches the maximum number of executions, we can not 7773 // access bytes starting outside the statically allocated size without 7774 // being immediate UB. But it is allowed to enter loop header one more 7775 // time. 7776 auto *InferCount = dyn_cast<SCEVConstant>( 7777 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7778 // Discard the maximum number of execution times under 32bits. 7779 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7780 continue; 7781 7782 InferCountColl.push_back(InferCount); 7783 } 7784 } 7785 7786 if (InferCountColl.size() == 0) 7787 return getCouldNotCompute(); 7788 7789 return getUMinFromMismatchedTypes(InferCountColl); 7790 } 7791 7792 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7793 SmallVector<BasicBlock *, 8> ExitingBlocks; 7794 L->getExitingBlocks(ExitingBlocks); 7795 7796 Optional<unsigned> Res = None; 7797 for (auto *ExitingBB : ExitingBlocks) { 7798 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7799 if (!Res) 7800 Res = Multiple; 7801 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7802 } 7803 return Res.getValueOr(1); 7804 } 7805 7806 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7807 const SCEV *ExitCount) { 7808 if (ExitCount == getCouldNotCompute()) 7809 return 1; 7810 7811 // Get the trip count 7812 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7813 7814 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7815 if (!TC) 7816 // Attempt to factor more general cases. Returns the greatest power of 7817 // two divisor. If overflow happens, the trip count expression is still 7818 // divisible by the greatest power of 2 divisor returned. 7819 return 1U << std::min((uint32_t)31, 7820 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7821 7822 ConstantInt *Result = TC->getValue(); 7823 7824 // Guard against huge trip counts (this requires checking 7825 // for zero to handle the case where the trip count == -1 and the 7826 // addition wraps). 7827 if (!Result || Result->getValue().getActiveBits() > 32 || 7828 Result->getValue().getActiveBits() == 0) 7829 return 1; 7830 7831 return (unsigned)Result->getZExtValue(); 7832 } 7833 7834 /// Returns the largest constant divisor of the trip count of this loop as a 7835 /// normal unsigned value, if possible. This means that the actual trip count is 7836 /// always a multiple of the returned value (don't forget the trip count could 7837 /// very well be zero as well!). 7838 /// 7839 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7840 /// multiple of a constant (which is also the case if the trip count is simply 7841 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7842 /// if the trip count is very large (>= 2^32). 7843 /// 7844 /// As explained in the comments for getSmallConstantTripCount, this assumes 7845 /// that control exits the loop via ExitingBlock. 7846 unsigned 7847 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7848 const BasicBlock *ExitingBlock) { 7849 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7850 assert(L->isLoopExiting(ExitingBlock) && 7851 "Exiting block must actually branch out of the loop!"); 7852 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7853 return getSmallConstantTripMultiple(L, ExitCount); 7854 } 7855 7856 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7857 const BasicBlock *ExitingBlock, 7858 ExitCountKind Kind) { 7859 switch (Kind) { 7860 case Exact: 7861 case SymbolicMaximum: 7862 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7863 case ConstantMaximum: 7864 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7865 }; 7866 llvm_unreachable("Invalid ExitCountKind!"); 7867 } 7868 7869 const SCEV * 7870 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7871 SmallVector<const SCEVPredicate *, 4> &Preds) { 7872 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7873 } 7874 7875 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7876 ExitCountKind Kind) { 7877 switch (Kind) { 7878 case Exact: 7879 return getBackedgeTakenInfo(L).getExact(L, this); 7880 case ConstantMaximum: 7881 return getBackedgeTakenInfo(L).getConstantMax(this); 7882 case SymbolicMaximum: 7883 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7884 }; 7885 llvm_unreachable("Invalid ExitCountKind!"); 7886 } 7887 7888 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7889 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7890 } 7891 7892 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7893 static void PushLoopPHIs(const Loop *L, 7894 SmallVectorImpl<Instruction *> &Worklist, 7895 SmallPtrSetImpl<Instruction *> &Visited) { 7896 BasicBlock *Header = L->getHeader(); 7897 7898 // Push all Loop-header PHIs onto the Worklist stack. 7899 for (PHINode &PN : Header->phis()) 7900 if (Visited.insert(&PN).second) 7901 Worklist.push_back(&PN); 7902 } 7903 7904 const ScalarEvolution::BackedgeTakenInfo & 7905 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7906 auto &BTI = getBackedgeTakenInfo(L); 7907 if (BTI.hasFullInfo()) 7908 return BTI; 7909 7910 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7911 7912 if (!Pair.second) 7913 return Pair.first->second; 7914 7915 BackedgeTakenInfo Result = 7916 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7917 7918 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7919 } 7920 7921 ScalarEvolution::BackedgeTakenInfo & 7922 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7923 // Initially insert an invalid entry for this loop. If the insertion 7924 // succeeds, proceed to actually compute a backedge-taken count and 7925 // update the value. The temporary CouldNotCompute value tells SCEV 7926 // code elsewhere that it shouldn't attempt to request a new 7927 // backedge-taken count, which could result in infinite recursion. 7928 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7929 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7930 if (!Pair.second) 7931 return Pair.first->second; 7932 7933 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7934 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7935 // must be cleared in this scope. 7936 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7937 7938 // In product build, there are no usage of statistic. 7939 (void)NumTripCountsComputed; 7940 (void)NumTripCountsNotComputed; 7941 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7942 const SCEV *BEExact = Result.getExact(L, this); 7943 if (BEExact != getCouldNotCompute()) { 7944 assert(isLoopInvariant(BEExact, L) && 7945 isLoopInvariant(Result.getConstantMax(this), L) && 7946 "Computed backedge-taken count isn't loop invariant for loop!"); 7947 ++NumTripCountsComputed; 7948 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7949 isa<PHINode>(L->getHeader()->begin())) { 7950 // Only count loops that have phi nodes as not being computable. 7951 ++NumTripCountsNotComputed; 7952 } 7953 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7954 7955 // Now that we know more about the trip count for this loop, forget any 7956 // existing SCEV values for PHI nodes in this loop since they are only 7957 // conservative estimates made without the benefit of trip count 7958 // information. This invalidation is not necessary for correctness, and is 7959 // only done to produce more precise results. 7960 if (Result.hasAnyInfo()) { 7961 // Invalidate any expression using an addrec in this loop. 7962 SmallVector<const SCEV *, 8> ToForget; 7963 auto LoopUsersIt = LoopUsers.find(L); 7964 if (LoopUsersIt != LoopUsers.end()) 7965 append_range(ToForget, LoopUsersIt->second); 7966 forgetMemoizedResults(ToForget); 7967 7968 // Invalidate constant-evolved loop header phis. 7969 for (PHINode &PN : L->getHeader()->phis()) 7970 ConstantEvolutionLoopExitValue.erase(&PN); 7971 } 7972 7973 // Re-lookup the insert position, since the call to 7974 // computeBackedgeTakenCount above could result in a 7975 // recusive call to getBackedgeTakenInfo (on a different 7976 // loop), which would invalidate the iterator computed 7977 // earlier. 7978 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7979 } 7980 7981 void ScalarEvolution::forgetAllLoops() { 7982 // This method is intended to forget all info about loops. It should 7983 // invalidate caches as if the following happened: 7984 // - The trip counts of all loops have changed arbitrarily 7985 // - Every llvm::Value has been updated in place to produce a different 7986 // result. 7987 BackedgeTakenCounts.clear(); 7988 PredicatedBackedgeTakenCounts.clear(); 7989 BECountUsers.clear(); 7990 LoopPropertiesCache.clear(); 7991 ConstantEvolutionLoopExitValue.clear(); 7992 ValueExprMap.clear(); 7993 ValuesAtScopes.clear(); 7994 ValuesAtScopesUsers.clear(); 7995 LoopDispositions.clear(); 7996 BlockDispositions.clear(); 7997 UnsignedRanges.clear(); 7998 SignedRanges.clear(); 7999 ExprValueMap.clear(); 8000 HasRecMap.clear(); 8001 MinTrailingZerosCache.clear(); 8002 PredicatedSCEVRewrites.clear(); 8003 } 8004 8005 void ScalarEvolution::forgetLoop(const Loop *L) { 8006 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8007 SmallVector<Instruction *, 32> Worklist; 8008 SmallPtrSet<Instruction *, 16> Visited; 8009 SmallVector<const SCEV *, 16> ToForget; 8010 8011 // Iterate over all the loops and sub-loops to drop SCEV information. 8012 while (!LoopWorklist.empty()) { 8013 auto *CurrL = LoopWorklist.pop_back_val(); 8014 8015 // Drop any stored trip count value. 8016 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8017 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8018 8019 // Drop information about predicated SCEV rewrites for this loop. 8020 for (auto I = PredicatedSCEVRewrites.begin(); 8021 I != PredicatedSCEVRewrites.end();) { 8022 std::pair<const SCEV *, const Loop *> Entry = I->first; 8023 if (Entry.second == CurrL) 8024 PredicatedSCEVRewrites.erase(I++); 8025 else 8026 ++I; 8027 } 8028 8029 auto LoopUsersItr = LoopUsers.find(CurrL); 8030 if (LoopUsersItr != LoopUsers.end()) { 8031 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8032 LoopUsersItr->second.end()); 8033 } 8034 8035 // Drop information about expressions based on loop-header PHIs. 8036 PushLoopPHIs(CurrL, Worklist, Visited); 8037 8038 while (!Worklist.empty()) { 8039 Instruction *I = Worklist.pop_back_val(); 8040 8041 ValueExprMapType::iterator It = 8042 ValueExprMap.find_as(static_cast<Value *>(I)); 8043 if (It != ValueExprMap.end()) { 8044 eraseValueFromMap(It->first); 8045 ToForget.push_back(It->second); 8046 if (PHINode *PN = dyn_cast<PHINode>(I)) 8047 ConstantEvolutionLoopExitValue.erase(PN); 8048 } 8049 8050 PushDefUseChildren(I, Worklist, Visited); 8051 } 8052 8053 LoopPropertiesCache.erase(CurrL); 8054 // Forget all contained loops too, to avoid dangling entries in the 8055 // ValuesAtScopes map. 8056 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8057 } 8058 forgetMemoizedResults(ToForget); 8059 } 8060 8061 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8062 while (Loop *Parent = L->getParentLoop()) 8063 L = Parent; 8064 forgetLoop(L); 8065 } 8066 8067 void ScalarEvolution::forgetValue(Value *V) { 8068 Instruction *I = dyn_cast<Instruction>(V); 8069 if (!I) return; 8070 8071 // Drop information about expressions based on loop-header PHIs. 8072 SmallVector<Instruction *, 16> Worklist; 8073 SmallPtrSet<Instruction *, 8> Visited; 8074 SmallVector<const SCEV *, 8> ToForget; 8075 Worklist.push_back(I); 8076 Visited.insert(I); 8077 8078 while (!Worklist.empty()) { 8079 I = Worklist.pop_back_val(); 8080 ValueExprMapType::iterator It = 8081 ValueExprMap.find_as(static_cast<Value *>(I)); 8082 if (It != ValueExprMap.end()) { 8083 eraseValueFromMap(It->first); 8084 ToForget.push_back(It->second); 8085 if (PHINode *PN = dyn_cast<PHINode>(I)) 8086 ConstantEvolutionLoopExitValue.erase(PN); 8087 } 8088 8089 PushDefUseChildren(I, Worklist, Visited); 8090 } 8091 forgetMemoizedResults(ToForget); 8092 } 8093 8094 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 8095 LoopDispositions.clear(); 8096 } 8097 8098 /// Get the exact loop backedge taken count considering all loop exits. A 8099 /// computable result can only be returned for loops with all exiting blocks 8100 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8101 /// is never skipped. This is a valid assumption as long as the loop exits via 8102 /// that test. For precise results, it is the caller's responsibility to specify 8103 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8104 const SCEV * 8105 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8106 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8107 // If any exits were not computable, the loop is not computable. 8108 if (!isComplete() || ExitNotTaken.empty()) 8109 return SE->getCouldNotCompute(); 8110 8111 const BasicBlock *Latch = L->getLoopLatch(); 8112 // All exiting blocks we have collected must dominate the only backedge. 8113 if (!Latch) 8114 return SE->getCouldNotCompute(); 8115 8116 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8117 // count is simply a minimum out of all these calculated exit counts. 8118 SmallVector<const SCEV *, 2> Ops; 8119 for (auto &ENT : ExitNotTaken) { 8120 const SCEV *BECount = ENT.ExactNotTaken; 8121 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8122 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8123 "We should only have known counts for exiting blocks that dominate " 8124 "latch!"); 8125 8126 Ops.push_back(BECount); 8127 8128 if (Preds) 8129 for (auto *P : ENT.Predicates) 8130 Preds->push_back(P); 8131 8132 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8133 "Predicate should be always true!"); 8134 } 8135 8136 return SE->getUMinFromMismatchedTypes(Ops); 8137 } 8138 8139 /// Get the exact not taken count for this loop exit. 8140 const SCEV * 8141 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8142 ScalarEvolution *SE) const { 8143 for (auto &ENT : ExitNotTaken) 8144 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8145 return ENT.ExactNotTaken; 8146 8147 return SE->getCouldNotCompute(); 8148 } 8149 8150 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8151 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8152 for (auto &ENT : ExitNotTaken) 8153 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8154 return ENT.MaxNotTaken; 8155 8156 return SE->getCouldNotCompute(); 8157 } 8158 8159 /// getConstantMax - Get the constant max backedge taken count for the loop. 8160 const SCEV * 8161 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8162 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8163 return !ENT.hasAlwaysTruePredicate(); 8164 }; 8165 8166 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8167 return SE->getCouldNotCompute(); 8168 8169 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8170 isa<SCEVConstant>(getConstantMax())) && 8171 "No point in having a non-constant max backedge taken count!"); 8172 return getConstantMax(); 8173 } 8174 8175 const SCEV * 8176 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8177 ScalarEvolution *SE) { 8178 if (!SymbolicMax) 8179 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8180 return SymbolicMax; 8181 } 8182 8183 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8184 ScalarEvolution *SE) const { 8185 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8186 return !ENT.hasAlwaysTruePredicate(); 8187 }; 8188 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8189 } 8190 8191 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8192 : ExitLimit(E, E, false, None) { 8193 } 8194 8195 ScalarEvolution::ExitLimit::ExitLimit( 8196 const SCEV *E, const SCEV *M, bool MaxOrZero, 8197 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8198 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 8199 // If we prove the max count is zero, so is the symbolic bound. This happens 8200 // in practice due to differences in a) how context sensitive we've chosen 8201 // to be and b) how we reason about bounds impied by UB. 8202 if (MaxNotTaken->isZero()) 8203 ExactNotTaken = MaxNotTaken; 8204 8205 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8206 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 8207 "Exact is not allowed to be less precise than Max"); 8208 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 8209 isa<SCEVConstant>(MaxNotTaken)) && 8210 "No point in having a non-constant max backedge taken count!"); 8211 for (auto *PredSet : PredSetList) 8212 for (auto *P : *PredSet) 8213 addPredicate(P); 8214 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8215 "Backedge count should be int"); 8216 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 8217 "Max backedge count should be int"); 8218 } 8219 8220 ScalarEvolution::ExitLimit::ExitLimit( 8221 const SCEV *E, const SCEV *M, bool MaxOrZero, 8222 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8223 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 8224 } 8225 8226 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 8227 bool MaxOrZero) 8228 : ExitLimit(E, M, MaxOrZero, None) { 8229 } 8230 8231 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8232 /// computable exit into a persistent ExitNotTakenInfo array. 8233 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8234 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8235 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8236 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8237 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8238 8239 ExitNotTaken.reserve(ExitCounts.size()); 8240 std::transform( 8241 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 8242 [&](const EdgeExitInfo &EEI) { 8243 BasicBlock *ExitBB = EEI.first; 8244 const ExitLimit &EL = EEI.second; 8245 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 8246 EL.Predicates); 8247 }); 8248 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8249 isa<SCEVConstant>(ConstantMax)) && 8250 "No point in having a non-constant max backedge taken count!"); 8251 } 8252 8253 /// Compute the number of times the backedge of the specified loop will execute. 8254 ScalarEvolution::BackedgeTakenInfo 8255 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8256 bool AllowPredicates) { 8257 SmallVector<BasicBlock *, 8> ExitingBlocks; 8258 L->getExitingBlocks(ExitingBlocks); 8259 8260 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8261 8262 SmallVector<EdgeExitInfo, 4> ExitCounts; 8263 bool CouldComputeBECount = true; 8264 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8265 const SCEV *MustExitMaxBECount = nullptr; 8266 const SCEV *MayExitMaxBECount = nullptr; 8267 bool MustExitMaxOrZero = false; 8268 8269 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8270 // and compute maxBECount. 8271 // Do a union of all the predicates here. 8272 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8273 BasicBlock *ExitBB = ExitingBlocks[i]; 8274 8275 // We canonicalize untaken exits to br (constant), ignore them so that 8276 // proving an exit untaken doesn't negatively impact our ability to reason 8277 // about the loop as whole. 8278 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8279 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8280 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8281 if (ExitIfTrue == CI->isZero()) 8282 continue; 8283 } 8284 8285 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8286 8287 assert((AllowPredicates || EL.Predicates.empty()) && 8288 "Predicated exit limit when predicates are not allowed!"); 8289 8290 // 1. For each exit that can be computed, add an entry to ExitCounts. 8291 // CouldComputeBECount is true only if all exits can be computed. 8292 if (EL.ExactNotTaken == getCouldNotCompute()) 8293 // We couldn't compute an exact value for this exit, so 8294 // we won't be able to compute an exact value for the loop. 8295 CouldComputeBECount = false; 8296 else 8297 ExitCounts.emplace_back(ExitBB, EL); 8298 8299 // 2. Derive the loop's MaxBECount from each exit's max number of 8300 // non-exiting iterations. Partition the loop exits into two kinds: 8301 // LoopMustExits and LoopMayExits. 8302 // 8303 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8304 // is a LoopMayExit. If any computable LoopMustExit is found, then 8305 // MaxBECount is the minimum EL.MaxNotTaken of computable 8306 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8307 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8308 // computable EL.MaxNotTaken. 8309 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8310 DT.dominates(ExitBB, Latch)) { 8311 if (!MustExitMaxBECount) { 8312 MustExitMaxBECount = EL.MaxNotTaken; 8313 MustExitMaxOrZero = EL.MaxOrZero; 8314 } else { 8315 MustExitMaxBECount = 8316 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8317 } 8318 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8319 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8320 MayExitMaxBECount = EL.MaxNotTaken; 8321 else { 8322 MayExitMaxBECount = 8323 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8324 } 8325 } 8326 } 8327 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8328 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8329 // The loop backedge will be taken the maximum or zero times if there's 8330 // a single exit that must be taken the maximum or zero times. 8331 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8332 8333 // Remember which SCEVs are used in exit limits for invalidation purposes. 8334 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 8335 // and MaxBECount, which must be SCEVConstant. 8336 for (const auto &Pair : ExitCounts) 8337 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8338 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8339 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8340 MaxBECount, MaxOrZero); 8341 } 8342 8343 ScalarEvolution::ExitLimit 8344 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8345 bool AllowPredicates) { 8346 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8347 // If our exiting block does not dominate the latch, then its connection with 8348 // loop's exit limit may be far from trivial. 8349 const BasicBlock *Latch = L->getLoopLatch(); 8350 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8351 return getCouldNotCompute(); 8352 8353 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8354 Instruction *Term = ExitingBlock->getTerminator(); 8355 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8356 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8357 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8358 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8359 "It should have one successor in loop and one exit block!"); 8360 // Proceed to the next level to examine the exit condition expression. 8361 return computeExitLimitFromCond( 8362 L, BI->getCondition(), ExitIfTrue, 8363 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8364 } 8365 8366 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8367 // For switch, make sure that there is a single exit from the loop. 8368 BasicBlock *Exit = nullptr; 8369 for (auto *SBB : successors(ExitingBlock)) 8370 if (!L->contains(SBB)) { 8371 if (Exit) // Multiple exit successors. 8372 return getCouldNotCompute(); 8373 Exit = SBB; 8374 } 8375 assert(Exit && "Exiting block must have at least one exit"); 8376 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8377 /*ControlsExit=*/IsOnlyExit); 8378 } 8379 8380 return getCouldNotCompute(); 8381 } 8382 8383 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8384 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8385 bool ControlsExit, bool AllowPredicates) { 8386 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8387 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8388 ControlsExit, AllowPredicates); 8389 } 8390 8391 Optional<ScalarEvolution::ExitLimit> 8392 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8393 bool ExitIfTrue, bool ControlsExit, 8394 bool AllowPredicates) { 8395 (void)this->L; 8396 (void)this->ExitIfTrue; 8397 (void)this->AllowPredicates; 8398 8399 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8400 this->AllowPredicates == AllowPredicates && 8401 "Variance in assumed invariant key components!"); 8402 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8403 if (Itr == TripCountMap.end()) 8404 return None; 8405 return Itr->second; 8406 } 8407 8408 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8409 bool ExitIfTrue, 8410 bool ControlsExit, 8411 bool AllowPredicates, 8412 const ExitLimit &EL) { 8413 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8414 this->AllowPredicates == AllowPredicates && 8415 "Variance in assumed invariant key components!"); 8416 8417 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8418 assert(InsertResult.second && "Expected successful insertion!"); 8419 (void)InsertResult; 8420 (void)ExitIfTrue; 8421 } 8422 8423 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8424 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8425 bool ControlsExit, bool AllowPredicates) { 8426 8427 if (auto MaybeEL = 8428 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8429 return *MaybeEL; 8430 8431 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8432 ControlsExit, AllowPredicates); 8433 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8434 return EL; 8435 } 8436 8437 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8438 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8439 bool ControlsExit, bool AllowPredicates) { 8440 // Handle BinOp conditions (And, Or). 8441 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8442 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8443 return *LimitFromBinOp; 8444 8445 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8446 // Proceed to the next level to examine the icmp. 8447 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8448 ExitLimit EL = 8449 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8450 if (EL.hasFullInfo() || !AllowPredicates) 8451 return EL; 8452 8453 // Try again, but use SCEV predicates this time. 8454 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8455 /*AllowPredicates=*/true); 8456 } 8457 8458 // Check for a constant condition. These are normally stripped out by 8459 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8460 // preserve the CFG and is temporarily leaving constant conditions 8461 // in place. 8462 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8463 if (ExitIfTrue == !CI->getZExtValue()) 8464 // The backedge is always taken. 8465 return getCouldNotCompute(); 8466 else 8467 // The backedge is never taken. 8468 return getZero(CI->getType()); 8469 } 8470 8471 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8472 // with a constant step, we can form an equivalent icmp predicate and figure 8473 // out how many iterations will be taken before we exit. 8474 const WithOverflowInst *WO; 8475 const APInt *C; 8476 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8477 match(WO->getRHS(), m_APInt(C))) { 8478 ConstantRange NWR = 8479 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8480 WO->getNoWrapKind()); 8481 CmpInst::Predicate Pred; 8482 APInt NewRHSC, Offset; 8483 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8484 if (!ExitIfTrue) 8485 Pred = ICmpInst::getInversePredicate(Pred); 8486 auto *LHS = getSCEV(WO->getLHS()); 8487 if (Offset != 0) 8488 LHS = getAddExpr(LHS, getConstant(Offset)); 8489 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8490 ControlsExit, AllowPredicates); 8491 if (EL.hasAnyInfo()) return EL; 8492 } 8493 8494 // If it's not an integer or pointer comparison then compute it the hard way. 8495 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8496 } 8497 8498 Optional<ScalarEvolution::ExitLimit> 8499 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8500 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8501 bool ControlsExit, bool AllowPredicates) { 8502 // Check if the controlling expression for this loop is an And or Or. 8503 Value *Op0, *Op1; 8504 bool IsAnd = false; 8505 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8506 IsAnd = true; 8507 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8508 IsAnd = false; 8509 else 8510 return None; 8511 8512 // EitherMayExit is true in these two cases: 8513 // br (and Op0 Op1), loop, exit 8514 // br (or Op0 Op1), exit, loop 8515 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8516 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8517 ControlsExit && !EitherMayExit, 8518 AllowPredicates); 8519 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8520 ControlsExit && !EitherMayExit, 8521 AllowPredicates); 8522 8523 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8524 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8525 if (isa<ConstantInt>(Op1)) 8526 return Op1 == NeutralElement ? EL0 : EL1; 8527 if (isa<ConstantInt>(Op0)) 8528 return Op0 == NeutralElement ? EL1 : EL0; 8529 8530 const SCEV *BECount = getCouldNotCompute(); 8531 const SCEV *MaxBECount = getCouldNotCompute(); 8532 if (EitherMayExit) { 8533 // Both conditions must be same for the loop to continue executing. 8534 // Choose the less conservative count. 8535 if (EL0.ExactNotTaken != getCouldNotCompute() && 8536 EL1.ExactNotTaken != getCouldNotCompute()) { 8537 BECount = getUMinFromMismatchedTypes( 8538 EL0.ExactNotTaken, EL1.ExactNotTaken, 8539 /*Sequential=*/!isa<BinaryOperator>(ExitCond)); 8540 8541 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8542 // it should have been simplified to zero (see the condition (3) above) 8543 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8544 BECount->isZero()); 8545 } 8546 if (EL0.MaxNotTaken == getCouldNotCompute()) 8547 MaxBECount = EL1.MaxNotTaken; 8548 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8549 MaxBECount = EL0.MaxNotTaken; 8550 else 8551 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8552 } else { 8553 // Both conditions must be same at the same time for the loop to exit. 8554 // For now, be conservative. 8555 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8556 BECount = EL0.ExactNotTaken; 8557 } 8558 8559 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8560 // to be more aggressive when computing BECount than when computing 8561 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8562 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8563 // to not. 8564 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8565 !isa<SCEVCouldNotCompute>(BECount)) 8566 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8567 8568 return ExitLimit(BECount, MaxBECount, false, 8569 { &EL0.Predicates, &EL1.Predicates }); 8570 } 8571 8572 ScalarEvolution::ExitLimit 8573 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8574 ICmpInst *ExitCond, 8575 bool ExitIfTrue, 8576 bool ControlsExit, 8577 bool AllowPredicates) { 8578 // If the condition was exit on true, convert the condition to exit on false 8579 ICmpInst::Predicate Pred; 8580 if (!ExitIfTrue) 8581 Pred = ExitCond->getPredicate(); 8582 else 8583 Pred = ExitCond->getInversePredicate(); 8584 const ICmpInst::Predicate OriginalPred = Pred; 8585 8586 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8587 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8588 8589 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 8590 AllowPredicates); 8591 if (EL.hasAnyInfo()) return EL; 8592 8593 auto *ExhaustiveCount = 8594 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8595 8596 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8597 return ExhaustiveCount; 8598 8599 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8600 ExitCond->getOperand(1), L, OriginalPred); 8601 } 8602 ScalarEvolution::ExitLimit 8603 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8604 ICmpInst::Predicate Pred, 8605 const SCEV *LHS, const SCEV *RHS, 8606 bool ControlsExit, 8607 bool AllowPredicates) { 8608 8609 // Try to evaluate any dependencies out of the loop. 8610 LHS = getSCEVAtScope(LHS, L); 8611 RHS = getSCEVAtScope(RHS, L); 8612 8613 // At this point, we would like to compute how many iterations of the 8614 // loop the predicate will return true for these inputs. 