1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     ListSeparator LS(OpStr);
325     for (const SCEV *Op : NAry->operands())
326       OS << LS << *Op;
327     OS << ")";
328     switch (NAry->getSCEVType()) {
329     case scAddExpr:
330     case scMulExpr:
331       if (NAry->hasNoUnsignedWrap())
332         OS << "<nuw>";
333       if (NAry->hasNoSignedWrap())
334         OS << "<nsw>";
335       break;
336     default:
337       // Nothing to print for other nary expressions.
338       break;
339     }
340     return;
341   }
342   case scUDivExpr: {
343     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345     return;
346   }
347   case scUnknown: {
348     const SCEVUnknown *U = cast<SCEVUnknown>(this);
349     Type *AllocTy;
350     if (U->isSizeOf(AllocTy)) {
351       OS << "sizeof(" << *AllocTy << ")";
352       return;
353     }
354     if (U->isAlignOf(AllocTy)) {
355       OS << "alignof(" << *AllocTy << ")";
356       return;
357     }
358 
359     Type *CTy;
360     Constant *FieldNo;
361     if (U->isOffsetOf(CTy, FieldNo)) {
362       OS << "offsetof(" << *CTy << ", ";
363       FieldNo->printAsOperand(OS, false);
364       OS << ")";
365       return;
366     }
367 
368     // Otherwise just print it normally.
369     U->getValue()->printAsOperand(OS, false);
370     return;
371   }
372   case scCouldNotCompute:
373     OS << "***COULDNOTCOMPUTE***";
374     return;
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
379 Type *SCEV::getType() const {
380   switch (getSCEVType()) {
381   case scConstant:
382     return cast<SCEVConstant>(this)->getType();
383   case scPtrToInt:
384   case scTruncate:
385   case scZeroExtend:
386   case scSignExtend:
387     return cast<SCEVCastExpr>(this)->getType();
388   case scAddRecExpr:
389     return cast<SCEVAddRecExpr>(this)->getType();
390   case scMulExpr:
391     return cast<SCEVMulExpr>(this)->getType();
392   case scUMaxExpr:
393   case scSMaxExpr:
394   case scUMinExpr:
395   case scSMinExpr:
396     return cast<SCEVMinMaxExpr>(this)->getType();
397   case scAddExpr:
398     return cast<SCEVAddExpr>(this)->getType();
399   case scUDivExpr:
400     return cast<SCEVUDivExpr>(this)->getType();
401   case scUnknown:
402     return cast<SCEVUnknown>(this)->getType();
403   case scCouldNotCompute:
404     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
405   }
406   llvm_unreachable("Unknown SCEV kind!");
407 }
408 
409 bool SCEV::isZero() const {
410   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
411     return SC->getValue()->isZero();
412   return false;
413 }
414 
415 bool SCEV::isOne() const {
416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
417     return SC->getValue()->isOne();
418   return false;
419 }
420 
421 bool SCEV::isAllOnesValue() const {
422   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423     return SC->getValue()->isMinusOne();
424   return false;
425 }
426 
427 bool SCEV::isNonConstantNegative() const {
428   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
429   if (!Mul) return false;
430 
431   // If there is a constant factor, it will be first.
432   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
433   if (!SC) return false;
434 
435   // Return true if the value is negative, this matches things like (-42 * V).
436   return SC->getAPInt().isNegative();
437 }
438 
439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
441 
442 bool SCEVCouldNotCompute::classof(const SCEV *S) {
443   return S->getSCEVType() == scCouldNotCompute;
444 }
445 
446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
447   FoldingSetNodeID ID;
448   ID.AddInteger(scConstant);
449   ID.AddPointer(V);
450   void *IP = nullptr;
451   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
452   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
453   UniqueSCEVs.InsertNode(S, IP);
454   return S;
455 }
456 
457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
458   return getConstant(ConstantInt::get(getContext(), Val));
459 }
460 
461 const SCEV *
462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
463   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
464   return getConstant(ConstantInt::get(ITy, V, isSigned));
465 }
466 
467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
468                            const SCEV *op, Type *ty)
469     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
470   Operands[0] = op;
471 }
472 
473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
474                                    Type *ITy)
475     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
476   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
477          "Must be a non-bit-width-changing pointer-to-integer cast!");
478 }
479 
480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
481                                            SCEVTypes SCEVTy, const SCEV *op,
482                                            Type *ty)
483     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
484 
485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
486                                    Type *ty)
487     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
488   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
489          "Cannot truncate non-integer value!");
490 }
491 
492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
493                                        const SCEV *op, Type *ty)
494     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
495   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
496          "Cannot zero extend non-integer value!");
497 }
498 
499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
500                                        const SCEV *op, Type *ty)
501     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
502   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
503          "Cannot sign extend non-integer value!");
504 }
505 
506 void SCEVUnknown::deleted() {
507   // Clear this SCEVUnknown from various maps.
508   SE->forgetMemoizedResults(this);
509 
510   // Remove this SCEVUnknown from the uniquing map.
511   SE->UniqueSCEVs.RemoveNode(this);
512 
513   // Release the value.
514   setValPtr(nullptr);
515 }
516 
517 void SCEVUnknown::allUsesReplacedWith(Value *New) {
518   // Remove this SCEVUnknown from the uniquing map.
519   SE->UniqueSCEVs.RemoveNode(this);
520 
521   // Update this SCEVUnknown to point to the new value. This is needed
522   // because there may still be outstanding SCEVs which still point to
523   // this SCEVUnknown.
524   setValPtr(New);
525 }
526 
527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
528   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
529     if (VCE->getOpcode() == Instruction::PtrToInt)
530       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
531         if (CE->getOpcode() == Instruction::GetElementPtr &&
532             CE->getOperand(0)->isNullValue() &&
533             CE->getNumOperands() == 2)
534           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
535             if (CI->isOne()) {
536               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
537               return true;
538             }
539 
540   return false;
541 }
542 
543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
544   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
545     if (VCE->getOpcode() == Instruction::PtrToInt)
546       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
547         if (CE->getOpcode() == Instruction::GetElementPtr &&
548             CE->getOperand(0)->isNullValue()) {
549           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
550           if (StructType *STy = dyn_cast<StructType>(Ty))
551             if (!STy->isPacked() &&
552                 CE->getNumOperands() == 3 &&
553                 CE->getOperand(1)->isNullValue()) {
554               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555                 if (CI->isOne() &&
556                     STy->getNumElements() == 2 &&
557                     STy->getElementType(0)->isIntegerTy(1)) {
558                   AllocTy = STy->getElementType(1);
559                   return true;
560                 }
561             }
562         }
563 
564   return false;
565 }
566 
567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569     if (VCE->getOpcode() == Instruction::PtrToInt)
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571         if (CE->getOpcode() == Instruction::GetElementPtr &&
572             CE->getNumOperands() == 3 &&
573             CE->getOperand(0)->isNullValue() &&
574             CE->getOperand(1)->isNullValue()) {
575           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
576           // Ignore vector types here so that ScalarEvolutionExpander doesn't
577           // emit getelementptrs that index into vectors.
578           if (Ty->isStructTy() || Ty->isArrayTy()) {
579             CTy = Ty;
580             FieldNo = CE->getOperand(2);
581             return true;
582           }
583         }
584 
585   return false;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                               SCEV Utilities
590 //===----------------------------------------------------------------------===//
591 
592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
594 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
595 /// have been previously deemed to be "equally complex" by this routine.  It is
596 /// intended to avoid exponential time complexity in cases like:
597 ///
598 ///   %a = f(%x, %y)
599 ///   %b = f(%a, %a)
600 ///   %c = f(%b, %b)
601 ///
602 ///   %d = f(%x, %y)
603 ///   %e = f(%d, %d)
604 ///   %f = f(%e, %e)
605 ///
606 ///   CompareValueComplexity(%f, %c)
607 ///
608 /// Since we do not continue running this routine on expression trees once we
609 /// have seen unequal values, there is no need to track them in the cache.
610 static int
611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
612                        const LoopInfo *const LI, Value *LV, Value *RV,
613                        unsigned Depth) {
614   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
615     return 0;
616 
617   // Order pointer values after integer values. This helps SCEVExpander form
618   // GEPs.
619   bool LIsPointer = LV->getType()->isPointerTy(),
620        RIsPointer = RV->getType()->isPointerTy();
621   if (LIsPointer != RIsPointer)
622     return (int)LIsPointer - (int)RIsPointer;
623 
624   // Compare getValueID values.
625   unsigned LID = LV->getValueID(), RID = RV->getValueID();
626   if (LID != RID)
627     return (int)LID - (int)RID;
628 
629   // Sort arguments by their position.
630   if (const auto *LA = dyn_cast<Argument>(LV)) {
631     const auto *RA = cast<Argument>(RV);
632     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
633     return (int)LArgNo - (int)RArgNo;
634   }
635 
636   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
637     const auto *RGV = cast<GlobalValue>(RV);
638 
639     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
640       auto LT = GV->getLinkage();
641       return !(GlobalValue::isPrivateLinkage(LT) ||
642                GlobalValue::isInternalLinkage(LT));
643     };
644 
645     // Use the names to distinguish the two values, but only if the
646     // names are semantically important.
647     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
648       return LGV->getName().compare(RGV->getName());
649   }
650 
651   // For instructions, compare their loop depth, and their operand count.  This
652   // is pretty loose.
653   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
654     const auto *RInst = cast<Instruction>(RV);
655 
656     // Compare loop depths.
657     const BasicBlock *LParent = LInst->getParent(),
658                      *RParent = RInst->getParent();
659     if (LParent != RParent) {
660       unsigned LDepth = LI->getLoopDepth(LParent),
661                RDepth = LI->getLoopDepth(RParent);
662       if (LDepth != RDepth)
663         return (int)LDepth - (int)RDepth;
664     }
665 
666     // Compare the number of operands.
667     unsigned LNumOps = LInst->getNumOperands(),
668              RNumOps = RInst->getNumOperands();
669     if (LNumOps != RNumOps)
670       return (int)LNumOps - (int)RNumOps;
671 
672     for (unsigned Idx : seq(0u, LNumOps)) {
673       int Result =
674           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
675                                  RInst->getOperand(Idx), Depth + 1);
676       if (Result != 0)
677         return Result;
678     }
679   }
680 
681   EqCacheValue.unionSets(LV, RV);
682   return 0;
683 }
684 
685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
686 // than RHS, respectively. A three-way result allows recursive comparisons to be
687 // more efficient.
688 // If the max analysis depth was reached, return None, assuming we do not know
689 // if they are equivalent for sure.
690 static Optional<int>
691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
692                       EquivalenceClasses<const Value *> &EqCacheValue,
693                       const LoopInfo *const LI, const SCEV *LHS,
694                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
695   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
696   if (LHS == RHS)
697     return 0;
698 
699   // Primarily, sort the SCEVs by their getSCEVType().
700   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
701   if (LType != RType)
702     return (int)LType - (int)RType;
703 
704   if (EqCacheSCEV.isEquivalent(LHS, RHS))
705     return 0;
706 
707   if (Depth > MaxSCEVCompareDepth)
708     return None;
709 
710   // Aside from the getSCEVType() ordering, the particular ordering
711   // isn't very important except that it's beneficial to be consistent,
712   // so that (a + b) and (b + a) don't end up as different expressions.
713   switch (LType) {
714   case scUnknown: {
715     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
716     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
717 
718     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
719                                    RU->getValue(), Depth + 1);
720     if (X == 0)
721       EqCacheSCEV.unionSets(LHS, RHS);
722     return X;
723   }
724 
725   case scConstant: {
726     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
727     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
728 
729     // Compare constant values.
730     const APInt &LA = LC->getAPInt();
731     const APInt &RA = RC->getAPInt();
732     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
733     if (LBitWidth != RBitWidth)
734       return (int)LBitWidth - (int)RBitWidth;
735     return LA.ult(RA) ? -1 : 1;
736   }
737 
738   case scAddRecExpr: {
739     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
740     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
741 
742     // There is always a dominance between two recs that are used by one SCEV,
743     // so we can safely sort recs by loop header dominance. We require such
744     // order in getAddExpr.
745     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
746     if (LLoop != RLoop) {
747       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
748       assert(LHead != RHead && "Two loops share the same header?");
749       if (DT.dominates(LHead, RHead))
750         return 1;
751       else
752         assert(DT.dominates(RHead, LHead) &&
753                "No dominance between recurrences used by one SCEV?");
754       return -1;
755     }
756 
757     // Addrec complexity grows with operand count.
758     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
759     if (LNumOps != RNumOps)
760       return (int)LNumOps - (int)RNumOps;
761 
762     // Lexicographically compare.
763     for (unsigned i = 0; i != LNumOps; ++i) {
764       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
765                                      LA->getOperand(i), RA->getOperand(i), DT,
766                                      Depth + 1);
767       if (X != 0)
768         return X;
769     }
770     EqCacheSCEV.unionSets(LHS, RHS);
771     return 0;
772   }
773 
774   case scAddExpr:
775   case scMulExpr:
776   case scSMaxExpr:
777   case scUMaxExpr:
778   case scSMinExpr:
779   case scUMinExpr: {
780     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
781     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
782 
783     // Lexicographically compare n-ary expressions.
784     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
785     if (LNumOps != RNumOps)
786       return (int)LNumOps - (int)RNumOps;
787 
788     for (unsigned i = 0; i != LNumOps; ++i) {
789       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
790                                      LC->getOperand(i), RC->getOperand(i), DT,
791                                      Depth + 1);
792       if (X != 0)
793         return X;
794     }
795     EqCacheSCEV.unionSets(LHS, RHS);
796     return 0;
797   }
798 
799   case scUDivExpr: {
800     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
801     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
802 
803     // Lexicographically compare udiv expressions.
804     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
805                                    RC->getLHS(), DT, Depth + 1);
806     if (X != 0)
807       return X;
808     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
809                               RC->getRHS(), DT, Depth + 1);
810     if (X == 0)
811       EqCacheSCEV.unionSets(LHS, RHS);
812     return X;
813   }
814 
815   case scPtrToInt:
816   case scTruncate:
817   case scZeroExtend:
818   case scSignExtend: {
819     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
820     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
821 
822     // Compare cast expressions by operand.
823     auto X =
824         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
825                               RC->getOperand(), DT, Depth + 1);
826     if (X == 0)
827       EqCacheSCEV.unionSets(LHS, RHS);
828     return X;
829   }
830 
831   case scCouldNotCompute:
832     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
833   }
834   llvm_unreachable("Unknown SCEV kind!");
835 }
836 
837 /// Given a list of SCEV objects, order them by their complexity, and group
838 /// objects of the same complexity together by value.  When this routine is
839 /// finished, we know that any duplicates in the vector are consecutive and that
840 /// complexity is monotonically increasing.
841 ///
842 /// Note that we go take special precautions to ensure that we get deterministic
843 /// results from this routine.  In other words, we don't want the results of
844 /// this to depend on where the addresses of various SCEV objects happened to
845 /// land in memory.
846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
847                               LoopInfo *LI, DominatorTree &DT) {
848   if (Ops.size() < 2) return;  // Noop
849 
850   EquivalenceClasses<const SCEV *> EqCacheSCEV;
851   EquivalenceClasses<const Value *> EqCacheValue;
852 
853   // Whether LHS has provably less complexity than RHS.
854   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
855     auto Complexity =
856         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
857     return Complexity && *Complexity < 0;
858   };
859   if (Ops.size() == 2) {
860     // This is the common case, which also happens to be trivially simple.
861     // Special case it.
862     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
863     if (IsLessComplex(RHS, LHS))
864       std::swap(LHS, RHS);
865     return;
866   }
867 
868   // Do the rough sort by complexity.
869   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
870     return IsLessComplex(LHS, RHS);
871   });
872 
873   // Now that we are sorted by complexity, group elements of the same
874   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
875   // be extremely short in practice.  Note that we take this approach because we
876   // do not want to depend on the addresses of the objects we are grouping.
877   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
878     const SCEV *S = Ops[i];
879     unsigned Complexity = S->getSCEVType();
880 
881     // If there are any objects of the same complexity and same value as this
882     // one, group them.
883     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
884       if (Ops[j] == S) { // Found a duplicate.
885         // Move it to immediately after i'th element.
886         std::swap(Ops[i+1], Ops[j]);
887         ++i;   // no need to rescan it.
888         if (i == e-2) return;  // Done!
889       }
890     }
891   }
892 }
893 
894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
895 /// least HugeExprThreshold nodes).
896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
897   return any_of(Ops, [](const SCEV *S) {
898     return S->getExpressionSize() >= HugeExprThreshold;
899   });
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //                      Simple SCEV method implementations
904 //===----------------------------------------------------------------------===//
905 
906 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
908                                        ScalarEvolution &SE,
909                                        Type *ResultTy) {
910   // Handle the simplest case efficiently.
911   if (K == 1)
912     return SE.getTruncateOrZeroExtend(It, ResultTy);
913 
914   // We are using the following formula for BC(It, K):
915   //
916   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
917   //
918   // Suppose, W is the bitwidth of the return value.  We must be prepared for
919   // overflow.  Hence, we must assure that the result of our computation is
920   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
921   // safe in modular arithmetic.
922   //
923   // However, this code doesn't use exactly that formula; the formula it uses
924   // is something like the following, where T is the number of factors of 2 in
925   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
926   // exponentiation:
927   //
928   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
929   //
930   // This formula is trivially equivalent to the previous formula.  However,
931   // this formula can be implemented much more efficiently.  The trick is that
932   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
933   // arithmetic.  To do exact division in modular arithmetic, all we have
934   // to do is multiply by the inverse.  Therefore, this step can be done at
935   // width W.
936   //
937   // The next issue is how to safely do the division by 2^T.  The way this
938   // is done is by doing the multiplication step at a width of at least W + T
939   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
940   // when we perform the division by 2^T (which is equivalent to a right shift
941   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
942   // truncated out after the division by 2^T.
943   //
944   // In comparison to just directly using the first formula, this technique
945   // is much more efficient; using the first formula requires W * K bits,
946   // but this formula less than W + K bits. Also, the first formula requires
947   // a division step, whereas this formula only requires multiplies and shifts.
948   //
949   // It doesn't matter whether the subtraction step is done in the calculation
950   // width or the input iteration count's width; if the subtraction overflows,
951   // the result must be zero anyway.  We prefer here to do it in the width of
952   // the induction variable because it helps a lot for certain cases; CodeGen
953   // isn't smart enough to ignore the overflow, which leads to much less
954   // efficient code if the width of the subtraction is wider than the native
955   // register width.
956   //
957   // (It's possible to not widen at all by pulling out factors of 2 before
958   // the multiplication; for example, K=2 can be calculated as
959   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
960   // extra arithmetic, so it's not an obvious win, and it gets
961   // much more complicated for K > 3.)
962 
963   // Protection from insane SCEVs; this bound is conservative,
964   // but it probably doesn't matter.
965   if (K > 1000)
966     return SE.getCouldNotCompute();
967 
968   unsigned W = SE.getTypeSizeInBits(ResultTy);
969 
970   // Calculate K! / 2^T and T; we divide out the factors of two before
971   // multiplying for calculating K! / 2^T to avoid overflow.
972   // Other overflow doesn't matter because we only care about the bottom
973   // W bits of the result.
974   APInt OddFactorial(W, 1);
975   unsigned T = 1;
976   for (unsigned i = 3; i <= K; ++i) {
977     APInt Mult(W, i);
978     unsigned TwoFactors = Mult.countTrailingZeros();
979     T += TwoFactors;
980     Mult.lshrInPlace(TwoFactors);
981     OddFactorial *= Mult;
982   }
983 
984   // We need at least W + T bits for the multiplication step
985   unsigned CalculationBits = W + T;
986 
987   // Calculate 2^T, at width T+W.
988   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
989 
990   // Calculate the multiplicative inverse of K! / 2^T;
991   // this multiplication factor will perform the exact division by
992   // K! / 2^T.
993   APInt Mod = APInt::getSignedMinValue(W+1);
994   APInt MultiplyFactor = OddFactorial.zext(W+1);
995   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
996   MultiplyFactor = MultiplyFactor.trunc(W);
997 
998   // Calculate the product, at width T+W
999   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1000                                                       CalculationBits);
1001   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1002   for (unsigned i = 1; i != K; ++i) {
1003     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1004     Dividend = SE.getMulExpr(Dividend,
1005                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1006   }
1007 
1008   // Divide by 2^T
1009   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1010 
1011   // Truncate the result, and divide by K! / 2^T.
1012 
1013   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1014                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1015 }
1016 
1017 /// Return the value of this chain of recurrences at the specified iteration
1018 /// number.  We can evaluate this recurrence by multiplying each element in the
1019 /// chain by the binomial coefficient corresponding to it.  In other words, we
1020 /// can evaluate {A,+,B,+,C,+,D} as:
1021 ///
1022 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1023 ///
1024 /// where BC(It, k) stands for binomial coefficient.
1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1026                                                 ScalarEvolution &SE) const {
1027   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1028 }
1029 
1030 const SCEV *
1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1032                                     const SCEV *It, ScalarEvolution &SE) {
1033   assert(Operands.size() > 0);
1034   const SCEV *Result = Operands[0];
1035   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1036     // The computation is correct in the face of overflow provided that the
1037     // multiplication is performed _after_ the evaluation of the binomial
1038     // coefficient.
1039     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1040     if (isa<SCEVCouldNotCompute>(Coeff))
1041       return Coeff;
1042 
1043     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1044   }
1045   return Result;
1046 }
1047 
1048 //===----------------------------------------------------------------------===//
1049 //                    SCEV Expression folder implementations
1050 //===----------------------------------------------------------------------===//
1051 
1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1053                                                      unsigned Depth) {
1054   assert(Depth <= 1 &&
1055          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1056 
1057   // We could be called with an integer-typed operands during SCEV rewrites.
1058   // Since the operand is an integer already, just perform zext/trunc/self cast.
1059   if (!Op->getType()->isPointerTy())
1060     return Op;
1061 
1062   // What would be an ID for such a SCEV cast expression?
1063   FoldingSetNodeID ID;
1064   ID.AddInteger(scPtrToInt);
1065   ID.AddPointer(Op);
1066 
1067   void *IP = nullptr;
1068 
1069   // Is there already an expression for such a cast?
1070   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1071     return S;
1072 
1073   // It isn't legal for optimizations to construct new ptrtoint expressions
1074   // for non-integral pointers.
1075   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1076     return getCouldNotCompute();
1077 
1078   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1079 
1080   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1081   // is sufficiently wide to represent all possible pointer values.
1082   // We could theoretically teach SCEV to truncate wider pointers, but
1083   // that isn't implemented for now.
1084   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1085       getDataLayout().getTypeSizeInBits(IntPtrTy))
1086     return getCouldNotCompute();
1087 
1088   // If not, is this expression something we can't reduce any further?
1089   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1090     // Perform some basic constant folding. If the operand of the ptr2int cast
1091     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1092     // left as-is), but produce a zero constant.
1093     // NOTE: We could handle a more general case, but lack motivational cases.
1094     if (isa<ConstantPointerNull>(U->getValue()))
1095       return getZero(IntPtrTy);
1096 
1097     // Create an explicit cast node.
1098     // We can reuse the existing insert position since if we get here,
1099     // we won't have made any changes which would invalidate it.
1100     SCEV *S = new (SCEVAllocator)
1101         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1102     UniqueSCEVs.InsertNode(S, IP);
1103     addToLoopUseLists(S);
1104     return S;
1105   }
1106 
1107   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1108                        "non-SCEVUnknown's.");
1109 
1110   // Otherwise, we've got some expression that is more complex than just a
1111   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1112   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1113   // only, and the expressions must otherwise be integer-typed.
1114   // So sink the cast down to the SCEVUnknown's.
1115 
1116   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1117   /// which computes a pointer-typed value, and rewrites the whole expression
1118   /// tree so that *all* the computations are done on integers, and the only
1119   /// pointer-typed operands in the expression are SCEVUnknown.
1120   class SCEVPtrToIntSinkingRewriter
1121       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1122     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1123 
1124   public:
1125     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1126 
1127     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1128       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1129       return Rewriter.visit(Scev);
1130     }
1131 
1132     const SCEV *visit(const SCEV *S) {
1133       Type *STy = S->getType();
1134       // If the expression is not pointer-typed, just keep it as-is.
1135       if (!STy->isPointerTy())
1136         return S;
1137       // Else, recursively sink the cast down into it.
1138       return Base::visit(S);
1139     }
1140 
1141     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1142       SmallVector<const SCEV *, 2> Operands;
1143       bool Changed = false;
1144       for (auto *Op : Expr->operands()) {
1145         Operands.push_back(visit(Op));
1146         Changed |= Op != Operands.back();
1147       }
1148       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1149     }
1150 
1151     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1152       SmallVector<const SCEV *, 2> Operands;
1153       bool Changed = false;
1154       for (auto *Op : Expr->operands()) {
1155         Operands.push_back(visit(Op));
1156         Changed |= Op != Operands.back();
1157       }
1158       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1159     }
1160 
1161     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1162       assert(Expr->getType()->isPointerTy() &&
1163              "Should only reach pointer-typed SCEVUnknown's.");
1164       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1165     }
1166   };
1167 
1168   // And actually perform the cast sinking.
1169   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1170   assert(IntOp->getType()->isIntegerTy() &&
1171          "We must have succeeded in sinking the cast, "
1172          "and ending up with an integer-typed expression!");
1173   return IntOp;
1174 }
1175 
1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1177   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1178 
1179   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1180   if (isa<SCEVCouldNotCompute>(IntOp))
1181     return IntOp;
1182 
1183   return getTruncateOrZeroExtend(IntOp, Ty);
1184 }
1185 
1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1187                                              unsigned Depth) {
1188   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1189          "This is not a truncating conversion!");
1190   assert(isSCEVable(Ty) &&
1191          "This is not a conversion to a SCEVable type!");
1192   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1193   Ty = getEffectiveSCEVType(Ty);
1194 
1195   FoldingSetNodeID ID;
1196   ID.AddInteger(scTruncate);
1197   ID.AddPointer(Op);
1198   ID.AddPointer(Ty);
1199   void *IP = nullptr;
1200   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1201 
1202   // Fold if the operand is constant.
1203   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1204     return getConstant(
1205       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1206 
1207   // trunc(trunc(x)) --> trunc(x)
1208   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1209     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1210 
1211   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1212   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1213     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1214 
1215   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1216   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1217     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1218 
1219   if (Depth > MaxCastDepth) {
1220     SCEV *S =
1221         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1222     UniqueSCEVs.InsertNode(S, IP);
1223     addToLoopUseLists(S);
1224     return S;
1225   }
1226 
1227   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1228   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1229   // if after transforming we have at most one truncate, not counting truncates
1230   // that replace other casts.
1231   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1232     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1233     SmallVector<const SCEV *, 4> Operands;
1234     unsigned numTruncs = 0;
1235     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1236          ++i) {
1237       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1238       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1239           isa<SCEVTruncateExpr>(S))
1240         numTruncs++;
1241       Operands.push_back(S);
1242     }
1243     if (numTruncs < 2) {
1244       if (isa<SCEVAddExpr>(Op))
1245         return getAddExpr(Operands);
1246       else if (isa<SCEVMulExpr>(Op))
1247         return getMulExpr(Operands);
1248       else
1249         llvm_unreachable("Unexpected SCEV type for Op.");
1250     }
1251     // Although we checked in the beginning that ID is not in the cache, it is
1252     // possible that during recursion and different modification ID was inserted
1253     // into the cache. So if we find it, just return it.
1254     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1255       return S;
1256   }
1257 
1258   // If the input value is a chrec scev, truncate the chrec's operands.
1259   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1260     SmallVector<const SCEV *, 4> Operands;
1261     for (const SCEV *Op : AddRec->operands())
1262       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1263     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1264   }
1265 
1266   // Return zero if truncating to known zeros.
1267   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1268   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1269     return getZero(Ty);
1270 
1271   // The cast wasn't folded; create an explicit cast node. We can reuse
1272   // the existing insert position since if we get here, we won't have
1273   // made any changes which would invalidate it.
1274   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1275                                                  Op, Ty);
1276   UniqueSCEVs.InsertNode(S, IP);
1277   addToLoopUseLists(S);
1278   return S;
1279 }
1280 
1281 // Get the limit of a recurrence such that incrementing by Step cannot cause
1282 // signed overflow as long as the value of the recurrence within the
1283 // loop does not exceed this limit before incrementing.
1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1285                                                  ICmpInst::Predicate *Pred,
1286                                                  ScalarEvolution *SE) {
1287   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1288   if (SE->isKnownPositive(Step)) {
1289     *Pred = ICmpInst::ICMP_SLT;
1290     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1291                            SE->getSignedRangeMax(Step));
1292   }
1293   if (SE->isKnownNegative(Step)) {
1294     *Pred = ICmpInst::ICMP_SGT;
1295     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1296                            SE->getSignedRangeMin(Step));
1297   }
1298   return nullptr;
1299 }
1300 
1301 // Get the limit of a recurrence such that incrementing by Step cannot cause
1302 // unsigned overflow as long as the value of the recurrence within the loop does
1303 // not exceed this limit before incrementing.
1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1305                                                    ICmpInst::Predicate *Pred,
1306                                                    ScalarEvolution *SE) {
1307   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1308   *Pred = ICmpInst::ICMP_ULT;
1309 
1310   return SE->getConstant(APInt::getMinValue(BitWidth) -
1311                          SE->getUnsignedRangeMax(Step));
1312 }
1313 
1314 namespace {
1315 
1316 struct ExtendOpTraitsBase {
1317   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1318                                                           unsigned);
1319 };
1320 
1321 // Used to make code generic over signed and unsigned overflow.
1322 template <typename ExtendOp> struct ExtendOpTraits {
1323   // Members present:
1324   //
1325   // static const SCEV::NoWrapFlags WrapType;
1326   //
1327   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1328   //
1329   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1330   //                                           ICmpInst::Predicate *Pred,
1331   //                                           ScalarEvolution *SE);
1332 };
1333 
1334 template <>
1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1336   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1337 
1338   static const GetExtendExprTy GetExtendExpr;
1339 
1340   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1341                                              ICmpInst::Predicate *Pred,
1342                                              ScalarEvolution *SE) {
1343     return getSignedOverflowLimitForStep(Step, Pred, SE);
1344   }
1345 };
1346 
1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1348     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1349 
1350 template <>
1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1352   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1353 
1354   static const GetExtendExprTy GetExtendExpr;
1355 
1356   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1357                                              ICmpInst::Predicate *Pred,
1358                                              ScalarEvolution *SE) {
1359     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1360   }
1361 };
1362 
1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1364     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1365 
1366 } // end anonymous namespace
1367 
1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1373 // expression "Step + sext/zext(PreIncAR)" is congruent with
1374 // "sext/zext(PostIncAR)"
1375 template <typename ExtendOpTy>
1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1377                                         ScalarEvolution *SE, unsigned Depth) {
1378   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1379   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1380 
1381   const Loop *L = AR->getLoop();
1382   const SCEV *Start = AR->getStart();
1383   const SCEV *Step = AR->getStepRecurrence(*SE);
1384 
1385   // Check for a simple looking step prior to loop entry.
1386   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1387   if (!SA)
1388     return nullptr;
1389 
1390   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1391   // subtraction is expensive. For this purpose, perform a quick and dirty
1392   // difference, by checking for Step in the operand list.
1393   SmallVector<const SCEV *, 4> DiffOps;
1394   for (const SCEV *Op : SA->operands())
1395     if (Op != Step)
1396       DiffOps.push_back(Op);
1397 
1398   if (DiffOps.size() == SA->getNumOperands())
1399     return nullptr;
1400 
1401   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1402   // `Step`:
1403 
1404   // 1. NSW/NUW flags on the step increment.
1405   auto PreStartFlags =
1406     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1407   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1408   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1409       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1410 
1411   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1412   // "S+X does not sign/unsign-overflow".
1413   //
1414 
1415   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1416   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1417       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1418     return PreStart;
1419 
1420   // 2. Direct overflow check on the step operation's expression.
1421   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1422   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1423   const SCEV *OperandExtendedStart =
1424       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1425                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1426   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1427     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1428       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1429       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1430       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1431       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1432     }
1433     return PreStart;
1434   }
1435 
1436   // 3. Loop precondition.
1437   ICmpInst::Predicate Pred;
1438   const SCEV *OverflowLimit =
1439       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1440 
1441   if (OverflowLimit &&
1442       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1443     return PreStart;
1444 
1445   return nullptr;
1446 }
1447 
1448 // Get the normalized zero or sign extended expression for this AddRec's Start.
1449 template <typename ExtendOpTy>
1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1451                                         ScalarEvolution *SE,
1452                                         unsigned Depth) {
1453   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1454 
1455   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1456   if (!PreStart)
1457     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1458 
1459   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1460                                              Depth),
1461                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1462 }
1463 
1464 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1467 //
1468 // Formally:
1469 //
1470 //     {S,+,X} == {S-T,+,X} + T
1471 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1472 //
1473 // If ({S-T,+,X} + T) does not overflow  ... (1)
1474 //
1475 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1476 //
1477 // If {S-T,+,X} does not overflow  ... (2)
1478 //
1479 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1480 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1481 //
1482 // If (S-T)+T does not overflow  ... (3)
1483 //
1484 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1485 //      == {Ext(S),+,Ext(X)} == LHS
1486 //
1487 // Thus, if (1), (2) and (3) are true for some T, then
1488 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1489 //
1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1491 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1492 // to check for (1) and (2).
1493 //
1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1495 // is `Delta` (defined below).
1496 template <typename ExtendOpTy>
1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1498                                                 const SCEV *Step,
1499                                                 const Loop *L) {
1500   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1501 
1502   // We restrict `Start` to a constant to prevent SCEV from spending too much
1503   // time here.  It is correct (but more expensive) to continue with a
1504   // non-constant `Start` and do a general SCEV subtraction to compute
1505   // `PreStart` below.
1506   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1507   if (!StartC)
1508     return false;
1509 
1510   APInt StartAI = StartC->getAPInt();
1511 
1512   for (unsigned Delta : {-2, -1, 1, 2}) {
1513     const SCEV *PreStart = getConstant(StartAI - Delta);
1514 
1515     FoldingSetNodeID ID;
1516     ID.AddInteger(scAddRecExpr);
1517     ID.AddPointer(PreStart);
1518     ID.AddPointer(Step);
1519     ID.AddPointer(L);
1520     void *IP = nullptr;
1521     const auto *PreAR =
1522       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1523 
1524     // Give up if we don't already have the add recurrence we need because
1525     // actually constructing an add recurrence is relatively expensive.
1526     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1527       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1528       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1529       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1530           DeltaS, &Pred, this);
1531       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1532         return true;
1533     }
1534   }
1535 
1536   return false;
1537 }
1538 
1539 // Finds an integer D for an expression (C + x + y + ...) such that the top
1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1543 // the (C + x + y + ...) expression is \p WholeAddExpr.
