1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <climits>
127 #include <cstddef>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <map>
131 #include <memory>
132 #include <tuple>
133 #include <utility>
134 #include <vector>
135 
136 using namespace llvm;
137 
138 #define DEBUG_TYPE "scalar-evolution"
139 
140 STATISTIC(NumArrayLenItCounts,
141           "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148 
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151                         cl::desc("Maximum number of iterations SCEV will "
152                                  "symbolically execute a constant "
153                                  "derived loop"),
154                         cl::init(100));
155 
156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
157 static cl::opt<bool> VerifySCEV(
158     "verify-scev", cl::Hidden,
159     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
160 static cl::opt<bool>
161     VerifySCEVMap("verify-scev-maps", cl::Hidden,
162                   cl::desc("Verify no dangling value in ScalarEvolution's "
163                            "ExprValueMap (slow)"));
164 
165 static cl::opt<bool> VerifyIR(
166     "scev-verify-ir", cl::Hidden,
167     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
168     cl::init(false));
169 
170 static cl::opt<unsigned> MulOpsInlineThreshold(
171     "scev-mulops-inline-threshold", cl::Hidden,
172     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
173     cl::init(32));
174 
175 static cl::opt<unsigned> AddOpsInlineThreshold(
176     "scev-addops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining addition operands into a SCEV"),
178     cl::init(500));
179 
180 static cl::opt<unsigned> MaxSCEVCompareDepth(
181     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
182     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
183     cl::init(32));
184 
185 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
186     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
188     cl::init(2));
189 
190 static cl::opt<unsigned> MaxValueCompareDepth(
191     "scalar-evolution-max-value-compare-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive value complexity comparisons"),
193     cl::init(2));
194 
195 static cl::opt<unsigned>
196     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
197                   cl::desc("Maximum depth of recursive arithmetics"),
198                   cl::init(32));
199 
200 static cl::opt<unsigned> MaxConstantEvolvingDepth(
201     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
202     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
203 
204 static cl::opt<unsigned>
205     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
206                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
207                  cl::init(8));
208 
209 static cl::opt<unsigned>
210     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
211                   cl::desc("Max coefficients in AddRec during evolving"),
212                   cl::init(8));
213 
214 static cl::opt<unsigned>
215     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
216                   cl::desc("Size of the expression which is considered huge"),
217                   cl::init(4096));
218 
219 //===----------------------------------------------------------------------===//
220 //                           SCEV class definitions
221 //===----------------------------------------------------------------------===//
222 
223 //===----------------------------------------------------------------------===//
224 // Implementation of the SCEV class.
225 //
226 
227 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
228 LLVM_DUMP_METHOD void SCEV::dump() const {
229   print(dbgs());
230   dbgs() << '\n';
231 }
232 #endif
233 
234 void SCEV::print(raw_ostream &OS) const {
235   switch (static_cast<SCEVTypes>(getSCEVType())) {
236   case scConstant:
237     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
238     return;
239   case scTruncate: {
240     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
241     const SCEV *Op = Trunc->getOperand();
242     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
243        << *Trunc->getType() << ")";
244     return;
245   }
246   case scZeroExtend: {
247     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
248     const SCEV *Op = ZExt->getOperand();
249     OS << "(zext " << *Op->getType() << " " << *Op << " to "
250        << *ZExt->getType() << ")";
251     return;
252   }
253   case scSignExtend: {
254     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
255     const SCEV *Op = SExt->getOperand();
256     OS << "(sext " << *Op->getType() << " " << *Op << " to "
257        << *SExt->getType() << ")";
258     return;
259   }
260   case scAddRecExpr: {
261     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
262     OS << "{" << *AR->getOperand(0);
263     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
264       OS << ",+," << *AR->getOperand(i);
265     OS << "}<";
266     if (AR->hasNoUnsignedWrap())
267       OS << "nuw><";
268     if (AR->hasNoSignedWrap())
269       OS << "nsw><";
270     if (AR->hasNoSelfWrap() &&
271         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
272       OS << "nw><";
273     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
274     OS << ">";
275     return;
276   }
277   case scAddExpr:
278   case scMulExpr:
279   case scUMaxExpr:
280   case scSMaxExpr: {
281     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
282     const char *OpStr = nullptr;
283     switch (NAry->getSCEVType()) {
284     case scAddExpr: OpStr = " + "; break;
285     case scMulExpr: OpStr = " * "; break;
286     case scUMaxExpr: OpStr = " umax "; break;
287     case scSMaxExpr: OpStr = " smax "; break;
288     }
289     OS << "(";
290     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
291          I != E; ++I) {
292       OS << **I;
293       if (std::next(I) != E)
294         OS << OpStr;
295     }
296     OS << ")";
297     switch (NAry->getSCEVType()) {
298     case scAddExpr:
299     case scMulExpr:
300       if (NAry->hasNoUnsignedWrap())
301         OS << "<nuw>";
302       if (NAry->hasNoSignedWrap())
303         OS << "<nsw>";
304     }
305     return;
306   }
307   case scUDivExpr: {
308     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
309     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
310     return;
311   }
312   case scUnknown: {
313     const SCEVUnknown *U = cast<SCEVUnknown>(this);
314     Type *AllocTy;
315     if (U->isSizeOf(AllocTy)) {
316       OS << "sizeof(" << *AllocTy << ")";
317       return;
318     }
319     if (U->isAlignOf(AllocTy)) {
320       OS << "alignof(" << *AllocTy << ")";
321       return;
322     }
323 
324     Type *CTy;
325     Constant *FieldNo;
326     if (U->isOffsetOf(CTy, FieldNo)) {
327       OS << "offsetof(" << *CTy << ", ";
328       FieldNo->printAsOperand(OS, false);
329       OS << ")";
330       return;
331     }
332 
333     // Otherwise just print it normally.
334     U->getValue()->printAsOperand(OS, false);
335     return;
336   }
337   case scCouldNotCompute:
338     OS << "***COULDNOTCOMPUTE***";
339     return;
340   }
341   llvm_unreachable("Unknown SCEV kind!");
342 }
343 
344 Type *SCEV::getType() const {
345   switch (static_cast<SCEVTypes>(getSCEVType())) {
346   case scConstant:
347     return cast<SCEVConstant>(this)->getType();
348   case scTruncate:
349   case scZeroExtend:
350   case scSignExtend:
351     return cast<SCEVCastExpr>(this)->getType();
352   case scAddRecExpr:
353   case scMulExpr:
354   case scUMaxExpr:
355   case scSMaxExpr:
356     return cast<SCEVNAryExpr>(this)->getType();
357   case scAddExpr:
358     return cast<SCEVAddExpr>(this)->getType();
359   case scUDivExpr:
360     return cast<SCEVUDivExpr>(this)->getType();
361   case scUnknown:
362     return cast<SCEVUnknown>(this)->getType();
363   case scCouldNotCompute:
364     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
365   }
366   llvm_unreachable("Unknown SCEV kind!");
367 }
368 
369 bool SCEV::isZero() const {
370   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
371     return SC->getValue()->isZero();
372   return false;
373 }
374 
375 bool SCEV::isOne() const {
376   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
377     return SC->getValue()->isOne();
378   return false;
379 }
380 
381 bool SCEV::isAllOnesValue() const {
382   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
383     return SC->getValue()->isMinusOne();
384   return false;
385 }
386 
387 bool SCEV::isNonConstantNegative() const {
388   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
389   if (!Mul) return false;
390 
391   // If there is a constant factor, it will be first.
392   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
393   if (!SC) return false;
394 
395   // Return true if the value is negative, this matches things like (-42 * V).
396   return SC->getAPInt().isNegative();
397 }
398 
399 SCEVCouldNotCompute::SCEVCouldNotCompute() :
400   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
401 
402 bool SCEVCouldNotCompute::classof(const SCEV *S) {
403   return S->getSCEVType() == scCouldNotCompute;
404 }
405 
406 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
407   FoldingSetNodeID ID;
408   ID.AddInteger(scConstant);
409   ID.AddPointer(V);
410   void *IP = nullptr;
411   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
412   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
413   UniqueSCEVs.InsertNode(S, IP);
414   return S;
415 }
416 
417 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
418   return getConstant(ConstantInt::get(getContext(), Val));
419 }
420 
421 const SCEV *
422 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
423   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
424   return getConstant(ConstantInt::get(ITy, V, isSigned));
425 }
426 
427 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
428                            unsigned SCEVTy, const SCEV *op, Type *ty)
429   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
430 
431 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
432                                    const SCEV *op, Type *ty)
433   : SCEVCastExpr(ID, scTruncate, op, ty) {
434   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
435          "Cannot truncate non-integer value!");
436 }
437 
438 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
439                                        const SCEV *op, Type *ty)
440   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
441   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
442          "Cannot zero extend non-integer value!");
443 }
444 
445 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
446                                        const SCEV *op, Type *ty)
447   : SCEVCastExpr(ID, scSignExtend, op, ty) {
448   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
449          "Cannot sign extend non-integer value!");
450 }
451 
452 void SCEVUnknown::deleted() {
453   // Clear this SCEVUnknown from various maps.
454   SE->forgetMemoizedResults(this);
455 
456   // Remove this SCEVUnknown from the uniquing map.
457   SE->UniqueSCEVs.RemoveNode(this);
458 
459   // Release the value.
460   setValPtr(nullptr);
461 }
462 
463 void SCEVUnknown::allUsesReplacedWith(Value *New) {
464   // Remove this SCEVUnknown from the uniquing map.
465   SE->UniqueSCEVs.RemoveNode(this);
466 
467   // Update this SCEVUnknown to point to the new value. This is needed
468   // because there may still be outstanding SCEVs which still point to
469   // this SCEVUnknown.
470   setValPtr(New);
471 }
472 
473 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
474   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
475     if (VCE->getOpcode() == Instruction::PtrToInt)
476       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
477         if (CE->getOpcode() == Instruction::GetElementPtr &&
478             CE->getOperand(0)->isNullValue() &&
479             CE->getNumOperands() == 2)
480           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
481             if (CI->isOne()) {
482               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
483                                  ->getElementType();
484               return true;
485             }
486 
487   return false;
488 }
489 
490 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
491   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
492     if (VCE->getOpcode() == Instruction::PtrToInt)
493       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
494         if (CE->getOpcode() == Instruction::GetElementPtr &&
495             CE->getOperand(0)->isNullValue()) {
496           Type *Ty =
497             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
498           if (StructType *STy = dyn_cast<StructType>(Ty))
499             if (!STy->isPacked() &&
500                 CE->getNumOperands() == 3 &&
501                 CE->getOperand(1)->isNullValue()) {
502               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
503                 if (CI->isOne() &&
504                     STy->getNumElements() == 2 &&
505                     STy->getElementType(0)->isIntegerTy(1)) {
506                   AllocTy = STy->getElementType(1);
507                   return true;
508                 }
509             }
510         }
511 
512   return false;
513 }
514 
515 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
516   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
517     if (VCE->getOpcode() == Instruction::PtrToInt)
518       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
519         if (CE->getOpcode() == Instruction::GetElementPtr &&
520             CE->getNumOperands() == 3 &&
521             CE->getOperand(0)->isNullValue() &&
522             CE->getOperand(1)->isNullValue()) {
523           Type *Ty =
524             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
525           // Ignore vector types here so that ScalarEvolutionExpander doesn't
526           // emit getelementptrs that index into vectors.
527           if (Ty->isStructTy() || Ty->isArrayTy()) {
528             CTy = Ty;
529             FieldNo = CE->getOperand(2);
530             return true;
531           }
532         }
533 
534   return false;
535 }
536 
537 //===----------------------------------------------------------------------===//
538 //                               SCEV Utilities
539 //===----------------------------------------------------------------------===//
540 
541 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
542 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
543 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
544 /// have been previously deemed to be "equally complex" by this routine.  It is
545 /// intended to avoid exponential time complexity in cases like:
546 ///
547 ///   %a = f(%x, %y)
548 ///   %b = f(%a, %a)
549 ///   %c = f(%b, %b)
550 ///
551 ///   %d = f(%x, %y)
552 ///   %e = f(%d, %d)
553 ///   %f = f(%e, %e)
554 ///
555 ///   CompareValueComplexity(%f, %c)
556 ///
557 /// Since we do not continue running this routine on expression trees once we
558 /// have seen unequal values, there is no need to track them in the cache.
559 static int
560 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
561                        const LoopInfo *const LI, Value *LV, Value *RV,
562                        unsigned Depth) {
563   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
564     return 0;
565 
566   // Order pointer values after integer values. This helps SCEVExpander form
567   // GEPs.
568   bool LIsPointer = LV->getType()->isPointerTy(),
569        RIsPointer = RV->getType()->isPointerTy();
570   if (LIsPointer != RIsPointer)
571     return (int)LIsPointer - (int)RIsPointer;
572 
573   // Compare getValueID values.
574   unsigned LID = LV->getValueID(), RID = RV->getValueID();
575   if (LID != RID)
576     return (int)LID - (int)RID;
577 
578   // Sort arguments by their position.
579   if (const auto *LA = dyn_cast<Argument>(LV)) {
580     const auto *RA = cast<Argument>(RV);
581     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
582     return (int)LArgNo - (int)RArgNo;
583   }
584 
585   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
586     const auto *RGV = cast<GlobalValue>(RV);
587 
588     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
589       auto LT = GV->getLinkage();
590       return !(GlobalValue::isPrivateLinkage(LT) ||
591                GlobalValue::isInternalLinkage(LT));
592     };
593 
594     // Use the names to distinguish the two values, but only if the
595     // names are semantically important.
596     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
597       return LGV->getName().compare(RGV->getName());
598   }
599 
600   // For instructions, compare their loop depth, and their operand count.  This
601   // is pretty loose.
602   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
603     const auto *RInst = cast<Instruction>(RV);
604 
605     // Compare loop depths.
606     const BasicBlock *LParent = LInst->getParent(),
607                      *RParent = RInst->getParent();
608     if (LParent != RParent) {
609       unsigned LDepth = LI->getLoopDepth(LParent),
610                RDepth = LI->getLoopDepth(RParent);
611       if (LDepth != RDepth)
612         return (int)LDepth - (int)RDepth;
613     }
614 
615     // Compare the number of operands.
616     unsigned LNumOps = LInst->getNumOperands(),
617              RNumOps = RInst->getNumOperands();
618     if (LNumOps != RNumOps)
619       return (int)LNumOps - (int)RNumOps;
620 
621     for (unsigned Idx : seq(0u, LNumOps)) {
622       int Result =
623           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
624                                  RInst->getOperand(Idx), Depth + 1);
625       if (Result != 0)
626         return Result;
627     }
628   }
629 
630   EqCacheValue.unionSets(LV, RV);
631   return 0;
632 }
633 
634 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
635 // than RHS, respectively. A three-way result allows recursive comparisons to be
636 // more efficient.
637 static int CompareSCEVComplexity(
638     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
639     EquivalenceClasses<const Value *> &EqCacheValue,
640     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
641     DominatorTree &DT, unsigned Depth = 0) {
642   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
643   if (LHS == RHS)
644     return 0;
645 
646   // Primarily, sort the SCEVs by their getSCEVType().
647   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
648   if (LType != RType)
649     return (int)LType - (int)RType;
650 
651   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
652     return 0;
653   // Aside from the getSCEVType() ordering, the particular ordering
654   // isn't very important except that it's beneficial to be consistent,
655   // so that (a + b) and (b + a) don't end up as different expressions.
656   switch (static_cast<SCEVTypes>(LType)) {
657   case scUnknown: {
658     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
659     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
660 
661     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
662                                    RU->getValue(), Depth + 1);
663     if (X == 0)
664       EqCacheSCEV.unionSets(LHS, RHS);
665     return X;
666   }
667 
668   case scConstant: {
669     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
670     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
671 
672     // Compare constant values.
673     const APInt &LA = LC->getAPInt();
674     const APInt &RA = RC->getAPInt();
675     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
676     if (LBitWidth != RBitWidth)
677       return (int)LBitWidth - (int)RBitWidth;
678     return LA.ult(RA) ? -1 : 1;
679   }
680 
681   case scAddRecExpr: {
682     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
683     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
684 
685     // There is always a dominance between two recs that are used by one SCEV,
686     // so we can safely sort recs by loop header dominance. We require such
687     // order in getAddExpr.
688     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
689     if (LLoop != RLoop) {
690       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
691       assert(LHead != RHead && "Two loops share the same header?");
692       if (DT.dominates(LHead, RHead))
693         return 1;
694       else
695         assert(DT.dominates(RHead, LHead) &&
696                "No dominance between recurrences used by one SCEV?");
697       return -1;
698     }
699 
700     // Addrec complexity grows with operand count.
701     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
702     if (LNumOps != RNumOps)
703       return (int)LNumOps - (int)RNumOps;
704 
705     // Lexicographically compare.
706     for (unsigned i = 0; i != LNumOps; ++i) {
707       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
708                                     LA->getOperand(i), RA->getOperand(i), DT,
709                                     Depth + 1);
710       if (X != 0)
711         return X;
712     }
713     EqCacheSCEV.unionSets(LHS, RHS);
714     return 0;
715   }
716 
717   case scAddExpr:
718   case scMulExpr:
719   case scSMaxExpr:
720   case scUMaxExpr: {
721     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
722     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
723 
724     // Lexicographically compare n-ary expressions.
725     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
726     if (LNumOps != RNumOps)
727       return (int)LNumOps - (int)RNumOps;
728 
729     for (unsigned i = 0; i != LNumOps; ++i) {
730       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
731                                     LC->getOperand(i), RC->getOperand(i), DT,
732                                     Depth + 1);
733       if (X != 0)
734         return X;
735     }
736     EqCacheSCEV.unionSets(LHS, RHS);
737     return 0;
738   }
739 
740   case scUDivExpr: {
741     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
742     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
743 
744     // Lexicographically compare udiv expressions.
745     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
746                                   RC->getLHS(), DT, Depth + 1);
747     if (X != 0)
748       return X;
749     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
750                               RC->getRHS(), DT, Depth + 1);
751     if (X == 0)
752       EqCacheSCEV.unionSets(LHS, RHS);
753     return X;
754   }
755 
756   case scTruncate:
757   case scZeroExtend:
758   case scSignExtend: {
759     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
760     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
761 
762     // Compare cast expressions by operand.
763     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
764                                   LC->getOperand(), RC->getOperand(), DT,
765                                   Depth + 1);
766     if (X == 0)
767       EqCacheSCEV.unionSets(LHS, RHS);
768     return X;
769   }
770 
771   case scCouldNotCompute:
772     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
773   }
774   llvm_unreachable("Unknown SCEV kind!");
775 }
776 
777 /// Given a list of SCEV objects, order them by their complexity, and group
778 /// objects of the same complexity together by value.  When this routine is
779 /// finished, we know that any duplicates in the vector are consecutive and that
780 /// complexity is monotonically increasing.
781 ///
782 /// Note that we go take special precautions to ensure that we get deterministic
783 /// results from this routine.  In other words, we don't want the results of
784 /// this to depend on where the addresses of various SCEV objects happened to
785 /// land in memory.
786 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
787                               LoopInfo *LI, DominatorTree &DT) {
788   if (Ops.size() < 2) return;  // Noop
789 
790   EquivalenceClasses<const SCEV *> EqCacheSCEV;
791   EquivalenceClasses<const Value *> EqCacheValue;
792   if (Ops.size() == 2) {
793     // This is the common case, which also happens to be trivially simple.
794     // Special case it.
795     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
796     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
797       std::swap(LHS, RHS);
798     return;
799   }
800 
801   // Do the rough sort by complexity.
802   std::stable_sort(Ops.begin(), Ops.end(),
803                    [&](const SCEV *LHS, const SCEV *RHS) {
804                      return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
805                                                   LHS, RHS, DT) < 0;
806                    });
807 
808   // Now that we are sorted by complexity, group elements of the same
809   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
810   // be extremely short in practice.  Note that we take this approach because we
811   // do not want to depend on the addresses of the objects we are grouping.
812   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
813     const SCEV *S = Ops[i];
814     unsigned Complexity = S->getSCEVType();
815 
816     // If there are any objects of the same complexity and same value as this
817     // one, group them.
818     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
819       if (Ops[j] == S) { // Found a duplicate.
820         // Move it to immediately after i'th element.
821         std::swap(Ops[i+1], Ops[j]);
822         ++i;   // no need to rescan it.
823         if (i == e-2) return;  // Done!
824       }
825     }
826   }
827 }
828 
829 // Returns the size of the SCEV S.
830 static inline int sizeOfSCEV(const SCEV *S) {
831   struct FindSCEVSize {
832     int Size = 0;
833 
834     FindSCEVSize() = default;
835 
836     bool follow(const SCEV *S) {
837       ++Size;
838       // Keep looking at all operands of S.
839       return true;
840     }
841 
842     bool isDone() const {
843       return false;
844     }
845   };
846 
847   FindSCEVSize F;
848   SCEVTraversal<FindSCEVSize> ST(F);
849   ST.visitAll(S);
850   return F.Size;
851 }
852 
853 /// Returns true if the subtree of \p S contains at least HugeExprThreshold
854 /// nodes.
855 static bool isHugeExpression(const SCEV *S) {
856   return S->getExpressionSize() >= HugeExprThreshold;
857 }
858 
859 /// Returns true of \p Ops contains a huge SCEV (see definition above).
860 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
861   return any_of(Ops, isHugeExpression);
862 }
863 
864 namespace {
865 
866 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
867 public:
868   // Computes the Quotient and Remainder of the division of Numerator by
869   // Denominator.
870   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
871                      const SCEV *Denominator, const SCEV **Quotient,
872                      const SCEV **Remainder) {
873     assert(Numerator && Denominator && "Uninitialized SCEV");
874 
875     SCEVDivision D(SE, Numerator, Denominator);
876 
877     // Check for the trivial case here to avoid having to check for it in the
878     // rest of the code.
879     if (Numerator == Denominator) {
880       *Quotient = D.One;
881       *Remainder = D.Zero;
882       return;
883     }
884 
885     if (Numerator->isZero()) {
886       *Quotient = D.Zero;
887       *Remainder = D.Zero;
888       return;
889     }
890 
891     // A simple case when N/1. The quotient is N.
892     if (Denominator->isOne()) {
893       *Quotient = Numerator;
894       *Remainder = D.Zero;
895       return;
896     }
897 
898     // Split the Denominator when it is a product.
899     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
900       const SCEV *Q, *R;
901       *Quotient = Numerator;
902       for (const SCEV *Op : T->operands()) {
903         divide(SE, *Quotient, Op, &Q, &R);
904         *Quotient = Q;
905 
906         // Bail out when the Numerator is not divisible by one of the terms of
907         // the Denominator.
908         if (!R->isZero()) {
909           *Quotient = D.Zero;
910           *Remainder = Numerator;
911           return;
912         }
913       }
914       *Remainder = D.Zero;
915       return;
916     }
917 
918     D.visit(Numerator);
919     *Quotient = D.Quotient;
920     *Remainder = D.Remainder;
921   }
922 
923   // Except in the trivial case described above, we do not know how to divide
924   // Expr by Denominator for the following functions with empty implementation.
925   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
926   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
927   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
928   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
929   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
930   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
931   void visitUnknown(const SCEVUnknown *Numerator) {}
932   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
933 
934   void visitConstant(const SCEVConstant *Numerator) {
935     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
936       APInt NumeratorVal = Numerator->getAPInt();
937       APInt DenominatorVal = D->getAPInt();
938       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
939       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
940 
941       if (NumeratorBW > DenominatorBW)
942         DenominatorVal = DenominatorVal.sext(NumeratorBW);
943       else if (NumeratorBW < DenominatorBW)
944         NumeratorVal = NumeratorVal.sext(DenominatorBW);
945 
946       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
947       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
948       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
949       Quotient = SE.getConstant(QuotientVal);
950       Remainder = SE.getConstant(RemainderVal);
951       return;
952     }
953   }
954 
955   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
956     const SCEV *StartQ, *StartR, *StepQ, *StepR;
957     if (!Numerator->isAffine())
958       return cannotDivide(Numerator);
959     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
960     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
961     // Bail out if the types do not match.
962     Type *Ty = Denominator->getType();
963     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
964         Ty != StepQ->getType() || Ty != StepR->getType())
965       return cannotDivide(Numerator);
966     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
967                                 Numerator->getNoWrapFlags());
968     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
969                                  Numerator->getNoWrapFlags());
970   }
971 
972   void visitAddExpr(const SCEVAddExpr *Numerator) {
973     SmallVector<const SCEV *, 2> Qs, Rs;
974     Type *Ty = Denominator->getType();
975 
976     for (const SCEV *Op : Numerator->operands()) {
977       const SCEV *Q, *R;
978       divide(SE, Op, Denominator, &Q, &R);
979 
980       // Bail out if types do not match.
981       if (Ty != Q->getType() || Ty != R->getType())
982         return cannotDivide(Numerator);
983 
984       Qs.push_back(Q);
985       Rs.push_back(R);
986     }
987 
988     if (Qs.size() == 1) {
989       Quotient = Qs[0];
990       Remainder = Rs[0];
991       return;
992     }
993 
994     Quotient = SE.getAddExpr(Qs);
995     Remainder = SE.getAddExpr(Rs);
996   }
997 
998   void visitMulExpr(const SCEVMulExpr *Numerator) {
999     SmallVector<const SCEV *, 2> Qs;
1000     Type *Ty = Denominator->getType();
1001 
1002     bool FoundDenominatorTerm = false;
1003     for (const SCEV *Op : Numerator->operands()) {
1004       // Bail out if types do not match.
1005       if (Ty != Op->getType())
1006         return cannotDivide(Numerator);
1007 
1008       if (FoundDenominatorTerm) {
1009         Qs.push_back(Op);
1010         continue;
1011       }
1012 
1013       // Check whether Denominator divides one of the product operands.
1014       const SCEV *Q, *R;
1015       divide(SE, Op, Denominator, &Q, &R);
1016       if (!R->isZero()) {
1017         Qs.push_back(Op);
1018         continue;
1019       }
1020 
1021       // Bail out if types do not match.
1022       if (Ty != Q->getType())
1023         return cannotDivide(Numerator);
1024 
1025       FoundDenominatorTerm = true;
1026       Qs.push_back(Q);
1027     }
1028 
1029     if (FoundDenominatorTerm) {
1030       Remainder = Zero;
1031       if (Qs.size() == 1)
1032         Quotient = Qs[0];
1033       else
1034         Quotient = SE.getMulExpr(Qs);
1035       return;
1036     }
1037 
1038     if (!isa<SCEVUnknown>(Denominator))
1039       return cannotDivide(Numerator);
1040 
1041     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1042     ValueToValueMap RewriteMap;
1043     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1044         cast<SCEVConstant>(Zero)->getValue();
1045     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1046 
1047     if (Remainder->isZero()) {
1048       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1049       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1050           cast<SCEVConstant>(One)->getValue();
1051       Quotient =
1052           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1053       return;
1054     }
1055 
1056     // Quotient is (Numerator - Remainder) divided by Denominator.
1057     const SCEV *Q, *R;
1058     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1059     // This SCEV does not seem to simplify: fail the division here.
1060     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1061       return cannotDivide(Numerator);
1062     divide(SE, Diff, Denominator, &Q, &R);
1063     if (R != Zero)
1064       return cannotDivide(Numerator);
1065     Quotient = Q;
1066   }
1067 
1068 private:
1069   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1070                const SCEV *Denominator)
1071       : SE(S), Denominator(Denominator) {
1072     Zero = SE.getZero(Denominator->getType());
1073     One = SE.getOne(Denominator->getType());
1074 
1075     // We generally do not know how to divide Expr by Denominator. We
1076     // initialize the division to a "cannot divide" state to simplify the rest
1077     // of the code.
1078     cannotDivide(Numerator);
1079   }
1080 
1081   // Convenience function for giving up on the division. We set the quotient to
1082   // be equal to zero and the remainder to be equal to the numerator.
1083   void cannotDivide(const SCEV *Numerator) {
1084     Quotient = Zero;
1085     Remainder = Numerator;
1086   }
1087 
1088   ScalarEvolution &SE;
1089   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1090 };
1091 
1092 } // end anonymous namespace
1093 
1094 //===----------------------------------------------------------------------===//
1095 //                      Simple SCEV method implementations
1096 //===----------------------------------------------------------------------===//
1097 
1098 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1099 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1100                                        ScalarEvolution &SE,
1101                                        Type *ResultTy) {
1102   // Handle the simplest case efficiently.
1103   if (K == 1)
1104     return SE.getTruncateOrZeroExtend(It, ResultTy);
1105 
1106   // We are using the following formula for BC(It, K):
1107   //
1108   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1109   //
1110   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1111   // overflow.  Hence, we must assure that the result of our computation is
1112   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1113   // safe in modular arithmetic.
1114   //
1115   // However, this code doesn't use exactly that formula; the formula it uses
1116   // is something like the following, where T is the number of factors of 2 in
1117   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1118   // exponentiation:
1119   //
1120   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1121   //
1122   // This formula is trivially equivalent to the previous formula.  However,
1123   // this formula can be implemented much more efficiently.  The trick is that
1124   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1125   // arithmetic.  To do exact division in modular arithmetic, all we have
1126   // to do is multiply by the inverse.  Therefore, this step can be done at
1127   // width W.
1128   //
1129   // The next issue is how to safely do the division by 2^T.  The way this
1130   // is done is by doing the multiplication step at a width of at least W + T
1131   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1132   // when we perform the division by 2^T (which is equivalent to a right shift
1133   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1134   // truncated out after the division by 2^T.
1135   //
1136   // In comparison to just directly using the first formula, this technique
1137   // is much more efficient; using the first formula requires W * K bits,
1138   // but this formula less than W + K bits. Also, the first formula requires
1139   // a division step, whereas this formula only requires multiplies and shifts.
1140   //
1141   // It doesn't matter whether the subtraction step is done in the calculation
1142   // width or the input iteration count's width; if the subtraction overflows,
1143   // the result must be zero anyway.  We prefer here to do it in the width of
1144   // the induction variable because it helps a lot for certain cases; CodeGen
1145   // isn't smart enough to ignore the overflow, which leads to much less
1146   // efficient code if the width of the subtraction is wider than the native
1147   // register width.
1148   //
1149   // (It's possible to not widen at all by pulling out factors of 2 before
1150   // the multiplication; for example, K=2 can be calculated as
1151   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1152   // extra arithmetic, so it's not an obvious win, and it gets
1153   // much more complicated for K > 3.)
1154 
1155   // Protection from insane SCEVs; this bound is conservative,
1156   // but it probably doesn't matter.
1157   if (K > 1000)
1158     return SE.getCouldNotCompute();
1159 
1160   unsigned W = SE.getTypeSizeInBits(ResultTy);
1161 
1162   // Calculate K! / 2^T and T; we divide out the factors of two before
1163   // multiplying for calculating K! / 2^T to avoid overflow.
1164   // Other overflow doesn't matter because we only care about the bottom
1165   // W bits of the result.
1166   APInt OddFactorial(W, 1);
1167   unsigned T = 1;
1168   for (unsigned i = 3; i <= K; ++i) {
1169     APInt Mult(W, i);
1170     unsigned TwoFactors = Mult.countTrailingZeros();
1171     T += TwoFactors;
1172     Mult.lshrInPlace(TwoFactors);
1173     OddFactorial *= Mult;
1174   }
1175 
1176   // We need at least W + T bits for the multiplication step
1177   unsigned CalculationBits = W + T;
1178 
1179   // Calculate 2^T, at width T+W.
1180   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1181 
1182   // Calculate the multiplicative inverse of K! / 2^T;
1183   // this multiplication factor will perform the exact division by
1184   // K! / 2^T.
1185   APInt Mod = APInt::getSignedMinValue(W+1);
1186   APInt MultiplyFactor = OddFactorial.zext(W+1);
1187   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1188   MultiplyFactor = MultiplyFactor.trunc(W);
1189 
1190   // Calculate the product, at width T+W
1191   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1192                                                       CalculationBits);
1193   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1194   for (unsigned i = 1; i != K; ++i) {
1195     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1196     Dividend = SE.getMulExpr(Dividend,
1197                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1198   }
1199 
1200   // Divide by 2^T
1201   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1202 
1203   // Truncate the result, and divide by K! / 2^T.
1204 
1205   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1206                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1207 }
1208 
1209 /// Return the value of this chain of recurrences at the specified iteration
1210 /// number.  We can evaluate this recurrence by multiplying each element in the
1211 /// chain by the binomial coefficient corresponding to it.  In other words, we
1212 /// can evaluate {A,+,B,+,C,+,D} as:
1213 ///
1214 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1215 ///
1216 /// where BC(It, k) stands for binomial coefficient.
1217 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1218                                                 ScalarEvolution &SE) const {
1219   const SCEV *Result = getStart();
1220   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1221     // The computation is correct in the face of overflow provided that the
1222     // multiplication is performed _after_ the evaluation of the binomial
1223     // coefficient.
1224     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1225     if (isa<SCEVCouldNotCompute>(Coeff))
1226       return Coeff;
1227 
1228     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1229   }
1230   return Result;
1231 }
1232 
1233 //===----------------------------------------------------------------------===//
1234 //                    SCEV Expression folder implementations
1235 //===----------------------------------------------------------------------===//
1236 
1237 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1238                                              unsigned Depth) {
1239   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1240          "This is not a truncating conversion!");
1241   assert(isSCEVable(Ty) &&
1242          "This is not a conversion to a SCEVable type!");
1243   Ty = getEffectiveSCEVType(Ty);
1244 
1245   FoldingSetNodeID ID;
1246   ID.AddInteger(scTruncate);
1247   ID.AddPointer(Op);
1248   ID.AddPointer(Ty);
1249   void *IP = nullptr;
1250   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1251 
1252   // Fold if the operand is constant.
1253   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1254     return getConstant(
1255       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1256 
1257   // trunc(trunc(x)) --> trunc(x)
1258   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1259     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1260 
1261   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1262   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1263     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1264 
1265   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1266   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1267     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1268 
1269   if (Depth > MaxCastDepth) {
1270     SCEV *S =
1271         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1272     UniqueSCEVs.InsertNode(S, IP);
1273     addToLoopUseLists(S);
1274     return S;
1275   }
1276 
1277   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1278   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1279   // if after transforming we have at most one truncate, not counting truncates
1280   // that replace other casts.
1281   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1282     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1283     SmallVector<const SCEV *, 4> Operands;
1284     unsigned numTruncs = 0;
1285     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1286          ++i) {
1287       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1288       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1289         numTruncs++;
1290       Operands.push_back(S);
1291     }
1292     if (numTruncs < 2) {
1293       if (isa<SCEVAddExpr>(Op))
1294         return getAddExpr(Operands);
1295       else if (isa<SCEVMulExpr>(Op))
1296         return getMulExpr(Operands);
1297       else
1298         llvm_unreachable("Unexpected SCEV type for Op.");
1299     }
1300     // Although we checked in the beginning that ID is not in the cache, it is
1301     // possible that during recursion and different modification ID was inserted
1302     // into the cache. So if we find it, just return it.
1303     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1304       return S;
1305   }
1306 
1307   // If the input value is a chrec scev, truncate the chrec's operands.
1308   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1309     SmallVector<const SCEV *, 4> Operands;
1310     for (const SCEV *Op : AddRec->operands())
1311       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1312     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1313   }
1314 
1315   // The cast wasn't folded; create an explicit cast node. We can reuse
1316   // the existing insert position since if we get here, we won't have
1317   // made any changes which would invalidate it.
1318   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1319                                                  Op, Ty);
1320   UniqueSCEVs.InsertNode(S, IP);
1321   addToLoopUseLists(S);
1322   return S;
1323 }
1324 
1325 // Get the limit of a recurrence such that incrementing by Step cannot cause
1326 // signed overflow as long as the value of the recurrence within the
1327 // loop does not exceed this limit before incrementing.
1328 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1329                                                  ICmpInst::Predicate *Pred,
1330                                                  ScalarEvolution *SE) {
1331   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1332   if (SE->isKnownPositive(Step)) {
1333     *Pred = ICmpInst::ICMP_SLT;
1334     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1335                            SE->getSignedRangeMax(Step));
1336   }
1337   if (SE->isKnownNegative(Step)) {
1338     *Pred = ICmpInst::ICMP_SGT;
1339     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1340                            SE->getSignedRangeMin(Step));
1341   }
1342   return nullptr;
1343 }
1344 
1345 // Get the limit of a recurrence such that incrementing by Step cannot cause
1346 // unsigned overflow as long as the value of the recurrence within the loop does
1347 // not exceed this limit before incrementing.
1348 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1349                                                    ICmpInst::Predicate *Pred,
1350                                                    ScalarEvolution *SE) {
1351   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1352   *Pred = ICmpInst::ICMP_ULT;
1353 
1354   return SE->getConstant(APInt::getMinValue(BitWidth) -
1355                          SE->getUnsignedRangeMax(Step));
1356 }
1357 
1358 namespace {
1359 
1360 struct ExtendOpTraitsBase {
1361   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1362                                                           unsigned);
1363 };
1364 
1365 // Used to make code generic over signed and unsigned overflow.
1366 template <typename ExtendOp> struct ExtendOpTraits {
1367   // Members present:
1368   //
1369   // static const SCEV::NoWrapFlags WrapType;
1370   //
1371   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1372   //
1373   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1374   //                                           ICmpInst::Predicate *Pred,
1375   //                                           ScalarEvolution *SE);
1376 };
1377 
1378 template <>
1379 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1380   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1381 
1382   static const GetExtendExprTy GetExtendExpr;
1383 
1384   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1385                                              ICmpInst::Predicate *Pred,
1386                                              ScalarEvolution *SE) {
1387     return getSignedOverflowLimitForStep(Step, Pred, SE);
1388   }
1389 };
1390 
1391 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1392     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1393 
1394 template <>
1395 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1396   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1397 
1398   static const GetExtendExprTy GetExtendExpr;
1399 
1400   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1401                                              ICmpInst::Predicate *Pred,
1402                                              ScalarEvolution *SE) {
1403     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1404   }
1405 };
1406 
1407 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1408     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1409 
1410 } // end anonymous namespace
1411 
1412 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1413 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1414 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1415 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1416 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1417 // expression "Step + sext/zext(PreIncAR)" is congruent with
1418 // "sext/zext(PostIncAR)"
1419 template <typename ExtendOpTy>
1420 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1421                                         ScalarEvolution *SE, unsigned Depth) {
1422   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1423   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1424 
1425   const Loop *L = AR->getLoop();
1426   const SCEV *Start = AR->getStart();
1427   const SCEV *Step = AR->getStepRecurrence(*SE);
1428 
1429   // Check for a simple looking step prior to loop entry.
1430   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1431   if (!SA)
1432     return nullptr;
1433 
1434   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1435   // subtraction is expensive. For this purpose, perform a quick and dirty
1436   // difference, by checking for Step in the operand list.
1437   SmallVector<const SCEV *, 4> DiffOps;
1438   for (const SCEV *Op : SA->operands())
1439     if (Op != Step)
1440       DiffOps.push_back(Op);
1441 
1442   if (DiffOps.size() == SA->getNumOperands())
1443     return nullptr;
1444 
1445   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1446   // `Step`:
1447 
1448   // 1. NSW/NUW flags on the step increment.
1449   auto PreStartFlags =
1450     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1451   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1452   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1453       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1454 
1455   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1456   // "S+X does not sign/unsign-overflow".
1457   //
1458 
1459   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1460   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1461       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1462     return PreStart;
1463 
1464   // 2. Direct overflow check on the step operation's expression.
1465   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1466   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1467   const SCEV *OperandExtendedStart =
1468       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1469                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1470   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1471     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1472       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1473       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1474       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1475       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1476     }
1477     return PreStart;
1478   }
1479 
1480   // 3. Loop precondition.
1481   ICmpInst::Predicate Pred;
1482   const SCEV *OverflowLimit =
1483       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1484 
1485   if (OverflowLimit &&
1486       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1487     return PreStart;
1488 
1489   return nullptr;
1490 }
1491 
1492 // Get the normalized zero or sign extended expression for this AddRec's Start.
1493 template <typename ExtendOpTy>
1494 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1495                                         ScalarEvolution *SE,
1496                                         unsigned Depth) {
1497   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1498 
1499   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1500   if (!PreStart)
1501     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1502 
1503   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1504                                              Depth),
1505                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1506 }
1507 
1508 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1509 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1510 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1511 //
1512 // Formally:
1513 //
1514 //     {S,+,X} == {S-T,+,X} + T
1515 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1516 //
1517 // If ({S-T,+,X} + T) does not overflow  ... (1)
1518 //
1519 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1520 //
1521 // If {S-T,+,X} does not overflow  ... (2)
1522 //
1523 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1524 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1525 //
1526 // If (S-T)+T does not overflow  ... (3)
1527 //
1528 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1529 //      == {Ext(S),+,Ext(X)} == LHS
1530 //
1531 // Thus, if (1), (2) and (3) are true for some T, then
1532 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1533 //
1534 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1535 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1536 // to check for (1) and (2).
1537 //
1538 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1539 // is `Delta` (defined below).
1540 template <typename ExtendOpTy>
1541 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1542                                                 const SCEV *Step,
1543                                                 const Loop *L) {
1544   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1545 
1546   // We restrict `Start` to a constant to prevent SCEV from spending too much
1547   // time here.  It is correct (but more expensive) to continue with a
1548   // non-constant `Start` and do a general SCEV subtraction to compute
1549   // `PreStart` below.
1550   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1551   if (!StartC)
1552     return false;
1553 
1554   APInt StartAI = StartC->getAPInt();
1555 
1556   for (unsigned Delta : {-2, -1, 1, 2}) {
1557     const SCEV *PreStart = getConstant(StartAI - Delta);
1558 
1559     FoldingSetNodeID ID;
1560     ID.AddInteger(scAddRecExpr);
1561     ID.AddPointer(PreStart);
1562     ID.AddPointer(Step);
1563     ID.AddPointer(L);
1564     void *IP = nullptr;
1565     const auto *PreAR =
1566       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1567 
1568     // Give up if we don't already have the add recurrence we need because
1569     // actually constructing an add recurrence is relatively expensive.
1570     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1571       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1572       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1573       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1574           DeltaS, &Pred, this);
1575       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1576         return true;
1577     }
1578   }
1579 
1580   return false;
1581 }
1582 
1583 // Finds an integer D for an expression (C + x + y + ...) such that the top
1584 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1585 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1586 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1587 // the (C + x + y + ...) expression is \p WholeAddExpr.
1588 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1589                                             const SCEVConstant *ConstantTerm,
1590                                             const SCEVAddExpr *WholeAddExpr) {
1591   const APInt C = ConstantTerm->getAPInt();
1592   const unsigned BitWidth = C.getBitWidth();
1593   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1594   uint32_t TZ = BitWidth;
1595   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1596     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1597   if (TZ) {
1598     // Set D to be as many least significant bits of C as possible while still
1599     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1600     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1601   }
1602   return APInt(BitWidth, 0);
1603 }
1604 
1605 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1606 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1607 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1608 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1609 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1610                                             const APInt &ConstantStart,
1611                                             const SCEV *Step) {
1612   const unsigned BitWidth = ConstantStart.getBitWidth();
1613   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1614   if (TZ)
1615     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1616                          : ConstantStart;
1617   return APInt(BitWidth, 0);
1618 }
1619 
1620 const SCEV *
1621 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1622   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1623          "This is not an extending conversion!");
1624   assert(isSCEVable(Ty) &&
1625          "This is not a conversion to a SCEVable type!");
1626   Ty = getEffectiveSCEVType(Ty);
1627 
1628   // Fold if the operand is constant.
1629   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1630     return getConstant(
1631       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1632 
1633   // zext(zext(x)) --> zext(x)
1634   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1635     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1636 
1637   // Before doing any expensive analysis, check to see if we've already
1638   // computed a SCEV for this Op and Ty.
1639   FoldingSetNodeID ID;
1640   ID.AddInteger(scZeroExtend);
1641   ID.AddPointer(Op);
1642   ID.AddPointer(Ty);
1643   void *IP = nullptr;
1644   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1645   if (Depth > MaxCastDepth) {
1646     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1647                                                      Op, Ty);
1648     UniqueSCEVs.InsertNode(S, IP);
1649     addToLoopUseLists(S);
1650     return S;
1651   }
1652 
1653   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1654   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1655     // It's possible the bits taken off by the truncate were all zero bits. If
1656     // so, we should be able to simplify this further.
1657     const SCEV *X = ST->getOperand();
1658     ConstantRange CR = getUnsignedRange(X);
1659     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1660     unsigned NewBits = getTypeSizeInBits(Ty);
1661     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1662             CR.zextOrTrunc(NewBits)))
1663       return getTruncateOrZeroExtend(X, Ty, Depth);
1664   }
1665 
1666   // If the input value is a chrec scev, and we can prove that the value
1667   // did not overflow the old, smaller, value, we can zero extend all of the
1668   // operands (often constants).  This allows analysis of something like
1669   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1670   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1671     if (AR->isAffine()) {
1672       const SCEV *Start = AR->getStart();
1673       const SCEV *Step = AR->getStepRecurrence(*this);
1674       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1675       const Loop *L = AR->getLoop();
1676 
1677       if (!AR->hasNoUnsignedWrap()) {
1678         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1679         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1680       }
1681 
1682       // If we have special knowledge that this addrec won't overflow,
1683       // we don't need to do any further analysis.
1684       if (AR->hasNoUnsignedWrap())
1685         return getAddRecExpr(
1686             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1687             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1688 
1689       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1690       // Note that this serves two purposes: It filters out loops that are
1691       // simply not analyzable, and it covers the case where this code is
1692       // being called from within backedge-taken count analysis, such that
1693       // attempting to ask for the backedge-taken count would likely result
1694       // in infinite recursion. In the later case, the analysis code will
1695       // cope with a conservative value, and it will take care to purge
1696       // that value once it has finished.
1697       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1698       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1699         // Manually compute the final value for AR, checking for
1700         // overflow.
1701 
1702         // Check whether the backedge-taken count can be losslessly casted to
1703         // the addrec's type. The count is always unsigned.