8615 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8616 // If there is a loop-invariant, force it into the RHS. 8617 std::swap(LHS, RHS); 8618 Pred = ICmpInst::getSwappedPredicate(Pred); 8619 } 8620 8621 bool ControllingFiniteLoop = 8622 ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L); 8623 // Simplify the operands before analyzing them. 8624 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0, 8625 (EnableFiniteLoopControl ? ControllingFiniteLoop 8626 : false)); 8627 8628 // If we have a comparison of a chrec against a constant, try to use value 8629 // ranges to answer this query. 8630 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8631 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8632 if (AddRec->getLoop() == L) { 8633 // Form the constant range. 8634 ConstantRange CompRange = 8635 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8636 8637 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8638 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8639 } 8640 8641 // If this loop must exit based on this condition (or execute undefined 8642 // behaviour), and we can prove the test sequence produced must repeat 8643 // the same values on self-wrap of the IV, then we can infer that IV 8644 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8645 // loop. 8646 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 8647 // TODO: We can peel off any functions which are invertible *in L*. Loop 8648 // invariant terms are effectively constants for our purposes here. 8649 auto *InnerLHS = LHS; 8650 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8651 InnerLHS = ZExt->getOperand(); 8652 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8653 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8654 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8655 StrideC && StrideC->getAPInt().isPowerOf2()) { 8656 auto Flags = AR->getNoWrapFlags(); 8657 Flags = setFlags(Flags, SCEV::FlagNW); 8658 SmallVector<const SCEV*> Operands{AR->operands()}; 8659 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8660 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8661 } 8662 } 8663 } 8664 8665 switch (Pred) { 8666 case ICmpInst::ICMP_NE: { // while (X != Y) 8667 // Convert to: while (X-Y != 0) 8668 if (LHS->getType()->isPointerTy()) { 8669 LHS = getLosslessPtrToIntExpr(LHS); 8670 if (isa<SCEVCouldNotCompute>(LHS)) 8671 return LHS; 8672 } 8673 if (RHS->getType()->isPointerTy()) { 8674 RHS = getLosslessPtrToIntExpr(RHS); 8675 if (isa<SCEVCouldNotCompute>(RHS)) 8676 return RHS; 8677 } 8678 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8679 AllowPredicates); 8680 if (EL.hasAnyInfo()) return EL; 8681 break; 8682 } 8683 case ICmpInst::ICMP_EQ: { // while (X == Y) 8684 // Convert to: while (X-Y == 0) 8685 if (LHS->getType()->isPointerTy()) { 8686 LHS = getLosslessPtrToIntExpr(LHS); 8687 if (isa<SCEVCouldNotCompute>(LHS)) 8688 return LHS; 8689 } 8690 if (RHS->getType()->isPointerTy()) { 8691 RHS = getLosslessPtrToIntExpr(RHS); 8692 if (isa<SCEVCouldNotCompute>(RHS)) 8693 return RHS; 8694 } 8695 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8696 if (EL.hasAnyInfo()) return EL; 8697 break; 8698 } 8699 case ICmpInst::ICMP_SLT: 8700 case ICmpInst::ICMP_ULT: { // while (X < Y) 8701 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8702 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8703 AllowPredicates); 8704 if (EL.hasAnyInfo()) return EL; 8705 break; 8706 } 8707 case ICmpInst::ICMP_SGT: 8708 case ICmpInst::ICMP_UGT: { // while (X > Y) 8709 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8710 ExitLimit EL = 8711 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8712 AllowPredicates); 8713 if (EL.hasAnyInfo()) return EL; 8714 break; 8715 } 8716 default: 8717 break; 8718 } 8719 8720 return getCouldNotCompute(); 8721 } 8722 8723 ScalarEvolution::ExitLimit 8724 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8725 SwitchInst *Switch, 8726 BasicBlock *ExitingBlock, 8727 bool ControlsExit) { 8728 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8729 8730 // Give up if the exit is the default dest of a switch. 8731 if (Switch->getDefaultDest() == ExitingBlock) 8732 return getCouldNotCompute(); 8733 8734 assert(L->contains(Switch->getDefaultDest()) && 8735 "Default case must not exit the loop!"); 8736 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8737 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8738 8739 // while (X != Y) --> while (X-Y != 0) 8740 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8741 if (EL.hasAnyInfo()) 8742 return EL; 8743 8744 return getCouldNotCompute(); 8745 } 8746 8747 static ConstantInt * 8748 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8749 ScalarEvolution &SE) { 8750 const SCEV *InVal = SE.getConstant(C); 8751 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8752 assert(isa<SCEVConstant>(Val) && 8753 "Evaluation of SCEV at constant didn't fold correctly?"); 8754 return cast<SCEVConstant>(Val)->getValue(); 8755 } 8756 8757 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8758 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8759 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8760 if (!RHS) 8761 return getCouldNotCompute(); 8762 8763 const BasicBlock *Latch = L->getLoopLatch(); 8764 if (!Latch) 8765 return getCouldNotCompute(); 8766 8767 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8768 if (!Predecessor) 8769 return getCouldNotCompute(); 8770 8771 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8772 // Return LHS in OutLHS and shift_opt in OutOpCode. 8773 auto MatchPositiveShift = 8774 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8775 8776 using namespace PatternMatch; 8777 8778 ConstantInt *ShiftAmt; 8779 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8780 OutOpCode = Instruction::LShr; 8781 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8782 OutOpCode = Instruction::AShr; 8783 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8784 OutOpCode = Instruction::Shl; 8785 else 8786 return false; 8787 8788 return ShiftAmt->getValue().isStrictlyPositive(); 8789 }; 8790 8791 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8792 // 8793 // loop: 8794 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8795 // %iv.shifted = lshr i32 %iv, <positive constant> 8796 // 8797 // Return true on a successful match. Return the corresponding PHI node (%iv 8798 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8799 auto MatchShiftRecurrence = 8800 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8801 Optional<Instruction::BinaryOps> PostShiftOpCode; 8802 8803 { 8804 Instruction::BinaryOps OpC; 8805 Value *V; 8806 8807 // If we encounter a shift instruction, "peel off" the shift operation, 8808 // and remember that we did so. Later when we inspect %iv's backedge 8809 // value, we will make sure that the backedge value uses the same 8810 // operation. 8811 // 8812 // Note: the peeled shift operation does not have to be the same 8813 // instruction as the one feeding into the PHI's backedge value. We only 8814 // really care about it being the same *kind* of shift instruction -- 8815 // that's all that is required for our later inferences to hold. 8816 if (MatchPositiveShift(LHS, V, OpC)) { 8817 PostShiftOpCode = OpC; 8818 LHS = V; 8819 } 8820 } 8821 8822 PNOut = dyn_cast<PHINode>(LHS); 8823 if (!PNOut || PNOut->getParent() != L->getHeader()) 8824 return false; 8825 8826 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8827 Value *OpLHS; 8828 8829 return 8830 // The backedge value for the PHI node must be a shift by a positive 8831 // amount 8832 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8833 8834 // of the PHI node itself 8835 OpLHS == PNOut && 8836 8837 // and the kind of shift should be match the kind of shift we peeled 8838 // off, if any. 8839 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8840 }; 8841 8842 PHINode *PN; 8843 Instruction::BinaryOps OpCode; 8844 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8845 return getCouldNotCompute(); 8846 8847 const DataLayout &DL = getDataLayout(); 8848 8849 // The key rationale for this optimization is that for some kinds of shift 8850 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8851 // within a finite number of iterations. If the condition guarding the 8852 // backedge (in the sense that the backedge is taken if the condition is true) 8853 // is false for the value the shift recurrence stabilizes to, then we know 8854 // that the backedge is taken only a finite number of times. 8855 8856 ConstantInt *StableValue = nullptr; 8857 switch (OpCode) { 8858 default: 8859 llvm_unreachable("Impossible case!"); 8860 8861 case Instruction::AShr: { 8862 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8863 // bitwidth(K) iterations. 8864 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8865 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8866 Predecessor->getTerminator(), &DT); 8867 auto *Ty = cast<IntegerType>(RHS->getType()); 8868 if (Known.isNonNegative()) 8869 StableValue = ConstantInt::get(Ty, 0); 8870 else if (Known.isNegative()) 8871 StableValue = ConstantInt::get(Ty, -1, true); 8872 else 8873 return getCouldNotCompute(); 8874 8875 break; 8876 } 8877 case Instruction::LShr: 8878 case Instruction::Shl: 8879 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8880 // stabilize to 0 in at most bitwidth(K) iterations. 8881 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8882 break; 8883 } 8884 8885 auto *Result = 8886 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8887 assert(Result->getType()->isIntegerTy(1) && 8888 "Otherwise cannot be an operand to a branch instruction"); 8889 8890 if (Result->isZeroValue()) { 8891 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8892 const SCEV *UpperBound = 8893 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8894 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8895 } 8896 8897 return getCouldNotCompute(); 8898 } 8899 8900 /// Return true if we can constant fold an instruction of the specified type, 8901 /// assuming that all operands were constants. 8902 static bool CanConstantFold(const Instruction *I) { 8903 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8904 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8905 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8906 return true; 8907 8908 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8909 if (const Function *F = CI->getCalledFunction()) 8910 return canConstantFoldCallTo(CI, F); 8911 return false; 8912 } 8913 8914 /// Determine whether this instruction can constant evolve within this loop 8915 /// assuming its operands can all constant evolve. 8916 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8917 // An instruction outside of the loop can't be derived from a loop PHI. 8918 if (!L->contains(I)) return false; 8919 8920 if (isa<PHINode>(I)) { 8921 // We don't currently keep track of the control flow needed to evaluate 8922 // PHIs, so we cannot handle PHIs inside of loops. 8923 return L->getHeader() == I->getParent(); 8924 } 8925 8926 // If we won't be able to constant fold this expression even if the operands 8927 // are constants, bail early. 8928 return CanConstantFold(I); 8929 } 8930 8931 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8932 /// recursing through each instruction operand until reaching a loop header phi. 8933 static PHINode * 8934 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8935 DenseMap<Instruction *, PHINode *> &PHIMap, 8936 unsigned Depth) { 8937 if (Depth > MaxConstantEvolvingDepth) 8938 return nullptr; 8939 8940 // Otherwise, we can evaluate this instruction if all of its operands are 8941 // constant or derived from a PHI node themselves. 8942 PHINode *PHI = nullptr; 8943 for (Value *Op : UseInst->operands()) { 8944 if (isa<Constant>(Op)) continue; 8945 8946 Instruction *OpInst = dyn_cast<Instruction>(Op); 8947 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8948 8949 PHINode *P = dyn_cast<PHINode>(OpInst); 8950 if (!P) 8951 // If this operand is already visited, reuse the prior result. 8952 // We may have P != PHI if this is the deepest point at which the 8953 // inconsistent paths meet. 8954 P = PHIMap.lookup(OpInst); 8955 if (!P) { 8956 // Recurse and memoize the results, whether a phi is found or not. 8957 // This recursive call invalidates pointers into PHIMap. 8958 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8959 PHIMap[OpInst] = P; 8960 } 8961 if (!P) 8962 return nullptr; // Not evolving from PHI 8963 if (PHI && PHI != P) 8964 return nullptr; // Evolving from multiple different PHIs. 8965 PHI = P; 8966 } 8967 // This is a expression evolving from a constant PHI! 8968 return PHI; 8969 } 8970 8971 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8972 /// in the loop that V is derived from. We allow arbitrary operations along the 8973 /// way, but the operands of an operation must either be constants or a value 8974 /// derived from a constant PHI. If this expression does not fit with these 8975 /// constraints, return null. 8976 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8977 Instruction *I = dyn_cast<Instruction>(V); 8978 if (!I || !canConstantEvolve(I, L)) return nullptr; 8979 8980 if (PHINode *PN = dyn_cast<PHINode>(I)) 8981 return PN; 8982 8983 // Record non-constant instructions contained by the loop. 8984 DenseMap<Instruction *, PHINode *> PHIMap; 8985 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8986 } 8987 8988 /// EvaluateExpression - Given an expression that passes the 8989 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8990 /// in the loop has the value PHIVal. If we can't fold this expression for some 8991 /// reason, return null. 8992 static Constant *EvaluateExpression(Value *V, const Loop *L, 8993 DenseMap<Instruction *, Constant *> &Vals, 8994 const DataLayout &DL, 8995 const TargetLibraryInfo *TLI) { 8996 // Convenient constant check, but redundant for recursive calls. 8997 if (Constant *C = dyn_cast<Constant>(V)) return C; 8998 Instruction *I = dyn_cast<Instruction>(V); 8999 if (!I) return nullptr; 9000 9001 if (Constant *C = Vals.lookup(I)) return C; 9002 9003 // An instruction inside the loop depends on a value outside the loop that we 9004 // weren't given a mapping for, or a value such as a call inside the loop. 9005 if (!canConstantEvolve(I, L)) return nullptr; 9006 9007 // An unmapped PHI can be due to a branch or another loop inside this loop, 9008 // or due to this not being the initial iteration through a loop where we 9009 // couldn't compute the evolution of this particular PHI last time. 9010 if (isa<PHINode>(I)) return nullptr; 9011 9012 std::vector<Constant*> Operands(I->getNumOperands()); 9013 9014 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9015 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9016 if (!Operand) { 9017 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9018 if (!Operands[i]) return nullptr; 9019 continue; 9020 } 9021 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9022 Vals[Operand] = C; 9023 if (!C) return nullptr; 9024 Operands[i] = C; 9025 } 9026 9027 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 9028 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9029 Operands[1], DL, TLI); 9030 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 9031 if (!LI->isVolatile()) 9032 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 9033 } 9034 return ConstantFoldInstOperands(I, Operands, DL, TLI); 9035 } 9036 9037 9038 // If every incoming value to PN except the one for BB is a specific Constant, 9039 // return that, else return nullptr. 9040 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9041 Constant *IncomingVal = nullptr; 9042 9043 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9044 if (PN->getIncomingBlock(i) == BB) 9045 continue; 9046 9047 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9048 if (!CurrentVal) 9049 return nullptr; 9050 9051 if (IncomingVal != CurrentVal) { 9052 if (IncomingVal) 9053 return nullptr; 9054 IncomingVal = CurrentVal; 9055 } 9056 } 9057 9058 return IncomingVal; 9059 } 9060 9061 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9062 /// in the header of its containing loop, we know the loop executes a 9063 /// constant number of times, and the PHI node is just a recurrence 9064 /// involving constants, fold it. 9065 Constant * 9066 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9067 const APInt &BEs, 9068 const Loop *L) { 9069 auto I = ConstantEvolutionLoopExitValue.find(PN); 9070 if (I != ConstantEvolutionLoopExitValue.end()) 9071 return I->second; 9072 9073 if (BEs.ugt(MaxBruteForceIterations)) 9074 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9075 9076 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9077 9078 DenseMap<Instruction *, Constant *> CurrentIterVals; 9079 BasicBlock *Header = L->getHeader(); 9080 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9081 9082 BasicBlock *Latch = L->getLoopLatch(); 9083 if (!Latch) 9084 return nullptr; 9085 9086 for (PHINode &PHI : Header->phis()) { 9087 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9088 CurrentIterVals[&PHI] = StartCST; 9089 } 9090 if (!CurrentIterVals.count(PN)) 9091 return RetVal = nullptr; 9092 9093 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9094 9095 // Execute the loop symbolically to determine the exit value. 9096 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9097 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9098 9099 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9100 unsigned IterationNum = 0; 9101 const DataLayout &DL = getDataLayout(); 9102 for (; ; ++IterationNum) { 9103 if (IterationNum == NumIterations) 9104 return RetVal = CurrentIterVals[PN]; // Got exit value! 9105 9106 // Compute the value of the PHIs for the next iteration. 9107 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9108 DenseMap<Instruction *, Constant *> NextIterVals; 9109 Constant *NextPHI = 9110 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9111 if (!NextPHI) 9112 return nullptr; // Couldn't evaluate! 9113 NextIterVals[PN] = NextPHI; 9114 9115 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9116 9117 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9118 // cease to be able to evaluate one of them or if they stop evolving, 9119 // because that doesn't necessarily prevent us from computing PN. 9120 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9121 for (const auto &I : CurrentIterVals) { 9122 PHINode *PHI = dyn_cast<PHINode>(I.first); 9123 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9124 PHIsToCompute.emplace_back(PHI, I.second); 9125 } 9126 // We use two distinct loops because EvaluateExpression may invalidate any 9127 // iterators into CurrentIterVals. 9128 for (const auto &I : PHIsToCompute) { 9129 PHINode *PHI = I.first; 9130 Constant *&NextPHI = NextIterVals[PHI]; 9131 if (!NextPHI) { // Not already computed. 9132 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9133 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9134 } 9135 if (NextPHI != I.second) 9136 StoppedEvolving = false; 9137 } 9138 9139 // If all entries in CurrentIterVals == NextIterVals then we can stop 9140 // iterating, the loop can't continue to change. 9141 if (StoppedEvolving) 9142 return RetVal = CurrentIterVals[PN]; 9143 9144 CurrentIterVals.swap(NextIterVals); 9145 } 9146 } 9147 9148 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9149 Value *Cond, 9150 bool ExitWhen) { 9151 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9152 if (!PN) return getCouldNotCompute(); 9153 9154 // If the loop is canonicalized, the PHI will have exactly two entries. 9155 // That's the only form we support here. 9156 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9157 9158 DenseMap<Instruction *, Constant *> CurrentIterVals; 9159 BasicBlock *Header = L->getHeader(); 9160 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9161 9162 BasicBlock *Latch = L->getLoopLatch(); 9163 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9164 9165 for (PHINode &PHI : Header->phis()) { 9166 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9167 CurrentIterVals[&PHI] = StartCST; 9168 } 9169 if (!CurrentIterVals.count(PN)) 9170 return getCouldNotCompute(); 9171 9172 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9173 // the loop symbolically to determine when the condition gets a value of 9174 // "ExitWhen". 9175 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9176 const DataLayout &DL = getDataLayout(); 9177 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9178 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9179 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9180 9181 // Couldn't symbolically evaluate. 9182 if (!CondVal) return getCouldNotCompute(); 9183 9184 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9185 ++NumBruteForceTripCountsComputed; 9186 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9187 } 9188 9189 // Update all the PHI nodes for the next iteration. 9190 DenseMap<Instruction *, Constant *> NextIterVals; 9191 9192 // Create a list of which PHIs we need to compute. We want to do this before 9193 // calling EvaluateExpression on them because that may invalidate iterators 9194 // into CurrentIterVals. 9195 SmallVector<PHINode *, 8> PHIsToCompute; 9196 for (const auto &I : CurrentIterVals) { 9197 PHINode *PHI = dyn_cast<PHINode>(I.first); 9198 if (!PHI || PHI->getParent() != Header) continue; 9199 PHIsToCompute.push_back(PHI); 9200 } 9201 for (PHINode *PHI : PHIsToCompute) { 9202 Constant *&NextPHI = NextIterVals[PHI]; 9203 if (NextPHI) continue; // Already computed! 9204 9205 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9206 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9207 } 9208 CurrentIterVals.swap(NextIterVals); 9209 } 9210 9211 // Too many iterations were needed to evaluate. 9212 return getCouldNotCompute(); 9213 } 9214 9215 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9216 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9217 ValuesAtScopes[V]; 9218 // Check to see if we've folded this expression at this loop before. 9219 for (auto &LS : Values) 9220 if (LS.first == L) 9221 return LS.second ? LS.second : V; 9222 9223 Values.emplace_back(L, nullptr); 9224 9225 // Otherwise compute it. 9226 const SCEV *C = computeSCEVAtScope(V, L); 9227 for (auto &LS : reverse(ValuesAtScopes[V])) 9228 if (LS.first == L) { 9229 LS.second = C; 9230 if (!isa<SCEVConstant>(C)) 9231 ValuesAtScopesUsers[C].push_back({L, V}); 9232 break; 9233 } 9234 return C; 9235 } 9236 9237 /// This builds up a Constant using the ConstantExpr interface. That way, we 9238 /// will return Constants for objects which aren't represented by a 9239 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9240 /// Returns NULL if the SCEV isn't representable as a Constant. 9241 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9242 switch (V->getSCEVType()) { 9243 case scCouldNotCompute: 9244 case scAddRecExpr: 9245 return nullptr; 9246 case scConstant: 9247 return cast<SCEVConstant>(V)->getValue(); 9248 case scUnknown: 9249 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9250 case scSignExtend: { 9251 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9252 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9253 return ConstantExpr::getSExt(CastOp, SS->getType()); 9254 return nullptr; 9255 } 9256 case scZeroExtend: { 9257 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9258 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9259 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9260 return nullptr; 9261 } 9262 case scPtrToInt: { 9263 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9264 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9265 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9266 9267 return nullptr; 9268 } 9269 case scTruncate: { 9270 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9271 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9272 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9273 return nullptr; 9274 } 9275 case scAddExpr: { 9276 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9277 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 9278 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 9279 unsigned AS = PTy->getAddressSpace(); 9280 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9281 C = ConstantExpr::getBitCast(C, DestPtrTy); 9282 } 9283 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 9284 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 9285 if (!C2) 9286 return nullptr; 9287 9288 // First pointer! 9289 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 9290 unsigned AS = C2->getType()->getPointerAddressSpace(); 9291 std::swap(C, C2); 9292 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9293 // The offsets have been converted to bytes. We can add bytes to an 9294 // i8* by GEP with the byte count in the first index. 9295 C = ConstantExpr::getBitCast(C, DestPtrTy); 9296 } 9297 9298 // Don't bother trying to sum two pointers. We probably can't 9299 // statically compute a load that results from it anyway. 9300 if (C2->getType()->isPointerTy()) 9301 return nullptr; 9302 9303 if (C->getType()->isPointerTy()) { 9304 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9305 C, C2); 9306 } else { 9307 C = ConstantExpr::getAdd(C, C2); 9308 } 9309 } 9310 return C; 9311 } 9312 return nullptr; 9313 } 9314 case scMulExpr: { 9315 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9316 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 9317 // Don't bother with pointers at all. 9318 if (C->getType()->isPointerTy()) 9319 return nullptr; 9320 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 9321 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 9322 if (!C2 || C2->getType()->isPointerTy()) 9323 return nullptr; 9324 C = ConstantExpr::getMul(C, C2); 9325 } 9326 return C; 9327 } 9328 return nullptr; 9329 } 9330 case scUDivExpr: { 9331 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 9332 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 9333 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 9334 if (LHS->getType() == RHS->getType()) 9335 return ConstantExpr::getUDiv(LHS, RHS); 9336 return nullptr; 9337 } 9338 case scSMaxExpr: 9339 case scUMaxExpr: 9340 case scSMinExpr: 9341 case scUMinExpr: 9342 case scSequentialUMinExpr: 9343 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9344 } 9345 llvm_unreachable("Unknown SCEV kind!"); 9346 } 9347 9348 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9349 if (isa<SCEVConstant>(V)) return V; 9350 9351 // If this instruction is evolved from a constant-evolving PHI, compute the 9352 // exit value from the loop without using SCEVs. 9353 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9354 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9355 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9356 const Loop *CurrLoop = this->LI[I->getParent()]; 9357 // Looking for loop exit value. 9358 if (CurrLoop && CurrLoop->getParentLoop() == L && 9359 PN->getParent() == CurrLoop->getHeader()) { 9360 // Okay, there is no closed form solution for the PHI node. Check 9361 // to see if the loop that contains it has a known backedge-taken 9362 // count. If so, we may be able to force computation of the exit 9363 // value. 9364 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9365 // This trivial case can show up in some degenerate cases where 9366 // the incoming IR has not yet been fully simplified. 9367 if (BackedgeTakenCount->isZero()) { 9368 Value *InitValue = nullptr; 9369 bool MultipleInitValues = false; 9370 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9371 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9372 if (!InitValue) 9373 InitValue = PN->getIncomingValue(i); 9374 else if (InitValue != PN->getIncomingValue(i)) { 9375 MultipleInitValues = true; 9376 break; 9377 } 9378 } 9379 } 9380 if (!MultipleInitValues && InitValue) 9381 return getSCEV(InitValue); 9382 } 9383 // Do we have a loop invariant value flowing around the backedge 9384 // for a loop which must execute the backedge? 9385 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9386 isKnownPositive(BackedgeTakenCount) && 9387 PN->getNumIncomingValues() == 2) { 9388 9389 unsigned InLoopPred = 9390 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9391 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9392 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9393 return getSCEV(BackedgeVal); 9394 } 9395 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9396 // Okay, we know how many times the containing loop executes. If 9397 // this is a constant evolving PHI node, get the final value at 9398 // the specified iteration number. 9399 Constant *RV = getConstantEvolutionLoopExitValue( 9400 PN, BTCC->getAPInt(), CurrLoop); 9401 if (RV) return getSCEV(RV); 9402 } 9403 } 9404 9405 // If there is a single-input Phi, evaluate it at our scope. If we can 9406 // prove that this replacement does not break LCSSA form, use new value. 9407 if (PN->getNumOperands() == 1) { 9408 const SCEV *Input = getSCEV(PN->getOperand(0)); 9409 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9410 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9411 // for the simplest case just support constants. 9412 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9413 } 9414 } 9415 9416 // Okay, this is an expression that we cannot symbolically evaluate 9417 // into a SCEV. Check to see if it's possible to symbolically evaluate 9418 // the arguments into constants, and if so, try to constant propagate the 9419 // result. This is particularly useful for computing loop exit values. 9420 if (CanConstantFold(I)) { 9421 SmallVector<Constant *, 4> Operands; 9422 bool MadeImprovement = false; 9423 for (Value *Op : I->operands()) { 9424 if (Constant *C = dyn_cast<Constant>(Op)) { 9425 Operands.push_back(C); 9426 continue; 9427 } 9428 9429 // If any of the operands is non-constant and if they are 9430 // non-integer and non-pointer, don't even try to analyze them 9431 // with scev techniques. 9432 if (!isSCEVable(Op->getType())) 9433 return V; 9434 9435 const SCEV *OrigV = getSCEV(Op); 9436 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9437 MadeImprovement |= OrigV != OpV; 9438 9439 Constant *C = BuildConstantFromSCEV(OpV); 9440 if (!C) return V; 9441 if (C->getType() != Op->getType()) 9442 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9443 Op->getType(), 9444 false), 9445 C, Op->getType()); 9446 Operands.push_back(C); 9447 } 9448 9449 // Check to see if getSCEVAtScope actually made an improvement. 9450 if (MadeImprovement) { 9451 Constant *C = nullptr; 9452 const DataLayout &DL = getDataLayout(); 9453 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9454 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9455 Operands[1], DL, &TLI); 9456 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9457 if (!Load->isVolatile()) 9458 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9459 DL); 9460 } else 9461 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9462 if (!C) return V; 9463 return getSCEV(C); 9464 } 9465 } 9466 } 9467 9468 // This is some other type of SCEVUnknown, just return it. 9469 return V; 9470 } 9471 9472 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) { 9473 const auto *Comm = cast<SCEVNAryExpr>(V); 9474 // Avoid performing the look-up in the common case where the specified 9475 // expression has no loop-variant portions. 