1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1545                                             const SCEVConstant *ConstantTerm,
1546                                             const SCEVAddExpr *WholeAddExpr) {
1547   const APInt &C = ConstantTerm->getAPInt();
1548   const unsigned BitWidth = C.getBitWidth();
1549   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1550   uint32_t TZ = BitWidth;
1551   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1552     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1553   if (TZ) {
1554     // Set D to be as many least significant bits of C as possible while still
1555     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1556     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1557   }
1558   return APInt(BitWidth, 0);
1559 }
1560 
1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1566                                             const APInt &ConstantStart,
1567                                             const SCEV *Step) {
1568   const unsigned BitWidth = ConstantStart.getBitWidth();
1569   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1570   if (TZ)
1571     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1572                          : ConstantStart;
1573   return APInt(BitWidth, 0);
1574 }
1575 
1576 const SCEV *
1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1578   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1579          "This is not an extending conversion!");
1580   assert(isSCEVable(Ty) &&
1581          "This is not a conversion to a SCEVable type!");
1582   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1583   Ty = getEffectiveSCEVType(Ty);
1584 
1585   // Fold if the operand is constant.
1586   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1587     return getConstant(
1588       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1589 
1590   // zext(zext(x)) --> zext(x)
1591   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1592     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1593 
1594   // Before doing any expensive analysis, check to see if we've already
1595   // computed a SCEV for this Op and Ty.
1596   FoldingSetNodeID ID;
1597   ID.AddInteger(scZeroExtend);
1598   ID.AddPointer(Op);
1599   ID.AddPointer(Ty);
1600   void *IP = nullptr;
1601   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1602   if (Depth > MaxCastDepth) {
1603     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1604                                                      Op, Ty);
1605     UniqueSCEVs.InsertNode(S, IP);
1606     addToLoopUseLists(S);
1607     return S;
1608   }
1609 
1610   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1611   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1612     // It's possible the bits taken off by the truncate were all zero bits. If
1613     // so, we should be able to simplify this further.
1614     const SCEV *X = ST->getOperand();
1615     ConstantRange CR = getUnsignedRange(X);
1616     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1617     unsigned NewBits = getTypeSizeInBits(Ty);
1618     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1619             CR.zextOrTrunc(NewBits)))
1620       return getTruncateOrZeroExtend(X, Ty, Depth);
1621   }
1622 
1623   // If the input value is a chrec scev, and we can prove that the value
1624   // did not overflow the old, smaller, value, we can zero extend all of the
1625   // operands (often constants).  This allows analysis of something like
1626   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1627   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1628     if (AR->isAffine()) {
1629       const SCEV *Start = AR->getStart();
1630       const SCEV *Step = AR->getStepRecurrence(*this);
1631       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1632       const Loop *L = AR->getLoop();
1633 
1634       if (!AR->hasNoUnsignedWrap()) {
1635         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1636         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1637       }
1638 
1639       // If we have special knowledge that this addrec won't overflow,
1640       // we don't need to do any further analysis.
1641       if (AR->hasNoUnsignedWrap())
1642         return getAddRecExpr(
1643             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1644             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1645 
1646       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1647       // Note that this serves two purposes: It filters out loops that are
1648       // simply not analyzable, and it covers the case where this code is
1649       // being called from within backedge-taken count analysis, such that
1650       // attempting to ask for the backedge-taken count would likely result
1651       // in infinite recursion. In the later case, the analysis code will
1652       // cope with a conservative value, and it will take care to purge
1653       // that value once it has finished.
1654       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1655       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1656         // Manually compute the final value for AR, checking for overflow.
1657 
1658         // Check whether the backedge-taken count can be losslessly casted to
1659         // the addrec's type. The count is always unsigned.
1660         const SCEV *CastedMaxBECount =
1661             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1662         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1663             CastedMaxBECount, MaxBECount->getType(), Depth);
1664         if (MaxBECount == RecastedMaxBECount) {
1665           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1666           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1667           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1668                                         SCEV::FlagAnyWrap, Depth + 1);
1669           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1670                                                           SCEV::FlagAnyWrap,
1671                                                           Depth + 1),
1672                                                WideTy, Depth + 1);
1673           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1674           const SCEV *WideMaxBECount =
1675             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1676           const SCEV *OperandExtendedAdd =
1677             getAddExpr(WideStart,
1678                        getMulExpr(WideMaxBECount,
1679                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1680                                   SCEV::FlagAnyWrap, Depth + 1),
1681                        SCEV::FlagAnyWrap, Depth + 1);
1682           if (ZAdd == OperandExtendedAdd) {
1683             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1684             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1685             // Return the expression with the addrec on the outside.
1686             return getAddRecExpr(
1687                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1688                                                          Depth + 1),
1689                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1690                 AR->getNoWrapFlags());
1691           }
1692           // Similar to above, only this time treat the step value as signed.
1693           // This covers loops that count down.
1694           OperandExtendedAdd =
1695             getAddExpr(WideStart,
1696                        getMulExpr(WideMaxBECount,
1697                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1698                                   SCEV::FlagAnyWrap, Depth + 1),
1699                        SCEV::FlagAnyWrap, Depth + 1);
1700           if (ZAdd == OperandExtendedAdd) {
1701             // Cache knowledge of AR NW, which is propagated to this AddRec.
1702             // Negative step causes unsigned wrap, but it still can't self-wrap.
1703             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1704             // Return the expression with the addrec on the outside.
1705             return getAddRecExpr(
1706                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1707                                                          Depth + 1),
1708                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1709                 AR->getNoWrapFlags());
1710           }
1711         }
1712       }
1713 
1714       // Normally, in the cases we can prove no-overflow via a
1715       // backedge guarding condition, we can also compute a backedge
1716       // taken count for the loop.  The exceptions are assumptions and
1717       // guards present in the loop -- SCEV is not great at exploiting
1718       // these to compute max backedge taken counts, but can still use
1719       // these to prove lack of overflow.  Use this fact to avoid
1720       // doing extra work that may not pay off.
1721       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1722           !AC.assumptions().empty()) {
1723 
1724         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1725         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1726         if (AR->hasNoUnsignedWrap()) {
1727           // Same as nuw case above - duplicated here to avoid a compile time
1728           // issue.  It's not clear that the order of checks does matter, but
1729           // it's one of two issue possible causes for a change which was
1730           // reverted.  Be conservative for the moment.
1731           return getAddRecExpr(
1732                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1733                                                          Depth + 1),
1734                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1735                 AR->getNoWrapFlags());
1736         }
1737 
1738         // For a negative step, we can extend the operands iff doing so only
1739         // traverses values in the range zext([0,UINT_MAX]).
1740         if (isKnownNegative(Step)) {
1741           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1742                                       getSignedRangeMin(Step));
1743           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1744               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1745             // Cache knowledge of AR NW, which is propagated to this
1746             // AddRec.  Negative step causes unsigned wrap, but it
1747             // still can't self-wrap.
1748             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1752                                                          Depth + 1),
1753                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1754                 AR->getNoWrapFlags());
1755           }
1756         }
1757       }
1758 
1759       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1760       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1761       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1762       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1763         const APInt &C = SC->getAPInt();
1764         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1765         if (D != 0) {
1766           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1767           const SCEV *SResidual =
1768               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1769           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1770           return getAddExpr(SZExtD, SZExtR,
1771                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1772                             Depth + 1);
1773         }
1774       }
1775 
1776       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1777         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1778         return getAddRecExpr(
1779             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1780             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1781       }
1782     }
1783 
1784   // zext(A % B) --> zext(A) % zext(B)
1785   {
1786     const SCEV *LHS;
1787     const SCEV *RHS;
1788     if (matchURem(Op, LHS, RHS))
1789       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1790                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1791   }
1792 
1793   // zext(A / B) --> zext(A) / zext(B).
1794   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1795     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1796                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1797 
1798   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1799     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1800     if (SA->hasNoUnsignedWrap()) {
1801       // If the addition does not unsign overflow then we can, by definition,
1802       // commute the zero extension with the addition operation.
1803       SmallVector<const SCEV *, 4> Ops;
1804       for (const auto *Op : SA->operands())
1805         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1806       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1807     }
1808 
1809     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1810     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1811     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1812     //
1813     // Often address arithmetics contain expressions like
1814     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1815     // This transformation is useful while proving that such expressions are
1816     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1817     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1818       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1819       if (D != 0) {
1820         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1821         const SCEV *SResidual =
1822             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1823         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1824         return getAddExpr(SZExtD, SZExtR,
1825                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1826                           Depth + 1);
1827       }
1828     }
1829   }
1830 
1831   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1832     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1833     if (SM->hasNoUnsignedWrap()) {
1834       // If the multiply does not unsign overflow then we can, by definition,
1835       // commute the zero extension with the multiply operation.
1836       SmallVector<const SCEV *, 4> Ops;
1837       for (const auto *Op : SM->operands())
1838         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1839       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1840     }
1841 
1842     // zext(2^K * (trunc X to iN)) to iM ->
1843     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1844     //
1845     // Proof:
1846     //
1847     //     zext(2^K * (trunc X to iN)) to iM
1848     //   = zext((trunc X to iN) << K) to iM
1849     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1850     //     (because shl removes the top K bits)
1851     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1852     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1853     //
1854     if (SM->getNumOperands() == 2)
1855       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1856         if (MulLHS->getAPInt().isPowerOf2())
1857           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1858             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1859                                MulLHS->getAPInt().logBase2();
1860             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1861             return getMulExpr(
1862                 getZeroExtendExpr(MulLHS, Ty),
1863                 getZeroExtendExpr(
1864                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1865                 SCEV::FlagNUW, Depth + 1);
1866           }
1867   }
1868 
1869   // The cast wasn't folded; create an explicit cast node.
1870   // Recompute the insert position, as it may have been invalidated.
1871   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1872   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1873                                                    Op, Ty);
1874   UniqueSCEVs.InsertNode(S, IP);
1875   addToLoopUseLists(S);
1876   return S;
1877 }
1878 
1879 const SCEV *
1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1881   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1882          "This is not an extending conversion!");
1883   assert(isSCEVable(Ty) &&
1884          "This is not a conversion to a SCEVable type!");
1885   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1886   Ty = getEffectiveSCEVType(Ty);
1887 
1888   // Fold if the operand is constant.
1889   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1890     return getConstant(
1891       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1892 
1893   // sext(sext(x)) --> sext(x)
1894   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1895     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1896 
1897   // sext(zext(x)) --> zext(x)
1898   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1899     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1900 
1901   // Before doing any expensive analysis, check to see if we've already
1902   // computed a SCEV for this Op and Ty.
1903   FoldingSetNodeID ID;
1904   ID.AddInteger(scSignExtend);
1905   ID.AddPointer(Op);
1906   ID.AddPointer(Ty);
1907   void *IP = nullptr;
1908   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1909   // Limit recursion depth.
1910   if (Depth > MaxCastDepth) {
1911     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1912                                                      Op, Ty);
1913     UniqueSCEVs.InsertNode(S, IP);
1914     addToLoopUseLists(S);
1915     return S;
1916   }
1917 
1918   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1919   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1920     // It's possible the bits taken off by the truncate were all sign bits. If
1921     // so, we should be able to simplify this further.
1922     const SCEV *X = ST->getOperand();
1923     ConstantRange CR = getSignedRange(X);
1924     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1925     unsigned NewBits = getTypeSizeInBits(Ty);
1926     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1927             CR.sextOrTrunc(NewBits)))
1928       return getTruncateOrSignExtend(X, Ty, Depth);
1929   }
1930 
1931   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1932     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1933     if (SA->hasNoSignedWrap()) {
1934       // If the addition does not sign overflow then we can, by definition,
1935       // commute the sign extension with the addition operation.
1936       SmallVector<const SCEV *, 4> Ops;
1937       for (const auto *Op : SA->operands())
1938         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1939       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1940     }
1941 
1942     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1943     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1944     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1945     //
1946     // For instance, this will bring two seemingly different expressions:
1947     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1948     //         sext(6 + 20 * %x + 24 * %y)
1949     // to the same form:
1950     //     2 + sext(4 + 20 * %x + 24 * %y)
1951     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1952       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1953       if (D != 0) {
1954         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1955         const SCEV *SResidual =
1956             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1957         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1958         return getAddExpr(SSExtD, SSExtR,
1959                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1960                           Depth + 1);
1961       }
1962     }
1963   }
1964   // If the input value is a chrec scev, and we can prove that the value
1965   // did not overflow the old, smaller, value, we can sign extend all of the
1966   // operands (often constants).  This allows analysis of something like
1967   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1968   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1969     if (AR->isAffine()) {
1970       const SCEV *Start = AR->getStart();
1971       const SCEV *Step = AR->getStepRecurrence(*this);
1972       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1973       const Loop *L = AR->getLoop();
1974 
1975       if (!AR->hasNoSignedWrap()) {
1976         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1977         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1978       }
1979 
1980       // If we have special knowledge that this addrec won't overflow,
1981       // we don't need to do any further analysis.
1982       if (AR->hasNoSignedWrap())
1983         return getAddRecExpr(
1984             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1985             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1986 
1987       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1988       // Note that this serves two purposes: It filters out loops that are
1989       // simply not analyzable, and it covers the case where this code is
1990       // being called from within backedge-taken count analysis, such that
1991       // attempting to ask for the backedge-taken count would likely result
1992       // in infinite recursion. In the later case, the analysis code will
1993       // cope with a conservative value, and it will take care to purge
1994       // that value once it has finished.
1995       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1996       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1997         // Manually compute the final value for AR, checking for
1998         // overflow.
1999 
2000         // Check whether the backedge-taken count can be losslessly casted to
2001         // the addrec's type. The count is always unsigned.
2002         const SCEV *CastedMaxBECount =
2003             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2004         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2005             CastedMaxBECount, MaxBECount->getType(), Depth);
2006         if (MaxBECount == RecastedMaxBECount) {
2007           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2008           // Check whether Start+Step*MaxBECount has no signed overflow.
2009           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2010                                         SCEV::FlagAnyWrap, Depth + 1);
2011           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2012                                                           SCEV::FlagAnyWrap,
2013                                                           Depth + 1),
2014                                                WideTy, Depth + 1);
2015           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2016           const SCEV *WideMaxBECount =
2017             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2018           const SCEV *OperandExtendedAdd =
2019             getAddExpr(WideStart,
2020                        getMulExpr(WideMaxBECount,
2021                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2022                                   SCEV::FlagAnyWrap, Depth + 1),
2023                        SCEV::FlagAnyWrap, Depth + 1);
2024           if (SAdd == OperandExtendedAdd) {
2025             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2026             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2027             // Return the expression with the addrec on the outside.
2028             return getAddRecExpr(
2029                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2030                                                          Depth + 1),
2031                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2032                 AR->getNoWrapFlags());
2033           }
2034           // Similar to above, only this time treat the step value as unsigned.
2035           // This covers loops that count up with an unsigned step.
2036           OperandExtendedAdd =
2037             getAddExpr(WideStart,
2038                        getMulExpr(WideMaxBECount,
2039                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2040                                   SCEV::FlagAnyWrap, Depth + 1),
2041                        SCEV::FlagAnyWrap, Depth + 1);
2042           if (SAdd == OperandExtendedAdd) {
2043             // If AR wraps around then
2044             //
2045             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2046             // => SAdd != OperandExtendedAdd
2047             //
2048             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2049             // (SAdd == OperandExtendedAdd => AR is NW)
2050 
2051             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2052 
2053             // Return the expression with the addrec on the outside.
2054             return getAddRecExpr(
2055                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2056                                                          Depth + 1),
2057                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2058                 AR->getNoWrapFlags());
2059           }
2060         }
2061       }
2062 
2063       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2064       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2065       if (AR->hasNoSignedWrap()) {
2066         // Same as nsw case above - duplicated here to avoid a compile time
2067         // issue.  It's not clear that the order of checks does matter, but
2068         // it's one of two issue possible causes for a change which was
2069         // reverted.  Be conservative for the moment.
2070         return getAddRecExpr(
2071             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2072             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2073       }
2074 
2075       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2076       // if D + (C - D + Step * n) could be proven to not signed wrap
2077       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2078       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2079         const APInt &C = SC->getAPInt();
2080         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2081         if (D != 0) {
2082           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2083           const SCEV *SResidual =
2084               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2085           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2086           return getAddExpr(SSExtD, SSExtR,
2087                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2088                             Depth + 1);
2089         }
2090       }
2091 
2092       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2093         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2094         return getAddRecExpr(
2095             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2096             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2097       }
2098     }
2099 
2100   // If the input value is provably positive and we could not simplify
2101   // away the sext build a zext instead.
2102   if (isKnownNonNegative(Op))
2103     return getZeroExtendExpr(Op, Ty, Depth + 1);
2104 
2105   // The cast wasn't folded; create an explicit cast node.
2106   // Recompute the insert position, as it may have been invalidated.
2107   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2108   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2109                                                    Op, Ty);
2110   UniqueSCEVs.InsertNode(S, IP);
2111   addToLoopUseLists(S);
2112   return S;
2113 }
2114 
2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2116 /// unspecified bits out to the given type.
2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2118                                               Type *Ty) {
2119   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2120          "This is not an extending conversion!");
2121   assert(isSCEVable(Ty) &&
2122          "This is not a conversion to a SCEVable type!");
2123   Ty = getEffectiveSCEVType(Ty);
2124 
2125   // Sign-extend negative constants.
2126   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2127     if (SC->getAPInt().isNegative())
2128       return getSignExtendExpr(Op, Ty);
2129 
2130   // Peel off a truncate cast.
2131   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2132     const SCEV *NewOp = T->getOperand();
2133     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2134       return getAnyExtendExpr(NewOp, Ty);
2135     return getTruncateOrNoop(NewOp, Ty);
2136   }
2137 
2138   // Next try a zext cast. If the cast is folded, use it.
2139   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2140   if (!isa<SCEVZeroExtendExpr>(ZExt))
2141     return ZExt;
2142 
2143   // Next try a sext cast. If the cast is folded, use it.
2144   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2145   if (!isa<SCEVSignExtendExpr>(SExt))
2146     return SExt;
2147 
2148   // Force the cast to be folded into the operands of an addrec.
2149   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2150     SmallVector<const SCEV *, 4> Ops;
2151     for (const SCEV *Op : AR->operands())
2152       Ops.push_back(getAnyExtendExpr(Op, Ty));
2153     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2154   }
2155 
2156   // If the expression is obviously signed, use the sext cast value.
2157   if (isa<SCEVSMaxExpr>(Op))
2158     return SExt;
2159 
2160   // Absent any other information, use the zext cast value.
2161   return ZExt;
2162 }
2163 
2164 /// Process the given Ops list, which is a list of operands to be added under
2165 /// the given scale, update the given map. This is a helper function for
2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2167 /// that would form an add expression like this:
2168 ///
2169 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2170 ///
2171 /// where A and B are constants, update the map with these values:
2172 ///
2173 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2174 ///
2175 /// and add 13 + A*B*29 to AccumulatedConstant.
2176 /// This will allow getAddRecExpr to produce this:
2177 ///
2178 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2179 ///
2180 /// This form often exposes folding opportunities that are hidden in
2181 /// the original operand list.
2182 ///
2183 /// Return true iff it appears that any interesting folding opportunities
2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2185 /// the common case where no interesting opportunities are present, and
2186 /// is also used as a check to avoid infinite recursion.
2187 static bool
2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2189                              SmallVectorImpl<const SCEV *> &NewOps,
2190                              APInt &AccumulatedConstant,
2191                              const SCEV *const *Ops, size_t NumOperands,
2192                              const APInt &Scale,
2193                              ScalarEvolution &SE) {
2194   bool Interesting = false;
2195 
2196   // Iterate over the add operands. They are sorted, with constants first.
2197   unsigned i = 0;
2198   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2199     ++i;
2200     // Pull a buried constant out to the outside.
2201     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2202       Interesting = true;
2203     AccumulatedConstant += Scale * C->getAPInt();
2204   }
2205 
2206   // Next comes everything else. We're especially interested in multiplies
2207   // here, but they're in the middle, so just visit the rest with one loop.
2208   for (; i != NumOperands; ++i) {
2209     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2210     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2211       APInt NewScale =
2212           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2213       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2214         // A multiplication of a constant with another add; recurse.
2215         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2216         Interesting |=
2217           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2218                                        Add->op_begin(), Add->getNumOperands(),
2219                                        NewScale, SE);
2220       } else {
2221         // A multiplication of a constant with some other value. Update
2222         // the map.
2223         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2224         const SCEV *Key = SE.getMulExpr(MulOps);
2225         auto Pair = M.insert({Key, NewScale});
2226         if (Pair.second) {
2227           NewOps.push_back(Pair.first->first);
2228         } else {
2229           Pair.first->second += NewScale;
2230           // The map already had an entry for this value, which may indicate
2231           // a folding opportunity.
2232           Interesting = true;
2233         }
2234       }
2235     } else {
2236       // An ordinary operand. Update the map.
2237       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2238           M.insert({Ops[i], Scale});
2239       if (Pair.second) {
2240         NewOps.push_back(Pair.first->first);
2241       } else {
2242         Pair.first->second += Scale;
2243         // The map already had an entry for this value, which may indicate
2244         // a folding opportunity.
2245         Interesting = true;
2246       }
2247     }
2248   }
2249 
2250   return Interesting;
2251 }
2252 
2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2254                                       const SCEV *LHS, const SCEV *RHS) {
2255   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2256                                             SCEV::NoWrapFlags, unsigned);
2257   switch (BinOp) {
2258   default:
2259     llvm_unreachable("Unsupported binary op");
2260   case Instruction::Add:
2261     Operation = &ScalarEvolution::getAddExpr;
2262     break;
2263   case Instruction::Sub:
2264     Operation = &ScalarEvolution::getMinusSCEV;
2265     break;
2266   case Instruction::Mul:
2267     Operation = &ScalarEvolution::getMulExpr;
2268     break;
2269   }
2270 
2271   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2272       Signed ? &ScalarEvolution::getSignExtendExpr
2273              : &ScalarEvolution::getZeroExtendExpr;
2274 
2275   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2276   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2277   auto *WideTy =
2278       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2279 
2280   const SCEV *A = (this->*Extension)(
2281       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2282   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2283                                      (this->*Extension)(RHS, WideTy, 0),
2284                                      SCEV::FlagAnyWrap, 0);
2285   return A == B;
2286 }
2287 
2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2290     const OverflowingBinaryOperator *OBO) {
2291   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2292 
2293   if (OBO->hasNoUnsignedWrap())
2294     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2295   if (OBO->hasNoSignedWrap())
2296     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2297 
2298   bool Deduced = false;
2299 
2300   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2301     return {Flags, Deduced};
2302 
2303   if (OBO->getOpcode() != Instruction::Add &&
2304       OBO->getOpcode() != Instruction::Sub &&
2305       OBO->getOpcode() != Instruction::Mul)
2306     return {Flags, Deduced};
2307 
2308   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2309   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2310 
2311   if (!OBO->hasNoUnsignedWrap() &&
2312       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2313                       /* Signed */ false, LHS, RHS)) {
2314     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2315     Deduced = true;
2316   }
2317 
2318   if (!OBO->hasNoSignedWrap() &&
2319       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2320                       /* Signed */ true, LHS, RHS)) {
2321     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2322     Deduced = true;
2323   }
2324 
2325   return {Flags, Deduced};
2326 }
2327 
2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2329 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2330 // can't-overflow flags for the operation if possible.
2331 static SCEV::NoWrapFlags
2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2333                       const ArrayRef<const SCEV *> Ops,
2334                       SCEV::NoWrapFlags Flags) {
2335   using namespace std::placeholders;
2336 
2337   using OBO = OverflowingBinaryOperator;
2338 
2339   bool CanAnalyze =
2340       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2341   (void)CanAnalyze;
2342   assert(CanAnalyze && "don't call from other places!");
2343 
2344   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2345   SCEV::NoWrapFlags SignOrUnsignWrap =
2346       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2347 
2348   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2349   auto IsKnownNonNegative = [&](const SCEV *S) {
2350     return SE->isKnownNonNegative(S);
2351   };
2352 
2353   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2354     Flags =
2355         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2356 
2357   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2358 
2359   if (SignOrUnsignWrap != SignOrUnsignMask &&
2360       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2361       isa<SCEVConstant>(Ops[0])) {
2362 
2363     auto Opcode = [&] {
2364       switch (Type) {
2365       case scAddExpr:
2366         return Instruction::Add;
2367       case scMulExpr:
2368         return Instruction::Mul;
2369       default:
2370         llvm_unreachable("Unexpected SCEV op.");
2371       }
2372     }();
2373 
2374     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2375 
2376     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2377     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2378       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2379           Opcode, C, OBO::NoSignedWrap);
2380       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2381         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2382     }
2383 
2384     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2385     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2386       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2387           Opcode, C, OBO::NoUnsignedWrap);
2388       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2389         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2390     }
2391   }
2392 
2393   // <0,+,nonnegative><nw> is also nuw
2394   // TODO: Add corresponding nsw case
2395   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2396       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2397       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2398     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2399 
2400   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2401   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2402       Ops.size() == 2) {
2403     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2404       if (UDiv->getOperand(1) == Ops[1])
2405         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2406     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2407       if (UDiv->getOperand(1) == Ops[0])
2408         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2409   }
2410 
2411   return Flags;
2412 }
2413 
2414 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2415   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2416 }
2417 
2418 /// Get a canonical add expression, or something simpler if possible.
2419 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2420                                         SCEV::NoWrapFlags OrigFlags,
2421                                         unsigned Depth) {
2422   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2423          "only nuw or nsw allowed");
2424   assert(!Ops.empty() && "Cannot get empty add!");
2425   if (Ops.size() == 1) return Ops[0];
2426 #ifndef NDEBUG
2427   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2428   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2429     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2430            "SCEVAddExpr operand types don't match!");
2431   unsigned NumPtrs = count_if(
2432       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2433   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2434 #endif
2435 
2436   // Sort by complexity, this groups all similar expression types together.
2437   GroupByComplexity(Ops, &LI, DT);
2438 
2439   // If there are any constants, fold them together.
2440   unsigned Idx = 0;
2441   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2442     ++Idx;
2443     assert(Idx < Ops.size());
2444     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2445       // We found two constants, fold them together!
2446       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2447       if (Ops.size() == 2) return Ops[0];
2448       Ops.erase(Ops.begin()+1);  // Erase the folded element
2449       LHSC = cast<SCEVConstant>(Ops[0]);
2450     }
2451 
2452     // If we are left with a constant zero being added, strip it off.
2453     if (LHSC->getValue()->isZero()) {
2454       Ops.erase(Ops.begin());
2455       --Idx;
2456     }
2457 
2458     if (Ops.size() == 1) return Ops[0];
2459   }
2460 
2461   // Delay expensive flag strengthening until necessary.
2462   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2463     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2464   };
2465 
2466   // Limit recursion calls depth.
2467   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2468     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2469 
2470   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2471     // Don't strengthen flags if we have no new information.
2472     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2473     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2474       Add->setNoWrapFlags(ComputeFlags(Ops));
2475     return S;
2476   }
2477 
2478   // Okay, check to see if the same value occurs in the operand list more than
2479   // once.  If so, merge them together into an multiply expression.  Since we
2480   // sorted the list, these values are required to be adjacent.
2481   Type *Ty = Ops[0]->getType();
2482   bool FoundMatch = false;
2483   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2484     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2485       // Scan ahead to count how many equal operands there are.
2486       unsigned Count = 2;
2487       while (i+Count != e && Ops[i+Count] == Ops[i])
2488         ++Count;
2489       // Merge the values into a multiply.
2490       const SCEV *Scale = getConstant(Ty, Count);
2491       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2492       if (Ops.size() == Count)
2493         return Mul;
2494       Ops[i] = Mul;
2495       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2496       --i; e -= Count - 1;
2497       FoundMatch = true;
2498     }
2499   if (FoundMatch)
2500     return getAddExpr(Ops, OrigFlags, Depth + 1);
2501 
2502   // Check for truncates. If all the operands are truncated from the same
2503   // type, see if factoring out the truncate would permit the result to be
2504   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2505   // if the contents of the resulting outer trunc fold to something simple.
2506   auto FindTruncSrcType = [&]() -> Type * {
2507     // We're ultimately looking to fold an addrec of truncs and muls of only
2508     // constants and truncs, so if we find any other types of SCEV
2509     // as operands of the addrec then we bail and return nullptr here.
2510     // Otherwise, we return the type of the operand of a trunc that we find.
2511     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2512       return T->getOperand()->getType();
2513     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2514       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2515       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2516         return T->getOperand()->getType();
2517     }
2518     return nullptr;
2519   };
2520   if (auto *SrcType = FindTruncSrcType()) {
2521     SmallVector<const SCEV *, 8> LargeOps;
2522     bool Ok = true;
2523     // Check all the operands to see if they can be represented in the
2524     // source type of the truncate.
2525     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2526       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2527         if (T->getOperand()->getType() != SrcType) {
2528           Ok = false;
2529           break;
2530         }
2531         LargeOps.push_back(T->getOperand());
2532       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2533         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2534       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2535         SmallVector<const SCEV *, 8> LargeMulOps;
2536         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2537           if (const SCEVTruncateExpr *T =
2538                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2539             if (T->getOperand()->getType() != SrcType) {
2540               Ok = false;
2541               break;
2542             }
2543             LargeMulOps.push_back(T->getOperand());
2544           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2545             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2546           } else {
2547             Ok = false;
2548             break;
2549           }
2550         }
2551         if (Ok)
2552           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2553       } else {
2554         Ok = false;
2555         break;
2556       }
2557     }
2558     if (Ok) {
2559       // Evaluate the expression in the larger type.
2560       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2561       // If it folds to something simple, use it. Otherwise, don't.
2562       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2563         return getTruncateExpr(Fold, Ty);
2564     }
2565   }
2566 
2567   if (Ops.size() == 2) {
2568     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2569     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2570     // C1).
2571     const SCEV *A = Ops[0];
2572     const SCEV *B = Ops[1];
2573     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2574     auto *C = dyn_cast<SCEVConstant>(A);
2575     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2576       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2577       auto C2 = C->getAPInt();
2578       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2579 
2580       APInt ConstAdd = C1 + C2;
2581       auto AddFlags = AddExpr->getNoWrapFlags();
2582       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2583       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2584           ConstAdd.ule(C1)) {
2585         PreservedFlags =
2586             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2587       }
2588 
2589       // Adding a constant with the same sign and small magnitude is NSW, if the
2590       // original AddExpr was NSW.
2591       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2592           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2593           ConstAdd.abs().ule(C1.abs())) {
2594         PreservedFlags =
2595             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2596       }
2597 
2598       if (PreservedFlags != SCEV::FlagAnyWrap) {
2599         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2600         NewOps[0] = getConstant(ConstAdd);
2601         return getAddExpr(NewOps, PreservedFlags);
2602       }
2603     }
2604   }
2605 
2606   // Skip past any other cast SCEVs.
2607   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2608     ++Idx;
2609 
2610   // If there are add operands they would be next.
2611   if (Idx < Ops.size()) {
2612     bool DeletedAdd = false;
2613     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2614     // common NUW flag for expression after inlining. Other flags cannot be
2615     // preserved, because they may depend on the original order of operations.
2616     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2617     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2618       if (Ops.size() > AddOpsInlineThreshold ||
2619           Add->getNumOperands() > AddOpsInlineThreshold)
2620         break;
2621       // If we have an add, expand the add operands onto the end of the operands
2622       // list.
2623       Ops.erase(Ops.begin()+Idx);
2624       Ops.append(Add->op_begin(), Add->op_end());
2625       DeletedAdd = true;
2626       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2627     }
2628 
2629     // If we deleted at least one add, we added operands to the end of the list,
2630     // and they are not necessarily sorted.  Recurse to resort and resimplify
2631     // any operands we just acquired.
2632     if (DeletedAdd)
2633       return getAddExpr(Ops, CommonFlags, Depth + 1);
2634   }
2635 
2636   // Skip over the add expression until we get to a multiply.
2637   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2638     ++Idx;
2639 
2640   // Check to see if there are any folding opportunities present with
2641   // operands multiplied by constant values.
2642   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2643     uint64_t BitWidth = getTypeSizeInBits(Ty);
2644     DenseMap<const SCEV *, APInt> M;
2645     SmallVector<const SCEV *, 8> NewOps;
2646     APInt AccumulatedConstant(BitWidth, 0);
2647     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2648                                      Ops.data(), Ops.size(),
2649                                      APInt(BitWidth, 1), *this)) {
2650       struct APIntCompare {
2651         bool operator()(const APInt &LHS, const APInt &RHS) const {
2652           return LHS.ult(RHS);
2653         }
2654       };
2655 
2656       // Some interesting folding opportunity is present, so its worthwhile to
2657       // re-generate the operands list. Group the operands by constant scale,
2658       // to avoid multiplying by the same constant scale multiple times.
2659       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2660       for (const SCEV *NewOp : NewOps)
2661         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2662       // Re-generate the operands list.
2663       Ops.clear();
2664       if (AccumulatedConstant != 0)
2665         Ops.push_back(getConstant(AccumulatedConstant));
2666       for (auto &MulOp : MulOpLists) {
2667         if (MulOp.first == 1) {
2668           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2669         } else if (MulOp.first != 0) {
2670           Ops.push_back(getMulExpr(
2671               getConstant(MulOp.first),
2672               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2673               SCEV::FlagAnyWrap, Depth + 1));
2674         }
2675       }
2676       if (Ops.empty())
2677         return getZero(Ty);
2678       if (Ops.size() == 1)
2679         return Ops[0];
2680       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2681     }
2682   }
2683 
2684   // If we are adding something to a multiply expression, make sure the
2685   // something is not already an operand of the multiply.  If so, merge it into
2686   // the multiply.
2687   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2688     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2689     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2690       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2691       if (isa<SCEVConstant>(MulOpSCEV))
2692         continue;
2693       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2694         if (MulOpSCEV == Ops[AddOp]) {
2695           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2696           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2697           if (Mul->getNumOperands() != 2) {
2698             // If the multiply has more than two operands, we must get the
2699             // Y*Z term.
2700             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2701                                                 Mul->op_begin()+MulOp);
2702             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2703             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2704           }
2705           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2706           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2707           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2708                                             SCEV::FlagAnyWrap, Depth + 1);
2709           if (Ops.size() == 2) return OuterMul;
2710           if (AddOp < Idx) {
2711             Ops.erase(Ops.begin()+AddOp);
2712             Ops.erase(Ops.begin()+Idx-1);
2713           } else {
2714             Ops.erase(Ops.begin()+Idx);
2715             Ops.erase(Ops.begin()+AddOp-1);
2716           }
2717           Ops.push_back(OuterMul);
2718           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2719         }
2720 
2721       // Check this multiply against other multiplies being added together.
2722       for (unsigned OtherMulIdx = Idx+1;
2723            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2724            ++OtherMulIdx) {
2725         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2726         // If MulOp occurs in OtherMul, we can fold the two multiplies
2727         // together.
2728         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2729              OMulOp != e; ++OMulOp)
2730           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2731             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2732             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2733             if (Mul->getNumOperands() != 2) {
2734               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2735                                                   Mul->op_begin()+MulOp);
2736               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2737               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2738             }
2739             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2740             if (OtherMul->getNumOperands() != 2) {
2741               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2742                                                   OtherMul->op_begin()+OMulOp);
2743               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2744               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2745             }
2746             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2747             const SCEV *InnerMulSum =
2748                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2749             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2750                                               SCEV::FlagAnyWrap, Depth + 1);
2751             if (Ops.size() == 2) return OuterMul;
2752             Ops.erase(Ops.begin()+Idx);
2753             Ops.erase(Ops.begin()+OtherMulIdx-1);
2754             Ops.push_back(OuterMul);
2755             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2756           }
2757       }
2758     }
2759   }
2760 
2761   // If there are any add recurrences in the operands list, see if any other
2762   // added values are loop invariant.  If so, we can fold them into the
2763   // recurrence.