1704         const SCEV *CastedMaxBECount =
1705             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1706         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1707             CastedMaxBECount, MaxBECount->getType(), Depth);
1708         if (MaxBECount == RecastedMaxBECount) {
1709           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1710           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1711           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1712                                         SCEV::FlagAnyWrap, Depth + 1);
1713           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1714                                                           SCEV::FlagAnyWrap,
1715                                                           Depth + 1),
1716                                                WideTy, Depth + 1);
1717           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1718           const SCEV *WideMaxBECount =
1719             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1720           const SCEV *OperandExtendedAdd =
1721             getAddExpr(WideStart,
1722                        getMulExpr(WideMaxBECount,
1723                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1724                                   SCEV::FlagAnyWrap, Depth + 1),
1725                        SCEV::FlagAnyWrap, Depth + 1);
1726           if (ZAdd == OperandExtendedAdd) {
1727             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1728             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1729             // Return the expression with the addrec on the outside.
1730             return getAddRecExpr(
1731                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1732                                                          Depth + 1),
1733                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1734                 AR->getNoWrapFlags());
1735           }
1736           // Similar to above, only this time treat the step value as signed.
1737           // This covers loops that count down.
1738           OperandExtendedAdd =
1739             getAddExpr(WideStart,
1740                        getMulExpr(WideMaxBECount,
1741                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1742                                   SCEV::FlagAnyWrap, Depth + 1),
1743                        SCEV::FlagAnyWrap, Depth + 1);
1744           if (ZAdd == OperandExtendedAdd) {
1745             // Cache knowledge of AR NW, which is propagated to this AddRec.
1746             // Negative step causes unsigned wrap, but it still can't self-wrap.
1747             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1748             // Return the expression with the addrec on the outside.
1749             return getAddRecExpr(
1750                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1751                                                          Depth + 1),
1752                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1753                 AR->getNoWrapFlags());
1754           }
1755         }
1756       }
1757 
1758       // Normally, in the cases we can prove no-overflow via a
1759       // backedge guarding condition, we can also compute a backedge
1760       // taken count for the loop.  The exceptions are assumptions and
1761       // guards present in the loop -- SCEV is not great at exploiting
1762       // these to compute max backedge taken counts, but can still use
1763       // these to prove lack of overflow.  Use this fact to avoid
1764       // doing extra work that may not pay off.
1765       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1766           !AC.assumptions().empty()) {
1767         // If the backedge is guarded by a comparison with the pre-inc
1768         // value the addrec is safe. Also, if the entry is guarded by
1769         // a comparison with the start value and the backedge is
1770         // guarded by a comparison with the post-inc value, the addrec
1771         // is safe.
1772         if (isKnownPositive(Step)) {
1773           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1774                                       getUnsignedRangeMax(Step));
1775           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1776               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1777             // Cache knowledge of AR NUW, which is propagated to this
1778             // AddRec.
1779             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1780             // Return the expression with the addrec on the outside.
1781             return getAddRecExpr(
1782                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1783                                                          Depth + 1),
1784                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1785                 AR->getNoWrapFlags());
1786           }
1787         } else if (isKnownNegative(Step)) {
1788           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1789                                       getSignedRangeMin(Step));
1790           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1791               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1792             // Cache knowledge of AR NW, which is propagated to this
1793             // AddRec.  Negative step causes unsigned wrap, but it
1794             // still can't self-wrap.
1795             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1796             // Return the expression with the addrec on the outside.
1797             return getAddRecExpr(
1798                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1799                                                          Depth + 1),
1800                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1801                 AR->getNoWrapFlags());
1802           }
1803         }
1804       }
1805 
1806       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1807       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1808       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1809       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1810         const APInt &C = SC->getAPInt();
1811         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1812         if (D != 0) {
1813           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1814           const SCEV *SResidual =
1815               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1816           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1817           return getAddExpr(SZExtD, SZExtR,
1818                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1819                             Depth + 1);
1820         }
1821       }
1822 
1823       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1824         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1825         return getAddRecExpr(
1826             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1827             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1828       }
1829     }
1830 
1831   // zext(A % B) --> zext(A) % zext(B)
1832   {
1833     const SCEV *LHS;
1834     const SCEV *RHS;
1835     if (matchURem(Op, LHS, RHS))
1836       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1837                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1838   }
1839 
1840   // zext(A / B) --> zext(A) / zext(B).
1841   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1842     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1843                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1844 
1845   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1846     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1847     if (SA->hasNoUnsignedWrap()) {
1848       // If the addition does not unsign overflow then we can, by definition,
1849       // commute the zero extension with the addition operation.
1850       SmallVector<const SCEV *, 4> Ops;
1851       for (const auto *Op : SA->operands())
1852         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1853       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1854     }
1855 
1856     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1857     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1858     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1859     //
1860     // Often address arithmetics contain expressions like
1861     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1862     // This transformation is useful while proving that such expressions are
1863     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1864     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1865       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1866       if (D != 0) {
1867         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1868         const SCEV *SResidual =
1869             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1870         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1871         return getAddExpr(SZExtD, SZExtR,
1872                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1873                           Depth + 1);
1874       }
1875     }
1876   }
1877 
1878   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1879     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1880     if (SM->hasNoUnsignedWrap()) {
1881       // If the multiply does not unsign overflow then we can, by definition,
1882       // commute the zero extension with the multiply operation.
1883       SmallVector<const SCEV *, 4> Ops;
1884       for (const auto *Op : SM->operands())
1885         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1886       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1887     }
1888 
1889     // zext(2^K * (trunc X to iN)) to iM ->
1890     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1891     //
1892     // Proof:
1893     //
1894     //     zext(2^K * (trunc X to iN)) to iM
1895     //   = zext((trunc X to iN) << K) to iM
1896     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1897     //     (because shl removes the top K bits)
1898     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1899     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1900     //
1901     if (SM->getNumOperands() == 2)
1902       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1903         if (MulLHS->getAPInt().isPowerOf2())
1904           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1905             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1906                                MulLHS->getAPInt().logBase2();
1907             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1908             return getMulExpr(
1909                 getZeroExtendExpr(MulLHS, Ty),
1910                 getZeroExtendExpr(
1911                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1912                 SCEV::FlagNUW, Depth + 1);
1913           }
1914   }
1915 
1916   // The cast wasn't folded; create an explicit cast node.
1917   // Recompute the insert position, as it may have been invalidated.
1918   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1919   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1920                                                    Op, Ty);
1921   UniqueSCEVs.InsertNode(S, IP);
1922   addToLoopUseLists(S);
1923   return S;
1924 }
1925 
1926 const SCEV *
1927 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1928   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1929          "This is not an extending conversion!");
1930   assert(isSCEVable(Ty) &&
1931          "This is not a conversion to a SCEVable type!");
1932   Ty = getEffectiveSCEVType(Ty);
1933 
1934   // Fold if the operand is constant.
1935   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1936     return getConstant(
1937       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1938 
1939   // sext(sext(x)) --> sext(x)
1940   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1941     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1942 
1943   // sext(zext(x)) --> zext(x)
1944   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1945     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1946 
1947   // Before doing any expensive analysis, check to see if we've already
1948   // computed a SCEV for this Op and Ty.
1949   FoldingSetNodeID ID;
1950   ID.AddInteger(scSignExtend);
1951   ID.AddPointer(Op);
1952   ID.AddPointer(Ty);
1953   void *IP = nullptr;
1954   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1955   // Limit recursion depth.
1956   if (Depth > MaxCastDepth) {
1957     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1958                                                      Op, Ty);
1959     UniqueSCEVs.InsertNode(S, IP);
1960     addToLoopUseLists(S);
1961     return S;
1962   }
1963 
1964   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1965   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1966     // It's possible the bits taken off by the truncate were all sign bits. If
1967     // so, we should be able to simplify this further.
1968     const SCEV *X = ST->getOperand();
1969     ConstantRange CR = getSignedRange(X);
1970     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1971     unsigned NewBits = getTypeSizeInBits(Ty);
1972     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1973             CR.sextOrTrunc(NewBits)))
1974       return getTruncateOrSignExtend(X, Ty, Depth);
1975   }
1976 
1977   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1978     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1979     if (SA->hasNoSignedWrap()) {
1980       // If the addition does not sign overflow then we can, by definition,
1981       // commute the sign extension with the addition operation.
1982       SmallVector<const SCEV *, 4> Ops;
1983       for (const auto *Op : SA->operands())
1984         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1985       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1986     }
1987 
1988     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1989     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1990     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1991     //
1992     // For instance, this will bring two seemingly different expressions:
1993     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1994     //         sext(6 + 20 * %x + 24 * %y)
1995     // to the same form:
1996     //     2 + sext(4 + 20 * %x + 24 * %y)
1997     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1998       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1999       if (D != 0) {
2000         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2001         const SCEV *SResidual =
2002             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2003         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2004         return getAddExpr(SSExtD, SSExtR,
2005                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2006                           Depth + 1);
2007       }
2008     }
2009   }
2010   // If the input value is a chrec scev, and we can prove that the value
2011   // did not overflow the old, smaller, value, we can sign extend all of the
2012   // operands (often constants).  This allows analysis of something like
2013   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
2014   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2015     if (AR->isAffine()) {
2016       const SCEV *Start = AR->getStart();
2017       const SCEV *Step = AR->getStepRecurrence(*this);
2018       unsigned BitWidth = getTypeSizeInBits(AR->getType());
2019       const Loop *L = AR->getLoop();
2020 
2021       if (!AR->hasNoSignedWrap()) {
2022         auto NewFlags = proveNoWrapViaConstantRanges(AR);
2023         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2024       }
2025 
2026       // If we have special knowledge that this addrec won't overflow,
2027       // we don't need to do any further analysis.
2028       if (AR->hasNoSignedWrap())
2029         return getAddRecExpr(
2030             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2031             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2032 
2033       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2034       // Note that this serves two purposes: It filters out loops that are
2035       // simply not analyzable, and it covers the case where this code is
2036       // being called from within backedge-taken count analysis, such that
2037       // attempting to ask for the backedge-taken count would likely result
2038       // in infinite recursion. In the later case, the analysis code will
2039       // cope with a conservative value, and it will take care to purge
2040       // that value once it has finished.
2041       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
2042       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2043         // Manually compute the final value for AR, checking for
2044         // overflow.
2045 
2046         // Check whether the backedge-taken count can be losslessly casted to
2047         // the addrec's type. The count is always unsigned.
2048         const SCEV *CastedMaxBECount =
2049             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2050         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2051             CastedMaxBECount, MaxBECount->getType(), Depth);
2052         if (MaxBECount == RecastedMaxBECount) {
2053           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2054           // Check whether Start+Step*MaxBECount has no signed overflow.
2055           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2056                                         SCEV::FlagAnyWrap, Depth + 1);
2057           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2058                                                           SCEV::FlagAnyWrap,
2059                                                           Depth + 1),
2060                                                WideTy, Depth + 1);
2061           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2062           const SCEV *WideMaxBECount =
2063             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2064           const SCEV *OperandExtendedAdd =
2065             getAddExpr(WideStart,
2066                        getMulExpr(WideMaxBECount,
2067                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2068                                   SCEV::FlagAnyWrap, Depth + 1),
2069                        SCEV::FlagAnyWrap, Depth + 1);
2070           if (SAdd == OperandExtendedAdd) {
2071             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2072             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2073             // Return the expression with the addrec on the outside.
2074             return getAddRecExpr(
2075                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2076                                                          Depth + 1),
2077                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2078                 AR->getNoWrapFlags());
2079           }
2080           // Similar to above, only this time treat the step value as unsigned.
2081           // This covers loops that count up with an unsigned step.
2082           OperandExtendedAdd =
2083             getAddExpr(WideStart,
2084                        getMulExpr(WideMaxBECount,
2085                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2086                                   SCEV::FlagAnyWrap, Depth + 1),
2087                        SCEV::FlagAnyWrap, Depth + 1);
2088           if (SAdd == OperandExtendedAdd) {
2089             // If AR wraps around then
2090             //
2091             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2092             // => SAdd != OperandExtendedAdd
2093             //
2094             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2095             // (SAdd == OperandExtendedAdd => AR is NW)
2096 
2097             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2098 
2099             // Return the expression with the addrec on the outside.
2100             return getAddRecExpr(
2101                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2102                                                          Depth + 1),
2103                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2104                 AR->getNoWrapFlags());
2105           }
2106         }
2107       }
2108 
2109       // Normally, in the cases we can prove no-overflow via a
2110       // backedge guarding condition, we can also compute a backedge
2111       // taken count for the loop.  The exceptions are assumptions and
2112       // guards present in the loop -- SCEV is not great at exploiting
2113       // these to compute max backedge taken counts, but can still use
2114       // these to prove lack of overflow.  Use this fact to avoid
2115       // doing extra work that may not pay off.
2116 
2117       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2118           !AC.assumptions().empty()) {
2119         // If the backedge is guarded by a comparison with the pre-inc
2120         // value the addrec is safe. Also, if the entry is guarded by
2121         // a comparison with the start value and the backedge is
2122         // guarded by a comparison with the post-inc value, the addrec
2123         // is safe.
2124         ICmpInst::Predicate Pred;
2125         const SCEV *OverflowLimit =
2126             getSignedOverflowLimitForStep(Step, &Pred, this);
2127         if (OverflowLimit &&
2128             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2129              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2130           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2131           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2132           return getAddRecExpr(
2133               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2134               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2135         }
2136       }
2137 
2138       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2139       // if D + (C - D + Step * n) could be proven to not signed wrap
2140       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2141       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2142         const APInt &C = SC->getAPInt();
2143         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2144         if (D != 0) {
2145           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2146           const SCEV *SResidual =
2147               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2148           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2149           return getAddExpr(SSExtD, SSExtR,
2150                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2151                             Depth + 1);
2152         }
2153       }
2154 
2155       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2156         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2157         return getAddRecExpr(
2158             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2159             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2160       }
2161     }
2162 
2163   // If the input value is provably positive and we could not simplify
2164   // away the sext build a zext instead.
2165   if (isKnownNonNegative(Op))
2166     return getZeroExtendExpr(Op, Ty, Depth + 1);
2167 
2168   // The cast wasn't folded; create an explicit cast node.
2169   // Recompute the insert position, as it may have been invalidated.
2170   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2171   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2172                                                    Op, Ty);
2173   UniqueSCEVs.InsertNode(S, IP);
2174   addToLoopUseLists(S);
2175   return S;
2176 }
2177 
2178 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2179 /// unspecified bits out to the given type.
2180 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2181                                               Type *Ty) {
2182   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2183          "This is not an extending conversion!");
2184   assert(isSCEVable(Ty) &&
2185          "This is not a conversion to a SCEVable type!");
2186   Ty = getEffectiveSCEVType(Ty);
2187 
2188   // Sign-extend negative constants.
2189   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2190     if (SC->getAPInt().isNegative())
2191       return getSignExtendExpr(Op, Ty);
2192 
2193   // Peel off a truncate cast.
2194   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2195     const SCEV *NewOp = T->getOperand();
2196     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2197       return getAnyExtendExpr(NewOp, Ty);
2198     return getTruncateOrNoop(NewOp, Ty);
2199   }
2200 
2201   // Next try a zext cast. If the cast is folded, use it.
2202   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2203   if (!isa<SCEVZeroExtendExpr>(ZExt))
2204     return ZExt;
2205 
2206   // Next try a sext cast. If the cast is folded, use it.
2207   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2208   if (!isa<SCEVSignExtendExpr>(SExt))
2209     return SExt;
2210 
2211   // Force the cast to be folded into the operands of an addrec.
2212   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2213     SmallVector<const SCEV *, 4> Ops;
2214     for (const SCEV *Op : AR->operands())
2215       Ops.push_back(getAnyExtendExpr(Op, Ty));
2216     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2217   }
2218 
2219   // If the expression is obviously signed, use the sext cast value.
2220   if (isa<SCEVSMaxExpr>(Op))
2221     return SExt;
2222 
2223   // Absent any other information, use the zext cast value.
2224   return ZExt;
2225 }
2226 
2227 /// Process the given Ops list, which is a list of operands to be added under
2228 /// the given scale, update the given map. This is a helper function for
2229 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2230 /// that would form an add expression like this:
2231 ///
2232 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2233 ///
2234 /// where A and B are constants, update the map with these values:
2235 ///
2236 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2237 ///
2238 /// and add 13 + A*B*29 to AccumulatedConstant.
2239 /// This will allow getAddRecExpr to produce this:
2240 ///
2241 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2242 ///
2243 /// This form often exposes folding opportunities that are hidden in
2244 /// the original operand list.
2245 ///
2246 /// Return true iff it appears that any interesting folding opportunities
2247 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2248 /// the common case where no interesting opportunities are present, and
2249 /// is also used as a check to avoid infinite recursion.
2250 static bool
2251 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2252                              SmallVectorImpl<const SCEV *> &NewOps,
2253                              APInt &AccumulatedConstant,
2254                              const SCEV *const *Ops, size_t NumOperands,
2255                              const APInt &Scale,
2256                              ScalarEvolution &SE) {
2257   bool Interesting = false;
2258 
2259   // Iterate over the add operands. They are sorted, with constants first.
2260   unsigned i = 0;
2261   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2262     ++i;
2263     // Pull a buried constant out to the outside.
2264     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2265       Interesting = true;
2266     AccumulatedConstant += Scale * C->getAPInt();
2267   }
2268 
2269   // Next comes everything else. We're especially interested in multiplies
2270   // here, but they're in the middle, so just visit the rest with one loop.
2271   for (; i != NumOperands; ++i) {
2272     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2273     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2274       APInt NewScale =
2275           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2276       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2277         // A multiplication of a constant with another add; recurse.
2278         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2279         Interesting |=
2280           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2281                                        Add->op_begin(), Add->getNumOperands(),
2282                                        NewScale, SE);
2283       } else {
2284         // A multiplication of a constant with some other value. Update
2285         // the map.
2286         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2287         const SCEV *Key = SE.getMulExpr(MulOps);
2288         auto Pair = M.insert({Key, NewScale});
2289         if (Pair.second) {
2290           NewOps.push_back(Pair.first->first);
2291         } else {
2292           Pair.first->second += NewScale;
2293           // The map already had an entry for this value, which may indicate
2294           // a folding opportunity.
2295           Interesting = true;
2296         }
2297       }
2298     } else {
2299       // An ordinary operand. Update the map.
2300       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2301           M.insert({Ops[i], Scale});
2302       if (Pair.second) {
2303         NewOps.push_back(Pair.first->first);
2304       } else {
2305         Pair.first->second += Scale;
2306         // The map already had an entry for this value, which may indicate
2307         // a folding opportunity.
2308         Interesting = true;
2309       }
2310     }
2311   }
2312 
2313   return Interesting;
2314 }
2315 
2316 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2317 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2318 // can't-overflow flags for the operation if possible.
2319 static SCEV::NoWrapFlags
2320 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2321                       const ArrayRef<const SCEV *> Ops,
2322                       SCEV::NoWrapFlags Flags) {
2323   using namespace std::placeholders;
2324 
2325   using OBO = OverflowingBinaryOperator;
2326 
2327   bool CanAnalyze =
2328       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2329   (void)CanAnalyze;
2330   assert(CanAnalyze && "don't call from other places!");
2331 
2332   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2333   SCEV::NoWrapFlags SignOrUnsignWrap =
2334       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2335 
2336   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2337   auto IsKnownNonNegative = [&](const SCEV *S) {
2338     return SE->isKnownNonNegative(S);
2339   };
2340 
2341   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2342     Flags =
2343         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2344 
2345   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2346 
2347   if (SignOrUnsignWrap != SignOrUnsignMask &&
2348       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2349       isa<SCEVConstant>(Ops[0])) {
2350 
2351     auto Opcode = [&] {
2352       switch (Type) {
2353       case scAddExpr:
2354         return Instruction::Add;
2355       case scMulExpr:
2356         return Instruction::Mul;
2357       default:
2358         llvm_unreachable("Unexpected SCEV op.");
2359       }
2360     }();
2361 
2362     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2363 
2364     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2365     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2366       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2367           Opcode, C, OBO::NoSignedWrap);
2368       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2369         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2370     }
2371 
2372     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2373     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2374       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2375           Opcode, C, OBO::NoUnsignedWrap);
2376       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2377         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2378     }
2379   }
2380 
2381   return Flags;
2382 }
2383 
2384 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2385   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2386 }
2387 
2388 /// Get a canonical add expression, or something simpler if possible.
2389 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2390                                         SCEV::NoWrapFlags Flags,
2391                                         unsigned Depth) {
2392   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2393          "only nuw or nsw allowed");
2394   assert(!Ops.empty() && "Cannot get empty add!");
2395   if (Ops.size() == 1) return Ops[0];
2396 #ifndef NDEBUG
2397   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2398   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2399     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2400            "SCEVAddExpr operand types don't match!");
2401 #endif
2402 
2403   // Sort by complexity, this groups all similar expression types together.
2404   GroupByComplexity(Ops, &LI, DT);
2405 
2406   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2407 
2408   // If there are any constants, fold them together.
2409   unsigned Idx = 0;
2410   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2411     ++Idx;
2412     assert(Idx < Ops.size());
2413     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2414       // We found two constants, fold them together!
2415       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2416       if (Ops.size() == 2) return Ops[0];
2417       Ops.erase(Ops.begin()+1);  // Erase the folded element
2418       LHSC = cast<SCEVConstant>(Ops[0]);
2419     }
2420 
2421     // If we are left with a constant zero being added, strip it off.
2422     if (LHSC->getValue()->isZero()) {
2423       Ops.erase(Ops.begin());
2424       --Idx;
2425     }
2426 
2427     if (Ops.size() == 1) return Ops[0];
2428   }
2429 
2430   // Limit recursion calls depth.
2431   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2432     return getOrCreateAddExpr(Ops, Flags);
2433 
2434   // Okay, check to see if the same value occurs in the operand list more than
2435   // once.  If so, merge them together into an multiply expression.  Since we
2436   // sorted the list, these values are required to be adjacent.
2437   Type *Ty = Ops[0]->getType();
2438   bool FoundMatch = false;
2439   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2440     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2441       // Scan ahead to count how many equal operands there are.
2442       unsigned Count = 2;
2443       while (i+Count != e && Ops[i+Count] == Ops[i])
2444         ++Count;
2445       // Merge the values into a multiply.
2446       const SCEV *Scale = getConstant(Ty, Count);
2447       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2448       if (Ops.size() == Count)
2449         return Mul;
2450       Ops[i] = Mul;
2451       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2452       --i; e -= Count - 1;
2453       FoundMatch = true;
2454     }
2455   if (FoundMatch)
2456     return getAddExpr(Ops, Flags, Depth + 1);
2457 
2458   // Check for truncates. If all the operands are truncated from the same
2459   // type, see if factoring out the truncate would permit the result to be
2460   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2461   // if the contents of the resulting outer trunc fold to something simple.
2462   auto FindTruncSrcType = [&]() -> Type * {
2463     // We're ultimately looking to fold an addrec of truncs and muls of only
2464     // constants and truncs, so if we find any other types of SCEV
2465     // as operands of the addrec then we bail and return nullptr here.
2466     // Otherwise, we return the type of the operand of a trunc that we find.
2467     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2468       return T->getOperand()->getType();
2469     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2470       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2471       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2472         return T->getOperand()->getType();
2473     }
2474     return nullptr;
2475   };
2476   if (auto *SrcType = FindTruncSrcType()) {
2477     SmallVector<const SCEV *, 8> LargeOps;
2478     bool Ok = true;
2479     // Check all the operands to see if they can be represented in the
2480     // source type of the truncate.
2481     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2482       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2483         if (T->getOperand()->getType() != SrcType) {
2484           Ok = false;
2485           break;
2486         }
2487         LargeOps.push_back(T->getOperand());
2488       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2489         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2490       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2491         SmallVector<const SCEV *, 8> LargeMulOps;
2492         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2493           if (const SCEVTruncateExpr *T =
2494                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2495             if (T->getOperand()->getType() != SrcType) {
2496               Ok = false;
2497               break;
2498             }
2499             LargeMulOps.push_back(T->getOperand());
2500           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2501             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2502           } else {
2503             Ok = false;
2504             break;
2505           }
2506         }
2507         if (Ok)
2508           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2509       } else {
2510         Ok = false;
2511         break;
2512       }
2513     }
2514     if (Ok) {
2515       // Evaluate the expression in the larger type.
2516       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2517       // If it folds to something simple, use it. Otherwise, don't.
2518       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2519         return getTruncateExpr(Fold, Ty);
2520     }
2521   }
2522 
2523   // Skip past any other cast SCEVs.
2524   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2525     ++Idx;
2526 
2527   // If there are add operands they would be next.
2528   if (Idx < Ops.size()) {
2529     bool DeletedAdd = false;
2530     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2531       if (Ops.size() > AddOpsInlineThreshold ||
2532           Add->getNumOperands() > AddOpsInlineThreshold)
2533         break;
2534       // If we have an add, expand the add operands onto the end of the operands
2535       // list.
2536       Ops.erase(Ops.begin()+Idx);
2537       Ops.append(Add->op_begin(), Add->op_end());
2538       DeletedAdd = true;
2539     }
2540 
2541     // If we deleted at least one add, we added operands to the end of the list,
2542     // and they are not necessarily sorted.  Recurse to resort and resimplify
2543     // any operands we just acquired.
2544     if (DeletedAdd)
2545       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2546   }
2547 
2548   // Skip over the add expression until we get to a multiply.
2549   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2550     ++Idx;
2551 
2552   // Check to see if there are any folding opportunities present with
2553   // operands multiplied by constant values.
2554   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2555     uint64_t BitWidth = getTypeSizeInBits(Ty);
2556     DenseMap<const SCEV *, APInt> M;
2557     SmallVector<const SCEV *, 8> NewOps;
2558     APInt AccumulatedConstant(BitWidth, 0);
2559     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2560                                      Ops.data(), Ops.size(),
2561                                      APInt(BitWidth, 1), *this)) {
2562       struct APIntCompare {
2563         bool operator()(const APInt &LHS, const APInt &RHS) const {
2564           return LHS.ult(RHS);
2565         }
2566       };
2567 
2568       // Some interesting folding opportunity is present, so its worthwhile to
2569       // re-generate the operands list. Group the operands by constant scale,
2570       // to avoid multiplying by the same constant scale multiple times.
2571       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2572       for (const SCEV *NewOp : NewOps)
2573         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2574       // Re-generate the operands list.
2575       Ops.clear();
2576       if (AccumulatedConstant != 0)
2577         Ops.push_back(getConstant(AccumulatedConstant));
2578       for (auto &MulOp : MulOpLists)
2579         if (MulOp.first != 0)
2580           Ops.push_back(getMulExpr(
2581               getConstant(MulOp.first),
2582               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2583               SCEV::FlagAnyWrap, Depth + 1));
2584       if (Ops.empty())
2585         return getZero(Ty);
2586       if (Ops.size() == 1)
2587         return Ops[0];
2588       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2589     }
2590   }
2591 
2592   // If we are adding something to a multiply expression, make sure the
2593   // something is not already an operand of the multiply.  If so, merge it into
2594   // the multiply.
2595   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2596     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2597     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2598       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2599       if (isa<SCEVConstant>(MulOpSCEV))
2600         continue;
2601       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2602         if (MulOpSCEV == Ops[AddOp]) {
2603           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2604           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2605           if (Mul->getNumOperands() != 2) {
2606             // If the multiply has more than two operands, we must get the
2607             // Y*Z term.
2608             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2609                                                 Mul->op_begin()+MulOp);
2610             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2611             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2612           }
2613           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2614           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2615           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2616                                             SCEV::FlagAnyWrap, Depth + 1);
2617           if (Ops.size() == 2) return OuterMul;
2618           if (AddOp < Idx) {
2619             Ops.erase(Ops.begin()+AddOp);
2620             Ops.erase(Ops.begin()+Idx-1);
2621           } else {
2622             Ops.erase(Ops.begin()+Idx);
2623             Ops.erase(Ops.begin()+AddOp-1);
2624           }
2625           Ops.push_back(OuterMul);
2626           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2627         }
2628 
2629       // Check this multiply against other multiplies being added together.
2630       for (unsigned OtherMulIdx = Idx+1;
2631            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2632            ++OtherMulIdx) {
2633         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2634         // If MulOp occurs in OtherMul, we can fold the two multiplies
2635         // together.
2636         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2637              OMulOp != e; ++OMulOp)
2638           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2639             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2640             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2641             if (Mul->getNumOperands() != 2) {
2642               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2643                                                   Mul->op_begin()+MulOp);
2644               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2645               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2646             }
2647             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2648             if (OtherMul->getNumOperands() != 2) {
2649               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2650                                                   OtherMul->op_begin()+OMulOp);
2651               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2652               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2653             }
2654             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2655             const SCEV *InnerMulSum =
2656                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2657             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2658                                               SCEV::FlagAnyWrap, Depth + 1);
2659             if (Ops.size() == 2) return OuterMul;
2660             Ops.erase(Ops.begin()+Idx);
2661             Ops.erase(Ops.begin()+OtherMulIdx-1);
2662             Ops.push_back(OuterMul);
2663             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2664           }
2665       }
2666     }
2667   }
2668 
2669   // If there are any add recurrences in the operands list, see if any other
2670   // added values are loop invariant.  If so, we can fold them into the
2671   // recurrence.
2672   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2673     ++Idx;
2674 
2675   // Scan over all recurrences, trying to fold loop invariants into them.
2676   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2677     // Scan all of the other operands to this add and add them to the vector if
2678     // they are loop invariant w.r.t. the recurrence.
2679     SmallVector<const SCEV *, 8> LIOps;
2680     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2681     const Loop *AddRecLoop = AddRec->getLoop();
2682     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2683       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2684         LIOps.push_back(Ops[i]);
2685         Ops.erase(Ops.begin()+i);
2686         --i; --e;
2687       }
2688 
2689     // If we found some loop invariants, fold them into the recurrence.
2690     if (!LIOps.empty()) {
2691       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2692       LIOps.push_back(AddRec->getStart());
2693 
2694       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2695                                              AddRec->op_end());
2696       // This follows from the fact that the no-wrap flags on the outer add
2697       // expression are applicable on the 0th iteration, when the add recurrence
2698       // will be equal to its start value.
2699       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2700 
2701       // Build the new addrec. Propagate the NUW and NSW flags if both the
2702       // outer add and the inner addrec are guaranteed to have no overflow.
2703       // Always propagate NW.
2704       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2705       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2706 
2707       // If all of the other operands were loop invariant, we are done.
2708       if (Ops.size() == 1) return NewRec;
2709 
2710       // Otherwise, add the folded AddRec by the non-invariant parts.
2711       for (unsigned i = 0;; ++i)
2712         if (Ops[i] == AddRec) {
2713           Ops[i] = NewRec;
2714           break;
2715         }
2716       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2717     }
2718 
2719     // Okay, if there weren't any loop invariants to be folded, check to see if
2720     // there are multiple AddRec's with the same loop induction variable being
2721     // added together.  If so, we can fold them.
2722     for (unsigned OtherIdx = Idx+1;
2723          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2724          ++OtherIdx) {
2725       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2726       // so that the 1st found AddRecExpr is dominated by all others.
2727       assert(DT.dominates(
2728            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2729            AddRec->getLoop()->getHeader()) &&
2730         "AddRecExprs are not sorted in reverse dominance order?");
2731       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2732         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2733         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2734                                                AddRec->op_end());
2735         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2736              ++OtherIdx) {
2737           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2738           if (OtherAddRec->getLoop() == AddRecLoop) {
2739             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2740                  i != e; ++i) {
2741               if (i >= AddRecOps.size()) {
2742                 AddRecOps.append(OtherAddRec->op_begin()+i,
2743                                  OtherAddRec->op_end());
2744                 break;
2745               }
2746               SmallVector<const SCEV *, 2> TwoOps = {
2747                   AddRecOps[i], OtherAddRec->getOperand(i)};
2748               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2749             }
2750             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2751           }
2752         }
2753         // Step size has changed, so we cannot guarantee no self-wraparound.
2754         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2755         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2756       }
2757     }
2758 
2759     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2760     // next one.
2761   }
2762 
2763   // Okay, it looks like we really DO need an add expr.  Check to see if we
2764   // already have one, otherwise create a new one.
2765   return getOrCreateAddExpr(Ops, Flags);
2766 }
2767 
2768 const SCEV *
2769 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2770                                     SCEV::NoWrapFlags Flags) {
2771   FoldingSetNodeID ID;
2772   ID.AddInteger(scAddExpr);
2773   for (const SCEV *Op : Ops)
2774     ID.AddPointer(Op);
2775   void *IP = nullptr;
2776   SCEVAddExpr *S =
2777       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2778   if (!S) {
2779     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2780     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2781     S = new (SCEVAllocator)
2782         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2783     UniqueSCEVs.InsertNode(S, IP);
2784     addToLoopUseLists(S);
2785   }
2786   S->setNoWrapFlags(Flags);
2787   return S;
2788 }
2789 
2790 const SCEV *
2791 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2792                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2793   FoldingSetNodeID ID;
2794   ID.AddInteger(scAddRecExpr);
2795   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2796     ID.AddPointer(Ops[i]);
2797   ID.AddPointer(L);
2798   void *IP = nullptr;
2799   SCEVAddRecExpr *S =
2800       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2801   if (!S) {
2802     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2803     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2804     S = new (SCEVAllocator)
2805         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2806     UniqueSCEVs.InsertNode(S, IP);
2807     addToLoopUseLists(S);
2808   }
2809   S->setNoWrapFlags(Flags);
2810   return S;
2811 }
2812 
2813 const SCEV *
2814 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2815                                     SCEV::NoWrapFlags Flags) {
2816   FoldingSetNodeID ID;
2817   ID.AddInteger(scMulExpr);
2818   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2819     ID.AddPointer(Ops[i]);
2820   void *IP = nullptr;
2821   SCEVMulExpr *S =
2822     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2823   if (!S) {
2824     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2825     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2826     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2827                                         O, Ops.size());
2828     UniqueSCEVs.InsertNode(S, IP);
2829     addToLoopUseLists(S);
2830   }
2831   S->setNoWrapFlags(Flags);
2832   return S;
2833 }
2834 
2835 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2836   uint64_t k = i*j;
2837   if (j > 1 && k / j != i) Overflow = true;
2838   return k;
2839 }
2840 
2841 /// Compute the result of "n choose k", the binomial coefficient.  If an
2842 /// intermediate computation overflows, Overflow will be set and the return will
2843 /// be garbage. Overflow is not cleared on absence of overflow.
2844 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2845   // We use the multiplicative formula:
2846   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2847   // At each iteration, we take the n-th term of the numeral and divide by the
2848   // (k-n)th term of the denominator.  This division will always produce an
2849   // integral result, and helps reduce the chance of overflow in the
2850   // intermediate computations. However, we can still overflow even when the
2851   // final result would fit.
2852 
2853   if (n == 0 || n == k) return 1;
2854   if (k > n) return 0;
2855 
2856   if (k > n/2)
2857     k = n-k;
2858 
2859   uint64_t r = 1;
2860   for (uint64_t i = 1; i <= k; ++i) {
2861     r = umul_ov(r, n-(i-1), Overflow);
2862     r /= i;
2863   }
2864   return r;
2865 }
2866 
2867 /// Determine if any of the operands in this SCEV are a constant or if
2868 /// any of the add or multiply expressions in this SCEV contain a constant.
2869 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2870   struct FindConstantInAddMulChain {
2871     bool FoundConstant = false;
2872 
2873     bool follow(const SCEV *S) {
2874       FoundConstant |= isa<SCEVConstant>(S);
2875       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2876     }
2877 
2878     bool isDone() const {
2879       return FoundConstant;
2880     }
2881   };
2882 
2883   FindConstantInAddMulChain F;
2884   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2885   ST.visitAll(StartExpr);
2886   return F.FoundConstant;
2887 }
2888 
2889 /// Get a canonical multiply expression, or something simpler if possible.
2890 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2891                                         SCEV::NoWrapFlags Flags,
2892                                         unsigned Depth) {
2893   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2894          "only nuw or nsw allowed");
2895   assert(!Ops.empty() && "Cannot get empty mul!");
2896   if (Ops.size() == 1) return Ops[0];
2897 #ifndef NDEBUG
2898   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2899   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2900     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2901            "SCEVMulExpr operand types don't match!");
2902 #endif
2903 
2904   // Sort by complexity, this groups all similar expression types together.
2905   GroupByComplexity(Ops, &LI, DT);
2906 
2907   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2908 
2909   // Limit recursion calls depth.
2910   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2911     return getOrCreateMulExpr(Ops, Flags);
2912 
2913   // If there are any constants, fold them together.
2914   unsigned Idx = 0;
2915   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2916 
2917     if (Ops.size() == 2)
2918       // C1*(C2+V) -> C1*C2 + C1*V
2919       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2920         // If any of Add's ops are Adds or Muls with a constant, apply this
2921         // transformation as well.
2922         //
2923         // TODO: There are some cases where this transformation is not
2924         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2925         // this transformation should be narrowed down.
2926         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2927           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2928                                        SCEV::FlagAnyWrap, Depth + 1),
2929                             getMulExpr(LHSC, Add->getOperand(1),
2930                                        SCEV::FlagAnyWrap, Depth + 1),
2931                             SCEV::FlagAnyWrap, Depth + 1);
2932 
2933     ++Idx;
2934     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2935       // We found two constants, fold them together!
2936       ConstantInt *Fold =
2937           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2938       Ops[0] = getConstant(Fold);
2939       Ops.erase(Ops.begin()+1);  // Erase the folded element
2940       if (Ops.size() == 1) return Ops[0];
2941       LHSC = cast<SCEVConstant>(Ops[0]);
2942     }
2943 
2944     // If we are left with a constant one being multiplied, strip it off.
2945     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2946       Ops.erase(Ops.begin());
2947       --Idx;
2948     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2949       // If we have a multiply of zero, it will always be zero.
2950       return Ops[0];
2951     } else if (Ops[0]->isAllOnesValue()) {
2952       // If we have a mul by -1 of an add, try distributing the -1 among the
2953       // add operands.
2954       if (Ops.size() == 2) {
2955         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2956           SmallVector<const SCEV *, 4> NewOps;
2957           bool AnyFolded = false;
2958           for (const SCEV *AddOp : Add->operands()) {
2959             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2960                                          Depth + 1);
2961             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2962             NewOps.push_back(Mul);
2963           }
2964           if (AnyFolded)
2965             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2966         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2967           // Negation preserves a recurrence's no self-wrap property.
2968           SmallVector<const SCEV *, 4> Operands;
2969           for (const SCEV *AddRecOp : AddRec->operands())
2970             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2971                                           Depth + 1));
2972 
2973           return getAddRecExpr(Operands, AddRec->getLoop(),
2974                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2975         }
2976       }
2977     }
2978 
2979     if (Ops.size() == 1)
2980       return Ops[0];
2981   }
2982 
2983   // Skip over the add expression until we get to a multiply.
2984   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2985     ++Idx;
2986 
2987   // If there are mul operands inline them all into this expression.
2988   if (Idx < Ops.size()) {
2989     bool DeletedMul = false;
2990     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2991       if (Ops.size() > MulOpsInlineThreshold)
2992         break;
2993       // If we have an mul, expand the mul operands onto the end of the
2994       // operands list.
2995       Ops.erase(Ops.begin()+Idx);
2996       Ops.append(Mul->op_begin(), Mul->op_end());
2997       DeletedMul = true;
2998     }
2999 
3000     // If we deleted at least one mul, we added operands to the end of the
3001     // list, and they are not necessarily sorted.  Recurse to resort and
3002     // resimplify any operands we just acquired.
3003     if (DeletedMul)
3004       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3005   }
3006 
3007   // If there are any add recurrences in the operands list, see if any other
3008   // added values are loop invariant.  If so, we can fold them into the
3009   // recurrence.
3010   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3011     ++Idx;
3012 
3013   // Scan over all recurrences, trying to fold loop invariants into them.
3014   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3015     // Scan all of the other operands to this mul and add them to the vector
3016     // if they are loop invariant w.r.t. the recurrence.
3017     SmallVector<const SCEV *, 8> LIOps;
3018     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3019     const Loop *AddRecLoop = AddRec->getLoop();
3020     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3021       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3022         LIOps.push_back(Ops[i]);
3023         Ops.erase(Ops.begin()+i);
3024         --i; --e;
3025       }
3026 
3027     // If we found some loop invariants, fold them into the recurrence.
3028     if (!LIOps.empty()) {
3029       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3030       SmallVector<const SCEV *, 4> NewOps;
3031       NewOps.reserve(AddRec->getNumOperands());
3032       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3033       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3034         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3035                                     SCEV::FlagAnyWrap, Depth + 1));
3036 
3037       // Build the new addrec. Propagate the NUW and NSW flags if both the
3038       // outer mul and the inner addrec are guaranteed to have no overflow.
3039       //
3040       // No self-wrap cannot be guaranteed after changing the step size, but
3041       // will be inferred if either NUW or NSW is true.
3042       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3043       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3044 
3045       // If all of the other operands were loop invariant, we are done.
3046       if (Ops.size() == 1) return NewRec;
3047 
3048       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3049       for (unsigned i = 0;; ++i)
3050         if (Ops[i] == AddRec) {
3051           Ops[i] = NewRec;
3052           break;
3053         }
3054       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3055     }
3056 
3057     // Okay, if there weren't any loop invariants to be folded, check to see
3058     // if there are multiple AddRec's with the same loop induction variable
3059     // being multiplied together.  If so, we can fold them.
3060 
3061     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3062     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3063     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3064     //   ]]],+,...up to x=2n}.
3065     // Note that the arguments to choose() are always integers with values
3066     // known at compile time, never SCEV objects.
3067     //
3068     // The implementation avoids pointless extra computations when the two
3069     // addrec's are of different length (mathematically, it's equivalent to
3070     // an infinite stream of zeros on the right).
3071     bool OpsModified = false;
3072     for (unsigned OtherIdx = Idx+1;
3073          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3074          ++OtherIdx) {
3075       const SCEVAddRecExpr *OtherAddRec =
3076         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3077       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3078         continue;
3079 
3080       // Limit max number of arguments to avoid creation of unreasonably big
3081       // SCEVAddRecs with very complex operands.
3082       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3083           MaxAddRecSize || isHugeExpression(AddRec) ||
3084           isHugeExpression(OtherAddRec))
3085         continue;
3086 
3087       bool Overflow = false;
3088       Type *Ty = AddRec->getType();
3089       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3090       SmallVector<const SCEV*, 7> AddRecOps;
3091       for (int x = 0, xe = AddRec->getNumOperands() +
3092              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3093         SmallVector <const SCEV *, 7> SumOps;
3094         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3095           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3096           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3097                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3098                z < ze && !Overflow; ++z) {
3099             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3100             uint64_t Coeff;
3101             if (LargerThan64Bits)
3102               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3103             else
3104               Coeff = Coeff1*Coeff2;
3105             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3106             const SCEV *Term1 = AddRec->getOperand(y-z);
3107             const SCEV *Term2 = OtherAddRec->getOperand(z);
3108             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3109                                         SCEV::FlagAnyWrap, Depth + 1));
3110           }
3111         }
3112         if (SumOps.empty())
3113           SumOps.push_back(getZero(Ty));
3114         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3115       }
3116       if (!Overflow) {
3117         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3118                                               SCEV::FlagAnyWrap);
3119         if (Ops.size() == 2) return NewAddRec;
3120         Ops[Idx] = NewAddRec;
3121         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3122         OpsModified = true;
3123         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3124         if (!AddRec)
3125           break;
3126       }
3127     }
3128     if (OpsModified)
3129       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3130 
3131     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3132     // next one.
3133   }
3134 
3135   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3136   // already have one, otherwise create a new one.
3137   return getOrCreateMulExpr(Ops, Flags);
3138 }
3139 
3140 /// Represents an unsigned remainder expression based on unsigned division.
3141 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3142                                          const SCEV *RHS) {
3143   assert(getEffectiveSCEVType(LHS->getType()) ==
3144          getEffectiveSCEVType(RHS->getType()) &&
3145          "SCEVURemExpr operand types don't match!");
3146 
3147   // Short-circuit easy cases
3148   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3149     // If constant is one, the result is trivial
3150     if (RHSC->getValue()->isOne())
3151       return getZero(LHS->getType()); // X urem 1 --> 0
3152 
3153     // If constant is a power of two, fold into a zext(trunc(LHS)).
3154     if (RHSC->getAPInt().isPowerOf2()) {
3155       Type *FullTy = LHS->getType();
3156       Type *TruncTy =
3157           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3158       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3159     }
3160   }
3161 
3162   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3163   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3164   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3165   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3166 }
3167 
3168 /// Get a canonical unsigned division expression, or something simpler if
3169 /// possible.
3170 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3171                                          const SCEV *RHS) {
3172   assert(getEffectiveSCEVType(LHS->getType()) ==
3173          getEffectiveSCEVType(RHS->getType()) &&
3174          "SCEVUDivExpr operand types don't match!");
3175 
3176   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3177     if (RHSC->getValue()->isOne())
3178       return LHS;                               // X udiv 1 --> x
3179     // If the denominator is zero, the result of the udiv is undefined. Don't
3180     // try to analyze it, because the resolution chosen here may differ from
3181     // the resolution chosen in other parts of the compiler.
3182     if (!RHSC->getValue()->isZero()) {
3183       // Determine if the division can be folded into the operands of
3184       // its operands.
3185       // TODO: Generalize this to non-constants by using known-bits information.
3186       Type *Ty = LHS->getType();
3187       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3188       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3189       // For non-power-of-two values, effectively round the value up to the
3190       // nearest power of two.
3191       if (!RHSC->getAPInt().isPowerOf2())
3192         ++MaxShiftAmt;
3193       IntegerType *ExtTy =
3194         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3195       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3196         if (const SCEVConstant *Step =
3197             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3198           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3199           const APInt &StepInt = Step->getAPInt();
3200           const APInt &DivInt = RHSC->getAPInt();
3201           if (!StepInt.urem(DivInt) &&
3202               getZeroExtendExpr(AR, ExtTy) ==
3203               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3204                             getZeroExtendExpr(Step, ExtTy),
3205                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3206             SmallVector<const SCEV *, 4> Operands;
3207             for (const SCEV *Op : AR->operands())
3208               Operands.push_back(getUDivExpr(Op, RHS));
3209             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3210           }
3211           /// Get a canonical UDivExpr for a recurrence.
3212           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3213           // We can currently only fold X%N if X is constant.
3214           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3215           if (StartC && !DivInt.urem(StepInt) &&
3216               getZeroExtendExpr(AR, ExtTy) ==
3217               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3218                             getZeroExtendExpr(Step, ExtTy),
3219                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3220             const APInt &StartInt = StartC->getAPInt();
3221             const APInt &StartRem = StartInt.urem(StepInt);
3222             if (StartRem != 0)
3223               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3224                                   AR->getLoop(), SCEV::FlagNW);
3225           }
3226         }
3227       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3228       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3229         SmallVector<const SCEV *, 4> Operands;
3230         for (const SCEV *Op : M->operands())
3231           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3232         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3233           // Find an operand that's safely divisible.