9476 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9477 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9478 if (OpAtScope != Comm->getOperand(i)) { 9479 // Okay, at least one of these operands is loop variant but might be 9480 // foldable. Build a new instance of the folded commutative expression. 9481 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9482 Comm->op_begin()+i); 9483 NewOps.push_back(OpAtScope); 9484 9485 for (++i; i != e; ++i) { 9486 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9487 NewOps.push_back(OpAtScope); 9488 } 9489 if (isa<SCEVAddExpr>(Comm)) 9490 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9491 if (isa<SCEVMulExpr>(Comm)) 9492 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9493 if (isa<SCEVMinMaxExpr>(Comm)) 9494 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9495 if (isa<SCEVSequentialMinMaxExpr>(Comm)) 9496 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps); 9497 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!"); 9498 } 9499 } 9500 // If we got here, all operands are loop invariant. 9501 return Comm; 9502 } 9503 9504 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9505 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9506 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9507 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9508 return Div; // must be loop invariant 9509 return getUDivExpr(LHS, RHS); 9510 } 9511 9512 // If this is a loop recurrence for a loop that does not contain L, then we 9513 // are dealing with the final value computed by the loop. 9514 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9515 // First, attempt to evaluate each operand. 9516 // Avoid performing the look-up in the common case where the specified 9517 // expression has no loop-variant portions. 9518 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9519 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9520 if (OpAtScope == AddRec->getOperand(i)) 9521 continue; 9522 9523 // Okay, at least one of these operands is loop variant but might be 9524 // foldable. Build a new instance of the folded commutative expression. 9525 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9526 AddRec->op_begin()+i); 9527 NewOps.push_back(OpAtScope); 9528 for (++i; i != e; ++i) 9529 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9530 9531 const SCEV *FoldedRec = 9532 getAddRecExpr(NewOps, AddRec->getLoop(), 9533 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9534 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9535 // The addrec may be folded to a nonrecurrence, for example, if the 9536 // induction variable is multiplied by zero after constant folding. Go 9537 // ahead and return the folded value. 9538 if (!AddRec) 9539 return FoldedRec; 9540 break; 9541 } 9542 9543 // If the scope is outside the addrec's loop, evaluate it by using the 9544 // loop exit value of the addrec. 9545 if (!AddRec->getLoop()->contains(L)) { 9546 // To evaluate this recurrence, we need to know how many times the AddRec 9547 // loop iterates. Compute this now. 9548 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9549 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9550 9551 // Then, evaluate the AddRec. 9552 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9553 } 9554 9555 return AddRec; 9556 } 9557 9558 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 9559 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9560 if (Op == Cast->getOperand()) 9561 return Cast; // must be loop invariant 9562 return getCastExpr(Cast->getSCEVType(), Op, Cast->getType()); 9563 } 9564 9565 llvm_unreachable("Unknown SCEV type!"); 9566 } 9567 9568 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9569 return getSCEVAtScope(getSCEV(V), L); 9570 } 9571 9572 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9573 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9574 return stripInjectiveFunctions(ZExt->getOperand()); 9575 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9576 return stripInjectiveFunctions(SExt->getOperand()); 9577 return S; 9578 } 9579 9580 /// Finds the minimum unsigned root of the following equation: 9581 /// 9582 /// A * X = B (mod N) 9583 /// 9584 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9585 /// A and B isn't important. 9586 /// 9587 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9588 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9589 ScalarEvolution &SE) { 9590 uint32_t BW = A.getBitWidth(); 9591 assert(BW == SE.getTypeSizeInBits(B->getType())); 9592 assert(A != 0 && "A must be non-zero."); 9593 9594 // 1. D = gcd(A, N) 9595 // 9596 // The gcd of A and N may have only one prime factor: 2. The number of 9597 // trailing zeros in A is its multiplicity 9598 uint32_t Mult2 = A.countTrailingZeros(); 9599 // D = 2^Mult2 9600 9601 // 2. Check if B is divisible by D. 9602 // 9603 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9604 // is not less than multiplicity of this prime factor for D. 9605 if (SE.GetMinTrailingZeros(B) < Mult2) 9606 return SE.getCouldNotCompute(); 9607 9608 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9609 // modulo (N / D). 9610 // 9611 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9612 // (N / D) in general. The inverse itself always fits into BW bits, though, 9613 // so we immediately truncate it. 9614 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9615 APInt Mod(BW + 1, 0); 9616 Mod.setBit(BW - Mult2); // Mod = N / D 9617 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9618 9619 // 4. Compute the minimum unsigned root of the equation: 9620 // I * (B / D) mod (N / D) 9621 // To simplify the computation, we factor out the divide by D: 9622 // (I * B mod N) / D 9623 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9624 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9625 } 9626 9627 /// For a given quadratic addrec, generate coefficients of the corresponding 9628 /// quadratic equation, multiplied by a common value to ensure that they are 9629 /// integers. 9630 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9631 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9632 /// were multiplied by, and BitWidth is the bit width of the original addrec 9633 /// coefficients. 9634 /// This function returns None if the addrec coefficients are not compile- 9635 /// time constants. 9636 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9637 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9638 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9639 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9640 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9641 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9642 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9643 << *AddRec << '\n'); 9644 9645 // We currently can only solve this if the coefficients are constants. 9646 if (!LC || !MC || !NC) { 9647 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9648 return None; 9649 } 9650 9651 APInt L = LC->getAPInt(); 9652 APInt M = MC->getAPInt(); 9653 APInt N = NC->getAPInt(); 9654 assert(!N.isZero() && "This is not a quadratic addrec"); 9655 9656 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9657 unsigned NewWidth = BitWidth + 1; 9658 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9659 << BitWidth << '\n'); 9660 // The sign-extension (as opposed to a zero-extension) here matches the 9661 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9662 N = N.sext(NewWidth); 9663 M = M.sext(NewWidth); 9664 L = L.sext(NewWidth); 9665 9666 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9667 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9668 // L+M, L+2M+N, L+3M+3N, ... 9669 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9670 // 9671 // The equation Acc = 0 is then 9672 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9673 // In a quadratic form it becomes: 9674 // N n^2 + (2M-N) n + 2L = 0. 9675 9676 APInt A = N; 9677 APInt B = 2 * M - A; 9678 APInt C = 2 * L; 9679 APInt T = APInt(NewWidth, 2); 9680 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9681 << "x + " << C << ", coeff bw: " << NewWidth 9682 << ", multiplied by " << T << '\n'); 9683 return std::make_tuple(A, B, C, T, BitWidth); 9684 } 9685 9686 /// Helper function to compare optional APInts: 9687 /// (a) if X and Y both exist, return min(X, Y), 9688 /// (b) if neither X nor Y exist, return None, 9689 /// (c) if exactly one of X and Y exists, return that value. 9690 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9691 if (X.hasValue() && Y.hasValue()) { 9692 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9693 APInt XW = X->sextOrSelf(W); 9694 APInt YW = Y->sextOrSelf(W); 9695 return XW.slt(YW) ? *X : *Y; 9696 } 9697 if (!X.hasValue() && !Y.hasValue()) 9698 return None; 9699 return X.hasValue() ? *X : *Y; 9700 } 9701 9702 /// Helper function to truncate an optional APInt to a given BitWidth. 9703 /// When solving addrec-related equations, it is preferable to return a value 9704 /// that has the same bit width as the original addrec's coefficients. If the 9705 /// solution fits in the original bit width, truncate it (except for i1). 9706 /// Returning a value of a different bit width may inhibit some optimizations. 9707 /// 9708 /// In general, a solution to a quadratic equation generated from an addrec 9709 /// may require BW+1 bits, where BW is the bit width of the addrec's 9710 /// coefficients. The reason is that the coefficients of the quadratic 9711 /// equation are BW+1 bits wide (to avoid truncation when converting from 9712 /// the addrec to the equation). 9713 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9714 if (!X.hasValue()) 9715 return None; 9716 unsigned W = X->getBitWidth(); 9717 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9718 return X->trunc(BitWidth); 9719 return X; 9720 } 9721 9722 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9723 /// iterations. The values L, M, N are assumed to be signed, and they 9724 /// should all have the same bit widths. 9725 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9726 /// where BW is the bit width of the addrec's coefficients. 9727 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9728 /// returned as such, otherwise the bit width of the returned value may 9729 /// be greater than BW. 9730 /// 9731 /// This function returns None if 9732 /// (a) the addrec coefficients are not constant, or 9733 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9734 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9735 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9736 static Optional<APInt> 9737 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9738 APInt A, B, C, M; 9739 unsigned BitWidth; 9740 auto T = GetQuadraticEquation(AddRec); 9741 if (!T.hasValue()) 9742 return None; 9743 9744 std::tie(A, B, C, M, BitWidth) = *T; 9745 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9746 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9747 if (!X.hasValue()) 9748 return None; 9749 9750 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9751 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9752 if (!V->isZero()) 9753 return None; 9754 9755 return TruncIfPossible(X, BitWidth); 9756 } 9757 9758 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9759 /// iterations. The values M, N are assumed to be signed, and they 9760 /// should all have the same bit widths. 9761 /// Find the least n such that c(n) does not belong to the given range, 9762 /// while c(n-1) does. 9763 /// 9764 /// This function returns None if 9765 /// (a) the addrec coefficients are not constant, or 9766 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9767 /// bounds of the range. 9768 static Optional<APInt> 9769 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9770 const ConstantRange &Range, ScalarEvolution &SE) { 9771 assert(AddRec->getOperand(0)->isZero() && 9772 "Starting value of addrec should be 0"); 9773 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9774 << Range << ", addrec " << *AddRec << '\n'); 9775 // This case is handled in getNumIterationsInRange. Here we can assume that 9776 // we start in the range. 9777 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9778 "Addrec's initial value should be in range"); 9779 9780 APInt A, B, C, M; 9781 unsigned BitWidth; 9782 auto T = GetQuadraticEquation(AddRec); 9783 if (!T.hasValue()) 9784 return None; 9785 9786 // Be careful about the return value: there can be two reasons for not 9787 // returning an actual number. First, if no solutions to the equations 9788 // were found, and second, if the solutions don't leave the given range. 9789 // The first case means that the actual solution is "unknown", the second 9790 // means that it's known, but not valid. If the solution is unknown, we 9791 // cannot make any conclusions. 9792 // Return a pair: the optional solution and a flag indicating if the 9793 // solution was found. 9794 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9795 // Solve for signed overflow and unsigned overflow, pick the lower 9796 // solution. 9797 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9798 << Bound << " (before multiplying by " << M << ")\n"); 9799 Bound *= M; // The quadratic equation multiplier. 9800 9801 Optional<APInt> SO = None; 9802 if (BitWidth > 1) { 9803 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9804 "signed overflow\n"); 9805 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9806 } 9807 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9808 "unsigned overflow\n"); 9809 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9810 BitWidth+1); 9811 9812 auto LeavesRange = [&] (const APInt &X) { 9813 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9814 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9815 if (Range.contains(V0->getValue())) 9816 return false; 9817 // X should be at least 1, so X-1 is non-negative. 9818 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9819 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9820 if (Range.contains(V1->getValue())) 9821 return true; 9822 return false; 9823 }; 9824 9825 // If SolveQuadraticEquationWrap returns None, it means that there can 9826 // be a solution, but the function failed to find it. We cannot treat it 9827 // as "no solution". 9828 if (!SO.hasValue() || !UO.hasValue()) 9829 return { None, false }; 9830 9831 // Check the smaller value first to see if it leaves the range. 9832 // At this point, both SO and UO must have values. 9833 Optional<APInt> Min = MinOptional(SO, UO); 9834 if (LeavesRange(*Min)) 9835 return { Min, true }; 9836 Optional<APInt> Max = Min == SO ? UO : SO; 9837 if (LeavesRange(*Max)) 9838 return { Max, true }; 9839 9840 // Solutions were found, but were eliminated, hence the "true". 9841 return { None, true }; 9842 }; 9843 9844 std::tie(A, B, C, M, BitWidth) = *T; 9845 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9846 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9847 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9848 auto SL = SolveForBoundary(Lower); 9849 auto SU = SolveForBoundary(Upper); 9850 // If any of the solutions was unknown, no meaninigful conclusions can 9851 // be made. 9852 if (!SL.second || !SU.second) 9853 return None; 9854 9855 // Claim: The correct solution is not some value between Min and Max. 9856 // 9857 // Justification: Assuming that Min and Max are different values, one of 9858 // them is when the first signed overflow happens, the other is when the 9859 // first unsigned overflow happens. Crossing the range boundary is only 9860 // possible via an overflow (treating 0 as a special case of it, modeling 9861 // an overflow as crossing k*2^W for some k). 9862 // 9863 // The interesting case here is when Min was eliminated as an invalid 9864 // solution, but Max was not. The argument is that if there was another 9865 // overflow between Min and Max, it would also have been eliminated if 9866 // it was considered. 9867 // 9868 // For a given boundary, it is possible to have two overflows of the same 9869 // type (signed/unsigned) without having the other type in between: this 9870 // can happen when the vertex of the parabola is between the iterations 9871 // corresponding to the overflows. This is only possible when the two 9872 // overflows cross k*2^W for the same k. In such case, if the second one 9873 // left the range (and was the first one to do so), the first overflow 9874 // would have to enter the range, which would mean that either we had left 9875 // the range before or that we started outside of it. Both of these cases 9876 // are contradictions. 9877 // 9878 // Claim: In the case where SolveForBoundary returns None, the correct 9879 // solution is not some value between the Max for this boundary and the 9880 // Min of the other boundary. 9881 // 9882 // Justification: Assume that we had such Max_A and Min_B corresponding 9883 // to range boundaries A and B and such that Max_A < Min_B. If there was 9884 // a solution between Max_A and Min_B, it would have to be caused by an 9885 // overflow corresponding to either A or B. It cannot correspond to B, 9886 // since Min_B is the first occurrence of such an overflow. If it 9887 // corresponded to A, it would have to be either a signed or an unsigned 9888 // overflow that is larger than both eliminated overflows for A. But 9889 // between the eliminated overflows and this overflow, the values would 9890 // cover the entire value space, thus crossing the other boundary, which 9891 // is a contradiction. 9892 9893 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9894 } 9895 9896 ScalarEvolution::ExitLimit 9897 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9898 bool AllowPredicates) { 9899 9900 // This is only used for loops with a "x != y" exit test. The exit condition 9901 // is now expressed as a single expression, V = x-y. So the exit test is 9902 // effectively V != 0. We know and take advantage of the fact that this 9903 // expression only being used in a comparison by zero context. 9904 9905 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9906 // If the value is a constant 9907 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9908 // If the value is already zero, the branch will execute zero times. 9909 if (C->getValue()->isZero()) return C; 9910 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9911 } 9912 9913 const SCEVAddRecExpr *AddRec = 9914 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9915 9916 if (!AddRec && AllowPredicates) 9917 // Try to make this an AddRec using runtime tests, in the first X 9918 // iterations of this loop, where X is the SCEV expression found by the 9919 // algorithm below. 9920 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9921 9922 if (!AddRec || AddRec->getLoop() != L) 9923 return getCouldNotCompute(); 9924 9925 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9926 // the quadratic equation to solve it. 9927 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9928 // We can only use this value if the chrec ends up with an exact zero 9929 // value at this index. When solving for "X*X != 5", for example, we 9930 // should not accept a root of 2. 9931 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9932 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9933 return ExitLimit(R, R, false, Predicates); 9934 } 9935 return getCouldNotCompute(); 9936 } 9937 9938 // Otherwise we can only handle this if it is affine. 9939 if (!AddRec->isAffine()) 9940 return getCouldNotCompute(); 9941 9942 // If this is an affine expression, the execution count of this branch is 9943 // the minimum unsigned root of the following equation: 9944 // 9945 // Start + Step*N = 0 (mod 2^BW) 9946 // 9947 // equivalent to: 9948 // 9949 // Step*N = -Start (mod 2^BW) 9950 // 9951 // where BW is the common bit width of Start and Step. 9952 9953 // Get the initial value for the loop. 9954 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9955 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9956 9957 // For now we handle only constant steps. 9958 // 9959 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9960 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9961 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9962 // We have not yet seen any such cases. 9963 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9964 if (!StepC || StepC->getValue()->isZero()) 9965 return getCouldNotCompute(); 9966 9967 // For positive steps (counting up until unsigned overflow): 9968 // N = -Start/Step (as unsigned) 9969 // For negative steps (counting down to zero): 9970 // N = Start/-Step 9971 // First compute the unsigned distance from zero in the direction of Step. 9972 bool CountDown = StepC->getAPInt().isNegative(); 9973 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9974 9975 // Handle unitary steps, which cannot wraparound. 9976 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9977 // N = Distance (as unsigned) 9978 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9979 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9980 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 9981 9982 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9983 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9984 // case, and see if we can improve the bound. 9985 // 9986 // Explicitly handling this here is necessary because getUnsignedRange 9987 // isn't context-sensitive; it doesn't know that we only care about the 9988 // range inside the loop. 9989 const SCEV *Zero = getZero(Distance->getType()); 9990 const SCEV *One = getOne(Distance->getType()); 9991 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9992 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9993 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9994 // as "unsigned_max(Distance + 1) - 1". 9995 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9996 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9997 } 9998 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9999 } 10000 10001 // If the condition controls loop exit (the loop exits only if the expression 10002 // is true) and the addition is no-wrap we can use unsigned divide to 10003 // compute the backedge count. In this case, the step may not divide the 10004 // distance, but we don't care because if the condition is "missed" the loop 10005 // will have undefined behavior due to wrapping. 10006 if (ControlsExit && AddRec->hasNoSelfWrap() && 10007 loopHasNoAbnormalExits(AddRec->getLoop())) { 10008 const SCEV *Exact = 10009 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10010 const SCEV *Max = getCouldNotCompute(); 10011 if (Exact != getCouldNotCompute()) { 10012 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 10013 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10014 } 10015 return ExitLimit(Exact, Max, false, Predicates); 10016 } 10017 10018 // Solve the general equation. 10019 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10020 getNegativeSCEV(Start), *this); 10021 10022 const SCEV *M = E; 10023 if (E != getCouldNotCompute()) { 10024 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 10025 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10026 } 10027 return ExitLimit(E, M, false, Predicates); 10028 } 10029 10030 ScalarEvolution::ExitLimit 10031 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10032 // Loops that look like: while (X == 0) are very strange indeed. We don't 10033 // handle them yet except for the trivial case. This could be expanded in the 10034 // future as needed. 10035 10036 // If the value is a constant, check to see if it is known to be non-zero 10037 // already. If so, the backedge will execute zero times. 10038 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10039 if (!C->getValue()->isZero()) 10040 return getZero(C->getType()); 10041 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10042 } 10043 10044 // We could implement others, but I really doubt anyone writes loops like 10045 // this, and if they did, they would already be constant folded. 10046 return getCouldNotCompute(); 10047 } 10048 10049 std::pair<const BasicBlock *, const BasicBlock *> 10050 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10051 const { 10052 // If the block has a unique predecessor, then there is no path from the 10053 // predecessor to the block that does not go through the direct edge 10054 // from the predecessor to the block. 10055 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10056 return {Pred, BB}; 10057 10058 // A loop's header is defined to be a block that dominates the loop. 10059 // If the header has a unique predecessor outside the loop, it must be 10060 // a block that has exactly one successor that can reach the loop. 10061 if (const Loop *L = LI.getLoopFor(BB)) 10062 return {L->getLoopPredecessor(), L->getHeader()}; 10063 10064 return {nullptr, nullptr}; 10065 } 10066 10067 /// SCEV structural equivalence is usually sufficient for testing whether two 10068 /// expressions are equal, however for the purposes of looking for a condition 10069 /// guarding a loop, it can be useful to be a little more general, since a 10070 /// front-end may have replicated the controlling expression. 10071 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10072 // Quick check to see if they are the same SCEV. 10073 if (A == B) return true; 10074 10075 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10076 // Not all instructions that are "identical" compute the same value. For 10077 // instance, two distinct alloca instructions allocating the same type are 10078 // identical and do not read memory; but compute distinct values. 10079 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10080 }; 10081 10082 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10083 // two different instructions with the same value. Check for this case. 10084 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10085 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10086 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10087 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10088 if (ComputesEqualValues(AI, BI)) 10089 return true; 10090 10091 // Otherwise assume they may have a different value. 10092 return false; 10093 } 10094 10095 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10096 const SCEV *&LHS, const SCEV *&RHS, 10097 unsigned Depth, 10098 bool ControllingFiniteLoop) { 10099 bool Changed = false; 10100 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10101 // '0 != 0'. 10102 auto TrivialCase = [&](bool TriviallyTrue) { 10103 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10104 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10105 return true; 10106 }; 10107 // If we hit the max recursion limit bail out. 10108 if (Depth >= 3) 10109 return false; 10110 10111 // Canonicalize a constant to the right side. 10112 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10113 // Check for both operands constant. 10114 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10115 if (ConstantExpr::getICmp(Pred, 10116 LHSC->getValue(), 10117 RHSC->getValue())->isNullValue()) 10118 return TrivialCase(false); 10119 else 10120 return TrivialCase(true); 10121 } 10122 // Otherwise swap the operands to put the constant on the right. 10123 std::swap(LHS, RHS); 10124 Pred = ICmpInst::getSwappedPredicate(Pred); 10125 Changed = true; 10126 } 10127 10128 // If we're comparing an addrec with a value which is loop-invariant in the 10129 // addrec's loop, put the addrec on the left. Also make a dominance check, 10130 // as both operands could be addrecs loop-invariant in each other's loop. 10131 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10132 const Loop *L = AR->getLoop(); 10133 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10134 std::swap(LHS, RHS); 10135 Pred = ICmpInst::getSwappedPredicate(Pred); 10136 Changed = true; 10137 } 10138 } 10139 10140 // If there's a constant operand, canonicalize comparisons with boundary 10141 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10142 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10143 const APInt &RA = RC->getAPInt(); 10144 10145 bool SimplifiedByConstantRange = false; 10146 10147 if (!ICmpInst::isEquality(Pred)) { 10148 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10149 if (ExactCR.isFullSet()) 10150 return TrivialCase(true); 10151 else if (ExactCR.isEmptySet()) 10152 return TrivialCase(false); 10153 10154 APInt NewRHS; 10155 CmpInst::Predicate NewPred; 10156 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10157 ICmpInst::isEquality(NewPred)) { 10158 // We were able to convert an inequality to an equality. 10159 Pred = NewPred; 10160 RHS = getConstant(NewRHS); 10161 Changed = SimplifiedByConstantRange = true; 10162 } 10163 } 10164 10165 if (!SimplifiedByConstantRange) { 10166 switch (Pred) { 10167 default: 10168 break; 10169 case ICmpInst::ICMP_EQ: 10170 case ICmpInst::ICMP_NE: 10171 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10172 if (!RA) 10173 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10174 if (const SCEVMulExpr *ME = 10175 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10176 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10177 ME->getOperand(0)->isAllOnesValue()) { 10178 RHS = AE->getOperand(1); 10179 LHS = ME->getOperand(1); 10180 Changed = true; 10181 } 10182 break; 10183 10184 10185 // The "Should have been caught earlier!" messages refer to the fact 10186 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10187 // should have fired on the corresponding cases, and canonicalized the 10188 // check to trivial case. 10189 10190 case ICmpInst::ICMP_UGE: 10191 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10192 Pred = ICmpInst::ICMP_UGT; 10193 RHS = getConstant(RA - 1); 10194 Changed = true; 10195 break; 10196 case ICmpInst::ICMP_ULE: 10197 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10198 Pred = ICmpInst::ICMP_ULT; 10199 RHS = getConstant(RA + 1); 10200 Changed = true; 10201 break; 10202 case ICmpInst::ICMP_SGE: 10203 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10204 Pred = ICmpInst::ICMP_SGT; 10205 RHS = getConstant(RA - 1); 10206 Changed = true; 10207 break; 10208 case ICmpInst::ICMP_SLE: 10209 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10210 Pred = ICmpInst::ICMP_SLT; 10211 RHS = getConstant(RA + 1); 10212 Changed = true; 10213 break; 10214 } 10215 } 10216 } 10217 10218 // Check for obvious equality. 10219 if (HasSameValue(LHS, RHS)) { 10220 if (ICmpInst::isTrueWhenEqual(Pred)) 10221 return TrivialCase(true); 10222 if (ICmpInst::isFalseWhenEqual(Pred)) 10223 return TrivialCase(false); 10224 } 10225 10226 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10227 // adding or subtracting 1 from one of the operands. This can be done for 10228 // one of two reasons: 10229 // 1) The range of the RHS does not include the (signed/unsigned) boundaries 10230 // 2) The loop is finite, with this comparison controlling the exit. Since the 10231 // loop is finite, the bound cannot include the corresponding boundary 10232 // (otherwise it would loop forever). 