2764   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2765     ++Idx;
2766 
2767   // Scan over all recurrences, trying to fold loop invariants into them.
2768   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2769     // Scan all of the other operands to this add and add them to the vector if
2770     // they are loop invariant w.r.t. the recurrence.
2771     SmallVector<const SCEV *, 8> LIOps;
2772     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2773     const Loop *AddRecLoop = AddRec->getLoop();
2774     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2775       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2776         LIOps.push_back(Ops[i]);
2777         Ops.erase(Ops.begin()+i);
2778         --i; --e;
2779       }
2780 
2781     // If we found some loop invariants, fold them into the recurrence.
2782     if (!LIOps.empty()) {
2783       // Compute nowrap flags for the addition of the loop-invariant ops and
2784       // the addrec. Temporarily push it as an operand for that purpose.
2785       LIOps.push_back(AddRec);
2786       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2787       LIOps.pop_back();
2788 
2789       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2790       LIOps.push_back(AddRec->getStart());
2791 
2792       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2793       // This follows from the fact that the no-wrap flags on the outer add
2794       // expression are applicable on the 0th iteration, when the add recurrence
2795       // will be equal to its start value.
2796       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2797 
2798       // Build the new addrec. Propagate the NUW and NSW flags if both the
2799       // outer add and the inner addrec are guaranteed to have no overflow.
2800       // Always propagate NW.
2801       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2802       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2803 
2804       // If all of the other operands were loop invariant, we are done.
2805       if (Ops.size() == 1) return NewRec;
2806 
2807       // Otherwise, add the folded AddRec by the non-invariant parts.
2808       for (unsigned i = 0;; ++i)
2809         if (Ops[i] == AddRec) {
2810           Ops[i] = NewRec;
2811           break;
2812         }
2813       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2814     }
2815 
2816     // Okay, if there weren't any loop invariants to be folded, check to see if
2817     // there are multiple AddRec's with the same loop induction variable being
2818     // added together.  If so, we can fold them.
2819     for (unsigned OtherIdx = Idx+1;
2820          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2821          ++OtherIdx) {
2822       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2823       // so that the 1st found AddRecExpr is dominated by all others.
2824       assert(DT.dominates(
2825            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2826            AddRec->getLoop()->getHeader()) &&
2827         "AddRecExprs are not sorted in reverse dominance order?");
2828       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2829         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2830         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2831         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2832              ++OtherIdx) {
2833           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2834           if (OtherAddRec->getLoop() == AddRecLoop) {
2835             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2836                  i != e; ++i) {
2837               if (i >= AddRecOps.size()) {
2838                 AddRecOps.append(OtherAddRec->op_begin()+i,
2839                                  OtherAddRec->op_end());
2840                 break;
2841               }
2842               SmallVector<const SCEV *, 2> TwoOps = {
2843                   AddRecOps[i], OtherAddRec->getOperand(i)};
2844               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2845             }
2846             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2847           }
2848         }
2849         // Step size has changed, so we cannot guarantee no self-wraparound.
2850         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2851         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2852       }
2853     }
2854 
2855     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2856     // next one.
2857   }
2858 
2859   // Okay, it looks like we really DO need an add expr.  Check to see if we
2860   // already have one, otherwise create a new one.
2861   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2862 }
2863 
2864 const SCEV *
2865 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2866                                     SCEV::NoWrapFlags Flags) {
2867   FoldingSetNodeID ID;
2868   ID.AddInteger(scAddExpr);
2869   for (const SCEV *Op : Ops)
2870     ID.AddPointer(Op);
2871   void *IP = nullptr;
2872   SCEVAddExpr *S =
2873       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2874   if (!S) {
2875     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2876     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2877     S = new (SCEVAllocator)
2878         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2879     UniqueSCEVs.InsertNode(S, IP);
2880     addToLoopUseLists(S);
2881   }
2882   S->setNoWrapFlags(Flags);
2883   return S;
2884 }
2885 
2886 const SCEV *
2887 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2888                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2889   FoldingSetNodeID ID;
2890   ID.AddInteger(scAddRecExpr);
2891   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2892     ID.AddPointer(Ops[i]);
2893   ID.AddPointer(L);
2894   void *IP = nullptr;
2895   SCEVAddRecExpr *S =
2896       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2897   if (!S) {
2898     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2899     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2900     S = new (SCEVAllocator)
2901         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2902     UniqueSCEVs.InsertNode(S, IP);
2903     addToLoopUseLists(S);
2904   }
2905   setNoWrapFlags(S, Flags);
2906   return S;
2907 }
2908 
2909 const SCEV *
2910 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2911                                     SCEV::NoWrapFlags Flags) {
2912   FoldingSetNodeID ID;
2913   ID.AddInteger(scMulExpr);
2914   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2915     ID.AddPointer(Ops[i]);
2916   void *IP = nullptr;
2917   SCEVMulExpr *S =
2918     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2919   if (!S) {
2920     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2921     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2922     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2923                                         O, Ops.size());
2924     UniqueSCEVs.InsertNode(S, IP);
2925     addToLoopUseLists(S);
2926   }
2927   S->setNoWrapFlags(Flags);
2928   return S;
2929 }
2930 
2931 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2932   uint64_t k = i*j;
2933   if (j > 1 && k / j != i) Overflow = true;
2934   return k;
2935 }
2936 
2937 /// Compute the result of "n choose k", the binomial coefficient.  If an
2938 /// intermediate computation overflows, Overflow will be set and the return will
2939 /// be garbage. Overflow is not cleared on absence of overflow.
2940 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2941   // We use the multiplicative formula:
2942   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2943   // At each iteration, we take the n-th term of the numeral and divide by the
2944   // (k-n)th term of the denominator.  This division will always produce an
2945   // integral result, and helps reduce the chance of overflow in the
2946   // intermediate computations. However, we can still overflow even when the
2947   // final result would fit.
2948 
2949   if (n == 0 || n == k) return 1;
2950   if (k > n) return 0;
2951 
2952   if (k > n/2)
2953     k = n-k;
2954 
2955   uint64_t r = 1;
2956   for (uint64_t i = 1; i <= k; ++i) {
2957     r = umul_ov(r, n-(i-1), Overflow);
2958     r /= i;
2959   }
2960   return r;
2961 }
2962 
2963 /// Determine if any of the operands in this SCEV are a constant or if
2964 /// any of the add or multiply expressions in this SCEV contain a constant.
2965 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2966   struct FindConstantInAddMulChain {
2967     bool FoundConstant = false;
2968 
2969     bool follow(const SCEV *S) {
2970       FoundConstant |= isa<SCEVConstant>(S);
2971       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2972     }
2973 
2974     bool isDone() const {
2975       return FoundConstant;
2976     }
2977   };
2978 
2979   FindConstantInAddMulChain F;
2980   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2981   ST.visitAll(StartExpr);
2982   return F.FoundConstant;
2983 }
2984 
2985 /// Get a canonical multiply expression, or something simpler if possible.
2986 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2987                                         SCEV::NoWrapFlags OrigFlags,
2988                                         unsigned Depth) {
2989   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2990          "only nuw or nsw allowed");
2991   assert(!Ops.empty() && "Cannot get empty mul!");
2992   if (Ops.size() == 1) return Ops[0];
2993 #ifndef NDEBUG
2994   Type *ETy = Ops[0]->getType();
2995   assert(!ETy->isPointerTy());
2996   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2997     assert(Ops[i]->getType() == ETy &&
2998            "SCEVMulExpr operand types don't match!");
2999 #endif
3000 
3001   // Sort by complexity, this groups all similar expression types together.
3002   GroupByComplexity(Ops, &LI, DT);
3003 
3004   // If there are any constants, fold them together.
3005   unsigned Idx = 0;
3006   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3007     ++Idx;
3008     assert(Idx < Ops.size());
3009     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3010       // We found two constants, fold them together!
3011       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3012       if (Ops.size() == 2) return Ops[0];
3013       Ops.erase(Ops.begin()+1);  // Erase the folded element
3014       LHSC = cast<SCEVConstant>(Ops[0]);
3015     }
3016 
3017     // If we have a multiply of zero, it will always be zero.
3018     if (LHSC->getValue()->isZero())
3019       return LHSC;
3020 
3021     // If we are left with a constant one being multiplied, strip it off.
3022     if (LHSC->getValue()->isOne()) {
3023       Ops.erase(Ops.begin());
3024       --Idx;
3025     }
3026 
3027     if (Ops.size() == 1)
3028       return Ops[0];
3029   }
3030 
3031   // Delay expensive flag strengthening until necessary.
3032   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3033     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3034   };
3035 
3036   // Limit recursion calls depth.
3037   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3038     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3039 
3040   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3041     // Don't strengthen flags if we have no new information.
3042     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3043     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3044       Mul->setNoWrapFlags(ComputeFlags(Ops));
3045     return S;
3046   }
3047 
3048   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3049     if (Ops.size() == 2) {
3050       // C1*(C2+V) -> C1*C2 + C1*V
3051       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3052         // If any of Add's ops are Adds or Muls with a constant, apply this
3053         // transformation as well.
3054         //
3055         // TODO: There are some cases where this transformation is not
3056         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3057         // this transformation should be narrowed down.
3058         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3059           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3060                                        SCEV::FlagAnyWrap, Depth + 1),
3061                             getMulExpr(LHSC, Add->getOperand(1),
3062                                        SCEV::FlagAnyWrap, Depth + 1),
3063                             SCEV::FlagAnyWrap, Depth + 1);
3064 
3065       if (Ops[0]->isAllOnesValue()) {
3066         // If we have a mul by -1 of an add, try distributing the -1 among the
3067         // add operands.
3068         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3069           SmallVector<const SCEV *, 4> NewOps;
3070           bool AnyFolded = false;
3071           for (const SCEV *AddOp : Add->operands()) {
3072             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3073                                          Depth + 1);
3074             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3075             NewOps.push_back(Mul);
3076           }
3077           if (AnyFolded)
3078             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3079         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3080           // Negation preserves a recurrence's no self-wrap property.
3081           SmallVector<const SCEV *, 4> Operands;
3082           for (const SCEV *AddRecOp : AddRec->operands())
3083             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3084                                           Depth + 1));
3085 
3086           return getAddRecExpr(Operands, AddRec->getLoop(),
3087                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3088         }
3089       }
3090     }
3091   }
3092 
3093   // Skip over the add expression until we get to a multiply.
3094   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3095     ++Idx;
3096 
3097   // If there are mul operands inline them all into this expression.
3098   if (Idx < Ops.size()) {
3099     bool DeletedMul = false;
3100     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3101       if (Ops.size() > MulOpsInlineThreshold)
3102         break;
3103       // If we have an mul, expand the mul operands onto the end of the
3104       // operands list.
3105       Ops.erase(Ops.begin()+Idx);
3106       Ops.append(Mul->op_begin(), Mul->op_end());
3107       DeletedMul = true;
3108     }
3109 
3110     // If we deleted at least one mul, we added operands to the end of the
3111     // list, and they are not necessarily sorted.  Recurse to resort and
3112     // resimplify any operands we just acquired.
3113     if (DeletedMul)
3114       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3115   }
3116 
3117   // If there are any add recurrences in the operands list, see if any other
3118   // added values are loop invariant.  If so, we can fold them into the
3119   // recurrence.
3120   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3121     ++Idx;
3122 
3123   // Scan over all recurrences, trying to fold loop invariants into them.
3124   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3125     // Scan all of the other operands to this mul and add them to the vector
3126     // if they are loop invariant w.r.t. the recurrence.
3127     SmallVector<const SCEV *, 8> LIOps;
3128     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3129     const Loop *AddRecLoop = AddRec->getLoop();
3130     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3131       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3132         LIOps.push_back(Ops[i]);
3133         Ops.erase(Ops.begin()+i);
3134         --i; --e;
3135       }
3136 
3137     // If we found some loop invariants, fold them into the recurrence.
3138     if (!LIOps.empty()) {
3139       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3140       SmallVector<const SCEV *, 4> NewOps;
3141       NewOps.reserve(AddRec->getNumOperands());
3142       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3143       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3144         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3145                                     SCEV::FlagAnyWrap, Depth + 1));
3146 
3147       // Build the new addrec. Propagate the NUW and NSW flags if both the
3148       // outer mul and the inner addrec are guaranteed to have no overflow.
3149       //
3150       // No self-wrap cannot be guaranteed after changing the step size, but
3151       // will be inferred if either NUW or NSW is true.
3152       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3153       const SCEV *NewRec = getAddRecExpr(
3154           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3155 
3156       // If all of the other operands were loop invariant, we are done.
3157       if (Ops.size() == 1) return NewRec;
3158 
3159       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3160       for (unsigned i = 0;; ++i)
3161         if (Ops[i] == AddRec) {
3162           Ops[i] = NewRec;
3163           break;
3164         }
3165       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3166     }
3167 
3168     // Okay, if there weren't any loop invariants to be folded, check to see
3169     // if there are multiple AddRec's with the same loop induction variable
3170     // being multiplied together.  If so, we can fold them.
3171 
3172     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3173     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3174     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3175     //   ]]],+,...up to x=2n}.
3176     // Note that the arguments to choose() are always integers with values
3177     // known at compile time, never SCEV objects.
3178     //
3179     // The implementation avoids pointless extra computations when the two
3180     // addrec's are of different length (mathematically, it's equivalent to
3181     // an infinite stream of zeros on the right).
3182     bool OpsModified = false;
3183     for (unsigned OtherIdx = Idx+1;
3184          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3185          ++OtherIdx) {
3186       const SCEVAddRecExpr *OtherAddRec =
3187         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3188       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3189         continue;
3190 
3191       // Limit max number of arguments to avoid creation of unreasonably big
3192       // SCEVAddRecs with very complex operands.
3193       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3194           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3195         continue;
3196 
3197       bool Overflow = false;
3198       Type *Ty = AddRec->getType();
3199       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3200       SmallVector<const SCEV*, 7> AddRecOps;
3201       for (int x = 0, xe = AddRec->getNumOperands() +
3202              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3203         SmallVector <const SCEV *, 7> SumOps;
3204         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3205           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3206           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3207                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3208                z < ze && !Overflow; ++z) {
3209             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3210             uint64_t Coeff;
3211             if (LargerThan64Bits)
3212               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3213             else
3214               Coeff = Coeff1*Coeff2;
3215             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3216             const SCEV *Term1 = AddRec->getOperand(y-z);
3217             const SCEV *Term2 = OtherAddRec->getOperand(z);
3218             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3219                                         SCEV::FlagAnyWrap, Depth + 1));
3220           }
3221         }
3222         if (SumOps.empty())
3223           SumOps.push_back(getZero(Ty));
3224         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3225       }
3226       if (!Overflow) {
3227         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3228                                               SCEV::FlagAnyWrap);
3229         if (Ops.size() == 2) return NewAddRec;
3230         Ops[Idx] = NewAddRec;
3231         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3232         OpsModified = true;
3233         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3234         if (!AddRec)
3235           break;
3236       }
3237     }
3238     if (OpsModified)
3239       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3240 
3241     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3242     // next one.
3243   }
3244 
3245   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3246   // already have one, otherwise create a new one.
3247   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3248 }
3249 
3250 /// Represents an unsigned remainder expression based on unsigned division.
3251 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3252                                          const SCEV *RHS) {
3253   assert(getEffectiveSCEVType(LHS->getType()) ==
3254          getEffectiveSCEVType(RHS->getType()) &&
3255          "SCEVURemExpr operand types don't match!");
3256 
3257   // Short-circuit easy cases
3258   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3259     // If constant is one, the result is trivial
3260     if (RHSC->getValue()->isOne())
3261       return getZero(LHS->getType()); // X urem 1 --> 0
3262 
3263     // If constant is a power of two, fold into a zext(trunc(LHS)).
3264     if (RHSC->getAPInt().isPowerOf2()) {
3265       Type *FullTy = LHS->getType();
3266       Type *TruncTy =
3267           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3268       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3269     }
3270   }
3271 
3272   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3273   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3274   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3275   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3276 }
3277 
3278 /// Get a canonical unsigned division expression, or something simpler if
3279 /// possible.
3280 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3281                                          const SCEV *RHS) {
3282   assert(!LHS->getType()->isPointerTy() &&
3283          "SCEVUDivExpr operand can't be pointer!");
3284   assert(LHS->getType() == RHS->getType() &&
3285          "SCEVUDivExpr operand types don't match!");
3286 
3287   FoldingSetNodeID ID;
3288   ID.AddInteger(scUDivExpr);
3289   ID.AddPointer(LHS);
3290   ID.AddPointer(RHS);
3291   void *IP = nullptr;
3292   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3293     return S;
3294 
3295   // 0 udiv Y == 0
3296   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3297     if (LHSC->getValue()->isZero())
3298       return LHS;
3299 
3300   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3301     if (RHSC->getValue()->isOne())
3302       return LHS;                               // X udiv 1 --> x
3303     // If the denominator is zero, the result of the udiv is undefined. Don't
3304     // try to analyze it, because the resolution chosen here may differ from
3305     // the resolution chosen in other parts of the compiler.
3306     if (!RHSC->getValue()->isZero()) {
3307       // Determine if the division can be folded into the operands of
3308       // its operands.
3309       // TODO: Generalize this to non-constants by using known-bits information.
3310       Type *Ty = LHS->getType();
3311       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3312       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3313       // For non-power-of-two values, effectively round the value up to the
3314       // nearest power of two.
3315       if (!RHSC->getAPInt().isPowerOf2())
3316         ++MaxShiftAmt;
3317       IntegerType *ExtTy =
3318         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3319       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3320         if (const SCEVConstant *Step =
3321             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3322           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3323           const APInt &StepInt = Step->getAPInt();
3324           const APInt &DivInt = RHSC->getAPInt();
3325           if (!StepInt.urem(DivInt) &&
3326               getZeroExtendExpr(AR, ExtTy) ==
3327               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3328                             getZeroExtendExpr(Step, ExtTy),
3329                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3330             SmallVector<const SCEV *, 4> Operands;
3331             for (const SCEV *Op : AR->operands())
3332               Operands.push_back(getUDivExpr(Op, RHS));
3333             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3334           }
3335           /// Get a canonical UDivExpr for a recurrence.
3336           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3337           // We can currently only fold X%N if X is constant.
3338           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3339           if (StartC && !DivInt.urem(StepInt) &&
3340               getZeroExtendExpr(AR, ExtTy) ==
3341               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3342                             getZeroExtendExpr(Step, ExtTy),
3343                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3344             const APInt &StartInt = StartC->getAPInt();
3345             const APInt &StartRem = StartInt.urem(StepInt);
3346             if (StartRem != 0) {
3347               const SCEV *NewLHS =
3348                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3349                                 AR->getLoop(), SCEV::FlagNW);
3350               if (LHS != NewLHS) {
3351                 LHS = NewLHS;
3352 
3353                 // Reset the ID to include the new LHS, and check if it is
3354                 // already cached.
3355                 ID.clear();
3356                 ID.AddInteger(scUDivExpr);
3357                 ID.AddPointer(LHS);
3358                 ID.AddPointer(RHS);
3359                 IP = nullptr;
3360                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3361                   return S;
3362               }
3363             }
3364           }
3365         }
3366       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3367       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3368         SmallVector<const SCEV *, 4> Operands;
3369         for (const SCEV *Op : M->operands())
3370           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3371         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3372           // Find an operand that's safely divisible.
3373           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3374             const SCEV *Op = M->getOperand(i);
3375             const SCEV *Div = getUDivExpr(Op, RHSC);
3376             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3377               Operands = SmallVector<const SCEV *, 4>(M->operands());
3378               Operands[i] = Div;
3379               return getMulExpr(Operands);
3380             }
3381           }
3382       }
3383 
3384       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3385       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3386         if (auto *DivisorConstant =
3387                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3388           bool Overflow = false;
3389           APInt NewRHS =
3390               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3391           if (Overflow) {
3392             return getConstant(RHSC->getType(), 0, false);
3393           }
3394           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3395         }
3396       }
3397 
3398       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3399       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3400         SmallVector<const SCEV *, 4> Operands;
3401         for (const SCEV *Op : A->operands())
3402           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3403         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3404           Operands.clear();
3405           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3406             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3407             if (isa<SCEVUDivExpr>(Op) ||
3408                 getMulExpr(Op, RHS) != A->getOperand(i))
3409               break;
3410             Operands.push_back(Op);
3411           }
3412           if (Operands.size() == A->getNumOperands())
3413             return getAddExpr(Operands);
3414         }
3415       }
3416 
3417       // Fold if both operands are constant.
3418       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3419         Constant *LHSCV = LHSC->getValue();
3420         Constant *RHSCV = RHSC->getValue();
3421         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3422                                                                    RHSCV)));
3423       }
3424     }
3425   }
3426 
3427   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3428   // changes). Make sure we get a new one.
3429   IP = nullptr;
3430   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3431   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3432                                              LHS, RHS);
3433   UniqueSCEVs.InsertNode(S, IP);
3434   addToLoopUseLists(S);
3435   return S;
3436 }
3437 
3438 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3439   APInt A = C1->getAPInt().abs();
3440   APInt B = C2->getAPInt().abs();
3441   uint32_t ABW = A.getBitWidth();
3442   uint32_t BBW = B.getBitWidth();
3443 
3444   if (ABW > BBW)
3445     B = B.zext(ABW);
3446   else if (ABW < BBW)
3447     A = A.zext(BBW);
3448 
3449   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3450 }
3451 
3452 /// Get a canonical unsigned division expression, or something simpler if
3453 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3454 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3455 /// it's not exact because the udiv may be clearing bits.
3456 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3457                                               const SCEV *RHS) {
3458   // TODO: we could try to find factors in all sorts of things, but for now we
3459   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3460   // end of this file for inspiration.
3461 
3462   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3463   if (!Mul || !Mul->hasNoUnsignedWrap())
3464     return getUDivExpr(LHS, RHS);
3465 
3466   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3467     // If the mulexpr multiplies by a constant, then that constant must be the
3468     // first element of the mulexpr.
3469     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3470       if (LHSCst == RHSCst) {
3471         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3472         return getMulExpr(Operands);
3473       }
3474 
3475       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3476       // that there's a factor provided by one of the other terms. We need to
3477       // check.
3478       APInt Factor = gcd(LHSCst, RHSCst);
3479       if (!Factor.isIntN(1)) {
3480         LHSCst =
3481             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3482         RHSCst =
3483             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3484         SmallVector<const SCEV *, 2> Operands;
3485         Operands.push_back(LHSCst);
3486         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3487         LHS = getMulExpr(Operands);
3488         RHS = RHSCst;
3489         Mul = dyn_cast<SCEVMulExpr>(LHS);
3490         if (!Mul)
3491           return getUDivExactExpr(LHS, RHS);
3492       }
3493     }
3494   }
3495 
3496   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3497     if (Mul->getOperand(i) == RHS) {
3498       SmallVector<const SCEV *, 2> Operands;
3499       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3500       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3501       return getMulExpr(Operands);
3502     }
3503   }
3504 
3505   return getUDivExpr(LHS, RHS);
3506 }
3507 
3508 /// Get an add recurrence expression for the specified loop.  Simplify the
3509 /// expression as much as possible.
3510 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3511                                            const Loop *L,
3512                                            SCEV::NoWrapFlags Flags) {
3513   SmallVector<const SCEV *, 4> Operands;
3514   Operands.push_back(Start);
3515   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3516     if (StepChrec->getLoop() == L) {
3517       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3518       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3519     }
3520 
3521   Operands.push_back(Step);
3522   return getAddRecExpr(Operands, L, Flags);
3523 }
3524 
3525 /// Get an add recurrence expression for the specified loop.  Simplify the
3526 /// expression as much as possible.
3527 const SCEV *
3528 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3529                                const Loop *L, SCEV::NoWrapFlags Flags) {
3530   if (Operands.size() == 1) return Operands[0];
3531 #ifndef NDEBUG
3532   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3533   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3534     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3535            "SCEVAddRecExpr operand types don't match!");
3536     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3537   }
3538   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3539     assert(isLoopInvariant(Operands[i], L) &&
3540            "SCEVAddRecExpr operand is not loop-invariant!");
3541 #endif
3542 
3543   if (Operands.back()->isZero()) {
3544     Operands.pop_back();
3545     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3546   }
3547 
3548   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3549   // use that information to infer NUW and NSW flags. However, computing a
3550   // BE count requires calling getAddRecExpr, so we may not yet have a
3551   // meaningful BE count at this point (and if we don't, we'd be stuck
3552   // with a SCEVCouldNotCompute as the cached BE count).
3553 
3554   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3555 
3556   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3557   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3558     const Loop *NestedLoop = NestedAR->getLoop();
3559     if (L->contains(NestedLoop)
3560             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3561             : (!NestedLoop->contains(L) &&
3562                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3563       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3564       Operands[0] = NestedAR->getStart();
3565       // AddRecs require their operands be loop-invariant with respect to their
3566       // loops. Don't perform this transformation if it would break this
3567       // requirement.
3568       bool AllInvariant = all_of(
3569           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3570 
3571       if (AllInvariant) {
3572         // Create a recurrence for the outer loop with the same step size.
3573         //
3574         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3575         // inner recurrence has the same property.
3576         SCEV::NoWrapFlags OuterFlags =
3577           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3578 
3579         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3580         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3581           return isLoopInvariant(Op, NestedLoop);
3582         });
3583 
3584         if (AllInvariant) {
3585           // Ok, both add recurrences are valid after the transformation.
3586           //
3587           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3588           // the outer recurrence has the same property.
3589           SCEV::NoWrapFlags InnerFlags =
3590             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3591           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3592         }
3593       }
3594       // Reset Operands to its original state.
3595       Operands[0] = NestedAR;
3596     }
3597   }
3598 
3599   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3600   // already have one, otherwise create a new one.
3601   return getOrCreateAddRecExpr(Operands, L, Flags);
3602 }
3603 
3604 const SCEV *
3605 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3606                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3607   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3608   // getSCEV(Base)->getType() has the same address space as Base->getType()
3609   // because SCEV::getType() preserves the address space.
3610   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3611   const bool AssumeInBoundsFlags = [&]() {
3612     if (!GEP->isInBounds())
3613       return false;
3614 
3615     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3616     // but to do that, we have to ensure that said flag is valid in the entire
3617     // defined scope of the SCEV.
3618     auto *GEPI = dyn_cast<Instruction>(GEP);
3619     // TODO: non-instructions have global scope.  We might be able to prove
3620     // some global scope cases
3621     return GEPI && isSCEVExprNeverPoison(GEPI);
3622   }();
3623 
3624   SCEV::NoWrapFlags OffsetWrap =
3625     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3626 
3627   Type *CurTy = GEP->getType();
3628   bool FirstIter = true;
3629   SmallVector<const SCEV *, 4> Offsets;
3630   for (const SCEV *IndexExpr : IndexExprs) {
3631     // Compute the (potentially symbolic) offset in bytes for this index.
3632     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3633       // For a struct, add the member offset.
3634       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3635       unsigned FieldNo = Index->getZExtValue();
3636       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3637       Offsets.push_back(FieldOffset);
3638 
3639       // Update CurTy to the type of the field at Index.
3640       CurTy = STy->getTypeAtIndex(Index);
3641     } else {
3642       // Update CurTy to its element type.
3643       if (FirstIter) {
3644         assert(isa<PointerType>(CurTy) &&
3645                "The first index of a GEP indexes a pointer");
3646         CurTy = GEP->getSourceElementType();
3647         FirstIter = false;
3648       } else {
3649         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3650       }
3651       // For an array, add the element offset, explicitly scaled.
3652       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3653       // Getelementptr indices are signed.
3654       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3655 
3656       // Multiply the index by the element size to compute the element offset.
3657       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3658       Offsets.push_back(LocalOffset);
3659     }
3660   }
3661 
3662   // Handle degenerate case of GEP without offsets.
3663   if (Offsets.empty())
3664     return BaseExpr;
3665 
3666   // Add the offsets together, assuming nsw if inbounds.
3667   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3668   // Add the base address and the offset. We cannot use the nsw flag, as the
3669   // base address is unsigned. However, if we know that the offset is
3670   // non-negative, we can use nuw.
3671   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3672                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3673   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3674   assert(BaseExpr->getType() == GEPExpr->getType() &&
3675          "GEP should not change type mid-flight.");
3676   return GEPExpr;
3677 }
3678 
3679 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3680                                                ArrayRef<const SCEV *> Ops) {
3681   FoldingSetNodeID ID;
3682   ID.AddInteger(SCEVType);
3683   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3684     ID.AddPointer(Ops[i]);
3685   void *IP = nullptr;
3686   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3687 }
3688 
3689 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3690   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3691   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3692 }
3693 
3694 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3695                                            SmallVectorImpl<const SCEV *> &Ops) {
3696   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3697   if (Ops.size() == 1) return Ops[0];
3698 #ifndef NDEBUG
3699   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3700   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3701     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3702            "Operand types don't match!");
3703     assert(Ops[0]->getType()->isPointerTy() ==
3704                Ops[i]->getType()->isPointerTy() &&
3705            "min/max should be consistently pointerish");
3706   }
3707 #endif
3708 
3709   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3710   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3711 
3712   // Sort by complexity, this groups all similar expression types together.
3713   GroupByComplexity(Ops, &LI, DT);
3714 
3715   // Check if we have created the same expression before.
3716   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3717     return S;
3718   }
3719 
3720   // If there are any constants, fold them together.
3721   unsigned Idx = 0;
3722   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3723     ++Idx;
3724     assert(Idx < Ops.size());
3725     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3726       if (Kind == scSMaxExpr)
3727         return APIntOps::smax(LHS, RHS);
3728       else if (Kind == scSMinExpr)
3729         return APIntOps::smin(LHS, RHS);
3730       else if (Kind == scUMaxExpr)
3731         return APIntOps::umax(LHS, RHS);
3732       else if (Kind == scUMinExpr)
3733         return APIntOps::umin(LHS, RHS);
3734       llvm_unreachable("Unknown SCEV min/max opcode");
3735     };
3736 
3737     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3738       // We found two constants, fold them together!
3739       ConstantInt *Fold = ConstantInt::get(
3740           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3741       Ops[0] = getConstant(Fold);
3742       Ops.erase(Ops.begin()+1);  // Erase the folded element
3743       if (Ops.size() == 1) return Ops[0];
3744       LHSC = cast<SCEVConstant>(Ops[0]);
3745     }
3746 
3747     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3748     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3749 
3750     if (IsMax ? IsMinV : IsMaxV) {
3751       // If we are left with a constant minimum(/maximum)-int, strip it off.
3752       Ops.erase(Ops.begin());
3753       --Idx;
3754     } else if (IsMax ? IsMaxV : IsMinV) {
3755       // If we have a max(/min) with a constant maximum(/minimum)-int,
3756       // it will always be the extremum.
3757       return LHSC;
3758     }
3759 
3760     if (Ops.size() == 1) return Ops[0];
3761   }
3762 
3763   // Find the first operation of the same kind
3764   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3765     ++Idx;
3766 
3767   // Check to see if one of the operands is of the same kind. If so, expand its
3768   // operands onto our operand list, and recurse to simplify.
3769   if (Idx < Ops.size()) {
3770     bool DeletedAny = false;
3771     while (Ops[Idx]->getSCEVType() == Kind) {
3772       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3773       Ops.erase(Ops.begin()+Idx);
3774       Ops.append(SMME->op_begin(), SMME->op_end());
3775       DeletedAny = true;
3776     }
3777 
3778     if (DeletedAny)
3779       return getMinMaxExpr(Kind, Ops);
3780   }
3781 
3782   // Okay, check to see if the same value occurs in the operand list twice.  If
3783   // so, delete one.  Since we sorted the list, these values are required to
3784   // be adjacent.
3785   llvm::CmpInst::Predicate GEPred =
3786       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3787   llvm::CmpInst::Predicate LEPred =
3788       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3789   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3790   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3791   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3792     if (Ops[i] == Ops[i + 1] ||
3793         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3794       //  X op Y op Y  -->  X op Y
3795       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3796       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3797       --i;
3798       --e;
3799     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3800                                                Ops[i + 1])) {
3801       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3802       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3803       --i;
3804       --e;
3805     }
3806   }
3807 
3808   if (Ops.size() == 1) return Ops[0];
3809 
3810   assert(!Ops.empty() && "Reduced smax down to nothing!");
3811 
3812   // Okay, it looks like we really DO need an expr.  Check to see if we
3813   // already have one, otherwise create a new one.
3814   FoldingSetNodeID ID;
3815   ID.AddInteger(Kind);
3816   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3817     ID.AddPointer(Ops[i]);
3818   void *IP = nullptr;
3819   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3820   if (ExistingSCEV)
3821     return ExistingSCEV;
3822   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3823   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3824   SCEV *S = new (SCEVAllocator)
3825       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3826 
3827   UniqueSCEVs.InsertNode(S, IP);
3828   addToLoopUseLists(S);
3829   return S;
3830 }
3831 
3832 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3833   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3834   return getSMaxExpr(Ops);
3835 }
3836 
3837 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3838   return getMinMaxExpr(scSMaxExpr, Ops);
3839 }
3840 
3841 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3842   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3843   return getUMaxExpr(Ops);
3844 }
3845 
3846 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3847   return getMinMaxExpr(scUMaxExpr, Ops);
3848 }
3849 
3850 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3851                                          const SCEV *RHS) {
3852   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3853   return getSMinExpr(Ops);
3854 }
3855 
3856 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3857   return getMinMaxExpr(scSMinExpr, Ops);
3858 }
3859 
3860 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3861                                          const SCEV *RHS) {
3862   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3863   return getUMinExpr(Ops);
3864 }
3865 
3866 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3867   return getMinMaxExpr(scUMinExpr, Ops);
3868 }
3869 
3870 const SCEV *
3871 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3872                                              ScalableVectorType *ScalableTy) {
3873   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3874   Constant *One = ConstantInt::get(IntTy, 1);
3875   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3876   // Note that the expression we created is the final expression, we don't
3877   // want to simplify it any further Also, if we call a normal getSCEV(),
3878   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3879   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3880 }
3881 
3882 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3883   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3884     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3885   // We can bypass creating a target-independent constant expression and then
3886   // folding it back into a ConstantInt. This is just a compile-time
3887   // optimization.
3888   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3889 }
3890 
3891 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3892   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3893     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3894   // We can bypass creating a target-independent constant expression and then
3895   // folding it back into a ConstantInt. This is just a compile-time
3896   // optimization.
3897   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3898 }
3899 
3900 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3901                                              StructType *STy,
3902                                              unsigned FieldNo) {
3903   // We can bypass creating a target-independent constant expression and then
3904   // folding it back into a ConstantInt. This is just a compile-time
3905   // optimization.
3906   return getConstant(
3907       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3908 }
3909 
3910 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3911   // Don't attempt to do anything other than create a SCEVUnknown object
3912   // here.  createSCEV only calls getUnknown after checking for all other
3913   // interesting possibilities, and any other code that calls getUnknown
3914   // is doing so in order to hide a value from SCEV canonicalization.
3915 
3916   FoldingSetNodeID ID;
3917   ID.AddInteger(scUnknown);
3918   ID.AddPointer(V);
3919   void *IP = nullptr;
3920   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3921     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3922            "Stale SCEVUnknown in uniquing map!");
3923     return S;
3924   }
3925   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3926                                             FirstUnknown);
3927   FirstUnknown = cast<SCEVUnknown>(S);
3928   UniqueSCEVs.InsertNode(S, IP);
3929   return S;
3930 }
3931 
3932 //===----------------------------------------------------------------------===//
3933 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3934 //
3935 
3936 /// Test if values of the given type are analyzable within the SCEV
3937 /// framework. This primarily includes integer types, and it can optionally
3938 /// include pointer types if the ScalarEvolution class has access to
3939 /// target-specific information.