3234           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3235             const SCEV *Op = M->getOperand(i);
3236             const SCEV *Div = getUDivExpr(Op, RHSC);
3237             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3238               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3239                                                       M->op_end());
3240               Operands[i] = Div;
3241               return getMulExpr(Operands);
3242             }
3243           }
3244       }
3245 
3246       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3247       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3248         if (auto *DivisorConstant =
3249                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3250           bool Overflow = false;
3251           APInt NewRHS =
3252               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3253           if (Overflow) {
3254             return getConstant(RHSC->getType(), 0, false);
3255           }
3256           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3257         }
3258       }
3259 
3260       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3261       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3262         SmallVector<const SCEV *, 4> Operands;
3263         for (const SCEV *Op : A->operands())
3264           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3265         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3266           Operands.clear();
3267           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3268             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3269             if (isa<SCEVUDivExpr>(Op) ||
3270                 getMulExpr(Op, RHS) != A->getOperand(i))
3271               break;
3272             Operands.push_back(Op);
3273           }
3274           if (Operands.size() == A->getNumOperands())
3275             return getAddExpr(Operands);
3276         }
3277       }
3278 
3279       // Fold if both operands are constant.
3280       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3281         Constant *LHSCV = LHSC->getValue();
3282         Constant *RHSCV = RHSC->getValue();
3283         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3284                                                                    RHSCV)));
3285       }
3286     }
3287   }
3288 
3289   FoldingSetNodeID ID;
3290   ID.AddInteger(scUDivExpr);
3291   ID.AddPointer(LHS);
3292   ID.AddPointer(RHS);
3293   void *IP = nullptr;
3294   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3295   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3296                                              LHS, RHS);
3297   UniqueSCEVs.InsertNode(S, IP);
3298   addToLoopUseLists(S);
3299   return S;
3300 }
3301 
3302 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3303   APInt A = C1->getAPInt().abs();
3304   APInt B = C2->getAPInt().abs();
3305   uint32_t ABW = A.getBitWidth();
3306   uint32_t BBW = B.getBitWidth();
3307 
3308   if (ABW > BBW)
3309     B = B.zext(ABW);
3310   else if (ABW < BBW)
3311     A = A.zext(BBW);
3312 
3313   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3314 }
3315 
3316 /// Get a canonical unsigned division expression, or something simpler if
3317 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3318 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3319 /// it's not exact because the udiv may be clearing bits.
3320 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3321                                               const SCEV *RHS) {
3322   // TODO: we could try to find factors in all sorts of things, but for now we
3323   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3324   // end of this file for inspiration.
3325 
3326   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3327   if (!Mul || !Mul->hasNoUnsignedWrap())
3328     return getUDivExpr(LHS, RHS);
3329 
3330   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3331     // If the mulexpr multiplies by a constant, then that constant must be the
3332     // first element of the mulexpr.
3333     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3334       if (LHSCst == RHSCst) {
3335         SmallVector<const SCEV *, 2> Operands;
3336         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3337         return getMulExpr(Operands);
3338       }
3339 
3340       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3341       // that there's a factor provided by one of the other terms. We need to
3342       // check.
3343       APInt Factor = gcd(LHSCst, RHSCst);
3344       if (!Factor.isIntN(1)) {
3345         LHSCst =
3346             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3347         RHSCst =
3348             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3349         SmallVector<const SCEV *, 2> Operands;
3350         Operands.push_back(LHSCst);
3351         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3352         LHS = getMulExpr(Operands);
3353         RHS = RHSCst;
3354         Mul = dyn_cast<SCEVMulExpr>(LHS);
3355         if (!Mul)
3356           return getUDivExactExpr(LHS, RHS);
3357       }
3358     }
3359   }
3360 
3361   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3362     if (Mul->getOperand(i) == RHS) {
3363       SmallVector<const SCEV *, 2> Operands;
3364       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3365       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3366       return getMulExpr(Operands);
3367     }
3368   }
3369 
3370   return getUDivExpr(LHS, RHS);
3371 }
3372 
3373 /// Get an add recurrence expression for the specified loop.  Simplify the
3374 /// expression as much as possible.
3375 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3376                                            const Loop *L,
3377                                            SCEV::NoWrapFlags Flags) {
3378   SmallVector<const SCEV *, 4> Operands;
3379   Operands.push_back(Start);
3380   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3381     if (StepChrec->getLoop() == L) {
3382       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3383       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3384     }
3385 
3386   Operands.push_back(Step);
3387   return getAddRecExpr(Operands, L, Flags);
3388 }
3389 
3390 /// Get an add recurrence expression for the specified loop.  Simplify the
3391 /// expression as much as possible.
3392 const SCEV *
3393 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3394                                const Loop *L, SCEV::NoWrapFlags Flags) {
3395   if (Operands.size() == 1) return Operands[0];
3396 #ifndef NDEBUG
3397   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3398   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3399     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3400            "SCEVAddRecExpr operand types don't match!");
3401   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3402     assert(isLoopInvariant(Operands[i], L) &&
3403            "SCEVAddRecExpr operand is not loop-invariant!");
3404 #endif
3405 
3406   if (Operands.back()->isZero()) {
3407     Operands.pop_back();
3408     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3409   }
3410 
3411   // It's tempting to want to call getMaxBackedgeTakenCount count here and
3412   // use that information to infer NUW and NSW flags. However, computing a
3413   // BE count requires calling getAddRecExpr, so we may not yet have a
3414   // meaningful BE count at this point (and if we don't, we'd be stuck
3415   // with a SCEVCouldNotCompute as the cached BE count).
3416 
3417   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3418 
3419   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3420   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3421     const Loop *NestedLoop = NestedAR->getLoop();
3422     if (L->contains(NestedLoop)
3423             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3424             : (!NestedLoop->contains(L) &&
3425                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3426       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3427                                                   NestedAR->op_end());
3428       Operands[0] = NestedAR->getStart();
3429       // AddRecs require their operands be loop-invariant with respect to their
3430       // loops. Don't perform this transformation if it would break this
3431       // requirement.
3432       bool AllInvariant = all_of(
3433           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3434 
3435       if (AllInvariant) {
3436         // Create a recurrence for the outer loop with the same step size.
3437         //
3438         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3439         // inner recurrence has the same property.
3440         SCEV::NoWrapFlags OuterFlags =
3441           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3442 
3443         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3444         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3445           return isLoopInvariant(Op, NestedLoop);
3446         });
3447 
3448         if (AllInvariant) {
3449           // Ok, both add recurrences are valid after the transformation.
3450           //
3451           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3452           // the outer recurrence has the same property.
3453           SCEV::NoWrapFlags InnerFlags =
3454             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3455           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3456         }
3457       }
3458       // Reset Operands to its original state.
3459       Operands[0] = NestedAR;
3460     }
3461   }
3462 
3463   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3464   // already have one, otherwise create a new one.
3465   return getOrCreateAddRecExpr(Operands, L, Flags);
3466 }
3467 
3468 const SCEV *
3469 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3470                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3471   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3472   // getSCEV(Base)->getType() has the same address space as Base->getType()
3473   // because SCEV::getType() preserves the address space.
3474   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3475   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3476   // instruction to its SCEV, because the Instruction may be guarded by control
3477   // flow and the no-overflow bits may not be valid for the expression in any
3478   // context. This can be fixed similarly to how these flags are handled for
3479   // adds.
3480   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3481                                              : SCEV::FlagAnyWrap;
3482 
3483   const SCEV *TotalOffset = getZero(IntPtrTy);
3484   // The array size is unimportant. The first thing we do on CurTy is getting
3485   // its element type.
3486   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3487   for (const SCEV *IndexExpr : IndexExprs) {
3488     // Compute the (potentially symbolic) offset in bytes for this index.
3489     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3490       // For a struct, add the member offset.
3491       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3492       unsigned FieldNo = Index->getZExtValue();
3493       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3494 
3495       // Add the field offset to the running total offset.
3496       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3497 
3498       // Update CurTy to the type of the field at Index.
3499       CurTy = STy->getTypeAtIndex(Index);
3500     } else {
3501       // Update CurTy to its element type.
3502       CurTy = cast<SequentialType>(CurTy)->getElementType();
3503       // For an array, add the element offset, explicitly scaled.
3504       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3505       // Getelementptr indices are signed.
3506       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3507 
3508       // Multiply the index by the element size to compute the element offset.
3509       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3510 
3511       // Add the element offset to the running total offset.
3512       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3513     }
3514   }
3515 
3516   // Add the total offset from all the GEP indices to the base.
3517   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3518 }
3519 
3520 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3521                                          const SCEV *RHS) {
3522   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3523   return getSMaxExpr(Ops);
3524 }
3525 
3526 const SCEV *
3527 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3528   assert(!Ops.empty() && "Cannot get empty smax!");
3529   if (Ops.size() == 1) return Ops[0];
3530 #ifndef NDEBUG
3531   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3532   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3533     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3534            "SCEVSMaxExpr operand types don't match!");
3535 #endif
3536 
3537   // Sort by complexity, this groups all similar expression types together.
3538   GroupByComplexity(Ops, &LI, DT);
3539 
3540   // If there are any constants, fold them together.
3541   unsigned Idx = 0;
3542   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3543     ++Idx;
3544     assert(Idx < Ops.size());
3545     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3546       // We found two constants, fold them together!
3547       ConstantInt *Fold = ConstantInt::get(
3548           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3549       Ops[0] = getConstant(Fold);
3550       Ops.erase(Ops.begin()+1);  // Erase the folded element
3551       if (Ops.size() == 1) return Ops[0];
3552       LHSC = cast<SCEVConstant>(Ops[0]);
3553     }
3554 
3555     // If we are left with a constant minimum-int, strip it off.
3556     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3557       Ops.erase(Ops.begin());
3558       --Idx;
3559     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3560       // If we have an smax with a constant maximum-int, it will always be
3561       // maximum-int.
3562       return Ops[0];
3563     }
3564 
3565     if (Ops.size() == 1) return Ops[0];
3566   }
3567 
3568   // Find the first SMax
3569   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3570     ++Idx;
3571 
3572   // Check to see if one of the operands is an SMax. If so, expand its operands
3573   // onto our operand list, and recurse to simplify.
3574   if (Idx < Ops.size()) {
3575     bool DeletedSMax = false;
3576     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3577       Ops.erase(Ops.begin()+Idx);
3578       Ops.append(SMax->op_begin(), SMax->op_end());
3579       DeletedSMax = true;
3580     }
3581 
3582     if (DeletedSMax)
3583       return getSMaxExpr(Ops);
3584   }
3585 
3586   // Okay, check to see if the same value occurs in the operand list twice.  If
3587   // so, delete one.  Since we sorted the list, these values are required to
3588   // be adjacent.
3589   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3590     //  X smax Y smax Y  -->  X smax Y
3591     //  X smax Y         -->  X, if X is always greater than Y
3592     if (Ops[i] == Ops[i+1] ||
3593         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3594       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3595       --i; --e;
3596     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3597       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3598       --i; --e;
3599     }
3600 
3601   if (Ops.size() == 1) return Ops[0];
3602 
3603   assert(!Ops.empty() && "Reduced smax down to nothing!");
3604 
3605   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3606   // already have one, otherwise create a new one.
3607   FoldingSetNodeID ID;
3608   ID.AddInteger(scSMaxExpr);
3609   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3610     ID.AddPointer(Ops[i]);
3611   void *IP = nullptr;
3612   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3613   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3614   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3615   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3616                                              O, Ops.size());
3617   UniqueSCEVs.InsertNode(S, IP);
3618   addToLoopUseLists(S);
3619   return S;
3620 }
3621 
3622 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3623                                          const SCEV *RHS) {
3624   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3625   return getUMaxExpr(Ops);
3626 }
3627 
3628 const SCEV *
3629 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3630   assert(!Ops.empty() && "Cannot get empty umax!");
3631   if (Ops.size() == 1) return Ops[0];
3632 #ifndef NDEBUG
3633   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3634   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3635     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3636            "SCEVUMaxExpr operand types don't match!");
3637 #endif
3638 
3639   // Sort by complexity, this groups all similar expression types together.
3640   GroupByComplexity(Ops, &LI, DT);
3641 
3642   // If there are any constants, fold them together.
3643   unsigned Idx = 0;
3644   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3645     ++Idx;
3646     assert(Idx < Ops.size());
3647     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3648       // We found two constants, fold them together!
3649       ConstantInt *Fold = ConstantInt::get(
3650           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3651       Ops[0] = getConstant(Fold);
3652       Ops.erase(Ops.begin()+1);  // Erase the folded element
3653       if (Ops.size() == 1) return Ops[0];
3654       LHSC = cast<SCEVConstant>(Ops[0]);
3655     }
3656 
3657     // If we are left with a constant minimum-int, strip it off.
3658     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3659       Ops.erase(Ops.begin());
3660       --Idx;
3661     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3662       // If we have an umax with a constant maximum-int, it will always be
3663       // maximum-int.
3664       return Ops[0];
3665     }
3666 
3667     if (Ops.size() == 1) return Ops[0];
3668   }
3669 
3670   // Find the first UMax
3671   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3672     ++Idx;
3673 
3674   // Check to see if one of the operands is a UMax. If so, expand its operands
3675   // onto our operand list, and recurse to simplify.
3676   if (Idx < Ops.size()) {
3677     bool DeletedUMax = false;
3678     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3679       Ops.erase(Ops.begin()+Idx);
3680       Ops.append(UMax->op_begin(), UMax->op_end());
3681       DeletedUMax = true;
3682     }
3683 
3684     if (DeletedUMax)
3685       return getUMaxExpr(Ops);
3686   }
3687 
3688   // Okay, check to see if the same value occurs in the operand list twice.  If
3689   // so, delete one.  Since we sorted the list, these values are required to
3690   // be adjacent.
3691   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3692     //  X umax Y umax Y  -->  X umax Y
3693     //  X umax Y         -->  X, if X is always greater than Y
3694     if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning(
3695                                     ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) {
3696       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3697       --i; --e;
3698     } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i],
3699                                                Ops[i + 1])) {
3700       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3701       --i; --e;
3702     }
3703 
3704   if (Ops.size() == 1) return Ops[0];
3705 
3706   assert(!Ops.empty() && "Reduced umax down to nothing!");
3707 
3708   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3709   // already have one, otherwise create a new one.
3710   FoldingSetNodeID ID;
3711   ID.AddInteger(scUMaxExpr);
3712   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3713     ID.AddPointer(Ops[i]);
3714   void *IP = nullptr;
3715   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3716   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3717   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3718   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3719                                              O, Ops.size());
3720   UniqueSCEVs.InsertNode(S, IP);
3721   addToLoopUseLists(S);
3722   return S;
3723 }
3724 
3725 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3726                                          const SCEV *RHS) {
3727   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3728   return getSMinExpr(Ops);
3729 }
3730 
3731 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3732   // ~smax(~x, ~y, ~z) == smin(x, y, z).
3733   SmallVector<const SCEV *, 2> NotOps;
3734   for (auto *S : Ops)
3735     NotOps.push_back(getNotSCEV(S));
3736   return getNotSCEV(getSMaxExpr(NotOps));
3737 }
3738 
3739 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3740                                          const SCEV *RHS) {
3741   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3742   return getUMinExpr(Ops);
3743 }
3744 
3745 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3746   assert(!Ops.empty() && "At least one operand must be!");
3747   // Trivial case.
3748   if (Ops.size() == 1)
3749     return Ops[0];
3750 
3751   // ~umax(~x, ~y, ~z) == umin(x, y, z).
3752   SmallVector<const SCEV *, 2> NotOps;
3753   for (auto *S : Ops)
3754     NotOps.push_back(getNotSCEV(S));
3755   return getNotSCEV(getUMaxExpr(NotOps));
3756 }
3757 
3758 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3759   // We can bypass creating a target-independent
3760   // constant expression and then folding it back into a ConstantInt.
3761   // This is just a compile-time optimization.
3762   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3763 }
3764 
3765 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3766                                              StructType *STy,
3767                                              unsigned FieldNo) {
3768   // We can bypass creating a target-independent
3769   // constant expression and then folding it back into a ConstantInt.
3770   // This is just a compile-time optimization.
3771   return getConstant(
3772       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3773 }
3774 
3775 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3776   // Don't attempt to do anything other than create a SCEVUnknown object
3777   // here.  createSCEV only calls getUnknown after checking for all other
3778   // interesting possibilities, and any other code that calls getUnknown
3779   // is doing so in order to hide a value from SCEV canonicalization.
3780 
3781   FoldingSetNodeID ID;
3782   ID.AddInteger(scUnknown);
3783   ID.AddPointer(V);
3784   void *IP = nullptr;
3785   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3786     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3787            "Stale SCEVUnknown in uniquing map!");
3788     return S;
3789   }
3790   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3791                                             FirstUnknown);
3792   FirstUnknown = cast<SCEVUnknown>(S);
3793   UniqueSCEVs.InsertNode(S, IP);
3794   return S;
3795 }
3796 
3797 //===----------------------------------------------------------------------===//
3798 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3799 //
3800 
3801 /// Test if values of the given type are analyzable within the SCEV
3802 /// framework. This primarily includes integer types, and it can optionally
3803 /// include pointer types if the ScalarEvolution class has access to
3804 /// target-specific information.
3805 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3806   // Integers and pointers are always SCEVable.
3807   return Ty->isIntOrPtrTy();
3808 }
3809 
3810 /// Return the size in bits of the specified type, for which isSCEVable must
3811 /// return true.
3812 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3813   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3814   if (Ty->isPointerTy())
3815     return getDataLayout().getIndexTypeSizeInBits(Ty);
3816   return getDataLayout().getTypeSizeInBits(Ty);
3817 }
3818 
3819 /// Return a type with the same bitwidth as the given type and which represents
3820 /// how SCEV will treat the given type, for which isSCEVable must return
3821 /// true. For pointer types, this is the pointer-sized integer type.
3822 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3823   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3824 
3825   if (Ty->isIntegerTy())
3826     return Ty;
3827 
3828   // The only other support type is pointer.
3829   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3830   return getDataLayout().getIntPtrType(Ty);
3831 }
3832 
3833 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3834   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3835 }
3836 
3837 const SCEV *ScalarEvolution::getCouldNotCompute() {
3838   return CouldNotCompute.get();
3839 }
3840 
3841 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3842   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3843     auto *SU = dyn_cast<SCEVUnknown>(S);
3844     return SU && SU->getValue() == nullptr;
3845   });
3846 
3847   return !ContainsNulls;
3848 }
3849 
3850 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3851   HasRecMapType::iterator I = HasRecMap.find(S);
3852   if (I != HasRecMap.end())
3853     return I->second;
3854 
3855   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3856   HasRecMap.insert({S, FoundAddRec});
3857   return FoundAddRec;
3858 }
3859 
3860 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3861 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3862 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3863 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3864   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3865   if (!Add)
3866     return {S, nullptr};
3867 
3868   if (Add->getNumOperands() != 2)
3869     return {S, nullptr};
3870 
3871   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3872   if (!ConstOp)
3873     return {S, nullptr};
3874 
3875   return {Add->getOperand(1), ConstOp->getValue()};
3876 }
3877 
3878 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3879 /// by the value and offset from any ValueOffsetPair in the set.
3880 SetVector<ScalarEvolution::ValueOffsetPair> *
3881 ScalarEvolution::getSCEVValues(const SCEV *S) {
3882   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3883   if (SI == ExprValueMap.end())
3884     return nullptr;
3885 #ifndef NDEBUG
3886   if (VerifySCEVMap) {
3887     // Check there is no dangling Value in the set returned.
3888     for (const auto &VE : SI->second)
3889       assert(ValueExprMap.count(VE.first));
3890   }
3891 #endif
3892   return &SI->second;
3893 }
3894 
3895 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3896 /// cannot be used separately. eraseValueFromMap should be used to remove
3897 /// V from ValueExprMap and ExprValueMap at the same time.
3898 void ScalarEvolution::eraseValueFromMap(Value *V) {
3899   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3900   if (I != ValueExprMap.end()) {
3901     const SCEV *S = I->second;
3902     // Remove {V, 0} from the set of ExprValueMap[S]
3903     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3904       SV->remove({V, nullptr});
3905 
3906     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3907     const SCEV *Stripped;
3908     ConstantInt *Offset;
3909     std::tie(Stripped, Offset) = splitAddExpr(S);
3910     if (Offset != nullptr) {
3911       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3912         SV->remove({V, Offset});
3913     }
3914     ValueExprMap.erase(V);
3915   }
3916 }
3917 
3918 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3919 /// TODO: In reality it is better to check the poison recursively
3920 /// but this is better than nothing.
3921 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3922   if (auto *I = dyn_cast<Instruction>(V)) {
3923     if (isa<OverflowingBinaryOperator>(I)) {
3924       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3925         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3926           return true;
3927         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3928           return true;
3929       }
3930     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3931       return true;
3932   }
3933   return false;
3934 }
3935 
3936 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3937 /// create a new one.
3938 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3939   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3940 
3941   const SCEV *S = getExistingSCEV(V);
3942   if (S == nullptr) {
3943     S = createSCEV(V);
3944     // During PHI resolution, it is possible to create two SCEVs for the same
3945     // V, so it is needed to double check whether V->S is inserted into
3946     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3947     std::pair<ValueExprMapType::iterator, bool> Pair =
3948         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3949     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3950       ExprValueMap[S].insert({V, nullptr});
3951 
3952       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3953       // ExprValueMap.
3954       const SCEV *Stripped = S;
3955       ConstantInt *Offset = nullptr;
3956       std::tie(Stripped, Offset) = splitAddExpr(S);
3957       // If stripped is SCEVUnknown, don't bother to save
3958       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3959       // increase the complexity of the expansion code.
3960       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3961       // because it may generate add/sub instead of GEP in SCEV expansion.
3962       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3963           !isa<GetElementPtrInst>(V))
3964         ExprValueMap[Stripped].insert({V, Offset});
3965     }
3966   }
3967   return S;
3968 }
3969 
3970 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3971   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3972 
3973   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3974   if (I != ValueExprMap.end()) {
3975     const SCEV *S = I->second;
3976     if (checkValidity(S))
3977       return S;
3978     eraseValueFromMap(V);
3979     forgetMemoizedResults(S);
3980   }
3981   return nullptr;
3982 }
3983 
3984 /// Return a SCEV corresponding to -V = -1*V
3985 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3986                                              SCEV::NoWrapFlags Flags) {
3987   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3988     return getConstant(
3989                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3990 
3991   Type *Ty = V->getType();
3992   Ty = getEffectiveSCEVType(Ty);
3993   return getMulExpr(
3994       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3995 }
3996 
3997 /// Return a SCEV corresponding to ~V = -1-V
3998 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3999   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4000     return getConstant(
4001                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4002 
4003   Type *Ty = V->getType();
4004   Ty = getEffectiveSCEVType(Ty);
4005   const SCEV *AllOnes =
4006                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
4007   return getMinusSCEV(AllOnes, V);
4008 }
4009 
4010 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4011                                           SCEV::NoWrapFlags Flags,
4012                                           unsigned Depth) {
4013   // Fast path: X - X --> 0.
4014   if (LHS == RHS)
4015     return getZero(LHS->getType());
4016 
4017   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4018   // makes it so that we cannot make much use of NUW.
4019   auto AddFlags = SCEV::FlagAnyWrap;
4020   const bool RHSIsNotMinSigned =
4021       !getSignedRangeMin(RHS).isMinSignedValue();
4022   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4023     // Let M be the minimum representable signed value. Then (-1)*RHS
4024     // signed-wraps if and only if RHS is M. That can happen even for
4025     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4026     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4027     // (-1)*RHS, we need to prove that RHS != M.
4028     //
4029     // If LHS is non-negative and we know that LHS - RHS does not
4030     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4031     // either by proving that RHS > M or that LHS >= 0.
4032     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4033       AddFlags = SCEV::FlagNSW;
4034     }
4035   }
4036 
4037   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4038   // RHS is NSW and LHS >= 0.
4039   //
4040   // The difficulty here is that the NSW flag may have been proven
4041   // relative to a loop that is to be found in a recurrence in LHS and
4042   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4043   // larger scope than intended.
4044   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4045 
4046   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4047 }
4048 
4049 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4050                                                      unsigned Depth) {
4051   Type *SrcTy = V->getType();
4052   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4053          "Cannot truncate or zero extend with non-integer arguments!");
4054   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4055     return V;  // No conversion
4056   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4057     return getTruncateExpr(V, Ty, Depth);
4058   return getZeroExtendExpr(V, Ty, Depth);
4059 }
4060 
4061 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4062                                                      unsigned Depth) {
4063   Type *SrcTy = V->getType();
4064   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4065          "Cannot truncate or zero extend with non-integer arguments!");
4066   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4067     return V;  // No conversion
4068   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4069     return getTruncateExpr(V, Ty, Depth);
4070   return getSignExtendExpr(V, Ty, Depth);
4071 }
4072 
4073 const SCEV *
4074 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4075   Type *SrcTy = V->getType();
4076   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4077          "Cannot noop or zero extend with non-integer arguments!");
4078   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4079          "getNoopOrZeroExtend cannot truncate!");
4080   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4081     return V;  // No conversion
4082   return getZeroExtendExpr(V, Ty);
4083 }
4084 
4085 const SCEV *
4086 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4087   Type *SrcTy = V->getType();
4088   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4089          "Cannot noop or sign extend with non-integer arguments!");
4090   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4091          "getNoopOrSignExtend cannot truncate!");
4092   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4093     return V;  // No conversion
4094   return getSignExtendExpr(V, Ty);
4095 }
4096 
4097 const SCEV *
4098 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4099   Type *SrcTy = V->getType();
4100   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4101          "Cannot noop or any extend with non-integer arguments!");
4102   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4103          "getNoopOrAnyExtend cannot truncate!");
4104   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4105     return V;  // No conversion
4106   return getAnyExtendExpr(V, Ty);
4107 }
4108 
4109 const SCEV *
4110 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4111   Type *SrcTy = V->getType();
4112   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4113          "Cannot truncate or noop with non-integer arguments!");
4114   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4115          "getTruncateOrNoop cannot extend!");
4116   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4117     return V;  // No conversion
4118   return getTruncateExpr(V, Ty);
4119 }
4120 
4121 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4122                                                         const SCEV *RHS) {
4123   const SCEV *PromotedLHS = LHS;
4124   const SCEV *PromotedRHS = RHS;
4125 
4126   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4127     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4128   else
4129     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4130 
4131   return getUMaxExpr(PromotedLHS, PromotedRHS);
4132 }
4133 
4134 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4135                                                         const SCEV *RHS) {
4136   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4137   return getUMinFromMismatchedTypes(Ops);
4138 }
4139 
4140 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4141     SmallVectorImpl<const SCEV *> &Ops) {
4142   assert(!Ops.empty() && "At least one operand must be!");
4143   // Trivial case.
4144   if (Ops.size() == 1)
4145     return Ops[0];
4146 
4147   // Find the max type first.
4148   Type *MaxType = nullptr;
4149   for (auto *S : Ops)
4150     if (MaxType)
4151       MaxType = getWiderType(MaxType, S->getType());
4152     else
4153       MaxType = S->getType();
4154 
4155   // Extend all ops to max type.
4156   SmallVector<const SCEV *, 2> PromotedOps;
4157   for (auto *S : Ops)
4158     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4159 
4160   // Generate umin.
4161   return getUMinExpr(PromotedOps);
4162 }
4163 
4164 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4165   // A pointer operand may evaluate to a nonpointer expression, such as null.
4166   if (!V->getType()->isPointerTy())
4167     return V;
4168 
4169   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4170     return getPointerBase(Cast->getOperand());
4171   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4172     const SCEV *PtrOp = nullptr;
4173     for (const SCEV *NAryOp : NAry->operands()) {
4174       if (NAryOp->getType()->isPointerTy()) {
4175         // Cannot find the base of an expression with multiple pointer operands.
4176         if (PtrOp)
4177           return V;
4178         PtrOp = NAryOp;
4179       }
4180     }
4181     if (!PtrOp)
4182       return V;
4183     return getPointerBase(PtrOp);
4184   }
4185   return V;
4186 }
4187 
4188 /// Push users of the given Instruction onto the given Worklist.
4189 static void
4190 PushDefUseChildren(Instruction *I,
4191                    SmallVectorImpl<Instruction *> &Worklist) {
4192   // Push the def-use children onto the Worklist stack.
4193   for (User *U : I->users())
4194     Worklist.push_back(cast<Instruction>(U));
4195 }
4196 
4197 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4198   SmallVector<Instruction *, 16> Worklist;
4199   PushDefUseChildren(PN, Worklist);
4200 
4201   SmallPtrSet<Instruction *, 8> Visited;
4202   Visited.insert(PN);
4203   while (!Worklist.empty()) {
4204     Instruction *I = Worklist.pop_back_val();
4205     if (!Visited.insert(I).second)
4206       continue;
4207 
4208     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4209     if (It != ValueExprMap.end()) {
4210       const SCEV *Old = It->second;
4211 
4212       // Short-circuit the def-use traversal if the symbolic name
4213       // ceases to appear in expressions.
4214       if (Old != SymName && !hasOperand(Old, SymName))
4215         continue;
4216 
4217       // SCEVUnknown for a PHI either means that it has an unrecognized
4218       // structure, it's a PHI that's in the progress of being computed
4219       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4220       // additional loop trip count information isn't going to change anything.
4221       // In the second case, createNodeForPHI will perform the necessary
4222       // updates on its own when it gets to that point. In the third, we do
4223       // want to forget the SCEVUnknown.
4224       if (!isa<PHINode>(I) ||
4225           !isa<SCEVUnknown>(Old) ||
4226           (I != PN && Old == SymName)) {
4227         eraseValueFromMap(It->first);
4228         forgetMemoizedResults(Old);
4229       }
4230     }
4231 
4232     PushDefUseChildren(I, Worklist);
4233   }
4234 }
4235 
4236 namespace {
4237 
4238 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4239 /// expression in case its Loop is L. If it is not L then
4240 /// if IgnoreOtherLoops is true then use AddRec itself
4241 /// otherwise rewrite cannot be done.
4242 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4243 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4244 public:
4245   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4246                              bool IgnoreOtherLoops = true) {
4247     SCEVInitRewriter Rewriter(L, SE);
4248     const SCEV *Result = Rewriter.visit(S);
4249     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4250       return SE.getCouldNotCompute();
4251     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4252                ? SE.getCouldNotCompute()
4253                : Result;
4254   }
4255 
4256   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4257     if (!SE.isLoopInvariant(Expr, L))
4258       SeenLoopVariantSCEVUnknown = true;
4259     return Expr;
4260   }
4261 
4262   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4263     // Only re-write AddRecExprs for this loop.
4264     if (Expr->getLoop() == L)
4265       return Expr->getStart();
4266     SeenOtherLoops = true;
4267     return Expr;
4268   }
4269 
4270   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4271 
4272   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4273 
4274 private:
4275   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4276       : SCEVRewriteVisitor(SE), L(L) {}
4277 
4278   const Loop *L;
4279   bool SeenLoopVariantSCEVUnknown = false;
4280   bool SeenOtherLoops = false;
4281 };
4282 
4283 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4284 /// increment expression in case its Loop is L. If it is not L then
4285 /// use AddRec itself.
4286 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4287 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4288 public:
4289   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4290     SCEVPostIncRewriter Rewriter(L, SE);
4291     const SCEV *Result = Rewriter.visit(S);
4292     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4293         ? SE.getCouldNotCompute()
4294         : Result;
4295   }
4296 
4297   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4298     if (!SE.isLoopInvariant(Expr, L))
4299       SeenLoopVariantSCEVUnknown = true;
4300     return Expr;
4301   }
4302 
4303   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4304     // Only re-write AddRecExprs for this loop.
4305     if (Expr->getLoop() == L)
4306       return Expr->getPostIncExpr(SE);
4307     SeenOtherLoops = true;
4308     return Expr;
4309   }
4310 
4311   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4312 
4313   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4314 
4315 private:
4316   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4317       : SCEVRewriteVisitor(SE), L(L) {}
4318 
4319   const Loop *L;
4320   bool SeenLoopVariantSCEVUnknown = false;
4321   bool SeenOtherLoops = false;
4322 };
4323 
4324 /// This class evaluates the compare condition by matching it against the
4325 /// condition of loop latch. If there is a match we assume a true value
4326 /// for the condition while building SCEV nodes.
4327 class SCEVBackedgeConditionFolder
4328     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4329 public:
4330   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4331                              ScalarEvolution &SE) {
4332     bool IsPosBECond = false;
4333     Value *BECond = nullptr;
4334     if (BasicBlock *Latch = L->getLoopLatch()) {
4335       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4336       if (BI && BI->isConditional()) {
4337         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4338                "Both outgoing branches should not target same header!");
4339         BECond = BI->getCondition();
4340         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4341       } else {
4342         return S;
4343       }
4344     }
4345     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4346     return Rewriter.visit(S);
4347   }
4348 
4349   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4350     const SCEV *Result = Expr;
4351     bool InvariantF = SE.isLoopInvariant(Expr, L);
4352 
4353     if (!InvariantF) {
4354       Instruction *I = cast<Instruction>(Expr->getValue());
4355       switch (I->getOpcode()) {
4356       case Instruction::Select: {
4357         SelectInst *SI = cast<SelectInst>(I);
4358         Optional<const SCEV *> Res =
4359             compareWithBackedgeCondition(SI->getCondition());
4360         if (Res.hasValue()) {
4361           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4362           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4363         }
4364         break;
4365       }
4366       default: {
4367         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4368         if (Res.hasValue())
4369           Result = Res.getValue();
4370         break;
4371       }
4372       }
4373     }
4374     return Result;
4375   }
4376 
4377 private:
4378   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4379                                        bool IsPosBECond, ScalarEvolution &SE)
4380       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4381         IsPositiveBECond(IsPosBECond) {}
4382 
4383   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4384 
4385   const Loop *L;
4386   /// Loop back condition.
4387   Value *BackedgeCond = nullptr;
4388   /// Set to true if loop back is on positive branch condition.
4389   bool IsPositiveBECond;
4390 };
4391 
4392 Optional<const SCEV *>
4393 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4394 
4395   // If value matches the backedge condition for loop latch,
4396   // then return a constant evolution node based on loopback
4397   // branch taken.
4398   if (BackedgeCond == IC)
4399     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4400                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4401   return None;
4402 }
4403 
4404 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4405 public:
4406   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4407                              ScalarEvolution &SE) {
4408     SCEVShiftRewriter Rewriter(L, SE);
4409     const SCEV *Result = Rewriter.visit(S);
4410     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4411   }
4412 
4413   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4414     // Only allow AddRecExprs for this loop.
4415     if (!SE.isLoopInvariant(Expr, L))
4416       Valid = false;
4417     return Expr;
4418   }
4419 
4420   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4421     if (Expr->getLoop() == L && Expr->isAffine())
4422       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4423     Valid = false;
4424     return Expr;
4425   }
4426 
4427   bool isValid() { return Valid; }
4428 
4429 private:
4430   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4431       : SCEVRewriteVisitor(SE), L(L) {}
4432 
4433   const Loop *L;
4434   bool Valid = true;
4435 };
4436 
4437 } // end anonymous namespace
4438 
4439 SCEV::NoWrapFlags
4440 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4441   if (!AR->isAffine())
4442     return SCEV::FlagAnyWrap;
4443 
4444   using OBO = OverflowingBinaryOperator;
4445 
4446   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4447 
4448   if (!AR->hasNoSignedWrap()) {
4449     ConstantRange AddRecRange = getSignedRange(AR);
4450     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4451 
4452     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4453         Instruction::Add, IncRange, OBO::NoSignedWrap);
4454     if (NSWRegion.contains(AddRecRange))
4455       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4456   }
4457 
4458   if (!AR->hasNoUnsignedWrap()) {
4459     ConstantRange AddRecRange = getUnsignedRange(AR);
4460     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4461 
4462     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4463         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4464     if (NUWRegion.contains(AddRecRange))
4465       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4466   }
4467 
4468   return Result;
4469 }
4470 
4471 namespace {
4472 
4473 /// Represents an abstract binary operation.  This may exist as a
4474 /// normal instruction or constant expression, or may have been
4475 /// derived from an expression tree.
4476 struct BinaryOp {
4477   unsigned Opcode;
4478   Value *LHS;
4479   Value *RHS;
4480   bool IsNSW = false;
4481   bool IsNUW = false;
4482 
4483   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4484   /// constant expression.
4485   Operator *Op = nullptr;
4486 
4487   explicit BinaryOp(Operator *Op)
4488       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4489         Op(Op) {
4490     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4491       IsNSW = OBO->hasNoSignedWrap();
4492       IsNUW = OBO->hasNoUnsignedWrap();
4493     }
4494   }
4495 
4496   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4497                     bool IsNUW = false)
4498       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4499 };
4500 
4501 } // end anonymous namespace
4502 
4503 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4504 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4505   auto *Op = dyn_cast<Operator>(V);
4506   if (!Op)
4507     return None;
4508 
4509   // Implementation detail: all the cleverness here should happen without
4510   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4511   // SCEV expressions when possible, and we should not break that.
4512 
4513   switch (Op->getOpcode()) {
4514   case Instruction::Add:
4515   case Instruction::Sub:
4516   case Instruction::Mul:
4517   case Instruction::UDiv:
4518   case Instruction::URem:
4519   case Instruction::And:
4520   case Instruction::Or:
4521   case Instruction::AShr:
4522   case Instruction::Shl:
4523     return BinaryOp(Op);
4524 
4525   case Instruction::Xor:
4526     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4527       // If the RHS of the xor is a signmask, then this is just an add.
4528       // Instcombine turns add of signmask into xor as a strength reduction step.
4529       if (RHSC->getValue().isSignMask())
4530         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4531     return BinaryOp(Op);
4532 
4533   case Instruction::LShr:
4534     // Turn logical shift right of a constant into a unsigned divide.
4535     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4536       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4537 
4538       // If the shift count is not less than the bitwidth, the result of
4539       // the shift is undefined. Don't try to analyze it, because the
4540       // resolution chosen here may differ from the resolution chosen in
4541       // other parts of the compiler.
4542       if (SA->getValue().ult(BitWidth)) {
4543         Constant *X =
4544             ConstantInt::get(SA->getContext(),
4545                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4546         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4547       }
4548     }
4549     return BinaryOp(Op);
4550 
4551   case Instruction::ExtractValue: {
4552     auto *EVI = cast<ExtractValueInst>(Op);
4553     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4554       break;
4555 
4556     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
4557     if (!CI)
4558       break;
4559 
4560     if (auto *F = CI->getCalledFunction())
4561       switch (F->getIntrinsicID()) {
4562       case Intrinsic::sadd_with_overflow:
4563       case Intrinsic::uadd_with_overflow:
4564         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4565           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4566                           CI->getArgOperand(1));
4567 
4568         // Now that we know that all uses of the arithmetic-result component of
4569         // CI are guarded by the overflow check, we can go ahead and pretend
4570         // that the arithmetic is non-overflowing.
4571         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
4572           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4573                           CI->getArgOperand(1), /* IsNSW = */ true,
4574                           /* IsNUW = */ false);
4575         else
4576           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4577                           CI->getArgOperand(1), /* IsNSW = */ false,
4578                           /* IsNUW*/ true);
4579       case Intrinsic::ssub_with_overflow:
4580       case Intrinsic::usub_with_overflow:
4581         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4582           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4583                           CI->getArgOperand(1));
4584 
4585         // The same reasoning as sadd/uadd above.
4586         if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow)
4587           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4588                           CI->getArgOperand(1), /* IsNSW = */ true,
4589                           /* IsNUW = */ false);
4590         else
4591           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4592                           CI->getArgOperand(1), /* IsNSW = */ false,
4593                           /* IsNUW = */ true);
4594       case Intrinsic::smul_with_overflow:
4595       case Intrinsic::umul_with_overflow:
4596         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
4597                         CI->getArgOperand(1));
4598       default:
4599         break;
4600       }
4601     break;
4602   }
4603 
4604   default:
4605     break;
4606   }
4607 
4608   return None;
4609 }
4610 
4611 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4612 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4613 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4614 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4615 /// follows one of the following patterns:
4616 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4617 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4618 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4619 /// we return the type of the truncation operation, and indicate whether the
4620 /// truncated type should be treated as signed/unsigned by setting
4621 /// \p Signed to true/false, respectively.
4622 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4623                                bool &Signed, ScalarEvolution &SE) {
4624   // The case where Op == SymbolicPHI (that is, with no type conversions on
4625   // the way) is handled by the regular add recurrence creating logic and
4626   // would have already been triggered in createAddRecForPHI. Reaching it here
4627   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4628   // because one of the other operands of the SCEVAddExpr updating this PHI is
4629   // not invariant).
4630   //
4631   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4632   // this case predicates that allow us to prove that Op == SymbolicPHI will
4633   // be added.
4634   if (Op == SymbolicPHI)
4635     return nullptr;
4636 
4637   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4638   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4639   if (SourceBits != NewBits)
4640     return nullptr;
4641 
4642   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4643   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4644   if (!SExt && !ZExt)
4645     return nullptr;
4646   const SCEVTruncateExpr *Trunc =
4647       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4648            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4649   if (!Trunc)
4650     return nullptr;
4651   const SCEV *X = Trunc->getOperand();
4652   if (X != SymbolicPHI)
4653     return nullptr;
4654   Signed = SExt != nullptr;
4655   return Trunc->getType();
4656 }
4657 
4658 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4659   if (!PN->getType()->isIntegerTy())
4660     return nullptr;
4661   const Loop *L = LI.getLoopFor(PN->getParent());
4662   if (!L || L->getHeader() != PN->getParent())
4663     return nullptr;
4664   return L;
4665 }
4666 
4667 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4668 // computation that updates the phi follows the following pattern:
4669 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4670 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4671 // If so, try to see if it can be rewritten as an AddRecExpr under some
4672 // Predicates. If successful, return them as a pair. Also cache the results
4673 // of the analysis.
4674 //
4675 // Example usage scenario:
4676 //    Say the Rewriter is called for the following SCEV:
4677 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4678 //    where:
4679 //         %X = phi i64 (%Start, %BEValue)
4680 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4681 //    and call this function with %SymbolicPHI = %X.
4682 //
4683 //    The analysis will find that the value coming around the backedge has
4684 //    the following SCEV:
4685 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4686 //    Upon concluding that this matches the desired pattern, the function
4687 //    will return the pair {NewAddRec, SmallPredsVec} where:
4688 //         NewAddRec = {%Start,+,%Step}
4689 //         SmallPredsVec = {P1, P2, P3} as follows:
4690 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4691 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4692 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4693 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4694 //    under the predicates {P1,P2,P3}.
4695 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4696 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4697 //
4698 // TODO's:
4699 //
4700 // 1) Extend the Induction descriptor to also support inductions that involve
4701 //    casts: When needed (namely, when we are called in the context of the
4702 //    vectorizer induction analysis), a Set of cast instructions will be
4703 //    populated by this method, and provided back to isInductionPHI. This is
4704 //    needed to allow the vectorizer to properly record them to be ignored by
4705 //    the cost model and to avoid vectorizing them (otherwise these casts,
4706 //    which are redundant under the runtime overflow checks, will be
4707 //    vectorized, which can be costly).
4708 //
4709 // 2) Support additional induction/PHISCEV patterns: We also want to support
4710 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4711 //    after the induction update operation (the induction increment):
4712 //
4713 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4714 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4715 //
4716 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4717 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4718 //
4719 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4720 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4721 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4722   SmallVector<const SCEVPredicate *, 3> Predicates;
4723 
4724   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4725   // return an AddRec expression under some predicate.
4726 
4727   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4728   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4729   assert(L && "Expecting an integer loop header phi");
4730 
4731   // The loop may have multiple entrances or multiple exits; we can analyze
4732   // this phi as an addrec if it has a unique entry value and a unique
4733   // backedge value.
4734   Value *BEValueV = nullptr, *StartValueV = nullptr;
4735   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4736     Value *V = PN->getIncomingValue(i);
4737     if (L->contains(PN->getIncomingBlock(i))) {
4738       if (!BEValueV) {
4739         BEValueV = V;
4740       } else if (BEValueV != V) {
4741         BEValueV = nullptr;
4742         break;
4743       }
4744     } else if (!StartValueV) {
4745       StartValueV = V;
4746     } else if (StartValueV != V) {
4747       StartValueV = nullptr;
4748       break;
4749     }
4750   }
4751   if (!BEValueV || !StartValueV)
4752     return None;
4753 
4754   const SCEV *BEValue = getSCEV(BEValueV);
4755 
4756   // If the value coming around the backedge is an add with the symbolic
4757   // value we just inserted, possibly with casts that we can ignore under
4758   // an appropriate runtime guard, then we found a simple induction variable!
4759   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4760   if (!Add)
4761     return None;
4762 
4763   // If there is a single occurrence of the symbolic value, possibly
4764   // casted, replace it with a recurrence.
4765   unsigned FoundIndex = Add->getNumOperands();
4766   Type *TruncTy = nullptr;
4767   bool Signed;
4768   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4769     if ((TruncTy =
4770              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4771       if (FoundIndex == e) {
4772         FoundIndex = i;
4773         break;
4774       }
4775 
4776   if (FoundIndex == Add->getNumOperands())
4777     return None;
4778 
4779   // Create an add with everything but the specified operand.
4780   SmallVector<const SCEV *, 8> Ops;
4781   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4782     if (i != FoundIndex)
4783       Ops.push_back(Add->getOperand(i));
4784   const SCEV *Accum = getAddExpr(Ops);
4785 
4786   // The runtime checks will not be valid if the step amount is
4787   // varying inside the loop.
4788   if (!isLoopInvariant(Accum, L))
4789     return None;
4790 
4791   // *** Part2: Create the predicates
4792 
4793   // Analysis was successful: we have a phi-with-cast pattern for which we
4794   // can return an AddRec expression under the following predicates:
4795   //
4796   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4797   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4798   // P2: An Equal predicate that guarantees that
4799   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4800   // P3: An Equal predicate that guarantees that
4801   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4802   //
4803   // As we next prove, the above predicates guarantee that:
4804   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4805   //
4806   //
4807   // More formally, we want to prove that:
4808   //     Expr(i+1) = Start + (i+1) * Accum
4809   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4810   //
4811   // Given that:
4812   // 1) Expr(0) = Start
4813   // 2) Expr(1) = Start + Accum
4814   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4815   // 3) Induction hypothesis (step i):
4816   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4817   //
4818   // Proof:
4819   //  Expr(i+1) =
4820   //   = Start + (i+1)*Accum
4821   //   = (Start + i*Accum) + Accum
4822   //   = Expr(i) + Accum
4823   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4824   //                                                             :: from step i
4825   //
4826   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4827   //
4828   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4829   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4830   //     + Accum                                                     :: from P3
4831   //
4832   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4833   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4834   //
4835   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4836   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4837   //
4838   // By induction, the same applies to all iterations 1<=i<n:
4839   //
4840 
4841   // Create a truncated addrec for which we will add a no overflow check (P1).