10233 switch (Pred) { 10234 case ICmpInst::ICMP_SLE: 10235 if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) { 10236 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10237 SCEV::FlagNSW); 10238 Pred = ICmpInst::ICMP_SLT; 10239 Changed = true; 10240 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10241 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10242 SCEV::FlagNSW); 10243 Pred = ICmpInst::ICMP_SLT; 10244 Changed = true; 10245 } 10246 break; 10247 case ICmpInst::ICMP_SGE: 10248 if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) { 10249 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10250 SCEV::FlagNSW); 10251 Pred = ICmpInst::ICMP_SGT; 10252 Changed = true; 10253 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10254 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10255 SCEV::FlagNSW); 10256 Pred = ICmpInst::ICMP_SGT; 10257 Changed = true; 10258 } 10259 break; 10260 case ICmpInst::ICMP_ULE: 10261 if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) { 10262 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10263 SCEV::FlagNUW); 10264 Pred = ICmpInst::ICMP_ULT; 10265 Changed = true; 10266 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10267 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10268 Pred = ICmpInst::ICMP_ULT; 10269 Changed = true; 10270 } 10271 break; 10272 case ICmpInst::ICMP_UGE: 10273 if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) { 10274 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10275 Pred = ICmpInst::ICMP_UGT; 10276 Changed = true; 10277 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10278 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10279 SCEV::FlagNUW); 10280 Pred = ICmpInst::ICMP_UGT; 10281 Changed = true; 10282 } 10283 break; 10284 default: 10285 break; 10286 } 10287 10288 // TODO: More simplifications are possible here. 10289 10290 // Recursively simplify until we either hit a recursion limit or nothing 10291 // changes. 10292 if (Changed) 10293 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1, 10294 ControllingFiniteLoop); 10295 10296 return Changed; 10297 } 10298 10299 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10300 return getSignedRangeMax(S).isNegative(); 10301 } 10302 10303 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10304 return getSignedRangeMin(S).isStrictlyPositive(); 10305 } 10306 10307 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10308 return !getSignedRangeMin(S).isNegative(); 10309 } 10310 10311 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10312 return !getSignedRangeMax(S).isStrictlyPositive(); 10313 } 10314 10315 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10316 return getUnsignedRangeMin(S) != 0; 10317 } 10318 10319 std::pair<const SCEV *, const SCEV *> 10320 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10321 // Compute SCEV on entry of loop L. 10322 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10323 if (Start == getCouldNotCompute()) 10324 return { Start, Start }; 10325 // Compute post increment SCEV for loop L. 10326 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10327 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10328 return { Start, PostInc }; 10329 } 10330 10331 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10332 const SCEV *LHS, const SCEV *RHS) { 10333 // First collect all loops. 10334 SmallPtrSet<const Loop *, 8> LoopsUsed; 10335 getUsedLoops(LHS, LoopsUsed); 10336 getUsedLoops(RHS, LoopsUsed); 10337 10338 if (LoopsUsed.empty()) 10339 return false; 10340 10341 // Domination relationship must be a linear order on collected loops. 10342 #ifndef NDEBUG 10343 for (auto *L1 : LoopsUsed) 10344 for (auto *L2 : LoopsUsed) 10345 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10346 DT.dominates(L2->getHeader(), L1->getHeader())) && 10347 "Domination relationship is not a linear order"); 10348 #endif 10349 10350 const Loop *MDL = 10351 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10352 [&](const Loop *L1, const Loop *L2) { 10353 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10354 }); 10355 10356 // Get init and post increment value for LHS. 10357 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10358 // if LHS contains unknown non-invariant SCEV then bail out. 10359 if (SplitLHS.first == getCouldNotCompute()) 10360 return false; 10361 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10362 // Get init and post increment value for RHS. 10363 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10364 // if RHS contains unknown non-invariant SCEV then bail out. 10365 if (SplitRHS.first == getCouldNotCompute()) 10366 return false; 10367 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10368 // It is possible that init SCEV contains an invariant load but it does 10369 // not dominate MDL and is not available at MDL loop entry, so we should 10370 // check it here. 10371 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10372 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10373 return false; 10374 10375 // It seems backedge guard check is faster than entry one so in some cases 10376 // it can speed up whole estimation by short circuit 10377 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10378 SplitRHS.second) && 10379 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10380 } 10381 10382 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10383 const SCEV *LHS, const SCEV *RHS) { 10384 // Canonicalize the inputs first. 10385 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10386 10387 if (isKnownViaInduction(Pred, LHS, RHS)) 10388 return true; 10389 10390 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10391 return true; 10392 10393 // Otherwise see what can be done with some simple reasoning. 10394 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10395 } 10396 10397 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10398 const SCEV *LHS, 10399 const SCEV *RHS) { 10400 if (isKnownPredicate(Pred, LHS, RHS)) 10401 return true; 10402 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10403 return false; 10404 return None; 10405 } 10406 10407 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10408 const SCEV *LHS, const SCEV *RHS, 10409 const Instruction *CtxI) { 10410 // TODO: Analyze guards and assumes from Context's block. 10411 return isKnownPredicate(Pred, LHS, RHS) || 10412 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10413 } 10414 10415 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10416 const SCEV *LHS, 10417 const SCEV *RHS, 10418 const Instruction *CtxI) { 10419 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10420 if (KnownWithoutContext) 10421 return KnownWithoutContext; 10422 10423 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10424 return true; 10425 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10426 ICmpInst::getInversePredicate(Pred), 10427 LHS, RHS)) 10428 return false; 10429 return None; 10430 } 10431 10432 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10433 const SCEVAddRecExpr *LHS, 10434 const SCEV *RHS) { 10435 const Loop *L = LHS->getLoop(); 10436 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10437 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10438 } 10439 10440 Optional<ScalarEvolution::MonotonicPredicateType> 10441 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10442 ICmpInst::Predicate Pred) { 10443 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10444 10445 #ifndef NDEBUG 10446 // Verify an invariant: inverting the predicate should turn a monotonically 10447 // increasing change to a monotonically decreasing one, and vice versa. 10448 if (Result) { 10449 auto ResultSwapped = 10450 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10451 10452 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10453 assert(ResultSwapped.getValue() != Result.getValue() && 10454 "monotonicity should flip as we flip the predicate"); 10455 } 10456 #endif 10457 10458 return Result; 10459 } 10460 10461 Optional<ScalarEvolution::MonotonicPredicateType> 10462 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10463 ICmpInst::Predicate Pred) { 10464 // A zero step value for LHS means the induction variable is essentially a 10465 // loop invariant value. We don't really depend on the predicate actually 10466 // flipping from false to true (for increasing predicates, and the other way 10467 // around for decreasing predicates), all we care about is that *if* the 10468 // predicate changes then it only changes from false to true. 10469 // 10470 // A zero step value in itself is not very useful, but there may be places 10471 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10472 // as general as possible. 10473 10474 // Only handle LE/LT/GE/GT predicates. 10475 if (!ICmpInst::isRelational(Pred)) 10476 return None; 10477 10478 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10479 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10480 "Should be greater or less!"); 10481 10482 // Check that AR does not wrap. 10483 if (ICmpInst::isUnsigned(Pred)) { 10484 if (!LHS->hasNoUnsignedWrap()) 10485 return None; 10486 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10487 } else { 10488 assert(ICmpInst::isSigned(Pred) && 10489 "Relational predicate is either signed or unsigned!"); 10490 if (!LHS->hasNoSignedWrap()) 10491 return None; 10492 10493 const SCEV *Step = LHS->getStepRecurrence(*this); 10494 10495 if (isKnownNonNegative(Step)) 10496 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10497 10498 if (isKnownNonPositive(Step)) 10499 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10500 10501 return None; 10502 } 10503 } 10504 10505 Optional<ScalarEvolution::LoopInvariantPredicate> 10506 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10507 const SCEV *LHS, const SCEV *RHS, 10508 const Loop *L) { 10509 10510 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10511 if (!isLoopInvariant(RHS, L)) { 10512 if (!isLoopInvariant(LHS, L)) 10513 return None; 10514 10515 std::swap(LHS, RHS); 10516 Pred = ICmpInst::getSwappedPredicate(Pred); 10517 } 10518 10519 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10520 if (!ArLHS || ArLHS->getLoop() != L) 10521 return None; 10522 10523 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10524 if (!MonotonicType) 10525 return None; 10526 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10527 // true as the loop iterates, and the backedge is control dependent on 10528 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10529 // 10530 // * if the predicate was false in the first iteration then the predicate 10531 // is never evaluated again, since the loop exits without taking the 10532 // backedge. 10533 // * if the predicate was true in the first iteration then it will 10534 // continue to be true for all future iterations since it is 10535 // monotonically increasing. 10536 // 10537 // For both the above possibilities, we can replace the loop varying 10538 // predicate with its value on the first iteration of the loop (which is 10539 // loop invariant). 10540 // 10541 // A similar reasoning applies for a monotonically decreasing predicate, by 10542 // replacing true with false and false with true in the above two bullets. 10543 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10544 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10545 10546 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10547 return None; 10548 10549 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10550 } 10551 10552 Optional<ScalarEvolution::LoopInvariantPredicate> 10553 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10554 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10555 const Instruction *CtxI, const SCEV *MaxIter) { 10556 // Try to prove the following set of facts: 10557 // - The predicate is monotonic in the iteration space. 10558 // - If the check does not fail on the 1st iteration: 10559 // - No overflow will happen during first MaxIter iterations; 10560 // - It will not fail on the MaxIter'th iteration. 10561 // If the check does fail on the 1st iteration, we leave the loop and no 10562 // other checks matter. 10563 10564 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10565 if (!isLoopInvariant(RHS, L)) { 10566 if (!isLoopInvariant(LHS, L)) 10567 return None; 10568 10569 std::swap(LHS, RHS); 10570 Pred = ICmpInst::getSwappedPredicate(Pred); 10571 } 10572 10573 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10574 if (!AR || AR->getLoop() != L) 10575 return None; 10576 10577 // The predicate must be relational (i.e. <, <=, >=, >). 10578 if (!ICmpInst::isRelational(Pred)) 10579 return None; 10580 10581 // TODO: Support steps other than +/- 1. 10582 const SCEV *Step = AR->getStepRecurrence(*this); 10583 auto *One = getOne(Step->getType()); 10584 auto *MinusOne = getNegativeSCEV(One); 10585 if (Step != One && Step != MinusOne) 10586 return None; 10587 10588 // Type mismatch here means that MaxIter is potentially larger than max 10589 // unsigned value in start type, which mean we cannot prove no wrap for the 10590 // indvar. 10591 if (AR->getType() != MaxIter->getType()) 10592 return None; 10593 10594 // Value of IV on suggested last iteration. 10595 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10596 // Does it still meet the requirement? 10597 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10598 return None; 10599 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10600 // not exceed max unsigned value of this type), this effectively proves 10601 // that there is no wrap during the iteration. To prove that there is no 10602 // signed/unsigned wrap, we need to check that 10603 // Start <= Last for step = 1 or Start >= Last for step = -1. 10604 ICmpInst::Predicate NoOverflowPred = 10605 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10606 if (Step == MinusOne) 10607 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10608 const SCEV *Start = AR->getStart(); 10609 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10610 return None; 10611 10612 // Everything is fine. 10613 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10614 } 10615 10616 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10617 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10618 if (HasSameValue(LHS, RHS)) 10619 return ICmpInst::isTrueWhenEqual(Pred); 10620 10621 // This code is split out from isKnownPredicate because it is called from 10622 // within isLoopEntryGuardedByCond. 10623 10624 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10625 const ConstantRange &RangeRHS) { 10626 return RangeLHS.icmp(Pred, RangeRHS); 10627 }; 10628 10629 // The check at the top of the function catches the case where the values are 10630 // known to be equal. 10631 if (Pred == CmpInst::ICMP_EQ) 10632 return false; 10633 10634 if (Pred == CmpInst::ICMP_NE) { 10635 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10636 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10637 return true; 10638 auto *Diff = getMinusSCEV(LHS, RHS); 10639 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10640 } 10641 10642 if (CmpInst::isSigned(Pred)) 10643 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10644 10645 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10646 } 10647 10648 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10649 const SCEV *LHS, 10650 const SCEV *RHS) { 10651 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10652 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10653 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10654 // OutC1 and OutC2. 10655 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10656 APInt &OutC1, APInt &OutC2, 10657 SCEV::NoWrapFlags ExpectedFlags) { 10658 const SCEV *XNonConstOp, *XConstOp; 10659 const SCEV *YNonConstOp, *YConstOp; 10660 SCEV::NoWrapFlags XFlagsPresent; 10661 SCEV::NoWrapFlags YFlagsPresent; 10662 10663 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10664 XConstOp = getZero(X->getType()); 10665 XNonConstOp = X; 10666 XFlagsPresent = ExpectedFlags; 10667 } 10668 if (!isa<SCEVConstant>(XConstOp) || 10669 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10670 return false; 10671 10672 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10673 YConstOp = getZero(Y->getType()); 10674 YNonConstOp = Y; 10675 YFlagsPresent = ExpectedFlags; 10676 } 10677 10678 if (!isa<SCEVConstant>(YConstOp) || 10679 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10680 return false; 10681 10682 if (YNonConstOp != XNonConstOp) 10683 return false; 10684 10685 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10686 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10687 10688 return true; 10689 }; 10690 10691 APInt C1; 10692 APInt C2; 10693 10694 switch (Pred) { 10695 default: 10696 break; 10697 10698 case ICmpInst::ICMP_SGE: 10699 std::swap(LHS, RHS); 10700 LLVM_FALLTHROUGH; 10701 case ICmpInst::ICMP_SLE: 10702 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10703 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10704 return true; 10705 10706 break; 10707 10708 case ICmpInst::ICMP_SGT: 10709 std::swap(LHS, RHS); 10710 LLVM_FALLTHROUGH; 10711 case ICmpInst::ICMP_SLT: 10712 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10713 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10714 return true; 10715 10716 break; 10717 10718 case ICmpInst::ICMP_UGE: 10719 std::swap(LHS, RHS); 10720 LLVM_FALLTHROUGH; 10721 case ICmpInst::ICMP_ULE: 10722 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10723 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10724 return true; 10725 10726 break; 10727 10728 case ICmpInst::ICMP_UGT: 10729 std::swap(LHS, RHS); 10730 LLVM_FALLTHROUGH; 10731 case ICmpInst::ICMP_ULT: 10732 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10733 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10734 return true; 10735 break; 10736 } 10737 10738 return false; 10739 } 10740 10741 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10742 const SCEV *LHS, 10743 const SCEV *RHS) { 10744 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10745 return false; 10746 10747 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10748 // the stack can result in exponential time complexity. 10749 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10750 10751 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10752 // 10753 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10754 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10755 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10756 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10757 // use isKnownPredicate later if needed. 10758 return isKnownNonNegative(RHS) && 10759 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10760 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10761 } 10762 10763 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10764 ICmpInst::Predicate Pred, 10765 const SCEV *LHS, const SCEV *RHS) { 10766 // No need to even try if we know the module has no guards. 10767 if (!HasGuards) 10768 return false; 10769 10770 return any_of(*BB, [&](const Instruction &I) { 10771 using namespace llvm::PatternMatch; 10772 10773 Value *Condition; 10774 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10775 m_Value(Condition))) && 10776 isImpliedCond(Pred, LHS, RHS, Condition, false); 10777 }); 10778 } 10779 10780 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10781 /// protected by a conditional between LHS and RHS. This is used to 10782 /// to eliminate casts. 10783 bool 10784 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10785 ICmpInst::Predicate Pred, 10786 const SCEV *LHS, const SCEV *RHS) { 10787 // Interpret a null as meaning no loop, where there is obviously no guard 10788 // (interprocedural conditions notwithstanding). 10789 if (!L) return true; 10790 10791 if (VerifyIR) 10792 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10793 "This cannot be done on broken IR!"); 10794 10795 10796 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10797 return true; 10798 10799 BasicBlock *Latch = L->getLoopLatch(); 10800 if (!Latch) 10801 return false; 10802 10803 BranchInst *LoopContinuePredicate = 10804 dyn_cast<BranchInst>(Latch->getTerminator()); 10805 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10806 isImpliedCond(Pred, LHS, RHS, 10807 LoopContinuePredicate->getCondition(), 10808 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10809 return true; 10810 10811 // We don't want more than one activation of the following loops on the stack 10812 // -- that can lead to O(n!) time complexity. 10813 if (WalkingBEDominatingConds) 10814 return false; 10815 10816 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10817 10818 // See if we can exploit a trip count to prove the predicate. 10819 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10820 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10821 if (LatchBECount != getCouldNotCompute()) { 10822 // We know that Latch branches back to the loop header exactly 10823 // LatchBECount times. This means the backdege condition at Latch is 10824 // equivalent to "{0,+,1} u< LatchBECount". 10825 Type *Ty = LatchBECount->getType(); 10826 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10827 const SCEV *LoopCounter = 10828 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10829 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10830 LatchBECount)) 10831 return true; 10832 } 10833 10834 // Check conditions due to any @llvm.assume intrinsics. 10835 for (auto &AssumeVH : AC.assumptions()) { 10836 if (!AssumeVH) 10837 continue; 10838 auto *CI = cast<CallInst>(AssumeVH); 10839 if (!DT.dominates(CI, Latch->getTerminator())) 10840 continue; 10841 10842 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10843 return true; 10844 } 10845 10846 // If the loop is not reachable from the entry block, we risk running into an 10847 // infinite loop as we walk up into the dom tree. These loops do not matter 10848 // anyway, so we just return a conservative answer when we see them. 10849 if (!DT.isReachableFromEntry(L->getHeader())) 10850 return false; 10851 10852 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10853 return true; 10854 10855 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10856 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10857 assert(DTN && "should reach the loop header before reaching the root!"); 10858 10859 BasicBlock *BB = DTN->getBlock(); 10860 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10861 return true; 10862 10863 BasicBlock *PBB = BB->getSinglePredecessor(); 10864 if (!PBB) 10865 continue; 10866 10867 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10868 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10869 continue; 10870 10871 Value *Condition = ContinuePredicate->getCondition(); 10872 10873 // If we have an edge `E` within the loop body that dominates the only 10874 // latch, the condition guarding `E` also guards the backedge. This 10875 // reasoning works only for loops with a single latch. 10876 10877 BasicBlockEdge DominatingEdge(PBB, BB); 10878 if (DominatingEdge.isSingleEdge()) { 10879 // We're constructively (and conservatively) enumerating edges within the 10880 // loop body that dominate the latch. The dominator tree better agree 10881 // with us on this: 10882 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10883 10884 if (isImpliedCond(Pred, LHS, RHS, Condition, 10885 BB != ContinuePredicate->getSuccessor(0))) 10886 return true; 10887 } 10888 } 10889 10890 return false; 10891 } 10892 10893 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10894 ICmpInst::Predicate Pred, 10895 const SCEV *LHS, 10896 const SCEV *RHS) { 10897 if (VerifyIR) 10898 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10899 "This cannot be done on broken IR!"); 10900 10901 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10902 // the facts (a >= b && a != b) separately. A typical situation is when the 10903 // non-strict comparison is known from ranges and non-equality is known from 10904 // dominating predicates. If we are proving strict comparison, we always try 10905 // to prove non-equality and non-strict comparison separately. 10906 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10907 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10908 bool ProvedNonStrictComparison = false; 10909 bool ProvedNonEquality = false; 10910 10911 auto SplitAndProve = 10912 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10913 if (!ProvedNonStrictComparison) 10914 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10915 if (!ProvedNonEquality) 10916 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10917 if (ProvedNonStrictComparison && ProvedNonEquality) 10918 return true; 10919 return false; 10920 }; 10921 10922 if (ProvingStrictComparison) { 10923 auto ProofFn = [&](ICmpInst::Predicate P) { 10924 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10925 }; 10926 if (SplitAndProve(ProofFn)) 10927 return true; 10928 } 10929 10930 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10931 auto ProveViaGuard = [&](const BasicBlock *Block) { 10932 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10933 return true; 10934 if (ProvingStrictComparison) { 10935 auto ProofFn = [&](ICmpInst::Predicate P) { 10936 return isImpliedViaGuard(Block, P, LHS, RHS); 10937 }; 10938 if (SplitAndProve(ProofFn)) 10939 return true; 10940 } 10941 return false; 10942 }; 10943 10944 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10945 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10946 const Instruction *CtxI = &BB->front(); 10947 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10948 return true; 10949 if (ProvingStrictComparison) { 10950 auto ProofFn = [&](ICmpInst::Predicate P) { 10951 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10952 }; 10953 if (SplitAndProve(ProofFn)) 10954 return true; 10955 } 10956 return false; 10957 }; 10958 10959 // Starting at the block's predecessor, climb up the predecessor chain, as long 10960 // as there are predecessors that can be found that have unique successors 10961 // leading to the original block. 10962 const Loop *ContainingLoop = LI.getLoopFor(BB); 10963 const BasicBlock *PredBB; 10964 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10965 PredBB = ContainingLoop->getLoopPredecessor(); 10966 else 10967 PredBB = BB->getSinglePredecessor(); 10968 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10969 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10970 if (ProveViaGuard(Pair.first)) 10971 return true; 10972 10973 const BranchInst *LoopEntryPredicate = 10974 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10975 if (!LoopEntryPredicate || 10976 LoopEntryPredicate->isUnconditional()) 10977 continue; 10978 10979 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10980 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10981 return true; 10982 } 10983 10984 // Check conditions due to any @llvm.assume intrinsics. 10985 for (auto &AssumeVH : AC.assumptions()) { 10986 if (!AssumeVH) 10987 continue; 10988 auto *CI = cast<CallInst>(AssumeVH); 10989 if (!DT.dominates(CI, BB)) 10990 continue; 10991 10992 if (ProveViaCond(CI->getArgOperand(0), false)) 10993 return true; 10994 } 10995 10996 return false; 10997 } 10998 10999 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 11000 ICmpInst::Predicate Pred, 11001 const SCEV *LHS, 11002 const SCEV *RHS) { 11003 // Interpret a null as meaning no loop, where there is obviously no guard 11004 // (interprocedural conditions notwithstanding). 11005 if (!L) 11006 return false; 11007 11008 // Both LHS and RHS must be available at loop entry. 11009 assert(isAvailableAtLoopEntry(LHS, L) && 11010 "LHS is not available at Loop Entry"); 11011 assert(isAvailableAtLoopEntry(RHS, L) && 11012 "RHS is not available at Loop Entry"); 11013 11014 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11015 return true; 11016 11017 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11018 } 11019 11020 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11021 const SCEV *RHS, 11022 const Value *FoundCondValue, bool Inverse, 11023 const Instruction *CtxI) { 11024 // False conditions implies anything. Do not bother analyzing it further. 11025 if (FoundCondValue == 11026 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11027 return true; 11028 11029 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11030 return false; 11031 11032 auto ClearOnExit = 11033 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11034 11035 // Recursively handle And and Or conditions. 11036 const Value *Op0, *Op1; 11037 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11038 if (!Inverse) 11039 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11040 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11041 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11042 if (Inverse) 11043 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11044 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11045 } 11046 11047 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11048 if (!ICI) return false; 11049 11050 // Now that we found a conditional branch that dominates the loop or controls 11051 // the loop latch. Check to see if it is the comparison we are looking for. 11052 ICmpInst::Predicate FoundPred; 11053 if (Inverse) 11054 FoundPred = ICI->getInversePredicate(); 11055 else 11056 FoundPred = ICI->getPredicate(); 11057 11058 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11059 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11060 11061 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11062 } 11063 11064 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11065 const SCEV *RHS, 11066 ICmpInst::Predicate FoundPred, 11067 const SCEV *FoundLHS, const SCEV *FoundRHS, 11068 const Instruction *CtxI) { 11069 // Balance the types. 11070 if (getTypeSizeInBits(LHS->getType()) < 11071 getTypeSizeInBits(FoundLHS->getType())) { 11072 // For unsigned and equality predicates, try to prove that both found 11073 // operands fit into narrow unsigned range. If so, try to prove facts in 11074 // narrow types. 11075 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11076 !FoundRHS->getType()->isPointerTy()) { 11077 auto *NarrowType = LHS->getType(); 11078 auto *WideType = FoundLHS->getType(); 11079 auto BitWidth = getTypeSizeInBits(NarrowType); 11080 const SCEV *MaxValue = getZeroExtendExpr( 11081 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11082 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11083 MaxValue) && 11084 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11085 MaxValue)) { 11086 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11087 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11088 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11089 TruncFoundRHS, CtxI)) 11090 return true; 11091 } 11092 } 11093 11094 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11095 return false; 11096 if (CmpInst::isSigned(Pred)) { 11097 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11098 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11099 } else { 11100 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11101 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11102 } 11103 } else if (getTypeSizeInBits(LHS->getType()) > 11104 getTypeSizeInBits(FoundLHS->getType())) { 11105 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11106 return false; 11107 if (CmpInst::isSigned(FoundPred)) { 11108 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11109 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11110 } else { 11111 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11112 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11113 } 11114 } 11115 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11116 FoundRHS, CtxI); 11117 } 11118 11119 bool ScalarEvolution::isImpliedCondBalancedTypes( 11120 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11121 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11122 const Instruction *CtxI) { 11123 assert(getTypeSizeInBits(LHS->getType()) == 11124 getTypeSizeInBits(FoundLHS->getType()) && 11125 "Types should be balanced!"); 11126 // Canonicalize the query to match the way instcombine will have 11127 // canonicalized the comparison. 