3940 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3941   // Integers and pointers are always SCEVable.
3942   return Ty->isIntOrPtrTy();
3943 }
3944 
3945 /// Return the size in bits of the specified type, for which isSCEVable must
3946 /// return true.
3947 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3948   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3949   if (Ty->isPointerTy())
3950     return getDataLayout().getIndexTypeSizeInBits(Ty);
3951   return getDataLayout().getTypeSizeInBits(Ty);
3952 }
3953 
3954 /// Return a type with the same bitwidth as the given type and which represents
3955 /// how SCEV will treat the given type, for which isSCEVable must return
3956 /// true. For pointer types, this is the pointer index sized integer type.
3957 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3958   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3959 
3960   if (Ty->isIntegerTy())
3961     return Ty;
3962 
3963   // The only other support type is pointer.
3964   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3965   return getDataLayout().getIndexType(Ty);
3966 }
3967 
3968 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3969   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3970 }
3971 
3972 const SCEV *ScalarEvolution::getCouldNotCompute() {
3973   return CouldNotCompute.get();
3974 }
3975 
3976 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3977   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3978     auto *SU = dyn_cast<SCEVUnknown>(S);
3979     return SU && SU->getValue() == nullptr;
3980   });
3981 
3982   return !ContainsNulls;
3983 }
3984 
3985 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3986   HasRecMapType::iterator I = HasRecMap.find(S);
3987   if (I != HasRecMap.end())
3988     return I->second;
3989 
3990   bool FoundAddRec =
3991       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3992   HasRecMap.insert({S, FoundAddRec});
3993   return FoundAddRec;
3994 }
3995 
3996 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3997 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3998 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3999 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
4000   const auto *Add = dyn_cast<SCEVAddExpr>(S);
4001   if (!Add)
4002     return {S, nullptr};
4003 
4004   if (Add->getNumOperands() != 2)
4005     return {S, nullptr};
4006 
4007   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
4008   if (!ConstOp)
4009     return {S, nullptr};
4010 
4011   return {Add->getOperand(1), ConstOp->getValue()};
4012 }
4013 
4014 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4015 /// by the value and offset from any ValueOffsetPair in the set.
4016 ScalarEvolution::ValueOffsetPairSetVector *
4017 ScalarEvolution::getSCEVValues(const SCEV *S) {
4018   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4019   if (SI == ExprValueMap.end())
4020     return nullptr;
4021 #ifndef NDEBUG
4022   if (VerifySCEVMap) {
4023     // Check there is no dangling Value in the set returned.
4024     for (const auto &VE : SI->second)
4025       assert(ValueExprMap.count(VE.first));
4026   }
4027 #endif
4028   return &SI->second;
4029 }
4030 
4031 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4032 /// cannot be used separately. eraseValueFromMap should be used to remove
4033 /// V from ValueExprMap and ExprValueMap at the same time.
4034 void ScalarEvolution::eraseValueFromMap(Value *V) {
4035   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4036   if (I != ValueExprMap.end()) {
4037     const SCEV *S = I->second;
4038     // Remove {V, 0} from the set of ExprValueMap[S]
4039     if (auto *SV = getSCEVValues(S))
4040       SV->remove({V, nullptr});
4041 
4042     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4043     const SCEV *Stripped;
4044     ConstantInt *Offset;
4045     std::tie(Stripped, Offset) = splitAddExpr(S);
4046     if (Offset != nullptr) {
4047       if (auto *SV = getSCEVValues(Stripped))
4048         SV->remove({V, Offset});
4049     }
4050     ValueExprMap.erase(V);
4051   }
4052 }
4053 
4054 /// Check whether value has nuw/nsw/exact set but SCEV does not.
4055 /// TODO: In reality it is better to check the poison recursively
4056 /// but this is better than nothing.
4057 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
4058   if (auto *I = dyn_cast<Instruction>(V)) {
4059     if (isa<OverflowingBinaryOperator>(I)) {
4060       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
4061         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
4062           return true;
4063         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
4064           return true;
4065       }
4066     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
4067       return true;
4068   }
4069   return false;
4070 }
4071 
4072 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4073 /// create a new one.
4074 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4075   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4076 
4077   const SCEV *S = getExistingSCEV(V);
4078   if (S == nullptr) {
4079     S = createSCEV(V);
4080     // During PHI resolution, it is possible to create two SCEVs for the same
4081     // V, so it is needed to double check whether V->S is inserted into
4082     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4083     std::pair<ValueExprMapType::iterator, bool> Pair =
4084         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4085     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
4086       ExprValueMap[S].insert({V, nullptr});
4087 
4088       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4089       // ExprValueMap.
4090       const SCEV *Stripped = S;
4091       ConstantInt *Offset = nullptr;
4092       std::tie(Stripped, Offset) = splitAddExpr(S);
4093       // If stripped is SCEVUnknown, don't bother to save
4094       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4095       // increase the complexity of the expansion code.
4096       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4097       // because it may generate add/sub instead of GEP in SCEV expansion.
4098       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4099           !isa<GetElementPtrInst>(V))
4100         ExprValueMap[Stripped].insert({V, Offset});
4101     }
4102   }
4103   return S;
4104 }
4105 
4106 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4107   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4108 
4109   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4110   if (I != ValueExprMap.end()) {
4111     const SCEV *S = I->second;
4112     if (checkValidity(S))
4113       return S;
4114     eraseValueFromMap(V);
4115     forgetMemoizedResults(S);
4116   }
4117   return nullptr;
4118 }
4119 
4120 /// Return a SCEV corresponding to -V = -1*V
4121 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4122                                              SCEV::NoWrapFlags Flags) {
4123   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4124     return getConstant(
4125                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4126 
4127   Type *Ty = V->getType();
4128   Ty = getEffectiveSCEVType(Ty);
4129   return getMulExpr(V, getMinusOne(Ty), Flags);
4130 }
4131 
4132 /// If Expr computes ~A, return A else return nullptr
4133 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4134   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4135   if (!Add || Add->getNumOperands() != 2 ||
4136       !Add->getOperand(0)->isAllOnesValue())
4137     return nullptr;
4138 
4139   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4140   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4141       !AddRHS->getOperand(0)->isAllOnesValue())
4142     return nullptr;
4143 
4144   return AddRHS->getOperand(1);
4145 }
4146 
4147 /// Return a SCEV corresponding to ~V = -1-V
4148 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4149   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4150 
4151   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4152     return getConstant(
4153                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4154 
4155   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4156   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4157     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4158       SmallVector<const SCEV *, 2> MatchedOperands;
4159       for (const SCEV *Operand : MME->operands()) {
4160         const SCEV *Matched = MatchNotExpr(Operand);
4161         if (!Matched)
4162           return (const SCEV *)nullptr;
4163         MatchedOperands.push_back(Matched);
4164       }
4165       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4166                            MatchedOperands);
4167     };
4168     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4169       return Replaced;
4170   }
4171 
4172   Type *Ty = V->getType();
4173   Ty = getEffectiveSCEVType(Ty);
4174   return getMinusSCEV(getMinusOne(Ty), V);
4175 }
4176 
4177 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4178   assert(P->getType()->isPointerTy());
4179 
4180   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4181     // The base of an AddRec is the first operand.
4182     SmallVector<const SCEV *> Ops{AddRec->operands()};
4183     Ops[0] = removePointerBase(Ops[0]);
4184     // Don't try to transfer nowrap flags for now. We could in some cases
4185     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4186     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4187   }
4188   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4189     // The base of an Add is the pointer operand.
4190     SmallVector<const SCEV *> Ops{Add->operands()};
4191     const SCEV **PtrOp = nullptr;
4192     for (const SCEV *&AddOp : Ops) {
4193       if (AddOp->getType()->isPointerTy()) {
4194         assert(!PtrOp && "Cannot have multiple pointer ops");
4195         PtrOp = &AddOp;
4196       }
4197     }
4198     *PtrOp = removePointerBase(*PtrOp);
4199     // Don't try to transfer nowrap flags for now. We could in some cases
4200     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4201     return getAddExpr(Ops);
4202   }
4203   // Any other expression must be a pointer base.
4204   return getZero(P->getType());
4205 }
4206 
4207 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4208                                           SCEV::NoWrapFlags Flags,
4209                                           unsigned Depth) {
4210   // Fast path: X - X --> 0.
4211   if (LHS == RHS)
4212     return getZero(LHS->getType());
4213 
4214   // If we subtract two pointers with different pointer bases, bail.
4215   // Eventually, we're going to add an assertion to getMulExpr that we
4216   // can't multiply by a pointer.
4217   if (RHS->getType()->isPointerTy()) {
4218     if (!LHS->getType()->isPointerTy() ||
4219         getPointerBase(LHS) != getPointerBase(RHS))
4220       return getCouldNotCompute();
4221     LHS = removePointerBase(LHS);
4222     RHS = removePointerBase(RHS);
4223   }
4224 
4225   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4226   // makes it so that we cannot make much use of NUW.
4227   auto AddFlags = SCEV::FlagAnyWrap;
4228   const bool RHSIsNotMinSigned =
4229       !getSignedRangeMin(RHS).isMinSignedValue();
4230   if (hasFlags(Flags, SCEV::FlagNSW)) {
4231     // Let M be the minimum representable signed value. Then (-1)*RHS
4232     // signed-wraps if and only if RHS is M. That can happen even for
4233     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4234     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4235     // (-1)*RHS, we need to prove that RHS != M.
4236     //
4237     // If LHS is non-negative and we know that LHS - RHS does not
4238     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4239     // either by proving that RHS > M or that LHS >= 0.
4240     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4241       AddFlags = SCEV::FlagNSW;
4242     }
4243   }
4244 
4245   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4246   // RHS is NSW and LHS >= 0.
4247   //
4248   // The difficulty here is that the NSW flag may have been proven
4249   // relative to a loop that is to be found in a recurrence in LHS and
4250   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4251   // larger scope than intended.
4252   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4253 
4254   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4255 }
4256 
4257 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4258                                                      unsigned Depth) {
4259   Type *SrcTy = V->getType();
4260   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4261          "Cannot truncate or zero extend with non-integer arguments!");
4262   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4263     return V;  // No conversion
4264   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4265     return getTruncateExpr(V, Ty, Depth);
4266   return getZeroExtendExpr(V, Ty, Depth);
4267 }
4268 
4269 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4270                                                      unsigned Depth) {
4271   Type *SrcTy = V->getType();
4272   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4273          "Cannot truncate or zero extend with non-integer arguments!");
4274   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4275     return V;  // No conversion
4276   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4277     return getTruncateExpr(V, Ty, Depth);
4278   return getSignExtendExpr(V, Ty, Depth);
4279 }
4280 
4281 const SCEV *
4282 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4283   Type *SrcTy = V->getType();
4284   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4285          "Cannot noop or zero extend with non-integer arguments!");
4286   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4287          "getNoopOrZeroExtend cannot truncate!");
4288   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4289     return V;  // No conversion
4290   return getZeroExtendExpr(V, Ty);
4291 }
4292 
4293 const SCEV *
4294 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4295   Type *SrcTy = V->getType();
4296   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4297          "Cannot noop or sign extend with non-integer arguments!");
4298   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4299          "getNoopOrSignExtend cannot truncate!");
4300   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4301     return V;  // No conversion
4302   return getSignExtendExpr(V, Ty);
4303 }
4304 
4305 const SCEV *
4306 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4307   Type *SrcTy = V->getType();
4308   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4309          "Cannot noop or any extend with non-integer arguments!");
4310   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4311          "getNoopOrAnyExtend cannot truncate!");
4312   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4313     return V;  // No conversion
4314   return getAnyExtendExpr(V, Ty);
4315 }
4316 
4317 const SCEV *
4318 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4319   Type *SrcTy = V->getType();
4320   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4321          "Cannot truncate or noop with non-integer arguments!");
4322   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4323          "getTruncateOrNoop cannot extend!");
4324   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4325     return V;  // No conversion
4326   return getTruncateExpr(V, Ty);
4327 }
4328 
4329 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4330                                                         const SCEV *RHS) {
4331   const SCEV *PromotedLHS = LHS;
4332   const SCEV *PromotedRHS = RHS;
4333 
4334   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4335     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4336   else
4337     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4338 
4339   return getUMaxExpr(PromotedLHS, PromotedRHS);
4340 }
4341 
4342 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4343                                                         const SCEV *RHS) {
4344   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4345   return getUMinFromMismatchedTypes(Ops);
4346 }
4347 
4348 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4349     SmallVectorImpl<const SCEV *> &Ops) {
4350   assert(!Ops.empty() && "At least one operand must be!");
4351   // Trivial case.
4352   if (Ops.size() == 1)
4353     return Ops[0];
4354 
4355   // Find the max type first.
4356   Type *MaxType = nullptr;
4357   for (auto *S : Ops)
4358     if (MaxType)
4359       MaxType = getWiderType(MaxType, S->getType());
4360     else
4361       MaxType = S->getType();
4362   assert(MaxType && "Failed to find maximum type!");
4363 
4364   // Extend all ops to max type.
4365   SmallVector<const SCEV *, 2> PromotedOps;
4366   for (auto *S : Ops)
4367     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4368 
4369   // Generate umin.
4370   return getUMinExpr(PromotedOps);
4371 }
4372 
4373 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4374   // A pointer operand may evaluate to a nonpointer expression, such as null.
4375   if (!V->getType()->isPointerTy())
4376     return V;
4377 
4378   while (true) {
4379     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4380       V = AddRec->getStart();
4381     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4382       const SCEV *PtrOp = nullptr;
4383       for (const SCEV *AddOp : Add->operands()) {
4384         if (AddOp->getType()->isPointerTy()) {
4385           assert(!PtrOp && "Cannot have multiple pointer ops");
4386           PtrOp = AddOp;
4387         }
4388       }
4389       assert(PtrOp && "Must have pointer op");
4390       V = PtrOp;
4391     } else // Not something we can look further into.
4392       return V;
4393   }
4394 }
4395 
4396 /// Push users of the given Instruction onto the given Worklist.
4397 static void
4398 PushDefUseChildren(Instruction *I,
4399                    SmallVectorImpl<Instruction *> &Worklist) {
4400   // Push the def-use children onto the Worklist stack.
4401   for (User *U : I->users())
4402     Worklist.push_back(cast<Instruction>(U));
4403 }
4404 
4405 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4406   SmallVector<Instruction *, 16> Worklist;
4407   PushDefUseChildren(PN, Worklist);
4408 
4409   SmallPtrSet<Instruction *, 8> Visited;
4410   Visited.insert(PN);
4411   while (!Worklist.empty()) {
4412     Instruction *I = Worklist.pop_back_val();
4413     if (!Visited.insert(I).second)
4414       continue;
4415 
4416     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4417     if (It != ValueExprMap.end()) {
4418       const SCEV *Old = It->second;
4419 
4420       // Short-circuit the def-use traversal if the symbolic name
4421       // ceases to appear in expressions.
4422       if (Old != SymName && !hasOperand(Old, SymName))
4423         continue;
4424 
4425       // SCEVUnknown for a PHI either means that it has an unrecognized
4426       // structure, it's a PHI that's in the progress of being computed
4427       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4428       // additional loop trip count information isn't going to change anything.
4429       // In the second case, createNodeForPHI will perform the necessary
4430       // updates on its own when it gets to that point. In the third, we do
4431       // want to forget the SCEVUnknown.
4432       if (!isa<PHINode>(I) ||
4433           !isa<SCEVUnknown>(Old) ||
4434           (I != PN && Old == SymName)) {
4435         eraseValueFromMap(It->first);
4436         forgetMemoizedResults(Old);
4437       }
4438     }
4439 
4440     PushDefUseChildren(I, Worklist);
4441   }
4442 }
4443 
4444 namespace {
4445 
4446 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4447 /// expression in case its Loop is L. If it is not L then
4448 /// if IgnoreOtherLoops is true then use AddRec itself
4449 /// otherwise rewrite cannot be done.
4450 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4451 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4452 public:
4453   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4454                              bool IgnoreOtherLoops = true) {
4455     SCEVInitRewriter Rewriter(L, SE);
4456     const SCEV *Result = Rewriter.visit(S);
4457     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4458       return SE.getCouldNotCompute();
4459     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4460                ? SE.getCouldNotCompute()
4461                : Result;
4462   }
4463 
4464   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4465     if (!SE.isLoopInvariant(Expr, L))
4466       SeenLoopVariantSCEVUnknown = true;
4467     return Expr;
4468   }
4469 
4470   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4471     // Only re-write AddRecExprs for this loop.
4472     if (Expr->getLoop() == L)
4473       return Expr->getStart();
4474     SeenOtherLoops = true;
4475     return Expr;
4476   }
4477 
4478   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4479 
4480   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4481 
4482 private:
4483   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4484       : SCEVRewriteVisitor(SE), L(L) {}
4485 
4486   const Loop *L;
4487   bool SeenLoopVariantSCEVUnknown = false;
4488   bool SeenOtherLoops = false;
4489 };
4490 
4491 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4492 /// increment expression in case its Loop is L. If it is not L then
4493 /// use AddRec itself.
4494 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4495 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4496 public:
4497   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4498     SCEVPostIncRewriter Rewriter(L, SE);
4499     const SCEV *Result = Rewriter.visit(S);
4500     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4501         ? SE.getCouldNotCompute()
4502         : Result;
4503   }
4504 
4505   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4506     if (!SE.isLoopInvariant(Expr, L))
4507       SeenLoopVariantSCEVUnknown = true;
4508     return Expr;
4509   }
4510 
4511   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4512     // Only re-write AddRecExprs for this loop.
4513     if (Expr->getLoop() == L)
4514       return Expr->getPostIncExpr(SE);
4515     SeenOtherLoops = true;
4516     return Expr;
4517   }
4518 
4519   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4520 
4521   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4522 
4523 private:
4524   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4525       : SCEVRewriteVisitor(SE), L(L) {}
4526 
4527   const Loop *L;
4528   bool SeenLoopVariantSCEVUnknown = false;
4529   bool SeenOtherLoops = false;
4530 };
4531 
4532 /// This class evaluates the compare condition by matching it against the
4533 /// condition of loop latch. If there is a match we assume a true value
4534 /// for the condition while building SCEV nodes.
4535 class SCEVBackedgeConditionFolder
4536     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4537 public:
4538   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4539                              ScalarEvolution &SE) {
4540     bool IsPosBECond = false;
4541     Value *BECond = nullptr;
4542     if (BasicBlock *Latch = L->getLoopLatch()) {
4543       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4544       if (BI && BI->isConditional()) {
4545         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4546                "Both outgoing branches should not target same header!");
4547         BECond = BI->getCondition();
4548         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4549       } else {
4550         return S;
4551       }
4552     }
4553     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4554     return Rewriter.visit(S);
4555   }
4556 
4557   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4558     const SCEV *Result = Expr;
4559     bool InvariantF = SE.isLoopInvariant(Expr, L);
4560 
4561     if (!InvariantF) {
4562       Instruction *I = cast<Instruction>(Expr->getValue());
4563       switch (I->getOpcode()) {
4564       case Instruction::Select: {
4565         SelectInst *SI = cast<SelectInst>(I);
4566         Optional<const SCEV *> Res =
4567             compareWithBackedgeCondition(SI->getCondition());
4568         if (Res.hasValue()) {
4569           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4570           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4571         }
4572         break;
4573       }
4574       default: {
4575         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4576         if (Res.hasValue())
4577           Result = Res.getValue();
4578         break;
4579       }
4580       }
4581     }
4582     return Result;
4583   }
4584 
4585 private:
4586   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4587                                        bool IsPosBECond, ScalarEvolution &SE)
4588       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4589         IsPositiveBECond(IsPosBECond) {}
4590 
4591   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4592 
4593   const Loop *L;
4594   /// Loop back condition.
4595   Value *BackedgeCond = nullptr;
4596   /// Set to true if loop back is on positive branch condition.
4597   bool IsPositiveBECond;
4598 };
4599 
4600 Optional<const SCEV *>
4601 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4602 
4603   // If value matches the backedge condition for loop latch,
4604   // then return a constant evolution node based on loopback
4605   // branch taken.
4606   if (BackedgeCond == IC)
4607     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4608                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4609   return None;
4610 }
4611 
4612 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4613 public:
4614   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4615                              ScalarEvolution &SE) {
4616     SCEVShiftRewriter Rewriter(L, SE);
4617     const SCEV *Result = Rewriter.visit(S);
4618     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4619   }
4620 
4621   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4622     // Only allow AddRecExprs for this loop.
4623     if (!SE.isLoopInvariant(Expr, L))
4624       Valid = false;
4625     return Expr;
4626   }
4627 
4628   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4629     if (Expr->getLoop() == L && Expr->isAffine())
4630       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4631     Valid = false;
4632     return Expr;
4633   }
4634 
4635   bool isValid() { return Valid; }
4636 
4637 private:
4638   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4639       : SCEVRewriteVisitor(SE), L(L) {}
4640 
4641   const Loop *L;
4642   bool Valid = true;
4643 };
4644 
4645 } // end anonymous namespace
4646 
4647 SCEV::NoWrapFlags
4648 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4649   if (!AR->isAffine())
4650     return SCEV::FlagAnyWrap;
4651 
4652   using OBO = OverflowingBinaryOperator;
4653 
4654   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4655 
4656   if (!AR->hasNoSignedWrap()) {
4657     ConstantRange AddRecRange = getSignedRange(AR);
4658     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4659 
4660     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4661         Instruction::Add, IncRange, OBO::NoSignedWrap);
4662     if (NSWRegion.contains(AddRecRange))
4663       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4664   }
4665 
4666   if (!AR->hasNoUnsignedWrap()) {
4667     ConstantRange AddRecRange = getUnsignedRange(AR);
4668     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4669 
4670     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4671         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4672     if (NUWRegion.contains(AddRecRange))
4673       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4674   }
4675 
4676   return Result;
4677 }
4678 
4679 SCEV::NoWrapFlags
4680 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4681   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4682 
4683   if (AR->hasNoSignedWrap())
4684     return Result;
4685 
4686   if (!AR->isAffine())
4687     return Result;
4688 
4689   const SCEV *Step = AR->getStepRecurrence(*this);
4690   const Loop *L = AR->getLoop();
4691 
4692   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4693   // Note that this serves two purposes: It filters out loops that are
4694   // simply not analyzable, and it covers the case where this code is
4695   // being called from within backedge-taken count analysis, such that
4696   // attempting to ask for the backedge-taken count would likely result
4697   // in infinite recursion. In the later case, the analysis code will
4698   // cope with a conservative value, and it will take care to purge
4699   // that value once it has finished.
4700   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4701 
4702   // Normally, in the cases we can prove no-overflow via a
4703   // backedge guarding condition, we can also compute a backedge
4704   // taken count for the loop.  The exceptions are assumptions and
4705   // guards present in the loop -- SCEV is not great at exploiting
4706   // these to compute max backedge taken counts, but can still use
4707   // these to prove lack of overflow.  Use this fact to avoid
4708   // doing extra work that may not pay off.
4709 
4710   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4711       AC.assumptions().empty())
4712     return Result;
4713 
4714   // If the backedge is guarded by a comparison with the pre-inc  value the
4715   // addrec is safe. Also, if the entry is guarded by a comparison with the
4716   // start value and the backedge is guarded by a comparison with the post-inc
4717   // value, the addrec is safe.
4718   ICmpInst::Predicate Pred;
4719   const SCEV *OverflowLimit =
4720     getSignedOverflowLimitForStep(Step, &Pred, this);
4721   if (OverflowLimit &&
4722       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4723        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4724     Result = setFlags(Result, SCEV::FlagNSW);
4725   }
4726   return Result;
4727 }
4728 SCEV::NoWrapFlags
4729 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4730   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4731 
4732   if (AR->hasNoUnsignedWrap())
4733     return Result;
4734 
4735   if (!AR->isAffine())
4736     return Result;
4737 
4738   const SCEV *Step = AR->getStepRecurrence(*this);
4739   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4740   const Loop *L = AR->getLoop();
4741 
4742   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4743   // Note that this serves two purposes: It filters out loops that are
4744   // simply not analyzable, and it covers the case where this code is
4745   // being called from within backedge-taken count analysis, such that
4746   // attempting to ask for the backedge-taken count would likely result
4747   // in infinite recursion. In the later case, the analysis code will
4748   // cope with a conservative value, and it will take care to purge
4749   // that value once it has finished.
4750   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4751 
4752   // Normally, in the cases we can prove no-overflow via a
4753   // backedge guarding condition, we can also compute a backedge
4754   // taken count for the loop.  The exceptions are assumptions and
4755   // guards present in the loop -- SCEV is not great at exploiting
4756   // these to compute max backedge taken counts, but can still use
4757   // these to prove lack of overflow.  Use this fact to avoid
4758   // doing extra work that may not pay off.
4759 
4760   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4761       AC.assumptions().empty())
4762     return Result;
4763 
4764   // If the backedge is guarded by a comparison with the pre-inc  value the
4765   // addrec is safe. Also, if the entry is guarded by a comparison with the
4766   // start value and the backedge is guarded by a comparison with the post-inc
4767   // value, the addrec is safe.
4768   if (isKnownPositive(Step)) {
4769     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4770                                 getUnsignedRangeMax(Step));
4771     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4772         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4773       Result = setFlags(Result, SCEV::FlagNUW);
4774     }
4775   }
4776 
4777   return Result;
4778 }
4779 
4780 namespace {
4781 
4782 /// Represents an abstract binary operation.  This may exist as a
4783 /// normal instruction or constant expression, or may have been
4784 /// derived from an expression tree.
4785 struct BinaryOp {
4786   unsigned Opcode;
4787   Value *LHS;
4788   Value *RHS;
4789   bool IsNSW = false;
4790   bool IsNUW = false;
4791 
4792   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4793   /// constant expression.
4794   Operator *Op = nullptr;
4795 
4796   explicit BinaryOp(Operator *Op)
4797       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4798         Op(Op) {
4799     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4800       IsNSW = OBO->hasNoSignedWrap();
4801       IsNUW = OBO->hasNoUnsignedWrap();
4802     }
4803   }
4804 
4805   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4806                     bool IsNUW = false)
4807       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4808 };
4809 
4810 } // end anonymous namespace
4811 
4812 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4813 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4814   auto *Op = dyn_cast<Operator>(V);
4815   if (!Op)
4816     return None;
4817 
4818   // Implementation detail: all the cleverness here should happen without
4819   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4820   // SCEV expressions when possible, and we should not break that.
4821 
4822   switch (Op->getOpcode()) {
4823   case Instruction::Add:
4824   case Instruction::Sub:
4825   case Instruction::Mul:
4826   case Instruction::UDiv:
4827   case Instruction::URem:
4828   case Instruction::And:
4829   case Instruction::Or:
4830   case Instruction::AShr:
4831   case Instruction::Shl:
4832     return BinaryOp(Op);
4833 
4834   case Instruction::Xor:
4835     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4836       // If the RHS of the xor is a signmask, then this is just an add.
4837       // Instcombine turns add of signmask into xor as a strength reduction step.
4838       if (RHSC->getValue().isSignMask())
4839         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4840     return BinaryOp(Op);
4841 
4842   case Instruction::LShr:
4843     // Turn logical shift right of a constant into a unsigned divide.
4844     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4845       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4846 
4847       // If the shift count is not less than the bitwidth, the result of
4848       // the shift is undefined. Don't try to analyze it, because the
4849       // resolution chosen here may differ from the resolution chosen in
4850       // other parts of the compiler.
4851       if (SA->getValue().ult(BitWidth)) {
4852         Constant *X =
4853             ConstantInt::get(SA->getContext(),
4854                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4855         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4856       }
4857     }
4858     return BinaryOp(Op);
4859 
4860   case Instruction::ExtractValue: {
4861     auto *EVI = cast<ExtractValueInst>(Op);
4862     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4863       break;
4864 
4865     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4866     if (!WO)
4867       break;
4868 
4869     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4870     bool Signed = WO->isSigned();
4871     // TODO: Should add nuw/nsw flags for mul as well.
4872     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4873       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4874 
4875     // Now that we know that all uses of the arithmetic-result component of
4876     // CI are guarded by the overflow check, we can go ahead and pretend
4877     // that the arithmetic is non-overflowing.
4878     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4879                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4880   }
4881 
4882   default:
4883     break;
4884   }
4885 
4886   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4887   // semantics as a Sub, return a binary sub expression.
4888   if (auto *II = dyn_cast<IntrinsicInst>(V))
4889     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4890       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4891 
4892   return None;
4893 }
4894 
4895 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4896 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4897 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4898 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4899 /// follows one of the following patterns:
4900 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4901 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4902 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4903 /// we return the type of the truncation operation, and indicate whether the
4904 /// truncated type should be treated as signed/unsigned by setting
4905 /// \p Signed to true/false, respectively.
4906 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4907                                bool &Signed, ScalarEvolution &SE) {
4908   // The case where Op == SymbolicPHI (that is, with no type conversions on
4909   // the way) is handled by the regular add recurrence creating logic and
4910   // would have already been triggered in createAddRecForPHI. Reaching it here
4911   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4912   // because one of the other operands of the SCEVAddExpr updating this PHI is
4913   // not invariant).
4914   //
4915   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4916   // this case predicates that allow us to prove that Op == SymbolicPHI will
4917   // be added.
4918   if (Op == SymbolicPHI)
4919     return nullptr;
4920 
4921   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4922   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4923   if (SourceBits != NewBits)
4924     return nullptr;
4925 
4926   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4927   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4928   if (!SExt && !ZExt)
4929     return nullptr;
4930   const SCEVTruncateExpr *Trunc =
4931       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4932            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4933   if (!Trunc)
4934     return nullptr;
4935   const SCEV *X = Trunc->getOperand();
4936   if (X != SymbolicPHI)
4937     return nullptr;
4938   Signed = SExt != nullptr;
4939   return Trunc->getType();
4940 }
4941 
4942 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4943   if (!PN->getType()->isIntegerTy())
4944     return nullptr;
4945   const Loop *L = LI.getLoopFor(PN->getParent());
4946   if (!L || L->getHeader() != PN->getParent())
4947     return nullptr;
4948   return L;
4949 }
4950 
4951 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4952 // computation that updates the phi follows the following pattern:
4953 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4954 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4955 // If so, try to see if it can be rewritten as an AddRecExpr under some
4956 // Predicates. If successful, return them as a pair. Also cache the results
4957 // of the analysis.
4958 //
4959 // Example usage scenario:
4960 //    Say the Rewriter is called for the following SCEV:
4961 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4962 //    where:
4963 //         %X = phi i64 (%Start, %BEValue)
4964 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4965 //    and call this function with %SymbolicPHI = %X.
4966 //
4967 //    The analysis will find that the value coming around the backedge has
4968 //    the following SCEV:
4969 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4970 //    Upon concluding that this matches the desired pattern, the function
4971 //    will return the pair {NewAddRec, SmallPredsVec} where:
4972 //         NewAddRec = {%Start,+,%Step}
4973 //         SmallPredsVec = {P1, P2, P3} as follows:
4974 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4975 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4976 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4977 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4978 //    under the predicates {P1,P2,P3}.
4979 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4980 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4981 //
4982 // TODO's:
4983 //
4984 // 1) Extend the Induction descriptor to also support inductions that involve
4985 //    casts: When needed (namely, when we are called in the context of the
4986 //    vectorizer induction analysis), a Set of cast instructions will be
4987 //    populated by this method, and provided back to isInductionPHI. This is
4988 //    needed to allow the vectorizer to properly record them to be ignored by
4989 //    the cost model and to avoid vectorizing them (otherwise these casts,
4990 //    which are redundant under the runtime overflow checks, will be
4991 //    vectorized, which can be costly).
4992 //
4993 // 2) Support additional induction/PHISCEV patterns: We also want to support
4994 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4995 //    after the induction update operation (the induction increment):
4996 //
4997 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4998 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4999 //
5000 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5001 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5002 //
5003 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5004 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5005 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5006   SmallVector<const SCEVPredicate *, 3> Predicates;
5007 
5008   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5009   // return an AddRec expression under some predicate.
5010 
5011   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5012   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5013   assert(L && "Expecting an integer loop header phi");
5014 
5015   // The loop may have multiple entrances or multiple exits; we can analyze
5016   // this phi as an addrec if it has a unique entry value and a unique
5017   // backedge value.
5018   Value *BEValueV = nullptr, *StartValueV = nullptr;
5019   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5020     Value *V = PN->getIncomingValue(i);
5021     if (L->contains(PN->getIncomingBlock(i))) {
5022       if (!BEValueV) {
5023         BEValueV = V;
5024       } else if (BEValueV != V) {
5025         BEValueV = nullptr;
5026         break;
5027       }
5028     } else if (!StartValueV) {
5029       StartValueV = V;
5030     } else if (StartValueV != V) {
5031       StartValueV = nullptr;
5032       break;
5033     }
5034   }
5035   if (!BEValueV || !StartValueV)
5036     return None;
5037 
5038   const SCEV *BEValue = getSCEV(BEValueV);
5039 
5040   // If the value coming around the backedge is an add with the symbolic
5041   // value we just inserted, possibly with casts that we can ignore under
5042   // an appropriate runtime guard, then we found a simple induction variable!
5043   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5044   if (!Add)
5045     return None;
5046 
5047   // If there is a single occurrence of the symbolic value, possibly
5048   // casted, replace it with a recurrence.
5049   unsigned FoundIndex = Add->getNumOperands();
5050   Type *TruncTy = nullptr;
5051   bool Signed;
5052   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5053     if ((TruncTy =
5054              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5055       if (FoundIndex == e) {
5056         FoundIndex = i;
5057         break;
5058       }
5059 
5060   if (FoundIndex == Add->getNumOperands())
5061     return None;
5062 
5063   // Create an add with everything but the specified operand.
5064   SmallVector<const SCEV *, 8> Ops;
5065   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5066     if (i != FoundIndex)
5067       Ops.push_back(Add->getOperand(i));
5068   const SCEV *Accum = getAddExpr(Ops);
5069 
5070   // The runtime checks will not be valid if the step amount is
5071   // varying inside the loop.
5072   if (!isLoopInvariant(Accum, L))
5073     return None;
5074 
5075   // *** Part2: Create the predicates
5076 
5077   // Analysis was successful: we have a phi-with-cast pattern for which we
5078   // can return an AddRec expression under the following predicates:
5079   //
5080   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5081   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5082   // P2: An Equal predicate that guarantees that
5083   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5084   // P3: An Equal predicate that guarantees that
5085   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5086   //
5087   // As we next prove, the above predicates guarantee that:
5088   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5089   //
5090   //
5091   // More formally, we want to prove that:
5092   //     Expr(i+1) = Start + (i+1) * Accum
5093   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5094   //
5095   // Given that:
5096   // 1) Expr(0) = Start
5097   // 2) Expr(1) = Start + Accum
5098   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5099   // 3) Induction hypothesis (step i):
5100   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5101   //
5102   // Proof:
5103   //  Expr(i+1) =
5104   //   = Start + (i+1)*Accum
5105   //   = (Start + i*Accum) + Accum
5106   //   = Expr(i) + Accum
5107   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5108   //                                                             :: from step i
5109   //
5110   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5111   //
5112   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5113   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5114   //     + Accum                                                     :: from P3
5115   //
5116   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5117   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5118   //
5119   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5120   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5121   //
5122   // By induction, the same applies to all iterations 1<=i<n:
5123   //
5124 
5125   // Create a truncated addrec for which we will add a no overflow check (P1).