4842   const SCEV *StartVal = getSCEV(StartValueV);
4843   const SCEV *PHISCEV =
4844       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4845                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4846 
4847   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4848   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4849   // will be constant.
4850   //
4851   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4852   // add P1.
4853   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4854     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4855         Signed ? SCEVWrapPredicate::IncrementNSSW
4856                : SCEVWrapPredicate::IncrementNUSW;
4857     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4858     Predicates.push_back(AddRecPred);
4859   }
4860 
4861   // Create the Equal Predicates P2,P3:
4862 
4863   // It is possible that the predicates P2 and/or P3 are computable at
4864   // compile time due to StartVal and/or Accum being constants.
4865   // If either one is, then we can check that now and escape if either P2
4866   // or P3 is false.
4867 
4868   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4869   // for each of StartVal and Accum
4870   auto getExtendedExpr = [&](const SCEV *Expr,
4871                              bool CreateSignExtend) -> const SCEV * {
4872     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4873     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4874     const SCEV *ExtendedExpr =
4875         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4876                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4877     return ExtendedExpr;
4878   };
4879 
4880   // Given:
4881   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4882   //               = getExtendedExpr(Expr)
4883   // Determine whether the predicate P: Expr == ExtendedExpr
4884   // is known to be false at compile time
4885   auto PredIsKnownFalse = [&](const SCEV *Expr,
4886                               const SCEV *ExtendedExpr) -> bool {
4887     return Expr != ExtendedExpr &&
4888            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4889   };
4890 
4891   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4892   if (PredIsKnownFalse(StartVal, StartExtended)) {
4893     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4894     return None;
4895   }
4896 
4897   // The Step is always Signed (because the overflow checks are either
4898   // NSSW or NUSW)
4899   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4900   if (PredIsKnownFalse(Accum, AccumExtended)) {
4901     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4902     return None;
4903   }
4904 
4905   auto AppendPredicate = [&](const SCEV *Expr,
4906                              const SCEV *ExtendedExpr) -> void {
4907     if (Expr != ExtendedExpr &&
4908         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4909       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4910       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4911       Predicates.push_back(Pred);
4912     }
4913   };
4914 
4915   AppendPredicate(StartVal, StartExtended);
4916   AppendPredicate(Accum, AccumExtended);
4917 
4918   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4919   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4920   // into NewAR if it will also add the runtime overflow checks specified in
4921   // Predicates.
4922   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4923 
4924   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4925       std::make_pair(NewAR, Predicates);
4926   // Remember the result of the analysis for this SCEV at this locayyytion.
4927   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4928   return PredRewrite;
4929 }
4930 
4931 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4932 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4933   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4934   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4935   if (!L)
4936     return None;
4937 
4938   // Check to see if we already analyzed this PHI.
4939   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4940   if (I != PredicatedSCEVRewrites.end()) {
4941     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4942         I->second;
4943     // Analysis was done before and failed to create an AddRec:
4944     if (Rewrite.first == SymbolicPHI)
4945       return None;
4946     // Analysis was done before and succeeded to create an AddRec under
4947     // a predicate:
4948     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4949     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4950     return Rewrite;
4951   }
4952 
4953   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4954     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4955 
4956   // Record in the cache that the analysis failed
4957   if (!Rewrite) {
4958     SmallVector<const SCEVPredicate *, 3> Predicates;
4959     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4960     return None;
4961   }
4962 
4963   return Rewrite;
4964 }
4965 
4966 // FIXME: This utility is currently required because the Rewriter currently
4967 // does not rewrite this expression:
4968 // {0, +, (sext ix (trunc iy to ix) to iy)}
4969 // into {0, +, %step},
4970 // even when the following Equal predicate exists:
4971 // "%step == (sext ix (trunc iy to ix) to iy)".
4972 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4973     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4974   if (AR1 == AR2)
4975     return true;
4976 
4977   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4978     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4979         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4980       return false;
4981     return true;
4982   };
4983 
4984   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4985       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4986     return false;
4987   return true;
4988 }
4989 
4990 /// A helper function for createAddRecFromPHI to handle simple cases.
4991 ///
4992 /// This function tries to find an AddRec expression for the simplest (yet most
4993 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4994 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4995 /// technique for finding the AddRec expression.
4996 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4997                                                       Value *BEValueV,
4998                                                       Value *StartValueV) {
4999   const Loop *L = LI.getLoopFor(PN->getParent());
5000   assert(L && L->getHeader() == PN->getParent());
5001   assert(BEValueV && StartValueV);
5002 
5003   auto BO = MatchBinaryOp(BEValueV, DT);
5004   if (!BO)
5005     return nullptr;
5006 
5007   if (BO->Opcode != Instruction::Add)
5008     return nullptr;
5009 
5010   const SCEV *Accum = nullptr;
5011   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5012     Accum = getSCEV(BO->RHS);
5013   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5014     Accum = getSCEV(BO->LHS);
5015 
5016   if (!Accum)
5017     return nullptr;
5018 
5019   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5020   if (BO->IsNUW)
5021     Flags = setFlags(Flags, SCEV::FlagNUW);
5022   if (BO->IsNSW)
5023     Flags = setFlags(Flags, SCEV::FlagNSW);
5024 
5025   const SCEV *StartVal = getSCEV(StartValueV);
5026   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5027 
5028   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5029 
5030   // We can add Flags to the post-inc expression only if we
5031   // know that it is *undefined behavior* for BEValueV to
5032   // overflow.
5033   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5034     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5035       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5036 
5037   return PHISCEV;
5038 }
5039 
5040 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5041   const Loop *L = LI.getLoopFor(PN->getParent());
5042   if (!L || L->getHeader() != PN->getParent())
5043     return nullptr;
5044 
5045   // The loop may have multiple entrances or multiple exits; we can analyze
5046   // this phi as an addrec if it has a unique entry value and a unique
5047   // backedge value.
5048   Value *BEValueV = nullptr, *StartValueV = nullptr;
5049   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5050     Value *V = PN->getIncomingValue(i);
5051     if (L->contains(PN->getIncomingBlock(i))) {
5052       if (!BEValueV) {
5053         BEValueV = V;
5054       } else if (BEValueV != V) {
5055         BEValueV = nullptr;
5056         break;
5057       }
5058     } else if (!StartValueV) {
5059       StartValueV = V;
5060     } else if (StartValueV != V) {
5061       StartValueV = nullptr;
5062       break;
5063     }
5064   }
5065   if (!BEValueV || !StartValueV)
5066     return nullptr;
5067 
5068   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5069          "PHI node already processed?");
5070 
5071   // First, try to find AddRec expression without creating a fictituos symbolic
5072   // value for PN.
5073   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5074     return S;
5075 
5076   // Handle PHI node value symbolically.
5077   const SCEV *SymbolicName = getUnknown(PN);
5078   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5079 
5080   // Using this symbolic name for the PHI, analyze the value coming around
5081   // the back-edge.
5082   const SCEV *BEValue = getSCEV(BEValueV);
5083 
5084   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5085   // has a special value for the first iteration of the loop.
5086 
5087   // If the value coming around the backedge is an add with the symbolic
5088   // value we just inserted, then we found a simple induction variable!
5089   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5090     // If there is a single occurrence of the symbolic value, replace it
5091     // with a recurrence.
5092     unsigned FoundIndex = Add->getNumOperands();
5093     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5094       if (Add->getOperand(i) == SymbolicName)
5095         if (FoundIndex == e) {
5096           FoundIndex = i;
5097           break;
5098         }
5099 
5100     if (FoundIndex != Add->getNumOperands()) {
5101       // Create an add with everything but the specified operand.
5102       SmallVector<const SCEV *, 8> Ops;
5103       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5104         if (i != FoundIndex)
5105           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5106                                                              L, *this));
5107       const SCEV *Accum = getAddExpr(Ops);
5108 
5109       // This is not a valid addrec if the step amount is varying each
5110       // loop iteration, but is not itself an addrec in this loop.
5111       if (isLoopInvariant(Accum, L) ||
5112           (isa<SCEVAddRecExpr>(Accum) &&
5113            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5114         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5115 
5116         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5117           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5118             if (BO->IsNUW)
5119               Flags = setFlags(Flags, SCEV::FlagNUW);
5120             if (BO->IsNSW)
5121               Flags = setFlags(Flags, SCEV::FlagNSW);
5122           }
5123         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5124           // If the increment is an inbounds GEP, then we know the address
5125           // space cannot be wrapped around. We cannot make any guarantee
5126           // about signed or unsigned overflow because pointers are
5127           // unsigned but we may have a negative index from the base
5128           // pointer. We can guarantee that no unsigned wrap occurs if the
5129           // indices form a positive value.
5130           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5131             Flags = setFlags(Flags, SCEV::FlagNW);
5132 
5133             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5134             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5135               Flags = setFlags(Flags, SCEV::FlagNUW);
5136           }
5137 
5138           // We cannot transfer nuw and nsw flags from subtraction
5139           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5140           // for instance.
5141         }
5142 
5143         const SCEV *StartVal = getSCEV(StartValueV);
5144         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5145 
5146         // Okay, for the entire analysis of this edge we assumed the PHI
5147         // to be symbolic.  We now need to go back and purge all of the
5148         // entries for the scalars that use the symbolic expression.
5149         forgetSymbolicName(PN, SymbolicName);
5150         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5151 
5152         // We can add Flags to the post-inc expression only if we
5153         // know that it is *undefined behavior* for BEValueV to
5154         // overflow.
5155         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5156           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5157             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5158 
5159         return PHISCEV;
5160       }
5161     }
5162   } else {
5163     // Otherwise, this could be a loop like this:
5164     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5165     // In this case, j = {1,+,1}  and BEValue is j.
5166     // Because the other in-value of i (0) fits the evolution of BEValue
5167     // i really is an addrec evolution.
5168     //
5169     // We can generalize this saying that i is the shifted value of BEValue
5170     // by one iteration:
5171     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5172     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5173     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5174     if (Shifted != getCouldNotCompute() &&
5175         Start != getCouldNotCompute()) {
5176       const SCEV *StartVal = getSCEV(StartValueV);
5177       if (Start == StartVal) {
5178         // Okay, for the entire analysis of this edge we assumed the PHI
5179         // to be symbolic.  We now need to go back and purge all of the
5180         // entries for the scalars that use the symbolic expression.
5181         forgetSymbolicName(PN, SymbolicName);
5182         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5183         return Shifted;
5184       }
5185     }
5186   }
5187 
5188   // Remove the temporary PHI node SCEV that has been inserted while intending
5189   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5190   // as it will prevent later (possibly simpler) SCEV expressions to be added
5191   // to the ValueExprMap.
5192   eraseValueFromMap(PN);
5193 
5194   return nullptr;
5195 }
5196 
5197 // Checks if the SCEV S is available at BB.  S is considered available at BB
5198 // if S can be materialized at BB without introducing a fault.
5199 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5200                                BasicBlock *BB) {
5201   struct CheckAvailable {
5202     bool TraversalDone = false;
5203     bool Available = true;
5204 
5205     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5206     BasicBlock *BB = nullptr;
5207     DominatorTree &DT;
5208 
5209     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5210       : L(L), BB(BB), DT(DT) {}
5211 
5212     bool setUnavailable() {
5213       TraversalDone = true;
5214       Available = false;
5215       return false;
5216     }
5217 
5218     bool follow(const SCEV *S) {
5219       switch (S->getSCEVType()) {
5220       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5221       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5222         // These expressions are available if their operand(s) is/are.
5223         return true;
5224 
5225       case scAddRecExpr: {
5226         // We allow add recurrences that are on the loop BB is in, or some
5227         // outer loop.  This guarantees availability because the value of the
5228         // add recurrence at BB is simply the "current" value of the induction
5229         // variable.  We can relax this in the future; for instance an add
5230         // recurrence on a sibling dominating loop is also available at BB.
5231         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5232         if (L && (ARLoop == L || ARLoop->contains(L)))
5233           return true;
5234 
5235         return setUnavailable();
5236       }
5237 
5238       case scUnknown: {
5239         // For SCEVUnknown, we check for simple dominance.
5240         const auto *SU = cast<SCEVUnknown>(S);
5241         Value *V = SU->getValue();
5242 
5243         if (isa<Argument>(V))
5244           return false;
5245 
5246         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5247           return false;
5248 
5249         return setUnavailable();
5250       }
5251 
5252       case scUDivExpr:
5253       case scCouldNotCompute:
5254         // We do not try to smart about these at all.
5255         return setUnavailable();
5256       }
5257       llvm_unreachable("switch should be fully covered!");
5258     }
5259 
5260     bool isDone() { return TraversalDone; }
5261   };
5262 
5263   CheckAvailable CA(L, BB, DT);
5264   SCEVTraversal<CheckAvailable> ST(CA);
5265 
5266   ST.visitAll(S);
5267   return CA.Available;
5268 }
5269 
5270 // Try to match a control flow sequence that branches out at BI and merges back
5271 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5272 // match.
5273 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5274                           Value *&C, Value *&LHS, Value *&RHS) {
5275   C = BI->getCondition();
5276 
5277   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5278   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5279 
5280   if (!LeftEdge.isSingleEdge())
5281     return false;
5282 
5283   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5284 
5285   Use &LeftUse = Merge->getOperandUse(0);
5286   Use &RightUse = Merge->getOperandUse(1);
5287 
5288   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5289     LHS = LeftUse;
5290     RHS = RightUse;
5291     return true;
5292   }
5293 
5294   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5295     LHS = RightUse;
5296     RHS = LeftUse;
5297     return true;
5298   }
5299 
5300   return false;
5301 }
5302 
5303 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5304   auto IsReachable =
5305       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5306   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5307     const Loop *L = LI.getLoopFor(PN->getParent());
5308 
5309     // We don't want to break LCSSA, even in a SCEV expression tree.
5310     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5311       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5312         return nullptr;
5313 
5314     // Try to match
5315     //
5316     //  br %cond, label %left, label %right
5317     // left:
5318     //  br label %merge
5319     // right:
5320     //  br label %merge
5321     // merge:
5322     //  V = phi [ %x, %left ], [ %y, %right ]
5323     //
5324     // as "select %cond, %x, %y"
5325 
5326     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5327     assert(IDom && "At least the entry block should dominate PN");
5328 
5329     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5330     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5331 
5332     if (BI && BI->isConditional() &&
5333         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5334         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5335         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5336       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5337   }
5338 
5339   return nullptr;
5340 }
5341 
5342 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5343   if (const SCEV *S = createAddRecFromPHI(PN))
5344     return S;
5345 
5346   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5347     return S;
5348 
5349   // If the PHI has a single incoming value, follow that value, unless the
5350   // PHI's incoming blocks are in a different loop, in which case doing so
5351   // risks breaking LCSSA form. Instcombine would normally zap these, but
5352   // it doesn't have DominatorTree information, so it may miss cases.
5353   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5354     if (LI.replacementPreservesLCSSAForm(PN, V))
5355       return getSCEV(V);
5356 
5357   // If it's not a loop phi, we can't handle it yet.
5358   return getUnknown(PN);
5359 }
5360 
5361 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5362                                                       Value *Cond,
5363                                                       Value *TrueVal,
5364                                                       Value *FalseVal) {
5365   // Handle "constant" branch or select. This can occur for instance when a
5366   // loop pass transforms an inner loop and moves on to process the outer loop.
5367   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5368     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5369 
5370   // Try to match some simple smax or umax patterns.
5371   auto *ICI = dyn_cast<ICmpInst>(Cond);
5372   if (!ICI)
5373     return getUnknown(I);
5374 
5375   Value *LHS = ICI->getOperand(0);
5376   Value *RHS = ICI->getOperand(1);
5377 
5378   switch (ICI->getPredicate()) {
5379   case ICmpInst::ICMP_SLT:
5380   case ICmpInst::ICMP_SLE:
5381     std::swap(LHS, RHS);
5382     LLVM_FALLTHROUGH;
5383   case ICmpInst::ICMP_SGT:
5384   case ICmpInst::ICMP_SGE:
5385     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5386     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5387     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5388       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5389       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5390       const SCEV *LA = getSCEV(TrueVal);
5391       const SCEV *RA = getSCEV(FalseVal);
5392       const SCEV *LDiff = getMinusSCEV(LA, LS);
5393       const SCEV *RDiff = getMinusSCEV(RA, RS);
5394       if (LDiff == RDiff)
5395         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5396       LDiff = getMinusSCEV(LA, RS);
5397       RDiff = getMinusSCEV(RA, LS);
5398       if (LDiff == RDiff)
5399         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5400     }
5401     break;
5402   case ICmpInst::ICMP_ULT:
5403   case ICmpInst::ICMP_ULE:
5404     std::swap(LHS, RHS);
5405     LLVM_FALLTHROUGH;
5406   case ICmpInst::ICMP_UGT:
5407   case ICmpInst::ICMP_UGE:
5408     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5409     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5410     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5411       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5412       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5413       const SCEV *LA = getSCEV(TrueVal);
5414       const SCEV *RA = getSCEV(FalseVal);
5415       const SCEV *LDiff = getMinusSCEV(LA, LS);
5416       const SCEV *RDiff = getMinusSCEV(RA, RS);
5417       if (LDiff == RDiff)
5418         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5419       LDiff = getMinusSCEV(LA, RS);
5420       RDiff = getMinusSCEV(RA, LS);
5421       if (LDiff == RDiff)
5422         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5423     }
5424     break;
5425   case ICmpInst::ICMP_NE:
5426     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5427     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5428         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5429       const SCEV *One = getOne(I->getType());
5430       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5431       const SCEV *LA = getSCEV(TrueVal);
5432       const SCEV *RA = getSCEV(FalseVal);
5433       const SCEV *LDiff = getMinusSCEV(LA, LS);
5434       const SCEV *RDiff = getMinusSCEV(RA, One);
5435       if (LDiff == RDiff)
5436         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5437     }
5438     break;
5439   case ICmpInst::ICMP_EQ:
5440     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5441     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5442         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5443       const SCEV *One = getOne(I->getType());
5444       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5445       const SCEV *LA = getSCEV(TrueVal);
5446       const SCEV *RA = getSCEV(FalseVal);
5447       const SCEV *LDiff = getMinusSCEV(LA, One);
5448       const SCEV *RDiff = getMinusSCEV(RA, LS);
5449       if (LDiff == RDiff)
5450         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5451     }
5452     break;
5453   default:
5454     break;
5455   }
5456 
5457   return getUnknown(I);
5458 }
5459 
5460 /// Expand GEP instructions into add and multiply operations. This allows them
5461 /// to be analyzed by regular SCEV code.
5462 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5463   // Don't attempt to analyze GEPs over unsized objects.
5464   if (!GEP->getSourceElementType()->isSized())
5465     return getUnknown(GEP);
5466 
5467   SmallVector<const SCEV *, 4> IndexExprs;
5468   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5469     IndexExprs.push_back(getSCEV(*Index));
5470   return getGEPExpr(GEP, IndexExprs);
5471 }
5472 
5473 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5474   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5475     return C->getAPInt().countTrailingZeros();
5476 
5477   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5478     return std::min(GetMinTrailingZeros(T->getOperand()),
5479                     (uint32_t)getTypeSizeInBits(T->getType()));
5480 
5481   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5482     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5483     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5484                ? getTypeSizeInBits(E->getType())
5485                : OpRes;
5486   }
5487 
5488   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5489     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5490     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5491                ? getTypeSizeInBits(E->getType())
5492                : OpRes;
5493   }
5494 
5495   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5496     // The result is the min of all operands results.
5497     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5498     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5499       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5500     return MinOpRes;
5501   }
5502 
5503   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5504     // The result is the sum of all operands results.
5505     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5506     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5507     for (unsigned i = 1, e = M->getNumOperands();
5508          SumOpRes != BitWidth && i != e; ++i)
5509       SumOpRes =
5510           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5511     return SumOpRes;
5512   }
5513 
5514   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5515     // The result is the min of all operands results.
5516     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5517     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5518       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5519     return MinOpRes;
5520   }
5521 
5522   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5523     // The result is the min of all operands results.
5524     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5525     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5526       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5527     return MinOpRes;
5528   }
5529 
5530   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5531     // The result is the min of all operands results.
5532     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5533     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5534       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5535     return MinOpRes;
5536   }
5537 
5538   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5539     // For a SCEVUnknown, ask ValueTracking.
5540     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5541     return Known.countMinTrailingZeros();
5542   }
5543 
5544   // SCEVUDivExpr
5545   return 0;
5546 }
5547 
5548 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5549   auto I = MinTrailingZerosCache.find(S);
5550   if (I != MinTrailingZerosCache.end())
5551     return I->second;
5552 
5553   uint32_t Result = GetMinTrailingZerosImpl(S);
5554   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5555   assert(InsertPair.second && "Should insert a new key");
5556   return InsertPair.first->second;
5557 }
5558 
5559 /// Helper method to assign a range to V from metadata present in the IR.
5560 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5561   if (Instruction *I = dyn_cast<Instruction>(V))
5562     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5563       return getConstantRangeFromMetadata(*MD);
5564 
5565   return None;
5566 }
5567 
5568 /// Determine the range for a particular SCEV.  If SignHint is
5569 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5570 /// with a "cleaner" unsigned (resp. signed) representation.
5571 const ConstantRange &
5572 ScalarEvolution::getRangeRef(const SCEV *S,
5573                              ScalarEvolution::RangeSignHint SignHint) {
5574   DenseMap<const SCEV *, ConstantRange> &Cache =
5575       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5576                                                        : SignedRanges;
5577 
5578   // See if we've computed this range already.
5579   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5580   if (I != Cache.end())
5581     return I->second;
5582 
5583   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5584     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5585 
5586   unsigned BitWidth = getTypeSizeInBits(S->getType());
5587   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5588 
5589   // If the value has known zeros, the maximum value will have those known zeros
5590   // as well.
5591   uint32_t TZ = GetMinTrailingZeros(S);
5592   if (TZ != 0) {
5593     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5594       ConservativeResult =
5595           ConstantRange(APInt::getMinValue(BitWidth),
5596                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5597     else
5598       ConservativeResult = ConstantRange(
5599           APInt::getSignedMinValue(BitWidth),
5600           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5601   }
5602 
5603   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5604     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5605     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5606       X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5607     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
5608   }
5609 
5610   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5611     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5612     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5613       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5614     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
5615   }
5616 
5617   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5618     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5619     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5620       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5621     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
5622   }
5623 
5624   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5625     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5626     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5627       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5628     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
5629   }
5630 
5631   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5632     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5633     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5634     return setRange(UDiv, SignHint,
5635                     ConservativeResult.intersectWith(X.udiv(Y)));
5636   }
5637 
5638   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5639     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5640     return setRange(ZExt, SignHint,
5641                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
5642   }
5643 
5644   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5645     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5646     return setRange(SExt, SignHint,
5647                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
5648   }
5649 
5650   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5651     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5652     return setRange(Trunc, SignHint,
5653                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
5654   }
5655 
5656   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5657     // If there's no unsigned wrap, the value will never be less than its
5658     // initial value.
5659     if (AddRec->hasNoUnsignedWrap())
5660       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5661         if (!C->getValue()->isZero())
5662           ConservativeResult = ConservativeResult.intersectWith(
5663               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
5664 
5665     // If there's no signed wrap, and all the operands have the same sign or
5666     // zero, the value won't ever change sign.
5667     if (AddRec->hasNoSignedWrap()) {
5668       bool AllNonNeg = true;
5669       bool AllNonPos = true;
5670       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5671         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5672         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5673       }
5674       if (AllNonNeg)
5675         ConservativeResult = ConservativeResult.intersectWith(
5676           ConstantRange(APInt(BitWidth, 0),
5677                         APInt::getSignedMinValue(BitWidth)));
5678       else if (AllNonPos)
5679         ConservativeResult = ConservativeResult.intersectWith(
5680           ConstantRange(APInt::getSignedMinValue(BitWidth),
5681                         APInt(BitWidth, 1)));
5682     }
5683 
5684     // TODO: non-affine addrec
5685     if (AddRec->isAffine()) {
5686       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
5687       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5688           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5689         auto RangeFromAffine = getRangeForAffineAR(
5690             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5691             BitWidth);
5692         if (!RangeFromAffine.isFullSet())
5693           ConservativeResult =
5694               ConservativeResult.intersectWith(RangeFromAffine);
5695 
5696         auto RangeFromFactoring = getRangeViaFactoring(
5697             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5698             BitWidth);
5699         if (!RangeFromFactoring.isFullSet())
5700           ConservativeResult =
5701               ConservativeResult.intersectWith(RangeFromFactoring);
5702       }
5703     }
5704 
5705     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5706   }
5707 
5708   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5709     // Check if the IR explicitly contains !range metadata.
5710     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5711     if (MDRange.hasValue())
5712       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
5713 
5714     // Split here to avoid paying the compile-time cost of calling both
5715     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5716     // if needed.
5717     const DataLayout &DL = getDataLayout();
5718     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5719       // For a SCEVUnknown, ask ValueTracking.
5720       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5721       if (Known.One != ~Known.Zero + 1)
5722         ConservativeResult =
5723             ConservativeResult.intersectWith(ConstantRange(Known.One,
5724                                                            ~Known.Zero + 1));
5725     } else {
5726       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5727              "generalize as needed!");
5728       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5729       if (NS > 1)
5730         ConservativeResult = ConservativeResult.intersectWith(
5731             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5732                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
5733     }
5734 
5735     // A range of Phi is a subset of union of all ranges of its input.
5736     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5737       // Make sure that we do not run over cycled Phis.
5738       if (PendingPhiRanges.insert(Phi).second) {
5739         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5740         for (auto &Op : Phi->operands()) {
5741           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5742           RangeFromOps = RangeFromOps.unionWith(OpRange);
5743           // No point to continue if we already have a full set.
5744           if (RangeFromOps.isFullSet())
5745             break;
5746         }
5747         ConservativeResult = ConservativeResult.intersectWith(RangeFromOps);
5748         bool Erased = PendingPhiRanges.erase(Phi);
5749         assert(Erased && "Failed to erase Phi properly?");
5750         (void) Erased;
5751       }
5752     }
5753 
5754     return setRange(U, SignHint, std::move(ConservativeResult));
5755   }
5756 
5757   return setRange(S, SignHint, std::move(ConservativeResult));
5758 }
5759 
5760 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5761 // values that the expression can take. Initially, the expression has a value
5762 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5763 // argument defines if we treat Step as signed or unsigned.
5764 static ConstantRange getRangeForAffineARHelper(APInt Step,
5765                                                const ConstantRange &StartRange,
5766                                                const APInt &MaxBECount,
5767                                                unsigned BitWidth, bool Signed) {
5768   // If either Step or MaxBECount is 0, then the expression won't change, and we
5769   // just need to return the initial range.
5770   if (Step == 0 || MaxBECount == 0)
5771     return StartRange;
5772 
5773   // If we don't know anything about the initial value (i.e. StartRange is
5774   // FullRange), then we don't know anything about the final range either.
5775   // Return FullRange.
5776   if (StartRange.isFullSet())
5777     return ConstantRange(BitWidth, /* isFullSet = */ true);
5778 
5779   // If Step is signed and negative, then we use its absolute value, but we also
5780   // note that we're moving in the opposite direction.
5781   bool Descending = Signed && Step.isNegative();
5782 
5783   if (Signed)
5784     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5785     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5786     // This equations hold true due to the well-defined wrap-around behavior of
5787     // APInt.
5788     Step = Step.abs();
5789 
5790   // Check if Offset is more than full span of BitWidth. If it is, the
5791   // expression is guaranteed to overflow.
5792   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5793     return ConstantRange(BitWidth, /* isFullSet = */ true);
5794 
5795   // Offset is by how much the expression can change. Checks above guarantee no
5796   // overflow here.
5797   APInt Offset = Step * MaxBECount;
5798 
5799   // Minimum value of the final range will match the minimal value of StartRange
5800   // if the expression is increasing and will be decreased by Offset otherwise.
5801   // Maximum value of the final range will match the maximal value of StartRange
5802   // if the expression is decreasing and will be increased by Offset otherwise.
5803   APInt StartLower = StartRange.getLower();
5804   APInt StartUpper = StartRange.getUpper() - 1;
5805   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5806                                    : (StartUpper + std::move(Offset));
5807 
5808   // It's possible that the new minimum/maximum value will fall into the initial
5809   // range (due to wrap around). This means that the expression can take any
5810   // value in this bitwidth, and we have to return full range.
5811   if (StartRange.contains(MovedBoundary))
5812     return ConstantRange(BitWidth, /* isFullSet = */ true);
5813 
5814   APInt NewLower =
5815       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5816   APInt NewUpper =
5817       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5818   NewUpper += 1;
5819 
5820   // If we end up with full range, return a proper full range.
5821   if (NewLower == NewUpper)
5822     return ConstantRange(BitWidth, /* isFullSet = */ true);
5823 
5824   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5825   return ConstantRange(std::move(NewLower), std::move(NewUpper));
5826 }
5827 
5828 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5829                                                    const SCEV *Step,
5830                                                    const SCEV *MaxBECount,
5831                                                    unsigned BitWidth) {
5832   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5833          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5834          "Precondition!");
5835 
5836   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5837   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5838 
5839   // First, consider step signed.
5840   ConstantRange StartSRange = getSignedRange(Start);
5841   ConstantRange StepSRange = getSignedRange(Step);
5842 
5843   // If Step can be both positive and negative, we need to find ranges for the
5844   // maximum absolute step values in both directions and union them.
5845   ConstantRange SR =
5846       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5847                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5848   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5849                                               StartSRange, MaxBECountValue,
5850                                               BitWidth, /* Signed = */ true));
5851 
5852   // Next, consider step unsigned.
5853   ConstantRange UR = getRangeForAffineARHelper(
5854       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5855       MaxBECountValue, BitWidth, /* Signed = */ false);
5856 
5857   // Finally, intersect signed and unsigned ranges.
5858   return SR.intersectWith(UR);
5859 }
5860 
5861 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5862                                                     const SCEV *Step,
5863                                                     const SCEV *MaxBECount,
5864                                                     unsigned BitWidth) {
5865   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5866   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5867 
5868   struct SelectPattern {
5869     Value *Condition = nullptr;
5870     APInt TrueValue;
5871     APInt FalseValue;
5872 
5873     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5874                            const SCEV *S) {
5875       Optional<unsigned> CastOp;
5876       APInt Offset(BitWidth, 0);
5877 
5878       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5879              "Should be!");
5880 
5881       // Peel off a constant offset:
5882       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5883         // In the future we could consider being smarter here and handle
5884         // {Start+Step,+,Step} too.
5885         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5886           return;
5887 
5888         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5889         S = SA->getOperand(1);
5890       }
5891 
5892       // Peel off a cast operation
5893       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5894         CastOp = SCast->getSCEVType();
5895         S = SCast->getOperand();
5896       }
5897 
5898       using namespace llvm::PatternMatch;
5899 
5900       auto *SU = dyn_cast<SCEVUnknown>(S);
5901       const APInt *TrueVal, *FalseVal;
5902       if (!SU ||
5903           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5904                                           m_APInt(FalseVal)))) {
5905         Condition = nullptr;
5906         return;
5907       }
5908 
5909       TrueValue = *TrueVal;
5910       FalseValue = *FalseVal;
5911 
5912       // Re-apply the cast we peeled off earlier
5913       if (CastOp.hasValue())
5914         switch (*CastOp) {
5915         default:
5916           llvm_unreachable("Unknown SCEV cast type!");
5917 
5918         case scTruncate:
5919           TrueValue = TrueValue.trunc(BitWidth);
5920           FalseValue = FalseValue.trunc(BitWidth);
5921           break;
5922         case scZeroExtend:
5923           TrueValue = TrueValue.zext(BitWidth);
5924           FalseValue = FalseValue.zext(BitWidth);
5925           break;
5926         case scSignExtend:
5927           TrueValue = TrueValue.sext(BitWidth);
5928           FalseValue = FalseValue.sext(BitWidth);
5929           break;
5930         }
5931 
5932       // Re-apply the constant offset we peeled off earlier
5933       TrueValue += Offset;
5934       FalseValue += Offset;
5935     }
5936 
5937     bool isRecognized() { return Condition != nullptr; }
5938   };
5939 
5940   SelectPattern StartPattern(*this, BitWidth, Start);
5941   if (!StartPattern.isRecognized())
5942     return ConstantRange(BitWidth, /* isFullSet = */ true);
5943 
5944   SelectPattern StepPattern(*this, BitWidth, Step);
5945   if (!StepPattern.isRecognized())
5946     return ConstantRange(BitWidth, /* isFullSet = */ true);
5947 
5948   if (StartPattern.Condition != StepPattern.Condition) {
5949     // We don't handle this case today; but we could, by considering four
5950     // possibilities below instead of two. I'm not sure if there are cases where
5951     // that will help over what getRange already does, though.
5952     return ConstantRange(BitWidth, /* isFullSet = */ true);
5953   }
5954 
5955   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5956   // construct arbitrary general SCEV expressions here.  This function is called
5957   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5958   // say) can end up caching a suboptimal value.
5959 
5960   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5961   // C2352 and C2512 (otherwise it isn't needed).
5962 
5963   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5964   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5965   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5966   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5967 
5968   ConstantRange TrueRange =
5969       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5970   ConstantRange FalseRange =
5971       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5972 
5973   return TrueRange.unionWith(FalseRange);
5974 }
5975 
5976 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5977   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5978   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5979 
5980   // Return early if there are no flags to propagate to the SCEV.
5981   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5982   if (BinOp->hasNoUnsignedWrap())
5983     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5984   if (BinOp->hasNoSignedWrap())
5985     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5986   if (Flags == SCEV::FlagAnyWrap)
5987     return SCEV::FlagAnyWrap;
5988 
5989   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5990 }
5991 
5992 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5993   // Here we check that I is in the header of the innermost loop containing I,
5994   // since we only deal with instructions in the loop header. The actual loop we
5995   // need to check later will come from an add recurrence, but getting that
5996   // requires computing the SCEV of the operands, which can be expensive. This
5997   // check we can do cheaply to rule out some cases early.
5998   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5999   if (InnermostContainingLoop == nullptr ||
6000       InnermostContainingLoop->getHeader() != I->getParent())
6001     return false;
6002 
6003   // Only proceed if we can prove that I does not yield poison.
6004   if (!programUndefinedIfFullPoison(I))
6005     return false;
6006 
6007   // At this point we know that if I is executed, then it does not wrap
6008   // according to at least one of NSW or NUW. If I is not executed, then we do
6009   // not know if the calculation that I represents would wrap. Multiple
6010   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6011   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6012   // derived from other instructions that map to the same SCEV. We cannot make
6013   // that guarantee for cases where I is not executed. So we need to find the
6014   // loop that I is considered in relation to and prove that I is executed for
6015   // every iteration of that loop. That implies that the value that I
6016   // calculates does not wrap anywhere in the loop, so then we can apply the
6017   // flags to the SCEV.
6018   //
6019   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6020   // from different loops, so that we know which loop to prove that I is
6021   // executed in.
6022   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6023     // I could be an extractvalue from a call to an overflow intrinsic.
6024     // TODO: We can do better here in some cases.
6025     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6026       return false;
6027     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6028     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6029       bool AllOtherOpsLoopInvariant = true;
6030       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6031            ++OtherOpIndex) {
6032         if (OtherOpIndex != OpIndex) {
6033           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6034           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6035             AllOtherOpsLoopInvariant = false;
6036             break;
6037           }
6038         }
6039       }
6040       if (AllOtherOpsLoopInvariant &&
6041           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6042         return true;
6043     }
6044   }
6045   return false;
6046 }
6047 
6048 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6049   // If we know that \c I can never be poison period, then that's enough.
6050   if (isSCEVExprNeverPoison(I))
6051     return true;
6052 
6053   // For an add recurrence specifically, we assume that infinite loops without
6054   // side effects are undefined behavior, and then reason as follows:
6055   //
6056   // If the add recurrence is poison in any iteration, it is poison on all
6057   // future iterations (since incrementing poison yields poison). If the result
6058   // of the add recurrence is fed into the loop latch condition and the loop
6059   // does not contain any throws or exiting blocks other than the latch, we now
6060   // have the ability to "choose" whether the backedge is taken or not (by
6061   // choosing a sufficiently evil value for the poison feeding into the branch)
6062   // for every iteration including and after the one in which \p I first became
6063   // poison.  There are two possibilities (let's call the iteration in which \p
6064   // I first became poison as K):
6065   //
6066   //  1. In the set of iterations including and after K, the loop body executes
6067   //     no side effects.  In this case executing the backege an infinte number
6068   //     of times will yield undefined behavior.
6069   //
6070   //  2. In the set of iterations including and after K, the loop body executes
6071   //     at least one side effect.  In this case, that specific instance of side
6072   //     effect is control dependent on poison, which also yields undefined
6073   //     behavior.
6074 
6075   auto *ExitingBB = L->getExitingBlock();
6076   auto *LatchBB = L->getLoopLatch();
6077   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6078     return false;
6079 
6080   SmallPtrSet<const Instruction *, 16> Pushed;
6081   SmallVector<const Instruction *, 8> PoisonStack;
6082 
6083   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6084   // things that are known to be fully poison under that assumption go on the
6085   // PoisonStack.
6086   Pushed.insert(I);
6087   PoisonStack.push_back(I);
6088 
6089   bool LatchControlDependentOnPoison = false;
6090   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6091     const Instruction *Poison = PoisonStack.pop_back_val();
6092 
6093     for (auto *PoisonUser : Poison->users()) {
6094       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6095         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6096           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6097       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6098         assert(BI->isConditional() && "Only possibility!");
6099         if (BI->getParent() == LatchBB) {
6100           LatchControlDependentOnPoison = true;
6101           break;
6102         }
6103       }
6104     }
6105   }
6106 
6107   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6108 }
6109 
6110 ScalarEvolution::LoopProperties
6111 ScalarEvolution::getLoopProperties(const Loop *L) {
6112   using LoopProperties = ScalarEvolution::LoopProperties;
6113 
6114   auto Itr = LoopPropertiesCache.find(L);
6115   if (Itr == LoopPropertiesCache.end()) {
6116     auto HasSideEffects = [](Instruction *I) {
6117       if (auto *SI = dyn_cast<StoreInst>(I))
6118         return !SI->isSimple();
6119 
6120       return I->mayHaveSideEffects();
6121     };
6122 
6123     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6124                          /*HasNoSideEffects*/ true};
6125 
6126     for (auto *BB : L->getBlocks())
6127       for (auto &I : *BB) {
6128         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6129           LP.HasNoAbnormalExits = false;
6130         if (HasSideEffects(&I))
6131           LP.HasNoSideEffects = false;
6132         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6133           break; // We're already as pessimistic as we can get.
6134       }
6135 
6136     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6137     assert(InsertPair.second && "We just checked!");
6138     Itr = InsertPair.first;
6139   }
6140 
6141   return Itr->second;
6142 }
6143 
6144 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6145   if (!isSCEVable(V->getType()))
6146     return getUnknown(V);
6147 
6148   if (Instruction *I = dyn_cast<Instruction>(V)) {
6149     // Don't attempt to analyze instructions in blocks that aren't
6150     // reachable. Such instructions don't matter, and they aren't required
6151     // to obey basic rules for definitions dominating uses which this
6152     // analysis depends on.
6153     if (!DT.isReachableFromEntry(I->getParent()))
6154       return getUnknown(UndefValue::get(V->getType()));
6155   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6156     return getConstant(CI);
6157   else if (isa<ConstantPointerNull>(V))
6158     return getZero(V->getType());
6159   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6160     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6161   else if (!isa<ConstantExpr>(V))
6162     return getUnknown(V);
6163 
6164   Operator *U = cast<Operator>(V);
6165   if (auto BO = MatchBinaryOp(U, DT)) {
6166     switch (BO->Opcode) {
6167     case Instruction::Add: {
6168       // The simple thing to do would be to just call getSCEV on both operands
6169       // and call getAddExpr with the result. However if we're looking at a
6170       // bunch of things all added together, this can be quite inefficient,
6171       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6172       // Instead, gather up all the operands and make a single getAddExpr call.
6173       // LLVM IR canonical form means we need only traverse the left operands.
6174       SmallVector<const SCEV *, 4> AddOps;
6175       do {
6176         if (BO->Op) {
6177           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6178             AddOps.push_back(OpSCEV);
6179             break;
6180           }
6181 
6182           // If a NUW or NSW flag can be applied to the SCEV for this
6183           // addition, then compute the SCEV for this addition by itself
6184           // with a separate call to getAddExpr. We need to do that
6185           // instead of pushing the operands of the addition onto AddOps,
6186           // since the flags are only known to apply to this particular
6187           // addition - they may not apply to other additions that can be
6188           // formed with operands from AddOps.
6189           const SCEV *RHS = getSCEV(BO->RHS);
6190           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6191           if (Flags != SCEV::FlagAnyWrap) {
6192             const SCEV *LHS = getSCEV(BO->LHS);
6193             if (BO->Opcode == Instruction::Sub)
6194               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6195             else
6196               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6197             break;
6198           }
6199         }
6200 
6201         if (BO->Opcode == Instruction::Sub)
6202           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6203         else
6204           AddOps.push_back(getSCEV(BO->RHS));
6205 
6206         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6207         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6208                        NewBO->Opcode != Instruction::Sub)) {
6209           AddOps.push_back(getSCEV(BO->LHS));
6210           break;
6211         }
6212         BO = NewBO;
6213       } while (true);
6214 
6215       return getAddExpr(AddOps);
6216     }
6217 
6218     case Instruction::Mul: {
6219       SmallVector<const SCEV *, 4> MulOps;
6220       do {
6221         if (BO->Op) {
6222           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6223             MulOps.push_back(OpSCEV);
6224             break;
6225           }
6226 
6227           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6228           if (Flags != SCEV::FlagAnyWrap) {
6229             MulOps.push_back(
6230                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6231             break;
6232           }
6233         }
6234 
6235         MulOps.push_back(getSCEV(BO->RHS));
6236         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6237         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6238           MulOps.push_back(getSCEV(BO->LHS));
6239           break;
6240         }
6241         BO = NewBO;
6242       } while (true);
6243 
6244       return getMulExpr(MulOps);
6245     }
6246     case Instruction::UDiv:
6247       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6248     case Instruction::URem:
6249       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6250     case Instruction::Sub: {
6251       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6252       if (BO->Op)
6253         Flags = getNoWrapFlagsFromUB(BO->Op);
6254       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6255     }
6256     case Instruction::And:
6257       // For an expression like x&255 that merely masks off the high bits,
6258       // use zext(trunc(x)) as the SCEV expression.
6259       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6260         if (CI->isZero())
6261           return getSCEV(BO->RHS);
6262         if (CI->isMinusOne())
6263           return getSCEV(BO->LHS);
6264         const APInt &A = CI->getValue();
6265 
6266         // Instcombine's ShrinkDemandedConstant may strip bits out of
6267         // constants, obscuring what would otherwise be a low-bits mask.
6268         // Use computeKnownBits to compute what ShrinkDemandedConstant
6269         // knew about to reconstruct a low-bits mask value.
6270         unsigned LZ = A.countLeadingZeros();
6271         unsigned TZ = A.countTrailingZeros();
6272         unsigned BitWidth = A.getBitWidth();
6273         KnownBits Known(BitWidth);
6274         computeKnownBits(BO->LHS, Known, getDataLayout(),
6275                          0, &AC, nullptr, &DT);
6276 
6277         APInt EffectiveMask =
6278             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6279         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6280           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6281           const SCEV *LHS = getSCEV(BO->LHS);
6282           const SCEV *ShiftedLHS = nullptr;
6283           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6284             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6285               // For an expression like (x * 8) & 8, simplify the multiply.
6286               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6287               unsigned GCD = std::min(MulZeros, TZ);
6288               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6289               SmallVector<const SCEV*, 4> MulOps;
6290               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6291               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6292               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6293               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6294             }
6295           }
6296           if (!ShiftedLHS)
6297             ShiftedLHS = getUDivExpr(LHS, MulCount);
6298           return getMulExpr(
6299               getZeroExtendExpr(
6300                   getTruncateExpr(ShiftedLHS,
6301                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6302                   BO->LHS->getType()),
6303               MulCount);
6304         }
6305       }
6306       break;
6307 
6308     case Instruction::Or:
6309       // If the RHS of the Or is a constant, we may have something like:
6310       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6311       // optimizations will transparently handle this case.
6312       //
6313       // In order for this transformation to be safe, the LHS must be of the
6314       // form X*(2^n) and the Or constant must be less than 2^n.
6315       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6316         const SCEV *LHS = getSCEV(BO->LHS);
6317         const APInt &CIVal = CI->getValue();
6318         if (GetMinTrailingZeros(LHS) >=
6319             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6320           // Build a plain add SCEV.
6321           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6322           // If the LHS of the add was an addrec and it has no-wrap flags,
6323           // transfer the no-wrap flags, since an or won't introduce a wrap.
6324           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6325             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6326             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6327                 OldAR->getNoWrapFlags());
6328           }
6329           return S;
6330         }
6331       }
6332       break;
6333 
6334     case Instruction::Xor:
6335       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6336         // If the RHS of xor is -1, then this is a not operation.
6337         if (CI->isMinusOne())
6338           return getNotSCEV(getSCEV(BO->LHS));
6339 
6340         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6341         // This is a variant of the check for xor with -1, and it handles
6342         // the case where instcombine has trimmed non-demanded bits out
6343         // of an xor with -1.
6344         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6345           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6346             if (LBO->getOpcode() == Instruction::And &&
6347                 LCI->getValue() == CI->getValue())
6348               if (const SCEVZeroExtendExpr *Z =
6349                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6350                 Type *UTy = BO->LHS->getType();
6351                 const SCEV *Z0 = Z->getOperand();
6352                 Type *Z0Ty = Z0->getType();
6353                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6354 
6355                 // If C is a low-bits mask, the zero extend is serving to
6356                 // mask off the high bits. Complement the operand and
6357                 // re-apply the zext.