11128 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11129 if (LHS == RHS) 11130 return CmpInst::isTrueWhenEqual(Pred); 11131 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11132 if (FoundLHS == FoundRHS) 11133 return CmpInst::isFalseWhenEqual(FoundPred); 11134 11135 // Check to see if we can make the LHS or RHS match. 11136 if (LHS == FoundRHS || RHS == FoundLHS) { 11137 if (isa<SCEVConstant>(RHS)) { 11138 std::swap(FoundLHS, FoundRHS); 11139 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11140 } else { 11141 std::swap(LHS, RHS); 11142 Pred = ICmpInst::getSwappedPredicate(Pred); 11143 } 11144 } 11145 11146 // Check whether the found predicate is the same as the desired predicate. 11147 if (FoundPred == Pred) 11148 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11149 11150 // Check whether swapping the found predicate makes it the same as the 11151 // desired predicate. 11152 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11153 // We can write the implication 11154 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11155 // using one of the following ways: 11156 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11157 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11158 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11159 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11160 // Forms 1. and 2. require swapping the operands of one condition. Don't 11161 // do this if it would break canonical constant/addrec ordering. 11162 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11163 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11164 CtxI); 11165 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11166 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11167 11168 // There's no clear preference between forms 3. and 4., try both. Avoid 11169 // forming getNotSCEV of pointer values as the resulting subtract is 11170 // not legal. 11171 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11172 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11173 FoundLHS, FoundRHS, CtxI)) 11174 return true; 11175 11176 if (!FoundLHS->getType()->isPointerTy() && 11177 !FoundRHS->getType()->isPointerTy() && 11178 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11179 getNotSCEV(FoundRHS), CtxI)) 11180 return true; 11181 11182 return false; 11183 } 11184 11185 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11186 CmpInst::Predicate P2) { 11187 assert(P1 != P2 && "Handled earlier!"); 11188 return CmpInst::isRelational(P2) && 11189 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11190 }; 11191 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11192 // Unsigned comparison is the same as signed comparison when both the 11193 // operands are non-negative or negative. 11194 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11195 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11196 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11197 // Create local copies that we can freely swap and canonicalize our 11198 // conditions to "le/lt". 11199 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11200 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11201 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11202 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11203 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11204 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11205 std::swap(CanonicalLHS, CanonicalRHS); 11206 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11207 } 11208 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11209 "Must be!"); 11210 assert((ICmpInst::isLT(CanonicalFoundPred) || 11211 ICmpInst::isLE(CanonicalFoundPred)) && 11212 "Must be!"); 11213 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11214 // Use implication: 11215 // x <u y && y >=s 0 --> x <s y. 11216 // If we can prove the left part, the right part is also proven. 11217 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11218 CanonicalRHS, CanonicalFoundLHS, 11219 CanonicalFoundRHS); 11220 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11221 // Use implication: 11222 // x <s y && y <s 0 --> x <u y. 11223 // If we can prove the left part, the right part is also proven. 11224 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11225 CanonicalRHS, CanonicalFoundLHS, 11226 CanonicalFoundRHS); 11227 } 11228 11229 // Check if we can make progress by sharpening ranges. 11230 if (FoundPred == ICmpInst::ICMP_NE && 11231 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11232 11233 const SCEVConstant *C = nullptr; 11234 const SCEV *V = nullptr; 11235 11236 if (isa<SCEVConstant>(FoundLHS)) { 11237 C = cast<SCEVConstant>(FoundLHS); 11238 V = FoundRHS; 11239 } else { 11240 C = cast<SCEVConstant>(FoundRHS); 11241 V = FoundLHS; 11242 } 11243 11244 // The guarding predicate tells us that C != V. If the known range 11245 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11246 // range we consider has to correspond to same signedness as the 11247 // predicate we're interested in folding. 11248 11249 APInt Min = ICmpInst::isSigned(Pred) ? 11250 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11251 11252 if (Min == C->getAPInt()) { 11253 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11254 // This is true even if (Min + 1) wraps around -- in case of 11255 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11256 11257 APInt SharperMin = Min + 1; 11258 11259 switch (Pred) { 11260 case ICmpInst::ICMP_SGE: 11261 case ICmpInst::ICMP_UGE: 11262 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11263 // RHS, we're done. 11264 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11265 CtxI)) 11266 return true; 11267 LLVM_FALLTHROUGH; 11268 11269 case ICmpInst::ICMP_SGT: 11270 case ICmpInst::ICMP_UGT: 11271 // We know from the range information that (V `Pred` Min || 11272 // V == Min). We know from the guarding condition that !(V 11273 // == Min). This gives us 11274 // 11275 // V `Pred` Min || V == Min && !(V == Min) 11276 // => V `Pred` Min 11277 // 11278 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11279 11280 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11281 return true; 11282 break; 11283 11284 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11285 case ICmpInst::ICMP_SLE: 11286 case ICmpInst::ICMP_ULE: 11287 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11288 LHS, V, getConstant(SharperMin), CtxI)) 11289 return true; 11290 LLVM_FALLTHROUGH; 11291 11292 case ICmpInst::ICMP_SLT: 11293 case ICmpInst::ICMP_ULT: 11294 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11295 LHS, V, getConstant(Min), CtxI)) 11296 return true; 11297 break; 11298 11299 default: 11300 // No change 11301 break; 11302 } 11303 } 11304 } 11305 11306 // Check whether the actual condition is beyond sufficient. 11307 if (FoundPred == ICmpInst::ICMP_EQ) 11308 if (ICmpInst::isTrueWhenEqual(Pred)) 11309 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11310 return true; 11311 if (Pred == ICmpInst::ICMP_NE) 11312 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11313 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11314 return true; 11315 11316 // Otherwise assume the worst. 11317 return false; 11318 } 11319 11320 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11321 const SCEV *&L, const SCEV *&R, 11322 SCEV::NoWrapFlags &Flags) { 11323 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11324 if (!AE || AE->getNumOperands() != 2) 11325 return false; 11326 11327 L = AE->getOperand(0); 11328 R = AE->getOperand(1); 11329 Flags = AE->getNoWrapFlags(); 11330 return true; 11331 } 11332 11333 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11334 const SCEV *Less) { 11335 // We avoid subtracting expressions here because this function is usually 11336 // fairly deep in the call stack (i.e. is called many times). 11337 11338 // X - X = 0. 11339 if (More == Less) 11340 return APInt(getTypeSizeInBits(More->getType()), 0); 11341 11342 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11343 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11344 const auto *MAR = cast<SCEVAddRecExpr>(More); 11345 11346 if (LAR->getLoop() != MAR->getLoop()) 11347 return None; 11348 11349 // We look at affine expressions only; not for correctness but to keep 11350 // getStepRecurrence cheap. 11351 if (!LAR->isAffine() || !MAR->isAffine()) 11352 return None; 11353 11354 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11355 return None; 11356 11357 Less = LAR->getStart(); 11358 More = MAR->getStart(); 11359 11360 // fall through 11361 } 11362 11363 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11364 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11365 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11366 return M - L; 11367 } 11368 11369 SCEV::NoWrapFlags Flags; 11370 const SCEV *LLess = nullptr, *RLess = nullptr; 11371 const SCEV *LMore = nullptr, *RMore = nullptr; 11372 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11373 // Compare (X + C1) vs X. 11374 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11375 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11376 if (RLess == More) 11377 return -(C1->getAPInt()); 11378 11379 // Compare X vs (X + C2). 11380 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11381 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11382 if (RMore == Less) 11383 return C2->getAPInt(); 11384 11385 // Compare (X + C1) vs (X + C2). 11386 if (C1 && C2 && RLess == RMore) 11387 return C2->getAPInt() - C1->getAPInt(); 11388 11389 return None; 11390 } 11391 11392 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11393 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11394 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11395 // Try to recognize the following pattern: 11396 // 11397 // FoundRHS = ... 11398 // ... 11399 // loop: 11400 // FoundLHS = {Start,+,W} 11401 // context_bb: // Basic block from the same loop 11402 // known(Pred, FoundLHS, FoundRHS) 11403 // 11404 // If some predicate is known in the context of a loop, it is also known on 11405 // each iteration of this loop, including the first iteration. Therefore, in 11406 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11407 // prove the original pred using this fact. 11408 if (!CtxI) 11409 return false; 11410 const BasicBlock *ContextBB = CtxI->getParent(); 11411 // Make sure AR varies in the context block. 11412 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11413 const Loop *L = AR->getLoop(); 11414 // Make sure that context belongs to the loop and executes on 1st iteration 11415 // (if it ever executes at all). 11416 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11417 return false; 11418 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11419 return false; 11420 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11421 } 11422 11423 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11424 const Loop *L = AR->getLoop(); 11425 // Make sure that context belongs to the loop and executes on 1st iteration 11426 // (if it ever executes at all). 11427 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11428 return false; 11429 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11430 return false; 11431 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11432 } 11433 11434 return false; 11435 } 11436 11437 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11438 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11439 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11440 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11441 return false; 11442 11443 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11444 if (!AddRecLHS) 11445 return false; 11446 11447 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11448 if (!AddRecFoundLHS) 11449 return false; 11450 11451 // We'd like to let SCEV reason about control dependencies, so we constrain 11452 // both the inequalities to be about add recurrences on the same loop. This 11453 // way we can use isLoopEntryGuardedByCond later. 11454 11455 const Loop *L = AddRecFoundLHS->getLoop(); 11456 if (L != AddRecLHS->getLoop()) 11457 return false; 11458 11459 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11460 // 11461 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11462 // ... (2) 11463 // 11464 // Informal proof for (2), assuming (1) [*]: 11465 // 11466 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11467 // 11468 // Then 11469 // 11470 // FoundLHS s< FoundRHS s< INT_MIN - C 11471 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11472 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11473 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11474 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11475 // <=> FoundLHS + C s< FoundRHS + C 11476 // 11477 // [*]: (1) can be proved by ruling out overflow. 11478 // 11479 // [**]: This can be proved by analyzing all the four possibilities: 11480 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11481 // (A s>= 0, B s>= 0). 11482 // 11483 // Note: 11484 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11485 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11486 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11487 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11488 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11489 // C)". 11490 11491 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11492 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11493 if (!LDiff || !RDiff || *LDiff != *RDiff) 11494 return false; 11495 11496 if (LDiff->isMinValue()) 11497 return true; 11498 11499 APInt FoundRHSLimit; 11500 11501 if (Pred == CmpInst::ICMP_ULT) { 11502 FoundRHSLimit = -(*RDiff); 11503 } else { 11504 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11505 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11506 } 11507 11508 // Try to prove (1) or (2), as needed. 11509 return isAvailableAtLoopEntry(FoundRHS, L) && 11510 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11511 getConstant(FoundRHSLimit)); 11512 } 11513 11514 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11515 const SCEV *LHS, const SCEV *RHS, 11516 const SCEV *FoundLHS, 11517 const SCEV *FoundRHS, unsigned Depth) { 11518 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11519 11520 auto ClearOnExit = make_scope_exit([&]() { 11521 if (LPhi) { 11522 bool Erased = PendingMerges.erase(LPhi); 11523 assert(Erased && "Failed to erase LPhi!"); 11524 (void)Erased; 11525 } 11526 if (RPhi) { 11527 bool Erased = PendingMerges.erase(RPhi); 11528 assert(Erased && "Failed to erase RPhi!"); 11529 (void)Erased; 11530 } 11531 }); 11532 11533 // Find respective Phis and check that they are not being pending. 11534 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11535 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11536 if (!PendingMerges.insert(Phi).second) 11537 return false; 11538 LPhi = Phi; 11539 } 11540 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11541 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11542 // If we detect a loop of Phi nodes being processed by this method, for 11543 // example: 11544 // 11545 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11546 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11547 // 11548 // we don't want to deal with a case that complex, so return conservative 11549 // answer false. 11550 if (!PendingMerges.insert(Phi).second) 11551 return false; 11552 RPhi = Phi; 11553 } 11554 11555 // If none of LHS, RHS is a Phi, nothing to do here. 11556 if (!LPhi && !RPhi) 11557 return false; 11558 11559 // If there is a SCEVUnknown Phi we are interested in, make it left. 11560 if (!LPhi) { 11561 std::swap(LHS, RHS); 11562 std::swap(FoundLHS, FoundRHS); 11563 std::swap(LPhi, RPhi); 11564 Pred = ICmpInst::getSwappedPredicate(Pred); 11565 } 11566 11567 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11568 const BasicBlock *LBB = LPhi->getParent(); 11569 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11570 11571 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11572 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11573 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11574 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11575 }; 11576 11577 if (RPhi && RPhi->getParent() == LBB) { 11578 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11579 // If we compare two Phis from the same block, and for each entry block 11580 // the predicate is true for incoming values from this block, then the 11581 // predicate is also true for the Phis. 11582 for (const BasicBlock *IncBB : predecessors(LBB)) { 11583 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11584 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11585 if (!ProvedEasily(L, R)) 11586 return false; 11587 } 11588 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11589 // Case two: RHS is also a Phi from the same basic block, and it is an 11590 // AddRec. It means that there is a loop which has both AddRec and Unknown 11591 // PHIs, for it we can compare incoming values of AddRec from above the loop 11592 // and latch with their respective incoming values of LPhi. 11593 // TODO: Generalize to handle loops with many inputs in a header. 11594 if (LPhi->getNumIncomingValues() != 2) return false; 11595 11596 auto *RLoop = RAR->getLoop(); 11597 auto *Predecessor = RLoop->getLoopPredecessor(); 11598 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11599 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11600 if (!ProvedEasily(L1, RAR->getStart())) 11601 return false; 11602 auto *Latch = RLoop->getLoopLatch(); 11603 assert(Latch && "Loop with AddRec with no latch?"); 11604 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11605 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11606 return false; 11607 } else { 11608 // In all other cases go over inputs of LHS and compare each of them to RHS, 11609 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11610 // At this point RHS is either a non-Phi, or it is a Phi from some block 11611 // different from LBB. 11612 for (const BasicBlock *IncBB : predecessors(LBB)) { 11613 // Check that RHS is available in this block. 11614 if (!dominates(RHS, IncBB)) 11615 return false; 11616 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11617 // Make sure L does not refer to a value from a potentially previous 11618 // iteration of a loop. 11619 if (!properlyDominates(L, IncBB)) 11620 return false; 11621 if (!ProvedEasily(L, RHS)) 11622 return false; 11623 } 11624 } 11625 return true; 11626 } 11627 11628 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 11629 const SCEV *LHS, 11630 const SCEV *RHS, 11631 const SCEV *FoundLHS, 11632 const SCEV *FoundRHS) { 11633 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 11634 // sure that we are dealing with same LHS. 11635 if (RHS == FoundRHS) { 11636 std::swap(LHS, RHS); 11637 std::swap(FoundLHS, FoundRHS); 11638 Pred = ICmpInst::getSwappedPredicate(Pred); 11639 } 11640 if (LHS != FoundLHS) 11641 return false; 11642 11643 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 11644 if (!SUFoundRHS) 11645 return false; 11646 11647 Value *Shiftee, *ShiftValue; 11648 11649 using namespace PatternMatch; 11650 if (match(SUFoundRHS->getValue(), 11651 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 11652 auto *ShifteeS = getSCEV(Shiftee); 11653 // Prove one of the following: 11654 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 11655 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 11656 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11657 // ---> LHS <s RHS 11658 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11659 // ---> LHS <=s RHS 11660 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 11661 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 11662 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 11663 if (isKnownNonNegative(ShifteeS)) 11664 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 11665 } 11666 11667 return false; 11668 } 11669 11670 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11671 const SCEV *LHS, const SCEV *RHS, 11672 const SCEV *FoundLHS, 11673 const SCEV *FoundRHS, 11674 const Instruction *CtxI) { 11675 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11676 return true; 11677 11678 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11679 return true; 11680 11681 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11682 return true; 11683 11684 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11685 CtxI)) 11686 return true; 11687 11688 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11689 FoundLHS, FoundRHS); 11690 } 11691 11692 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11693 template <typename MinMaxExprType> 11694 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11695 const SCEV *Candidate) { 11696 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11697 if (!MinMaxExpr) 11698 return false; 11699 11700 return is_contained(MinMaxExpr->operands(), Candidate); 11701 } 11702 11703 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11704 ICmpInst::Predicate Pred, 11705 const SCEV *LHS, const SCEV *RHS) { 11706 // If both sides are affine addrecs for the same loop, with equal 11707 // steps, and we know the recurrences don't wrap, then we only 11708 // need to check the predicate on the starting values. 11709 11710 if (!ICmpInst::isRelational(Pred)) 11711 return false; 11712 11713 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11714 if (!LAR) 11715 return false; 11716 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11717 if (!RAR) 11718 return false; 11719 if (LAR->getLoop() != RAR->getLoop()) 11720 return false; 11721 if (!LAR->isAffine() || !RAR->isAffine()) 11722 return false; 11723 11724 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11725 return false; 11726 11727 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11728 SCEV::FlagNSW : SCEV::FlagNUW; 11729 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11730 return false; 11731 11732 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11733 } 11734 11735 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11736 /// expression? 11737 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11738 ICmpInst::Predicate Pred, 11739 const SCEV *LHS, const SCEV *RHS) { 11740 switch (Pred) { 11741 default: 11742 return false; 11743 11744 case ICmpInst::ICMP_SGE: 11745 std::swap(LHS, RHS); 11746 LLVM_FALLTHROUGH; 11747 case ICmpInst::ICMP_SLE: 11748 return 11749 // min(A, ...) <= A 11750 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11751 // A <= max(A, ...) 11752 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11753 11754 case ICmpInst::ICMP_UGE: 11755 std::swap(LHS, RHS); 11756 LLVM_FALLTHROUGH; 11757 case ICmpInst::ICMP_ULE: 11758 return 11759 // min(A, ...) <= A 11760 // FIXME: what about umin_seq? 11761 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11762 // A <= max(A, ...) 11763 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11764 } 11765 11766 llvm_unreachable("covered switch fell through?!"); 11767 } 11768 11769 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11770 const SCEV *LHS, const SCEV *RHS, 11771 const SCEV *FoundLHS, 11772 const SCEV *FoundRHS, 11773 unsigned Depth) { 11774 assert(getTypeSizeInBits(LHS->getType()) == 11775 getTypeSizeInBits(RHS->getType()) && 11776 "LHS and RHS have different sizes?"); 11777 assert(getTypeSizeInBits(FoundLHS->getType()) == 11778 getTypeSizeInBits(FoundRHS->getType()) && 11779 "FoundLHS and FoundRHS have different sizes?"); 11780 // We want to avoid hurting the compile time with analysis of too big trees. 11781 if (Depth > MaxSCEVOperationsImplicationDepth) 11782 return false; 11783 11784 // We only want to work with GT comparison so far. 11785 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11786 Pred = CmpInst::getSwappedPredicate(Pred); 11787 std::swap(LHS, RHS); 11788 std::swap(FoundLHS, FoundRHS); 11789 } 11790 11791 // For unsigned, try to reduce it to corresponding signed comparison. 11792 if (Pred == ICmpInst::ICMP_UGT) 11793 // We can replace unsigned predicate with its signed counterpart if all 11794 // involved values are non-negative. 11795 // TODO: We could have better support for unsigned. 11796 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11797 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11798 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11799 // use this fact to prove that LHS and RHS are non-negative. 11800 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11801 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11802 FoundRHS) && 11803 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11804 FoundRHS)) 11805 Pred = ICmpInst::ICMP_SGT; 11806 } 11807 11808 if (Pred != ICmpInst::ICMP_SGT) 11809 return false; 11810 11811 auto GetOpFromSExt = [&](const SCEV *S) { 11812 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11813 return Ext->getOperand(); 11814 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11815 // the constant in some cases. 11816 return S; 11817 }; 11818 11819 // Acquire values from extensions. 11820 auto *OrigLHS = LHS; 11821 auto *OrigFoundLHS = FoundLHS; 11822 LHS = GetOpFromSExt(LHS); 11823 FoundLHS = GetOpFromSExt(FoundLHS); 11824 11825 // Is the SGT predicate can be proved trivially or using the found context. 11826 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11827 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11828 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11829 FoundRHS, Depth + 1); 11830 }; 11831 11832 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11833 // We want to avoid creation of any new non-constant SCEV. Since we are 11834 // going to compare the operands to RHS, we should be certain that we don't 11835 // need any size extensions for this. So let's decline all cases when the 11836 // sizes of types of LHS and RHS do not match. 11837 // TODO: Maybe try to get RHS from sext to catch more cases? 11838 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11839 return false; 11840 11841 // Should not overflow. 11842 if (!LHSAddExpr->hasNoSignedWrap()) 11843 return false; 11844 11845 auto *LL = LHSAddExpr->getOperand(0); 11846 auto *LR = LHSAddExpr->getOperand(1); 11847 auto *MinusOne = getMinusOne(RHS->getType()); 11848 11849 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11850 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11851 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11852 }; 11853 // Try to prove the following rule: 11854 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11855 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11856 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11857 return true; 11858 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11859 Value *LL, *LR; 11860 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11861 11862 using namespace llvm::PatternMatch; 11863 11864 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11865 // Rules for division. 11866 // We are going to perform some comparisons with Denominator and its 11867 // derivative expressions. In general case, creating a SCEV for it may 11868 // lead to a complex analysis of the entire graph, and in particular it 11869 // can request trip count recalculation for the same loop. This would 11870 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11871 // this, we only want to create SCEVs that are constants in this section. 11872 // So we bail if Denominator is not a constant. 11873 if (!isa<ConstantInt>(LR)) 11874 return false; 11875 11876 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11877 11878 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11879 // then a SCEV for the numerator already exists and matches with FoundLHS. 11880 auto *Numerator = getExistingSCEV(LL); 11881 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11882 return false; 11883 11884 // Make sure that the numerator matches with FoundLHS and the denominator 11885 // is positive. 11886 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11887 return false; 11888 11889 auto *DTy = Denominator->getType(); 11890 auto *FRHSTy = FoundRHS->getType(); 11891 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11892 // One of types is a pointer and another one is not. We cannot extend 11893 // them properly to a wider type, so let us just reject this case. 11894 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11895 // to avoid this check. 11896 return false; 11897 11898 // Given that: 11899 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11900 auto *WTy = getWiderType(DTy, FRHSTy); 11901 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11902 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11903 11904 // Try to prove the following rule: 11905 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11906 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11907 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11908 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11909 if (isKnownNonPositive(RHS) && 11910 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11911 return true; 11912 11913 // Try to prove the following rule: 11914 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11915 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11916 // If we divide it by Denominator > 2, then: 11917 // 1. If FoundLHS is negative, then the result is 0. 11918 // 2. If FoundLHS is non-negative, then the result is non-negative. 11919 // Anyways, the result is non-negative. 11920 auto *MinusOne = getMinusOne(WTy); 11921 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11922 if (isKnownNegative(RHS) && 11923 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11924 return true; 11925 } 11926 } 11927 11928 // If our expression contained SCEVUnknown Phis, and we split it down and now 11929 // need to prove something for them, try to prove the predicate for every 11930 // possible incoming values of those Phis. 11931 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11932 return true; 11933 11934 return false; 11935 } 11936 11937 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11938 const SCEV *LHS, const SCEV *RHS) { 11939 // zext x u<= sext x, sext x s<= zext x 11940 switch (Pred) { 11941 case ICmpInst::ICMP_SGE: 11942 std::swap(LHS, RHS); 11943 LLVM_FALLTHROUGH; 11944 case ICmpInst::ICMP_SLE: { 11945 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11946 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11947 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11948 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11949 return true; 11950 break; 11951 } 11952 case ICmpInst::ICMP_UGE: 11953 std::swap(LHS, RHS); 11954 LLVM_FALLTHROUGH; 11955 case ICmpInst::ICMP_ULE: { 11956 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11957 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11958 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11959 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11960 return true; 11961 break; 11962 } 11963 default: 11964 break; 11965 }; 11966 return false; 11967 } 11968 11969 bool 11970 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11971 const SCEV *LHS, const SCEV *RHS) { 11972 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11973 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11974 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11975 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11976 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11977 } 11978 11979 bool 11980 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11981 const SCEV *LHS, const SCEV *RHS, 11982 const SCEV *FoundLHS, 11983 const SCEV *FoundRHS) { 11984 switch (Pred) { 11985 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11986 case ICmpInst::ICMP_EQ: 11987 case ICmpInst::ICMP_NE: 11988 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11989 return true; 11990 break; 11991 case ICmpInst::ICMP_SLT: 11992 case ICmpInst::ICMP_SLE: 11993 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11994 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11995 return true; 11996 break; 11997 case ICmpInst::ICMP_SGT: 11998 case ICmpInst::ICMP_SGE: 11999 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 12000 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 12001 return true; 12002 break; 12003 case ICmpInst::ICMP_ULT: 12004 case ICmpInst::ICMP_ULE: 12005 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12006 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12007 return true; 12008 break; 12009 case ICmpInst::ICMP_UGT: 12010 case ICmpInst::ICMP_UGE: 12011 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12012 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12013 return true; 12014 break; 12015 } 12016 12017 // Maybe it can be proved via operations? 