5126   const SCEV *StartVal = getSCEV(StartValueV);
5127   const SCEV *PHISCEV =
5128       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5129                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5130 
5131   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5132   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5133   // will be constant.
5134   //
5135   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5136   // add P1.
5137   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5138     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5139         Signed ? SCEVWrapPredicate::IncrementNSSW
5140                : SCEVWrapPredicate::IncrementNUSW;
5141     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5142     Predicates.push_back(AddRecPred);
5143   }
5144 
5145   // Create the Equal Predicates P2,P3:
5146 
5147   // It is possible that the predicates P2 and/or P3 are computable at
5148   // compile time due to StartVal and/or Accum being constants.
5149   // If either one is, then we can check that now and escape if either P2
5150   // or P3 is false.
5151 
5152   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5153   // for each of StartVal and Accum
5154   auto getExtendedExpr = [&](const SCEV *Expr,
5155                              bool CreateSignExtend) -> const SCEV * {
5156     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5157     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5158     const SCEV *ExtendedExpr =
5159         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5160                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5161     return ExtendedExpr;
5162   };
5163 
5164   // Given:
5165   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5166   //               = getExtendedExpr(Expr)
5167   // Determine whether the predicate P: Expr == ExtendedExpr
5168   // is known to be false at compile time
5169   auto PredIsKnownFalse = [&](const SCEV *Expr,
5170                               const SCEV *ExtendedExpr) -> bool {
5171     return Expr != ExtendedExpr &&
5172            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5173   };
5174 
5175   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5176   if (PredIsKnownFalse(StartVal, StartExtended)) {
5177     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5178     return None;
5179   }
5180 
5181   // The Step is always Signed (because the overflow checks are either
5182   // NSSW or NUSW)
5183   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5184   if (PredIsKnownFalse(Accum, AccumExtended)) {
5185     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5186     return None;
5187   }
5188 
5189   auto AppendPredicate = [&](const SCEV *Expr,
5190                              const SCEV *ExtendedExpr) -> void {
5191     if (Expr != ExtendedExpr &&
5192         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5193       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5194       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5195       Predicates.push_back(Pred);
5196     }
5197   };
5198 
5199   AppendPredicate(StartVal, StartExtended);
5200   AppendPredicate(Accum, AccumExtended);
5201 
5202   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5203   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5204   // into NewAR if it will also add the runtime overflow checks specified in
5205   // Predicates.
5206   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5207 
5208   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5209       std::make_pair(NewAR, Predicates);
5210   // Remember the result of the analysis for this SCEV at this locayyytion.
5211   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5212   return PredRewrite;
5213 }
5214 
5215 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5216 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5217   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5218   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5219   if (!L)
5220     return None;
5221 
5222   // Check to see if we already analyzed this PHI.
5223   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5224   if (I != PredicatedSCEVRewrites.end()) {
5225     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5226         I->second;
5227     // Analysis was done before and failed to create an AddRec:
5228     if (Rewrite.first == SymbolicPHI)
5229       return None;
5230     // Analysis was done before and succeeded to create an AddRec under
5231     // a predicate:
5232     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5233     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5234     return Rewrite;
5235   }
5236 
5237   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5238     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5239 
5240   // Record in the cache that the analysis failed
5241   if (!Rewrite) {
5242     SmallVector<const SCEVPredicate *, 3> Predicates;
5243     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5244     return None;
5245   }
5246 
5247   return Rewrite;
5248 }
5249 
5250 // FIXME: This utility is currently required because the Rewriter currently
5251 // does not rewrite this expression:
5252 // {0, +, (sext ix (trunc iy to ix) to iy)}
5253 // into {0, +, %step},
5254 // even when the following Equal predicate exists:
5255 // "%step == (sext ix (trunc iy to ix) to iy)".
5256 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5257     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5258   if (AR1 == AR2)
5259     return true;
5260 
5261   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5262     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5263         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5264       return false;
5265     return true;
5266   };
5267 
5268   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5269       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5270     return false;
5271   return true;
5272 }
5273 
5274 /// A helper function for createAddRecFromPHI to handle simple cases.
5275 ///
5276 /// This function tries to find an AddRec expression for the simplest (yet most
5277 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5278 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5279 /// technique for finding the AddRec expression.
5280 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5281                                                       Value *BEValueV,
5282                                                       Value *StartValueV) {
5283   const Loop *L = LI.getLoopFor(PN->getParent());
5284   assert(L && L->getHeader() == PN->getParent());
5285   assert(BEValueV && StartValueV);
5286 
5287   auto BO = MatchBinaryOp(BEValueV, DT);
5288   if (!BO)
5289     return nullptr;
5290 
5291   if (BO->Opcode != Instruction::Add)
5292     return nullptr;
5293 
5294   const SCEV *Accum = nullptr;
5295   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5296     Accum = getSCEV(BO->RHS);
5297   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5298     Accum = getSCEV(BO->LHS);
5299 
5300   if (!Accum)
5301     return nullptr;
5302 
5303   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5304   if (BO->IsNUW)
5305     Flags = setFlags(Flags, SCEV::FlagNUW);
5306   if (BO->IsNSW)
5307     Flags = setFlags(Flags, SCEV::FlagNSW);
5308 
5309   const SCEV *StartVal = getSCEV(StartValueV);
5310   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5311 
5312   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5313 
5314   // We can add Flags to the post-inc expression only if we
5315   // know that it is *undefined behavior* for BEValueV to
5316   // overflow.
5317   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5318     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5319       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5320 
5321   return PHISCEV;
5322 }
5323 
5324 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5325   const Loop *L = LI.getLoopFor(PN->getParent());
5326   if (!L || L->getHeader() != PN->getParent())
5327     return nullptr;
5328 
5329   // The loop may have multiple entrances or multiple exits; we can analyze
5330   // this phi as an addrec if it has a unique entry value and a unique
5331   // backedge value.
5332   Value *BEValueV = nullptr, *StartValueV = nullptr;
5333   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5334     Value *V = PN->getIncomingValue(i);
5335     if (L->contains(PN->getIncomingBlock(i))) {
5336       if (!BEValueV) {
5337         BEValueV = V;
5338       } else if (BEValueV != V) {
5339         BEValueV = nullptr;
5340         break;
5341       }
5342     } else if (!StartValueV) {
5343       StartValueV = V;
5344     } else if (StartValueV != V) {
5345       StartValueV = nullptr;
5346       break;
5347     }
5348   }
5349   if (!BEValueV || !StartValueV)
5350     return nullptr;
5351 
5352   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5353          "PHI node already processed?");
5354 
5355   // First, try to find AddRec expression without creating a fictituos symbolic
5356   // value for PN.
5357   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5358     return S;
5359 
5360   // Handle PHI node value symbolically.
5361   const SCEV *SymbolicName = getUnknown(PN);
5362   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5363 
5364   // Using this symbolic name for the PHI, analyze the value coming around
5365   // the back-edge.
5366   const SCEV *BEValue = getSCEV(BEValueV);
5367 
5368   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5369   // has a special value for the first iteration of the loop.
5370 
5371   // If the value coming around the backedge is an add with the symbolic
5372   // value we just inserted, then we found a simple induction variable!
5373   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5374     // If there is a single occurrence of the symbolic value, replace it
5375     // with a recurrence.
5376     unsigned FoundIndex = Add->getNumOperands();
5377     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5378       if (Add->getOperand(i) == SymbolicName)
5379         if (FoundIndex == e) {
5380           FoundIndex = i;
5381           break;
5382         }
5383 
5384     if (FoundIndex != Add->getNumOperands()) {
5385       // Create an add with everything but the specified operand.
5386       SmallVector<const SCEV *, 8> Ops;
5387       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5388         if (i != FoundIndex)
5389           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5390                                                              L, *this));
5391       const SCEV *Accum = getAddExpr(Ops);
5392 
5393       // This is not a valid addrec if the step amount is varying each
5394       // loop iteration, but is not itself an addrec in this loop.
5395       if (isLoopInvariant(Accum, L) ||
5396           (isa<SCEVAddRecExpr>(Accum) &&
5397            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5398         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5399 
5400         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5401           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5402             if (BO->IsNUW)
5403               Flags = setFlags(Flags, SCEV::FlagNUW);
5404             if (BO->IsNSW)
5405               Flags = setFlags(Flags, SCEV::FlagNSW);
5406           }
5407         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5408           // If the increment is an inbounds GEP, then we know the address
5409           // space cannot be wrapped around. We cannot make any guarantee
5410           // about signed or unsigned overflow because pointers are
5411           // unsigned but we may have a negative index from the base
5412           // pointer. We can guarantee that no unsigned wrap occurs if the
5413           // indices form a positive value.
5414           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5415             Flags = setFlags(Flags, SCEV::FlagNW);
5416 
5417             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5418             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5419               Flags = setFlags(Flags, SCEV::FlagNUW);
5420           }
5421 
5422           // We cannot transfer nuw and nsw flags from subtraction
5423           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5424           // for instance.
5425         }
5426 
5427         const SCEV *StartVal = getSCEV(StartValueV);
5428         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5429 
5430         // Okay, for the entire analysis of this edge we assumed the PHI
5431         // to be symbolic.  We now need to go back and purge all of the
5432         // entries for the scalars that use the symbolic expression.
5433         forgetSymbolicName(PN, SymbolicName);
5434         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5435 
5436         // We can add Flags to the post-inc expression only if we
5437         // know that it is *undefined behavior* for BEValueV to
5438         // overflow.
5439         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5440           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5441             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5442 
5443         return PHISCEV;
5444       }
5445     }
5446   } else {
5447     // Otherwise, this could be a loop like this:
5448     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5449     // In this case, j = {1,+,1}  and BEValue is j.
5450     // Because the other in-value of i (0) fits the evolution of BEValue
5451     // i really is an addrec evolution.
5452     //
5453     // We can generalize this saying that i is the shifted value of BEValue
5454     // by one iteration:
5455     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5456     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5457     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5458     if (Shifted != getCouldNotCompute() &&
5459         Start != getCouldNotCompute()) {
5460       const SCEV *StartVal = getSCEV(StartValueV);
5461       if (Start == StartVal) {
5462         // Okay, for the entire analysis of this edge we assumed the PHI
5463         // to be symbolic.  We now need to go back and purge all of the
5464         // entries for the scalars that use the symbolic expression.
5465         forgetSymbolicName(PN, SymbolicName);
5466         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5467         return Shifted;
5468       }
5469     }
5470   }
5471 
5472   // Remove the temporary PHI node SCEV that has been inserted while intending
5473   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5474   // as it will prevent later (possibly simpler) SCEV expressions to be added
5475   // to the ValueExprMap.
5476   eraseValueFromMap(PN);
5477 
5478   return nullptr;
5479 }
5480 
5481 // Checks if the SCEV S is available at BB.  S is considered available at BB
5482 // if S can be materialized at BB without introducing a fault.
5483 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5484                                BasicBlock *BB) {
5485   struct CheckAvailable {
5486     bool TraversalDone = false;
5487     bool Available = true;
5488 
5489     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5490     BasicBlock *BB = nullptr;
5491     DominatorTree &DT;
5492 
5493     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5494       : L(L), BB(BB), DT(DT) {}
5495 
5496     bool setUnavailable() {
5497       TraversalDone = true;
5498       Available = false;
5499       return false;
5500     }
5501 
5502     bool follow(const SCEV *S) {
5503       switch (S->getSCEVType()) {
5504       case scConstant:
5505       case scPtrToInt:
5506       case scTruncate:
5507       case scZeroExtend:
5508       case scSignExtend:
5509       case scAddExpr:
5510       case scMulExpr:
5511       case scUMaxExpr:
5512       case scSMaxExpr:
5513       case scUMinExpr:
5514       case scSMinExpr:
5515         // These expressions are available if their operand(s) is/are.
5516         return true;
5517 
5518       case scAddRecExpr: {
5519         // We allow add recurrences that are on the loop BB is in, or some
5520         // outer loop.  This guarantees availability because the value of the
5521         // add recurrence at BB is simply the "current" value of the induction
5522         // variable.  We can relax this in the future; for instance an add
5523         // recurrence on a sibling dominating loop is also available at BB.
5524         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5525         if (L && (ARLoop == L || ARLoop->contains(L)))
5526           return true;
5527 
5528         return setUnavailable();
5529       }
5530 
5531       case scUnknown: {
5532         // For SCEVUnknown, we check for simple dominance.
5533         const auto *SU = cast<SCEVUnknown>(S);
5534         Value *V = SU->getValue();
5535 
5536         if (isa<Argument>(V))
5537           return false;
5538 
5539         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5540           return false;
5541 
5542         return setUnavailable();
5543       }
5544 
5545       case scUDivExpr:
5546       case scCouldNotCompute:
5547         // We do not try to smart about these at all.
5548         return setUnavailable();
5549       }
5550       llvm_unreachable("Unknown SCEV kind!");
5551     }
5552 
5553     bool isDone() { return TraversalDone; }
5554   };
5555 
5556   CheckAvailable CA(L, BB, DT);
5557   SCEVTraversal<CheckAvailable> ST(CA);
5558 
5559   ST.visitAll(S);
5560   return CA.Available;
5561 }
5562 
5563 // Try to match a control flow sequence that branches out at BI and merges back
5564 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5565 // match.
5566 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5567                           Value *&C, Value *&LHS, Value *&RHS) {
5568   C = BI->getCondition();
5569 
5570   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5571   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5572 
5573   if (!LeftEdge.isSingleEdge())
5574     return false;
5575 
5576   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5577 
5578   Use &LeftUse = Merge->getOperandUse(0);
5579   Use &RightUse = Merge->getOperandUse(1);
5580 
5581   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5582     LHS = LeftUse;
5583     RHS = RightUse;
5584     return true;
5585   }
5586 
5587   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5588     LHS = RightUse;
5589     RHS = LeftUse;
5590     return true;
5591   }
5592 
5593   return false;
5594 }
5595 
5596 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5597   auto IsReachable =
5598       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5599   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5600     const Loop *L = LI.getLoopFor(PN->getParent());
5601 
5602     // We don't want to break LCSSA, even in a SCEV expression tree.
5603     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5604       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5605         return nullptr;
5606 
5607     // Try to match
5608     //
5609     //  br %cond, label %left, label %right
5610     // left:
5611     //  br label %merge
5612     // right:
5613     //  br label %merge
5614     // merge:
5615     //  V = phi [ %x, %left ], [ %y, %right ]
5616     //
5617     // as "select %cond, %x, %y"
5618 
5619     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5620     assert(IDom && "At least the entry block should dominate PN");
5621 
5622     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5623     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5624 
5625     if (BI && BI->isConditional() &&
5626         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5627         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5628         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5629       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5630   }
5631 
5632   return nullptr;
5633 }
5634 
5635 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5636   if (const SCEV *S = createAddRecFromPHI(PN))
5637     return S;
5638 
5639   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5640     return S;
5641 
5642   // If the PHI has a single incoming value, follow that value, unless the
5643   // PHI's incoming blocks are in a different loop, in which case doing so
5644   // risks breaking LCSSA form. Instcombine would normally zap these, but
5645   // it doesn't have DominatorTree information, so it may miss cases.
5646   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5647     if (LI.replacementPreservesLCSSAForm(PN, V))
5648       return getSCEV(V);
5649 
5650   // If it's not a loop phi, we can't handle it yet.
5651   return getUnknown(PN);
5652 }
5653 
5654 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5655                                                       Value *Cond,
5656                                                       Value *TrueVal,
5657                                                       Value *FalseVal) {
5658   // Handle "constant" branch or select. This can occur for instance when a
5659   // loop pass transforms an inner loop and moves on to process the outer loop.
5660   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5661     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5662 
5663   // Try to match some simple smax or umax patterns.
5664   auto *ICI = dyn_cast<ICmpInst>(Cond);
5665   if (!ICI)
5666     return getUnknown(I);
5667 
5668   Value *LHS = ICI->getOperand(0);
5669   Value *RHS = ICI->getOperand(1);
5670 
5671   switch (ICI->getPredicate()) {
5672   case ICmpInst::ICMP_SLT:
5673   case ICmpInst::ICMP_SLE:
5674   case ICmpInst::ICMP_ULT:
5675   case ICmpInst::ICMP_ULE:
5676     std::swap(LHS, RHS);
5677     LLVM_FALLTHROUGH;
5678   case ICmpInst::ICMP_SGT:
5679   case ICmpInst::ICMP_SGE:
5680   case ICmpInst::ICMP_UGT:
5681   case ICmpInst::ICMP_UGE:
5682     // a > b ? a+x : b+x  ->  max(a, b)+x
5683     // a > b ? b+x : a+x  ->  min(a, b)+x
5684     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5685       bool Signed = ICI->isSigned();
5686       const SCEV *LA = getSCEV(TrueVal);
5687       const SCEV *RA = getSCEV(FalseVal);
5688       const SCEV *LS = getSCEV(LHS);
5689       const SCEV *RS = getSCEV(RHS);
5690       if (LA->getType()->isPointerTy()) {
5691         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5692         // Need to make sure we can't produce weird expressions involving
5693         // negated pointers.
5694         if (LA == LS && RA == RS)
5695           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5696         if (LA == RS && RA == LS)
5697           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5698       }
5699       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5700         if (Op->getType()->isPointerTy()) {
5701           Op = getLosslessPtrToIntExpr(Op);
5702           if (isa<SCEVCouldNotCompute>(Op))
5703             return Op;
5704         }
5705         if (Signed)
5706           Op = getNoopOrSignExtend(Op, I->getType());
5707         else
5708           Op = getNoopOrZeroExtend(Op, I->getType());
5709         return Op;
5710       };
5711       LS = CoerceOperand(LS);
5712       RS = CoerceOperand(RS);
5713       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5714         break;
5715       const SCEV *LDiff = getMinusSCEV(LA, LS);
5716       const SCEV *RDiff = getMinusSCEV(RA, RS);
5717       if (LDiff == RDiff)
5718         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5719                           LDiff);
5720       LDiff = getMinusSCEV(LA, RS);
5721       RDiff = getMinusSCEV(RA, LS);
5722       if (LDiff == RDiff)
5723         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5724                           LDiff);
5725     }
5726     break;
5727   case ICmpInst::ICMP_NE:
5728     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5729     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5730         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5731       const SCEV *One = getOne(I->getType());
5732       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5733       const SCEV *LA = getSCEV(TrueVal);
5734       const SCEV *RA = getSCEV(FalseVal);
5735       const SCEV *LDiff = getMinusSCEV(LA, LS);
5736       const SCEV *RDiff = getMinusSCEV(RA, One);
5737       if (LDiff == RDiff)
5738         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5739     }
5740     break;
5741   case ICmpInst::ICMP_EQ:
5742     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5743     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5744         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5745       const SCEV *One = getOne(I->getType());
5746       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5747       const SCEV *LA = getSCEV(TrueVal);
5748       const SCEV *RA = getSCEV(FalseVal);
5749       const SCEV *LDiff = getMinusSCEV(LA, One);
5750       const SCEV *RDiff = getMinusSCEV(RA, LS);
5751       if (LDiff == RDiff)
5752         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5753     }
5754     break;
5755   default:
5756     break;
5757   }
5758 
5759   return getUnknown(I);
5760 }
5761 
5762 /// Expand GEP instructions into add and multiply operations. This allows them
5763 /// to be analyzed by regular SCEV code.
5764 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5765   // Don't attempt to analyze GEPs over unsized objects.
5766   if (!GEP->getSourceElementType()->isSized())
5767     return getUnknown(GEP);
5768 
5769   SmallVector<const SCEV *, 4> IndexExprs;
5770   for (Value *Index : GEP->indices())
5771     IndexExprs.push_back(getSCEV(Index));
5772   return getGEPExpr(GEP, IndexExprs);
5773 }
5774 
5775 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5776   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5777     return C->getAPInt().countTrailingZeros();
5778 
5779   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5780     return GetMinTrailingZeros(I->getOperand());
5781 
5782   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5783     return std::min(GetMinTrailingZeros(T->getOperand()),
5784                     (uint32_t)getTypeSizeInBits(T->getType()));
5785 
5786   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5787     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5788     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5789                ? getTypeSizeInBits(E->getType())
5790                : OpRes;
5791   }
5792 
5793   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5794     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5795     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5796                ? getTypeSizeInBits(E->getType())
5797                : OpRes;
5798   }
5799 
5800   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5801     // The result is the min of all operands results.
5802     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5803     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5804       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5805     return MinOpRes;
5806   }
5807 
5808   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5809     // The result is the sum of all operands results.
5810     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5811     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5812     for (unsigned i = 1, e = M->getNumOperands();
5813          SumOpRes != BitWidth && i != e; ++i)
5814       SumOpRes =
5815           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5816     return SumOpRes;
5817   }
5818 
5819   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5820     // The result is the min of all operands results.
5821     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5822     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5823       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5824     return MinOpRes;
5825   }
5826 
5827   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5828     // The result is the min of all operands results.
5829     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5830     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5831       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5832     return MinOpRes;
5833   }
5834 
5835   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5836     // The result is the min of all operands results.
5837     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5838     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5839       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5840     return MinOpRes;
5841   }
5842 
5843   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5844     // For a SCEVUnknown, ask ValueTracking.
5845     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5846     return Known.countMinTrailingZeros();
5847   }
5848 
5849   // SCEVUDivExpr
5850   return 0;
5851 }
5852 
5853 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5854   auto I = MinTrailingZerosCache.find(S);
5855   if (I != MinTrailingZerosCache.end())
5856     return I->second;
5857 
5858   uint32_t Result = GetMinTrailingZerosImpl(S);
5859   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5860   assert(InsertPair.second && "Should insert a new key");
5861   return InsertPair.first->second;
5862 }
5863 
5864 /// Helper method to assign a range to V from metadata present in the IR.
5865 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5866   if (Instruction *I = dyn_cast<Instruction>(V))
5867     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5868       return getConstantRangeFromMetadata(*MD);
5869 
5870   return None;
5871 }
5872 
5873 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5874                                      SCEV::NoWrapFlags Flags) {
5875   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5876     AddRec->setNoWrapFlags(Flags);
5877     UnsignedRanges.erase(AddRec);
5878     SignedRanges.erase(AddRec);
5879   }
5880 }
5881 
5882 ConstantRange ScalarEvolution::
5883 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5884   const DataLayout &DL = getDataLayout();
5885 
5886   unsigned BitWidth = getTypeSizeInBits(U->getType());
5887   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5888 
5889   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5890   // use information about the trip count to improve our available range.  Note
5891   // that the trip count independent cases are already handled by known bits.
5892   // WARNING: The definition of recurrence used here is subtly different than
5893   // the one used by AddRec (and thus most of this file).  Step is allowed to
5894   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5895   // and other addrecs in the same loop (for non-affine addrecs).  The code
5896   // below intentionally handles the case where step is not loop invariant.
5897   auto *P = dyn_cast<PHINode>(U->getValue());
5898   if (!P)
5899     return FullSet;
5900 
5901   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5902   // even the values that are not available in these blocks may come from them,
5903   // and this leads to false-positive recurrence test.
5904   for (auto *Pred : predecessors(P->getParent()))
5905     if (!DT.isReachableFromEntry(Pred))
5906       return FullSet;
5907 
5908   BinaryOperator *BO;
5909   Value *Start, *Step;
5910   if (!matchSimpleRecurrence(P, BO, Start, Step))
5911     return FullSet;
5912 
5913   // If we found a recurrence in reachable code, we must be in a loop. Note
5914   // that BO might be in some subloop of L, and that's completely okay.
5915   auto *L = LI.getLoopFor(P->getParent());
5916   assert(L && L->getHeader() == P->getParent());
5917   if (!L->contains(BO->getParent()))
5918     // NOTE: This bailout should be an assert instead.  However, asserting
5919     // the condition here exposes a case where LoopFusion is querying SCEV
5920     // with malformed loop information during the midst of the transform.
5921     // There doesn't appear to be an obvious fix, so for the moment bailout
5922     // until the caller issue can be fixed.  PR49566 tracks the bug.
5923     return FullSet;
5924 
5925   // TODO: Extend to other opcodes such as mul, and div
5926   switch (BO->getOpcode()) {
5927   default:
5928     return FullSet;
5929   case Instruction::AShr:
5930   case Instruction::LShr:
5931   case Instruction::Shl:
5932     break;
5933   };
5934 
5935   if (BO->getOperand(0) != P)
5936     // TODO: Handle the power function forms some day.
5937     return FullSet;
5938 
5939   unsigned TC = getSmallConstantMaxTripCount(L);
5940   if (!TC || TC >= BitWidth)
5941     return FullSet;
5942 
5943   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5944   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5945   assert(KnownStart.getBitWidth() == BitWidth &&
5946          KnownStep.getBitWidth() == BitWidth);
5947 
5948   // Compute total shift amount, being careful of overflow and bitwidths.
5949   auto MaxShiftAmt = KnownStep.getMaxValue();
5950   APInt TCAP(BitWidth, TC-1);
5951   bool Overflow = false;
5952   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5953   if (Overflow)
5954     return FullSet;
5955 
5956   switch (BO->getOpcode()) {
5957   default:
5958     llvm_unreachable("filtered out above");
5959   case Instruction::AShr: {
5960     // For each ashr, three cases:
5961     //   shift = 0 => unchanged value
5962     //   saturation => 0 or -1
5963     //   other => a value closer to zero (of the same sign)
5964     // Thus, the end value is closer to zero than the start.
5965     auto KnownEnd = KnownBits::ashr(KnownStart,
5966                                     KnownBits::makeConstant(TotalShift));
5967     if (KnownStart.isNonNegative())
5968       // Analogous to lshr (simply not yet canonicalized)
5969       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5970                                         KnownStart.getMaxValue() + 1);
5971     if (KnownStart.isNegative())
5972       // End >=u Start && End <=s Start
5973       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5974                                         KnownEnd.getMaxValue() + 1);
5975     break;
5976   }
5977   case Instruction::LShr: {
5978     // For each lshr, three cases:
5979     //   shift = 0 => unchanged value
5980     //   saturation => 0
5981     //   other => a smaller positive number
5982     // Thus, the low end of the unsigned range is the last value produced.
5983     auto KnownEnd = KnownBits::lshr(KnownStart,
5984                                     KnownBits::makeConstant(TotalShift));
5985     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5986                                       KnownStart.getMaxValue() + 1);
5987   }
5988   case Instruction::Shl: {
5989     // Iff no bits are shifted out, value increases on every shift.
5990     auto KnownEnd = KnownBits::shl(KnownStart,
5991                                    KnownBits::makeConstant(TotalShift));
5992     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5993       return ConstantRange(KnownStart.getMinValue(),
5994                            KnownEnd.getMaxValue() + 1);
5995     break;
5996   }
5997   };
5998   return FullSet;
5999 }
6000 
6001 /// Determine the range for a particular SCEV.  If SignHint is
6002 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6003 /// with a "cleaner" unsigned (resp. signed) representation.
6004 const ConstantRange &
6005 ScalarEvolution::getRangeRef(const SCEV *S,
6006                              ScalarEvolution::RangeSignHint SignHint) {
6007   DenseMap<const SCEV *, ConstantRange> &Cache =
6008       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6009                                                        : SignedRanges;
6010   ConstantRange::PreferredRangeType RangeType =
6011       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6012           ? ConstantRange::Unsigned : ConstantRange::Signed;
6013 
6014   // See if we've computed this range already.
6015   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6016   if (I != Cache.end())
6017     return I->second;
6018 
6019   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6020     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6021 
6022   unsigned BitWidth = getTypeSizeInBits(S->getType());
6023   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6024   using OBO = OverflowingBinaryOperator;
6025 
6026   // If the value has known zeros, the maximum value will have those known zeros
6027   // as well.
6028   uint32_t TZ = GetMinTrailingZeros(S);
6029   if (TZ != 0) {
6030     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6031       ConservativeResult =
6032           ConstantRange(APInt::getMinValue(BitWidth),
6033                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6034     else
6035       ConservativeResult = ConstantRange(
6036           APInt::getSignedMinValue(BitWidth),
6037           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6038   }
6039 
6040   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6041     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6042     unsigned WrapType = OBO::AnyWrap;
6043     if (Add->hasNoSignedWrap())
6044       WrapType |= OBO::NoSignedWrap;
6045     if (Add->hasNoUnsignedWrap())
6046       WrapType |= OBO::NoUnsignedWrap;
6047     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6048       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6049                           WrapType, RangeType);
6050     return setRange(Add, SignHint,
6051                     ConservativeResult.intersectWith(X, RangeType));
6052   }
6053 
6054   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6055     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6056     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6057       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6058     return setRange(Mul, SignHint,
6059                     ConservativeResult.intersectWith(X, RangeType));
6060   }
6061 
6062   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
6063     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
6064     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
6065       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
6066     return setRange(SMax, SignHint,
6067                     ConservativeResult.intersectWith(X, RangeType));
6068   }
6069 
6070   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
6071     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
6072     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
6073       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
6074     return setRange(UMax, SignHint,
6075                     ConservativeResult.intersectWith(X, RangeType));
6076   }
6077 
6078   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
6079     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
6080     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
6081       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
6082     return setRange(SMin, SignHint,
6083                     ConservativeResult.intersectWith(X, RangeType));
6084   }
6085 
6086   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
6087     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
6088     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
6089       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
6090     return setRange(UMin, SignHint,
6091                     ConservativeResult.intersectWith(X, RangeType));
6092   }
6093 
6094   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6095     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6096     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6097     return setRange(UDiv, SignHint,
6098                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6099   }
6100 
6101   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6102     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6103     return setRange(ZExt, SignHint,
6104                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6105                                                      RangeType));
6106   }
6107 
6108   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6109     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6110     return setRange(SExt, SignHint,
6111                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6112                                                      RangeType));
6113   }
6114 
6115   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6116     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6117     return setRange(PtrToInt, SignHint, X);
6118   }
6119 
6120   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6121     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6122     return setRange(Trunc, SignHint,
6123                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6124                                                      RangeType));
6125   }
6126 
6127   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6128     // If there's no unsigned wrap, the value will never be less than its
6129     // initial value.
6130     if (AddRec->hasNoUnsignedWrap()) {
6131       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6132       if (!UnsignedMinValue.isNullValue())
6133         ConservativeResult = ConservativeResult.intersectWith(
6134             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6135     }
6136 
6137     // If there's no signed wrap, and all the operands except initial value have
6138     // the same sign or zero, the value won't ever be:
6139     // 1: smaller than initial value if operands are non negative,
6140     // 2: bigger than initial value if operands are non positive.
6141     // For both cases, value can not cross signed min/max boundary.
6142     if (AddRec->hasNoSignedWrap()) {
6143       bool AllNonNeg = true;
6144       bool AllNonPos = true;
6145       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6146         if (!isKnownNonNegative(AddRec->getOperand(i)))
6147           AllNonNeg = false;
6148         if (!isKnownNonPositive(AddRec->getOperand(i)))
6149           AllNonPos = false;
6150       }
6151       if (AllNonNeg)
6152         ConservativeResult = ConservativeResult.intersectWith(
6153             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6154                                        APInt::getSignedMinValue(BitWidth)),
6155             RangeType);
6156       else if (AllNonPos)
6157         ConservativeResult = ConservativeResult.intersectWith(
6158             ConstantRange::getNonEmpty(
6159                 APInt::getSignedMinValue(BitWidth),
6160                 getSignedRangeMax(AddRec->getStart()) + 1),
6161             RangeType);
6162     }
6163 
6164     // TODO: non-affine addrec
6165     if (AddRec->isAffine()) {
6166       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6167       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6168           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6169         auto RangeFromAffine = getRangeForAffineAR(
6170             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6171             BitWidth);
6172         ConservativeResult =
6173             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6174 
6175         auto RangeFromFactoring = getRangeViaFactoring(
6176             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6177             BitWidth);
6178         ConservativeResult =
6179             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6180       }
6181 
6182       // Now try symbolic BE count and more powerful methods.
6183       if (UseExpensiveRangeSharpening) {
6184         const SCEV *SymbolicMaxBECount =
6185             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6186         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6187             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6188             AddRec->hasNoSelfWrap()) {
6189           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6190               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6191           ConservativeResult =
6192               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6193         }
6194       }
6195     }
6196 
6197     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6198   }
6199 
6200   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6201 
6202     // Check if the IR explicitly contains !range metadata.
6203     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6204     if (MDRange.hasValue())
6205       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6206                                                             RangeType);
6207 
6208     // Use facts about recurrences in the underlying IR.  Note that add
6209     // recurrences are AddRecExprs and thus don't hit this path.  This
6210     // primarily handles shift recurrences.
6211     auto CR = getRangeForUnknownRecurrence(U);
6212     ConservativeResult = ConservativeResult.intersectWith(CR);
6213 
6214     // See if ValueTracking can give us a useful range.
6215     const DataLayout &DL = getDataLayout();
6216     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6217     if (Known.getBitWidth() != BitWidth)
6218       Known = Known.zextOrTrunc(BitWidth);
6219 
6220     // ValueTracking may be able to compute a tighter result for the number of
6221     // sign bits than for the value of those sign bits.
6222     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6223     if (U->getType()->isPointerTy()) {
6224       // If the pointer size is larger than the index size type, this can cause
6225       // NS to be larger than BitWidth. So compensate for this.
6226       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6227       int ptrIdxDiff = ptrSize - BitWidth;
6228       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6229         NS -= ptrIdxDiff;
6230     }
6231 
6232     if (NS > 1) {
6233       // If we know any of the sign bits, we know all of the sign bits.
6234       if (!Known.Zero.getHiBits(NS).isNullValue())
6235         Known.Zero.setHighBits(NS);
6236       if (!Known.One.getHiBits(NS).isNullValue())
6237         Known.One.setHighBits(NS);
6238     }
6239 
6240     if (Known.getMinValue() != Known.getMaxValue() + 1)
6241       ConservativeResult = ConservativeResult.intersectWith(
6242           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6243           RangeType);
6244     if (NS > 1)
6245       ConservativeResult = ConservativeResult.intersectWith(
6246           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6247                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6248           RangeType);
6249 
6250     // A range of Phi is a subset of union of all ranges of its input.
6251     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6252       // Make sure that we do not run over cycled Phis.
6253       if (PendingPhiRanges.insert(Phi).second) {
6254         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6255         for (auto &Op : Phi->operands()) {
6256           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6257           RangeFromOps = RangeFromOps.unionWith(OpRange);
6258           // No point to continue if we already have a full set.
6259           if (RangeFromOps.isFullSet())
6260             break;
6261         }
6262         ConservativeResult =
6263             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6264         bool Erased = PendingPhiRanges.erase(Phi);
6265         assert(Erased && "Failed to erase Phi properly?");
6266         (void) Erased;
6267       }
6268     }
6269 
6270     return setRange(U, SignHint, std::move(ConservativeResult));
6271   }
6272 
6273   return setRange(S, SignHint, std::move(ConservativeResult));
6274 }
6275 
6276 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6277 // values that the expression can take. Initially, the expression has a value
6278 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6279 // argument defines if we treat Step as signed or unsigned.
6280 static ConstantRange getRangeForAffineARHelper(APInt Step,
6281                                                const ConstantRange &StartRange,
6282                                                const APInt &MaxBECount,
6283                                                unsigned BitWidth, bool Signed) {
6284   // If either Step or MaxBECount is 0, then the expression won't change, and we
6285   // just need to return the initial range.