6358                 if (CI->getValue().isMask(Z0TySize))
6359                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6360 
6361                 // If C is a single bit, it may be in the sign-bit position
6362                 // before the zero-extend. In this case, represent the xor
6363                 // using an add, which is equivalent, and re-apply the zext.
6364                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6365                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6366                     Trunc.isSignMask())
6367                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6368                                            UTy);
6369               }
6370       }
6371       break;
6372 
6373     case Instruction::Shl:
6374       // Turn shift left of a constant amount into a multiply.
6375       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6376         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6377 
6378         // If the shift count is not less than the bitwidth, the result of
6379         // the shift is undefined. Don't try to analyze it, because the
6380         // resolution chosen here may differ from the resolution chosen in
6381         // other parts of the compiler.
6382         if (SA->getValue().uge(BitWidth))
6383           break;
6384 
6385         // It is currently not resolved how to interpret NSW for left
6386         // shift by BitWidth - 1, so we avoid applying flags in that
6387         // case. Remove this check (or this comment) once the situation
6388         // is resolved. See
6389         // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6390         // and http://reviews.llvm.org/D8890 .
6391         auto Flags = SCEV::FlagAnyWrap;
6392         if (BO->Op && SA->getValue().ult(BitWidth - 1))
6393           Flags = getNoWrapFlagsFromUB(BO->Op);
6394 
6395         Constant *X = ConstantInt::get(
6396             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6397         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6398       }
6399       break;
6400 
6401     case Instruction::AShr: {
6402       // AShr X, C, where C is a constant.
6403       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6404       if (!CI)
6405         break;
6406 
6407       Type *OuterTy = BO->LHS->getType();
6408       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6409       // If the shift count is not less than the bitwidth, the result of
6410       // the shift is undefined. Don't try to analyze it, because the
6411       // resolution chosen here may differ from the resolution chosen in
6412       // other parts of the compiler.
6413       if (CI->getValue().uge(BitWidth))
6414         break;
6415 
6416       if (CI->isZero())
6417         return getSCEV(BO->LHS); // shift by zero --> noop
6418 
6419       uint64_t AShrAmt = CI->getZExtValue();
6420       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6421 
6422       Operator *L = dyn_cast<Operator>(BO->LHS);
6423       if (L && L->getOpcode() == Instruction::Shl) {
6424         // X = Shl A, n
6425         // Y = AShr X, m
6426         // Both n and m are constant.
6427 
6428         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6429         if (L->getOperand(1) == BO->RHS)
6430           // For a two-shift sext-inreg, i.e. n = m,
6431           // use sext(trunc(x)) as the SCEV expression.
6432           return getSignExtendExpr(
6433               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6434 
6435         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6436         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6437           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6438           if (ShlAmt > AShrAmt) {
6439             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6440             // expression. We already checked that ShlAmt < BitWidth, so
6441             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6442             // ShlAmt - AShrAmt < Amt.
6443             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6444                                             ShlAmt - AShrAmt);
6445             return getSignExtendExpr(
6446                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6447                 getConstant(Mul)), OuterTy);
6448           }
6449         }
6450       }
6451       break;
6452     }
6453     }
6454   }
6455 
6456   switch (U->getOpcode()) {
6457   case Instruction::Trunc:
6458     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6459 
6460   case Instruction::ZExt:
6461     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6462 
6463   case Instruction::SExt:
6464     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6465       // The NSW flag of a subtract does not always survive the conversion to
6466       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6467       // more likely to preserve NSW and allow later AddRec optimisations.
6468       //
6469       // NOTE: This is effectively duplicating this logic from getSignExtend:
6470       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6471       // but by that point the NSW information has potentially been lost.
6472       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6473         Type *Ty = U->getType();
6474         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6475         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6476         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6477       }
6478     }
6479     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6480 
6481   case Instruction::BitCast:
6482     // BitCasts are no-op casts so we just eliminate the cast.
6483     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6484       return getSCEV(U->getOperand(0));
6485     break;
6486 
6487   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6488   // lead to pointer expressions which cannot safely be expanded to GEPs,
6489   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6490   // simplifying integer expressions.
6491 
6492   case Instruction::GetElementPtr:
6493     return createNodeForGEP(cast<GEPOperator>(U));
6494 
6495   case Instruction::PHI:
6496     return createNodeForPHI(cast<PHINode>(U));
6497 
6498   case Instruction::Select:
6499     // U can also be a select constant expr, which let fall through.  Since
6500     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6501     // constant expressions cannot have instructions as operands, we'd have
6502     // returned getUnknown for a select constant expressions anyway.
6503     if (isa<Instruction>(U))
6504       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6505                                       U->getOperand(1), U->getOperand(2));
6506     break;
6507 
6508   case Instruction::Call:
6509   case Instruction::Invoke:
6510     if (Value *RV = CallSite(U).getReturnedArgOperand())
6511       return getSCEV(RV);
6512     break;
6513   }
6514 
6515   return getUnknown(V);
6516 }
6517 
6518 //===----------------------------------------------------------------------===//
6519 //                   Iteration Count Computation Code
6520 //
6521 
6522 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6523   if (!ExitCount)
6524     return 0;
6525 
6526   ConstantInt *ExitConst = ExitCount->getValue();
6527 
6528   // Guard against huge trip counts.
6529   if (ExitConst->getValue().getActiveBits() > 32)
6530     return 0;
6531 
6532   // In case of integer overflow, this returns 0, which is correct.
6533   return ((unsigned)ExitConst->getZExtValue()) + 1;
6534 }
6535 
6536 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6537   if (BasicBlock *ExitingBB = L->getExitingBlock())
6538     return getSmallConstantTripCount(L, ExitingBB);
6539 
6540   // No trip count information for multiple exits.
6541   return 0;
6542 }
6543 
6544 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6545                                                     BasicBlock *ExitingBlock) {
6546   assert(ExitingBlock && "Must pass a non-null exiting block!");
6547   assert(L->isLoopExiting(ExitingBlock) &&
6548          "Exiting block must actually branch out of the loop!");
6549   const SCEVConstant *ExitCount =
6550       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6551   return getConstantTripCount(ExitCount);
6552 }
6553 
6554 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6555   const auto *MaxExitCount =
6556       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
6557   return getConstantTripCount(MaxExitCount);
6558 }
6559 
6560 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6561   if (BasicBlock *ExitingBB = L->getExitingBlock())
6562     return getSmallConstantTripMultiple(L, ExitingBB);
6563 
6564   // No trip multiple information for multiple exits.
6565   return 0;
6566 }
6567 
6568 /// Returns the largest constant divisor of the trip count of this loop as a
6569 /// normal unsigned value, if possible. This means that the actual trip count is
6570 /// always a multiple of the returned value (don't forget the trip count could
6571 /// very well be zero as well!).
6572 ///
6573 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6574 /// multiple of a constant (which is also the case if the trip count is simply
6575 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6576 /// if the trip count is very large (>= 2^32).
6577 ///
6578 /// As explained in the comments for getSmallConstantTripCount, this assumes
6579 /// that control exits the loop via ExitingBlock.
6580 unsigned
6581 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6582                                               BasicBlock *ExitingBlock) {
6583   assert(ExitingBlock && "Must pass a non-null exiting block!");
6584   assert(L->isLoopExiting(ExitingBlock) &&
6585          "Exiting block must actually branch out of the loop!");
6586   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6587   if (ExitCount == getCouldNotCompute())
6588     return 1;
6589 
6590   // Get the trip count from the BE count by adding 1.
6591   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6592 
6593   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6594   if (!TC)
6595     // Attempt to factor more general cases. Returns the greatest power of
6596     // two divisor. If overflow happens, the trip count expression is still
6597     // divisible by the greatest power of 2 divisor returned.
6598     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6599 
6600   ConstantInt *Result = TC->getValue();
6601 
6602   // Guard against huge trip counts (this requires checking
6603   // for zero to handle the case where the trip count == -1 and the
6604   // addition wraps).
6605   if (!Result || Result->getValue().getActiveBits() > 32 ||
6606       Result->getValue().getActiveBits() == 0)
6607     return 1;
6608 
6609   return (unsigned)Result->getZExtValue();
6610 }
6611 
6612 /// Get the expression for the number of loop iterations for which this loop is
6613 /// guaranteed not to exit via ExitingBlock. Otherwise return
6614 /// SCEVCouldNotCompute.
6615 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6616                                           BasicBlock *ExitingBlock) {
6617   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6618 }
6619 
6620 const SCEV *
6621 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6622                                                  SCEVUnionPredicate &Preds) {
6623   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6624 }
6625 
6626 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6627   return getBackedgeTakenInfo(L).getExact(L, this);
6628 }
6629 
6630 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6631 /// known never to be less than the actual backedge taken count.
6632 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
6633   return getBackedgeTakenInfo(L).getMax(this);
6634 }
6635 
6636 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6637   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6638 }
6639 
6640 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6641 static void
6642 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6643   BasicBlock *Header = L->getHeader();
6644 
6645   // Push all Loop-header PHIs onto the Worklist stack.
6646   for (PHINode &PN : Header->phis())
6647     Worklist.push_back(&PN);
6648 }
6649 
6650 const ScalarEvolution::BackedgeTakenInfo &
6651 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6652   auto &BTI = getBackedgeTakenInfo(L);
6653   if (BTI.hasFullInfo())
6654     return BTI;
6655 
6656   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6657 
6658   if (!Pair.second)
6659     return Pair.first->second;
6660 
6661   BackedgeTakenInfo Result =
6662       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6663 
6664   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6665 }
6666 
6667 const ScalarEvolution::BackedgeTakenInfo &
6668 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6669   // Initially insert an invalid entry for this loop. If the insertion
6670   // succeeds, proceed to actually compute a backedge-taken count and
6671   // update the value. The temporary CouldNotCompute value tells SCEV
6672   // code elsewhere that it shouldn't attempt to request a new
6673   // backedge-taken count, which could result in infinite recursion.
6674   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6675       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6676   if (!Pair.second)
6677     return Pair.first->second;
6678 
6679   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6680   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6681   // must be cleared in this scope.
6682   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6683 
6684   // In product build, there are no usage of statistic.
6685   (void)NumTripCountsComputed;
6686   (void)NumTripCountsNotComputed;
6687 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6688   const SCEV *BEExact = Result.getExact(L, this);
6689   if (BEExact != getCouldNotCompute()) {
6690     assert(isLoopInvariant(BEExact, L) &&
6691            isLoopInvariant(Result.getMax(this), L) &&
6692            "Computed backedge-taken count isn't loop invariant for loop!");
6693     ++NumTripCountsComputed;
6694   }
6695   else if (Result.getMax(this) == getCouldNotCompute() &&
6696            isa<PHINode>(L->getHeader()->begin())) {
6697     // Only count loops that have phi nodes as not being computable.
6698     ++NumTripCountsNotComputed;
6699   }
6700 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6701 
6702   // Now that we know more about the trip count for this loop, forget any
6703   // existing SCEV values for PHI nodes in this loop since they are only
6704   // conservative estimates made without the benefit of trip count
6705   // information. This is similar to the code in forgetLoop, except that
6706   // it handles SCEVUnknown PHI nodes specially.
6707   if (Result.hasAnyInfo()) {
6708     SmallVector<Instruction *, 16> Worklist;
6709     PushLoopPHIs(L, Worklist);
6710 
6711     SmallPtrSet<Instruction *, 8> Discovered;
6712     while (!Worklist.empty()) {
6713       Instruction *I = Worklist.pop_back_val();
6714 
6715       ValueExprMapType::iterator It =
6716         ValueExprMap.find_as(static_cast<Value *>(I));
6717       if (It != ValueExprMap.end()) {
6718         const SCEV *Old = It->second;
6719 
6720         // SCEVUnknown for a PHI either means that it has an unrecognized
6721         // structure, or it's a PHI that's in the progress of being computed
6722         // by createNodeForPHI.  In the former case, additional loop trip
6723         // count information isn't going to change anything. In the later
6724         // case, createNodeForPHI will perform the necessary updates on its
6725         // own when it gets to that point.
6726         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6727           eraseValueFromMap(It->first);
6728           forgetMemoizedResults(Old);
6729         }
6730         if (PHINode *PN = dyn_cast<PHINode>(I))
6731           ConstantEvolutionLoopExitValue.erase(PN);
6732       }
6733 
6734       // Since we don't need to invalidate anything for correctness and we're
6735       // only invalidating to make SCEV's results more precise, we get to stop
6736       // early to avoid invalidating too much.  This is especially important in
6737       // cases like:
6738       //
6739       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6740       // loop0:
6741       //   %pn0 = phi
6742       //   ...
6743       // loop1:
6744       //   %pn1 = phi
6745       //   ...
6746       //
6747       // where both loop0 and loop1's backedge taken count uses the SCEV
6748       // expression for %v.  If we don't have the early stop below then in cases
6749       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6750       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6751       // count for loop1, effectively nullifying SCEV's trip count cache.
6752       for (auto *U : I->users())
6753         if (auto *I = dyn_cast<Instruction>(U)) {
6754           auto *LoopForUser = LI.getLoopFor(I->getParent());
6755           if (LoopForUser && L->contains(LoopForUser) &&
6756               Discovered.insert(I).second)
6757             Worklist.push_back(I);
6758         }
6759     }
6760   }
6761 
6762   // Re-lookup the insert position, since the call to
6763   // computeBackedgeTakenCount above could result in a
6764   // recusive call to getBackedgeTakenInfo (on a different
6765   // loop), which would invalidate the iterator computed
6766   // earlier.
6767   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6768 }
6769 
6770 void ScalarEvolution::forgetLoop(const Loop *L) {
6771   // Drop any stored trip count value.
6772   auto RemoveLoopFromBackedgeMap =
6773       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6774         auto BTCPos = Map.find(L);
6775         if (BTCPos != Map.end()) {
6776           BTCPos->second.clear();
6777           Map.erase(BTCPos);
6778         }
6779       };
6780 
6781   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6782   SmallVector<Instruction *, 32> Worklist;
6783   SmallPtrSet<Instruction *, 16> Visited;
6784 
6785   // Iterate over all the loops and sub-loops to drop SCEV information.
6786   while (!LoopWorklist.empty()) {
6787     auto *CurrL = LoopWorklist.pop_back_val();
6788 
6789     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6790     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6791 
6792     // Drop information about predicated SCEV rewrites for this loop.
6793     for (auto I = PredicatedSCEVRewrites.begin();
6794          I != PredicatedSCEVRewrites.end();) {
6795       std::pair<const SCEV *, const Loop *> Entry = I->first;
6796       if (Entry.second == CurrL)
6797         PredicatedSCEVRewrites.erase(I++);
6798       else
6799         ++I;
6800     }
6801 
6802     auto LoopUsersItr = LoopUsers.find(CurrL);
6803     if (LoopUsersItr != LoopUsers.end()) {
6804       for (auto *S : LoopUsersItr->second)
6805         forgetMemoizedResults(S);
6806       LoopUsers.erase(LoopUsersItr);
6807     }
6808 
6809     // Drop information about expressions based on loop-header PHIs.
6810     PushLoopPHIs(CurrL, Worklist);
6811 
6812     while (!Worklist.empty()) {
6813       Instruction *I = Worklist.pop_back_val();
6814       if (!Visited.insert(I).second)
6815         continue;
6816 
6817       ValueExprMapType::iterator It =
6818           ValueExprMap.find_as(static_cast<Value *>(I));
6819       if (It != ValueExprMap.end()) {
6820         eraseValueFromMap(It->first);
6821         forgetMemoizedResults(It->second);
6822         if (PHINode *PN = dyn_cast<PHINode>(I))
6823           ConstantEvolutionLoopExitValue.erase(PN);
6824       }
6825 
6826       PushDefUseChildren(I, Worklist);
6827     }
6828 
6829     LoopPropertiesCache.erase(CurrL);
6830     // Forget all contained loops too, to avoid dangling entries in the
6831     // ValuesAtScopes map.
6832     LoopWorklist.append(CurrL->begin(), CurrL->end());
6833   }
6834 }
6835 
6836 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6837   while (Loop *Parent = L->getParentLoop())
6838     L = Parent;
6839   forgetLoop(L);
6840 }
6841 
6842 void ScalarEvolution::forgetValue(Value *V) {
6843   Instruction *I = dyn_cast<Instruction>(V);
6844   if (!I) return;
6845 
6846   // Drop information about expressions based on loop-header PHIs.
6847   SmallVector<Instruction *, 16> Worklist;
6848   Worklist.push_back(I);
6849 
6850   SmallPtrSet<Instruction *, 8> Visited;
6851   while (!Worklist.empty()) {
6852     I = Worklist.pop_back_val();
6853     if (!Visited.insert(I).second)
6854       continue;
6855 
6856     ValueExprMapType::iterator It =
6857       ValueExprMap.find_as(static_cast<Value *>(I));
6858     if (It != ValueExprMap.end()) {
6859       eraseValueFromMap(It->first);
6860       forgetMemoizedResults(It->second);
6861       if (PHINode *PN = dyn_cast<PHINode>(I))
6862         ConstantEvolutionLoopExitValue.erase(PN);
6863     }
6864 
6865     PushDefUseChildren(I, Worklist);
6866   }
6867 }
6868 
6869 /// Get the exact loop backedge taken count considering all loop exits. A
6870 /// computable result can only be returned for loops with all exiting blocks
6871 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6872 /// is never skipped. This is a valid assumption as long as the loop exits via
6873 /// that test. For precise results, it is the caller's responsibility to specify
6874 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6875 const SCEV *
6876 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6877                                              SCEVUnionPredicate *Preds) const {
6878   // If any exits were not computable, the loop is not computable.
6879   if (!isComplete() || ExitNotTaken.empty())
6880     return SE->getCouldNotCompute();
6881 
6882   const BasicBlock *Latch = L->getLoopLatch();
6883   // All exiting blocks we have collected must dominate the only backedge.
6884   if (!Latch)
6885     return SE->getCouldNotCompute();
6886 
6887   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6888   // count is simply a minimum out of all these calculated exit counts.
6889   SmallVector<const SCEV *, 2> Ops;
6890   for (auto &ENT : ExitNotTaken) {
6891     const SCEV *BECount = ENT.ExactNotTaken;
6892     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6893     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6894            "We should only have known counts for exiting blocks that dominate "
6895            "latch!");
6896 
6897     Ops.push_back(BECount);
6898 
6899     if (Preds && !ENT.hasAlwaysTruePredicate())
6900       Preds->add(ENT.Predicate.get());
6901 
6902     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6903            "Predicate should be always true!");
6904   }
6905 
6906   return SE->getUMinFromMismatchedTypes(Ops);
6907 }
6908 
6909 /// Get the exact not taken count for this loop exit.
6910 const SCEV *
6911 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6912                                              ScalarEvolution *SE) const {
6913   for (auto &ENT : ExitNotTaken)
6914     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6915       return ENT.ExactNotTaken;
6916 
6917   return SE->getCouldNotCompute();
6918 }
6919 
6920 /// getMax - Get the max backedge taken count for the loop.
6921 const SCEV *
6922 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6923   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6924     return !ENT.hasAlwaysTruePredicate();
6925   };
6926 
6927   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6928     return SE->getCouldNotCompute();
6929 
6930   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6931          "No point in having a non-constant max backedge taken count!");
6932   return getMax();
6933 }
6934 
6935 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6936   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6937     return !ENT.hasAlwaysTruePredicate();
6938   };
6939   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6940 }
6941 
6942 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6943                                                     ScalarEvolution *SE) const {
6944   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6945       SE->hasOperand(getMax(), S))
6946     return true;
6947 
6948   for (auto &ENT : ExitNotTaken)
6949     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6950         SE->hasOperand(ENT.ExactNotTaken, S))
6951       return true;
6952 
6953   return false;
6954 }
6955 
6956 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6957     : ExactNotTaken(E), MaxNotTaken(E) {
6958   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6959           isa<SCEVConstant>(MaxNotTaken)) &&
6960          "No point in having a non-constant max backedge taken count!");
6961 }
6962 
6963 ScalarEvolution::ExitLimit::ExitLimit(
6964     const SCEV *E, const SCEV *M, bool MaxOrZero,
6965     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6966     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6967   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6968           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6969          "Exact is not allowed to be less precise than Max");
6970   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6971           isa<SCEVConstant>(MaxNotTaken)) &&
6972          "No point in having a non-constant max backedge taken count!");
6973   for (auto *PredSet : PredSetList)
6974     for (auto *P : *PredSet)
6975       addPredicate(P);
6976 }
6977 
6978 ScalarEvolution::ExitLimit::ExitLimit(
6979     const SCEV *E, const SCEV *M, bool MaxOrZero,
6980     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6981     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6982   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6983           isa<SCEVConstant>(MaxNotTaken)) &&
6984          "No point in having a non-constant max backedge taken count!");
6985 }
6986 
6987 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6988                                       bool MaxOrZero)
6989     : ExitLimit(E, M, MaxOrZero, None) {
6990   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6991           isa<SCEVConstant>(MaxNotTaken)) &&
6992          "No point in having a non-constant max backedge taken count!");
6993 }
6994 
6995 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6996 /// computable exit into a persistent ExitNotTakenInfo array.
6997 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6998     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6999         ExitCounts,
7000     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
7001     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
7002   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7003 
7004   ExitNotTaken.reserve(ExitCounts.size());
7005   std::transform(
7006       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7007       [&](const EdgeExitInfo &EEI) {
7008         BasicBlock *ExitBB = EEI.first;
7009         const ExitLimit &EL = EEI.second;
7010         if (EL.Predicates.empty())
7011           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
7012 
7013         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7014         for (auto *Pred : EL.Predicates)
7015           Predicate->add(Pred);
7016 
7017         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
7018       });
7019   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
7020          "No point in having a non-constant max backedge taken count!");
7021 }
7022 
7023 /// Invalidate this result and free the ExitNotTakenInfo array.
7024 void ScalarEvolution::BackedgeTakenInfo::clear() {
7025   ExitNotTaken.clear();
7026 }
7027 
7028 /// Compute the number of times the backedge of the specified loop will execute.
7029 ScalarEvolution::BackedgeTakenInfo
7030 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7031                                            bool AllowPredicates) {
7032   SmallVector<BasicBlock *, 8> ExitingBlocks;
7033   L->getExitingBlocks(ExitingBlocks);
7034 
7035   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7036 
7037   SmallVector<EdgeExitInfo, 4> ExitCounts;
7038   bool CouldComputeBECount = true;
7039   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7040   const SCEV *MustExitMaxBECount = nullptr;
7041   const SCEV *MayExitMaxBECount = nullptr;
7042   bool MustExitMaxOrZero = false;
7043 
7044   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7045   // and compute maxBECount.
7046   // Do a union of all the predicates here.
7047   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7048     BasicBlock *ExitBB = ExitingBlocks[i];
7049     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7050 
7051     assert((AllowPredicates || EL.Predicates.empty()) &&
7052            "Predicated exit limit when predicates are not allowed!");
7053 
7054     // 1. For each exit that can be computed, add an entry to ExitCounts.
7055     // CouldComputeBECount is true only if all exits can be computed.
7056     if (EL.ExactNotTaken == getCouldNotCompute())
7057       // We couldn't compute an exact value for this exit, so
7058       // we won't be able to compute an exact value for the loop.
7059       CouldComputeBECount = false;
7060     else
7061       ExitCounts.emplace_back(ExitBB, EL);
7062 
7063     // 2. Derive the loop's MaxBECount from each exit's max number of
7064     // non-exiting iterations. Partition the loop exits into two kinds:
7065     // LoopMustExits and LoopMayExits.
7066     //
7067     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7068     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7069     // MaxBECount is the minimum EL.MaxNotTaken of computable
7070     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7071     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7072     // computable EL.MaxNotTaken.
7073     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7074         DT.dominates(ExitBB, Latch)) {
7075       if (!MustExitMaxBECount) {
7076         MustExitMaxBECount = EL.MaxNotTaken;
7077         MustExitMaxOrZero = EL.MaxOrZero;
7078       } else {
7079         MustExitMaxBECount =
7080             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7081       }
7082     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7083       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7084         MayExitMaxBECount = EL.MaxNotTaken;
7085       else {
7086         MayExitMaxBECount =
7087             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7088       }
7089     }
7090   }
7091   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7092     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7093   // The loop backedge will be taken the maximum or zero times if there's
7094   // a single exit that must be taken the maximum or zero times.
7095   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7096   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7097                            MaxBECount, MaxOrZero);
7098 }
7099 
7100 ScalarEvolution::ExitLimit
7101 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7102                                       bool AllowPredicates) {
7103   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7104   // If our exiting block does not dominate the latch, then its connection with
7105   // loop's exit limit may be far from trivial.
7106   const BasicBlock *Latch = L->getLoopLatch();
7107   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7108     return getCouldNotCompute();
7109 
7110   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7111   Instruction *Term = ExitingBlock->getTerminator();
7112   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7113     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7114     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7115     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7116            "It should have one successor in loop and one exit block!");
7117     // Proceed to the next level to examine the exit condition expression.
7118     return computeExitLimitFromCond(
7119         L, BI->getCondition(), ExitIfTrue,
7120         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7121   }
7122 
7123   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7124     // For switch, make sure that there is a single exit from the loop.
7125     BasicBlock *Exit = nullptr;
7126     for (auto *SBB : successors(ExitingBlock))
7127       if (!L->contains(SBB)) {
7128         if (Exit) // Multiple exit successors.
7129           return getCouldNotCompute();
7130         Exit = SBB;
7131       }
7132     assert(Exit && "Exiting block must have at least one exit");
7133     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7134                                                 /*ControlsExit=*/IsOnlyExit);
7135   }
7136 
7137   return getCouldNotCompute();
7138 }
7139 
7140 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7141     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7142     bool ControlsExit, bool AllowPredicates) {
7143   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7144   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7145                                         ControlsExit, AllowPredicates);
7146 }
7147 
7148 Optional<ScalarEvolution::ExitLimit>
7149 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7150                                       bool ExitIfTrue, bool ControlsExit,
7151                                       bool AllowPredicates) {
7152   (void)this->L;
7153   (void)this->ExitIfTrue;
7154   (void)this->AllowPredicates;
7155 
7156   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7157          this->AllowPredicates == AllowPredicates &&
7158          "Variance in assumed invariant key components!");
7159   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7160   if (Itr == TripCountMap.end())
7161     return None;
7162   return Itr->second;
7163 }
7164 
7165 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7166                                              bool ExitIfTrue,
7167                                              bool ControlsExit,
7168                                              bool AllowPredicates,
7169                                              const ExitLimit &EL) {
7170   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7171          this->AllowPredicates == AllowPredicates &&
7172          "Variance in assumed invariant key components!");
7173 
7174   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7175   assert(InsertResult.second && "Expected successful insertion!");
7176   (void)InsertResult;
7177   (void)ExitIfTrue;
7178 }
7179 
7180 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7181     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7182     bool ControlsExit, bool AllowPredicates) {
7183 
7184   if (auto MaybeEL =
7185           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7186     return *MaybeEL;
7187 
7188   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7189                                               ControlsExit, AllowPredicates);
7190   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7191   return EL;
7192 }
7193 
7194 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7195     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7196     bool ControlsExit, bool AllowPredicates) {
7197   // Check if the controlling expression for this loop is an And or Or.
7198   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7199     if (BO->getOpcode() == Instruction::And) {
7200       // Recurse on the operands of the and.
7201       bool EitherMayExit = !ExitIfTrue;
7202       ExitLimit EL0 = computeExitLimitFromCondCached(
7203           Cache, L, BO->getOperand(0), ExitIfTrue,
7204           ControlsExit && !EitherMayExit, AllowPredicates);
7205       ExitLimit EL1 = computeExitLimitFromCondCached(
7206           Cache, L, BO->getOperand(1), ExitIfTrue,
7207           ControlsExit && !EitherMayExit, AllowPredicates);
7208       const SCEV *BECount = getCouldNotCompute();
7209       const SCEV *MaxBECount = getCouldNotCompute();
7210       if (EitherMayExit) {
7211         // Both conditions must be true for the loop to continue executing.
7212         // Choose the less conservative count.
7213         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7214             EL1.ExactNotTaken == getCouldNotCompute())
7215           BECount = getCouldNotCompute();
7216         else
7217           BECount =
7218               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7219         if (EL0.MaxNotTaken == getCouldNotCompute())
7220           MaxBECount = EL1.MaxNotTaken;
7221         else if (EL1.MaxNotTaken == getCouldNotCompute())
7222           MaxBECount = EL0.MaxNotTaken;
7223         else
7224           MaxBECount =
7225               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7226       } else {
7227         // Both conditions must be true at the same time for the loop to exit.
7228         // For now, be conservative.
7229         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7230           MaxBECount = EL0.MaxNotTaken;
7231         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7232           BECount = EL0.ExactNotTaken;
7233       }
7234 
7235       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7236       // to be more aggressive when computing BECount than when computing
7237       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7238       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7239       // to not.
7240       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7241           !isa<SCEVCouldNotCompute>(BECount))
7242         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7243 
7244       return ExitLimit(BECount, MaxBECount, false,
7245                        {&EL0.Predicates, &EL1.Predicates});
7246     }
7247     if (BO->getOpcode() == Instruction::Or) {
7248       // Recurse on the operands of the or.
7249       bool EitherMayExit = ExitIfTrue;
7250       ExitLimit EL0 = computeExitLimitFromCondCached(
7251           Cache, L, BO->getOperand(0), ExitIfTrue,
7252           ControlsExit && !EitherMayExit, AllowPredicates);
7253       ExitLimit EL1 = computeExitLimitFromCondCached(
7254           Cache, L, BO->getOperand(1), ExitIfTrue,
7255           ControlsExit && !EitherMayExit, AllowPredicates);
7256       const SCEV *BECount = getCouldNotCompute();
7257       const SCEV *MaxBECount = getCouldNotCompute();
7258       if (EitherMayExit) {
7259         // Both conditions must be false for the loop to continue executing.
7260         // Choose the less conservative count.
7261         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7262             EL1.ExactNotTaken == getCouldNotCompute())
7263           BECount = getCouldNotCompute();
7264         else
7265           BECount =
7266               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7267         if (EL0.MaxNotTaken == getCouldNotCompute())
7268           MaxBECount = EL1.MaxNotTaken;
7269         else if (EL1.MaxNotTaken == getCouldNotCompute())
7270           MaxBECount = EL0.MaxNotTaken;
7271         else
7272           MaxBECount =
7273               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7274       } else {
7275         // Both conditions must be false at the same time for the loop to exit.
7276         // For now, be conservative.
7277         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7278           MaxBECount = EL0.MaxNotTaken;
7279         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7280           BECount = EL0.ExactNotTaken;
7281       }
7282       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7283       // to be more aggressive when computing BECount than when computing
7284       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7285       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7286       // to not.
7287       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7288           !isa<SCEVCouldNotCompute>(BECount))
7289         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7290 
7291       return ExitLimit(BECount, MaxBECount, false,
7292                        {&EL0.Predicates, &EL1.Predicates});
7293     }
7294   }
7295 
7296   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7297   // Proceed to the next level to examine the icmp.
7298   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7299     ExitLimit EL =
7300         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7301     if (EL.hasFullInfo() || !AllowPredicates)
7302       return EL;
7303 
7304     // Try again, but use SCEV predicates this time.
7305     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7306                                     /*AllowPredicates=*/true);
7307   }
7308 
7309   // Check for a constant condition. These are normally stripped out by
7310   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7311   // preserve the CFG and is temporarily leaving constant conditions
7312   // in place.
7313   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7314     if (ExitIfTrue == !CI->getZExtValue())
7315       // The backedge is always taken.
7316       return getCouldNotCompute();
7317     else
7318       // The backedge is never taken.
7319       return getZero(CI->getType());
7320   }
7321 
7322   // If it's not an integer or pointer comparison then compute it the hard way.
7323   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7324 }
7325 
7326 ScalarEvolution::ExitLimit
7327 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7328                                           ICmpInst *ExitCond,
7329                                           bool ExitIfTrue,
7330                                           bool ControlsExit,
7331                                           bool AllowPredicates) {
7332   // If the condition was exit on true, convert the condition to exit on false
7333   ICmpInst::Predicate Pred;
7334   if (!ExitIfTrue)
7335     Pred = ExitCond->getPredicate();
7336   else
7337     Pred = ExitCond->getInversePredicate();
7338   const ICmpInst::Predicate OriginalPred = Pred;
7339 
7340   // Handle common loops like: for (X = "string"; *X; ++X)
7341   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7342     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7343       ExitLimit ItCnt =
7344         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7345       if (ItCnt.hasAnyInfo())
7346         return ItCnt;
7347     }
7348 
7349   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7350   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7351 
7352   // Try to evaluate any dependencies out of the loop.
7353   LHS = getSCEVAtScope(LHS, L);
7354   RHS = getSCEVAtScope(RHS, L);
7355 
7356   // At this point, we would like to compute how many iterations of the
7357   // loop the predicate will return true for these inputs.
7358   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7359     // If there is a loop-invariant, force it into the RHS.
7360     std::swap(LHS, RHS);
7361     Pred = ICmpInst::getSwappedPredicate(Pred);
7362   }
7363 
7364   // Simplify the operands before analyzing them.
7365   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7366 
7367   // If we have a comparison of a chrec against a constant, try to use value
7368   // ranges to answer this query.
7369   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7370     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7371       if (AddRec->getLoop() == L) {
7372         // Form the constant range.
7373         ConstantRange CompRange =
7374             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7375 
7376         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7377         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7378       }
7379 
7380   switch (Pred) {
7381   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7382     // Convert to: while (X-Y != 0)
7383     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7384                                 AllowPredicates);
7385     if (EL.hasAnyInfo()) return EL;
7386     break;
7387   }
7388   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7389     // Convert to: while (X-Y == 0)
7390     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7391     if (EL.hasAnyInfo()) return EL;
7392     break;
7393   }
7394   case ICmpInst::ICMP_SLT:
7395   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7396     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7397     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7398                                     AllowPredicates);
7399     if (EL.hasAnyInfo()) return EL;
7400     break;
7401   }
7402   case ICmpInst::ICMP_SGT:
7403   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7404     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7405     ExitLimit EL =
7406         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7407                             AllowPredicates);
7408     if (EL.hasAnyInfo()) return EL;
7409     break;
7410   }
7411   default:
7412     break;
7413   }
7414 
7415   auto *ExhaustiveCount =
7416       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7417 
7418   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7419     return ExhaustiveCount;
7420 
7421   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7422                                       ExitCond->getOperand(1), L, OriginalPred);
7423 }
7424 
7425 ScalarEvolution::ExitLimit
7426 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7427                                                       SwitchInst *Switch,
7428                                                       BasicBlock *ExitingBlock,
7429                                                       bool ControlsExit) {
7430   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7431 
7432   // Give up if the exit is the default dest of a switch.
7433   if (Switch->getDefaultDest() == ExitingBlock)
7434     return getCouldNotCompute();
7435 
7436   assert(L->contains(Switch->getDefaultDest()) &&
7437          "Default case must not exit the loop!");
7438   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7439   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7440 
7441   // while (X != Y) --> while (X-Y != 0)
7442   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7443   if (EL.hasAnyInfo())
7444     return EL;
7445 
7446   return getCouldNotCompute();
7447 }
7448 
7449 static ConstantInt *
7450 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7451                                 ScalarEvolution &SE) {
7452   const SCEV *InVal = SE.getConstant(C);
7453   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7454   assert(isa<SCEVConstant>(Val) &&
7455          "Evaluation of SCEV at constant didn't fold correctly?");
7456   return cast<SCEVConstant>(Val)->getValue();
7457 }
7458 
7459 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7460 /// compute the backedge execution count.
7461 ScalarEvolution::ExitLimit
7462 ScalarEvolution::computeLoadConstantCompareExitLimit(
7463   LoadInst *LI,
7464   Constant *RHS,
7465   const Loop *L,
7466   ICmpInst::Predicate predicate) {
7467   if (LI->isVolatile()) return getCouldNotCompute();
7468 
7469   // Check to see if the loaded pointer is a getelementptr of a global.
7470   // TODO: Use SCEV instead of manually grubbing with GEPs.
7471   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7472   if (!GEP) return getCouldNotCompute();
7473 
7474   // Make sure that it is really a constant global we are gepping, with an
7475   // initializer, and make sure the first IDX is really 0.
7476   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7477   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7478       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7479       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7480     return getCouldNotCompute();
7481 
7482   // Okay, we allow one non-constant index into the GEP instruction.
7483   Value *VarIdx = nullptr;
7484   std::vector<Constant*> Indexes;
7485   unsigned VarIdxNum = 0;
7486   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7487     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7488       Indexes.push_back(CI);
7489     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7490       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7491       VarIdx = GEP->getOperand(i);
7492       VarIdxNum = i-2;
7493       Indexes.push_back(nullptr);
7494     }
7495 
7496   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7497   if (!VarIdx)
7498     return getCouldNotCompute();
7499 
7500   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7501   // Check to see if X is a loop variant variable value now.
7502   const SCEV *Idx = getSCEV(VarIdx);
7503   Idx = getSCEVAtScope(Idx, L);
7504 
7505   // We can only recognize very limited forms of loop index expressions, in
7506   // particular, only affine AddRec's like {C1,+,C2}.
7507   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7508   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7509       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7510       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7511     return getCouldNotCompute();
7512 
7513   unsigned MaxSteps = MaxBruteForceIterations;
7514   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7515     ConstantInt *ItCst = ConstantInt::get(
7516                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7517     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7518 
7519     // Form the GEP offset.
7520     Indexes[VarIdxNum] = Val;
7521 
7522     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7523                                                          Indexes);
7524     if (!Result) break;  // Cannot compute!
7525 
7526     // Evaluate the condition for this iteration.
7527     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7528     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7529     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7530       ++NumArrayLenItCounts;
7531       return getConstant(ItCst);   // Found terminating iteration!
7532     }
7533   }
7534   return getCouldNotCompute();
7535 }
7536 
7537 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7538     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7539   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7540   if (!RHS)
7541     return getCouldNotCompute();
7542 
7543   const BasicBlock *Latch = L->getLoopLatch();
7544   if (!Latch)
7545     return getCouldNotCompute();
7546 
7547   const BasicBlock *Predecessor = L->getLoopPredecessor();
7548   if (!Predecessor)
7549     return getCouldNotCompute();
7550 
7551   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7552   // Return LHS in OutLHS and shift_opt in OutOpCode.
7553   auto MatchPositiveShift =
7554       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7555 
7556     using namespace PatternMatch;
7557 
7558     ConstantInt *ShiftAmt;
7559     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7560       OutOpCode = Instruction::LShr;
7561     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7562       OutOpCode = Instruction::AShr;
7563     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7564       OutOpCode = Instruction::Shl;
7565     else
7566       return false;
7567 
7568     return ShiftAmt->getValue().isStrictlyPositive();
7569   };
7570 
7571   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7572   //
7573   // loop:
7574   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7575   //   %iv.shifted = lshr i32 %iv, <positive constant>
7576   //
7577   // Return true on a successful match.  Return the corresponding PHI node (%iv
7578   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7579   auto MatchShiftRecurrence =
7580       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7581     Optional<Instruction::BinaryOps> PostShiftOpCode;
7582 
7583     {
7584       Instruction::BinaryOps OpC;
7585       Value *V;
7586 
7587       // If we encounter a shift instruction, "peel off" the shift operation,
7588       // and remember that we did so.  Later when we inspect %iv's backedge
7589       // value, we will make sure that the backedge value uses the same
7590       // operation.
7591       //
7592       // Note: the peeled shift operation does not have to be the same
7593       // instruction as the one feeding into the PHI's backedge value.  We only
7594       // really care about it being the same *kind* of shift instruction --
7595       // that's all that is required for our later inferences to hold.
7596       if (MatchPositiveShift(LHS, V, OpC)) {
7597         PostShiftOpCode = OpC;
7598         LHS = V;
7599       }
7600     }
7601 
7602     PNOut = dyn_cast<PHINode>(LHS);
7603     if (!PNOut || PNOut->getParent() != L->getHeader())
7604       return false;
7605 
7606     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7607     Value *OpLHS;
7608 
7609     return
7610         // The backedge value for the PHI node must be a shift by a positive
7611         // amount
7612         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7613 
7614         // of the PHI node itself
7615         OpLHS == PNOut &&
7616 
7617         // and the kind of shift should be match the kind of shift we peeled
7618         // off, if any.
7619         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7620   };
7621 
7622   PHINode *PN;
7623   Instruction::BinaryOps OpCode;
7624   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7625     return getCouldNotCompute();
7626 
7627   const DataLayout &DL = getDataLayout();
7628 
7629   // The key rationale for this optimization is that for some kinds of shift
7630   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7631   // within a finite number of iterations.  If the condition guarding the
7632   // backedge (in the sense that the backedge is taken if the condition is true)
7633   // is false for the value the shift recurrence stabilizes to, then we know
7634   // that the backedge is taken only a finite number of times.
7635 
7636   ConstantInt *StableValue = nullptr;
7637   switch (OpCode) {
7638   default:
7639     llvm_unreachable("Impossible case!");
7640 
7641   case Instruction::AShr: {
7642     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7643     // bitwidth(K) iterations.
7644     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7645     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7646                                        Predecessor->getTerminator(), &DT);
7647     auto *Ty = cast<IntegerType>(RHS->getType());
7648     if (Known.isNonNegative())
7649       StableValue = ConstantInt::get(Ty, 0);
7650     else if (Known.isNegative())
7651       StableValue = ConstantInt::get(Ty, -1, true);
7652     else
7653       return getCouldNotCompute();
7654 
7655     break;
7656   }
7657   case Instruction::LShr:
7658   case Instruction::Shl:
7659     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7660     // stabilize to 0 in at most bitwidth(K) iterations.
7661     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7662     break;
7663   }
7664 
7665   auto *Result =
7666       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7667   assert(Result->getType()->isIntegerTy(1) &&
7668          "Otherwise cannot be an operand to a branch instruction");
7669 
7670   if (Result->isZeroValue()) {
7671     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7672     const SCEV *UpperBound =
7673         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7674     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7675   }
7676 
7677   return getCouldNotCompute();
7678 }
7679 
7680 /// Return true if we can constant fold an instruction of the specified type,
7681 /// assuming that all operands were constants.
7682 static bool CanConstantFold(const Instruction *I) {
7683   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7684       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7685       isa<LoadInst>(I))
7686     return true;
7687 
7688   if (const CallInst *CI = dyn_cast<CallInst>(I))
7689     if (const Function *F = CI->getCalledFunction())
7690       return canConstantFoldCallTo(CI, F);
7691   return false;
7692 }
7693 
7694 /// Determine whether this instruction can constant evolve within this loop
7695 /// assuming its operands can all constant evolve.
7696 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7697   // An instruction outside of the loop can't be derived from a loop PHI.
7698   if (!L->contains(I)) return false;
7699 
7700   if (isa<PHINode>(I)) {
7701     // We don't currently keep track of the control flow needed to evaluate
7702     // PHIs, so we cannot handle PHIs inside of loops.
7703     return L->getHeader() == I->getParent();
7704   }
7705 
7706   // If we won't be able to constant fold this expression even if the operands
7707   // are constants, bail early.
7708   return CanConstantFold(I);
7709 }
7710 
7711 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7712 /// recursing through each instruction operand until reaching a loop header phi.
7713 static PHINode *
7714 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7715                                DenseMap<Instruction *, PHINode *> &PHIMap,
7716                                unsigned Depth) {
7717   if (Depth > MaxConstantEvolvingDepth)
7718     return nullptr;
7719 
7720   // Otherwise, we can evaluate this instruction if all of its operands are
7721   // constant or derived from a PHI node themselves.
7722   PHINode *PHI = nullptr;
7723   for (Value *Op : UseInst->operands()) {
7724     if (isa<Constant>(Op)) continue;
7725 
7726     Instruction *OpInst = dyn_cast<Instruction>(Op);
7727     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7728 
7729     PHINode *P = dyn_cast<PHINode>(OpInst);
7730     if (!P)
7731       // If this operand is already visited, reuse the prior result.
7732       // We may have P != PHI if this is the deepest point at which the
7733       // inconsistent paths meet.
7734       P = PHIMap.lookup(OpInst);
7735     if (!P) {
7736       // Recurse and memoize the results, whether a phi is found or not.
7737       // This recursive call invalidates pointers into PHIMap.
7738       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7739       PHIMap[OpInst] = P;
7740     }
7741     if (!P)
7742       return nullptr;  // Not evolving from PHI
7743     if (PHI && PHI != P)
7744       return nullptr;  // Evolving from multiple different PHIs.
7745     PHI = P;
7746   }
7747   // This is a expression evolving from a constant PHI!
7748   return PHI;
7749 }
7750 
7751 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7752 /// in the loop that V is derived from.  We allow arbitrary operations along the
7753 /// way, but the operands of an operation must either be constants or a value
7754 /// derived from a constant PHI.  If this expression does not fit with these
7755 /// constraints, return null.
7756 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7757   Instruction *I = dyn_cast<Instruction>(V);
7758   if (!I || !canConstantEvolve(I, L)) return nullptr;
7759 
7760   if (PHINode *PN = dyn_cast<PHINode>(I))
7761     return PN;
7762 
7763   // Record non-constant instructions contained by the loop.
7764   DenseMap<Instruction *, PHINode *> PHIMap;
7765   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7766 }
7767 
7768 /// EvaluateExpression - Given an expression that passes the
7769 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7770 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7771 /// reason, return null.
7772 static Constant *EvaluateExpression(Value *V, const Loop *L,
7773                                     DenseMap<Instruction *, Constant *> &Vals,
7774                                     const DataLayout &DL,
7775                                     const TargetLibraryInfo *TLI) {
7776   // Convenient constant check, but redundant for recursive calls.
7777   if (Constant *C = dyn_cast<Constant>(V)) return C;
7778   Instruction *I = dyn_cast<Instruction>(V);
7779   if (!I) return nullptr;
7780 
7781   if (Constant *C = Vals.lookup(I)) return C;
7782 
7783   // An instruction inside the loop depends on a value outside the loop that we
7784   // weren't given a mapping for, or a value such as a call inside the loop.
7785   if (!canConstantEvolve(I, L)) return nullptr;
7786 
7787   // An unmapped PHI can be due to a branch or another loop inside this loop,
7788   // or due to this not being the initial iteration through a loop where we
7789   // couldn't compute the evolution of this particular PHI last time.