12018 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12019 return true; 12020 12021 return false; 12022 } 12023 12024 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12025 const SCEV *LHS, 12026 const SCEV *RHS, 12027 const SCEV *FoundLHS, 12028 const SCEV *FoundRHS) { 12029 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12030 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12031 // reduce the compile time impact of this optimization. 12032 return false; 12033 12034 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12035 if (!Addend) 12036 return false; 12037 12038 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12039 12040 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12041 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 12042 ConstantRange FoundLHSRange = 12043 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 12044 12045 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12046 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12047 12048 // We can also compute the range of values for `LHS` that satisfy the 12049 // consequent, "`LHS` `Pred` `RHS`": 12050 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12051 // The antecedent implies the consequent if every value of `LHS` that 12052 // satisfies the antecedent also satisfies the consequent. 12053 return LHSRange.icmp(Pred, ConstRHS); 12054 } 12055 12056 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12057 bool IsSigned) { 12058 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12059 12060 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12061 const SCEV *One = getOne(Stride->getType()); 12062 12063 if (IsSigned) { 12064 APInt MaxRHS = getSignedRangeMax(RHS); 12065 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12066 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12067 12068 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12069 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12070 } 12071 12072 APInt MaxRHS = getUnsignedRangeMax(RHS); 12073 APInt MaxValue = APInt::getMaxValue(BitWidth); 12074 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12075 12076 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12077 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12078 } 12079 12080 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12081 bool IsSigned) { 12082 12083 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12084 const SCEV *One = getOne(Stride->getType()); 12085 12086 if (IsSigned) { 12087 APInt MinRHS = getSignedRangeMin(RHS); 12088 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12089 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12090 12091 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12092 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12093 } 12094 12095 APInt MinRHS = getUnsignedRangeMin(RHS); 12096 APInt MinValue = APInt::getMinValue(BitWidth); 12097 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12098 12099 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12100 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12101 } 12102 12103 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12104 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12105 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12106 // expression fixes the case of N=0. 12107 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12108 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12109 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12110 } 12111 12112 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12113 const SCEV *Stride, 12114 const SCEV *End, 12115 unsigned BitWidth, 12116 bool IsSigned) { 12117 // The logic in this function assumes we can represent a positive stride. 12118 // If we can't, the backedge-taken count must be zero. 12119 if (IsSigned && BitWidth == 1) 12120 return getZero(Stride->getType()); 12121 12122 // This code has only been closely audited for negative strides in the 12123 // unsigned comparison case, it may be correct for signed comparison, but 12124 // that needs to be established. 12125 assert((!IsSigned || !isKnownNonPositive(Stride)) && 12126 "Stride is expected strictly positive for signed case!"); 12127 12128 // Calculate the maximum backedge count based on the range of values 12129 // permitted by Start, End, and Stride. 12130 APInt MinStart = 12131 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12132 12133 APInt MinStride = 12134 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12135 12136 // We assume either the stride is positive, or the backedge-taken count 12137 // is zero. So force StrideForMaxBECount to be at least one. 12138 APInt One(BitWidth, 1); 12139 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12140 : APIntOps::umax(One, MinStride); 12141 12142 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12143 : APInt::getMaxValue(BitWidth); 12144 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12145 12146 // Although End can be a MAX expression we estimate MaxEnd considering only 12147 // the case End = RHS of the loop termination condition. This is safe because 12148 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12149 // taken count. 12150 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12151 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12152 12153 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12154 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12155 : APIntOps::umax(MaxEnd, MinStart); 12156 12157 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12158 getConstant(StrideForMaxBECount) /* Step */); 12159 } 12160 12161 ScalarEvolution::ExitLimit 12162 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12163 const Loop *L, bool IsSigned, 12164 bool ControlsExit, bool AllowPredicates) { 12165 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12166 12167 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12168 bool PredicatedIV = false; 12169 12170 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12171 // Can we prove this loop *must* be UB if overflow of IV occurs? 12172 // Reasoning goes as follows: 12173 // * Suppose the IV did self wrap. 12174 // * If Stride evenly divides the iteration space, then once wrap 12175 // occurs, the loop must revisit the same values. 12176 // * We know that RHS is invariant, and that none of those values 12177 // caused this exit to be taken previously. Thus, this exit is 12178 // dynamically dead. 12179 // * If this is the sole exit, then a dead exit implies the loop 12180 // must be infinite if there are no abnormal exits. 12181 // * If the loop were infinite, then it must either not be mustprogress 12182 // or have side effects. Otherwise, it must be UB. 12183 // * It can't (by assumption), be UB so we have contradicted our 12184 // premise and can conclude the IV did not in fact self-wrap. 12185 if (!isLoopInvariant(RHS, L)) 12186 return false; 12187 12188 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12189 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12190 return false; 12191 12192 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 12193 return false; 12194 12195 return loopIsFiniteByAssumption(L); 12196 }; 12197 12198 if (!IV) { 12199 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12200 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12201 if (AR && AR->getLoop() == L && AR->isAffine()) { 12202 auto canProveNUW = [&]() { 12203 if (!isLoopInvariant(RHS, L)) 12204 return false; 12205 12206 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12207 // We need the sequence defined by AR to strictly increase in the 12208 // unsigned integer domain for the logic below to hold. 12209 return false; 12210 12211 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12212 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12213 // If RHS <=u Limit, then there must exist a value V in the sequence 12214 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12215 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12216 // overflow occurs. This limit also implies that a signed comparison 12217 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12218 // the high bits on both sides must be zero. 12219 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12220 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12221 Limit = Limit.zext(OuterBitWidth); 12222 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12223 }; 12224 auto Flags = AR->getNoWrapFlags(); 12225 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12226 Flags = setFlags(Flags, SCEV::FlagNUW); 12227 12228 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12229 if (AR->hasNoUnsignedWrap()) { 12230 // Emulate what getZeroExtendExpr would have done during construction 12231 // if we'd been able to infer the fact just above at that time. 12232 const SCEV *Step = AR->getStepRecurrence(*this); 12233 Type *Ty = ZExt->getType(); 12234 auto *S = getAddRecExpr( 12235 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12236 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12237 IV = dyn_cast<SCEVAddRecExpr>(S); 12238 } 12239 } 12240 } 12241 } 12242 12243 12244 if (!IV && AllowPredicates) { 12245 // Try to make this an AddRec using runtime tests, in the first X 12246 // iterations of this loop, where X is the SCEV expression found by the 12247 // algorithm below. 12248 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12249 PredicatedIV = true; 12250 } 12251 12252 // Avoid weird loops 12253 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12254 return getCouldNotCompute(); 12255 12256 // A precondition of this method is that the condition being analyzed 12257 // reaches an exiting branch which dominates the latch. Given that, we can 12258 // assume that an increment which violates the nowrap specification and 12259 // produces poison must cause undefined behavior when the resulting poison 12260 // value is branched upon and thus we can conclude that the backedge is 12261 // taken no more often than would be required to produce that poison value. 12262 // Note that a well defined loop can exit on the iteration which violates 12263 // the nowrap specification if there is another exit (either explicit or 12264 // implicit/exceptional) which causes the loop to execute before the 12265 // exiting instruction we're analyzing would trigger UB. 12266 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12267 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12268 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12269 12270 const SCEV *Stride = IV->getStepRecurrence(*this); 12271 12272 bool PositiveStride = isKnownPositive(Stride); 12273 12274 // Avoid negative or zero stride values. 12275 if (!PositiveStride) { 12276 // We can compute the correct backedge taken count for loops with unknown 12277 // strides if we can prove that the loop is not an infinite loop with side 12278 // effects. Here's the loop structure we are trying to handle - 12279 // 12280 // i = start 12281 // do { 12282 // A[i] = i; 12283 // i += s; 12284 // } while (i < end); 12285 // 12286 // The backedge taken count for such loops is evaluated as - 12287 // (max(end, start + stride) - start - 1) /u stride 12288 // 12289 // The additional preconditions that we need to check to prove correctness 12290 // of the above formula is as follows - 12291 // 12292 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12293 // NoWrap flag). 12294 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12295 // no side effects within the loop) 12296 // c) loop has a single static exit (with no abnormal exits) 12297 // 12298 // Precondition a) implies that if the stride is negative, this is a single 12299 // trip loop. The backedge taken count formula reduces to zero in this case. 12300 // 12301 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12302 // then a zero stride means the backedge can't be taken without executing 12303 // undefined behavior. 12304 // 12305 // The positive stride case is the same as isKnownPositive(Stride) returning 12306 // true (original behavior of the function). 12307 // 12308 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12309 !loopHasNoAbnormalExits(L)) 12310 return getCouldNotCompute(); 12311 12312 // This bailout is protecting the logic in computeMaxBECountForLT which 12313 // has not yet been sufficiently auditted or tested with negative strides. 12314 // We used to filter out all known-non-positive cases here, we're in the 12315 // process of being less restrictive bit by bit. 12316 if (IsSigned && isKnownNonPositive(Stride)) 12317 return getCouldNotCompute(); 12318 12319 if (!isKnownNonZero(Stride)) { 12320 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12321 // if it might eventually be greater than start and if so, on which 12322 // iteration. We can't even produce a useful upper bound. 12323 if (!isLoopInvariant(RHS, L)) 12324 return getCouldNotCompute(); 12325 12326 // We allow a potentially zero stride, but we need to divide by stride 12327 // below. Since the loop can't be infinite and this check must control 12328 // the sole exit, we can infer the exit must be taken on the first 12329 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12330 // we know the numerator in the divides below must be zero, so we can 12331 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12332 // and produce the right result. 12333 // FIXME: Handle the case where Stride is poison? 12334 auto wouldZeroStrideBeUB = [&]() { 12335 // Proof by contradiction. Suppose the stride were zero. If we can 12336 // prove that the backedge *is* taken on the first iteration, then since 12337 // we know this condition controls the sole exit, we must have an 12338 // infinite loop. We can't have a (well defined) infinite loop per 12339 // check just above. 12340 // Note: The (Start - Stride) term is used to get the start' term from 12341 // (start' + stride,+,stride). Remember that we only care about the 12342 // result of this expression when stride == 0 at runtime. 12343 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12344 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12345 }; 12346 if (!wouldZeroStrideBeUB()) { 12347 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12348 } 12349 } 12350 } else if (!Stride->isOne() && !NoWrap) { 12351 auto isUBOnWrap = [&]() { 12352 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12353 // follows trivially from the fact that every (un)signed-wrapped, but 12354 // not self-wrapped value must be LT than the last value before 12355 // (un)signed wrap. Since we know that last value didn't exit, nor 12356 // will any smaller one. 12357 return canAssumeNoSelfWrap(IV); 12358 }; 12359 12360 // Avoid proven overflow cases: this will ensure that the backedge taken 12361 // count will not generate any unsigned overflow. Relaxed no-overflow 12362 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12363 // undefined behaviors like the case of C language. 12364 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12365 return getCouldNotCompute(); 12366 } 12367 12368 // On all paths just preceeding, we established the following invariant: 12369 // IV can be assumed not to overflow up to and including the exiting 12370 // iteration. We proved this in one of two ways: 12371 // 1) We can show overflow doesn't occur before the exiting iteration 12372 // 1a) canIVOverflowOnLT, and b) step of one 12373 // 2) We can show that if overflow occurs, the loop must execute UB 12374 // before any possible exit. 12375 // Note that we have not yet proved RHS invariant (in general). 12376 12377 const SCEV *Start = IV->getStart(); 12378 12379 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12380 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12381 // Use integer-typed versions for actual computation; we can't subtract 12382 // pointers in general. 12383 const SCEV *OrigStart = Start; 12384 const SCEV *OrigRHS = RHS; 12385 if (Start->getType()->isPointerTy()) { 12386 Start = getLosslessPtrToIntExpr(Start); 12387 if (isa<SCEVCouldNotCompute>(Start)) 12388 return Start; 12389 } 12390 if (RHS->getType()->isPointerTy()) { 12391 RHS = getLosslessPtrToIntExpr(RHS); 12392 if (isa<SCEVCouldNotCompute>(RHS)) 12393 return RHS; 12394 } 12395 12396 // When the RHS is not invariant, we do not know the end bound of the loop and 12397 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12398 // calculate the MaxBECount, given the start, stride and max value for the end 12399 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12400 // checked above). 12401 if (!isLoopInvariant(RHS, L)) { 12402 const SCEV *MaxBECount = computeMaxBECountForLT( 12403 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12404 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12405 false /*MaxOrZero*/, Predicates); 12406 } 12407 12408 // We use the expression (max(End,Start)-Start)/Stride to describe the 12409 // backedge count, as if the backedge is taken at least once max(End,Start) 12410 // is End and so the result is as above, and if not max(End,Start) is Start 12411 // so we get a backedge count of zero. 12412 const SCEV *BECount = nullptr; 12413 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12414 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12415 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12416 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12417 // Can we prove (max(RHS,Start) > Start - Stride? 12418 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12419 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12420 // In this case, we can use a refined formula for computing backedge taken 12421 // count. The general formula remains: 12422 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12423 // We want to use the alternate formula: 12424 // "((End - 1) - (Start - Stride)) /u Stride" 12425 // Let's do a quick case analysis to show these are equivalent under 12426 // our precondition that max(RHS,Start) > Start - Stride. 12427 // * For RHS <= Start, the backedge-taken count must be zero. 12428 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12429 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12430 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12431 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12432 // this to the stride of 1 case. 12433 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12434 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12435 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12436 // "((RHS - (Start - Stride) - 1) /u Stride". 12437 // Our preconditions trivially imply no overflow in that form. 12438 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12439 const SCEV *Numerator = 12440 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12441 BECount = getUDivExpr(Numerator, Stride); 12442 } 12443 12444 const SCEV *BECountIfBackedgeTaken = nullptr; 12445 if (!BECount) { 12446 auto canProveRHSGreaterThanEqualStart = [&]() { 12447 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12448 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12449 return true; 12450 12451 // (RHS > Start - 1) implies RHS >= Start. 12452 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12453 // "Start - 1" doesn't overflow. 12454 // * For signed comparison, if Start - 1 does overflow, it's equal 12455 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12456 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12457 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12458 // 12459 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12460 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12461 auto *StartMinusOne = getAddExpr(OrigStart, 12462 getMinusOne(OrigStart->getType())); 12463 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12464 }; 12465 12466 // If we know that RHS >= Start in the context of loop, then we know that 12467 // max(RHS, Start) = RHS at this point. 12468 const SCEV *End; 12469 if (canProveRHSGreaterThanEqualStart()) { 12470 End = RHS; 12471 } else { 12472 // If RHS < Start, the backedge will be taken zero times. So in 12473 // general, we can write the backedge-taken count as: 12474 // 12475 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12476 // 12477 // We convert it to the following to make it more convenient for SCEV: 12478 // 12479 // ceil(max(RHS, Start) - Start) / Stride 12480 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12481 12482 // See what would happen if we assume the backedge is taken. This is 12483 // used to compute MaxBECount. 12484 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12485 } 12486 12487 // At this point, we know: 12488 // 12489 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12490 // 2. The index variable doesn't overflow. 12491 // 12492 // Therefore, we know N exists such that 12493 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12494 // doesn't overflow. 12495 // 12496 // Using this information, try to prove whether the addition in 12497 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12498 const SCEV *One = getOne(Stride->getType()); 12499 bool MayAddOverflow = [&] { 12500 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12501 if (StrideC->getAPInt().isPowerOf2()) { 12502 // Suppose Stride is a power of two, and Start/End are unsigned 12503 // integers. Let UMAX be the largest representable unsigned 12504 // integer. 12505 // 12506 // By the preconditions of this function, we know 12507 // "(Start + Stride * N) >= End", and this doesn't overflow. 12508 // As a formula: 12509 // 12510 // End <= (Start + Stride * N) <= UMAX 12511 // 12512 // Subtracting Start from all the terms: 12513 // 12514 // End - Start <= Stride * N <= UMAX - Start 12515 // 12516 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12517 // 12518 // End - Start <= Stride * N <= UMAX 12519 // 12520 // Stride * N is a multiple of Stride. Therefore, 12521 // 12522 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12523 // 12524 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12525 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12526 // 12527 // End - Start <= Stride * N <= UMAX - Stride - 1 12528 // 12529 // Dropping the middle term: 12530 // 12531 // End - Start <= UMAX - Stride - 1 12532 // 12533 // Adding Stride - 1 to both sides: 12534 // 12535 // (End - Start) + (Stride - 1) <= UMAX 12536 // 12537 // In other words, the addition doesn't have unsigned overflow. 12538 // 12539 // A similar proof works if we treat Start/End as signed values. 12540 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12541 // use signed max instead of unsigned max. Note that we're trying 12542 // to prove a lack of unsigned overflow in either case. 12543 return false; 12544 } 12545 } 12546 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12547 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12548 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12549 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12550 // 12551 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12552 return false; 12553 } 12554 return true; 12555 }(); 12556 12557 const SCEV *Delta = getMinusSCEV(End, Start); 12558 if (!MayAddOverflow) { 12559 // floor((D + (S - 1)) / S) 12560 // We prefer this formulation if it's legal because it's fewer operations. 12561 BECount = 12562 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12563 } else { 12564 BECount = getUDivCeilSCEV(Delta, Stride); 12565 } 12566 } 12567 12568 const SCEV *MaxBECount; 12569 bool MaxOrZero = false; 12570 if (isa<SCEVConstant>(BECount)) { 12571 MaxBECount = BECount; 12572 } else if (BECountIfBackedgeTaken && 12573 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12574 // If we know exactly how many times the backedge will be taken if it's 12575 // taken at least once, then the backedge count will either be that or 12576 // zero. 12577 MaxBECount = BECountIfBackedgeTaken; 12578 MaxOrZero = true; 12579 } else { 12580 MaxBECount = computeMaxBECountForLT( 12581 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12582 } 12583 12584 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12585 !isa<SCEVCouldNotCompute>(BECount)) 12586 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12587 12588 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12589 } 12590 12591 ScalarEvolution::ExitLimit 12592 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12593 const Loop *L, bool IsSigned, 12594 bool ControlsExit, bool AllowPredicates) { 12595 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12596 // We handle only IV > Invariant 12597 if (!isLoopInvariant(RHS, L)) 12598 return getCouldNotCompute(); 12599 12600 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12601 if (!IV && AllowPredicates) 12602 // Try to make this an AddRec using runtime tests, in the first X 12603 // iterations of this loop, where X is the SCEV expression found by the 12604 // algorithm below. 12605 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12606 12607 // Avoid weird loops 12608 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12609 return getCouldNotCompute(); 12610 12611 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12612 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12613 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12614 12615 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12616 12617 // Avoid negative or zero stride values 12618 if (!isKnownPositive(Stride)) 12619 return getCouldNotCompute(); 12620 12621 // Avoid proven overflow cases: this will ensure that the backedge taken count 12622 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12623 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12624 // behaviors like the case of C language. 12625 if (!Stride->isOne() && !NoWrap) 12626 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12627 return getCouldNotCompute(); 12628 12629 const SCEV *Start = IV->getStart(); 12630 const SCEV *End = RHS; 12631 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12632 // If we know that Start >= RHS in the context of loop, then we know that 12633 // min(RHS, Start) = RHS at this point. 12634 if (isLoopEntryGuardedByCond( 12635 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12636 End = RHS; 12637 else 12638 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12639 } 12640 12641 if (Start->getType()->isPointerTy()) { 12642 Start = getLosslessPtrToIntExpr(Start); 12643 if (isa<SCEVCouldNotCompute>(Start)) 12644 return Start; 12645 } 12646 if (End->getType()->isPointerTy()) { 12647 End = getLosslessPtrToIntExpr(End); 12648 if (isa<SCEVCouldNotCompute>(End)) 12649 return End; 12650 } 12651 12652 // Compute ((Start - End) + (Stride - 1)) / Stride. 12653 // FIXME: This can overflow. Holding off on fixing this for now; 12654 // howManyGreaterThans will hopefully be gone soon. 12655 const SCEV *One = getOne(Stride->getType()); 12656 const SCEV *BECount = getUDivExpr( 12657 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12658 12659 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12660 : getUnsignedRangeMax(Start); 12661 12662 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12663 : getUnsignedRangeMin(Stride); 12664 12665 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12666 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12667 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12668 12669 // Although End can be a MIN expression we estimate MinEnd considering only 12670 // the case End = RHS. This is safe because in the other case (Start - End) 12671 // is zero, leading to a zero maximum backedge taken count. 12672 APInt MinEnd = 12673 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12674 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12675 12676 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12677 ? BECount 12678 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12679 getConstant(MinStride)); 12680 12681 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12682 MaxBECount = BECount; 12683 12684 return ExitLimit(BECount, MaxBECount, false, Predicates); 12685 } 12686 12687 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12688 ScalarEvolution &SE) const { 12689 if (Range.isFullSet()) // Infinite loop. 12690 return SE.getCouldNotCompute(); 12691 12692 // If the start is a non-zero constant, shift the range to simplify things. 12693 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12694 if (!SC->getValue()->isZero()) { 12695 SmallVector<const SCEV *, 4> Operands(operands()); 12696 Operands[0] = SE.getZero(SC->getType()); 12697 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12698 getNoWrapFlags(FlagNW)); 12699 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12700 return ShiftedAddRec->getNumIterationsInRange( 12701 Range.subtract(SC->getAPInt()), SE); 12702 // This is strange and shouldn't happen. 12703 return SE.getCouldNotCompute(); 12704 } 12705 12706 // The only time we can solve this is when we have all constant indices. 12707 // Otherwise, we cannot determine the overflow conditions. 12708 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12709 return SE.getCouldNotCompute(); 12710 12711 // Okay at this point we know that all elements of the chrec are constants and 12712 // that the start element is zero. 12713 12714 // First check to see if the range contains zero. If not, the first 12715 // iteration exits. 12716 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12717 if (!Range.contains(APInt(BitWidth, 0))) 12718 return SE.getZero(getType()); 12719 12720 if (isAffine()) { 12721 // If this is an affine expression then we have this situation: 12722 // Solve {0,+,A} in Range === Ax in Range 12723 12724 // We know that zero is in the range. If A is positive then we know that 12725 // the upper value of the range must be the first possible exit value. 12726 // If A is negative then the lower of the range is the last possible loop 12727 // value. Also note that we already checked for a full range. 12728 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12729 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12730 12731 // The exit value should be (End+A)/A. 12732 APInt ExitVal = (End + A).udiv(A); 12733 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12734 12735 // Evaluate at the exit value. If we really did fall out of the valid 12736 // range, then we computed our trip count, otherwise wrap around or other 12737 // things must have happened. 