6286   if (Step == 0 || MaxBECount == 0)
6287     return StartRange;
6288 
6289   // If we don't know anything about the initial value (i.e. StartRange is
6290   // FullRange), then we don't know anything about the final range either.
6291   // Return FullRange.
6292   if (StartRange.isFullSet())
6293     return ConstantRange::getFull(BitWidth);
6294 
6295   // If Step is signed and negative, then we use its absolute value, but we also
6296   // note that we're moving in the opposite direction.
6297   bool Descending = Signed && Step.isNegative();
6298 
6299   if (Signed)
6300     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6301     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6302     // This equations hold true due to the well-defined wrap-around behavior of
6303     // APInt.
6304     Step = Step.abs();
6305 
6306   // Check if Offset is more than full span of BitWidth. If it is, the
6307   // expression is guaranteed to overflow.
6308   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6309     return ConstantRange::getFull(BitWidth);
6310 
6311   // Offset is by how much the expression can change. Checks above guarantee no
6312   // overflow here.
6313   APInt Offset = Step * MaxBECount;
6314 
6315   // Minimum value of the final range will match the minimal value of StartRange
6316   // if the expression is increasing and will be decreased by Offset otherwise.
6317   // Maximum value of the final range will match the maximal value of StartRange
6318   // if the expression is decreasing and will be increased by Offset otherwise.
6319   APInt StartLower = StartRange.getLower();
6320   APInt StartUpper = StartRange.getUpper() - 1;
6321   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6322                                    : (StartUpper + std::move(Offset));
6323 
6324   // It's possible that the new minimum/maximum value will fall into the initial
6325   // range (due to wrap around). This means that the expression can take any
6326   // value in this bitwidth, and we have to return full range.
6327   if (StartRange.contains(MovedBoundary))
6328     return ConstantRange::getFull(BitWidth);
6329 
6330   APInt NewLower =
6331       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6332   APInt NewUpper =
6333       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6334   NewUpper += 1;
6335 
6336   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6337   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6338 }
6339 
6340 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6341                                                    const SCEV *Step,
6342                                                    const SCEV *MaxBECount,
6343                                                    unsigned BitWidth) {
6344   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6345          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6346          "Precondition!");
6347 
6348   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6349   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6350 
6351   // First, consider step signed.
6352   ConstantRange StartSRange = getSignedRange(Start);
6353   ConstantRange StepSRange = getSignedRange(Step);
6354 
6355   // If Step can be both positive and negative, we need to find ranges for the
6356   // maximum absolute step values in both directions and union them.
6357   ConstantRange SR =
6358       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6359                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6360   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6361                                               StartSRange, MaxBECountValue,
6362                                               BitWidth, /* Signed = */ true));
6363 
6364   // Next, consider step unsigned.
6365   ConstantRange UR = getRangeForAffineARHelper(
6366       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6367       MaxBECountValue, BitWidth, /* Signed = */ false);
6368 
6369   // Finally, intersect signed and unsigned ranges.
6370   return SR.intersectWith(UR, ConstantRange::Smallest);
6371 }
6372 
6373 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6374     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6375     ScalarEvolution::RangeSignHint SignHint) {
6376   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6377   assert(AddRec->hasNoSelfWrap() &&
6378          "This only works for non-self-wrapping AddRecs!");
6379   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6380   const SCEV *Step = AddRec->getStepRecurrence(*this);
6381   // Only deal with constant step to save compile time.
6382   if (!isa<SCEVConstant>(Step))
6383     return ConstantRange::getFull(BitWidth);
6384   // Let's make sure that we can prove that we do not self-wrap during
6385   // MaxBECount iterations. We need this because MaxBECount is a maximum
6386   // iteration count estimate, and we might infer nw from some exit for which we
6387   // do not know max exit count (or any other side reasoning).
6388   // TODO: Turn into assert at some point.
6389   if (getTypeSizeInBits(MaxBECount->getType()) >
6390       getTypeSizeInBits(AddRec->getType()))
6391     return ConstantRange::getFull(BitWidth);
6392   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6393   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6394   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6395   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6396   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6397                                          MaxItersWithoutWrap))
6398     return ConstantRange::getFull(BitWidth);
6399 
6400   ICmpInst::Predicate LEPred =
6401       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6402   ICmpInst::Predicate GEPred =
6403       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6404   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6405 
6406   // We know that there is no self-wrap. Let's take Start and End values and
6407   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6408   // the iteration. They either lie inside the range [Min(Start, End),
6409   // Max(Start, End)] or outside it:
6410   //
6411   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6412   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6413   //
6414   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6415   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6416   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6417   // Start <= End and step is positive, or Start >= End and step is negative.
6418   const SCEV *Start = AddRec->getStart();
6419   ConstantRange StartRange = getRangeRef(Start, SignHint);
6420   ConstantRange EndRange = getRangeRef(End, SignHint);
6421   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6422   // If they already cover full iteration space, we will know nothing useful
6423   // even if we prove what we want to prove.
6424   if (RangeBetween.isFullSet())
6425     return RangeBetween;
6426   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6427   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6428                                : RangeBetween.isWrappedSet();
6429   if (IsWrappedSet)
6430     return ConstantRange::getFull(BitWidth);
6431 
6432   if (isKnownPositive(Step) &&
6433       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6434     return RangeBetween;
6435   else if (isKnownNegative(Step) &&
6436            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6437     return RangeBetween;
6438   return ConstantRange::getFull(BitWidth);
6439 }
6440 
6441 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6442                                                     const SCEV *Step,
6443                                                     const SCEV *MaxBECount,
6444                                                     unsigned BitWidth) {
6445   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6446   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6447 
6448   struct SelectPattern {
6449     Value *Condition = nullptr;
6450     APInt TrueValue;
6451     APInt FalseValue;
6452 
6453     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6454                            const SCEV *S) {
6455       Optional<unsigned> CastOp;
6456       APInt Offset(BitWidth, 0);
6457 
6458       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6459              "Should be!");
6460 
6461       // Peel off a constant offset:
6462       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6463         // In the future we could consider being smarter here and handle
6464         // {Start+Step,+,Step} too.
6465         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6466           return;
6467 
6468         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6469         S = SA->getOperand(1);
6470       }
6471 
6472       // Peel off a cast operation
6473       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6474         CastOp = SCast->getSCEVType();
6475         S = SCast->getOperand();
6476       }
6477 
6478       using namespace llvm::PatternMatch;
6479 
6480       auto *SU = dyn_cast<SCEVUnknown>(S);
6481       const APInt *TrueVal, *FalseVal;
6482       if (!SU ||
6483           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6484                                           m_APInt(FalseVal)))) {
6485         Condition = nullptr;
6486         return;
6487       }
6488 
6489       TrueValue = *TrueVal;
6490       FalseValue = *FalseVal;
6491 
6492       // Re-apply the cast we peeled off earlier
6493       if (CastOp.hasValue())
6494         switch (*CastOp) {
6495         default:
6496           llvm_unreachable("Unknown SCEV cast type!");
6497 
6498         case scTruncate:
6499           TrueValue = TrueValue.trunc(BitWidth);
6500           FalseValue = FalseValue.trunc(BitWidth);
6501           break;
6502         case scZeroExtend:
6503           TrueValue = TrueValue.zext(BitWidth);
6504           FalseValue = FalseValue.zext(BitWidth);
6505           break;
6506         case scSignExtend:
6507           TrueValue = TrueValue.sext(BitWidth);
6508           FalseValue = FalseValue.sext(BitWidth);
6509           break;
6510         }
6511 
6512       // Re-apply the constant offset we peeled off earlier
6513       TrueValue += Offset;
6514       FalseValue += Offset;
6515     }
6516 
6517     bool isRecognized() { return Condition != nullptr; }
6518   };
6519 
6520   SelectPattern StartPattern(*this, BitWidth, Start);
6521   if (!StartPattern.isRecognized())
6522     return ConstantRange::getFull(BitWidth);
6523 
6524   SelectPattern StepPattern(*this, BitWidth, Step);
6525   if (!StepPattern.isRecognized())
6526     return ConstantRange::getFull(BitWidth);
6527 
6528   if (StartPattern.Condition != StepPattern.Condition) {
6529     // We don't handle this case today; but we could, by considering four
6530     // possibilities below instead of two. I'm not sure if there are cases where
6531     // that will help over what getRange already does, though.
6532     return ConstantRange::getFull(BitWidth);
6533   }
6534 
6535   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6536   // construct arbitrary general SCEV expressions here.  This function is called
6537   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6538   // say) can end up caching a suboptimal value.
6539 
6540   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6541   // C2352 and C2512 (otherwise it isn't needed).
6542 
6543   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6544   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6545   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6546   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6547 
6548   ConstantRange TrueRange =
6549       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6550   ConstantRange FalseRange =
6551       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6552 
6553   return TrueRange.unionWith(FalseRange);
6554 }
6555 
6556 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6557   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6558   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6559 
6560   // Return early if there are no flags to propagate to the SCEV.
6561   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6562   if (BinOp->hasNoUnsignedWrap())
6563     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6564   if (BinOp->hasNoSignedWrap())
6565     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6566   if (Flags == SCEV::FlagAnyWrap)
6567     return SCEV::FlagAnyWrap;
6568 
6569   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6570 }
6571 
6572 const Instruction *ScalarEvolution::getDefinedScopeRoot(const SCEV *S) {
6573   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
6574     return &*AddRec->getLoop()->getHeader()->begin();
6575   // TODO: add SCEVConstant and SCEVUnknown caxes here
6576   return nullptr;
6577 }
6578 
6579 static bool
6580 isGuaranteedToTransferExecutionToSuccessor(BasicBlock::const_iterator Begin,
6581                                            BasicBlock::const_iterator End) {
6582   return llvm::all_of( make_range(Begin, End), [](const Instruction &I) {
6583     return isGuaranteedToTransferExecutionToSuccessor(&I);
6584   });
6585 }
6586 
6587 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
6588                                                         const Instruction *B) {
6589   if (A->getParent() == B->getParent() &&
6590       ::isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6591                                                    B->getIterator()))
6592     return true;
6593   return false;
6594 }
6595 
6596 
6597 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6598   // Here we check that I is in the header of the innermost loop containing I,
6599   // since we only deal with instructions in the loop header. The actual loop we
6600   // need to check later will come from an add recurrence, but getting that
6601   // requires computing the SCEV of the operands, which can be expensive. This
6602   // check we can do cheaply to rule out some cases early.
6603   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6604   if (InnermostContainingLoop == nullptr ||
6605       InnermostContainingLoop->getHeader() != I->getParent())
6606     return false;
6607 
6608   // Only proceed if we can prove that I does not yield poison.
6609   if (!programUndefinedIfPoison(I))
6610     return false;
6611 
6612   // At this point we know that if I is executed, then it does not wrap
6613   // according to at least one of NSW or NUW. If I is not executed, then we do
6614   // not know if the calculation that I represents would wrap. Multiple
6615   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6616   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6617   // derived from other instructions that map to the same SCEV. We cannot make
6618   // that guarantee for cases where I is not executed. So we need to find a
6619   // upper bound on the defining scope for the SCEV, and prove that I is
6620   // executed every time we enter that scope.  When the bounding scope is a
6621   // loop (the common case), this is equivalent to proving I executes on every
6622   // iteration of that loop.
6623   for (const Use &Op : I->operands()) {
6624     // I could be an extractvalue from a call to an overflow intrinsic.
6625     // TODO: We can do better here in some cases.
6626     if (!isSCEVable(Op->getType()))
6627       return false;
6628     if (auto *DefI = getDefinedScopeRoot(getSCEV(Op)))
6629       if (isGuaranteedToTransferExecutionTo(DefI, I))
6630         return true;
6631   }
6632   return false;
6633 }
6634 
6635 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6636   // If we know that \c I can never be poison period, then that's enough.
6637   if (isSCEVExprNeverPoison(I))
6638     return true;
6639 
6640   // For an add recurrence specifically, we assume that infinite loops without
6641   // side effects are undefined behavior, and then reason as follows:
6642   //
6643   // If the add recurrence is poison in any iteration, it is poison on all
6644   // future iterations (since incrementing poison yields poison). If the result
6645   // of the add recurrence is fed into the loop latch condition and the loop
6646   // does not contain any throws or exiting blocks other than the latch, we now
6647   // have the ability to "choose" whether the backedge is taken or not (by
6648   // choosing a sufficiently evil value for the poison feeding into the branch)
6649   // for every iteration including and after the one in which \p I first became
6650   // poison.  There are two possibilities (let's call the iteration in which \p
6651   // I first became poison as K):
6652   //
6653   //  1. In the set of iterations including and after K, the loop body executes
6654   //     no side effects.  In this case executing the backege an infinte number
6655   //     of times will yield undefined behavior.
6656   //
6657   //  2. In the set of iterations including and after K, the loop body executes
6658   //     at least one side effect.  In this case, that specific instance of side
6659   //     effect is control dependent on poison, which also yields undefined
6660   //     behavior.
6661 
6662   auto *ExitingBB = L->getExitingBlock();
6663   auto *LatchBB = L->getLoopLatch();
6664   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6665     return false;
6666 
6667   SmallPtrSet<const Instruction *, 16> Pushed;
6668   SmallVector<const Instruction *, 8> PoisonStack;
6669 
6670   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6671   // things that are known to be poison under that assumption go on the
6672   // PoisonStack.
6673   Pushed.insert(I);
6674   PoisonStack.push_back(I);
6675 
6676   bool LatchControlDependentOnPoison = false;
6677   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6678     const Instruction *Poison = PoisonStack.pop_back_val();
6679 
6680     for (auto *PoisonUser : Poison->users()) {
6681       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6682         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6683           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6684       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6685         assert(BI->isConditional() && "Only possibility!");
6686         if (BI->getParent() == LatchBB) {
6687           LatchControlDependentOnPoison = true;
6688           break;
6689         }
6690       }
6691     }
6692   }
6693 
6694   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6695 }
6696 
6697 ScalarEvolution::LoopProperties
6698 ScalarEvolution::getLoopProperties(const Loop *L) {
6699   using LoopProperties = ScalarEvolution::LoopProperties;
6700 
6701   auto Itr = LoopPropertiesCache.find(L);
6702   if (Itr == LoopPropertiesCache.end()) {
6703     auto HasSideEffects = [](Instruction *I) {
6704       if (auto *SI = dyn_cast<StoreInst>(I))
6705         return !SI->isSimple();
6706 
6707       return I->mayThrow() || I->mayWriteToMemory();
6708     };
6709 
6710     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6711                          /*HasNoSideEffects*/ true};
6712 
6713     for (auto *BB : L->getBlocks())
6714       for (auto &I : *BB) {
6715         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6716           LP.HasNoAbnormalExits = false;
6717         if (HasSideEffects(&I))
6718           LP.HasNoSideEffects = false;
6719         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6720           break; // We're already as pessimistic as we can get.
6721       }
6722 
6723     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6724     assert(InsertPair.second && "We just checked!");
6725     Itr = InsertPair.first;
6726   }
6727 
6728   return Itr->second;
6729 }
6730 
6731 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6732   // A mustprogress loop without side effects must be finite.
6733   // TODO: The check used here is very conservative.  It's only *specific*
6734   // side effects which are well defined in infinite loops.
6735   return isMustProgress(L) && loopHasNoSideEffects(L);
6736 }
6737 
6738 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6739   if (!isSCEVable(V->getType()))
6740     return getUnknown(V);
6741 
6742   if (Instruction *I = dyn_cast<Instruction>(V)) {
6743     // Don't attempt to analyze instructions in blocks that aren't
6744     // reachable. Such instructions don't matter, and they aren't required
6745     // to obey basic rules for definitions dominating uses which this
6746     // analysis depends on.
6747     if (!DT.isReachableFromEntry(I->getParent()))
6748       return getUnknown(UndefValue::get(V->getType()));
6749   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6750     return getConstant(CI);
6751   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6752     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6753   else if (!isa<ConstantExpr>(V))
6754     return getUnknown(V);
6755 
6756   Operator *U = cast<Operator>(V);
6757   if (auto BO = MatchBinaryOp(U, DT)) {
6758     switch (BO->Opcode) {
6759     case Instruction::Add: {
6760       // The simple thing to do would be to just call getSCEV on both operands
6761       // and call getAddExpr with the result. However if we're looking at a
6762       // bunch of things all added together, this can be quite inefficient,
6763       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6764       // Instead, gather up all the operands and make a single getAddExpr call.
6765       // LLVM IR canonical form means we need only traverse the left operands.
6766       SmallVector<const SCEV *, 4> AddOps;
6767       do {
6768         if (BO->Op) {
6769           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6770             AddOps.push_back(OpSCEV);
6771             break;
6772           }
6773 
6774           // If a NUW or NSW flag can be applied to the SCEV for this
6775           // addition, then compute the SCEV for this addition by itself
6776           // with a separate call to getAddExpr. We need to do that
6777           // instead of pushing the operands of the addition onto AddOps,
6778           // since the flags are only known to apply to this particular
6779           // addition - they may not apply to other additions that can be
6780           // formed with operands from AddOps.
6781           const SCEV *RHS = getSCEV(BO->RHS);
6782           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6783           if (Flags != SCEV::FlagAnyWrap) {
6784             const SCEV *LHS = getSCEV(BO->LHS);
6785             if (BO->Opcode == Instruction::Sub)
6786               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6787             else
6788               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6789             break;
6790           }
6791         }
6792 
6793         if (BO->Opcode == Instruction::Sub)
6794           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6795         else
6796           AddOps.push_back(getSCEV(BO->RHS));
6797 
6798         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6799         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6800                        NewBO->Opcode != Instruction::Sub)) {
6801           AddOps.push_back(getSCEV(BO->LHS));
6802           break;
6803         }
6804         BO = NewBO;
6805       } while (true);
6806 
6807       return getAddExpr(AddOps);
6808     }
6809 
6810     case Instruction::Mul: {
6811       SmallVector<const SCEV *, 4> MulOps;
6812       do {
6813         if (BO->Op) {
6814           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6815             MulOps.push_back(OpSCEV);
6816             break;
6817           }
6818 
6819           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6820           if (Flags != SCEV::FlagAnyWrap) {
6821             MulOps.push_back(
6822                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6823             break;
6824           }
6825         }
6826 
6827         MulOps.push_back(getSCEV(BO->RHS));
6828         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6829         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6830           MulOps.push_back(getSCEV(BO->LHS));
6831           break;
6832         }
6833         BO = NewBO;
6834       } while (true);
6835 
6836       return getMulExpr(MulOps);
6837     }
6838     case Instruction::UDiv:
6839       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6840     case Instruction::URem:
6841       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6842     case Instruction::Sub: {
6843       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6844       if (BO->Op)
6845         Flags = getNoWrapFlagsFromUB(BO->Op);
6846       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6847     }
6848     case Instruction::And:
6849       // For an expression like x&255 that merely masks off the high bits,
6850       // use zext(trunc(x)) as the SCEV expression.
6851       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6852         if (CI->isZero())
6853           return getSCEV(BO->RHS);
6854         if (CI->isMinusOne())
6855           return getSCEV(BO->LHS);
6856         const APInt &A = CI->getValue();
6857 
6858         // Instcombine's ShrinkDemandedConstant may strip bits out of
6859         // constants, obscuring what would otherwise be a low-bits mask.
6860         // Use computeKnownBits to compute what ShrinkDemandedConstant
6861         // knew about to reconstruct a low-bits mask value.
6862         unsigned LZ = A.countLeadingZeros();
6863         unsigned TZ = A.countTrailingZeros();
6864         unsigned BitWidth = A.getBitWidth();
6865         KnownBits Known(BitWidth);
6866         computeKnownBits(BO->LHS, Known, getDataLayout(),
6867                          0, &AC, nullptr, &DT);
6868 
6869         APInt EffectiveMask =
6870             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6871         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6872           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6873           const SCEV *LHS = getSCEV(BO->LHS);
6874           const SCEV *ShiftedLHS = nullptr;
6875           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6876             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6877               // For an expression like (x * 8) & 8, simplify the multiply.
6878               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6879               unsigned GCD = std::min(MulZeros, TZ);
6880               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6881               SmallVector<const SCEV*, 4> MulOps;
6882               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6883               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6884               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6885               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6886             }
6887           }
6888           if (!ShiftedLHS)
6889             ShiftedLHS = getUDivExpr(LHS, MulCount);
6890           return getMulExpr(
6891               getZeroExtendExpr(
6892                   getTruncateExpr(ShiftedLHS,
6893                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6894                   BO->LHS->getType()),
6895               MulCount);
6896         }
6897       }
6898       break;
6899 
6900     case Instruction::Or:
6901       // If the RHS of the Or is a constant, we may have something like:
6902       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6903       // optimizations will transparently handle this case.
6904       //
6905       // In order for this transformation to be safe, the LHS must be of the
6906       // form X*(2^n) and the Or constant must be less than 2^n.
6907       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6908         const SCEV *LHS = getSCEV(BO->LHS);
6909         const APInt &CIVal = CI->getValue();
6910         if (GetMinTrailingZeros(LHS) >=
6911             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6912           // Build a plain add SCEV.
6913           return getAddExpr(LHS, getSCEV(CI),
6914                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6915         }
6916       }
6917       break;
6918 
6919     case Instruction::Xor:
6920       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6921         // If the RHS of xor is -1, then this is a not operation.
6922         if (CI->isMinusOne())
6923           return getNotSCEV(getSCEV(BO->LHS));
6924 
6925         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6926         // This is a variant of the check for xor with -1, and it handles
6927         // the case where instcombine has trimmed non-demanded bits out
6928         // of an xor with -1.
6929         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6930           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6931             if (LBO->getOpcode() == Instruction::And &&
6932                 LCI->getValue() == CI->getValue())
6933               if (const SCEVZeroExtendExpr *Z =
6934                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6935                 Type *UTy = BO->LHS->getType();
6936                 const SCEV *Z0 = Z->getOperand();
6937                 Type *Z0Ty = Z0->getType();
6938                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6939 
6940                 // If C is a low-bits mask, the zero extend is serving to
6941                 // mask off the high bits. Complement the operand and
6942                 // re-apply the zext.
6943                 if (CI->getValue().isMask(Z0TySize))
6944                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6945 
6946                 // If C is a single bit, it may be in the sign-bit position
6947                 // before the zero-extend. In this case, represent the xor
6948                 // using an add, which is equivalent, and re-apply the zext.
6949                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6950                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6951                     Trunc.isSignMask())
6952                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6953                                            UTy);
6954               }
6955       }
6956       break;
6957 
6958     case Instruction::Shl:
6959       // Turn shift left of a constant amount into a multiply.
6960       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6961         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6962 
6963         // If the shift count is not less than the bitwidth, the result of
6964         // the shift is undefined. Don't try to analyze it, because the
6965         // resolution chosen here may differ from the resolution chosen in
6966         // other parts of the compiler.
6967         if (SA->getValue().uge(BitWidth))
6968           break;
6969 
6970         // We can safely preserve the nuw flag in all cases. It's also safe to
6971         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6972         // requires special handling. It can be preserved as long as we're not
6973         // left shifting by bitwidth - 1.
6974         auto Flags = SCEV::FlagAnyWrap;
6975         if (BO->Op) {
6976           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6977           if ((MulFlags & SCEV::FlagNSW) &&
6978               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6979             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6980           if (MulFlags & SCEV::FlagNUW)
6981             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6982         }
6983 
6984         Constant *X = ConstantInt::get(
6985             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6986         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6987       }
6988       break;
6989 
6990     case Instruction::AShr: {
6991       // AShr X, C, where C is a constant.
6992       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6993       if (!CI)
6994         break;
6995 
6996       Type *OuterTy = BO->LHS->getType();
6997       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6998       // If the shift count is not less than the bitwidth, the result of
6999       // the shift is undefined. Don't try to analyze it, because the
7000       // resolution chosen here may differ from the resolution chosen in
7001       // other parts of the compiler.
7002       if (CI->getValue().uge(BitWidth))
7003         break;
7004 
7005       if (CI->isZero())
7006         return getSCEV(BO->LHS); // shift by zero --> noop
7007 
7008       uint64_t AShrAmt = CI->getZExtValue();
7009       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7010 
7011       Operator *L = dyn_cast<Operator>(BO->LHS);
7012       if (L && L->getOpcode() == Instruction::Shl) {
7013         // X = Shl A, n
7014         // Y = AShr X, m
7015         // Both n and m are constant.
7016 
7017         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7018         if (L->getOperand(1) == BO->RHS)
7019           // For a two-shift sext-inreg, i.e. n = m,
7020           // use sext(trunc(x)) as the SCEV expression.
7021           return getSignExtendExpr(
7022               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7023 
7024         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7025         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7026           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7027           if (ShlAmt > AShrAmt) {
7028             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7029             // expression. We already checked that ShlAmt < BitWidth, so
7030             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7031             // ShlAmt - AShrAmt < Amt.
7032             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7033                                             ShlAmt - AShrAmt);
7034             return getSignExtendExpr(
7035                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7036                 getConstant(Mul)), OuterTy);
7037           }
7038         }
7039       }
7040       break;
7041     }
7042     }
7043   }
7044 
7045   switch (U->getOpcode()) {
7046   case Instruction::Trunc:
7047     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7048 
7049   case Instruction::ZExt:
7050     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7051 
7052   case Instruction::SExt:
7053     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7054       // The NSW flag of a subtract does not always survive the conversion to
7055       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7056       // more likely to preserve NSW and allow later AddRec optimisations.
7057       //
7058       // NOTE: This is effectively duplicating this logic from getSignExtend:
7059       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7060       // but by that point the NSW information has potentially been lost.
7061       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7062         Type *Ty = U->getType();
7063         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7064         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7065         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7066       }
7067     }
7068     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7069 
7070   case Instruction::BitCast:
7071     // BitCasts are no-op casts so we just eliminate the cast.
7072     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7073       return getSCEV(U->getOperand(0));
7074     break;
7075 
7076   case Instruction::PtrToInt: {
7077     // Pointer to integer cast is straight-forward, so do model it.
7078     const SCEV *Op = getSCEV(U->getOperand(0));
7079     Type *DstIntTy = U->getType();
7080     // But only if effective SCEV (integer) type is wide enough to represent
7081     // all possible pointer values.
7082     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7083     if (isa<SCEVCouldNotCompute>(IntOp))
7084       return getUnknown(V);
7085     return IntOp;
7086   }
7087   case Instruction::IntToPtr:
7088     // Just don't deal with inttoptr casts.
7089     return getUnknown(V);
7090 
7091   case Instruction::SDiv:
7092     // If both operands are non-negative, this is just an udiv.
7093     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7094         isKnownNonNegative(getSCEV(U->getOperand(1))))
7095       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7096     break;
7097 
7098   case Instruction::SRem:
7099     // If both operands are non-negative, this is just an urem.
7100     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7101         isKnownNonNegative(getSCEV(U->getOperand(1))))
7102       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7103     break;
7104 
7105   case Instruction::GetElementPtr:
7106     return createNodeForGEP(cast<GEPOperator>(U));
7107 
7108   case Instruction::PHI:
7109     return createNodeForPHI(cast<PHINode>(U));
7110 
7111   case Instruction::Select:
7112     // U can also be a select constant expr, which let fall through.  Since
7113     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7114     // constant expressions cannot have instructions as operands, we'd have
7115     // returned getUnknown for a select constant expressions anyway.
7116     if (isa<Instruction>(U))
7117       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7118                                       U->getOperand(1), U->getOperand(2));
7119     break;
7120 
7121   case Instruction::Call:
7122   case Instruction::Invoke:
7123     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7124       return getSCEV(RV);
7125 
7126     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7127       switch (II->getIntrinsicID()) {
7128       case Intrinsic::abs:
7129         return getAbsExpr(
7130             getSCEV(II->getArgOperand(0)),
7131             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7132       case Intrinsic::umax:
7133         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7134                            getSCEV(II->getArgOperand(1)));
7135       case Intrinsic::umin:
7136         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7137                            getSCEV(II->getArgOperand(1)));
7138       case Intrinsic::smax:
7139         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7140                            getSCEV(II->getArgOperand(1)));
7141       case Intrinsic::smin:
7142         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7143                            getSCEV(II->getArgOperand(1)));
7144       case Intrinsic::usub_sat: {
7145         const SCEV *X = getSCEV(II->getArgOperand(0));
7146         const SCEV *Y = getSCEV(II->getArgOperand(1));
7147         const SCEV *ClampedY = getUMinExpr(X, Y);
7148         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7149       }
7150       case Intrinsic::uadd_sat: {
7151         const SCEV *X = getSCEV(II->getArgOperand(0));
7152         const SCEV *Y = getSCEV(II->getArgOperand(1));
7153         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7154         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7155       }
7156       case Intrinsic::start_loop_iterations:
7157         // A start_loop_iterations is just equivalent to the first operand for
7158         // SCEV purposes.
7159         return getSCEV(II->getArgOperand(0));
7160       default:
7161         break;
7162       }
7163     }
7164     break;
7165   }
7166 
7167   return getUnknown(V);
7168 }
7169 
7170 //===----------------------------------------------------------------------===//
7171 //                   Iteration Count Computation Code
7172 //
7173 
7174 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
7175   // Get the trip count from the BE count by adding 1.  Overflow, results
7176   // in zero which means "unknown".
7177   return getAddExpr(ExitCount, getOne(ExitCount->getType()));
7178 }
7179 
7180 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7181   if (!ExitCount)
7182     return 0;
7183 
7184   ConstantInt *ExitConst = ExitCount->getValue();
7185 
7186   // Guard against huge trip counts.
7187   if (ExitConst->getValue().getActiveBits() > 32)
7188     return 0;
7189 
7190   // In case of integer overflow, this returns 0, which is correct.
7191   return ((unsigned)ExitConst->getZExtValue()) + 1;
7192 }
7193 
7194 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7195   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7196   return getConstantTripCount(ExitCount);
7197 }
7198 
7199 unsigned
7200 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7201                                            const BasicBlock *ExitingBlock) {
7202   assert(ExitingBlock && "Must pass a non-null exiting block!");
7203   assert(L->isLoopExiting(ExitingBlock) &&
7204          "Exiting block must actually branch out of the loop!");
7205   const SCEVConstant *ExitCount =
7206       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7207   return getConstantTripCount(ExitCount);
7208 }
7209 
7210 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7211   const auto *MaxExitCount =
7212       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7213   return getConstantTripCount(MaxExitCount);
7214 }
7215 
7216 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7217   SmallVector<BasicBlock *, 8> ExitingBlocks;
7218   L->getExitingBlocks(ExitingBlocks);
7219 
7220   Optional<unsigned> Res = None;
7221   for (auto *ExitingBB : ExitingBlocks) {
7222     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7223     if (!Res)
7224       Res = Multiple;
7225     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7226   }
7227   return Res.getValueOr(1);
7228 }
7229 
7230 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7231                                                        const SCEV *ExitCount) {
7232   if (ExitCount == getCouldNotCompute())
7233     return 1;
7234 
7235   // Get the trip count
7236   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7237 
7238   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7239   if (!TC)
7240     // Attempt to factor more general cases. Returns the greatest power of
7241     // two divisor. If overflow happens, the trip count expression is still
7242     // divisible by the greatest power of 2 divisor returned.
7243     return 1U << std::min((uint32_t)31,
7244                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7245 
7246   ConstantInt *Result = TC->getValue();
7247 
7248   // Guard against huge trip counts (this requires checking
7249   // for zero to handle the case where the trip count == -1 and the
7250   // addition wraps).
7251   if (!Result || Result->getValue().getActiveBits() > 32 ||
7252       Result->getValue().getActiveBits() == 0)
7253     return 1;
7254 
7255   return (unsigned)Result->getZExtValue();
7256 }
7257 
7258 /// Returns the largest constant divisor of the trip count of this loop as a
7259 /// normal unsigned value, if possible. This means that the actual trip count is
7260 /// always a multiple of the returned value (don't forget the trip count could
7261 /// very well be zero as well!).
7262 ///
7263 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7264 /// multiple of a constant (which is also the case if the trip count is simply
7265 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7266 /// if the trip count is very large (>= 2^32).
7267 ///
7268 /// As explained in the comments for getSmallConstantTripCount, this assumes
7269 /// that control exits the loop via ExitingBlock.
7270 unsigned
7271 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7272                                               const BasicBlock *ExitingBlock) {
7273   assert(ExitingBlock && "Must pass a non-null exiting block!");
7274   assert(L->isLoopExiting(ExitingBlock) &&
7275          "Exiting block must actually branch out of the loop!");
7276   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7277   return getSmallConstantTripMultiple(L, ExitCount);
7278 }
7279 
7280 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7281                                           const BasicBlock *ExitingBlock,
7282                                           ExitCountKind Kind) {
7283   switch (Kind) {
7284   case Exact:
7285   case SymbolicMaximum:
7286     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7287   case ConstantMaximum:
7288     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7289   };
7290   llvm_unreachable("Invalid ExitCountKind!");
7291 }
7292 
7293 const SCEV *
7294 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7295                                                  SCEVUnionPredicate &Preds) {
7296   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7297 }
7298 
7299 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7300                                                    ExitCountKind Kind) {
7301   switch (Kind) {
7302   case Exact:
7303     return getBackedgeTakenInfo(L).getExact(L, this);
7304   case ConstantMaximum:
7305     return getBackedgeTakenInfo(L).getConstantMax(this);
7306   case SymbolicMaximum:
7307     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7308   };
7309   llvm_unreachable("Invalid ExitCountKind!");
7310 }
7311 
7312 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7313   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7314 }
7315 
7316 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7317 static void
7318 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
7319   BasicBlock *Header = L->getHeader();
7320 
7321   // Push all Loop-header PHIs onto the Worklist stack.
7322   for (PHINode &PN : Header->phis())
7323     Worklist.push_back(&PN);
7324 }
7325 
7326 const ScalarEvolution::BackedgeTakenInfo &
7327 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7328   auto &BTI = getBackedgeTakenInfo(L);
7329   if (BTI.hasFullInfo())
7330     return BTI;
7331 
7332   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7333 
7334   if (!Pair.second)
7335     return Pair.first->second;
7336 
7337   BackedgeTakenInfo Result =
7338       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7339 
7340   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7341 }
7342 
7343 ScalarEvolution::BackedgeTakenInfo &
7344 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7345   // Initially insert an invalid entry for this loop. If the insertion
7346   // succeeds, proceed to actually compute a backedge-taken count and
7347   // update the value. The temporary CouldNotCompute value tells SCEV
7348   // code elsewhere that it shouldn't attempt to request a new
7349   // backedge-taken count, which could result in infinite recursion.
7350   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7351       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7352   if (!Pair.second)
7353     return Pair.first->second;
7354 
7355   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7356   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7357   // must be cleared in this scope.
7358   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7359 
7360   // In product build, there are no usage of statistic.
7361   (void)NumTripCountsComputed;
7362   (void)NumTripCountsNotComputed;
7363 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7364   const SCEV *BEExact = Result.getExact(L, this);
7365   if (BEExact != getCouldNotCompute()) {
7366     assert(isLoopInvariant(BEExact, L) &&
7367            isLoopInvariant(Result.getConstantMax(this), L) &&
7368            "Computed backedge-taken count isn't loop invariant for loop!");
7369     ++NumTripCountsComputed;
7370   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7371              isa<PHINode>(L->getHeader()->begin())) {
7372     // Only count loops that have phi nodes as not being computable.