7790   if (isa<PHINode>(I)) return nullptr;
7791 
7792   std::vector<Constant*> Operands(I->getNumOperands());
7793 
7794   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7795     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7796     if (!Operand) {
7797       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7798       if (!Operands[i]) return nullptr;
7799       continue;
7800     }
7801     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7802     Vals[Operand] = C;
7803     if (!C) return nullptr;
7804     Operands[i] = C;
7805   }
7806 
7807   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7808     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7809                                            Operands[1], DL, TLI);
7810   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7811     if (!LI->isVolatile())
7812       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7813   }
7814   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7815 }
7816 
7817 
7818 // If every incoming value to PN except the one for BB is a specific Constant,
7819 // return that, else return nullptr.
7820 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7821   Constant *IncomingVal = nullptr;
7822 
7823   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7824     if (PN->getIncomingBlock(i) == BB)
7825       continue;
7826 
7827     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7828     if (!CurrentVal)
7829       return nullptr;
7830 
7831     if (IncomingVal != CurrentVal) {
7832       if (IncomingVal)
7833         return nullptr;
7834       IncomingVal = CurrentVal;
7835     }
7836   }
7837 
7838   return IncomingVal;
7839 }
7840 
7841 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7842 /// in the header of its containing loop, we know the loop executes a
7843 /// constant number of times, and the PHI node is just a recurrence
7844 /// involving constants, fold it.
7845 Constant *
7846 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7847                                                    const APInt &BEs,
7848                                                    const Loop *L) {
7849   auto I = ConstantEvolutionLoopExitValue.find(PN);
7850   if (I != ConstantEvolutionLoopExitValue.end())
7851     return I->second;
7852 
7853   if (BEs.ugt(MaxBruteForceIterations))
7854     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7855 
7856   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7857 
7858   DenseMap<Instruction *, Constant *> CurrentIterVals;
7859   BasicBlock *Header = L->getHeader();
7860   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7861 
7862   BasicBlock *Latch = L->getLoopLatch();
7863   if (!Latch)
7864     return nullptr;
7865 
7866   for (PHINode &PHI : Header->phis()) {
7867     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7868       CurrentIterVals[&PHI] = StartCST;
7869   }
7870   if (!CurrentIterVals.count(PN))
7871     return RetVal = nullptr;
7872 
7873   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7874 
7875   // Execute the loop symbolically to determine the exit value.
7876   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7877          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7878 
7879   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7880   unsigned IterationNum = 0;
7881   const DataLayout &DL = getDataLayout();
7882   for (; ; ++IterationNum) {
7883     if (IterationNum == NumIterations)
7884       return RetVal = CurrentIterVals[PN];  // Got exit value!
7885 
7886     // Compute the value of the PHIs for the next iteration.
7887     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7888     DenseMap<Instruction *, Constant *> NextIterVals;
7889     Constant *NextPHI =
7890         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7891     if (!NextPHI)
7892       return nullptr;        // Couldn't evaluate!
7893     NextIterVals[PN] = NextPHI;
7894 
7895     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7896 
7897     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7898     // cease to be able to evaluate one of them or if they stop evolving,
7899     // because that doesn't necessarily prevent us from computing PN.
7900     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7901     for (const auto &I : CurrentIterVals) {
7902       PHINode *PHI = dyn_cast<PHINode>(I.first);
7903       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7904       PHIsToCompute.emplace_back(PHI, I.second);
7905     }
7906     // We use two distinct loops because EvaluateExpression may invalidate any
7907     // iterators into CurrentIterVals.
7908     for (const auto &I : PHIsToCompute) {
7909       PHINode *PHI = I.first;
7910       Constant *&NextPHI = NextIterVals[PHI];
7911       if (!NextPHI) {   // Not already computed.
7912         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7913         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7914       }
7915       if (NextPHI != I.second)
7916         StoppedEvolving = false;
7917     }
7918 
7919     // If all entries in CurrentIterVals == NextIterVals then we can stop
7920     // iterating, the loop can't continue to change.
7921     if (StoppedEvolving)
7922       return RetVal = CurrentIterVals[PN];
7923 
7924     CurrentIterVals.swap(NextIterVals);
7925   }
7926 }
7927 
7928 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7929                                                           Value *Cond,
7930                                                           bool ExitWhen) {
7931   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7932   if (!PN) return getCouldNotCompute();
7933 
7934   // If the loop is canonicalized, the PHI will have exactly two entries.
7935   // That's the only form we support here.
7936   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7937 
7938   DenseMap<Instruction *, Constant *> CurrentIterVals;
7939   BasicBlock *Header = L->getHeader();
7940   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7941 
7942   BasicBlock *Latch = L->getLoopLatch();
7943   assert(Latch && "Should follow from NumIncomingValues == 2!");
7944 
7945   for (PHINode &PHI : Header->phis()) {
7946     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7947       CurrentIterVals[&PHI] = StartCST;
7948   }
7949   if (!CurrentIterVals.count(PN))
7950     return getCouldNotCompute();
7951 
7952   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7953   // the loop symbolically to determine when the condition gets a value of
7954   // "ExitWhen".
7955   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7956   const DataLayout &DL = getDataLayout();
7957   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7958     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7959         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7960 
7961     // Couldn't symbolically evaluate.
7962     if (!CondVal) return getCouldNotCompute();
7963 
7964     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7965       ++NumBruteForceTripCountsComputed;
7966       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7967     }
7968 
7969     // Update all the PHI nodes for the next iteration.
7970     DenseMap<Instruction *, Constant *> NextIterVals;
7971 
7972     // Create a list of which PHIs we need to compute. We want to do this before
7973     // calling EvaluateExpression on them because that may invalidate iterators
7974     // into CurrentIterVals.
7975     SmallVector<PHINode *, 8> PHIsToCompute;
7976     for (const auto &I : CurrentIterVals) {
7977       PHINode *PHI = dyn_cast<PHINode>(I.first);
7978       if (!PHI || PHI->getParent() != Header) continue;
7979       PHIsToCompute.push_back(PHI);
7980     }
7981     for (PHINode *PHI : PHIsToCompute) {
7982       Constant *&NextPHI = NextIterVals[PHI];
7983       if (NextPHI) continue;    // Already computed!
7984 
7985       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7986       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7987     }
7988     CurrentIterVals.swap(NextIterVals);
7989   }
7990 
7991   // Too many iterations were needed to evaluate.
7992   return getCouldNotCompute();
7993 }
7994 
7995 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7996   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7997       ValuesAtScopes[V];
7998   // Check to see if we've folded this expression at this loop before.
7999   for (auto &LS : Values)
8000     if (LS.first == L)
8001       return LS.second ? LS.second : V;
8002 
8003   Values.emplace_back(L, nullptr);
8004 
8005   // Otherwise compute it.
8006   const SCEV *C = computeSCEVAtScope(V, L);
8007   for (auto &LS : reverse(ValuesAtScopes[V]))
8008     if (LS.first == L) {
8009       LS.second = C;
8010       break;
8011     }
8012   return C;
8013 }
8014 
8015 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8016 /// will return Constants for objects which aren't represented by a
8017 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8018 /// Returns NULL if the SCEV isn't representable as a Constant.
8019 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8020   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
8021     case scCouldNotCompute:
8022     case scAddRecExpr:
8023       break;
8024     case scConstant:
8025       return cast<SCEVConstant>(V)->getValue();
8026     case scUnknown:
8027       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8028     case scSignExtend: {
8029       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8030       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8031         return ConstantExpr::getSExt(CastOp, SS->getType());
8032       break;
8033     }
8034     case scZeroExtend: {
8035       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8036       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8037         return ConstantExpr::getZExt(CastOp, SZ->getType());
8038       break;
8039     }
8040     case scTruncate: {
8041       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8042       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8043         return ConstantExpr::getTrunc(CastOp, ST->getType());
8044       break;
8045     }
8046     case scAddExpr: {
8047       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8048       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8049         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8050           unsigned AS = PTy->getAddressSpace();
8051           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8052           C = ConstantExpr::getBitCast(C, DestPtrTy);
8053         }
8054         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8055           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8056           if (!C2) return nullptr;
8057 
8058           // First pointer!
8059           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8060             unsigned AS = C2->getType()->getPointerAddressSpace();
8061             std::swap(C, C2);
8062             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8063             // The offsets have been converted to bytes.  We can add bytes to an
8064             // i8* by GEP with the byte count in the first index.
8065             C = ConstantExpr::getBitCast(C, DestPtrTy);
8066           }
8067 
8068           // Don't bother trying to sum two pointers. We probably can't
8069           // statically compute a load that results from it anyway.
8070           if (C2->getType()->isPointerTy())
8071             return nullptr;
8072 
8073           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8074             if (PTy->getElementType()->isStructTy())
8075               C2 = ConstantExpr::getIntegerCast(
8076                   C2, Type::getInt32Ty(C->getContext()), true);
8077             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8078           } else
8079             C = ConstantExpr::getAdd(C, C2);
8080         }
8081         return C;
8082       }
8083       break;
8084     }
8085     case scMulExpr: {
8086       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8087       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8088         // Don't bother with pointers at all.
8089         if (C->getType()->isPointerTy()) return nullptr;
8090         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8091           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8092           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8093           C = ConstantExpr::getMul(C, C2);
8094         }
8095         return C;
8096       }
8097       break;
8098     }
8099     case scUDivExpr: {
8100       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8101       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8102         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8103           if (LHS->getType() == RHS->getType())
8104             return ConstantExpr::getUDiv(LHS, RHS);
8105       break;
8106     }
8107     case scSMaxExpr:
8108     case scUMaxExpr:
8109       break; // TODO: smax, umax.
8110   }
8111   return nullptr;
8112 }
8113 
8114 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8115   if (isa<SCEVConstant>(V)) return V;
8116 
8117   // If this instruction is evolved from a constant-evolving PHI, compute the
8118   // exit value from the loop without using SCEVs.
8119   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8120     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8121       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8122         const Loop *LI = this->LI[I->getParent()];
8123         // Looking for loop exit value.
8124         if (LI && LI->getParentLoop() == L &&
8125             PN->getParent() == LI->getHeader()) {
8126           // Okay, there is no closed form solution for the PHI node.  Check
8127           // to see if the loop that contains it has a known backedge-taken
8128           // count.  If so, we may be able to force computation of the exit
8129           // value.
8130           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8131           if (const SCEVConstant *BTCC =
8132                 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8133 
8134             // This trivial case can show up in some degenerate cases where
8135             // the incoming IR has not yet been fully simplified.
8136             if (BTCC->getValue()->isZero()) {
8137               Value *InitValue = nullptr;
8138               bool MultipleInitValues = false;
8139               for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8140                 if (!LI->contains(PN->getIncomingBlock(i))) {
8141                   if (!InitValue)
8142                     InitValue = PN->getIncomingValue(i);
8143                   else if (InitValue != PN->getIncomingValue(i)) {
8144                     MultipleInitValues = true;
8145                     break;
8146                   }
8147                 }
8148                 if (!MultipleInitValues && InitValue)
8149                   return getSCEV(InitValue);
8150               }
8151             }
8152             // Okay, we know how many times the containing loop executes.  If
8153             // this is a constant evolving PHI node, get the final value at
8154             // the specified iteration number.
8155             Constant *RV =
8156                 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8157             if (RV) return getSCEV(RV);
8158           }
8159         }
8160       }
8161 
8162       // Okay, this is an expression that we cannot symbolically evaluate
8163       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8164       // the arguments into constants, and if so, try to constant propagate the
8165       // result.  This is particularly useful for computing loop exit values.
8166       if (CanConstantFold(I)) {
8167         SmallVector<Constant *, 4> Operands;
8168         bool MadeImprovement = false;
8169         for (Value *Op : I->operands()) {
8170           if (Constant *C = dyn_cast<Constant>(Op)) {
8171             Operands.push_back(C);
8172             continue;
8173           }
8174 
8175           // If any of the operands is non-constant and if they are
8176           // non-integer and non-pointer, don't even try to analyze them
8177           // with scev techniques.
8178           if (!isSCEVable(Op->getType()))
8179             return V;
8180 
8181           const SCEV *OrigV = getSCEV(Op);
8182           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8183           MadeImprovement |= OrigV != OpV;
8184 
8185           Constant *C = BuildConstantFromSCEV(OpV);
8186           if (!C) return V;
8187           if (C->getType() != Op->getType())
8188             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8189                                                               Op->getType(),
8190                                                               false),
8191                                       C, Op->getType());
8192           Operands.push_back(C);
8193         }
8194 
8195         // Check to see if getSCEVAtScope actually made an improvement.
8196         if (MadeImprovement) {
8197           Constant *C = nullptr;
8198           const DataLayout &DL = getDataLayout();
8199           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8200             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8201                                                 Operands[1], DL, &TLI);
8202           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8203             if (!LI->isVolatile())
8204               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8205           } else
8206             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8207           if (!C) return V;
8208           return getSCEV(C);
8209         }
8210       }
8211     }
8212 
8213     // This is some other type of SCEVUnknown, just return it.
8214     return V;
8215   }
8216 
8217   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8218     // Avoid performing the look-up in the common case where the specified
8219     // expression has no loop-variant portions.
8220     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8221       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8222       if (OpAtScope != Comm->getOperand(i)) {
8223         // Okay, at least one of these operands is loop variant but might be
8224         // foldable.  Build a new instance of the folded commutative expression.
8225         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8226                                             Comm->op_begin()+i);
8227         NewOps.push_back(OpAtScope);
8228 
8229         for (++i; i != e; ++i) {
8230           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8231           NewOps.push_back(OpAtScope);
8232         }
8233         if (isa<SCEVAddExpr>(Comm))
8234           return getAddExpr(NewOps);
8235         if (isa<SCEVMulExpr>(Comm))
8236           return getMulExpr(NewOps);
8237         if (isa<SCEVSMaxExpr>(Comm))
8238           return getSMaxExpr(NewOps);
8239         if (isa<SCEVUMaxExpr>(Comm))
8240           return getUMaxExpr(NewOps);
8241         llvm_unreachable("Unknown commutative SCEV type!");
8242       }
8243     }
8244     // If we got here, all operands are loop invariant.
8245     return Comm;
8246   }
8247 
8248   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8249     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8250     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8251     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8252       return Div;   // must be loop invariant
8253     return getUDivExpr(LHS, RHS);
8254   }
8255 
8256   // If this is a loop recurrence for a loop that does not contain L, then we
8257   // are dealing with the final value computed by the loop.
8258   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8259     // First, attempt to evaluate each operand.
8260     // Avoid performing the look-up in the common case where the specified
8261     // expression has no loop-variant portions.
8262     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8263       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8264       if (OpAtScope == AddRec->getOperand(i))
8265         continue;
8266 
8267       // Okay, at least one of these operands is loop variant but might be
8268       // foldable.  Build a new instance of the folded commutative expression.
8269       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8270                                           AddRec->op_begin()+i);
8271       NewOps.push_back(OpAtScope);
8272       for (++i; i != e; ++i)
8273         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8274 
8275       const SCEV *FoldedRec =
8276         getAddRecExpr(NewOps, AddRec->getLoop(),
8277                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8278       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8279       // The addrec may be folded to a nonrecurrence, for example, if the
8280       // induction variable is multiplied by zero after constant folding. Go
8281       // ahead and return the folded value.
8282       if (!AddRec)
8283         return FoldedRec;
8284       break;
8285     }
8286 
8287     // If the scope is outside the addrec's loop, evaluate it by using the
8288     // loop exit value of the addrec.
8289     if (!AddRec->getLoop()->contains(L)) {
8290       // To evaluate this recurrence, we need to know how many times the AddRec
8291       // loop iterates.  Compute this now.
8292       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8293       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8294 
8295       // Then, evaluate the AddRec.
8296       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8297     }
8298 
8299     return AddRec;
8300   }
8301 
8302   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8303     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8304     if (Op == Cast->getOperand())
8305       return Cast;  // must be loop invariant
8306     return getZeroExtendExpr(Op, Cast->getType());
8307   }
8308 
8309   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8310     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8311     if (Op == Cast->getOperand())
8312       return Cast;  // must be loop invariant
8313     return getSignExtendExpr(Op, Cast->getType());
8314   }
8315 
8316   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8317     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8318     if (Op == Cast->getOperand())
8319       return Cast;  // must be loop invariant
8320     return getTruncateExpr(Op, Cast->getType());
8321   }
8322 
8323   llvm_unreachable("Unknown SCEV type!");
8324 }
8325 
8326 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8327   return getSCEVAtScope(getSCEV(V), L);
8328 }
8329 
8330 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8331   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8332     return stripInjectiveFunctions(ZExt->getOperand());
8333   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8334     return stripInjectiveFunctions(SExt->getOperand());
8335   return S;
8336 }
8337 
8338 /// Finds the minimum unsigned root of the following equation:
8339 ///
8340 ///     A * X = B (mod N)
8341 ///
8342 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8343 /// A and B isn't important.
8344 ///
8345 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8346 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8347                                                ScalarEvolution &SE) {
8348   uint32_t BW = A.getBitWidth();
8349   assert(BW == SE.getTypeSizeInBits(B->getType()));
8350   assert(A != 0 && "A must be non-zero.");
8351 
8352   // 1. D = gcd(A, N)
8353   //
8354   // The gcd of A and N may have only one prime factor: 2. The number of
8355   // trailing zeros in A is its multiplicity
8356   uint32_t Mult2 = A.countTrailingZeros();
8357   // D = 2^Mult2
8358 
8359   // 2. Check if B is divisible by D.
8360   //
8361   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8362   // is not less than multiplicity of this prime factor for D.
8363   if (SE.GetMinTrailingZeros(B) < Mult2)
8364     return SE.getCouldNotCompute();
8365 
8366   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8367   // modulo (N / D).
8368   //
8369   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8370   // (N / D) in general. The inverse itself always fits into BW bits, though,
8371   // so we immediately truncate it.
8372   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8373   APInt Mod(BW + 1, 0);
8374   Mod.setBit(BW - Mult2);  // Mod = N / D
8375   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8376 
8377   // 4. Compute the minimum unsigned root of the equation:
8378   // I * (B / D) mod (N / D)
8379   // To simplify the computation, we factor out the divide by D:
8380   // (I * B mod N) / D
8381   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8382   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8383 }
8384 
8385 /// For a given quadratic addrec, generate coefficients of the corresponding
8386 /// quadratic equation, multiplied by a common value to ensure that they are
8387 /// integers.
8388 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8389 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8390 /// were multiplied by, and BitWidth is the bit width of the original addrec
8391 /// coefficients.
8392 /// This function returns None if the addrec coefficients are not compile-
8393 /// time constants.
8394 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8395 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8396   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8397   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8398   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8399   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8400   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8401                     << *AddRec << '\n');
8402 
8403   // We currently can only solve this if the coefficients are constants.
8404   if (!LC || !MC || !NC) {
8405     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8406     return None;
8407   }
8408 
8409   APInt L = LC->getAPInt();
8410   APInt M = MC->getAPInt();
8411   APInt N = NC->getAPInt();
8412   assert(!N.isNullValue() && "This is not a quadratic addrec");
8413 
8414   unsigned BitWidth = LC->getAPInt().getBitWidth();
8415   unsigned NewWidth = BitWidth + 1;
8416   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8417                     << BitWidth << '\n');
8418   // The sign-extension (as opposed to a zero-extension) here matches the
8419   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8420   N = N.sext(NewWidth);
8421   M = M.sext(NewWidth);
8422   L = L.sext(NewWidth);
8423 
8424   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8425   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8426   //   L+M, L+2M+N, L+3M+3N, ...
8427   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8428   //
8429   // The equation Acc = 0 is then
8430   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8431   // In a quadratic form it becomes:
8432   //   N n^2 + (2M-N) n + 2L = 0.
8433 
8434   APInt A = N;
8435   APInt B = 2 * M - A;
8436   APInt C = 2 * L;
8437   APInt T = APInt(NewWidth, 2);
8438   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8439                     << "x + " << C << ", coeff bw: " << NewWidth
8440                     << ", multiplied by " << T << '\n');
8441   return std::make_tuple(A, B, C, T, BitWidth);
8442 }
8443 
8444 /// Helper function to compare optional APInts:
8445 /// (a) if X and Y both exist, return min(X, Y),
8446 /// (b) if neither X nor Y exist, return None,
8447 /// (c) if exactly one of X and Y exists, return that value.
8448 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8449   if (X.hasValue() && Y.hasValue()) {
8450     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8451     APInt XW = X->sextOrSelf(W);
8452     APInt YW = Y->sextOrSelf(W);
8453     return XW.slt(YW) ? *X : *Y;
8454   }
8455   if (!X.hasValue() && !Y.hasValue())
8456     return None;
8457   return X.hasValue() ? *X : *Y;
8458 }
8459 
8460 /// Helper function to truncate an optional APInt to a given BitWidth.
8461 /// When solving addrec-related equations, it is preferable to return a value
8462 /// that has the same bit width as the original addrec's coefficients. If the
8463 /// solution fits in the original bit width, truncate it (except for i1).
8464 /// Returning a value of a different bit width may inhibit some optimizations.
8465 ///
8466 /// In general, a solution to a quadratic equation generated from an addrec
8467 /// may require BW+1 bits, where BW is the bit width of the addrec's
8468 /// coefficients. The reason is that the coefficients of the quadratic
8469 /// equation are BW+1 bits wide (to avoid truncation when converting from
8470 /// the addrec to the equation).
8471 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8472   if (!X.hasValue())
8473     return None;
8474   unsigned W = X->getBitWidth();
8475   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8476     return X->trunc(BitWidth);
8477   return X;
8478 }
8479 
8480 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8481 /// iterations. The values L, M, N are assumed to be signed, and they
8482 /// should all have the same bit widths.
8483 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8484 /// where BW is the bit width of the addrec's coefficients.
8485 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8486 /// returned as such, otherwise the bit width of the returned value may
8487 /// be greater than BW.
8488 ///
8489 /// This function returns None if
8490 /// (a) the addrec coefficients are not constant, or
8491 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8492 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8493 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8494 static Optional<APInt>
8495 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8496   APInt A, B, C, M;
8497   unsigned BitWidth;
8498   auto T = GetQuadraticEquation(AddRec);
8499   if (!T.hasValue())
8500     return None;
8501 
8502   std::tie(A, B, C, M, BitWidth) = *T;
8503   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8504   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8505   if (!X.hasValue())
8506     return None;
8507 
8508   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8509   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8510   if (!V->isZero())
8511     return None;
8512 
8513   return TruncIfPossible(X, BitWidth);
8514 }
8515 
8516 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8517 /// iterations. The values M, N are assumed to be signed, and they
8518 /// should all have the same bit widths.
8519 /// Find the least n such that c(n) does not belong to the given range,
8520 /// while c(n-1) does.
8521 ///
8522 /// This function returns None if
8523 /// (a) the addrec coefficients are not constant, or
8524 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8525 ///     bounds of the range.
8526 static Optional<APInt>
8527 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8528                           const ConstantRange &Range, ScalarEvolution &SE) {
8529   assert(AddRec->getOperand(0)->isZero() &&
8530          "Starting value of addrec should be 0");
8531   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8532                     << Range << ", addrec " << *AddRec << '\n');
8533   // This case is handled in getNumIterationsInRange. Here we can assume that
8534   // we start in the range.
8535   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8536          "Addrec's initial value should be in range");
8537 
8538   APInt A, B, C, M;
8539   unsigned BitWidth;
8540   auto T = GetQuadraticEquation(AddRec);
8541   if (!T.hasValue())
8542     return None;
8543 
8544   // Be careful about the return value: there can be two reasons for not
8545   // returning an actual number. First, if no solutions to the equations
8546   // were found, and second, if the solutions don't leave the given range.
8547   // The first case means that the actual solution is "unknown", the second
8548   // means that it's known, but not valid. If the solution is unknown, we
8549   // cannot make any conclusions.
8550   // Return a pair: the optional solution and a flag indicating if the
8551   // solution was found.
8552   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8553     // Solve for signed overflow and unsigned overflow, pick the lower
8554     // solution.
8555     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8556                       << Bound << " (before multiplying by " << M << ")\n");
8557     Bound *= M; // The quadratic equation multiplier.
8558 
8559     Optional<APInt> SO = None;
8560     if (BitWidth > 1) {
8561       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8562                            "signed overflow\n");
8563       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8564     }
8565     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8566                          "unsigned overflow\n");
8567     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8568                                                               BitWidth+1);
8569 
8570     auto LeavesRange = [&] (const APInt &X) {
8571       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8572       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8573       if (Range.contains(V0->getValue()))
8574         return false;
8575       // X should be at least 1, so X-1 is non-negative.
8576       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8577       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8578       if (Range.contains(V1->getValue()))
8579         return true;
8580       return false;
8581     };
8582 
8583     // If SolveQuadraticEquationWrap returns None, it means that there can
8584     // be a solution, but the function failed to find it. We cannot treat it
8585     // as "no solution".
8586     if (!SO.hasValue() || !UO.hasValue())
8587       return { None, false };
8588 
8589     // Check the smaller value first to see if it leaves the range.
8590     // At this point, both SO and UO must have values.
8591     Optional<APInt> Min = MinOptional(SO, UO);
8592     if (LeavesRange(*Min))
8593       return { Min, true };
8594     Optional<APInt> Max = Min == SO ? UO : SO;
8595     if (LeavesRange(*Max))
8596       return { Max, true };
8597 
8598     // Solutions were found, but were eliminated, hence the "true".
8599     return { None, true };
8600   };
8601 
8602   std::tie(A, B, C, M, BitWidth) = *T;
8603   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8604   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8605   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8606   auto SL = SolveForBoundary(Lower);
8607   auto SU = SolveForBoundary(Upper);
8608   // If any of the solutions was unknown, no meaninigful conclusions can
8609   // be made.
8610   if (!SL.second || !SU.second)
8611     return None;
8612 
8613   // Claim: The correct solution is not some value between Min and Max.
8614   //
8615   // Justification: Assuming that Min and Max are different values, one of
8616   // them is when the first signed overflow happens, the other is when the
8617   // first unsigned overflow happens. Crossing the range boundary is only
8618   // possible via an overflow (treating 0 as a special case of it, modeling
8619   // an overflow as crossing k*2^W for some k).
8620   //
8621   // The interesting case here is when Min was eliminated as an invalid
8622   // solution, but Max was not. The argument is that if there was another
8623   // overflow between Min and Max, it would also have been eliminated if
8624   // it was considered.
8625   //
8626   // For a given boundary, it is possible to have two overflows of the same
8627   // type (signed/unsigned) without having the other type in between: this
8628   // can happen when the vertex of the parabola is between the iterations
8629   // corresponding to the overflows. This is only possible when the two
8630   // overflows cross k*2^W for the same k. In such case, if the second one
8631   // left the range (and was the first one to do so), the first overflow
8632   // would have to enter the range, which would mean that either we had left
8633   // the range before or that we started outside of it. Both of these cases
8634   // are contradictions.
8635   //
8636   // Claim: In the case where SolveForBoundary returns None, the correct
8637   // solution is not some value between the Max for this boundary and the
8638   // Min of the other boundary.
8639   //
8640   // Justification: Assume that we had such Max_A and Min_B corresponding
8641   // to range boundaries A and B and such that Max_A < Min_B. If there was
8642   // a solution between Max_A and Min_B, it would have to be caused by an
8643   // overflow corresponding to either A or B. It cannot correspond to B,
8644   // since Min_B is the first occurrence of such an overflow. If it
8645   // corresponded to A, it would have to be either a signed or an unsigned
8646   // overflow that is larger than both eliminated overflows for A. But
8647   // between the eliminated overflows and this overflow, the values would
8648   // cover the entire value space, thus crossing the other boundary, which
8649   // is a contradiction.
8650 
8651   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8652 }
8653 
8654 ScalarEvolution::ExitLimit
8655 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8656                               bool AllowPredicates) {
8657 
8658   // This is only used for loops with a "x != y" exit test. The exit condition
8659   // is now expressed as a single expression, V = x-y. So the exit test is
8660   // effectively V != 0.  We know and take advantage of the fact that this
8661   // expression only being used in a comparison by zero context.
8662 
8663   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8664   // If the value is a constant
8665   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8666     // If the value is already zero, the branch will execute zero times.
8667     if (C->getValue()->isZero()) return C;
8668     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8669   }
8670 
8671   const SCEVAddRecExpr *AddRec =
8672       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8673 
8674   if (!AddRec && AllowPredicates)
8675     // Try to make this an AddRec using runtime tests, in the first X
8676     // iterations of this loop, where X is the SCEV expression found by the
8677     // algorithm below.
8678     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8679 
8680   if (!AddRec || AddRec->getLoop() != L)
8681     return getCouldNotCompute();
8682 
8683   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8684   // the quadratic equation to solve it.
8685   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8686     // We can only use this value if the chrec ends up with an exact zero
8687     // value at this index.  When solving for "X*X != 5", for example, we
8688     // should not accept a root of 2.
8689     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8690       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8691       return ExitLimit(R, R, false, Predicates);
8692     }
8693     return getCouldNotCompute();
8694   }
8695 
8696   // Otherwise we can only handle this if it is affine.
8697   if (!AddRec->isAffine())
8698     return getCouldNotCompute();
8699 
8700   // If this is an affine expression, the execution count of this branch is
8701   // the minimum unsigned root of the following equation:
8702   //
8703   //     Start + Step*N = 0 (mod 2^BW)
8704   //
8705   // equivalent to:
8706   //
8707   //             Step*N = -Start (mod 2^BW)
8708   //
8709   // where BW is the common bit width of Start and Step.
8710 
8711   // Get the initial value for the loop.
8712   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8713   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8714 
8715   // For now we handle only constant steps.
8716   //
8717   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8718   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8719   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8720   // We have not yet seen any such cases.
8721   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8722   if (!StepC || StepC->getValue()->isZero())
8723     return getCouldNotCompute();
8724 
8725   // For positive steps (counting up until unsigned overflow):
8726   //   N = -Start/Step (as unsigned)
8727   // For negative steps (counting down to zero):
8728   //   N = Start/-Step
8729   // First compute the unsigned distance from zero in the direction of Step.
8730   bool CountDown = StepC->getAPInt().isNegative();
8731   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8732 
8733   // Handle unitary steps, which cannot wraparound.
8734   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8735   //   N = Distance (as unsigned)
8736   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8737     APInt MaxBECount = getUnsignedRangeMax(Distance);
8738 
8739     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8740     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8741     // case, and see if we can improve the bound.
8742     //
8743     // Explicitly handling this here is necessary because getUnsignedRange
8744     // isn't context-sensitive; it doesn't know that we only care about the
8745     // range inside the loop.
8746     const SCEV *Zero = getZero(Distance->getType());
8747     const SCEV *One = getOne(Distance->getType());
8748     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8749     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8750       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8751       // as "unsigned_max(Distance + 1) - 1".
8752       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8753       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8754     }
8755     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8756   }
8757 
8758   // If the condition controls loop exit (the loop exits only if the expression
8759   // is true) and the addition is no-wrap we can use unsigned divide to
8760   // compute the backedge count.  In this case, the step may not divide the
8761   // distance, but we don't care because if the condition is "missed" the loop
8762   // will have undefined behavior due to wrapping.
8763   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8764       loopHasNoAbnormalExits(AddRec->getLoop())) {
8765     const SCEV *Exact =
8766         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8767     const SCEV *Max =
8768         Exact == getCouldNotCompute()
8769             ? Exact
8770             : getConstant(getUnsignedRangeMax(Exact));
8771     return ExitLimit(Exact, Max, false, Predicates);
8772   }
8773 
8774   // Solve the general equation.
8775   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8776                                                getNegativeSCEV(Start), *this);
8777   const SCEV *M = E == getCouldNotCompute()
8778                       ? E
8779                       : getConstant(getUnsignedRangeMax(E));
8780   return ExitLimit(E, M, false, Predicates);
8781 }
8782 
8783 ScalarEvolution::ExitLimit
8784 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8785   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8786   // handle them yet except for the trivial case.  This could be expanded in the
8787   // future as needed.
8788 
8789   // If the value is a constant, check to see if it is known to be non-zero
8790   // already.  If so, the backedge will execute zero times.
8791   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8792     if (!C->getValue()->isZero())
8793       return getZero(C->getType());
8794     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8795   }
8796 
8797   // We could implement others, but I really doubt anyone writes loops like
8798   // this, and if they did, they would already be constant folded.
8799   return getCouldNotCompute();
8800 }
8801 
8802 std::pair<BasicBlock *, BasicBlock *>
8803 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8804   // If the block has a unique predecessor, then there is no path from the
8805   // predecessor to the block that does not go through the direct edge
8806   // from the predecessor to the block.
8807   if (BasicBlock *Pred = BB->getSinglePredecessor())
8808     return {Pred, BB};
8809 
8810   // A loop's header is defined to be a block that dominates the loop.
8811   // If the header has a unique predecessor outside the loop, it must be
8812   // a block that has exactly one successor that can reach the loop.
8813   if (Loop *L = LI.getLoopFor(BB))
8814     return {L->getLoopPredecessor(), L->getHeader()};
8815 
8816   return {nullptr, nullptr};
8817 }
8818 
8819 /// SCEV structural equivalence is usually sufficient for testing whether two
8820 /// expressions are equal, however for the purposes of looking for a condition
8821 /// guarding a loop, it can be useful to be a little more general, since a
8822 /// front-end may have replicated the controlling expression.
8823 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8824   // Quick check to see if they are the same SCEV.
8825   if (A == B) return true;
8826 
8827   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8828     // Not all instructions that are "identical" compute the same value.  For
8829     // instance, two distinct alloca instructions allocating the same type are
8830     // identical and do not read memory; but compute distinct values.
8831     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8832   };
8833 
8834   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8835   // two different instructions with the same value. Check for this case.
8836   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8837     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8838       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8839         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8840           if (ComputesEqualValues(AI, BI))
8841             return true;
8842 
8843   // Otherwise assume they may have a different value.
8844   return false;
8845 }
8846 
8847 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8848                                            const SCEV *&LHS, const SCEV *&RHS,
8849                                            unsigned Depth) {
8850   bool Changed = false;
8851   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8852   // '0 != 0'.
8853   auto TrivialCase = [&](bool TriviallyTrue) {
8854     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8855     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8856     return true;
8857   };
8858   // If we hit the max recursion limit bail out.
8859   if (Depth >= 3)
8860     return false;
8861 
8862   // Canonicalize a constant to the right side.
8863   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8864     // Check for both operands constant.
8865     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8866       if (ConstantExpr::getICmp(Pred,
8867                                 LHSC->getValue(),
8868                                 RHSC->getValue())->isNullValue())
8869         return TrivialCase(false);
8870       else
8871         return TrivialCase(true);
8872     }
8873     // Otherwise swap the operands to put the constant on the right.
8874     std::swap(LHS, RHS);
8875     Pred = ICmpInst::getSwappedPredicate(Pred);
8876     Changed = true;
8877   }
8878 
8879   // If we're comparing an addrec with a value which is loop-invariant in the
8880   // addrec's loop, put the addrec on the left. Also make a dominance check,
8881   // as both operands could be addrecs loop-invariant in each other's loop.
8882   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8883     const Loop *L = AR->getLoop();
8884     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8885       std::swap(LHS, RHS);
8886       Pred = ICmpInst::getSwappedPredicate(Pred);
8887       Changed = true;
8888     }
8889   }
8890 
8891   // If there's a constant operand, canonicalize comparisons with boundary
8892   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8893   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8894     const APInt &RA = RC->getAPInt();
8895 
8896     bool SimplifiedByConstantRange = false;
8897 
8898     if (!ICmpInst::isEquality(Pred)) {
8899       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8900       if (ExactCR.isFullSet())
8901         return TrivialCase(true);
8902       else if (ExactCR.isEmptySet())
8903         return TrivialCase(false);
8904 
8905       APInt NewRHS;
8906       CmpInst::Predicate NewPred;
8907       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8908           ICmpInst::isEquality(NewPred)) {
8909         // We were able to convert an inequality to an equality.
8910         Pred = NewPred;
8911         RHS = getConstant(NewRHS);
8912         Changed = SimplifiedByConstantRange = true;
8913       }
8914     }
8915 
8916     if (!SimplifiedByConstantRange) {
8917       switch (Pred) {
8918       default:
8919         break;
8920       case ICmpInst::ICMP_EQ:
8921       case ICmpInst::ICMP_NE:
8922         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8923         if (!RA)
8924           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8925             if (const SCEVMulExpr *ME =
8926                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8927               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8928                   ME->getOperand(0)->isAllOnesValue()) {
8929                 RHS = AE->getOperand(1);
8930                 LHS = ME->getOperand(1);
8931                 Changed = true;
8932               }
8933         break;
8934 
8935 
8936         // The "Should have been caught earlier!" messages refer to the fact
8937         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8938         // should have fired on the corresponding cases, and canonicalized the
8939         // check to trivial case.
8940 
8941       case ICmpInst::ICMP_UGE:
8942         assert(!RA.isMinValue() && "Should have been caught earlier!");
8943         Pred = ICmpInst::ICMP_UGT;
8944         RHS = getConstant(RA - 1);
8945         Changed = true;
8946         break;
8947       case ICmpInst::ICMP_ULE:
8948         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8949         Pred = ICmpInst::ICMP_ULT;
8950         RHS = getConstant(RA + 1);
8951         Changed = true;
8952         break;
8953       case ICmpInst::ICMP_SGE:
8954         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8955         Pred = ICmpInst::ICMP_SGT;
8956         RHS = getConstant(RA - 1);
8957         Changed = true;
8958         break;
8959       case ICmpInst::ICMP_SLE:
8960         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8961         Pred = ICmpInst::ICMP_SLT;
8962         RHS = getConstant(RA + 1);
8963         Changed = true;
8964         break;
8965       }
8966     }
8967   }
8968 
8969   // Check for obvious equality.
8970   if (HasSameValue(LHS, RHS)) {
8971     if (ICmpInst::isTrueWhenEqual(Pred))
8972       return TrivialCase(true);
8973     if (ICmpInst::isFalseWhenEqual(Pred))
8974       return TrivialCase(false);
8975   }
8976 
8977   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8978   // adding or subtracting 1 from one of the operands.
8979   switch (Pred) {
8980   case ICmpInst::ICMP_SLE:
8981     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8982       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8983                        SCEV::FlagNSW);
8984       Pred = ICmpInst::ICMP_SLT;
8985       Changed = true;
8986     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8987       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8988                        SCEV::FlagNSW);
8989       Pred = ICmpInst::ICMP_SLT;
8990       Changed = true;
8991     }
8992     break;
8993   case ICmpInst::ICMP_SGE:
8994     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8995       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8996                        SCEV::FlagNSW);
8997       Pred = ICmpInst::ICMP_SGT;
8998       Changed = true;
8999     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9000       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9001                        SCEV::FlagNSW);
9002       Pred = ICmpInst::ICMP_SGT;
9003       Changed = true;
9004     }
9005     break;
9006   case ICmpInst::ICMP_ULE:
9007     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9008       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9009                        SCEV::FlagNUW);
9010       Pred = ICmpInst::ICMP_ULT;
9011       Changed = true;
9012     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9013       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9014       Pred = ICmpInst::ICMP_ULT;
9015       Changed = true;
9016     }
9017     break;
9018   case ICmpInst::ICMP_UGE:
9019     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9020       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9021       Pred = ICmpInst::ICMP_UGT;
9022       Changed = true;
9023     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9024       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9025                        SCEV::FlagNUW);
9026       Pred = ICmpInst::ICMP_UGT;
9027       Changed = true;
9028     }
9029     break;
9030   default:
9031     break;
9032   }
9033 
9034   // TODO: More simplifications are possible here.
9035 
9036   // Recursively simplify until we either hit a recursion limit or nothing
9037   // changes.
9038   if (Changed)
9039     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9040 
9041   return Changed;
9042 }
9043 
9044 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9045   return getSignedRangeMax(S).isNegative();
9046 }
9047 
9048 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9049   return getSignedRangeMin(S).isStrictlyPositive();
9050 }
9051 
9052 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9053   return !getSignedRangeMin(S).isNegative();
9054 }
9055 
9056 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9057   return !getSignedRangeMax(S).isStrictlyPositive();
9058 }
9059 
9060 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9061   return isKnownNegative(S) || isKnownPositive(S);
9062 }
9063 
9064 std::pair<const SCEV *, const SCEV *>
9065 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9066   // Compute SCEV on entry of loop L.
9067   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9068   if (Start == getCouldNotCompute())
9069     return { Start, Start };
9070   // Compute post increment SCEV for loop L.
9071   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9072   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9073   return { Start, PostInc };
9074 }
9075 
9076 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9077                                           const SCEV *LHS, const SCEV *RHS) {
9078   // First collect all loops.
9079   SmallPtrSet<const Loop *, 8> LoopsUsed;
9080   getUsedLoops(LHS, LoopsUsed);
9081   getUsedLoops(RHS, LoopsUsed);
9082 
9083   if (LoopsUsed.empty())
9084     return false;
9085 
9086   // Domination relationship must be a linear order on collected loops.
9087 #ifndef NDEBUG
9088   for (auto *L1 : LoopsUsed)
9089     for (auto *L2 : LoopsUsed)
9090       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9091               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9092              "Domination relationship is not a linear order");
9093 #endif
9094 
9095   const Loop *MDL =
9096       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9097                         [&](const Loop *L1, const Loop *L2) {
9098          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9099        });
9100 
9101   // Get init and post increment value for LHS.
9102   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9103   // if LHS contains unknown non-invariant SCEV then bail out.
9104   if (SplitLHS.first == getCouldNotCompute())
9105     return false;
9106   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9107   // Get init and post increment value for RHS.
9108   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9109   // if RHS contains unknown non-invariant SCEV then bail out.
9110   if (SplitRHS.first == getCouldNotCompute())
9111     return false;
9112   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9113   // It is possible that init SCEV contains an invariant load but it does
9114   // not dominate MDL and is not available at MDL loop entry, so we should
9115   // check it here.
9116   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9117       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9118     return false;
9119 
9120   return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
9121          isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9122                                      SplitRHS.second);
9123 }
9124 
9125 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9126                                        const SCEV *LHS, const SCEV *RHS) {
9127   // Canonicalize the inputs first.
9128   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9129 
9130   if (isKnownViaInduction(Pred, LHS, RHS))
9131     return true;
9132 
9133   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9134     return true;
9135 
9136   // Otherwise see what can be done with some simple reasoning.
9137   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9138 }
9139 
9140 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9141                                               const SCEVAddRecExpr *LHS,
9142                                               const SCEV *RHS) {
9143   const Loop *L = LHS->getLoop();
9144   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9145          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9146 }
9147 
9148 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9149                                            ICmpInst::Predicate Pred,
9150                                            bool &Increasing) {
9151   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9152 
9153 #ifndef NDEBUG
9154   // Verify an invariant: inverting the predicate should turn a monotonically
9155   // increasing change to a monotonically decreasing one, and vice versa.
9156   bool IncreasingSwapped;
9157   bool ResultSwapped = isMonotonicPredicateImpl(
9158       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9159 
9160   assert(Result == ResultSwapped && "should be able to analyze both!");
9161   if (ResultSwapped)
9162     assert(Increasing == !IncreasingSwapped &&
9163            "monotonicity should flip as we flip the predicate");
9164 #endif
9165 
9166   return Result;
9167 }
9168 
9169 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9170                                                ICmpInst::Predicate Pred,
9171                                                bool &Increasing) {
9172 
9173   // A zero step value for LHS means the induction variable is essentially a
9174   // loop invariant value. We don't really depend on the predicate actually
9175   // flipping from false to true (for increasing predicates, and the other way
9176   // around for decreasing predicates), all we care about is that *if* the
9177   // predicate changes then it only changes from false to true.
9178   //
9179   // A zero step value in itself is not very useful, but there may be places
9180   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9181   // as general as possible.
9182 
9183   switch (Pred) {
9184   default:
9185     return false; // Conservative answer
9186 
9187   case ICmpInst::ICMP_UGT:
9188   case ICmpInst::ICMP_UGE:
9189   case ICmpInst::ICMP_ULT:
9190   case ICmpInst::ICMP_ULE:
9191     if (!LHS->hasNoUnsignedWrap())
9192       return false;
9193 
9194     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9195     return true;
9196 
9197   case ICmpInst::ICMP_SGT:
9198   case ICmpInst::ICMP_SGE:
9199   case ICmpInst::ICMP_SLT:
9200   case ICmpInst::ICMP_SLE: {
9201     if (!LHS->hasNoSignedWrap())
9202       return false;
9203 
9204     const SCEV *Step = LHS->getStepRecurrence(*this);
9205 
9206     if (isKnownNonNegative(Step)) {
9207       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9208       return true;
9209     }
9210 
9211     if (isKnownNonPositive(Step)) {
9212       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9213       return true;
9214     }
9215 
9216     return false;
9217   }
9218 
9219   }
9220 
9221   llvm_unreachable("switch has default clause!");
9222 }
9223 
9224 bool ScalarEvolution::isLoopInvariantPredicate(
9225     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9226     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9227     const SCEV *&InvariantRHS) {
9228 
9229   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9230   if (!isLoopInvariant(RHS, L)) {
9231     if (!isLoopInvariant(LHS, L))
9232       return false;
9233 
9234     std::swap(LHS, RHS);
9235     Pred = ICmpInst::getSwappedPredicate(Pred);
9236   }
9237 
9238   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9239   if (!ArLHS || ArLHS->getLoop() != L)
9240     return false;
9241 
9242   bool Increasing;
9243   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9244     return false;
9245 
9246   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9247   // true as the loop iterates, and the backedge is control dependent on
9248   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9249   //
9250   //   * if the predicate was false in the first iteration then the predicate
9251   //     is never evaluated again, since the loop exits without taking the
9252   //     backedge.
9253   //   * if the predicate was true in the first iteration then it will
9254   //     continue to be true for all future iterations since it is
9255   //     monotonically increasing.
9256   //
9257   // For both the above possibilities, we can replace the loop varying
9258   // predicate with its value on the first iteration of the loop (which is
9259   // loop invariant).
9260   //
9261   // A similar reasoning applies for a monotonically decreasing predicate, by
9262   // replacing true with false and false with true in the above two bullets.
9263 
9264   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9265 
9266   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9267     return false;
9268 
9269   InvariantPred = Pred;
9270   InvariantLHS = ArLHS->getStart();
9271   InvariantRHS = RHS;
9272   return true;
9273 }
9274 
9275 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9276     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9277   if (HasSameValue(LHS, RHS))
9278     return ICmpInst::isTrueWhenEqual(Pred);
9279 
9280   // This code is split out from isKnownPredicate because it is called from
9281   // within isLoopEntryGuardedByCond.