12738 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12739 if (Range.contains(Val->getValue())) 12740 return SE.getCouldNotCompute(); // Something strange happened 12741 12742 // Ensure that the previous value is in the range. 12743 assert(Range.contains( 12744 EvaluateConstantChrecAtConstant(this, 12745 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12746 "Linear scev computation is off in a bad way!"); 12747 return SE.getConstant(ExitValue); 12748 } 12749 12750 if (isQuadratic()) { 12751 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12752 return SE.getConstant(S.getValue()); 12753 } 12754 12755 return SE.getCouldNotCompute(); 12756 } 12757 12758 const SCEVAddRecExpr * 12759 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12760 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12761 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12762 // but in this case we cannot guarantee that the value returned will be an 12763 // AddRec because SCEV does not have a fixed point where it stops 12764 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12765 // may happen if we reach arithmetic depth limit while simplifying. So we 12766 // construct the returned value explicitly. 12767 SmallVector<const SCEV *, 3> Ops; 12768 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12769 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12770 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12771 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12772 // We know that the last operand is not a constant zero (otherwise it would 12773 // have been popped out earlier). This guarantees us that if the result has 12774 // the same last operand, then it will also not be popped out, meaning that 12775 // the returned value will be an AddRec. 12776 const SCEV *Last = getOperand(getNumOperands() - 1); 12777 assert(!Last->isZero() && "Recurrency with zero step?"); 12778 Ops.push_back(Last); 12779 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12780 SCEV::FlagAnyWrap)); 12781 } 12782 12783 // Return true when S contains at least an undef value. 12784 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12785 return SCEVExprContains(S, [](const SCEV *S) { 12786 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12787 return isa<UndefValue>(SU->getValue()); 12788 return false; 12789 }); 12790 } 12791 12792 /// Return the size of an element read or written by Inst. 12793 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12794 Type *Ty; 12795 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12796 Ty = Store->getValueOperand()->getType(); 12797 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12798 Ty = Load->getType(); 12799 else 12800 return nullptr; 12801 12802 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12803 return getSizeOfExpr(ETy, Ty); 12804 } 12805 12806 //===----------------------------------------------------------------------===// 12807 // SCEVCallbackVH Class Implementation 12808 //===----------------------------------------------------------------------===// 12809 12810 void ScalarEvolution::SCEVCallbackVH::deleted() { 12811 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12812 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12813 SE->ConstantEvolutionLoopExitValue.erase(PN); 12814 SE->eraseValueFromMap(getValPtr()); 12815 // this now dangles! 12816 } 12817 12818 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12819 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12820 12821 // Forget all the expressions associated with users of the old value, 12822 // so that future queries will recompute the expressions using the new 12823 // value. 12824 Value *Old = getValPtr(); 12825 SmallVector<User *, 16> Worklist(Old->users()); 12826 SmallPtrSet<User *, 8> Visited; 12827 while (!Worklist.empty()) { 12828 User *U = Worklist.pop_back_val(); 12829 // Deleting the Old value will cause this to dangle. Postpone 12830 // that until everything else is done. 12831 if (U == Old) 12832 continue; 12833 if (!Visited.insert(U).second) 12834 continue; 12835 if (PHINode *PN = dyn_cast<PHINode>(U)) 12836 SE->ConstantEvolutionLoopExitValue.erase(PN); 12837 SE->eraseValueFromMap(U); 12838 llvm::append_range(Worklist, U->users()); 12839 } 12840 // Delete the Old value. 12841 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12842 SE->ConstantEvolutionLoopExitValue.erase(PN); 12843 SE->eraseValueFromMap(Old); 12844 // this now dangles! 12845 } 12846 12847 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12848 : CallbackVH(V), SE(se) {} 12849 12850 //===----------------------------------------------------------------------===// 12851 // ScalarEvolution Class Implementation 12852 //===----------------------------------------------------------------------===// 12853 12854 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12855 AssumptionCache &AC, DominatorTree &DT, 12856 LoopInfo &LI) 12857 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12858 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12859 LoopDispositions(64), BlockDispositions(64) { 12860 // To use guards for proving predicates, we need to scan every instruction in 12861 // relevant basic blocks, and not just terminators. Doing this is a waste of 12862 // time if the IR does not actually contain any calls to 12863 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12864 // 12865 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12866 // to _add_ guards to the module when there weren't any before, and wants 12867 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12868 // efficient in lieu of being smart in that rather obscure case. 12869 12870 auto *GuardDecl = F.getParent()->getFunction( 12871 Intrinsic::getName(Intrinsic::experimental_guard)); 12872 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12873 } 12874 12875 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12876 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12877 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12878 ValueExprMap(std::move(Arg.ValueExprMap)), 12879 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12880 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12881 PendingMerges(std::move(Arg.PendingMerges)), 12882 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12883 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12884 PredicatedBackedgeTakenCounts( 12885 std::move(Arg.PredicatedBackedgeTakenCounts)), 12886 BECountUsers(std::move(Arg.BECountUsers)), 12887 ConstantEvolutionLoopExitValue( 12888 std::move(Arg.ConstantEvolutionLoopExitValue)), 12889 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12890 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 12891 LoopDispositions(std::move(Arg.LoopDispositions)), 12892 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12893 BlockDispositions(std::move(Arg.BlockDispositions)), 12894 SCEVUsers(std::move(Arg.SCEVUsers)), 12895 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12896 SignedRanges(std::move(Arg.SignedRanges)), 12897 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12898 UniquePreds(std::move(Arg.UniquePreds)), 12899 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12900 LoopUsers(std::move(Arg.LoopUsers)), 12901 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12902 FirstUnknown(Arg.FirstUnknown) { 12903 Arg.FirstUnknown = nullptr; 12904 } 12905 12906 ScalarEvolution::~ScalarEvolution() { 12907 // Iterate through all the SCEVUnknown instances and call their 12908 // destructors, so that they release their references to their values. 12909 for (SCEVUnknown *U = FirstUnknown; U;) { 12910 SCEVUnknown *Tmp = U; 12911 U = U->Next; 12912 Tmp->~SCEVUnknown(); 12913 } 12914 FirstUnknown = nullptr; 12915 12916 ExprValueMap.clear(); 12917 ValueExprMap.clear(); 12918 HasRecMap.clear(); 12919 BackedgeTakenCounts.clear(); 12920 PredicatedBackedgeTakenCounts.clear(); 12921 12922 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12923 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12924 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12925 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12926 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12927 } 12928 12929 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12930 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12931 } 12932 12933 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12934 const Loop *L) { 12935 // Print all inner loops first 12936 for (Loop *I : *L) 12937 PrintLoopInfo(OS, SE, I); 12938 12939 OS << "Loop "; 12940 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12941 OS << ": "; 12942 12943 SmallVector<BasicBlock *, 8> ExitingBlocks; 12944 L->getExitingBlocks(ExitingBlocks); 12945 if (ExitingBlocks.size() != 1) 12946 OS << "<multiple exits> "; 12947 12948 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12949 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12950 else 12951 OS << "Unpredictable backedge-taken count.\n"; 12952 12953 if (ExitingBlocks.size() > 1) 12954 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12955 OS << " exit count for " << ExitingBlock->getName() << ": " 12956 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12957 } 12958 12959 OS << "Loop "; 12960 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12961 OS << ": "; 12962 12963 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12964 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12965 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12966 OS << ", actual taken count either this or zero."; 12967 } else { 12968 OS << "Unpredictable max backedge-taken count. "; 12969 } 12970 12971 OS << "\n" 12972 "Loop "; 12973 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12974 OS << ": "; 12975 12976 SmallVector<const SCEVPredicate *, 4> Preds; 12977 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 12978 if (!isa<SCEVCouldNotCompute>(PBT)) { 12979 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12980 OS << " Predicates:\n"; 12981 for (auto *P : Preds) 12982 P->print(OS, 4); 12983 } else { 12984 OS << "Unpredictable predicated backedge-taken count. "; 12985 } 12986 OS << "\n"; 12987 12988 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12989 OS << "Loop "; 12990 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12991 OS << ": "; 12992 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12993 } 12994 } 12995 12996 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12997 switch (LD) { 12998 case ScalarEvolution::LoopVariant: 12999 return "Variant"; 13000 case ScalarEvolution::LoopInvariant: 13001 return "Invariant"; 13002 case ScalarEvolution::LoopComputable: 13003 return "Computable"; 13004 } 13005 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 13006 } 13007 13008 void ScalarEvolution::print(raw_ostream &OS) const { 13009 // ScalarEvolution's implementation of the print method is to print 13010 // out SCEV values of all instructions that are interesting. Doing 13011 // this potentially causes it to create new SCEV objects though, 13012 // which technically conflicts with the const qualifier. This isn't 13013 // observable from outside the class though, so casting away the 13014 // const isn't dangerous. 13015 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13016 13017 if (ClassifyExpressions) { 13018 OS << "Classifying expressions for: "; 13019 F.printAsOperand(OS, /*PrintType=*/false); 13020 OS << "\n"; 13021 for (Instruction &I : instructions(F)) 13022 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13023 OS << I << '\n'; 13024 OS << " --> "; 13025 const SCEV *SV = SE.getSCEV(&I); 13026 SV->print(OS); 13027 if (!isa<SCEVCouldNotCompute>(SV)) { 13028 OS << " U: "; 13029 SE.getUnsignedRange(SV).print(OS); 13030 OS << " S: "; 13031 SE.getSignedRange(SV).print(OS); 13032 } 13033 13034 const Loop *L = LI.getLoopFor(I.getParent()); 13035 13036 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13037 if (AtUse != SV) { 13038 OS << " --> "; 13039 AtUse->print(OS); 13040 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13041 OS << " U: "; 13042 SE.getUnsignedRange(AtUse).print(OS); 13043 OS << " S: "; 13044 SE.getSignedRange(AtUse).print(OS); 13045 } 13046 } 13047 13048 if (L) { 13049 OS << "\t\t" "Exits: "; 13050 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13051 if (!SE.isLoopInvariant(ExitValue, L)) { 13052 OS << "<<Unknown>>"; 13053 } else { 13054 OS << *ExitValue; 13055 } 13056 13057 bool First = true; 13058 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13059 if (First) { 13060 OS << "\t\t" "LoopDispositions: { "; 13061 First = false; 13062 } else { 13063 OS << ", "; 13064 } 13065 13066 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13067 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 13068 } 13069 13070 for (auto *InnerL : depth_first(L)) { 13071 if (InnerL == L) 13072 continue; 13073 if (First) { 13074 OS << "\t\t" "LoopDispositions: { "; 13075 First = false; 13076 } else { 13077 OS << ", "; 13078 } 13079 13080 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13081 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 13082 } 13083 13084 OS << " }"; 13085 } 13086 13087 OS << "\n"; 13088 } 13089 } 13090 13091 OS << "Determining loop execution counts for: "; 13092 F.printAsOperand(OS, /*PrintType=*/false); 13093 OS << "\n"; 13094 for (Loop *I : LI) 13095 PrintLoopInfo(OS, &SE, I); 13096 } 13097 13098 ScalarEvolution::LoopDisposition 13099 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13100 auto &Values = LoopDispositions[S]; 13101 for (auto &V : Values) { 13102 if (V.getPointer() == L) 13103 return V.getInt(); 13104 } 13105 Values.emplace_back(L, LoopVariant); 13106 LoopDisposition D = computeLoopDisposition(S, L); 13107 auto &Values2 = LoopDispositions[S]; 13108 for (auto &V : llvm::reverse(Values2)) { 13109 if (V.getPointer() == L) { 13110 V.setInt(D); 13111 break; 13112 } 13113 } 13114 return D; 13115 } 13116 13117 ScalarEvolution::LoopDisposition 13118 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13119 switch (S->getSCEVType()) { 13120 case scConstant: 13121 return LoopInvariant; 13122 case scPtrToInt: 13123 case scTruncate: 13124 case scZeroExtend: 13125 case scSignExtend: 13126 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 13127 case scAddRecExpr: { 13128 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13129 13130 // If L is the addrec's loop, it's computable. 13131 if (AR->getLoop() == L) 13132 return LoopComputable; 13133 13134 // Add recurrences are never invariant in the function-body (null loop). 13135 if (!L) 13136 return LoopVariant; 13137 13138 // Everything that is not defined at loop entry is variant. 13139 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13140 return LoopVariant; 13141 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13142 " dominate the contained loop's header?"); 13143 13144 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13145 if (AR->getLoop()->contains(L)) 13146 return LoopInvariant; 13147 13148 // This recurrence is variant w.r.t. L if any of its operands 13149 // are variant. 13150 for (auto *Op : AR->operands()) 13151 if (!isLoopInvariant(Op, L)) 13152 return LoopVariant; 13153 13154 // Otherwise it's loop-invariant. 13155 return LoopInvariant; 13156 } 13157 case scAddExpr: 13158 case scMulExpr: 13159 case scUMaxExpr: 13160 case scSMaxExpr: 13161 case scUMinExpr: 13162 case scSMinExpr: 13163 case scSequentialUMinExpr: { 13164 bool HasVarying = false; 13165 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13166 LoopDisposition D = getLoopDisposition(Op, L); 13167 if (D == LoopVariant) 13168 return LoopVariant; 13169 if (D == LoopComputable) 13170 HasVarying = true; 13171 } 13172 return HasVarying ? LoopComputable : LoopInvariant; 13173 } 13174 case scUDivExpr: { 13175 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13176 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13177 if (LD == LoopVariant) 13178 return LoopVariant; 13179 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13180 if (RD == LoopVariant) 13181 return LoopVariant; 13182 return (LD == LoopInvariant && RD == LoopInvariant) ? 13183 LoopInvariant : LoopComputable; 13184 } 13185 case scUnknown: 13186 // All non-instruction values are loop invariant. All instructions are loop 13187 // invariant if they are not contained in the specified loop. 13188 // Instructions are never considered invariant in the function body 13189 // (null loop) because they are defined within the "loop". 13190 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13191 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13192 return LoopInvariant; 13193 case scCouldNotCompute: 13194 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13195 } 13196 llvm_unreachable("Unknown SCEV kind!"); 13197 } 13198 13199 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13200 return getLoopDisposition(S, L) == LoopInvariant; 13201 } 13202 13203 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13204 return getLoopDisposition(S, L) == LoopComputable; 13205 } 13206 13207 ScalarEvolution::BlockDisposition 13208 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13209 auto &Values = BlockDispositions[S]; 13210 for (auto &V : Values) { 13211 if (V.getPointer() == BB) 13212 return V.getInt(); 13213 } 13214 Values.emplace_back(BB, DoesNotDominateBlock); 13215 BlockDisposition D = computeBlockDisposition(S, BB); 13216 auto &Values2 = BlockDispositions[S]; 13217 for (auto &V : llvm::reverse(Values2)) { 13218 if (V.getPointer() == BB) { 13219 V.setInt(D); 13220 break; 13221 } 13222 } 13223 return D; 13224 } 13225 13226 ScalarEvolution::BlockDisposition 13227 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13228 switch (S->getSCEVType()) { 13229 case scConstant: 13230 return ProperlyDominatesBlock; 13231 case scPtrToInt: 13232 case scTruncate: 13233 case scZeroExtend: 13234 case scSignExtend: 13235 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13236 case scAddRecExpr: { 13237 // This uses a "dominates" query instead of "properly dominates" query 13238 // to test for proper dominance too, because the instruction which 13239 // produces the addrec's value is a PHI, and a PHI effectively properly 13240 // dominates its entire containing block. 13241 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13242 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13243 return DoesNotDominateBlock; 13244 13245 // Fall through into SCEVNAryExpr handling. 13246 LLVM_FALLTHROUGH; 13247 } 13248 case scAddExpr: 13249 case scMulExpr: 13250 case scUMaxExpr: 13251 case scSMaxExpr: 13252 case scUMinExpr: 13253 case scSMinExpr: 13254 case scSequentialUMinExpr: { 13255 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13256 bool Proper = true; 13257 for (const SCEV *NAryOp : NAry->operands()) { 13258 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13259 if (D == DoesNotDominateBlock) 13260 return DoesNotDominateBlock; 13261 if (D == DominatesBlock) 13262 Proper = false; 13263 } 13264 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13265 } 13266 case scUDivExpr: { 13267 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13268 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13269 BlockDisposition LD = getBlockDisposition(LHS, BB); 13270 if (LD == DoesNotDominateBlock) 13271 return DoesNotDominateBlock; 13272 BlockDisposition RD = getBlockDisposition(RHS, BB); 13273 if (RD == DoesNotDominateBlock) 13274 return DoesNotDominateBlock; 13275 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13276 ProperlyDominatesBlock : DominatesBlock; 13277 } 13278 case scUnknown: 13279 if (Instruction *I = 13280 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13281 if (I->getParent() == BB) 13282 return DominatesBlock; 13283 if (DT.properlyDominates(I->getParent(), BB)) 13284 return ProperlyDominatesBlock; 13285 return DoesNotDominateBlock; 13286 } 13287 return ProperlyDominatesBlock; 13288 case scCouldNotCompute: 13289 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13290 } 13291 llvm_unreachable("Unknown SCEV kind!"); 13292 } 13293 13294 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13295 return getBlockDisposition(S, BB) >= DominatesBlock; 13296 } 13297 13298 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13299 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13300 } 13301 13302 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13303 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13304 } 13305 13306 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13307 bool Predicated) { 13308 auto &BECounts = 13309 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13310 auto It = BECounts.find(L); 13311 if (It != BECounts.end()) { 13312 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13313 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13314 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13315 assert(UserIt != BECountUsers.end()); 13316 UserIt->second.erase({L, Predicated}); 13317 } 13318 } 13319 BECounts.erase(It); 13320 } 13321 } 13322 13323 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13324 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13325 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13326 13327 while (!Worklist.empty()) { 13328 const SCEV *Curr = Worklist.pop_back_val(); 13329 auto Users = SCEVUsers.find(Curr); 13330 if (Users != SCEVUsers.end()) 13331 for (auto *User : Users->second) 13332 if (ToForget.insert(User).second) 13333 Worklist.push_back(User); 13334 } 13335 13336 for (auto *S : ToForget) 13337 forgetMemoizedResultsImpl(S); 13338 13339 for (auto I = PredicatedSCEVRewrites.begin(); 13340 I != PredicatedSCEVRewrites.end();) { 13341 std::pair<const SCEV *, const Loop *> Entry = I->first; 13342 if (ToForget.count(Entry.first)) 13343 PredicatedSCEVRewrites.erase(I++); 13344 else 13345 ++I; 13346 } 13347 } 13348 13349 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13350 LoopDispositions.erase(S); 13351 BlockDispositions.erase(S); 13352 UnsignedRanges.erase(S); 13353 SignedRanges.erase(S); 13354 HasRecMap.erase(S); 13355 MinTrailingZerosCache.erase(S); 13356 13357 auto ExprIt = ExprValueMap.find(S); 13358 if (ExprIt != ExprValueMap.end()) { 13359 for (Value *V : ExprIt->second) { 13360 auto ValueIt = ValueExprMap.find_as(V); 13361 if (ValueIt != ValueExprMap.end()) 13362 ValueExprMap.erase(ValueIt); 13363 } 13364 ExprValueMap.erase(ExprIt); 13365 } 13366 13367 auto ScopeIt = ValuesAtScopes.find(S); 13368 if (ScopeIt != ValuesAtScopes.end()) { 13369 for (const auto &Pair : ScopeIt->second) 13370 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13371 erase_value(ValuesAtScopesUsers[Pair.second], 13372 std::make_pair(Pair.first, S)); 13373 ValuesAtScopes.erase(ScopeIt); 13374 } 13375 13376 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13377 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13378 for (const auto &Pair : ScopeUserIt->second) 13379 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13380 ValuesAtScopesUsers.erase(ScopeUserIt); 13381 } 13382 13383 auto BEUsersIt = BECountUsers.find(S); 13384 if (BEUsersIt != BECountUsers.end()) { 13385 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13386 auto Copy = BEUsersIt->second; 13387 for (const auto &Pair : Copy) 13388 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13389 BECountUsers.erase(BEUsersIt); 13390 } 13391 } 13392 13393 void 13394 ScalarEvolution::getUsedLoops(const SCEV *S, 13395 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13396 struct FindUsedLoops { 13397 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13398 : LoopsUsed(LoopsUsed) {} 13399 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13400 bool follow(const SCEV *S) { 13401 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13402 LoopsUsed.insert(AR->getLoop()); 13403 return true; 13404 } 13405 13406 bool isDone() const { return false; } 13407 }; 13408 13409 FindUsedLoops F(LoopsUsed); 13410 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13411 } 13412 13413 static void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable, 13414 Function &F) { 13415 SmallVector<BasicBlock *> Worklist; 13416 Worklist.push_back(&F.getEntryBlock()); 13417 while (!Worklist.empty()) { 13418 BasicBlock *BB = Worklist.pop_back_val(); 13419 if (!Reachable.insert(BB).second) 13420 continue; 13421 13422 const APInt *Cond; 13423 BasicBlock *TrueBB, *FalseBB; 13424 if (match(BB->getTerminator(), 13425 m_Br(m_APInt(Cond), m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) 13426 Worklist.push_back(Cond->isOne() ? TrueBB : FalseBB); 13427 else 13428 append_range(Worklist, successors(BB)); 13429 } 13430 } 13431 13432 void ScalarEvolution::verify() const { 13433 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13434 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13435 13436 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13437 13438 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13439 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13440 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13441 13442 const SCEV *visitConstant(const SCEVConstant *Constant) { 13443 return SE.getConstant(Constant->getAPInt()); 13444 } 13445 13446 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13447 return SE.getUnknown(Expr->getValue()); 13448 } 13449 13450 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13451 return SE.getCouldNotCompute(); 13452 } 13453 }; 13454 13455 SCEVMapper SCM(SE2); 13456 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 13457 getReachableBlocks(ReachableBlocks, F); 13458 13459 while (!LoopStack.empty()) { 13460 auto *L = LoopStack.pop_back_val(); 13461 llvm::append_range(LoopStack, *L); 13462 13463 // Only verify BECounts in reachable loops. For an unreachable loop, 13464 // any BECount is legal. 13465 if (!ReachableBlocks.contains(L->getHeader())) 13466 continue; 13467 13468 auto *CurBECount = SCM.visit( 13469 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13470 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13471 13472 if (CurBECount == SE2.getCouldNotCompute() || 13473 NewBECount == SE2.getCouldNotCompute()) { 13474 // NB! This situation is legal, but is very suspicious -- whatever pass 13475 // change the loop to make a trip count go from could not compute to 13476 // computable or vice-versa *should have* invalidated SCEV. However, we 13477 // choose not to assert here (for now) since we don't want false 13478 // positives. 13479 continue; 13480 } 13481 13482 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13483 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13484 // not propagate undef aggressively). This means we can (and do) fail 13485 // verification in cases where a transform makes the trip count of a loop 13486 // go from "undef" to "undef+1" (say). The transform is fine, since in 13487 // both cases the loop iterates "undef" times, but SCEV thinks we 13488 // increased the trip count of the loop by 1 incorrectly. 13489 continue; 13490 } 13491 13492 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13493 SE.getTypeSizeInBits(NewBECount->getType())) 13494 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13495 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13496 SE.getTypeSizeInBits(NewBECount->getType())) 13497 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13498 13499 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13500 13501 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13502 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13503 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13504 dbgs() << "Old: " << *CurBECount << "\n"; 13505 dbgs() << "New: " << *NewBECount << "\n"; 13506 dbgs() << "Delta: " << *Delta << "\n"; 13507 std::abort(); 13508 } 13509 } 13510 13511 // Collect all valid loops currently in LoopInfo. 13512 SmallPtrSet<Loop *, 32> ValidLoops; 13513 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13514 while (!Worklist.empty()) { 13515 Loop *L = Worklist.pop_back_val(); 13516 if (ValidLoops.insert(L).second) 13517 Worklist.append(L->begin(), L->end()); 13518 } 13519 for (auto &KV : ValueExprMap) { 13520 #ifndef NDEBUG 13521 // Check for SCEV expressions referencing invalid/deleted loops. 13522 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13523 assert(ValidLoops.contains(AR->getLoop()) && 13524 "AddRec references invalid loop"); 13525 } 13526 #endif 13527 13528 // Check that the value is also part of the reverse map. 13529 auto It = ExprValueMap.find(KV.second); 13530 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 13531 dbgs() << "Value " << *KV.first 13532 << " is in ValueExprMap but not in ExprValueMap\n"; 13533 std::abort(); 13534 } 13535 } 13536 13537 for (const auto &KV : ExprValueMap) { 13538 for (Value *V : KV.second) { 13539 auto It = ValueExprMap.find_as(V); 13540 if (It == ValueExprMap.end()) { 13541 dbgs() << "Value " << *V 13542 << " is in ExprValueMap but not in ValueExprMap\n"; 13543 std::abort(); 13544 } 13545 if (It->second != KV.first) { 13546 dbgs() << "Value " << *V << " mapped to " << *It->second 13547 << " rather than " << *KV.first << "\n"; 13548 std::abort(); 13549 } 13550 } 13551 } 13552 13553 // Verify integrity of SCEV users. 13554 for (const auto &S : UniqueSCEVs) { 13555 SmallVector<const SCEV *, 4> Ops; 13556 collectUniqueOps(&S, Ops); 13557 for (const auto *Op : Ops) { 13558 // We do not store dependencies of constants. 13559 if (isa<SCEVConstant>(Op)) 13560 continue; 13561 auto It = SCEVUsers.find(Op); 13562 if (It != SCEVUsers.end() && It->second.count(&S)) 13563 continue; 13564 dbgs() << "Use of operand " << *Op << " by user " << S 13565 << " is not being tracked!\n"; 13566 std::abort(); 13567 } 13568 } 13569 13570 // Verify integrity of ValuesAtScopes users. 13571 for (const auto &ValueAndVec : ValuesAtScopes) { 13572 const SCEV *Value = ValueAndVec.first; 13573 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13574 const Loop *L = LoopAndValueAtScope.first; 13575 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13576 if (!isa<SCEVConstant>(ValueAtScope)) { 13577 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13578 if (It != ValuesAtScopesUsers.end() && 13579 is_contained(It->second, std::make_pair(L, Value))) 13580 continue; 13581 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13582 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13583 std::abort(); 13584 } 13585 } 13586 } 13587 13588 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13589 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13590 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13591 const Loop *L = LoopAndValue.first; 13592 const SCEV *Value = LoopAndValue.second; 13593 assert(!isa<SCEVConstant>(Value)); 13594 auto It = ValuesAtScopes.find(Value); 13595 if (It != ValuesAtScopes.end() && 13596 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13597 continue; 13598 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13599 << *ValueAtScope << " missing in ValuesAtScopes\n"; 13600 std::abort(); 13601 } 13602 } 13603 13604 // Verify integrity of BECountUsers. 13605 auto VerifyBECountUsers = [&](bool Predicated) { 13606 auto &BECounts = 13607 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13608 for (const auto &LoopAndBEInfo : BECounts) { 13609 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13610 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13611 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13612 if (UserIt != BECountUsers.end() && 13613 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13614 continue; 13615 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13616 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13617 std::abort(); 13618 } 13619 } 13620 } 13621 }; 13622 VerifyBECountUsers(/* Predicated */ false); 13623 VerifyBECountUsers(/* Predicated */ true); 13624 } 13625 13626 bool ScalarEvolution::invalidate( 13627 Function &F, const PreservedAnalyses &PA, 13628 FunctionAnalysisManager::Invalidator &Inv) { 13629 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13630 // of its dependencies is invalidated. 