7373     ++NumTripCountsNotComputed;
7374   }
7375 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7376 
7377   // Now that we know more about the trip count for this loop, forget any
7378   // existing SCEV values for PHI nodes in this loop since they are only
7379   // conservative estimates made without the benefit of trip count
7380   // information. This is similar to the code in forgetLoop, except that
7381   // it handles SCEVUnknown PHI nodes specially.
7382   if (Result.hasAnyInfo()) {
7383     SmallVector<Instruction *, 16> Worklist;
7384     PushLoopPHIs(L, Worklist);
7385 
7386     SmallPtrSet<Instruction *, 8> Discovered;
7387     while (!Worklist.empty()) {
7388       Instruction *I = Worklist.pop_back_val();
7389 
7390       ValueExprMapType::iterator It =
7391         ValueExprMap.find_as(static_cast<Value *>(I));
7392       if (It != ValueExprMap.end()) {
7393         const SCEV *Old = It->second;
7394 
7395         // SCEVUnknown for a PHI either means that it has an unrecognized
7396         // structure, or it's a PHI that's in the progress of being computed
7397         // by createNodeForPHI.  In the former case, additional loop trip
7398         // count information isn't going to change anything. In the later
7399         // case, createNodeForPHI will perform the necessary updates on its
7400         // own when it gets to that point.
7401         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7402           eraseValueFromMap(It->first);
7403           forgetMemoizedResults(Old);
7404         }
7405         if (PHINode *PN = dyn_cast<PHINode>(I))
7406           ConstantEvolutionLoopExitValue.erase(PN);
7407       }
7408 
7409       // Since we don't need to invalidate anything for correctness and we're
7410       // only invalidating to make SCEV's results more precise, we get to stop
7411       // early to avoid invalidating too much.  This is especially important in
7412       // cases like:
7413       //
7414       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7415       // loop0:
7416       //   %pn0 = phi
7417       //   ...
7418       // loop1:
7419       //   %pn1 = phi
7420       //   ...
7421       //
7422       // where both loop0 and loop1's backedge taken count uses the SCEV
7423       // expression for %v.  If we don't have the early stop below then in cases
7424       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7425       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7426       // count for loop1, effectively nullifying SCEV's trip count cache.
7427       for (auto *U : I->users())
7428         if (auto *I = dyn_cast<Instruction>(U)) {
7429           auto *LoopForUser = LI.getLoopFor(I->getParent());
7430           if (LoopForUser && L->contains(LoopForUser) &&
7431               Discovered.insert(I).second)
7432             Worklist.push_back(I);
7433         }
7434     }
7435   }
7436 
7437   // Re-lookup the insert position, since the call to
7438   // computeBackedgeTakenCount above could result in a
7439   // recusive call to getBackedgeTakenInfo (on a different
7440   // loop), which would invalidate the iterator computed
7441   // earlier.
7442   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7443 }
7444 
7445 void ScalarEvolution::forgetAllLoops() {
7446   // This method is intended to forget all info about loops. It should
7447   // invalidate caches as if the following happened:
7448   // - The trip counts of all loops have changed arbitrarily
7449   // - Every llvm::Value has been updated in place to produce a different
7450   // result.
7451   BackedgeTakenCounts.clear();
7452   PredicatedBackedgeTakenCounts.clear();
7453   LoopPropertiesCache.clear();
7454   ConstantEvolutionLoopExitValue.clear();
7455   ValueExprMap.clear();
7456   ValuesAtScopes.clear();
7457   LoopDispositions.clear();
7458   BlockDispositions.clear();
7459   UnsignedRanges.clear();
7460   SignedRanges.clear();
7461   ExprValueMap.clear();
7462   HasRecMap.clear();
7463   MinTrailingZerosCache.clear();
7464   PredicatedSCEVRewrites.clear();
7465 }
7466 
7467 void ScalarEvolution::forgetLoop(const Loop *L) {
7468   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7469   SmallVector<Instruction *, 32> Worklist;
7470   SmallPtrSet<Instruction *, 16> Visited;
7471 
7472   // Iterate over all the loops and sub-loops to drop SCEV information.
7473   while (!LoopWorklist.empty()) {
7474     auto *CurrL = LoopWorklist.pop_back_val();
7475 
7476     // Drop any stored trip count value.
7477     BackedgeTakenCounts.erase(CurrL);
7478     PredicatedBackedgeTakenCounts.erase(CurrL);
7479 
7480     // Drop information about predicated SCEV rewrites for this loop.
7481     for (auto I = PredicatedSCEVRewrites.begin();
7482          I != PredicatedSCEVRewrites.end();) {
7483       std::pair<const SCEV *, const Loop *> Entry = I->first;
7484       if (Entry.second == CurrL)
7485         PredicatedSCEVRewrites.erase(I++);
7486       else
7487         ++I;
7488     }
7489 
7490     auto LoopUsersItr = LoopUsers.find(CurrL);
7491     if (LoopUsersItr != LoopUsers.end()) {
7492       for (auto *S : LoopUsersItr->second)
7493         forgetMemoizedResults(S);
7494       LoopUsers.erase(LoopUsersItr);
7495     }
7496 
7497     // Drop information about expressions based on loop-header PHIs.
7498     PushLoopPHIs(CurrL, Worklist);
7499 
7500     while (!Worklist.empty()) {
7501       Instruction *I = Worklist.pop_back_val();
7502       if (!Visited.insert(I).second)
7503         continue;
7504 
7505       ValueExprMapType::iterator It =
7506           ValueExprMap.find_as(static_cast<Value *>(I));
7507       if (It != ValueExprMap.end()) {
7508         eraseValueFromMap(It->first);
7509         forgetMemoizedResults(It->second);
7510         if (PHINode *PN = dyn_cast<PHINode>(I))
7511           ConstantEvolutionLoopExitValue.erase(PN);
7512       }
7513 
7514       PushDefUseChildren(I, Worklist);
7515     }
7516 
7517     LoopPropertiesCache.erase(CurrL);
7518     // Forget all contained loops too, to avoid dangling entries in the
7519     // ValuesAtScopes map.
7520     LoopWorklist.append(CurrL->begin(), CurrL->end());
7521   }
7522 }
7523 
7524 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7525   while (Loop *Parent = L->getParentLoop())
7526     L = Parent;
7527   forgetLoop(L);
7528 }
7529 
7530 void ScalarEvolution::forgetValue(Value *V) {
7531   Instruction *I = dyn_cast<Instruction>(V);
7532   if (!I) return;
7533 
7534   // Drop information about expressions based on loop-header PHIs.
7535   SmallVector<Instruction *, 16> Worklist;
7536   Worklist.push_back(I);
7537 
7538   SmallPtrSet<Instruction *, 8> Visited;
7539   while (!Worklist.empty()) {
7540     I = Worklist.pop_back_val();
7541     if (!Visited.insert(I).second)
7542       continue;
7543 
7544     ValueExprMapType::iterator It =
7545       ValueExprMap.find_as(static_cast<Value *>(I));
7546     if (It != ValueExprMap.end()) {
7547       eraseValueFromMap(It->first);
7548       forgetMemoizedResults(It->second);
7549       if (PHINode *PN = dyn_cast<PHINode>(I))
7550         ConstantEvolutionLoopExitValue.erase(PN);
7551     }
7552 
7553     PushDefUseChildren(I, Worklist);
7554   }
7555 }
7556 
7557 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7558   LoopDispositions.clear();
7559 }
7560 
7561 /// Get the exact loop backedge taken count considering all loop exits. A
7562 /// computable result can only be returned for loops with all exiting blocks
7563 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7564 /// is never skipped. This is a valid assumption as long as the loop exits via
7565 /// that test. For precise results, it is the caller's responsibility to specify
7566 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7567 const SCEV *
7568 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7569                                              SCEVUnionPredicate *Preds) const {
7570   // If any exits were not computable, the loop is not computable.
7571   if (!isComplete() || ExitNotTaken.empty())
7572     return SE->getCouldNotCompute();
7573 
7574   const BasicBlock *Latch = L->getLoopLatch();
7575   // All exiting blocks we have collected must dominate the only backedge.
7576   if (!Latch)
7577     return SE->getCouldNotCompute();
7578 
7579   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7580   // count is simply a minimum out of all these calculated exit counts.
7581   SmallVector<const SCEV *, 2> Ops;
7582   for (auto &ENT : ExitNotTaken) {
7583     const SCEV *BECount = ENT.ExactNotTaken;
7584     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7585     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7586            "We should only have known counts for exiting blocks that dominate "
7587            "latch!");
7588 
7589     Ops.push_back(BECount);
7590 
7591     if (Preds && !ENT.hasAlwaysTruePredicate())
7592       Preds->add(ENT.Predicate.get());
7593 
7594     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7595            "Predicate should be always true!");
7596   }
7597 
7598   return SE->getUMinFromMismatchedTypes(Ops);
7599 }
7600 
7601 /// Get the exact not taken count for this loop exit.
7602 const SCEV *
7603 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7604                                              ScalarEvolution *SE) const {
7605   for (auto &ENT : ExitNotTaken)
7606     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7607       return ENT.ExactNotTaken;
7608 
7609   return SE->getCouldNotCompute();
7610 }
7611 
7612 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7613     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7614   for (auto &ENT : ExitNotTaken)
7615     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7616       return ENT.MaxNotTaken;
7617 
7618   return SE->getCouldNotCompute();
7619 }
7620 
7621 /// getConstantMax - Get the constant max backedge taken count for the loop.
7622 const SCEV *
7623 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7624   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7625     return !ENT.hasAlwaysTruePredicate();
7626   };
7627 
7628   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7629     return SE->getCouldNotCompute();
7630 
7631   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7632           isa<SCEVConstant>(getConstantMax())) &&
7633          "No point in having a non-constant max backedge taken count!");
7634   return getConstantMax();
7635 }
7636 
7637 const SCEV *
7638 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7639                                                    ScalarEvolution *SE) {
7640   if (!SymbolicMax)
7641     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7642   return SymbolicMax;
7643 }
7644 
7645 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7646     ScalarEvolution *SE) const {
7647   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7648     return !ENT.hasAlwaysTruePredicate();
7649   };
7650   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7651 }
7652 
7653 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const {
7654   return Operands.contains(S);
7655 }
7656 
7657 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7658     : ExitLimit(E, E, false, None) {
7659 }
7660 
7661 ScalarEvolution::ExitLimit::ExitLimit(
7662     const SCEV *E, const SCEV *M, bool MaxOrZero,
7663     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7664     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7665   // If we prove the max count is zero, so is the symbolic bound.  This happens
7666   // in practice due to differences in a) how context sensitive we've chosen
7667   // to be and b) how we reason about bounds impied by UB.
7668   if (MaxNotTaken->isZero())
7669     ExactNotTaken = MaxNotTaken;
7670 
7671   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7672           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7673          "Exact is not allowed to be less precise than Max");
7674   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7675           isa<SCEVConstant>(MaxNotTaken)) &&
7676          "No point in having a non-constant max backedge taken count!");
7677   for (auto *PredSet : PredSetList)
7678     for (auto *P : *PredSet)
7679       addPredicate(P);
7680   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
7681          "Backedge count should be int");
7682   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
7683          "Max backedge count should be int");
7684 }
7685 
7686 ScalarEvolution::ExitLimit::ExitLimit(
7687     const SCEV *E, const SCEV *M, bool MaxOrZero,
7688     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7689     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7690 }
7691 
7692 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7693                                       bool MaxOrZero)
7694     : ExitLimit(E, M, MaxOrZero, None) {
7695 }
7696 
7697 class SCEVRecordOperands {
7698   SmallPtrSetImpl<const SCEV *> &Operands;
7699 
7700 public:
7701   SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands)
7702     : Operands(Operands) {}
7703   bool follow(const SCEV *S) {
7704     Operands.insert(S);
7705     return true;
7706   }
7707   bool isDone() { return false; }
7708 };
7709 
7710 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7711 /// computable exit into a persistent ExitNotTakenInfo array.
7712 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7713     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7714     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7715     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7716   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7717 
7718   ExitNotTaken.reserve(ExitCounts.size());
7719   std::transform(
7720       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7721       [&](const EdgeExitInfo &EEI) {
7722         BasicBlock *ExitBB = EEI.first;
7723         const ExitLimit &EL = EEI.second;
7724         if (EL.Predicates.empty())
7725           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7726                                   nullptr);
7727 
7728         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7729         for (auto *Pred : EL.Predicates)
7730           Predicate->add(Pred);
7731 
7732         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7733                                 std::move(Predicate));
7734       });
7735   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7736           isa<SCEVConstant>(ConstantMax)) &&
7737          "No point in having a non-constant max backedge taken count!");
7738 
7739   SCEVRecordOperands RecordOperands(Operands);
7740   SCEVTraversal<SCEVRecordOperands> ST(RecordOperands);
7741   if (!isa<SCEVCouldNotCompute>(ConstantMax))
7742     ST.visitAll(ConstantMax);
7743   for (auto &ENT : ExitNotTaken)
7744     if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken))
7745       ST.visitAll(ENT.ExactNotTaken);
7746 }
7747 
7748 /// Compute the number of times the backedge of the specified loop will execute.
7749 ScalarEvolution::BackedgeTakenInfo
7750 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7751                                            bool AllowPredicates) {
7752   SmallVector<BasicBlock *, 8> ExitingBlocks;
7753   L->getExitingBlocks(ExitingBlocks);
7754 
7755   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7756 
7757   SmallVector<EdgeExitInfo, 4> ExitCounts;
7758   bool CouldComputeBECount = true;
7759   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7760   const SCEV *MustExitMaxBECount = nullptr;
7761   const SCEV *MayExitMaxBECount = nullptr;
7762   bool MustExitMaxOrZero = false;
7763 
7764   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7765   // and compute maxBECount.
7766   // Do a union of all the predicates here.
7767   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7768     BasicBlock *ExitBB = ExitingBlocks[i];
7769 
7770     // We canonicalize untaken exits to br (constant), ignore them so that
7771     // proving an exit untaken doesn't negatively impact our ability to reason
7772     // about the loop as whole.
7773     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7774       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7775         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7776         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7777           continue;
7778       }
7779 
7780     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7781 
7782     assert((AllowPredicates || EL.Predicates.empty()) &&
7783            "Predicated exit limit when predicates are not allowed!");
7784 
7785     // 1. For each exit that can be computed, add an entry to ExitCounts.
7786     // CouldComputeBECount is true only if all exits can be computed.
7787     if (EL.ExactNotTaken == getCouldNotCompute())
7788       // We couldn't compute an exact value for this exit, so
7789       // we won't be able to compute an exact value for the loop.
7790       CouldComputeBECount = false;
7791     else
7792       ExitCounts.emplace_back(ExitBB, EL);
7793 
7794     // 2. Derive the loop's MaxBECount from each exit's max number of
7795     // non-exiting iterations. Partition the loop exits into two kinds:
7796     // LoopMustExits and LoopMayExits.
7797     //
7798     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7799     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7800     // MaxBECount is the minimum EL.MaxNotTaken of computable
7801     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7802     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7803     // computable EL.MaxNotTaken.
7804     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7805         DT.dominates(ExitBB, Latch)) {
7806       if (!MustExitMaxBECount) {
7807         MustExitMaxBECount = EL.MaxNotTaken;
7808         MustExitMaxOrZero = EL.MaxOrZero;
7809       } else {
7810         MustExitMaxBECount =
7811             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7812       }
7813     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7814       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7815         MayExitMaxBECount = EL.MaxNotTaken;
7816       else {
7817         MayExitMaxBECount =
7818             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7819       }
7820     }
7821   }
7822   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7823     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7824   // The loop backedge will be taken the maximum or zero times if there's
7825   // a single exit that must be taken the maximum or zero times.
7826   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7827   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7828                            MaxBECount, MaxOrZero);
7829 }
7830 
7831 ScalarEvolution::ExitLimit
7832 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7833                                       bool AllowPredicates) {
7834   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7835   // If our exiting block does not dominate the latch, then its connection with
7836   // loop's exit limit may be far from trivial.
7837   const BasicBlock *Latch = L->getLoopLatch();
7838   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7839     return getCouldNotCompute();
7840 
7841   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7842   Instruction *Term = ExitingBlock->getTerminator();
7843   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7844     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7845     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7846     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7847            "It should have one successor in loop and one exit block!");
7848     // Proceed to the next level to examine the exit condition expression.
7849     return computeExitLimitFromCond(
7850         L, BI->getCondition(), ExitIfTrue,
7851         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7852   }
7853 
7854   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7855     // For switch, make sure that there is a single exit from the loop.
7856     BasicBlock *Exit = nullptr;
7857     for (auto *SBB : successors(ExitingBlock))
7858       if (!L->contains(SBB)) {
7859         if (Exit) // Multiple exit successors.
7860           return getCouldNotCompute();
7861         Exit = SBB;
7862       }
7863     assert(Exit && "Exiting block must have at least one exit");
7864     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7865                                                 /*ControlsExit=*/IsOnlyExit);
7866   }
7867 
7868   return getCouldNotCompute();
7869 }
7870 
7871 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7872     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7873     bool ControlsExit, bool AllowPredicates) {
7874   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7875   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7876                                         ControlsExit, AllowPredicates);
7877 }
7878 
7879 Optional<ScalarEvolution::ExitLimit>
7880 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7881                                       bool ExitIfTrue, bool ControlsExit,
7882                                       bool AllowPredicates) {
7883   (void)this->L;
7884   (void)this->ExitIfTrue;
7885   (void)this->AllowPredicates;
7886 
7887   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7888          this->AllowPredicates == AllowPredicates &&
7889          "Variance in assumed invariant key components!");
7890   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7891   if (Itr == TripCountMap.end())
7892     return None;
7893   return Itr->second;
7894 }
7895 
7896 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7897                                              bool ExitIfTrue,
7898                                              bool ControlsExit,
7899                                              bool AllowPredicates,
7900                                              const ExitLimit &EL) {
7901   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7902          this->AllowPredicates == AllowPredicates &&
7903          "Variance in assumed invariant key components!");
7904 
7905   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7906   assert(InsertResult.second && "Expected successful insertion!");
7907   (void)InsertResult;
7908   (void)ExitIfTrue;
7909 }
7910 
7911 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7912     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7913     bool ControlsExit, bool AllowPredicates) {
7914 
7915   if (auto MaybeEL =
7916           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7917     return *MaybeEL;
7918 
7919   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7920                                               ControlsExit, AllowPredicates);
7921   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7922   return EL;
7923 }
7924 
7925 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7926     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7927     bool ControlsExit, bool AllowPredicates) {
7928   // Handle BinOp conditions (And, Or).
7929   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7930           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7931     return *LimitFromBinOp;
7932 
7933   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7934   // Proceed to the next level to examine the icmp.
7935   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7936     ExitLimit EL =
7937         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7938     if (EL.hasFullInfo() || !AllowPredicates)
7939       return EL;
7940 
7941     // Try again, but use SCEV predicates this time.
7942     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7943                                     /*AllowPredicates=*/true);
7944   }
7945 
7946   // Check for a constant condition. These are normally stripped out by
7947   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7948   // preserve the CFG and is temporarily leaving constant conditions
7949   // in place.
7950   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7951     if (ExitIfTrue == !CI->getZExtValue())
7952       // The backedge is always taken.
7953       return getCouldNotCompute();
7954     else
7955       // The backedge is never taken.
7956       return getZero(CI->getType());
7957   }
7958 
7959   // If it's not an integer or pointer comparison then compute it the hard way.
7960   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7961 }
7962 
7963 Optional<ScalarEvolution::ExitLimit>
7964 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7965     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7966     bool ControlsExit, bool AllowPredicates) {
7967   // Check if the controlling expression for this loop is an And or Or.
7968   Value *Op0, *Op1;
7969   bool IsAnd = false;
7970   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7971     IsAnd = true;
7972   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7973     IsAnd = false;
7974   else
7975     return None;
7976 
7977   // EitherMayExit is true in these two cases:
7978   //   br (and Op0 Op1), loop, exit
7979   //   br (or  Op0 Op1), exit, loop
7980   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7981   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7982                                                  ControlsExit && !EitherMayExit,
7983                                                  AllowPredicates);
7984   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7985                                                  ControlsExit && !EitherMayExit,
7986                                                  AllowPredicates);
7987 
7988   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7989   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7990   if (isa<ConstantInt>(Op1))
7991     return Op1 == NeutralElement ? EL0 : EL1;
7992   if (isa<ConstantInt>(Op0))
7993     return Op0 == NeutralElement ? EL1 : EL0;
7994 
7995   const SCEV *BECount = getCouldNotCompute();
7996   const SCEV *MaxBECount = getCouldNotCompute();
7997   if (EitherMayExit) {
7998     // Both conditions must be same for the loop to continue executing.
7999     // Choose the less conservative count.
8000     // If ExitCond is a short-circuit form (select), using
8001     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
8002     // To see the detailed examples, please see
8003     // test/Analysis/ScalarEvolution/exit-count-select.ll
8004     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
8005     if (!PoisonSafe)
8006       // Even if ExitCond is select, we can safely derive BECount using both
8007       // EL0 and EL1 in these cases:
8008       // (1) EL0.ExactNotTaken is non-zero
8009       // (2) EL1.ExactNotTaken is non-poison
8010       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
8011       //     it cannot be umin(0, ..))
8012       // The PoisonSafe assignment below is simplified and the assertion after
8013       // BECount calculation fully guarantees the condition (3).
8014       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
8015                    isa<SCEVConstant>(EL1.ExactNotTaken);
8016     if (EL0.ExactNotTaken != getCouldNotCompute() &&
8017         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
8018       BECount =
8019           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
8020 
8021       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
8022       // it should have been simplified to zero (see the condition (3) above)
8023       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
8024              BECount->isZero());
8025     }
8026     if (EL0.MaxNotTaken == getCouldNotCompute())
8027       MaxBECount = EL1.MaxNotTaken;
8028     else if (EL1.MaxNotTaken == getCouldNotCompute())
8029       MaxBECount = EL0.MaxNotTaken;
8030     else
8031       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8032   } else {
8033     // Both conditions must be same at the same time for the loop to exit.
8034     // For now, be conservative.
8035     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8036       BECount = EL0.ExactNotTaken;
8037   }
8038 
8039   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8040   // to be more aggressive when computing BECount than when computing
8041   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8042   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8043   // to not.
8044   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8045       !isa<SCEVCouldNotCompute>(BECount))
8046     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8047 
8048   return ExitLimit(BECount, MaxBECount, false,
8049                    { &EL0.Predicates, &EL1.Predicates });
8050 }
8051 
8052 ScalarEvolution::ExitLimit
8053 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8054                                           ICmpInst *ExitCond,
8055                                           bool ExitIfTrue,
8056                                           bool ControlsExit,
8057                                           bool AllowPredicates) {
8058   // If the condition was exit on true, convert the condition to exit on false
8059   ICmpInst::Predicate Pred;
8060   if (!ExitIfTrue)
8061     Pred = ExitCond->getPredicate();
8062   else
8063     Pred = ExitCond->getInversePredicate();
8064   const ICmpInst::Predicate OriginalPred = Pred;
8065 
8066   // Handle common loops like: for (X = "string"; *X; ++X)
8067   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
8068     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
8069       ExitLimit ItCnt =
8070         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
8071       if (ItCnt.hasAnyInfo())
8072         return ItCnt;
8073     }
8074 
8075   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8076   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8077 
8078   // Try to evaluate any dependencies out of the loop.
8079   LHS = getSCEVAtScope(LHS, L);
8080   RHS = getSCEVAtScope(RHS, L);
8081 
8082   // At this point, we would like to compute how many iterations of the
8083   // loop the predicate will return true for these inputs.
8084   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8085     // If there is a loop-invariant, force it into the RHS.
8086     std::swap(LHS, RHS);
8087     Pred = ICmpInst::getSwappedPredicate(Pred);
8088   }
8089 
8090   // Simplify the operands before analyzing them.
8091   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8092 
8093   // If we have a comparison of a chrec against a constant, try to use value
8094   // ranges to answer this query.
8095   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8096     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8097       if (AddRec->getLoop() == L) {
8098         // Form the constant range.
8099         ConstantRange CompRange =
8100             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8101 
8102         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8103         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8104       }
8105 
8106   switch (Pred) {
8107   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8108     // Convert to: while (X-Y != 0)
8109     if (LHS->getType()->isPointerTy()) {
8110       LHS = getLosslessPtrToIntExpr(LHS);
8111       if (isa<SCEVCouldNotCompute>(LHS))
8112         return LHS;
8113     }
8114     if (RHS->getType()->isPointerTy()) {
8115       RHS = getLosslessPtrToIntExpr(RHS);
8116       if (isa<SCEVCouldNotCompute>(RHS))
8117         return RHS;
8118     }
8119     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8120                                 AllowPredicates);
8121     if (EL.hasAnyInfo()) return EL;
8122     break;
8123   }
8124   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8125     // Convert to: while (X-Y == 0)
8126     if (LHS->getType()->isPointerTy()) {
8127       LHS = getLosslessPtrToIntExpr(LHS);
8128       if (isa<SCEVCouldNotCompute>(LHS))
8129         return LHS;
8130     }
8131     if (RHS->getType()->isPointerTy()) {
8132       RHS = getLosslessPtrToIntExpr(RHS);
8133       if (isa<SCEVCouldNotCompute>(RHS))
8134         return RHS;
8135     }
8136     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8137     if (EL.hasAnyInfo()) return EL;
8138     break;
8139   }
8140   case ICmpInst::ICMP_SLT:
8141   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8142     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8143     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8144                                     AllowPredicates);
8145     if (EL.hasAnyInfo()) return EL;
8146     break;
8147   }
8148   case ICmpInst::ICMP_SGT:
8149   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8150     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8151     ExitLimit EL =
8152         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8153                             AllowPredicates);
8154     if (EL.hasAnyInfo()) return EL;
8155     break;
8156   }
8157   default:
8158     break;
8159   }
8160 
8161   auto *ExhaustiveCount =
8162       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8163 
8164   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8165     return ExhaustiveCount;
8166 
8167   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8168                                       ExitCond->getOperand(1), L, OriginalPred);
8169 }
8170 
8171 ScalarEvolution::ExitLimit
8172 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8173                                                       SwitchInst *Switch,
8174                                                       BasicBlock *ExitingBlock,
8175                                                       bool ControlsExit) {
8176   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8177 
8178   // Give up if the exit is the default dest of a switch.
8179   if (Switch->getDefaultDest() == ExitingBlock)
8180     return getCouldNotCompute();
8181 
8182   assert(L->contains(Switch->getDefaultDest()) &&
8183          "Default case must not exit the loop!");
8184   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8185   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8186 
8187   // while (X != Y) --> while (X-Y != 0)
8188   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8189   if (EL.hasAnyInfo())
8190     return EL;
8191 
8192   return getCouldNotCompute();
8193 }
8194 
8195 static ConstantInt *
8196 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8197                                 ScalarEvolution &SE) {
8198   const SCEV *InVal = SE.getConstant(C);
8199   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8200   assert(isa<SCEVConstant>(Val) &&
8201          "Evaluation of SCEV at constant didn't fold correctly?");
8202   return cast<SCEVConstant>(Val)->getValue();
8203 }
8204 
8205 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
8206 /// compute the backedge execution count.
8207 ScalarEvolution::ExitLimit
8208 ScalarEvolution::computeLoadConstantCompareExitLimit(
8209   LoadInst *LI,
8210   Constant *RHS,
8211   const Loop *L,
8212   ICmpInst::Predicate predicate) {
8213   if (LI->isVolatile()) return getCouldNotCompute();
8214 
8215   // Check to see if the loaded pointer is a getelementptr of a global.
8216   // TODO: Use SCEV instead of manually grubbing with GEPs.
8217   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
8218   if (!GEP) return getCouldNotCompute();
8219 
8220   // Make sure that it is really a constant global we are gepping, with an
8221   // initializer, and make sure the first IDX is really 0.
8222   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
8223   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
8224       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
8225       !cast<Constant>(GEP->getOperand(1))->isNullValue())
8226     return getCouldNotCompute();
8227 
8228   // Okay, we allow one non-constant index into the GEP instruction.
8229   Value *VarIdx = nullptr;
8230   std::vector<Constant*> Indexes;
8231   unsigned VarIdxNum = 0;
8232   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
8233     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
8234       Indexes.push_back(CI);
8235     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
8236       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
8237       VarIdx = GEP->getOperand(i);
8238       VarIdxNum = i-2;
8239       Indexes.push_back(nullptr);
8240     }
8241 
8242   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
8243   if (!VarIdx)
8244     return getCouldNotCompute();
8245 
8246   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
8247   // Check to see if X is a loop variant variable value now.
8248   const SCEV *Idx = getSCEV(VarIdx);
8249   Idx = getSCEVAtScope(Idx, L);
8250 
8251   // We can only recognize very limited forms of loop index expressions, in
8252   // particular, only affine AddRec's like {C1,+,C2}<L>.
8253   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
8254   if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
8255       isLoopInvariant(IdxExpr, L) ||
8256       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
8257       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
8258     return getCouldNotCompute();
8259 
8260   unsigned MaxSteps = MaxBruteForceIterations;
8261   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
8262     ConstantInt *ItCst = ConstantInt::get(
8263                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
8264     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
8265 
8266     // Form the GEP offset.
8267     Indexes[VarIdxNum] = Val;
8268 
8269     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
8270                                                          Indexes);
8271     if (!Result) break;  // Cannot compute!
8272 
8273     // Evaluate the condition for this iteration.
8274     Result = ConstantExpr::getICmp(predicate, Result, RHS);
8275     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
8276     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
8277       ++NumArrayLenItCounts;
8278       return getConstant(ItCst);   // Found terminating iteration!
8279     }
8280   }
8281   return getCouldNotCompute();
8282 }
8283 
8284 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8285     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8286   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8287   if (!RHS)
8288     return getCouldNotCompute();
8289 
8290   const BasicBlock *Latch = L->getLoopLatch();
8291   if (!Latch)
8292     return getCouldNotCompute();
8293 
8294   const BasicBlock *Predecessor = L->getLoopPredecessor();
8295   if (!Predecessor)
8296     return getCouldNotCompute();
8297 
8298   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8299   // Return LHS in OutLHS and shift_opt in OutOpCode.
8300   auto MatchPositiveShift =
8301       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8302 
8303     using namespace PatternMatch;
8304 
8305     ConstantInt *ShiftAmt;
8306     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8307       OutOpCode = Instruction::LShr;
8308     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8309       OutOpCode = Instruction::AShr;
8310     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8311       OutOpCode = Instruction::Shl;
8312     else
8313       return false;
8314 
8315     return ShiftAmt->getValue().isStrictlyPositive();
8316   };
8317 
8318   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8319   //
8320   // loop:
8321   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8322   //   %iv.shifted = lshr i32 %iv, <positive constant>
8323   //
8324   // Return true on a successful match.  Return the corresponding PHI node (%iv
8325   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8326   auto MatchShiftRecurrence =
8327       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8328     Optional<Instruction::BinaryOps> PostShiftOpCode;
8329 
8330     {
8331       Instruction::BinaryOps OpC;
8332       Value *V;
8333 
8334       // If we encounter a shift instruction, "peel off" the shift operation,
8335       // and remember that we did so.  Later when we inspect %iv's backedge
8336       // value, we will make sure that the backedge value uses the same
8337       // operation.
8338       //
8339       // Note: the peeled shift operation does not have to be the same
8340       // instruction as the one feeding into the PHI's backedge value.  We only
8341       // really care about it being the same *kind* of shift instruction --
8342       // that's all that is required for our later inferences to hold.
8343       if (MatchPositiveShift(LHS, V, OpC)) {
8344         PostShiftOpCode = OpC;
8345         LHS = V;
8346       }
8347     }
8348 
8349     PNOut = dyn_cast<PHINode>(LHS);
8350     if (!PNOut || PNOut->getParent() != L->getHeader())
8351       return false;
8352 
8353     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8354     Value *OpLHS;
8355 
8356     return
8357         // The backedge value for the PHI node must be a shift by a positive
8358         // amount
8359         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8360 
8361         // of the PHI node itself
8362         OpLHS == PNOut &&
8363 
8364         // and the kind of shift should be match the kind of shift we peeled
8365         // off, if any.
8366         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8367   };
8368 
8369   PHINode *PN;
8370   Instruction::BinaryOps OpCode;
8371   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8372     return getCouldNotCompute();
8373 
8374   const DataLayout &DL = getDataLayout();
8375 
8376   // The key rationale for this optimization is that for some kinds of shift
8377   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8378   // within a finite number of iterations.  If the condition guarding the
8379   // backedge (in the sense that the backedge is taken if the condition is true)
8380   // is false for the value the shift recurrence stabilizes to, then we know
8381   // that the backedge is taken only a finite number of times.
8382 
8383   ConstantInt *StableValue = nullptr;
8384   switch (OpCode) {
8385   default:
8386     llvm_unreachable("Impossible case!");
8387 
8388   case Instruction::AShr: {
8389     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8390     // bitwidth(K) iterations.
8391     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8392     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8393                                        Predecessor->getTerminator(), &DT);
8394     auto *Ty = cast<IntegerType>(RHS->getType());
8395     if (Known.isNonNegative())
8396       StableValue = ConstantInt::get(Ty, 0);
8397     else if (Known.isNegative())
8398       StableValue = ConstantInt::get(Ty, -1, true);
8399     else
8400       return getCouldNotCompute();
8401 
8402     break;
8403   }
8404   case Instruction::LShr:
8405   case Instruction::Shl:
8406     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8407     // stabilize to 0 in at most bitwidth(K) iterations.
8408     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8409     break;
8410   }
8411 
8412   auto *Result =
8413       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8414   assert(Result->getType()->isIntegerTy(1) &&
8415          "Otherwise cannot be an operand to a branch instruction");
8416 
8417   if (Result->isZeroValue()) {
8418     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8419     const SCEV *UpperBound =
8420         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8421     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8422   }
8423 
8424   return getCouldNotCompute();
8425 }
8426 
8427 /// Return true if we can constant fold an instruction of the specified type,
8428 /// assuming that all operands were constants.
8429 static bool CanConstantFold(const Instruction *I) {
8430   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8431       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8432       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8433     return true;
8434 
8435   if (const CallInst *CI = dyn_cast<CallInst>(I))
8436     if (const Function *F = CI->getCalledFunction())
8437       return canConstantFoldCallTo(CI, F);
8438   return false;
8439 }
8440 
8441 /// Determine whether this instruction can constant evolve within this loop
8442 /// assuming its operands can all constant evolve.
8443 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8444   // An instruction outside of the loop can't be derived from a loop PHI.
8445   if (!L->contains(I)) return false;
8446 
8447   if (isa<PHINode>(I)) {
8448     // We don't currently keep track of the control flow needed to evaluate
8449     // PHIs, so we cannot handle PHIs inside of loops.
8450     return L->getHeader() == I->getParent();
8451   }
8452 
8453   // If we won't be able to constant fold this expression even if the operands
8454   // are constants, bail early.
8455   return CanConstantFold(I);
8456 }
8457 
8458 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8459 /// recursing through each instruction operand until reaching a loop header phi.
8460 static PHINode *
8461 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8462                                DenseMap<Instruction *, PHINode *> &PHIMap,
8463                                unsigned Depth) {
8464   if (Depth > MaxConstantEvolvingDepth)
8465     return nullptr;
8466 
8467   // Otherwise, we can evaluate this instruction if all of its operands are
8468   // constant or derived from a PHI node themselves.