9282 
9283   auto CheckRanges =
9284       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9285     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9286         .contains(RangeLHS);
9287   };
9288 
9289   // The check at the top of the function catches the case where the values are
9290   // known to be equal.
9291   if (Pred == CmpInst::ICMP_EQ)
9292     return false;
9293 
9294   if (Pred == CmpInst::ICMP_NE)
9295     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9296            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9297            isKnownNonZero(getMinusSCEV(LHS, RHS));
9298 
9299   if (CmpInst::isSigned(Pred))
9300     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9301 
9302   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9303 }
9304 
9305 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9306                                                     const SCEV *LHS,
9307                                                     const SCEV *RHS) {
9308   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9309   // Return Y via OutY.
9310   auto MatchBinaryAddToConst =
9311       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9312              SCEV::NoWrapFlags ExpectedFlags) {
9313     const SCEV *NonConstOp, *ConstOp;
9314     SCEV::NoWrapFlags FlagsPresent;
9315 
9316     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9317         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9318       return false;
9319 
9320     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9321     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9322   };
9323 
9324   APInt C;
9325 
9326   switch (Pred) {
9327   default:
9328     break;
9329 
9330   case ICmpInst::ICMP_SGE:
9331     std::swap(LHS, RHS);
9332     LLVM_FALLTHROUGH;
9333   case ICmpInst::ICMP_SLE:
9334     // X s<= (X + C)<nsw> if C >= 0
9335     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9336       return true;
9337 
9338     // (X + C)<nsw> s<= X if C <= 0
9339     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9340         !C.isStrictlyPositive())
9341       return true;
9342     break;
9343 
9344   case ICmpInst::ICMP_SGT:
9345     std::swap(LHS, RHS);
9346     LLVM_FALLTHROUGH;
9347   case ICmpInst::ICMP_SLT:
9348     // X s< (X + C)<nsw> if C > 0
9349     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9350         C.isStrictlyPositive())
9351       return true;
9352 
9353     // (X + C)<nsw> s< X if C < 0
9354     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9355       return true;
9356     break;
9357   }
9358 
9359   return false;
9360 }
9361 
9362 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9363                                                    const SCEV *LHS,
9364                                                    const SCEV *RHS) {
9365   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9366     return false;
9367 
9368   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9369   // the stack can result in exponential time complexity.
9370   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9371 
9372   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9373   //
9374   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9375   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9376   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9377   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9378   // use isKnownPredicate later if needed.
9379   return isKnownNonNegative(RHS) &&
9380          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9381          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9382 }
9383 
9384 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9385                                         ICmpInst::Predicate Pred,
9386                                         const SCEV *LHS, const SCEV *RHS) {
9387   // No need to even try if we know the module has no guards.
9388   if (!HasGuards)
9389     return false;
9390 
9391   return any_of(*BB, [&](Instruction &I) {
9392     using namespace llvm::PatternMatch;
9393 
9394     Value *Condition;
9395     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9396                          m_Value(Condition))) &&
9397            isImpliedCond(Pred, LHS, RHS, Condition, false);
9398   });
9399 }
9400 
9401 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9402 /// protected by a conditional between LHS and RHS.  This is used to
9403 /// to eliminate casts.
9404 bool
9405 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9406                                              ICmpInst::Predicate Pred,
9407                                              const SCEV *LHS, const SCEV *RHS) {
9408   // Interpret a null as meaning no loop, where there is obviously no guard
9409   // (interprocedural conditions notwithstanding).
9410   if (!L) return true;
9411 
9412   if (VerifyIR)
9413     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9414            "This cannot be done on broken IR!");
9415 
9416 
9417   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9418     return true;
9419 
9420   BasicBlock *Latch = L->getLoopLatch();
9421   if (!Latch)
9422     return false;
9423 
9424   BranchInst *LoopContinuePredicate =
9425     dyn_cast<BranchInst>(Latch->getTerminator());
9426   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9427       isImpliedCond(Pred, LHS, RHS,
9428                     LoopContinuePredicate->getCondition(),
9429                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9430     return true;
9431 
9432   // We don't want more than one activation of the following loops on the stack
9433   // -- that can lead to O(n!) time complexity.
9434   if (WalkingBEDominatingConds)
9435     return false;
9436 
9437   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9438 
9439   // See if we can exploit a trip count to prove the predicate.
9440   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9441   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9442   if (LatchBECount != getCouldNotCompute()) {
9443     // We know that Latch branches back to the loop header exactly
9444     // LatchBECount times.  This means the backdege condition at Latch is
9445     // equivalent to  "{0,+,1} u< LatchBECount".
9446     Type *Ty = LatchBECount->getType();
9447     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9448     const SCEV *LoopCounter =
9449       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9450     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9451                       LatchBECount))
9452       return true;
9453   }
9454 
9455   // Check conditions due to any @llvm.assume intrinsics.
9456   for (auto &AssumeVH : AC.assumptions()) {
9457     if (!AssumeVH)
9458       continue;
9459     auto *CI = cast<CallInst>(AssumeVH);
9460     if (!DT.dominates(CI, Latch->getTerminator()))
9461       continue;
9462 
9463     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9464       return true;
9465   }
9466 
9467   // If the loop is not reachable from the entry block, we risk running into an
9468   // infinite loop as we walk up into the dom tree.  These loops do not matter
9469   // anyway, so we just return a conservative answer when we see them.
9470   if (!DT.isReachableFromEntry(L->getHeader()))
9471     return false;
9472 
9473   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9474     return true;
9475 
9476   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9477        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9478     assert(DTN && "should reach the loop header before reaching the root!");
9479 
9480     BasicBlock *BB = DTN->getBlock();
9481     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9482       return true;
9483 
9484     BasicBlock *PBB = BB->getSinglePredecessor();
9485     if (!PBB)
9486       continue;
9487 
9488     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9489     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9490       continue;
9491 
9492     Value *Condition = ContinuePredicate->getCondition();
9493 
9494     // If we have an edge `E` within the loop body that dominates the only
9495     // latch, the condition guarding `E` also guards the backedge.  This
9496     // reasoning works only for loops with a single latch.
9497 
9498     BasicBlockEdge DominatingEdge(PBB, BB);
9499     if (DominatingEdge.isSingleEdge()) {
9500       // We're constructively (and conservatively) enumerating edges within the
9501       // loop body that dominate the latch.  The dominator tree better agree
9502       // with us on this:
9503       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9504 
9505       if (isImpliedCond(Pred, LHS, RHS, Condition,
9506                         BB != ContinuePredicate->getSuccessor(0)))
9507         return true;
9508     }
9509   }
9510 
9511   return false;
9512 }
9513 
9514 bool
9515 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9516                                           ICmpInst::Predicate Pred,
9517                                           const SCEV *LHS, const SCEV *RHS) {
9518   // Interpret a null as meaning no loop, where there is obviously no guard
9519   // (interprocedural conditions notwithstanding).
9520   if (!L) return false;
9521 
9522   if (VerifyIR)
9523     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9524            "This cannot be done on broken IR!");
9525 
9526   // Both LHS and RHS must be available at loop entry.
9527   assert(isAvailableAtLoopEntry(LHS, L) &&
9528          "LHS is not available at Loop Entry");
9529   assert(isAvailableAtLoopEntry(RHS, L) &&
9530          "RHS is not available at Loop Entry");
9531 
9532   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9533     return true;
9534 
9535   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9536   // the facts (a >= b && a != b) separately. A typical situation is when the
9537   // non-strict comparison is known from ranges and non-equality is known from
9538   // dominating predicates. If we are proving strict comparison, we always try
9539   // to prove non-equality and non-strict comparison separately.
9540   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9541   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9542   bool ProvedNonStrictComparison = false;
9543   bool ProvedNonEquality = false;
9544 
9545   if (ProvingStrictComparison) {
9546     ProvedNonStrictComparison =
9547         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9548     ProvedNonEquality =
9549         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9550     if (ProvedNonStrictComparison && ProvedNonEquality)
9551       return true;
9552   }
9553 
9554   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9555   auto ProveViaGuard = [&](BasicBlock *Block) {
9556     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9557       return true;
9558     if (ProvingStrictComparison) {
9559       if (!ProvedNonStrictComparison)
9560         ProvedNonStrictComparison =
9561             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9562       if (!ProvedNonEquality)
9563         ProvedNonEquality =
9564             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9565       if (ProvedNonStrictComparison && ProvedNonEquality)
9566         return true;
9567     }
9568     return false;
9569   };
9570 
9571   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9572   auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9573     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9574       return true;
9575     if (ProvingStrictComparison) {
9576       if (!ProvedNonStrictComparison)
9577         ProvedNonStrictComparison =
9578             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9579       if (!ProvedNonEquality)
9580         ProvedNonEquality =
9581             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9582       if (ProvedNonStrictComparison && ProvedNonEquality)
9583         return true;
9584     }
9585     return false;
9586   };
9587 
9588   // Starting at the loop predecessor, climb up the predecessor chain, as long
9589   // as there are predecessors that can be found that have unique successors
9590   // leading to the original header.
9591   for (std::pair<BasicBlock *, BasicBlock *>
9592          Pair(L->getLoopPredecessor(), L->getHeader());
9593        Pair.first;
9594        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9595 
9596     if (ProveViaGuard(Pair.first))
9597       return true;
9598 
9599     BranchInst *LoopEntryPredicate =
9600       dyn_cast<BranchInst>(Pair.first->getTerminator());
9601     if (!LoopEntryPredicate ||
9602         LoopEntryPredicate->isUnconditional())
9603       continue;
9604 
9605     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9606                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9607       return true;
9608   }
9609 
9610   // Check conditions due to any @llvm.assume intrinsics.
9611   for (auto &AssumeVH : AC.assumptions()) {
9612     if (!AssumeVH)
9613       continue;
9614     auto *CI = cast<CallInst>(AssumeVH);
9615     if (!DT.dominates(CI, L->getHeader()))
9616       continue;
9617 
9618     if (ProveViaCond(CI->getArgOperand(0), false))
9619       return true;
9620   }
9621 
9622   return false;
9623 }
9624 
9625 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9626                                     const SCEV *LHS, const SCEV *RHS,
9627                                     Value *FoundCondValue,
9628                                     bool Inverse) {
9629   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9630     return false;
9631 
9632   auto ClearOnExit =
9633       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9634 
9635   // Recursively handle And and Or conditions.
9636   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9637     if (BO->getOpcode() == Instruction::And) {
9638       if (!Inverse)
9639         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9640                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9641     } else if (BO->getOpcode() == Instruction::Or) {
9642       if (Inverse)
9643         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9644                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9645     }
9646   }
9647 
9648   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9649   if (!ICI) return false;
9650 
9651   // Now that we found a conditional branch that dominates the loop or controls
9652   // the loop latch. Check to see if it is the comparison we are looking for.
9653   ICmpInst::Predicate FoundPred;
9654   if (Inverse)
9655     FoundPred = ICI->getInversePredicate();
9656   else
9657     FoundPred = ICI->getPredicate();
9658 
9659   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9660   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9661 
9662   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9663 }
9664 
9665 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9666                                     const SCEV *RHS,
9667                                     ICmpInst::Predicate FoundPred,
9668                                     const SCEV *FoundLHS,
9669                                     const SCEV *FoundRHS) {
9670   // Balance the types.
9671   if (getTypeSizeInBits(LHS->getType()) <
9672       getTypeSizeInBits(FoundLHS->getType())) {
9673     if (CmpInst::isSigned(Pred)) {
9674       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9675       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9676     } else {
9677       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9678       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9679     }
9680   } else if (getTypeSizeInBits(LHS->getType()) >
9681       getTypeSizeInBits(FoundLHS->getType())) {
9682     if (CmpInst::isSigned(FoundPred)) {
9683       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9684       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9685     } else {
9686       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9687       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9688     }
9689   }
9690 
9691   // Canonicalize the query to match the way instcombine will have
9692   // canonicalized the comparison.
9693   if (SimplifyICmpOperands(Pred, LHS, RHS))
9694     if (LHS == RHS)
9695       return CmpInst::isTrueWhenEqual(Pred);
9696   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9697     if (FoundLHS == FoundRHS)
9698       return CmpInst::isFalseWhenEqual(FoundPred);
9699 
9700   // Check to see if we can make the LHS or RHS match.
9701   if (LHS == FoundRHS || RHS == FoundLHS) {
9702     if (isa<SCEVConstant>(RHS)) {
9703       std::swap(FoundLHS, FoundRHS);
9704       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9705     } else {
9706       std::swap(LHS, RHS);
9707       Pred = ICmpInst::getSwappedPredicate(Pred);
9708     }
9709   }
9710 
9711   // Check whether the found predicate is the same as the desired predicate.
9712   if (FoundPred == Pred)
9713     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9714 
9715   // Check whether swapping the found predicate makes it the same as the
9716   // desired predicate.
9717   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9718     if (isa<SCEVConstant>(RHS))
9719       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9720     else
9721       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9722                                    RHS, LHS, FoundLHS, FoundRHS);
9723   }
9724 
9725   // Unsigned comparison is the same as signed comparison when both the operands
9726   // are non-negative.
9727   if (CmpInst::isUnsigned(FoundPred) &&
9728       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9729       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9730     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9731 
9732   // Check if we can make progress by sharpening ranges.
9733   if (FoundPred == ICmpInst::ICMP_NE &&
9734       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9735 
9736     const SCEVConstant *C = nullptr;
9737     const SCEV *V = nullptr;
9738 
9739     if (isa<SCEVConstant>(FoundLHS)) {
9740       C = cast<SCEVConstant>(FoundLHS);
9741       V = FoundRHS;
9742     } else {
9743       C = cast<SCEVConstant>(FoundRHS);
9744       V = FoundLHS;
9745     }
9746 
9747     // The guarding predicate tells us that C != V. If the known range
9748     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9749     // range we consider has to correspond to same signedness as the
9750     // predicate we're interested in folding.
9751 
9752     APInt Min = ICmpInst::isSigned(Pred) ?
9753         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9754 
9755     if (Min == C->getAPInt()) {
9756       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9757       // This is true even if (Min + 1) wraps around -- in case of
9758       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9759 
9760       APInt SharperMin = Min + 1;
9761 
9762       switch (Pred) {
9763         case ICmpInst::ICMP_SGE:
9764         case ICmpInst::ICMP_UGE:
9765           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9766           // RHS, we're done.
9767           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9768                                     getConstant(SharperMin)))
9769             return true;
9770           LLVM_FALLTHROUGH;
9771 
9772         case ICmpInst::ICMP_SGT:
9773         case ICmpInst::ICMP_UGT:
9774           // We know from the range information that (V `Pred` Min ||
9775           // V == Min).  We know from the guarding condition that !(V
9776           // == Min).  This gives us
9777           //
9778           //       V `Pred` Min || V == Min && !(V == Min)
9779           //   =>  V `Pred` Min
9780           //
9781           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9782 
9783           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9784             return true;
9785           LLVM_FALLTHROUGH;
9786 
9787         default:
9788           // No change
9789           break;
9790       }
9791     }
9792   }
9793 
9794   // Check whether the actual condition is beyond sufficient.
9795   if (FoundPred == ICmpInst::ICMP_EQ)
9796     if (ICmpInst::isTrueWhenEqual(Pred))
9797       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9798         return true;
9799   if (Pred == ICmpInst::ICMP_NE)
9800     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9801       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9802         return true;
9803 
9804   // Otherwise assume the worst.
9805   return false;
9806 }
9807 
9808 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9809                                      const SCEV *&L, const SCEV *&R,
9810                                      SCEV::NoWrapFlags &Flags) {
9811   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9812   if (!AE || AE->getNumOperands() != 2)
9813     return false;
9814 
9815   L = AE->getOperand(0);
9816   R = AE->getOperand(1);
9817   Flags = AE->getNoWrapFlags();
9818   return true;
9819 }
9820 
9821 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9822                                                            const SCEV *Less) {
9823   // We avoid subtracting expressions here because this function is usually
9824   // fairly deep in the call stack (i.e. is called many times).
9825 
9826   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9827     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9828     const auto *MAR = cast<SCEVAddRecExpr>(More);
9829 
9830     if (LAR->getLoop() != MAR->getLoop())
9831       return None;
9832 
9833     // We look at affine expressions only; not for correctness but to keep
9834     // getStepRecurrence cheap.
9835     if (!LAR->isAffine() || !MAR->isAffine())
9836       return None;
9837 
9838     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9839       return None;
9840 
9841     Less = LAR->getStart();
9842     More = MAR->getStart();
9843 
9844     // fall through
9845   }
9846 
9847   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9848     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9849     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9850     return M - L;
9851   }
9852 
9853   SCEV::NoWrapFlags Flags;
9854   const SCEV *LLess = nullptr, *RLess = nullptr;
9855   const SCEV *LMore = nullptr, *RMore = nullptr;
9856   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9857   // Compare (X + C1) vs X.
9858   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9859     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9860       if (RLess == More)
9861         return -(C1->getAPInt());
9862 
9863   // Compare X vs (X + C2).
9864   if (splitBinaryAdd(More, LMore, RMore, Flags))
9865     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9866       if (RMore == Less)
9867         return C2->getAPInt();
9868 
9869   // Compare (X + C1) vs (X + C2).
9870   if (C1 && C2 && RLess == RMore)
9871     return C2->getAPInt() - C1->getAPInt();
9872 
9873   return None;
9874 }
9875 
9876 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9877     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9878     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9879   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9880     return false;
9881 
9882   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9883   if (!AddRecLHS)
9884     return false;
9885 
9886   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9887   if (!AddRecFoundLHS)
9888     return false;
9889 
9890   // We'd like to let SCEV reason about control dependencies, so we constrain
9891   // both the inequalities to be about add recurrences on the same loop.  This
9892   // way we can use isLoopEntryGuardedByCond later.
9893 
9894   const Loop *L = AddRecFoundLHS->getLoop();
9895   if (L != AddRecLHS->getLoop())
9896     return false;
9897 
9898   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9899   //
9900   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9901   //                                                                  ... (2)
9902   //
9903   // Informal proof for (2), assuming (1) [*]:
9904   //
9905   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9906   //
9907   // Then
9908   //
9909   //       FoundLHS s< FoundRHS s< INT_MIN - C
9910   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9911   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9912   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9913   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9914   // <=>  FoundLHS + C s< FoundRHS + C
9915   //
9916   // [*]: (1) can be proved by ruling out overflow.
9917   //
9918   // [**]: This can be proved by analyzing all the four possibilities:
9919   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9920   //    (A s>= 0, B s>= 0).
9921   //
9922   // Note:
9923   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9924   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9925   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9926   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9927   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9928   // C)".
9929 
9930   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9931   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9932   if (!LDiff || !RDiff || *LDiff != *RDiff)
9933     return false;
9934 
9935   if (LDiff->isMinValue())
9936     return true;
9937 
9938   APInt FoundRHSLimit;
9939 
9940   if (Pred == CmpInst::ICMP_ULT) {
9941     FoundRHSLimit = -(*RDiff);
9942   } else {
9943     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9944     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9945   }
9946 
9947   // Try to prove (1) or (2), as needed.
9948   return isAvailableAtLoopEntry(FoundRHS, L) &&
9949          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9950                                   getConstant(FoundRHSLimit));
9951 }
9952 
9953 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9954                                         const SCEV *LHS, const SCEV *RHS,
9955                                         const SCEV *FoundLHS,
9956                                         const SCEV *FoundRHS, unsigned Depth) {
9957   const PHINode *LPhi = nullptr, *RPhi = nullptr;
9958 
9959   auto ClearOnExit = make_scope_exit([&]() {
9960     if (LPhi) {
9961       bool Erased = PendingMerges.erase(LPhi);
9962       assert(Erased && "Failed to erase LPhi!");
9963       (void)Erased;
9964     }
9965     if (RPhi) {
9966       bool Erased = PendingMerges.erase(RPhi);
9967       assert(Erased && "Failed to erase RPhi!");
9968       (void)Erased;
9969     }
9970   });
9971 
9972   // Find respective Phis and check that they are not being pending.
9973   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9974     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9975       if (!PendingMerges.insert(Phi).second)
9976         return false;
9977       LPhi = Phi;
9978     }
9979   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9980     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9981       // If we detect a loop of Phi nodes being processed by this method, for
9982       // example:
9983       //
9984       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
9985       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
9986       //
9987       // we don't want to deal with a case that complex, so return conservative
9988       // answer false.
9989       if (!PendingMerges.insert(Phi).second)
9990         return false;
9991       RPhi = Phi;
9992     }
9993 
9994   // If none of LHS, RHS is a Phi, nothing to do here.
9995   if (!LPhi && !RPhi)
9996     return false;
9997 
9998   // If there is a SCEVUnknown Phi we are interested in, make it left.
9999   if (!LPhi) {
10000     std::swap(LHS, RHS);
10001     std::swap(FoundLHS, FoundRHS);
10002     std::swap(LPhi, RPhi);
10003     Pred = ICmpInst::getSwappedPredicate(Pred);
10004   }
10005 
10006   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10007   const BasicBlock *LBB = LPhi->getParent();
10008   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10009 
10010   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10011     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10012            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10013            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10014   };
10015 
10016   if (RPhi && RPhi->getParent() == LBB) {
10017     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10018     // If we compare two Phis from the same block, and for each entry block
10019     // the predicate is true for incoming values from this block, then the
10020     // predicate is also true for the Phis.
10021     for (const BasicBlock *IncBB : predecessors(LBB)) {
10022       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10023       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10024       if (!ProvedEasily(L, R))
10025         return false;
10026     }
10027   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10028     // Case two: RHS is also a Phi from the same basic block, and it is an
10029     // AddRec. It means that there is a loop which has both AddRec and Unknown
10030     // PHIs, for it we can compare incoming values of AddRec from above the loop
10031     // and latch with their respective incoming values of LPhi.
10032     // TODO: Generalize to handle loops with many inputs in a header.
10033     if (LPhi->getNumIncomingValues() != 2) return false;
10034 
10035     auto *RLoop = RAR->getLoop();
10036     auto *Predecessor = RLoop->getLoopPredecessor();
10037     assert(Predecessor && "Loop with AddRec with no predecessor?");
10038     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10039     if (!ProvedEasily(L1, RAR->getStart()))
10040       return false;
10041     auto *Latch = RLoop->getLoopLatch();
10042     assert(Latch && "Loop with AddRec with no latch?");
10043     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10044     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10045       return false;
10046   } else {
10047     // In all other cases go over inputs of LHS and compare each of them to RHS,
10048     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10049     // At this point RHS is either a non-Phi, or it is a Phi from some block
10050     // different from LBB.
10051     for (const BasicBlock *IncBB : predecessors(LBB)) {
10052       // Check that RHS is available in this block.
10053       if (!dominates(RHS, IncBB))
10054         return false;
10055       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10056       if (!ProvedEasily(L, RHS))
10057         return false;
10058     }
10059   }
10060   return true;
10061 }
10062 
10063 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10064                                             const SCEV *LHS, const SCEV *RHS,
10065                                             const SCEV *FoundLHS,
10066                                             const SCEV *FoundRHS) {
10067   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10068     return true;
10069 
10070   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10071     return true;
10072 
10073   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10074                                      FoundLHS, FoundRHS) ||
10075          // ~x < ~y --> x > y
10076          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10077                                      getNotSCEV(FoundRHS),
10078                                      getNotSCEV(FoundLHS));
10079 }
10080 
10081 /// If Expr computes ~A, return A else return nullptr
10082 static const SCEV *MatchNotExpr(const SCEV *Expr) {
10083   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
10084   if (!Add || Add->getNumOperands() != 2 ||
10085       !Add->getOperand(0)->isAllOnesValue())
10086     return nullptr;
10087 
10088   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
10089   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
10090       !AddRHS->getOperand(0)->isAllOnesValue())
10091     return nullptr;
10092 
10093   return AddRHS->getOperand(1);
10094 }
10095 
10096 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
10097 template<typename MaxExprType>
10098 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
10099                               const SCEV *Candidate) {
10100   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
10101   if (!MaxExpr) return false;
10102 
10103   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
10104 }
10105 
10106 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
10107 template<typename MaxExprType>
10108 static bool IsMinConsistingOf(ScalarEvolution &SE,
10109                               const SCEV *MaybeMinExpr,
10110                               const SCEV *Candidate) {
10111   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
10112   if (!MaybeMaxExpr)
10113     return false;
10114 
10115   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
10116 }
10117 
10118 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10119                                            ICmpInst::Predicate Pred,
10120                                            const SCEV *LHS, const SCEV *RHS) {
10121   // If both sides are affine addrecs for the same loop, with equal
10122   // steps, and we know the recurrences don't wrap, then we only
10123   // need to check the predicate on the starting values.
10124 
10125   if (!ICmpInst::isRelational(Pred))
10126     return false;
10127 
10128   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10129   if (!LAR)
10130     return false;
10131   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10132   if (!RAR)
10133     return false;
10134   if (LAR->getLoop() != RAR->getLoop())
10135     return false;
10136   if (!LAR->isAffine() || !RAR->isAffine())
10137     return false;
10138 
10139   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10140     return false;
10141 
10142   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10143                          SCEV::FlagNSW : SCEV::FlagNUW;
10144   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10145     return false;
10146 
10147   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10148 }
10149 
10150 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10151 /// expression?
10152 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10153                                         ICmpInst::Predicate Pred,
10154                                         const SCEV *LHS, const SCEV *RHS) {
10155   switch (Pred) {
10156   default:
10157     return false;
10158 
10159   case ICmpInst::ICMP_SGE:
10160     std::swap(LHS, RHS);
10161     LLVM_FALLTHROUGH;
10162   case ICmpInst::ICMP_SLE:
10163     return
10164       // min(A, ...) <= A
10165       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
10166       // A <= max(A, ...)
10167       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10168 
10169   case ICmpInst::ICMP_UGE:
10170     std::swap(LHS, RHS);
10171     LLVM_FALLTHROUGH;
10172   case ICmpInst::ICMP_ULE:
10173     return
10174       // min(A, ...) <= A
10175       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
10176       // A <= max(A, ...)
10177       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10178   }
10179 
10180   llvm_unreachable("covered switch fell through?!");
10181 }
10182 
10183 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10184                                              const SCEV *LHS, const SCEV *RHS,
10185                                              const SCEV *FoundLHS,
10186                                              const SCEV *FoundRHS,
10187                                              unsigned Depth) {
10188   assert(getTypeSizeInBits(LHS->getType()) ==
10189              getTypeSizeInBits(RHS->getType()) &&
10190          "LHS and RHS have different sizes?");
10191   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10192              getTypeSizeInBits(FoundRHS->getType()) &&
10193          "FoundLHS and FoundRHS have different sizes?");
10194   // We want to avoid hurting the compile time with analysis of too big trees.
10195   if (Depth > MaxSCEVOperationsImplicationDepth)
10196     return false;
10197   // We only want to work with ICMP_SGT comparison so far.
10198   // TODO: Extend to ICMP_UGT?
10199   if (Pred == ICmpInst::ICMP_SLT) {
10200     Pred = ICmpInst::ICMP_SGT;
10201     std::swap(LHS, RHS);
10202     std::swap(FoundLHS, FoundRHS);
10203   }
10204   if (Pred != ICmpInst::ICMP_SGT)
10205     return false;
10206 
10207   auto GetOpFromSExt = [&](const SCEV *S) {
10208     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10209       return Ext->getOperand();
10210     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10211     // the constant in some cases.
10212     return S;
10213   };
10214 
10215   // Acquire values from extensions.
10216   auto *OrigLHS = LHS;
10217   auto *OrigFoundLHS = FoundLHS;
10218   LHS = GetOpFromSExt(LHS);
10219   FoundLHS = GetOpFromSExt(FoundLHS);
10220 
10221   // Is the SGT predicate can be proved trivially or using the found context.
10222   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10223     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10224            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10225                                   FoundRHS, Depth + 1);
10226   };
10227 
10228   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10229     // We want to avoid creation of any new non-constant SCEV. Since we are
10230     // going to compare the operands to RHS, we should be certain that we don't
10231     // need any size extensions for this. So let's decline all cases when the
10232     // sizes of types of LHS and RHS do not match.
10233     // TODO: Maybe try to get RHS from sext to catch more cases?
10234     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10235       return false;
10236 
10237     // Should not overflow.
10238     if (!LHSAddExpr->hasNoSignedWrap())
10239       return false;
10240 
10241     auto *LL = LHSAddExpr->getOperand(0);
10242     auto *LR = LHSAddExpr->getOperand(1);
10243     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10244 
10245     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10246     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10247       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10248     };
10249     // Try to prove the following rule:
10250     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10251     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10252     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10253       return true;
10254   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10255     Value *LL, *LR;
10256     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10257 
10258     using namespace llvm::PatternMatch;
10259 
10260     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10261       // Rules for division.
10262       // We are going to perform some comparisons with Denominator and its
10263       // derivative expressions. In general case, creating a SCEV for it may
10264       // lead to a complex analysis of the entire graph, and in particular it
10265       // can request trip count recalculation for the same loop. This would
10266       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10267       // this, we only want to create SCEVs that are constants in this section.
10268       // So we bail if Denominator is not a constant.
10269       if (!isa<ConstantInt>(LR))
10270         return false;
10271 
10272       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10273 
10274       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10275       // then a SCEV for the numerator already exists and matches with FoundLHS.
10276       auto *Numerator = getExistingSCEV(LL);
10277       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10278         return false;
10279 
10280       // Make sure that the numerator matches with FoundLHS and the denominator
10281       // is positive.
10282       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10283         return false;
10284 
10285       auto *DTy = Denominator->getType();
10286       auto *FRHSTy = FoundRHS->getType();
10287       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10288         // One of types is a pointer and another one is not. We cannot extend
10289         // them properly to a wider type, so let us just reject this case.
10290         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10291         // to avoid this check.
10292         return false;
10293 
10294       // Given that:
10295       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10296       auto *WTy = getWiderType(DTy, FRHSTy);
10297       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10298       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10299 
10300       // Try to prove the following rule:
10301       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10302       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10303       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10304       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10305       if (isKnownNonPositive(RHS) &&
10306           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10307         return true;
10308 
10309       // Try to prove the following rule:
10310       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10311       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10312       // If we divide it by Denominator > 2, then:
10313       // 1. If FoundLHS is negative, then the result is 0.
10314       // 2. If FoundLHS is non-negative, then the result is non-negative.
10315       // Anyways, the result is non-negative.
10316       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10317       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10318       if (isKnownNegative(RHS) &&
10319           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10320         return true;
10321     }
10322   }
10323 
10324   // If our expression contained SCEVUnknown Phis, and we split it down and now
10325   // need to prove something for them, try to prove the predicate for every
10326   // possible incoming values of those Phis.
10327   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10328     return true;
10329 
10330   return false;
10331 }
10332 
10333 bool
10334 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10335                                            const SCEV *LHS, const SCEV *RHS) {
10336   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10337          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10338          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10339          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10340 }
10341 
10342 bool
10343 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10344                                              const SCEV *LHS, const SCEV *RHS,
10345                                              const SCEV *FoundLHS,
10346                                              const SCEV *FoundRHS) {
10347   switch (Pred) {
10348   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10349   case ICmpInst::ICMP_EQ:
10350   case ICmpInst::ICMP_NE:
10351     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10352       return true;
10353     break;
10354   case ICmpInst::ICMP_SLT:
10355   case ICmpInst::ICMP_SLE:
10356     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10357         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10358       return true;
10359     break;
10360   case ICmpInst::ICMP_SGT:
10361   case ICmpInst::ICMP_SGE:
10362     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10363         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10364       return true;
10365     break;
10366   case ICmpInst::ICMP_ULT:
10367   case ICmpInst::ICMP_ULE:
10368     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10369         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10370       return true;
10371     break;
10372   case ICmpInst::ICMP_UGT:
10373   case ICmpInst::ICMP_UGE:
10374     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10375         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10376       return true;
10377     break;
10378   }
10379 
10380   // Maybe it can be proved via operations?
10381   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10382     return true;
10383 
10384   return false;
10385 }
10386 
10387 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10388                                                      const SCEV *LHS,
10389                                                      const SCEV *RHS,
10390                                                      const SCEV *FoundLHS,
10391                                                      const SCEV *FoundRHS) {
10392   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10393     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10394     // reduce the compile time impact of this optimization.
10395     return false;
10396 
10397   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10398   if (!Addend)
10399     return false;
10400 
10401   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10402 
10403   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10404   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10405   ConstantRange FoundLHSRange =
10406       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10407 
10408   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10409   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10410 
10411   // We can also compute the range of values for `LHS` that satisfy the
10412   // consequent, "`LHS` `Pred` `RHS`":
10413   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10414   ConstantRange SatisfyingLHSRange =
10415       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10416 
10417   // The antecedent implies the consequent if every value of `LHS` that
10418   // satisfies the antecedent also satisfies the consequent.
10419   return SatisfyingLHSRange.contains(LHSRange);
10420 }
10421 
10422 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10423                                          bool IsSigned, bool NoWrap) {
10424   assert(isKnownPositive(Stride) && "Positive stride expected!");
10425 
10426   if (NoWrap) return false;
10427 
10428   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10429   const SCEV *One = getOne(Stride->getType());
10430 
10431   if (IsSigned) {
10432     APInt MaxRHS = getSignedRangeMax(RHS);
10433     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10434     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10435 
10436     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10437     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10438   }
10439 
10440   APInt MaxRHS = getUnsignedRangeMax(RHS);
10441   APInt MaxValue = APInt::getMaxValue(BitWidth);
10442   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10443 
10444   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10445   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10446 }
10447 
10448 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10449                                          bool IsSigned, bool NoWrap) {
10450   if (NoWrap) return false;
10451 
10452   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10453   const SCEV *One = getOne(Stride->getType());
10454 
10455   if (IsSigned) {
10456     APInt MinRHS = getSignedRangeMin(RHS);
10457     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10458     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10459 
10460     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10461     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10462   }
10463 
10464   APInt MinRHS = getUnsignedRangeMin(RHS);
10465   APInt MinValue = APInt::getMinValue(BitWidth);
10466   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10467 
10468   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10469   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10470 }
10471 
10472 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10473                                             bool Equality) {
10474   const SCEV *One = getOne(Step->getType());
10475   Delta = Equality ? getAddExpr(Delta, Step)
10476                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10477   return getUDivExpr(Delta, Step);
10478 }
10479 
10480 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10481                                                     const SCEV *Stride,
10482                                                     const SCEV *End,
10483                                                     unsigned BitWidth,
10484                                                     bool IsSigned) {
10485 
10486   assert(!isKnownNonPositive(Stride) &&
10487          "Stride is expected strictly positive!");
10488   // Calculate the maximum backedge count based on the range of values
10489   // permitted by Start, End, and Stride.
10490   const SCEV *MaxBECount;
10491   APInt MinStart =
10492       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10493 
10494   APInt StrideForMaxBECount =
10495       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10496 
10497   // We already know that the stride is positive, so we paper over conservatism
10498   // in our range computation by forcing StrideForMaxBECount to be at least one.
10499   // In theory this is unnecessary, but we expect MaxBECount to be a
10500   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10501   // is nothing to constant fold it to).
10502   APInt One(BitWidth, 1, IsSigned);
10503   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10504 
10505   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10506                             : APInt::getMaxValue(BitWidth);
10507   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10508 
10509   // Although End can be a MAX expression we estimate MaxEnd considering only
10510   // the case End = RHS of the loop termination condition. This is safe because
10511   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10512   // taken count.
10513   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10514                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10515 
10516   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10517                               getConstant(StrideForMaxBECount) /* Step */,
10518                               false /* Equality */);
10519 
10520   return MaxBECount;
10521 }
10522 
10523 ScalarEvolution::ExitLimit
10524 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10525                                   const Loop *L, bool IsSigned,
10526                                   bool ControlsExit, bool AllowPredicates) {
10527   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10528 
10529   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10530   bool PredicatedIV = false;
10531 
10532   if (!IV && AllowPredicates) {
10533     // Try to make this an AddRec using runtime tests, in the first X
10534     // iterations of this loop, where X is the SCEV expression found by the
10535     // algorithm below.
10536     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10537     PredicatedIV = true;
10538   }
10539 
10540   // Avoid weird loops
10541   if (!IV || IV->getLoop() != L || !IV->isAffine())
10542     return getCouldNotCompute();
10543 
10544   bool NoWrap = ControlsExit &&
10545                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10546 
10547   const SCEV *Stride = IV->getStepRecurrence(*this);
10548 
10549   bool PositiveStride = isKnownPositive(Stride);
10550 
10551   // Avoid negative or zero stride values.
10552   if (!PositiveStride) {
10553     // We can compute the correct backedge taken count for loops with unknown
10554     // strides if we can prove that the loop is not an infinite loop with side
10555     // effects. Here's the loop structure we are trying to handle -
10556     //
10557     // i = start
10558     // do {
10559     //   A[i] = i;
10560     //   i += s;
10561     // } while (i < end);
10562     //
10563     // The backedge taken count for such loops is evaluated as -
10564     // (max(end, start + stride) - start - 1) /u stride
10565     //
10566     // The additional preconditions that we need to check to prove correctness
10567     // of the above formula is as follows -
10568     //
10569     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10570     //    NoWrap flag).
10571     // b) loop is single exit with no side effects.
10572     //
10573     //
10574     // Precondition a) implies that if the stride is negative, this is a single
10575     // trip loop. The backedge taken count formula reduces to zero in this case.
10576     //
10577     // Precondition b) implies that the unknown stride cannot be zero otherwise
10578     // we have UB.
10579     //
10580     // The positive stride case is the same as isKnownPositive(Stride) returning
10581     // true (original behavior of the function).
10582     //
10583     // We want to make sure that the stride is truly unknown as there are edge
10584     // cases where ScalarEvolution propagates no wrap flags to the
10585     // post-increment/decrement IV even though the increment/decrement operation
10586     // itself is wrapping. The computed backedge taken count may be wrong in
10587     // such cases. This is prevented by checking that the stride is not known to
10588     // be either positive or non-positive. For example, no wrap flags are
10589     // propagated to the post-increment IV of this loop with a trip count of 2 -
10590     //
10591     // unsigned char i;
10592     // for(i=127; i<128; i+=129)
10593     //   A[i] = i;
10594     //
10595     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10596         !loopHasNoSideEffects(L))
10597       return getCouldNotCompute();
10598   } else if (!Stride->isOne() &&
10599              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10600     // Avoid proven overflow cases: this will ensure that the backedge taken
10601     // count will not generate any unsigned overflow. Relaxed no-overflow
10602     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10603     // undefined behaviors like the case of C language.
10604     return getCouldNotCompute();
10605 
10606   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10607                                       : ICmpInst::ICMP_ULT;
10608   const SCEV *Start = IV->getStart();
10609   const SCEV *End = RHS;
10610   // When the RHS is not invariant, we do not know the end bound of the loop and
10611   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10612   // calculate the MaxBECount, given the start, stride and max value for the end
10613   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10614   // checked above).
10615   if (!isLoopInvariant(RHS, L)) {
10616     const SCEV *MaxBECount = computeMaxBECountForLT(
10617         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10618     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10619                      false /*MaxOrZero*/, Predicates);
10620   }
10621   // If the backedge is taken at least once, then it will be taken
10622   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10623   // is the LHS value of the less-than comparison the first time it is evaluated
10624   // and End is the RHS.
10625   const SCEV *BECountIfBackedgeTaken =
10626     computeBECount(getMinusSCEV(End, Start), Stride, false);
10627   // If the loop entry is guarded by the result of the backedge test of the
10628   // first loop iteration, then we know the backedge will be taken at least
10629   // once and so the backedge taken count is as above. If not then we use the
10630   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10631   // as if the backedge is taken at least once max(End,Start) is End and so the
10632   // result is as above, and if not max(End,Start) is Start so we get a backedge
10633   // count of zero.
10634   const SCEV *BECount;
10635   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10636     BECount = BECountIfBackedgeTaken;
10637   else {
10638     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10639     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10640   }
10641 
10642   const SCEV *MaxBECount;
10643   bool MaxOrZero = false;
10644   if (isa<SCEVConstant>(BECount))
10645     MaxBECount = BECount;
10646   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10647     // If we know exactly how many times the backedge will be taken if it's
10648     // taken at least once, then the backedge count will either be that or
10649     // zero.
10650     MaxBECount = BECountIfBackedgeTaken;
10651     MaxOrZero = true;
10652   } else {
10653     MaxBECount = computeMaxBECountForLT(
10654         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10655   }
10656 
10657   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10658       !isa<SCEVCouldNotCompute>(BECount))
10659     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10660 
10661   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10662 }
10663 
10664 ScalarEvolution::ExitLimit
10665 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10666                                      const Loop *L, bool IsSigned,
10667                                      bool ControlsExit, bool AllowPredicates) {
10668   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10669   // We handle only IV > Invariant
10670   if (!isLoopInvariant(RHS, L))
10671     return getCouldNotCompute();
10672 
10673   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10674   if (!IV && AllowPredicates)
10675     // Try to make this an AddRec using runtime tests, in the first X
10676     // iterations of this loop, where X is the SCEV expression found by the
10677     // algorithm below.
10678     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10679 
10680   // Avoid weird loops
10681   if (!IV || IV->getLoop() != L || !IV->isAffine())
10682     return getCouldNotCompute();
10683 
10684   bool NoWrap = ControlsExit &&
10685                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10686 
10687   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10688 
10689   // Avoid negative or zero stride values
10690   if (!isKnownPositive(Stride))
10691     return getCouldNotCompute();
10692 
10693   // Avoid proven overflow cases: this will ensure that the backedge taken count
10694   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10695   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10696   // behaviors like the case of C language.
10697   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10698     return getCouldNotCompute();
10699 
10700   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10701                                       : ICmpInst::ICMP_UGT;
10702 
10703   const SCEV *Start = IV->getStart();
10704   const SCEV *End = RHS;
10705   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10706     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10707 
10708   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10709 
10710   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10711                             : getUnsignedRangeMax(Start);
10712 
10713   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10714                              : getUnsignedRangeMin(Stride);
10715 
10716   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10717   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10718                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10719 
10720   // Although End can be a MIN expression we estimate MinEnd considering only
10721   // the case End = RHS. This is safe because in the other case (Start - End)
10722   // is zero, leading to a zero maximum backedge taken count.
10723   APInt MinEnd =
10724     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10725              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10726 
10727 
10728   const SCEV *MaxBECount = getCouldNotCompute();
10729   if (isa<SCEVConstant>(BECount))
10730     MaxBECount = BECount;
10731   else
10732     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
10733                                 getConstant(MinStride), false);
10734 
10735   if (isa<SCEVCouldNotCompute>(MaxBECount))
10736     MaxBECount = BECount;
10737 
10738   return ExitLimit(BECount, MaxBECount, false, Predicates);
10739 }
10740 
10741 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10742                                                     ScalarEvolution &SE) const {
10743   if (Range.isFullSet())  // Infinite loop.
10744     return SE.getCouldNotCompute();
10745 
10746   // If the start is a non-zero constant, shift the range to simplify things.
10747   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10748     if (!SC->getValue()->isZero()) {
10749       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10750       Operands[0] = SE.getZero(SC->getType());
10751       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10752                                              getNoWrapFlags(FlagNW));
10753       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10754         return ShiftedAddRec->getNumIterationsInRange(
10755             Range.subtract(SC->getAPInt()), SE);
10756       // This is strange and shouldn't happen.
10757       return SE.getCouldNotCompute();
10758     }
10759 
10760   // The only time we can solve this is when we have all constant indices.
10761   // Otherwise, we cannot determine the overflow conditions.
10762   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10763     return SE.getCouldNotCompute();
10764 
10765   // Okay at this point we know that all elements of the chrec are constants and
10766   // that the start element is zero.
10767 
10768   // First check to see if the range contains zero.  If not, the first
10769   // iteration exits.
10770   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10771   if (!Range.contains(APInt(BitWidth, 0)))
10772     return SE.getZero(getType());
10773 
10774   if (isAffine()) {
10775     // If this is an affine expression then we have this situation:
10776     //   Solve {0,+,A} in Range  ===  Ax in Range
10777 
10778     // We know that zero is in the range.  If A is positive then we know that
10779     // the upper value of the range must be the first possible exit value.
10780     // If A is negative then the lower of the range is the last possible loop
10781     // value.  Also note that we already checked for a full range.
10782     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10783     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10784 
10785     // The exit value should be (End+A)/A.
10786     APInt ExitVal = (End + A).udiv(A);
10787     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10788 
10789     // Evaluate at the exit value.  If we really did fall out of the valid
10790     // range, then we computed our trip count, otherwise wrap around or other
10791     // things must have happened.
10792     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10793     if (Range.contains(Val->getValue()))
10794       return SE.getCouldNotCompute();  // Something strange happened
10795 
10796     // Ensure that the previous value is in the range.  This is a sanity check.
10797     assert(Range.contains(
10798            EvaluateConstantChrecAtConstant(this,
10799            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10800            "Linear scev computation is off in a bad way!");
10801     return SE.getConstant(ExitValue);
10802   }
10803 
10804   if (isQuadratic()) {
10805     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10806       return SE.getConstant(S.getValue());
10807   }
10808 
10809   return SE.getCouldNotCompute();
10810 }
10811 
10812 const SCEVAddRecExpr *
10813 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10814   assert(getNumOperands() > 1 && "AddRec with zero step?");
10815   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10816   // but in this case we cannot guarantee that the value returned will be an
10817   // AddRec because SCEV does not have a fixed point where it stops
10818   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10819   // may happen if we reach arithmetic depth limit while simplifying. So we
10820   // construct the returned value explicitly.
10821   SmallVector<const SCEV *, 3> Ops;
10822   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10823   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10824   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10825     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10826   // We know that the last operand is not a constant zero (otherwise it would
10827   // have been popped out earlier). This guarantees us that if the result has
10828   // the same last operand, then it will also not be popped out, meaning that
10829   // the returned value will be an AddRec.
10830   const SCEV *Last = getOperand(getNumOperands() - 1);
10831   assert(!Last->isZero() && "Recurrency with zero step?");
10832   Ops.push_back(Last);
10833   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10834                                                SCEV::FlagAnyWrap));
10835 }
10836 
10837 // Return true when S contains at least an undef value.
10838 static inline bool containsUndefs(const SCEV *S) {
10839   return SCEVExprContains(S, [](const SCEV *S) {
10840     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10841       return isa<UndefValue>(SU->getValue());
10842     return false;
10843   });
10844 }
10845 
10846 namespace {
10847 
10848 // Collect all steps of SCEV expressions.