13631 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13632 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13633 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13634 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13635 Inv.invalidate<LoopAnalysis>(F, PA); 13636 } 13637 13638 AnalysisKey ScalarEvolutionAnalysis::Key; 13639 13640 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13641 FunctionAnalysisManager &AM) { 13642 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13643 AM.getResult<AssumptionAnalysis>(F), 13644 AM.getResult<DominatorTreeAnalysis>(F), 13645 AM.getResult<LoopAnalysis>(F)); 13646 } 13647 13648 PreservedAnalyses 13649 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13650 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13651 return PreservedAnalyses::all(); 13652 } 13653 13654 PreservedAnalyses 13655 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13656 // For compatibility with opt's -analyze feature under legacy pass manager 13657 // which was not ported to NPM. This keeps tests using 13658 // update_analyze_test_checks.py working. 13659 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13660 << F.getName() << "':\n"; 13661 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13662 return PreservedAnalyses::all(); 13663 } 13664 13665 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13666 "Scalar Evolution Analysis", false, true) 13667 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13668 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13669 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13670 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13671 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13672 "Scalar Evolution Analysis", false, true) 13673 13674 char ScalarEvolutionWrapperPass::ID = 0; 13675 13676 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13677 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13678 } 13679 13680 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13681 SE.reset(new ScalarEvolution( 13682 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13683 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13684 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13685 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13686 return false; 13687 } 13688 13689 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13690 13691 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13692 SE->print(OS); 13693 } 13694 13695 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13696 if (!VerifySCEV) 13697 return; 13698 13699 SE->verify(); 13700 } 13701 13702 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13703 AU.setPreservesAll(); 13704 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13705 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13706 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13707 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13708 } 13709 13710 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13711 const SCEV *RHS) { 13712 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 13713 } 13714 13715 const SCEVPredicate * 13716 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 13717 const SCEV *LHS, const SCEV *RHS) { 13718 FoldingSetNodeID ID; 13719 assert(LHS->getType() == RHS->getType() && 13720 "Type mismatch between LHS and RHS"); 13721 // Unique this node based on the arguments 13722 ID.AddInteger(SCEVPredicate::P_Compare); 13723 ID.AddInteger(Pred); 13724 ID.AddPointer(LHS); 13725 ID.AddPointer(RHS); 13726 void *IP = nullptr; 13727 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13728 return S; 13729 SCEVComparePredicate *Eq = new (SCEVAllocator) 13730 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 13731 UniquePreds.InsertNode(Eq, IP); 13732 return Eq; 13733 } 13734 13735 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13736 const SCEVAddRecExpr *AR, 13737 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13738 FoldingSetNodeID ID; 13739 // Unique this node based on the arguments 13740 ID.AddInteger(SCEVPredicate::P_Wrap); 13741 ID.AddPointer(AR); 13742 ID.AddInteger(AddedFlags); 13743 void *IP = nullptr; 13744 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13745 return S; 13746 auto *OF = new (SCEVAllocator) 13747 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13748 UniquePreds.InsertNode(OF, IP); 13749 return OF; 13750 } 13751 13752 namespace { 13753 13754 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13755 public: 13756 13757 /// Rewrites \p S in the context of a loop L and the SCEV predication 13758 /// infrastructure. 13759 /// 13760 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13761 /// equivalences present in \p Pred. 13762 /// 13763 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13764 /// \p NewPreds such that the result will be an AddRecExpr. 13765 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13766 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13767 const SCEVPredicate *Pred) { 13768 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13769 return Rewriter.visit(S); 13770 } 13771 13772 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13773 if (Pred) { 13774 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 13775 for (auto *Pred : U->getPredicates()) 13776 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 13777 if (IPred->getLHS() == Expr && 13778 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13779 return IPred->getRHS(); 13780 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 13781 if (IPred->getLHS() == Expr && 13782 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13783 return IPred->getRHS(); 13784 } 13785 } 13786 return convertToAddRecWithPreds(Expr); 13787 } 13788 13789 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13790 const SCEV *Operand = visit(Expr->getOperand()); 13791 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13792 if (AR && AR->getLoop() == L && AR->isAffine()) { 13793 // This couldn't be folded because the operand didn't have the nuw 13794 // flag. Add the nusw flag as an assumption that we could make. 13795 const SCEV *Step = AR->getStepRecurrence(SE); 13796 Type *Ty = Expr->getType(); 13797 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13798 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13799 SE.getSignExtendExpr(Step, Ty), L, 13800 AR->getNoWrapFlags()); 13801 } 13802 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13803 } 13804 13805 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13806 const SCEV *Operand = visit(Expr->getOperand()); 13807 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13808 if (AR && AR->getLoop() == L && AR->isAffine()) { 13809 // This couldn't be folded because the operand didn't have the nsw 13810 // flag. Add the nssw flag as an assumption that we could make. 13811 const SCEV *Step = AR->getStepRecurrence(SE); 13812 Type *Ty = Expr->getType(); 13813 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13814 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13815 SE.getSignExtendExpr(Step, Ty), L, 13816 AR->getNoWrapFlags()); 13817 } 13818 return SE.getSignExtendExpr(Operand, Expr->getType()); 13819 } 13820 13821 private: 13822 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13823 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13824 const SCEVPredicate *Pred) 13825 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13826 13827 bool addOverflowAssumption(const SCEVPredicate *P) { 13828 if (!NewPreds) { 13829 // Check if we've already made this assumption. 13830 return Pred && Pred->implies(P); 13831 } 13832 NewPreds->insert(P); 13833 return true; 13834 } 13835 13836 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13837 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13838 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13839 return addOverflowAssumption(A); 13840 } 13841 13842 // If \p Expr represents a PHINode, we try to see if it can be represented 13843 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13844 // to add this predicate as a runtime overflow check, we return the AddRec. 13845 // If \p Expr does not meet these conditions (is not a PHI node, or we 13846 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13847 // return \p Expr. 13848 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13849 if (!isa<PHINode>(Expr->getValue())) 13850 return Expr; 13851 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13852 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13853 if (!PredicatedRewrite) 13854 return Expr; 13855 for (auto *P : PredicatedRewrite->second){ 13856 // Wrap predicates from outer loops are not supported. 13857 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13858 if (L != WP->getExpr()->getLoop()) 13859 return Expr; 13860 } 13861 if (!addOverflowAssumption(P)) 13862 return Expr; 13863 } 13864 return PredicatedRewrite->first; 13865 } 13866 13867 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13868 const SCEVPredicate *Pred; 13869 const Loop *L; 13870 }; 13871 13872 } // end anonymous namespace 13873 13874 const SCEV * 13875 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13876 const SCEVPredicate &Preds) { 13877 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13878 } 13879 13880 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13881 const SCEV *S, const Loop *L, 13882 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13883 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13884 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13885 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13886 13887 if (!AddRec) 13888 return nullptr; 13889 13890 // Since the transformation was successful, we can now transfer the SCEV 13891 // predicates. 13892 for (auto *P : TransformPreds) 13893 Preds.insert(P); 13894 13895 return AddRec; 13896 } 13897 13898 /// SCEV predicates 13899 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13900 SCEVPredicateKind Kind) 13901 : FastID(ID), Kind(Kind) {} 13902 13903 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 13904 const ICmpInst::Predicate Pred, 13905 const SCEV *LHS, const SCEV *RHS) 13906 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 13907 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13908 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13909 } 13910 13911 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 13912 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 13913 13914 if (!Op) 13915 return false; 13916 13917 if (Pred != ICmpInst::ICMP_EQ) 13918 return false; 13919 13920 return Op->LHS == LHS && Op->RHS == RHS; 13921 } 13922 13923 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 13924 13925 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 13926 if (Pred == ICmpInst::ICMP_EQ) 13927 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13928 else 13929 OS.indent(Depth) << "Compare predicate: " << *LHS 13930 << " " << CmpInst::getPredicateName(Pred) << ") " 13931 << *RHS << "\n"; 13932 13933 } 13934 13935 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13936 const SCEVAddRecExpr *AR, 13937 IncrementWrapFlags Flags) 13938 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13939 13940 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 13941 13942 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13943 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13944 13945 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13946 } 13947 13948 bool SCEVWrapPredicate::isAlwaysTrue() const { 13949 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13950 IncrementWrapFlags IFlags = Flags; 13951 13952 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13953 IFlags = clearFlags(IFlags, IncrementNSSW); 13954 13955 return IFlags == IncrementAnyWrap; 13956 } 13957 13958 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13959 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13960 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13961 OS << "<nusw>"; 13962 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13963 OS << "<nssw>"; 13964 OS << "\n"; 13965 } 13966 13967 SCEVWrapPredicate::IncrementWrapFlags 13968 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13969 ScalarEvolution &SE) { 13970 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13971 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13972 13973 // We can safely transfer the NSW flag as NSSW. 13974 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13975 ImpliedFlags = IncrementNSSW; 13976 13977 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13978 // If the increment is positive, the SCEV NUW flag will also imply the 13979 // WrapPredicate NUSW flag. 13980 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13981 if (Step->getValue()->getValue().isNonNegative()) 13982 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13983 } 13984 13985 return ImpliedFlags; 13986 } 13987 13988 /// Union predicates don't get cached so create a dummy set ID for it. 13989 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 13990 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 13991 for (auto *P : Preds) 13992 add(P); 13993 } 13994 13995 bool SCEVUnionPredicate::isAlwaysTrue() const { 13996 return all_of(Preds, 13997 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13998 } 13999 14000 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 14001 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 14002 return all_of(Set->Preds, 14003 [this](const SCEVPredicate *I) { return this->implies(I); }); 14004 14005 return any_of(Preds, 14006 [N](const SCEVPredicate *I) { return I->implies(N); }); 14007 } 14008 14009 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14010 for (auto Pred : Preds) 14011 Pred->print(OS, Depth); 14012 } 14013 14014 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14015 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14016 for (auto Pred : Set->Preds) 14017 add(Pred); 14018 return; 14019 } 14020 14021 Preds.push_back(N); 14022 } 14023 14024 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14025 Loop &L) 14026 : SE(SE), L(L) { 14027 SmallVector<const SCEVPredicate*, 4> Empty; 14028 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14029 } 14030 14031 void ScalarEvolution::registerUser(const SCEV *User, 14032 ArrayRef<const SCEV *> Ops) { 14033 for (auto *Op : Ops) 14034 // We do not expect that forgetting cached data for SCEVConstants will ever 14035 // open any prospects for sharpening or introduce any correctness issues, 14036 // so we don't bother storing their dependencies. 14037 if (!isa<SCEVConstant>(Op)) 14038 SCEVUsers[Op].insert(User); 14039 } 14040 14041 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14042 const SCEV *Expr = SE.getSCEV(V); 14043 RewriteEntry &Entry = RewriteMap[Expr]; 14044 14045 // If we already have an entry and the version matches, return it. 14046 if (Entry.second && Generation == Entry.first) 14047 return Entry.second; 14048 14049 // We found an entry but it's stale. Rewrite the stale entry 14050 // according to the current predicate. 14051 if (Entry.second) 14052 Expr = Entry.second; 14053 14054 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14055 Entry = {Generation, NewSCEV}; 14056 14057 return NewSCEV; 14058 } 14059 14060 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14061 if (!BackedgeCount) { 14062 SmallVector<const SCEVPredicate *, 4> Preds; 14063 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14064 for (auto *P : Preds) 14065 addPredicate(*P); 14066 } 14067 return BackedgeCount; 14068 } 14069 14070 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14071 if (Preds->implies(&Pred)) 14072 return; 14073 14074 auto &OldPreds = Preds->getPredicates(); 14075 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14076 NewPreds.push_back(&Pred); 14077 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14078 updateGeneration(); 14079 } 14080 14081 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14082 return *Preds; 14083 } 14084 14085 void PredicatedScalarEvolution::updateGeneration() { 14086 // If the generation number wrapped recompute everything. 14087 if (++Generation == 0) { 14088 for (auto &II : RewriteMap) { 14089 const SCEV *Rewritten = II.second.second; 14090 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14091 } 14092 } 14093 } 14094 14095 void PredicatedScalarEvolution::setNoOverflow( 14096 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14097 const SCEV *Expr = getSCEV(V); 14098 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14099 14100 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14101 14102 // Clear the statically implied flags. 14103 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14104 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14105 14106 auto II = FlagsMap.insert({V, Flags}); 14107 if (!II.second) 14108 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14109 } 14110 14111 bool PredicatedScalarEvolution::hasNoOverflow( 14112 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14113 const SCEV *Expr = getSCEV(V); 14114 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14115 14116 Flags = SCEVWrapPredicate::clearFlags( 14117 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14118 14119 auto II = FlagsMap.find(V); 14120 14121 if (II != FlagsMap.end()) 14122 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14123 14124 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14125 } 14126 14127 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14128 const SCEV *Expr = this->getSCEV(V); 14129 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14130 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14131 14132 if (!New) 14133 return nullptr; 14134 14135 for (auto *P : NewPreds) 14136 addPredicate(*P); 14137 14138 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14139 return New; 14140 } 14141 14142 PredicatedScalarEvolution::PredicatedScalarEvolution( 14143 const PredicatedScalarEvolution &Init) 14144 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14145 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14146 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14147 for (auto I : Init.FlagsMap) 14148 FlagsMap.insert(I); 14149 } 14150 14151 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14152 // For each block. 14153 for (auto *BB : L.getBlocks()) 14154 for (auto &I : *BB) { 14155 if (!SE.isSCEVable(I.getType())) 14156 continue; 14157 14158 auto *Expr = SE.getSCEV(&I); 14159 auto II = RewriteMap.find(Expr); 14160 14161 if (II == RewriteMap.end()) 14162 continue; 14163 14164 // Don't print things that are not interesting. 14165 if (II->second.second == Expr) 14166 continue; 14167 14168 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14169 OS.indent(Depth + 2) << *Expr << "\n"; 14170 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14171 } 14172 } 14173 14174 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14175 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14176 // for URem with constant power-of-2 second operands. 14177 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14178 // 4, A / B becomes X / 8). 14179 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14180 const SCEV *&RHS) { 14181 // Try to match 'zext (trunc A to iB) to iY', which is used 14182 // for URem with constant power-of-2 second operands. Make sure the size of 14183 // the operand A matches the size of the whole expressions. 14184 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14185 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14186 LHS = Trunc->getOperand(); 14187 // Bail out if the type of the LHS is larger than the type of the 14188 // expression for now. 14189 if (getTypeSizeInBits(LHS->getType()) > 14190 getTypeSizeInBits(Expr->getType())) 14191 return false; 14192 if (LHS->getType() != Expr->getType()) 14193 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14194 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14195 << getTypeSizeInBits(Trunc->getType())); 14196 return true; 14197 } 14198 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14199 if (Add == nullptr || Add->getNumOperands() != 2) 14200 return false; 14201 14202 const SCEV *A = Add->getOperand(1); 14203 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14204 14205 if (Mul == nullptr) 14206 return false; 14207 14208 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14209 // (SomeExpr + (-(SomeExpr / B) * B)). 14210 if (Expr == getURemExpr(A, B)) { 14211 LHS = A; 14212 RHS = B; 14213 return true; 14214 } 14215 return false; 14216 }; 14217 14218 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14219 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14220 return MatchURemWithDivisor(Mul->getOperand(1)) || 14221 MatchURemWithDivisor(Mul->getOperand(2)); 14222 14223 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14224 if (Mul->getNumOperands() == 2) 14225 return MatchURemWithDivisor(Mul->getOperand(1)) || 14226 MatchURemWithDivisor(Mul->getOperand(0)) || 14227 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14228 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14229 return false; 14230 } 14231 14232 const SCEV * 14233 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14234 SmallVector<BasicBlock*, 16> ExitingBlocks; 14235 L->getExitingBlocks(ExitingBlocks); 14236 14237 // Form an expression for the maximum exit count possible for this loop. We 14238 // merge the max and exact information to approximate a version of 14239 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14240 SmallVector<const SCEV*, 4> ExitCounts; 14241 for (BasicBlock *ExitingBB : ExitingBlocks) { 14242 const SCEV *ExitCount = getExitCount(L, ExitingBB); 14243 if (isa<SCEVCouldNotCompute>(ExitCount)) 14244 ExitCount = getExitCount(L, ExitingBB, 14245 ScalarEvolution::ConstantMaximum); 14246 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14247 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14248 "We should only have known counts for exiting blocks that " 14249 "dominate latch!"); 14250 ExitCounts.push_back(ExitCount); 14251 } 14252 } 14253 if (ExitCounts.empty()) 14254 return getCouldNotCompute(); 14255 return getUMinFromMismatchedTypes(ExitCounts); 14256 } 14257 14258 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14259 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14260 /// replacement is loop invariant in the loop of the AddRec. 14261 /// 14262 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 14263 /// supported. 14264 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14265 const DenseMap<const SCEV *, const SCEV *> ⤅ 14266 14267 public: 14268 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14269 DenseMap<const SCEV *, const SCEV *> &M) 14270 : SCEVRewriteVisitor(SE), Map(M) {} 14271 14272 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14273 14274 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14275 auto I = Map.find(Expr); 14276 if (I == Map.end()) 14277 return Expr; 14278 return I->second; 14279 } 14280 14281 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14282 auto I = Map.find(Expr); 14283 if (I == Map.end()) 14284 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14285 Expr); 14286 return I->second; 14287 } 14288 }; 14289 14290 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14291 SmallVector<const SCEV *> ExprsToRewrite; 14292 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14293 const SCEV *RHS, 14294 DenseMap<const SCEV *, const SCEV *> 14295 &RewriteMap) { 14296 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14297 // replacement SCEV which isn't directly implied by the structure of that 14298 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14299 // legal. See the scoping rules for flags in the header to understand why. 14300 14301 // If LHS is a constant, apply information to the other expression. 14302 if (isa<SCEVConstant>(LHS)) { 14303 std::swap(LHS, RHS); 14304 Predicate = CmpInst::getSwappedPredicate(Predicate); 14305 } 14306 14307 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14308 // create this form when combining two checks of the form (X u< C2 + C1) and 14309 // (X >=u C1). 14310 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14311 &ExprsToRewrite]() { 14312 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14313 if (!AddExpr || AddExpr->getNumOperands() != 2) 14314 return false; 14315 14316 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14317 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14318 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14319 if (!C1 || !C2 || !LHSUnknown) 14320 return false; 14321 14322 auto ExactRegion = 14323 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14324 .sub(C1->getAPInt()); 14325 14326 // Bail out, unless we have a non-wrapping, monotonic range. 14327 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14328 return false; 14329 auto I = RewriteMap.find(LHSUnknown); 14330 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14331 RewriteMap[LHSUnknown] = getUMaxExpr( 14332 getConstant(ExactRegion.getUnsignedMin()), 14333 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14334 ExprsToRewrite.push_back(LHSUnknown); 14335 return true; 14336 }; 14337 if (MatchRangeCheckIdiom()) 14338 return; 14339 14340 // If we have LHS == 0, check if LHS is computing a property of some unknown 14341 // SCEV %v which we can rewrite %v to express explicitly. 14342 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 14343 if (Predicate == CmpInst::ICMP_EQ && RHSC && 14344 RHSC->getValue()->isNullValue()) { 14345 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 14346 // explicitly express that. 14347 const SCEV *URemLHS = nullptr; 14348 const SCEV *URemRHS = nullptr; 14349 if (matchURem(LHS, URemLHS, URemRHS)) { 14350 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 14351 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 14352 RewriteMap[LHSUnknown] = Multiple; 14353 ExprsToRewrite.push_back(LHSUnknown); 14354 return; 14355 } 14356 } 14357 } 14358 14359 // Do not apply information for constants or if RHS contains an AddRec. 14360 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 14361 return; 14362 14363 // If RHS is SCEVUnknown, make sure the information is applied to it. 14364 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 14365 std::swap(LHS, RHS); 14366 Predicate = CmpInst::getSwappedPredicate(Predicate); 14367 } 14368 14369 // Limit to expressions that can be rewritten. 14370 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 14371 return; 14372 14373 // Check whether LHS has already been rewritten. In that case we want to 14374 // chain further rewrites onto the already rewritten value. 14375 auto I = RewriteMap.find(LHS); 14376 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 14377 14378 const SCEV *RewrittenRHS = nullptr; 14379 switch (Predicate) { 14380 case CmpInst::ICMP_ULT: 14381 RewrittenRHS = 14382 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14383 break; 14384 case CmpInst::ICMP_SLT: 14385 RewrittenRHS = 14386 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14387 break; 14388 case CmpInst::ICMP_ULE: 14389 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14390 break; 14391 case CmpInst::ICMP_SLE: 14392 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14393 break; 14394 case CmpInst::ICMP_UGT: 14395 RewrittenRHS = 14396 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14397 break; 14398 case CmpInst::ICMP_SGT: 14399 RewrittenRHS = 14400 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14401 break; 14402 case CmpInst::ICMP_UGE: 14403 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14404 break; 14405 case CmpInst::ICMP_SGE: 14406 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14407 break; 14408 case CmpInst::ICMP_EQ: 14409 if (isa<SCEVConstant>(RHS)) 14410 RewrittenRHS = RHS; 14411 break; 14412 case CmpInst::ICMP_NE: 14413 if (isa<SCEVConstant>(RHS) && 14414 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14415 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14416 break; 14417 default: 14418 break; 14419 } 14420 14421 if (RewrittenRHS) { 14422 RewriteMap[LHS] = RewrittenRHS; 14423 if (LHS == RewrittenLHS) 14424 ExprsToRewrite.push_back(LHS); 14425 } 14426 }; 14427 // First, collect conditions from dominating branches. Starting at the loop 14428 // predecessor, climb up the predecessor chain, as long as there are 14429 // predecessors that can be found that have unique successors leading to the 14430 // original header. 14431 // TODO: share this logic with isLoopEntryGuardedByCond. 14432 SmallVector<std::pair<Value *, bool>> Terms; 14433 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14434 L->getLoopPredecessor(), L->getHeader()); 14435 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14436 14437 const BranchInst *LoopEntryPredicate = 14438 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14439 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14440 continue; 14441 14442 Terms.emplace_back(LoopEntryPredicate->getCondition(), 14443 LoopEntryPredicate->getSuccessor(0) == Pair.second); 14444 } 14445 14446 // Now apply the information from the collected conditions to RewriteMap. 14447 // Conditions are processed in reverse order, so the earliest conditions is 14448 // processed first. This ensures the SCEVs with the shortest dependency chains 14449 // are constructed first. 14450 DenseMap<const SCEV *, const SCEV *> RewriteMap; 14451 for (auto &E : reverse(Terms)) { 14452 bool EnterIfTrue = E.second; 14453 SmallVector<Value *, 8> Worklist; 14454 SmallPtrSet<Value *, 8> Visited; 14455 Worklist.push_back(E.first); 14456 while (!Worklist.empty()) { 14457 Value *Cond = Worklist.pop_back_val(); 14458 if (!Visited.insert(Cond).second) 14459 continue; 14460 14461 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14462 auto Predicate = 14463 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14464 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 14465 getSCEV(Cmp->getOperand(1)), RewriteMap); 14466 continue; 14467 } 14468 14469 Value *L, *R; 14470 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14471 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14472 Worklist.push_back(L); 14473 Worklist.push_back(R); 14474 } 14475 } 14476 } 14477 14478 // Also collect information from assumptions dominating the loop. 14479 for (auto &AssumeVH : AC.assumptions()) { 14480 if (!AssumeVH) 14481 continue; 14482 auto *AssumeI = cast<CallInst>(AssumeVH); 14483 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14484 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14485 continue; 14486 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14487 getSCEV(Cmp->getOperand(1)), RewriteMap); 14488 } 14489 14490 if (RewriteMap.empty()) 14491 return Expr; 14492 14493 // Now that all rewrite information is collect, rewrite the collected 14494 // expressions with the information in the map. This applies information to 14495 // sub-expressions. 14496 if (ExprsToRewrite.size() > 1) { 14497 for (const SCEV *Expr : ExprsToRewrite) { 14498 const SCEV *RewriteTo = RewriteMap[Expr]; 14499 RewriteMap.erase(Expr); 14500 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14501 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14502 } 14503 } 14504 14505 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14506 return Rewriter.visit(Expr); 14507 } 14508