10849 struct SCEVCollectStrides {
10850   ScalarEvolution &SE;
10851   SmallVectorImpl<const SCEV *> &Strides;
10852 
10853   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10854       : SE(SE), Strides(S) {}
10855 
10856   bool follow(const SCEV *S) {
10857     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10858       Strides.push_back(AR->getStepRecurrence(SE));
10859     return true;
10860   }
10861 
10862   bool isDone() const { return false; }
10863 };
10864 
10865 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10866 struct SCEVCollectTerms {
10867   SmallVectorImpl<const SCEV *> &Terms;
10868 
10869   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10870 
10871   bool follow(const SCEV *S) {
10872     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10873         isa<SCEVSignExtendExpr>(S)) {
10874       if (!containsUndefs(S))
10875         Terms.push_back(S);
10876 
10877       // Stop recursion: once we collected a term, do not walk its operands.
10878       return false;
10879     }
10880 
10881     // Keep looking.
10882     return true;
10883   }
10884 
10885   bool isDone() const { return false; }
10886 };
10887 
10888 // Check if a SCEV contains an AddRecExpr.
10889 struct SCEVHasAddRec {
10890   bool &ContainsAddRec;
10891 
10892   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10893     ContainsAddRec = false;
10894   }
10895 
10896   bool follow(const SCEV *S) {
10897     if (isa<SCEVAddRecExpr>(S)) {
10898       ContainsAddRec = true;
10899 
10900       // Stop recursion: once we collected a term, do not walk its operands.
10901       return false;
10902     }
10903 
10904     // Keep looking.
10905     return true;
10906   }
10907 
10908   bool isDone() const { return false; }
10909 };
10910 
10911 // Find factors that are multiplied with an expression that (possibly as a
10912 // subexpression) contains an AddRecExpr. In the expression:
10913 //
10914 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10915 //
10916 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10917 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10918 // parameters as they form a product with an induction variable.
10919 //
10920 // This collector expects all array size parameters to be in the same MulExpr.
10921 // It might be necessary to later add support for collecting parameters that are
10922 // spread over different nested MulExpr.
10923 struct SCEVCollectAddRecMultiplies {
10924   SmallVectorImpl<const SCEV *> &Terms;
10925   ScalarEvolution &SE;
10926 
10927   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10928       : Terms(T), SE(SE) {}
10929 
10930   bool follow(const SCEV *S) {
10931     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10932       bool HasAddRec = false;
10933       SmallVector<const SCEV *, 0> Operands;
10934       for (auto Op : Mul->operands()) {
10935         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10936         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10937           Operands.push_back(Op);
10938         } else if (Unknown) {
10939           HasAddRec = true;
10940         } else {
10941           bool ContainsAddRec;
10942           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10943           visitAll(Op, ContiansAddRec);
10944           HasAddRec |= ContainsAddRec;
10945         }
10946       }
10947       if (Operands.size() == 0)
10948         return true;
10949 
10950       if (!HasAddRec)
10951         return false;
10952 
10953       Terms.push_back(SE.getMulExpr(Operands));
10954       // Stop recursion: once we collected a term, do not walk its operands.
10955       return false;
10956     }
10957 
10958     // Keep looking.
10959     return true;
10960   }
10961 
10962   bool isDone() const { return false; }
10963 };
10964 
10965 } // end anonymous namespace
10966 
10967 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10968 /// two places:
10969 ///   1) The strides of AddRec expressions.
10970 ///   2) Unknowns that are multiplied with AddRec expressions.
10971 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10972     SmallVectorImpl<const SCEV *> &Terms) {
10973   SmallVector<const SCEV *, 4> Strides;
10974   SCEVCollectStrides StrideCollector(*this, Strides);
10975   visitAll(Expr, StrideCollector);
10976 
10977   LLVM_DEBUG({
10978     dbgs() << "Strides:\n";
10979     for (const SCEV *S : Strides)
10980       dbgs() << *S << "\n";
10981   });
10982 
10983   for (const SCEV *S : Strides) {
10984     SCEVCollectTerms TermCollector(Terms);
10985     visitAll(S, TermCollector);
10986   }
10987 
10988   LLVM_DEBUG({
10989     dbgs() << "Terms:\n";
10990     for (const SCEV *T : Terms)
10991       dbgs() << *T << "\n";
10992   });
10993 
10994   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10995   visitAll(Expr, MulCollector);
10996 }
10997 
10998 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10999                                    SmallVectorImpl<const SCEV *> &Terms,
11000                                    SmallVectorImpl<const SCEV *> &Sizes) {
11001   int Last = Terms.size() - 1;
11002   const SCEV *Step = Terms[Last];
11003 
11004   // End of recursion.
11005   if (Last == 0) {
11006     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11007       SmallVector<const SCEV *, 2> Qs;
11008       for (const SCEV *Op : M->operands())
11009         if (!isa<SCEVConstant>(Op))
11010           Qs.push_back(Op);
11011 
11012       Step = SE.getMulExpr(Qs);
11013     }
11014 
11015     Sizes.push_back(Step);
11016     return true;
11017   }
11018 
11019   for (const SCEV *&Term : Terms) {
11020     // Normalize the terms before the next call to findArrayDimensionsRec.
11021     const SCEV *Q, *R;
11022     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11023 
11024     // Bail out when GCD does not evenly divide one of the terms.
11025     if (!R->isZero())
11026       return false;
11027 
11028     Term = Q;
11029   }
11030 
11031   // Remove all SCEVConstants.
11032   Terms.erase(
11033       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11034       Terms.end());
11035 
11036   if (Terms.size() > 0)
11037     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11038       return false;
11039 
11040   Sizes.push_back(Step);
11041   return true;
11042 }
11043 
11044 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11045 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11046   for (const SCEV *T : Terms)
11047     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11048       return true;
11049   return false;
11050 }
11051 
11052 // Return the number of product terms in S.
11053 static inline int numberOfTerms(const SCEV *S) {
11054   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11055     return Expr->getNumOperands();
11056   return 1;
11057 }
11058 
11059 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11060   if (isa<SCEVConstant>(T))
11061     return nullptr;
11062 
11063   if (isa<SCEVUnknown>(T))
11064     return T;
11065 
11066   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11067     SmallVector<const SCEV *, 2> Factors;
11068     for (const SCEV *Op : M->operands())
11069       if (!isa<SCEVConstant>(Op))
11070         Factors.push_back(Op);
11071 
11072     return SE.getMulExpr(Factors);
11073   }
11074 
11075   return T;
11076 }
11077 
11078 /// Return the size of an element read or written by Inst.
11079 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11080   Type *Ty;
11081   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11082     Ty = Store->getValueOperand()->getType();
11083   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11084     Ty = Load->getType();
11085   else
11086     return nullptr;
11087 
11088   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11089   return getSizeOfExpr(ETy, Ty);
11090 }
11091 
11092 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11093                                           SmallVectorImpl<const SCEV *> &Sizes,
11094                                           const SCEV *ElementSize) {
11095   if (Terms.size() < 1 || !ElementSize)
11096     return;
11097 
11098   // Early return when Terms do not contain parameters: we do not delinearize
11099   // non parametric SCEVs.
11100   if (!containsParameters(Terms))
11101     return;
11102 
11103   LLVM_DEBUG({
11104     dbgs() << "Terms:\n";
11105     for (const SCEV *T : Terms)
11106       dbgs() << *T << "\n";
11107   });
11108 
11109   // Remove duplicates.
11110   array_pod_sort(Terms.begin(), Terms.end());
11111   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11112 
11113   // Put larger terms first.
11114   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11115     return numberOfTerms(LHS) > numberOfTerms(RHS);
11116   });
11117 
11118   // Try to divide all terms by the element size. If term is not divisible by
11119   // element size, proceed with the original term.
11120   for (const SCEV *&Term : Terms) {
11121     const SCEV *Q, *R;
11122     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11123     if (!Q->isZero())
11124       Term = Q;
11125   }
11126 
11127   SmallVector<const SCEV *, 4> NewTerms;
11128 
11129   // Remove constant factors.
11130   for (const SCEV *T : Terms)
11131     if (const SCEV *NewT = removeConstantFactors(*this, T))
11132       NewTerms.push_back(NewT);
11133 
11134   LLVM_DEBUG({
11135     dbgs() << "Terms after sorting:\n";
11136     for (const SCEV *T : NewTerms)
11137       dbgs() << *T << "\n";
11138   });
11139 
11140   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11141     Sizes.clear();
11142     return;
11143   }
11144 
11145   // The last element to be pushed into Sizes is the size of an element.
11146   Sizes.push_back(ElementSize);
11147 
11148   LLVM_DEBUG({
11149     dbgs() << "Sizes:\n";
11150     for (const SCEV *S : Sizes)
11151       dbgs() << *S << "\n";
11152   });
11153 }
11154 
11155 void ScalarEvolution::computeAccessFunctions(
11156     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11157     SmallVectorImpl<const SCEV *> &Sizes) {
11158   // Early exit in case this SCEV is not an affine multivariate function.
11159   if (Sizes.empty())
11160     return;
11161 
11162   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11163     if (!AR->isAffine())
11164       return;
11165 
11166   const SCEV *Res = Expr;
11167   int Last = Sizes.size() - 1;
11168   for (int i = Last; i >= 0; i--) {
11169     const SCEV *Q, *R;
11170     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11171 
11172     LLVM_DEBUG({
11173       dbgs() << "Res: " << *Res << "\n";
11174       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11175       dbgs() << "Res divided by Sizes[i]:\n";
11176       dbgs() << "Quotient: " << *Q << "\n";
11177       dbgs() << "Remainder: " << *R << "\n";
11178     });
11179 
11180     Res = Q;
11181 
11182     // Do not record the last subscript corresponding to the size of elements in
11183     // the array.
11184     if (i == Last) {
11185 
11186       // Bail out if the remainder is too complex.
11187       if (isa<SCEVAddRecExpr>(R)) {
11188         Subscripts.clear();
11189         Sizes.clear();
11190         return;
11191       }
11192 
11193       continue;
11194     }
11195 
11196     // Record the access function for the current subscript.
11197     Subscripts.push_back(R);
11198   }
11199 
11200   // Also push in last position the remainder of the last division: it will be
11201   // the access function of the innermost dimension.
11202   Subscripts.push_back(Res);
11203 
11204   std::reverse(Subscripts.begin(), Subscripts.end());
11205 
11206   LLVM_DEBUG({
11207     dbgs() << "Subscripts:\n";
11208     for (const SCEV *S : Subscripts)
11209       dbgs() << *S << "\n";
11210   });
11211 }
11212 
11213 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11214 /// sizes of an array access. Returns the remainder of the delinearization that
11215 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11216 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11217 /// expressions in the stride and base of a SCEV corresponding to the
11218 /// computation of a GCD (greatest common divisor) of base and stride.  When
11219 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11220 ///
11221 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11222 ///
11223 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11224 ///
11225 ///    for (long i = 0; i < n; i++)
11226 ///      for (long j = 0; j < m; j++)
11227 ///        for (long k = 0; k < o; k++)
11228 ///          A[i][j][k] = 1.0;
11229 ///  }
11230 ///
11231 /// the delinearization input is the following AddRec SCEV:
11232 ///
11233 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11234 ///
11235 /// From this SCEV, we are able to say that the base offset of the access is %A
11236 /// because it appears as an offset that does not divide any of the strides in
11237 /// the loops:
11238 ///
11239 ///  CHECK: Base offset: %A
11240 ///
11241 /// and then SCEV->delinearize determines the size of some of the dimensions of
11242 /// the array as these are the multiples by which the strides are happening:
11243 ///
11244 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11245 ///
11246 /// Note that the outermost dimension remains of UnknownSize because there are
11247 /// no strides that would help identifying the size of the last dimension: when
11248 /// the array has been statically allocated, one could compute the size of that
11249 /// dimension by dividing the overall size of the array by the size of the known
11250 /// dimensions: %m * %o * 8.
11251 ///
11252 /// Finally delinearize provides the access functions for the array reference
11253 /// that does correspond to A[i][j][k] of the above C testcase:
11254 ///
11255 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11256 ///
11257 /// The testcases are checking the output of a function pass:
11258 /// DelinearizationPass that walks through all loads and stores of a function
11259 /// asking for the SCEV of the memory access with respect to all enclosing
11260 /// loops, calling SCEV->delinearize on that and printing the results.
11261 void ScalarEvolution::delinearize(const SCEV *Expr,
11262                                  SmallVectorImpl<const SCEV *> &Subscripts,
11263                                  SmallVectorImpl<const SCEV *> &Sizes,
11264                                  const SCEV *ElementSize) {
11265   // First step: collect parametric terms.
11266   SmallVector<const SCEV *, 4> Terms;
11267   collectParametricTerms(Expr, Terms);
11268 
11269   if (Terms.empty())
11270     return;
11271 
11272   // Second step: find subscript sizes.
11273   findArrayDimensions(Terms, Sizes, ElementSize);
11274 
11275   if (Sizes.empty())
11276     return;
11277 
11278   // Third step: compute the access functions for each subscript.
11279   computeAccessFunctions(Expr, Subscripts, Sizes);
11280 
11281   if (Subscripts.empty())
11282     return;
11283 
11284   LLVM_DEBUG({
11285     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11286     dbgs() << "ArrayDecl[UnknownSize]";
11287     for (const SCEV *S : Sizes)
11288       dbgs() << "[" << *S << "]";
11289 
11290     dbgs() << "\nArrayRef";
11291     for (const SCEV *S : Subscripts)
11292       dbgs() << "[" << *S << "]";
11293     dbgs() << "\n";
11294   });
11295 }
11296 
11297 //===----------------------------------------------------------------------===//
11298 //                   SCEVCallbackVH Class Implementation
11299 //===----------------------------------------------------------------------===//
11300 
11301 void ScalarEvolution::SCEVCallbackVH::deleted() {
11302   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11303   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11304     SE->ConstantEvolutionLoopExitValue.erase(PN);
11305   SE->eraseValueFromMap(getValPtr());
11306   // this now dangles!
11307 }
11308 
11309 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11310   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11311 
11312   // Forget all the expressions associated with users of the old value,
11313   // so that future queries will recompute the expressions using the new
11314   // value.
11315   Value *Old = getValPtr();
11316   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11317   SmallPtrSet<User *, 8> Visited;
11318   while (!Worklist.empty()) {
11319     User *U = Worklist.pop_back_val();
11320     // Deleting the Old value will cause this to dangle. Postpone
11321     // that until everything else is done.
11322     if (U == Old)
11323       continue;
11324     if (!Visited.insert(U).second)
11325       continue;
11326     if (PHINode *PN = dyn_cast<PHINode>(U))
11327       SE->ConstantEvolutionLoopExitValue.erase(PN);
11328     SE->eraseValueFromMap(U);
11329     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11330   }
11331   // Delete the Old value.
11332   if (PHINode *PN = dyn_cast<PHINode>(Old))
11333     SE->ConstantEvolutionLoopExitValue.erase(PN);
11334   SE->eraseValueFromMap(Old);
11335   // this now dangles!
11336 }
11337 
11338 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11339   : CallbackVH(V), SE(se) {}
11340 
11341 //===----------------------------------------------------------------------===//
11342 //                   ScalarEvolution Class Implementation
11343 //===----------------------------------------------------------------------===//
11344 
11345 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11346                                  AssumptionCache &AC, DominatorTree &DT,
11347                                  LoopInfo &LI)
11348     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11349       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11350       LoopDispositions(64), BlockDispositions(64) {
11351   // To use guards for proving predicates, we need to scan every instruction in
11352   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11353   // time if the IR does not actually contain any calls to
11354   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11355   //
11356   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11357   // to _add_ guards to the module when there weren't any before, and wants
11358   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11359   // efficient in lieu of being smart in that rather obscure case.
11360 
11361   auto *GuardDecl = F.getParent()->getFunction(
11362       Intrinsic::getName(Intrinsic::experimental_guard));
11363   HasGuards = GuardDecl && !GuardDecl->use_empty();
11364 }
11365 
11366 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11367     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11368       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11369       ValueExprMap(std::move(Arg.ValueExprMap)),
11370       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11371       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11372       PendingMerges(std::move(Arg.PendingMerges)),
11373       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11374       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11375       PredicatedBackedgeTakenCounts(
11376           std::move(Arg.PredicatedBackedgeTakenCounts)),
11377       ConstantEvolutionLoopExitValue(
11378           std::move(Arg.ConstantEvolutionLoopExitValue)),
11379       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11380       LoopDispositions(std::move(Arg.LoopDispositions)),
11381       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11382       BlockDispositions(std::move(Arg.BlockDispositions)),
11383       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11384       SignedRanges(std::move(Arg.SignedRanges)),
11385       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11386       UniquePreds(std::move(Arg.UniquePreds)),
11387       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11388       LoopUsers(std::move(Arg.LoopUsers)),
11389       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11390       FirstUnknown(Arg.FirstUnknown) {
11391   Arg.FirstUnknown = nullptr;
11392 }
11393 
11394 ScalarEvolution::~ScalarEvolution() {
11395   // Iterate through all the SCEVUnknown instances and call their
11396   // destructors, so that they release their references to their values.
11397   for (SCEVUnknown *U = FirstUnknown; U;) {
11398     SCEVUnknown *Tmp = U;
11399     U = U->Next;
11400     Tmp->~SCEVUnknown();
11401   }
11402   FirstUnknown = nullptr;
11403 
11404   ExprValueMap.clear();
11405   ValueExprMap.clear();
11406   HasRecMap.clear();
11407 
11408   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11409   // that a loop had multiple computable exits.
11410   for (auto &BTCI : BackedgeTakenCounts)
11411     BTCI.second.clear();
11412   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11413     BTCI.second.clear();
11414 
11415   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11416   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11417   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11418   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11419   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11420 }
11421 
11422 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11423   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11424 }
11425 
11426 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11427                           const Loop *L) {
11428   // Print all inner loops first
11429   for (Loop *I : *L)
11430     PrintLoopInfo(OS, SE, I);
11431 
11432   OS << "Loop ";
11433   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11434   OS << ": ";
11435 
11436   SmallVector<BasicBlock *, 8> ExitBlocks;
11437   L->getExitBlocks(ExitBlocks);
11438   if (ExitBlocks.size() != 1)
11439     OS << "<multiple exits> ";
11440 
11441   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11442     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
11443   } else {
11444     OS << "Unpredictable backedge-taken count. ";
11445   }
11446 
11447   OS << "\n"
11448         "Loop ";
11449   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11450   OS << ": ";
11451 
11452   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
11453     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
11454     if (SE->isBackedgeTakenCountMaxOrZero(L))
11455       OS << ", actual taken count either this or zero.";
11456   } else {
11457     OS << "Unpredictable max backedge-taken count. ";
11458   }
11459 
11460   OS << "\n"
11461         "Loop ";
11462   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11463   OS << ": ";
11464 
11465   SCEVUnionPredicate Pred;
11466   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11467   if (!isa<SCEVCouldNotCompute>(PBT)) {
11468     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11469     OS << " Predicates:\n";
11470     Pred.print(OS, 4);
11471   } else {
11472     OS << "Unpredictable predicated backedge-taken count. ";
11473   }
11474   OS << "\n";
11475 
11476   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11477     OS << "Loop ";
11478     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11479     OS << ": ";
11480     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11481   }
11482 }
11483 
11484 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11485   switch (LD) {
11486   case ScalarEvolution::LoopVariant:
11487     return "Variant";
11488   case ScalarEvolution::LoopInvariant:
11489     return "Invariant";
11490   case ScalarEvolution::LoopComputable:
11491     return "Computable";
11492   }
11493   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11494 }
11495 
11496 void ScalarEvolution::print(raw_ostream &OS) const {
11497   // ScalarEvolution's implementation of the print method is to print
11498   // out SCEV values of all instructions that are interesting. Doing
11499   // this potentially causes it to create new SCEV objects though,
11500   // which technically conflicts with the const qualifier. This isn't
11501   // observable from outside the class though, so casting away the
11502   // const isn't dangerous.
11503   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11504 
11505   OS << "Classifying expressions for: ";
11506   F.printAsOperand(OS, /*PrintType=*/false);
11507   OS << "\n";
11508   for (Instruction &I : instructions(F))
11509     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11510       OS << I << '\n';
11511       OS << "  -->  ";
11512       const SCEV *SV = SE.getSCEV(&I);
11513       SV->print(OS);
11514       if (!isa<SCEVCouldNotCompute>(SV)) {
11515         OS << " U: ";
11516         SE.getUnsignedRange(SV).print(OS);
11517         OS << " S: ";
11518         SE.getSignedRange(SV).print(OS);
11519       }
11520 
11521       const Loop *L = LI.getLoopFor(I.getParent());
11522 
11523       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11524       if (AtUse != SV) {
11525         OS << "  -->  ";
11526         AtUse->print(OS);
11527         if (!isa<SCEVCouldNotCompute>(AtUse)) {
11528           OS << " U: ";
11529           SE.getUnsignedRange(AtUse).print(OS);
11530           OS << " S: ";
11531           SE.getSignedRange(AtUse).print(OS);
11532         }
11533       }
11534 
11535       if (L) {
11536         OS << "\t\t" "Exits: ";
11537         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11538         if (!SE.isLoopInvariant(ExitValue, L)) {
11539           OS << "<<Unknown>>";
11540         } else {
11541           OS << *ExitValue;
11542         }
11543 
11544         bool First = true;
11545         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11546           if (First) {
11547             OS << "\t\t" "LoopDispositions: { ";
11548             First = false;
11549           } else {
11550             OS << ", ";
11551           }
11552 
11553           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11554           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11555         }
11556 
11557         for (auto *InnerL : depth_first(L)) {
11558           if (InnerL == L)
11559             continue;
11560           if (First) {
11561             OS << "\t\t" "LoopDispositions: { ";
11562             First = false;
11563           } else {
11564             OS << ", ";
11565           }
11566 
11567           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11568           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11569         }
11570 
11571         OS << " }";
11572       }
11573 
11574       OS << "\n";
11575     }
11576 
11577   OS << "Determining loop execution counts for: ";
11578   F.printAsOperand(OS, /*PrintType=*/false);
11579   OS << "\n";
11580   for (Loop *I : LI)
11581     PrintLoopInfo(OS, &SE, I);
11582 }
11583 
11584 ScalarEvolution::LoopDisposition
11585 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11586   auto &Values = LoopDispositions[S];
11587   for (auto &V : Values) {
11588     if (V.getPointer() == L)
11589       return V.getInt();
11590   }
11591   Values.emplace_back(L, LoopVariant);
11592   LoopDisposition D = computeLoopDisposition(S, L);
11593   auto &Values2 = LoopDispositions[S];
11594   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11595     if (V.getPointer() == L) {
11596       V.setInt(D);
11597       break;
11598     }
11599   }
11600   return D;
11601 }
11602 
11603 ScalarEvolution::LoopDisposition
11604 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11605   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11606   case scConstant:
11607     return LoopInvariant;
11608   case scTruncate:
11609   case scZeroExtend:
11610   case scSignExtend:
11611     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11612   case scAddRecExpr: {
11613     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11614 
11615     // If L is the addrec's loop, it's computable.
11616     if (AR->getLoop() == L)
11617       return LoopComputable;
11618 
11619     // Add recurrences are never invariant in the function-body (null loop).
11620     if (!L)
11621       return LoopVariant;
11622 
11623     // Everything that is not defined at loop entry is variant.
11624     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11625       return LoopVariant;
11626     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11627            " dominate the contained loop's header?");
11628 
11629     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11630     if (AR->getLoop()->contains(L))
11631       return LoopInvariant;
11632 
11633     // This recurrence is variant w.r.t. L if any of its operands
11634     // are variant.
11635     for (auto *Op : AR->operands())
11636       if (!isLoopInvariant(Op, L))
11637         return LoopVariant;
11638 
11639     // Otherwise it's loop-invariant.
11640     return LoopInvariant;
11641   }
11642   case scAddExpr:
11643   case scMulExpr:
11644   case scUMaxExpr:
11645   case scSMaxExpr: {
11646     bool HasVarying = false;
11647     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11648       LoopDisposition D = getLoopDisposition(Op, L);
11649       if (D == LoopVariant)
11650         return LoopVariant;
11651       if (D == LoopComputable)
11652         HasVarying = true;
11653     }
11654     return HasVarying ? LoopComputable : LoopInvariant;
11655   }
11656   case scUDivExpr: {
11657     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11658     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11659     if (LD == LoopVariant)
11660       return LoopVariant;
11661     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11662     if (RD == LoopVariant)
11663       return LoopVariant;
11664     return (LD == LoopInvariant && RD == LoopInvariant) ?
11665            LoopInvariant : LoopComputable;
11666   }
11667   case scUnknown:
11668     // All non-instruction values are loop invariant.  All instructions are loop
11669     // invariant if they are not contained in the specified loop.
11670     // Instructions are never considered invariant in the function body
11671     // (null loop) because they are defined within the "loop".
11672     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11673       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11674     return LoopInvariant;
11675   case scCouldNotCompute:
11676     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11677   }
11678   llvm_unreachable("Unknown SCEV kind!");
11679 }
11680 
11681 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11682   return getLoopDisposition(S, L) == LoopInvariant;
11683 }
11684 
11685 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11686   return getLoopDisposition(S, L) == LoopComputable;
11687 }
11688 
11689 ScalarEvolution::BlockDisposition
11690 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11691   auto &Values = BlockDispositions[S];
11692   for (auto &V : Values) {
11693     if (V.getPointer() == BB)
11694       return V.getInt();
11695   }
11696   Values.emplace_back(BB, DoesNotDominateBlock);
11697   BlockDisposition D = computeBlockDisposition(S, BB);
11698   auto &Values2 = BlockDispositions[S];
11699   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11700     if (V.getPointer() == BB) {
11701       V.setInt(D);
11702       break;
11703     }
11704   }
11705   return D;
11706 }
11707 
11708 ScalarEvolution::BlockDisposition
11709 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11710   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11711   case scConstant:
11712     return ProperlyDominatesBlock;
11713   case scTruncate:
11714   case scZeroExtend:
11715   case scSignExtend:
11716     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11717   case scAddRecExpr: {
11718     // This uses a "dominates" query instead of "properly dominates" query
11719     // to test for proper dominance too, because the instruction which
11720     // produces the addrec's value is a PHI, and a PHI effectively properly
11721     // dominates its entire containing block.
11722     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11723     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11724       return DoesNotDominateBlock;
11725 
11726     // Fall through into SCEVNAryExpr handling.
11727     LLVM_FALLTHROUGH;
11728   }
11729   case scAddExpr:
11730   case scMulExpr:
11731   case scUMaxExpr:
11732   case scSMaxExpr: {
11733     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11734     bool Proper = true;
11735     for (const SCEV *NAryOp : NAry->operands()) {
11736       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11737       if (D == DoesNotDominateBlock)
11738         return DoesNotDominateBlock;
11739       if (D == DominatesBlock)
11740         Proper = false;
11741     }
11742     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11743   }
11744   case scUDivExpr: {
11745     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11746     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11747     BlockDisposition LD = getBlockDisposition(LHS, BB);
11748     if (LD == DoesNotDominateBlock)
11749       return DoesNotDominateBlock;
11750     BlockDisposition RD = getBlockDisposition(RHS, BB);
11751     if (RD == DoesNotDominateBlock)
11752       return DoesNotDominateBlock;
11753     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11754       ProperlyDominatesBlock : DominatesBlock;
11755   }
11756   case scUnknown:
11757     if (Instruction *I =
11758           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11759       if (I->getParent() == BB)
11760         return DominatesBlock;
11761       if (DT.properlyDominates(I->getParent(), BB))
11762         return ProperlyDominatesBlock;
11763       return DoesNotDominateBlock;
11764     }
11765     return ProperlyDominatesBlock;
11766   case scCouldNotCompute:
11767     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11768   }
11769   llvm_unreachable("Unknown SCEV kind!");
11770 }
11771 
11772 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11773   return getBlockDisposition(S, BB) >= DominatesBlock;
11774 }
11775 
11776 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11777   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11778 }
11779 
11780 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11781   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11782 }
11783 
11784 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11785   auto IsS = [&](const SCEV *X) { return S == X; };
11786   auto ContainsS = [&](const SCEV *X) {
11787     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11788   };
11789   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11790 }
11791 
11792 void
11793 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11794   ValuesAtScopes.erase(S);
11795   LoopDispositions.erase(S);
11796   BlockDispositions.erase(S);
11797   UnsignedRanges.erase(S);
11798   SignedRanges.erase(S);
11799   ExprValueMap.erase(S);
11800   HasRecMap.erase(S);
11801   MinTrailingZerosCache.erase(S);
11802 
11803   for (auto I = PredicatedSCEVRewrites.begin();
11804        I != PredicatedSCEVRewrites.end();) {
11805     std::pair<const SCEV *, const Loop *> Entry = I->first;
11806     if (Entry.first == S)
11807       PredicatedSCEVRewrites.erase(I++);
11808     else
11809       ++I;
11810   }
11811 
11812   auto RemoveSCEVFromBackedgeMap =
11813       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11814         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11815           BackedgeTakenInfo &BEInfo = I->second;
11816           if (BEInfo.hasOperand(S, this)) {
11817             BEInfo.clear();
11818             Map.erase(I++);
11819           } else
11820             ++I;
11821         }
11822       };
11823 
11824   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11825   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11826 }
11827 
11828 void
11829 ScalarEvolution::getUsedLoops(const SCEV *S,
11830                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11831   struct FindUsedLoops {
11832     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11833         : LoopsUsed(LoopsUsed) {}
11834     SmallPtrSetImpl<const Loop *> &LoopsUsed;
11835     bool follow(const SCEV *S) {
11836       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11837         LoopsUsed.insert(AR->getLoop());
11838       return true;
11839     }
11840 
11841     bool isDone() const { return false; }
11842   };
11843 
11844   FindUsedLoops F(LoopsUsed);
11845   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11846 }
11847 
11848 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11849   SmallPtrSet<const Loop *, 8> LoopsUsed;
11850   getUsedLoops(S, LoopsUsed);
11851   for (auto *L : LoopsUsed)
11852     LoopUsers[L].push_back(S);
11853 }
11854 
11855 void ScalarEvolution::verify() const {
11856   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11857   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11858 
11859   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11860 
11861   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11862   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11863     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11864 
11865     const SCEV *visitConstant(const SCEVConstant *Constant) {
11866       return SE.getConstant(Constant->getAPInt());
11867     }
11868 
11869     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11870       return SE.getUnknown(Expr->getValue());
11871     }
11872 
11873     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11874       return SE.getCouldNotCompute();
11875     }
11876   };
11877 
11878   SCEVMapper SCM(SE2);
11879 
11880   while (!LoopStack.empty()) {
11881     auto *L = LoopStack.pop_back_val();
11882     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11883 
11884     auto *CurBECount = SCM.visit(
11885         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11886     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11887 
11888     if (CurBECount == SE2.getCouldNotCompute() ||
11889         NewBECount == SE2.getCouldNotCompute()) {
11890       // NB! This situation is legal, but is very suspicious -- whatever pass
11891       // change the loop to make a trip count go from could not compute to
11892       // computable or vice-versa *should have* invalidated SCEV.  However, we
11893       // choose not to assert here (for now) since we don't want false
11894       // positives.
11895       continue;
11896     }
11897 
11898     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11899       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11900       // not propagate undef aggressively).  This means we can (and do) fail
11901       // verification in cases where a transform makes the trip count of a loop
11902       // go from "undef" to "undef+1" (say).  The transform is fine, since in
11903       // both cases the loop iterates "undef" times, but SCEV thinks we
11904       // increased the trip count of the loop by 1 incorrectly.
11905       continue;
11906     }
11907 
11908     if (SE.getTypeSizeInBits(CurBECount->getType()) >
11909         SE.getTypeSizeInBits(NewBECount->getType()))
11910       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11911     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11912              SE.getTypeSizeInBits(NewBECount->getType()))
11913       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11914 
11915     auto *ConstantDelta =
11916         dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
11917 
11918     if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
11919       dbgs() << "Trip Count Changed!\n";
11920       dbgs() << "Old: " << *CurBECount << "\n";
11921       dbgs() << "New: " << *NewBECount << "\n";
11922       dbgs() << "Delta: " << *ConstantDelta << "\n";
11923       std::abort();
11924     }
11925   }
11926 }
11927 
11928 bool ScalarEvolution::invalidate(
11929     Function &F, const PreservedAnalyses &PA,
11930     FunctionAnalysisManager::Invalidator &Inv) {
11931   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11932   // of its dependencies is invalidated.
11933   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11934   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11935          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11936          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11937          Inv.invalidate<LoopAnalysis>(F, PA);
11938 }
11939 
11940 AnalysisKey ScalarEvolutionAnalysis::Key;
11941 
11942 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11943                                              FunctionAnalysisManager &AM) {
11944   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11945                          AM.getResult<AssumptionAnalysis>(F),
11946                          AM.getResult<DominatorTreeAnalysis>(F),
11947                          AM.getResult<LoopAnalysis>(F));
11948 }
11949 
11950 PreservedAnalyses
11951 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11952   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11953   return PreservedAnalyses::all();
11954 }
11955 
11956 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11957                       "Scalar Evolution Analysis", false, true)
11958 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11959 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11960 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11961 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11962 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11963                     "Scalar Evolution Analysis", false, true)
11964 
11965 char ScalarEvolutionWrapperPass::ID = 0;
11966 
11967 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11968   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11969 }
11970 
11971 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11972   SE.reset(new ScalarEvolution(
11973       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11974       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11975       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11976       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11977   return false;
11978 }
11979 
11980 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11981 
11982 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11983   SE->print(OS);
11984 }
11985 
11986 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11987   if (!VerifySCEV)
11988     return;
11989 
11990   SE->verify();
11991 }
11992 
11993 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11994   AU.setPreservesAll();
11995   AU.addRequiredTransitive<AssumptionCacheTracker>();
11996   AU.addRequiredTransitive<LoopInfoWrapperPass>();
11997   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11998   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11999 }
12000 
12001 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12002                                                         const SCEV *RHS) {
12003   FoldingSetNodeID ID;
12004   assert(LHS->getType() == RHS->getType() &&
12005          "Type mismatch between LHS and RHS");
12006   // Unique this node based on the arguments
12007   ID.AddInteger(SCEVPredicate::P_Equal);
12008   ID.AddPointer(LHS);
12009   ID.AddPointer(RHS);
12010   void *IP = nullptr;
12011   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12012     return S;
12013   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12014       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12015   UniquePreds.InsertNode(Eq, IP);
12016   return Eq;
12017 }
12018 
12019 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12020     const SCEVAddRecExpr *AR,
12021     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12022   FoldingSetNodeID ID;
12023   // Unique this node based on the arguments
12024   ID.AddInteger(SCEVPredicate::P_Wrap);
12025   ID.AddPointer(AR);
12026   ID.AddInteger(AddedFlags);
12027   void *IP = nullptr;
12028   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12029     return S;
12030   auto *OF = new (SCEVAllocator)
12031       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12032   UniquePreds.InsertNode(OF, IP);
12033   return OF;
12034 }
12035 
12036 namespace {
12037 
12038 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12039 public:
12040 
12041   /// Rewrites \p S in the context of a loop L and the SCEV predication
12042   /// infrastructure.
12043   ///
12044   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12045   /// equivalences present in \p Pred.
12046   ///
12047   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12048   /// \p NewPreds such that the result will be an AddRecExpr.
12049   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12050                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12051                              SCEVUnionPredicate *Pred) {
12052     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12053     return Rewriter.visit(S);
12054   }
12055 
12056   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12057     if (Pred) {
12058       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12059       for (auto *Pred : ExprPreds)
12060         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12061           if (IPred->getLHS() == Expr)
12062             return IPred->getRHS();
12063     }
12064     return convertToAddRecWithPreds(Expr);
12065   }
12066 
12067   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12068     const SCEV *Operand = visit(Expr->getOperand());
12069     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12070     if (AR && AR->getLoop() == L && AR->isAffine()) {
12071       // This couldn't be folded because the operand didn't have the nuw
12072       // flag. Add the nusw flag as an assumption that we could make.
12073       const SCEV *Step = AR->getStepRecurrence(SE);
12074       Type *Ty = Expr->getType();
12075       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12076         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12077                                 SE.getSignExtendExpr(Step, Ty), L,
12078                                 AR->getNoWrapFlags());
12079     }
12080     return SE.getZeroExtendExpr(Operand, Expr->getType());
12081   }
12082 
12083   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12084     const SCEV *Operand = visit(Expr->getOperand());
12085     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12086     if (AR && AR->getLoop() == L && AR->isAffine()) {
12087       // This couldn't be folded because the operand didn't have the nsw
12088       // flag. Add the nssw flag as an assumption that we could make.
12089       const SCEV *Step = AR->getStepRecurrence(SE);
12090       Type *Ty = Expr->getType();
12091       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12092         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12093                                 SE.getSignExtendExpr(Step, Ty), L,
12094                                 AR->getNoWrapFlags());
12095     }
12096     return SE.getSignExtendExpr(Operand, Expr->getType());
12097   }
12098 
12099 private:
12100   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12101                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12102                         SCEVUnionPredicate *Pred)
12103       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12104 
12105   bool addOverflowAssumption(const SCEVPredicate *P) {
12106     if (!NewPreds) {
12107       // Check if we've already made this assumption.
12108       return Pred && Pred->implies(P);
12109     }
12110     NewPreds->insert(P);
12111     return true;
12112   }
12113 
12114   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12115                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12116     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12117     return addOverflowAssumption(A);
12118   }
12119 
12120   // If \p Expr represents a PHINode, we try to see if it can be represented
12121   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12122   // to add this predicate as a runtime overflow check, we return the AddRec.
12123   // If \p Expr does not meet these conditions (is not a PHI node, or we
12124   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12125   // return \p Expr.
12126   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12127     if (!isa<PHINode>(Expr->getValue()))
12128       return Expr;
12129     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12130     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12131     if (!PredicatedRewrite)
12132       return Expr;
12133     for (auto *P : PredicatedRewrite->second){
12134       // Wrap predicates from outer loops are not supported.
12135       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12136         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12137         if (L != AR->getLoop())
12138           return Expr;
12139       }
12140       if (!addOverflowAssumption(P))
12141         return Expr;
12142     }
12143     return PredicatedRewrite->first;
12144   }
12145 
12146   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12147   SCEVUnionPredicate *Pred;
12148   const Loop *L;
12149 };
12150 
12151 } // end anonymous namespace
12152 
12153 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12154                                                    SCEVUnionPredicate &Preds) {
12155   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12156 }
12157 
12158 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12159     const SCEV *S, const Loop *L,
12160     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12161   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12162   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12163   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12164 
12165   if (!AddRec)
12166     return nullptr;
12167 
12168   // Since the transformation was successful, we can now transfer the SCEV
12169   // predicates.
12170   for (auto *P : TransformPreds)
12171     Preds.insert(P);
12172 
12173   return AddRec;
12174 }
12175 
12176 /// SCEV predicates
12177 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12178                              SCEVPredicateKind Kind)
12179     : FastID(ID), Kind(Kind) {}
12180 
12181 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12182                                        const SCEV *LHS, const SCEV *RHS)
12183     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12184   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12185   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12186 }
12187 
12188 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12189   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12190 
12191   if (!Op)
12192     return false;
12193 
12194   return Op->LHS == LHS && Op->RHS == RHS;
12195 }
12196 
12197 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12198 
12199 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12200 
12201 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12202   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12203 }
12204 
12205 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12206                                      const SCEVAddRecExpr *AR,
12207                                      IncrementWrapFlags Flags)
12208     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12209 
12210 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12211 
12212 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12213   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12214 
12215   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12216 }
12217 
12218 bool SCEVWrapPredicate::isAlwaysTrue() const {
12219   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12220   IncrementWrapFlags IFlags = Flags;
12221 
12222   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12223     IFlags = clearFlags(IFlags, IncrementNSSW);
12224 
12225   return IFlags == IncrementAnyWrap;
12226 }
12227 
12228 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12229   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12230   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12231     OS << "<nusw>";
12232   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12233     OS << "<nssw>";
12234   OS << "\n";
12235 }
12236 
12237 SCEVWrapPredicate::IncrementWrapFlags
12238 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12239                                    ScalarEvolution &SE) {
12240   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12241   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12242 
12243   // We can safely transfer the NSW flag as NSSW.
12244   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12245     ImpliedFlags = IncrementNSSW;
12246 
12247   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12248     // If the increment is positive, the SCEV NUW flag will also imply the
12249     // WrapPredicate NUSW flag.
12250     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12251       if (Step->getValue()->getValue().isNonNegative())
12252         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12253   }
12254 
12255   return ImpliedFlags;
12256 }
12257 
12258 /// Union predicates don't get cached so create a dummy set ID for it.
12259 SCEVUnionPredicate::SCEVUnionPredicate()
12260     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12261 
12262 bool SCEVUnionPredicate::isAlwaysTrue() const {
12263   return all_of(Preds,
12264                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12265 }
12266 
12267 ArrayRef<const SCEVPredicate *>
12268 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12269   auto I = SCEVToPreds.find(Expr);
12270   if (I == SCEVToPreds.end())
12271     return ArrayRef<const SCEVPredicate *>();
12272   return I->second;
12273 }
12274 
12275 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12276   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12277     return all_of(Set->Preds,
12278                   [this](const SCEVPredicate *I) { return this->implies(I); });
12279 
12280   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12281   if (ScevPredsIt == SCEVToPreds.end())
12282     return false;
12283   auto &SCEVPreds = ScevPredsIt->second;
12284 
12285   return any_of(SCEVPreds,
12286                 [N](const SCEVPredicate *I) { return I->implies(N); });
12287 }
12288 
12289 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12290 
12291 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12292   for (auto Pred : Preds)
12293     Pred->print(OS, Depth);
12294 }
12295 
12296 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12297   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12298     for (auto Pred : Set->Preds)
12299       add(Pred);
12300     return;
12301   }
12302 
12303   if (implies(N))
12304     return;
12305 
12306   const SCEV *Key = N->getExpr();
12307   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12308                 " associated expression!");
12309 
12310   SCEVToPreds[Key].push_back(N);
12311   Preds.push_back(N);
12312 }
12313 
12314 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12315                                                      Loop &L)
12316     : SE(SE), L(L) {}
12317 
12318 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12319   const SCEV *Expr = SE.getSCEV(V);
12320   RewriteEntry &Entry = RewriteMap[Expr];
12321 
12322   // If we already have an entry and the version matches, return it.
12323   if (Entry.second && Generation == Entry.first)
12324     return Entry.second;
12325 
12326   // We found an entry but it's stale. Rewrite the stale entry
12327   // according to the current predicate.
12328   if (Entry.second)
12329     Expr = Entry.second;
12330 
12331   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12332   Entry = {Generation, NewSCEV};
12333 
12334   return NewSCEV;
12335 }
12336 
12337 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12338   if (!BackedgeCount) {
12339     SCEVUnionPredicate BackedgePred;
12340     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12341     addPredicate(BackedgePred);
12342   }
12343   return BackedgeCount;
12344 }
12345 
12346 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12347   if (Preds.implies(&Pred))
12348     return;
12349   Preds.add(&Pred);
12350   updateGeneration();
12351 }
12352 
12353 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12354   return Preds;
12355 }
12356 
12357 void PredicatedScalarEvolution::updateGeneration() {
12358   // If the generation number wrapped recompute everything.
12359   if (++Generation == 0) {
12360     for (auto &II : RewriteMap) {
12361       const SCEV *Rewritten = II.second.second;
12362       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12363     }
12364   }
12365 }
12366 
12367 void PredicatedScalarEvolution::setNoOverflow(
12368     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12369   const SCEV *Expr = getSCEV(V);
12370   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12371 
12372   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12373 
12374   // Clear the statically implied flags.
12375   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12376   addPredicate(*SE.getWrapPredicate(AR, Flags));
12377 
12378   auto II = FlagsMap.insert({V, Flags});
12379   if (!II.second)
12380     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12381 }
12382 
12383 bool PredicatedScalarEvolution::hasNoOverflow(
12384     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12385   const SCEV *Expr = getSCEV(V);
12386   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12387 
12388   Flags = SCEVWrapPredicate::clearFlags(
12389       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12390 
12391   auto II = FlagsMap.find(V);
12392 
12393   if (II != FlagsMap.end())
12394     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12395 
12396   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12397 }
12398 
12399 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12400   const SCEV *Expr = this->getSCEV(V);
12401   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12402   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12403 
12404   if (!New)
12405     return nullptr;
12406 
12407   for (auto *P : NewPreds)
12408     Preds.add(P);
12409 
12410   updateGeneration();
12411   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12412   return New;
12413 }
12414 
12415 PredicatedScalarEvolution::PredicatedScalarEvolution(
12416     const PredicatedScalarEvolution &Init)
12417     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12418       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12419   for (const auto &I : Init.FlagsMap)
12420     FlagsMap.insert(I);
12421 }
12422 
12423 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12424   // For each block.
12425   for (auto *BB : L.getBlocks())
12426     for (auto &I : *BB) {
12427       if (!SE.isSCEVable(I.getType()))
12428         continue;
12429 
12430       auto *Expr = SE.getSCEV(&I);
12431       auto II = RewriteMap.find(Expr);
12432 
12433       if (II == RewriteMap.end())
12434         continue;
12435 
12436       // Don't print things that are not interesting.
12437       if (II->second.second == Expr)
12438         continue;
12439 
12440       OS.indent(Depth) << "[PSE]" << I << ":\n";
12441       OS.indent(Depth + 2) << *Expr << "\n";
12442       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12443     }
12444 }
12445 
12446 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12447 // arbitrary expressions.
12448 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12449 // 4, A / B becomes X / 8).
12450 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12451                                 const SCEV *&RHS) {
12452   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12453   if (Add == nullptr || Add->getNumOperands() != 2)
12454     return false;
12455 
12456   const SCEV *A = Add->getOperand(1);
12457   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12458 
12459   if (Mul == nullptr)
12460     return false;
12461 
12462   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12463     // (SomeExpr + (-(SomeExpr / B) * B)).
12464     if (Expr == getURemExpr(A, B)) {
12465       LHS = A;
12466       RHS = B;
12467       return true;
12468     }
12469     return false;
12470   };
12471 
12472   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12473   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12474     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12475            MatchURemWithDivisor(Mul->getOperand(2));
12476 
12477   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12478   if (Mul->getNumOperands() == 2)
12479     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12480            MatchURemWithDivisor(Mul->getOperand(0)) ||
12481            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12482            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12483   return false;
12484 }
12485