8469   PHINode *PHI = nullptr;
8470   for (Value *Op : UseInst->operands()) {
8471     if (isa<Constant>(Op)) continue;
8472 
8473     Instruction *OpInst = dyn_cast<Instruction>(Op);
8474     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8475 
8476     PHINode *P = dyn_cast<PHINode>(OpInst);
8477     if (!P)
8478       // If this operand is already visited, reuse the prior result.
8479       // We may have P != PHI if this is the deepest point at which the
8480       // inconsistent paths meet.
8481       P = PHIMap.lookup(OpInst);
8482     if (!P) {
8483       // Recurse and memoize the results, whether a phi is found or not.
8484       // This recursive call invalidates pointers into PHIMap.
8485       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8486       PHIMap[OpInst] = P;
8487     }
8488     if (!P)
8489       return nullptr;  // Not evolving from PHI
8490     if (PHI && PHI != P)
8491       return nullptr;  // Evolving from multiple different PHIs.
8492     PHI = P;
8493   }
8494   // This is a expression evolving from a constant PHI!
8495   return PHI;
8496 }
8497 
8498 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8499 /// in the loop that V is derived from.  We allow arbitrary operations along the
8500 /// way, but the operands of an operation must either be constants or a value
8501 /// derived from a constant PHI.  If this expression does not fit with these
8502 /// constraints, return null.
8503 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8504   Instruction *I = dyn_cast<Instruction>(V);
8505   if (!I || !canConstantEvolve(I, L)) return nullptr;
8506 
8507   if (PHINode *PN = dyn_cast<PHINode>(I))
8508     return PN;
8509 
8510   // Record non-constant instructions contained by the loop.
8511   DenseMap<Instruction *, PHINode *> PHIMap;
8512   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8513 }
8514 
8515 /// EvaluateExpression - Given an expression that passes the
8516 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8517 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8518 /// reason, return null.
8519 static Constant *EvaluateExpression(Value *V, const Loop *L,
8520                                     DenseMap<Instruction *, Constant *> &Vals,
8521                                     const DataLayout &DL,
8522                                     const TargetLibraryInfo *TLI) {
8523   // Convenient constant check, but redundant for recursive calls.
8524   if (Constant *C = dyn_cast<Constant>(V)) return C;
8525   Instruction *I = dyn_cast<Instruction>(V);
8526   if (!I) return nullptr;
8527 
8528   if (Constant *C = Vals.lookup(I)) return C;
8529 
8530   // An instruction inside the loop depends on a value outside the loop that we
8531   // weren't given a mapping for, or a value such as a call inside the loop.
8532   if (!canConstantEvolve(I, L)) return nullptr;
8533 
8534   // An unmapped PHI can be due to a branch or another loop inside this loop,
8535   // or due to this not being the initial iteration through a loop where we
8536   // couldn't compute the evolution of this particular PHI last time.
8537   if (isa<PHINode>(I)) return nullptr;
8538 
8539   std::vector<Constant*> Operands(I->getNumOperands());
8540 
8541   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8542     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8543     if (!Operand) {
8544       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8545       if (!Operands[i]) return nullptr;
8546       continue;
8547     }
8548     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8549     Vals[Operand] = C;
8550     if (!C) return nullptr;
8551     Operands[i] = C;
8552   }
8553 
8554   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8555     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8556                                            Operands[1], DL, TLI);
8557   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8558     if (!LI->isVolatile())
8559       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8560   }
8561   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8562 }
8563 
8564 
8565 // If every incoming value to PN except the one for BB is a specific Constant,
8566 // return that, else return nullptr.
8567 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8568   Constant *IncomingVal = nullptr;
8569 
8570   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8571     if (PN->getIncomingBlock(i) == BB)
8572       continue;
8573 
8574     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8575     if (!CurrentVal)
8576       return nullptr;
8577 
8578     if (IncomingVal != CurrentVal) {
8579       if (IncomingVal)
8580         return nullptr;
8581       IncomingVal = CurrentVal;
8582     }
8583   }
8584 
8585   return IncomingVal;
8586 }
8587 
8588 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8589 /// in the header of its containing loop, we know the loop executes a
8590 /// constant number of times, and the PHI node is just a recurrence
8591 /// involving constants, fold it.
8592 Constant *
8593 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8594                                                    const APInt &BEs,
8595                                                    const Loop *L) {
8596   auto I = ConstantEvolutionLoopExitValue.find(PN);
8597   if (I != ConstantEvolutionLoopExitValue.end())
8598     return I->second;
8599 
8600   if (BEs.ugt(MaxBruteForceIterations))
8601     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8602 
8603   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8604 
8605   DenseMap<Instruction *, Constant *> CurrentIterVals;
8606   BasicBlock *Header = L->getHeader();
8607   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8608 
8609   BasicBlock *Latch = L->getLoopLatch();
8610   if (!Latch)
8611     return nullptr;
8612 
8613   for (PHINode &PHI : Header->phis()) {
8614     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8615       CurrentIterVals[&PHI] = StartCST;
8616   }
8617   if (!CurrentIterVals.count(PN))
8618     return RetVal = nullptr;
8619 
8620   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8621 
8622   // Execute the loop symbolically to determine the exit value.
8623   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8624          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8625 
8626   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8627   unsigned IterationNum = 0;
8628   const DataLayout &DL = getDataLayout();
8629   for (; ; ++IterationNum) {
8630     if (IterationNum == NumIterations)
8631       return RetVal = CurrentIterVals[PN];  // Got exit value!
8632 
8633     // Compute the value of the PHIs for the next iteration.
8634     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8635     DenseMap<Instruction *, Constant *> NextIterVals;
8636     Constant *NextPHI =
8637         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8638     if (!NextPHI)
8639       return nullptr;        // Couldn't evaluate!
8640     NextIterVals[PN] = NextPHI;
8641 
8642     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8643 
8644     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8645     // cease to be able to evaluate one of them or if they stop evolving,
8646     // because that doesn't necessarily prevent us from computing PN.
8647     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8648     for (const auto &I : CurrentIterVals) {
8649       PHINode *PHI = dyn_cast<PHINode>(I.first);
8650       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8651       PHIsToCompute.emplace_back(PHI, I.second);
8652     }
8653     // We use two distinct loops because EvaluateExpression may invalidate any
8654     // iterators into CurrentIterVals.
8655     for (const auto &I : PHIsToCompute) {
8656       PHINode *PHI = I.first;
8657       Constant *&NextPHI = NextIterVals[PHI];
8658       if (!NextPHI) {   // Not already computed.
8659         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8660         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8661       }
8662       if (NextPHI != I.second)
8663         StoppedEvolving = false;
8664     }
8665 
8666     // If all entries in CurrentIterVals == NextIterVals then we can stop
8667     // iterating, the loop can't continue to change.
8668     if (StoppedEvolving)
8669       return RetVal = CurrentIterVals[PN];
8670 
8671     CurrentIterVals.swap(NextIterVals);
8672   }
8673 }
8674 
8675 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8676                                                           Value *Cond,
8677                                                           bool ExitWhen) {
8678   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8679   if (!PN) return getCouldNotCompute();
8680 
8681   // If the loop is canonicalized, the PHI will have exactly two entries.
8682   // That's the only form we support here.
8683   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8684 
8685   DenseMap<Instruction *, Constant *> CurrentIterVals;
8686   BasicBlock *Header = L->getHeader();
8687   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8688 
8689   BasicBlock *Latch = L->getLoopLatch();
8690   assert(Latch && "Should follow from NumIncomingValues == 2!");
8691 
8692   for (PHINode &PHI : Header->phis()) {
8693     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8694       CurrentIterVals[&PHI] = StartCST;
8695   }
8696   if (!CurrentIterVals.count(PN))
8697     return getCouldNotCompute();
8698 
8699   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8700   // the loop symbolically to determine when the condition gets a value of
8701   // "ExitWhen".
8702   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8703   const DataLayout &DL = getDataLayout();
8704   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8705     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8706         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8707 
8708     // Couldn't symbolically evaluate.
8709     if (!CondVal) return getCouldNotCompute();
8710 
8711     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8712       ++NumBruteForceTripCountsComputed;
8713       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8714     }
8715 
8716     // Update all the PHI nodes for the next iteration.
8717     DenseMap<Instruction *, Constant *> NextIterVals;
8718 
8719     // Create a list of which PHIs we need to compute. We want to do this before
8720     // calling EvaluateExpression on them because that may invalidate iterators
8721     // into CurrentIterVals.
8722     SmallVector<PHINode *, 8> PHIsToCompute;
8723     for (const auto &I : CurrentIterVals) {
8724       PHINode *PHI = dyn_cast<PHINode>(I.first);
8725       if (!PHI || PHI->getParent() != Header) continue;
8726       PHIsToCompute.push_back(PHI);
8727     }
8728     for (PHINode *PHI : PHIsToCompute) {
8729       Constant *&NextPHI = NextIterVals[PHI];
8730       if (NextPHI) continue;    // Already computed!
8731 
8732       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8733       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8734     }
8735     CurrentIterVals.swap(NextIterVals);
8736   }
8737 
8738   // Too many iterations were needed to evaluate.
8739   return getCouldNotCompute();
8740 }
8741 
8742 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8743   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8744       ValuesAtScopes[V];
8745   // Check to see if we've folded this expression at this loop before.
8746   for (auto &LS : Values)
8747     if (LS.first == L)
8748       return LS.second ? LS.second : V;
8749 
8750   Values.emplace_back(L, nullptr);
8751 
8752   // Otherwise compute it.
8753   const SCEV *C = computeSCEVAtScope(V, L);
8754   for (auto &LS : reverse(ValuesAtScopes[V]))
8755     if (LS.first == L) {
8756       LS.second = C;
8757       break;
8758     }
8759   return C;
8760 }
8761 
8762 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8763 /// will return Constants for objects which aren't represented by a
8764 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8765 /// Returns NULL if the SCEV isn't representable as a Constant.
8766 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8767   switch (V->getSCEVType()) {
8768   case scCouldNotCompute:
8769   case scAddRecExpr:
8770     return nullptr;
8771   case scConstant:
8772     return cast<SCEVConstant>(V)->getValue();
8773   case scUnknown:
8774     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8775   case scSignExtend: {
8776     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8777     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8778       return ConstantExpr::getSExt(CastOp, SS->getType());
8779     return nullptr;
8780   }
8781   case scZeroExtend: {
8782     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8783     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8784       return ConstantExpr::getZExt(CastOp, SZ->getType());
8785     return nullptr;
8786   }
8787   case scPtrToInt: {
8788     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8789     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8790       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8791 
8792     return nullptr;
8793   }
8794   case scTruncate: {
8795     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8796     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8797       return ConstantExpr::getTrunc(CastOp, ST->getType());
8798     return nullptr;
8799   }
8800   case scAddExpr: {
8801     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8802     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8803       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8804         unsigned AS = PTy->getAddressSpace();
8805         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8806         C = ConstantExpr::getBitCast(C, DestPtrTy);
8807       }
8808       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8809         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8810         if (!C2)
8811           return nullptr;
8812 
8813         // First pointer!
8814         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8815           unsigned AS = C2->getType()->getPointerAddressSpace();
8816           std::swap(C, C2);
8817           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8818           // The offsets have been converted to bytes.  We can add bytes to an
8819           // i8* by GEP with the byte count in the first index.
8820           C = ConstantExpr::getBitCast(C, DestPtrTy);
8821         }
8822 
8823         // Don't bother trying to sum two pointers. We probably can't
8824         // statically compute a load that results from it anyway.
8825         if (C2->getType()->isPointerTy())
8826           return nullptr;
8827 
8828         if (C->getType()->isPointerTy()) {
8829           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
8830                                              C, C2);
8831         } else {
8832           C = ConstantExpr::getAdd(C, C2);
8833         }
8834       }
8835       return C;
8836     }
8837     return nullptr;
8838   }
8839   case scMulExpr: {
8840     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8841     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8842       // Don't bother with pointers at all.
8843       if (C->getType()->isPointerTy())
8844         return nullptr;
8845       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8846         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8847         if (!C2 || C2->getType()->isPointerTy())
8848           return nullptr;
8849         C = ConstantExpr::getMul(C, C2);
8850       }
8851       return C;
8852     }
8853     return nullptr;
8854   }
8855   case scUDivExpr: {
8856     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8857     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8858       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8859         if (LHS->getType() == RHS->getType())
8860           return ConstantExpr::getUDiv(LHS, RHS);
8861     return nullptr;
8862   }
8863   case scSMaxExpr:
8864   case scUMaxExpr:
8865   case scSMinExpr:
8866   case scUMinExpr:
8867     return nullptr; // TODO: smax, umax, smin, umax.
8868   }
8869   llvm_unreachable("Unknown SCEV kind!");
8870 }
8871 
8872 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8873   if (isa<SCEVConstant>(V)) return V;
8874 
8875   // If this instruction is evolved from a constant-evolving PHI, compute the
8876   // exit value from the loop without using SCEVs.
8877   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8878     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8879       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8880         const Loop *CurrLoop = this->LI[I->getParent()];
8881         // Looking for loop exit value.
8882         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8883             PN->getParent() == CurrLoop->getHeader()) {
8884           // Okay, there is no closed form solution for the PHI node.  Check
8885           // to see if the loop that contains it has a known backedge-taken
8886           // count.  If so, we may be able to force computation of the exit
8887           // value.
8888           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8889           // This trivial case can show up in some degenerate cases where
8890           // the incoming IR has not yet been fully simplified.
8891           if (BackedgeTakenCount->isZero()) {
8892             Value *InitValue = nullptr;
8893             bool MultipleInitValues = false;
8894             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8895               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8896                 if (!InitValue)
8897                   InitValue = PN->getIncomingValue(i);
8898                 else if (InitValue != PN->getIncomingValue(i)) {
8899                   MultipleInitValues = true;
8900                   break;
8901                 }
8902               }
8903             }
8904             if (!MultipleInitValues && InitValue)
8905               return getSCEV(InitValue);
8906           }
8907           // Do we have a loop invariant value flowing around the backedge
8908           // for a loop which must execute the backedge?
8909           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8910               isKnownPositive(BackedgeTakenCount) &&
8911               PN->getNumIncomingValues() == 2) {
8912 
8913             unsigned InLoopPred =
8914                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8915             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8916             if (CurrLoop->isLoopInvariant(BackedgeVal))
8917               return getSCEV(BackedgeVal);
8918           }
8919           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8920             // Okay, we know how many times the containing loop executes.  If
8921             // this is a constant evolving PHI node, get the final value at
8922             // the specified iteration number.
8923             Constant *RV = getConstantEvolutionLoopExitValue(
8924                 PN, BTCC->getAPInt(), CurrLoop);
8925             if (RV) return getSCEV(RV);
8926           }
8927         }
8928 
8929         // If there is a single-input Phi, evaluate it at our scope. If we can
8930         // prove that this replacement does not break LCSSA form, use new value.
8931         if (PN->getNumOperands() == 1) {
8932           const SCEV *Input = getSCEV(PN->getOperand(0));
8933           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8934           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8935           // for the simplest case just support constants.
8936           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8937         }
8938       }
8939 
8940       // Okay, this is an expression that we cannot symbolically evaluate
8941       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8942       // the arguments into constants, and if so, try to constant propagate the
8943       // result.  This is particularly useful for computing loop exit values.
8944       if (CanConstantFold(I)) {
8945         SmallVector<Constant *, 4> Operands;
8946         bool MadeImprovement = false;
8947         for (Value *Op : I->operands()) {
8948           if (Constant *C = dyn_cast<Constant>(Op)) {
8949             Operands.push_back(C);
8950             continue;
8951           }
8952 
8953           // If any of the operands is non-constant and if they are
8954           // non-integer and non-pointer, don't even try to analyze them
8955           // with scev techniques.
8956           if (!isSCEVable(Op->getType()))
8957             return V;
8958 
8959           const SCEV *OrigV = getSCEV(Op);
8960           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8961           MadeImprovement |= OrigV != OpV;
8962 
8963           Constant *C = BuildConstantFromSCEV(OpV);
8964           if (!C) return V;
8965           if (C->getType() != Op->getType())
8966             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8967                                                               Op->getType(),
8968                                                               false),
8969                                       C, Op->getType());
8970           Operands.push_back(C);
8971         }
8972 
8973         // Check to see if getSCEVAtScope actually made an improvement.
8974         if (MadeImprovement) {
8975           Constant *C = nullptr;
8976           const DataLayout &DL = getDataLayout();
8977           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8978             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8979                                                 Operands[1], DL, &TLI);
8980           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8981             if (!Load->isVolatile())
8982               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8983                                                DL);
8984           } else
8985             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8986           if (!C) return V;
8987           return getSCEV(C);
8988         }
8989       }
8990     }
8991 
8992     // This is some other type of SCEVUnknown, just return it.
8993     return V;
8994   }
8995 
8996   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8997     // Avoid performing the look-up in the common case where the specified
8998     // expression has no loop-variant portions.
8999     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
9000       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9001       if (OpAtScope != Comm->getOperand(i)) {
9002         // Okay, at least one of these operands is loop variant but might be
9003         // foldable.  Build a new instance of the folded commutative expression.
9004         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
9005                                             Comm->op_begin()+i);
9006         NewOps.push_back(OpAtScope);
9007 
9008         for (++i; i != e; ++i) {
9009           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9010           NewOps.push_back(OpAtScope);
9011         }
9012         if (isa<SCEVAddExpr>(Comm))
9013           return getAddExpr(NewOps, Comm->getNoWrapFlags());
9014         if (isa<SCEVMulExpr>(Comm))
9015           return getMulExpr(NewOps, Comm->getNoWrapFlags());
9016         if (isa<SCEVMinMaxExpr>(Comm))
9017           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
9018         llvm_unreachable("Unknown commutative SCEV type!");
9019       }
9020     }
9021     // If we got here, all operands are loop invariant.
9022     return Comm;
9023   }
9024 
9025   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9026     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9027     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9028     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9029       return Div;   // must be loop invariant
9030     return getUDivExpr(LHS, RHS);
9031   }
9032 
9033   // If this is a loop recurrence for a loop that does not contain L, then we
9034   // are dealing with the final value computed by the loop.
9035   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9036     // First, attempt to evaluate each operand.
9037     // Avoid performing the look-up in the common case where the specified
9038     // expression has no loop-variant portions.
9039     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9040       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9041       if (OpAtScope == AddRec->getOperand(i))
9042         continue;
9043 
9044       // Okay, at least one of these operands is loop variant but might be
9045       // foldable.  Build a new instance of the folded commutative expression.
9046       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9047                                           AddRec->op_begin()+i);
9048       NewOps.push_back(OpAtScope);
9049       for (++i; i != e; ++i)
9050         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9051 
9052       const SCEV *FoldedRec =
9053         getAddRecExpr(NewOps, AddRec->getLoop(),
9054                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9055       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9056       // The addrec may be folded to a nonrecurrence, for example, if the
9057       // induction variable is multiplied by zero after constant folding. Go
9058       // ahead and return the folded value.
9059       if (!AddRec)
9060         return FoldedRec;
9061       break;
9062     }
9063 
9064     // If the scope is outside the addrec's loop, evaluate it by using the
9065     // loop exit value of the addrec.
9066     if (!AddRec->getLoop()->contains(L)) {
9067       // To evaluate this recurrence, we need to know how many times the AddRec
9068       // loop iterates.  Compute this now.
9069       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9070       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9071 
9072       // Then, evaluate the AddRec.
9073       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9074     }
9075 
9076     return AddRec;
9077   }
9078 
9079   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
9080     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9081     if (Op == Cast->getOperand())
9082       return Cast;  // must be loop invariant
9083     return getZeroExtendExpr(Op, Cast->getType());
9084   }
9085 
9086   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
9087     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9088     if (Op == Cast->getOperand())
9089       return Cast;  // must be loop invariant
9090     return getSignExtendExpr(Op, Cast->getType());
9091   }
9092 
9093   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
9094     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9095     if (Op == Cast->getOperand())
9096       return Cast;  // must be loop invariant
9097     return getTruncateExpr(Op, Cast->getType());
9098   }
9099 
9100   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
9101     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9102     if (Op == Cast->getOperand())
9103       return Cast; // must be loop invariant
9104     return getPtrToIntExpr(Op, Cast->getType());
9105   }
9106 
9107   llvm_unreachable("Unknown SCEV type!");
9108 }
9109 
9110 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9111   return getSCEVAtScope(getSCEV(V), L);
9112 }
9113 
9114 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9115   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9116     return stripInjectiveFunctions(ZExt->getOperand());
9117   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9118     return stripInjectiveFunctions(SExt->getOperand());
9119   return S;
9120 }
9121 
9122 /// Finds the minimum unsigned root of the following equation:
9123 ///
9124 ///     A * X = B (mod N)
9125 ///
9126 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9127 /// A and B isn't important.
9128 ///
9129 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9130 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9131                                                ScalarEvolution &SE) {
9132   uint32_t BW = A.getBitWidth();
9133   assert(BW == SE.getTypeSizeInBits(B->getType()));
9134   assert(A != 0 && "A must be non-zero.");
9135 
9136   // 1. D = gcd(A, N)
9137   //
9138   // The gcd of A and N may have only one prime factor: 2. The number of
9139   // trailing zeros in A is its multiplicity
9140   uint32_t Mult2 = A.countTrailingZeros();
9141   // D = 2^Mult2
9142 
9143   // 2. Check if B is divisible by D.
9144   //
9145   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9146   // is not less than multiplicity of this prime factor for D.
9147   if (SE.GetMinTrailingZeros(B) < Mult2)
9148     return SE.getCouldNotCompute();
9149 
9150   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9151   // modulo (N / D).
9152   //
9153   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9154   // (N / D) in general. The inverse itself always fits into BW bits, though,
9155   // so we immediately truncate it.
9156   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9157   APInt Mod(BW + 1, 0);
9158   Mod.setBit(BW - Mult2);  // Mod = N / D
9159   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9160 
9161   // 4. Compute the minimum unsigned root of the equation:
9162   // I * (B / D) mod (N / D)
9163   // To simplify the computation, we factor out the divide by D:
9164   // (I * B mod N) / D
9165   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9166   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9167 }
9168 
9169 /// For a given quadratic addrec, generate coefficients of the corresponding
9170 /// quadratic equation, multiplied by a common value to ensure that they are
9171 /// integers.
9172 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9173 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9174 /// were multiplied by, and BitWidth is the bit width of the original addrec
9175 /// coefficients.
9176 /// This function returns None if the addrec coefficients are not compile-
9177 /// time constants.
9178 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9179 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9180   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9181   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9182   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9183   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9184   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9185                     << *AddRec << '\n');
9186 
9187   // We currently can only solve this if the coefficients are constants.
9188   if (!LC || !MC || !NC) {
9189     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9190     return None;
9191   }
9192 
9193   APInt L = LC->getAPInt();
9194   APInt M = MC->getAPInt();
9195   APInt N = NC->getAPInt();
9196   assert(!N.isNullValue() && "This is not a quadratic addrec");
9197 
9198   unsigned BitWidth = LC->getAPInt().getBitWidth();
9199   unsigned NewWidth = BitWidth + 1;
9200   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9201                     << BitWidth << '\n');
9202   // The sign-extension (as opposed to a zero-extension) here matches the
9203   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9204   N = N.sext(NewWidth);
9205   M = M.sext(NewWidth);
9206   L = L.sext(NewWidth);
9207 
9208   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9209   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9210   //   L+M, L+2M+N, L+3M+3N, ...
9211   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9212   //
9213   // The equation Acc = 0 is then
9214   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9215   // In a quadratic form it becomes:
9216   //   N n^2 + (2M-N) n + 2L = 0.
9217 
9218   APInt A = N;
9219   APInt B = 2 * M - A;
9220   APInt C = 2 * L;
9221   APInt T = APInt(NewWidth, 2);
9222   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9223                     << "x + " << C << ", coeff bw: " << NewWidth
9224                     << ", multiplied by " << T << '\n');
9225   return std::make_tuple(A, B, C, T, BitWidth);
9226 }
9227 
9228 /// Helper function to compare optional APInts:
9229 /// (a) if X and Y both exist, return min(X, Y),
9230 /// (b) if neither X nor Y exist, return None,
9231 /// (c) if exactly one of X and Y exists, return that value.
9232 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9233   if (X.hasValue() && Y.hasValue()) {
9234     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9235     APInt XW = X->sextOrSelf(W);
9236     APInt YW = Y->sextOrSelf(W);
9237     return XW.slt(YW) ? *X : *Y;
9238   }
9239   if (!X.hasValue() && !Y.hasValue())
9240     return None;
9241   return X.hasValue() ? *X : *Y;
9242 }
9243 
9244 /// Helper function to truncate an optional APInt to a given BitWidth.
9245 /// When solving addrec-related equations, it is preferable to return a value
9246 /// that has the same bit width as the original addrec's coefficients. If the
9247 /// solution fits in the original bit width, truncate it (except for i1).
9248 /// Returning a value of a different bit width may inhibit some optimizations.
9249 ///
9250 /// In general, a solution to a quadratic equation generated from an addrec
9251 /// may require BW+1 bits, where BW is the bit width of the addrec's
9252 /// coefficients. The reason is that the coefficients of the quadratic
9253 /// equation are BW+1 bits wide (to avoid truncation when converting from
9254 /// the addrec to the equation).
9255 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9256   if (!X.hasValue())
9257     return None;
9258   unsigned W = X->getBitWidth();
9259   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9260     return X->trunc(BitWidth);
9261   return X;
9262 }
9263 
9264 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9265 /// iterations. The values L, M, N are assumed to be signed, and they
9266 /// should all have the same bit widths.
9267 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9268 /// where BW is the bit width of the addrec's coefficients.
9269 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9270 /// returned as such, otherwise the bit width of the returned value may
9271 /// be greater than BW.
9272 ///
9273 /// This function returns None if
9274 /// (a) the addrec coefficients are not constant, or
9275 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9276 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9277 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9278 static Optional<APInt>
9279 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9280   APInt A, B, C, M;
9281   unsigned BitWidth;
9282   auto T = GetQuadraticEquation(AddRec);
9283   if (!T.hasValue())
9284     return None;
9285 
9286   std::tie(A, B, C, M, BitWidth) = *T;
9287   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9288   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9289   if (!X.hasValue())
9290     return None;
9291 
9292   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9293   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9294   if (!V->isZero())
9295     return None;
9296 
9297   return TruncIfPossible(X, BitWidth);
9298 }
9299 
9300 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9301 /// iterations. The values M, N are assumed to be signed, and they
9302 /// should all have the same bit widths.
9303 /// Find the least n such that c(n) does not belong to the given range,
9304 /// while c(n-1) does.
9305 ///
9306 /// This function returns None if
9307 /// (a) the addrec coefficients are not constant, or
9308 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9309 ///     bounds of the range.
9310 static Optional<APInt>
9311 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9312                           const ConstantRange &Range, ScalarEvolution &SE) {
9313   assert(AddRec->getOperand(0)->isZero() &&
9314          "Starting value of addrec should be 0");
9315   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9316                     << Range << ", addrec " << *AddRec << '\n');
9317   // This case is handled in getNumIterationsInRange. Here we can assume that
9318   // we start in the range.
9319   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9320          "Addrec's initial value should be in range");
9321 
9322   APInt A, B, C, M;
9323   unsigned BitWidth;
9324   auto T = GetQuadraticEquation(AddRec);
9325   if (!T.hasValue())
9326     return None;
9327 
9328   // Be careful about the return value: there can be two reasons for not
9329   // returning an actual number. First, if no solutions to the equations
9330   // were found, and second, if the solutions don't leave the given range.
9331   // The first case means that the actual solution is "unknown", the second
9332   // means that it's known, but not valid. If the solution is unknown, we
9333   // cannot make any conclusions.
9334   // Return a pair: the optional solution and a flag indicating if the
9335   // solution was found.
9336   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9337     // Solve for signed overflow and unsigned overflow, pick the lower
9338     // solution.
9339     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9340                       << Bound << " (before multiplying by " << M << ")\n");
9341     Bound *= M; // The quadratic equation multiplier.
9342 
9343     Optional<APInt> SO = None;
9344     if (BitWidth > 1) {
9345       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9346                            "signed overflow\n");
9347       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9348     }
9349     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9350                          "unsigned overflow\n");
9351     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9352                                                               BitWidth+1);
9353 
9354     auto LeavesRange = [&] (const APInt &X) {
9355       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9356       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9357       if (Range.contains(V0->getValue()))
9358         return false;
9359       // X should be at least 1, so X-1 is non-negative.
9360       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9361       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9362       if (Range.contains(V1->getValue()))
9363         return true;
9364       return false;
9365     };
9366 
9367     // If SolveQuadraticEquationWrap returns None, it means that there can
9368     // be a solution, but the function failed to find it. We cannot treat it
9369     // as "no solution".
9370     if (!SO.hasValue() || !UO.hasValue())
9371       return { None, false };
9372 
9373     // Check the smaller value first to see if it leaves the range.
9374     // At this point, both SO and UO must have values.
9375     Optional<APInt> Min = MinOptional(SO, UO);
9376     if (LeavesRange(*Min))
9377       return { Min, true };
9378     Optional<APInt> Max = Min == SO ? UO : SO;
9379     if (LeavesRange(*Max))
9380       return { Max, true };
9381 
9382     // Solutions were found, but were eliminated, hence the "true".
9383     return { None, true };
9384   };
9385 
9386   std::tie(A, B, C, M, BitWidth) = *T;
9387   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9388   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9389   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9390   auto SL = SolveForBoundary(Lower);
9391   auto SU = SolveForBoundary(Upper);
9392   // If any of the solutions was unknown, no meaninigful conclusions can
9393   // be made.
9394   if (!SL.second || !SU.second)
9395     return None;
9396 
9397   // Claim: The correct solution is not some value between Min and Max.
9398   //
9399   // Justification: Assuming that Min and Max are different values, one of
9400   // them is when the first signed overflow happens, the other is when the
9401   // first unsigned overflow happens. Crossing the range boundary is only
9402   // possible via an overflow (treating 0 as a special case of it, modeling
9403   // an overflow as crossing k*2^W for some k).
9404   //
9405   // The interesting case here is when Min was eliminated as an invalid
9406   // solution, but Max was not. The argument is that if there was another
9407   // overflow between Min and Max, it would also have been eliminated if
9408   // it was considered.
9409   //
9410   // For a given boundary, it is possible to have two overflows of the same
9411   // type (signed/unsigned) without having the other type in between: this
9412   // can happen when the vertex of the parabola is between the iterations
9413   // corresponding to the overflows. This is only possible when the two
9414   // overflows cross k*2^W for the same k. In such case, if the second one
9415   // left the range (and was the first one to do so), the first overflow
9416   // would have to enter the range, which would mean that either we had left
9417   // the range before or that we started outside of it. Both of these cases
9418   // are contradictions.
9419   //
9420   // Claim: In the case where SolveForBoundary returns None, the correct
9421   // solution is not some value between the Max for this boundary and the
9422   // Min of the other boundary.
9423   //
9424   // Justification: Assume that we had such Max_A and Min_B corresponding
9425   // to range boundaries A and B and such that Max_A < Min_B. If there was
9426   // a solution between Max_A and Min_B, it would have to be caused by an
9427   // overflow corresponding to either A or B. It cannot correspond to B,
9428   // since Min_B is the first occurrence of such an overflow. If it
9429   // corresponded to A, it would have to be either a signed or an unsigned
9430   // overflow that is larger than both eliminated overflows for A. But
9431   // between the eliminated overflows and this overflow, the values would
9432   // cover the entire value space, thus crossing the other boundary, which
9433   // is a contradiction.
9434 
9435   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9436 }
9437 
9438 ScalarEvolution::ExitLimit
9439 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9440                               bool AllowPredicates) {
9441 
9442   // This is only used for loops with a "x != y" exit test. The exit condition
9443   // is now expressed as a single expression, V = x-y. So the exit test is
9444   // effectively V != 0.  We know and take advantage of the fact that this
9445   // expression only being used in a comparison by zero context.
9446 
9447   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9448   // If the value is a constant
9449   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9450     // If the value is already zero, the branch will execute zero times.
9451     if (C->getValue()->isZero()) return C;
9452     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9453   }
9454 
9455   const SCEVAddRecExpr *AddRec =
9456       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9457 
9458   if (!AddRec && AllowPredicates)
9459     // Try to make this an AddRec using runtime tests, in the first X
9460     // iterations of this loop, where X is the SCEV expression found by the
9461     // algorithm below.
9462     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9463 
9464   if (!AddRec || AddRec->getLoop() != L)
9465     return getCouldNotCompute();
9466 
9467   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9468   // the quadratic equation to solve it.
9469   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9470     // We can only use this value if the chrec ends up with an exact zero
9471     // value at this index.  When solving for "X*X != 5", for example, we
9472     // should not accept a root of 2.
9473     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9474       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9475       return ExitLimit(R, R, false, Predicates);
9476     }
9477     return getCouldNotCompute();
9478   }
9479 
9480   // Otherwise we can only handle this if it is affine.
9481   if (!AddRec->isAffine())
9482     return getCouldNotCompute();
9483 
9484   // If this is an affine expression, the execution count of this branch is
9485   // the minimum unsigned root of the following equation:
9486   //
9487   //     Start + Step*N = 0 (mod 2^BW)
9488   //
9489   // equivalent to:
9490   //
9491   //             Step*N = -Start (mod 2^BW)
9492   //
9493   // where BW is the common bit width of Start and Step.
9494 
9495   // Get the initial value for the loop.
9496   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9497   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9498 
9499   // For now we handle only constant steps.
9500   //
9501   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9502   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9503   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9504   // We have not yet seen any such cases.
9505   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9506   if (!StepC || StepC->getValue()->isZero())
9507     return getCouldNotCompute();
9508 
9509   // For positive steps (counting up until unsigned overflow):
9510   //   N = -Start/Step (as unsigned)
9511   // For negative steps (counting down to zero):
9512   //   N = Start/-Step
9513   // First compute the unsigned distance from zero in the direction of Step.
9514   bool CountDown = StepC->getAPInt().isNegative();
9515   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9516 
9517   // Handle unitary steps, which cannot wraparound.
9518   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9519   //   N = Distance (as unsigned)
9520   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9521     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9522     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9523     if (MaxBECountBase.ult(MaxBECount))
9524       MaxBECount = MaxBECountBase;
9525 
9526     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9527     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9528     // case, and see if we can improve the bound.
9529     //
9530     // Explicitly handling this here is necessary because getUnsignedRange
9531     // isn't context-sensitive; it doesn't know that we only care about the
9532     // range inside the loop.
9533     const SCEV *Zero = getZero(Distance->getType());
9534     const SCEV *One = getOne(Distance->getType());
9535     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9536     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9537       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9538       // as "unsigned_max(Distance + 1) - 1".
9539       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9540       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9541     }
9542     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9543   }
9544 
9545   // If the condition controls loop exit (the loop exits only if the expression
9546   // is true) and the addition is no-wrap we can use unsigned divide to
9547   // compute the backedge count.  In this case, the step may not divide the
9548   // distance, but we don't care because if the condition is "missed" the loop
9549   // will have undefined behavior due to wrapping.
9550   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9551       loopHasNoAbnormalExits(AddRec->getLoop())) {
9552     const SCEV *Exact =
9553         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9554     const SCEV *Max = getCouldNotCompute();
9555     if (Exact != getCouldNotCompute()) {
9556       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9557       APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9558       if (BaseMaxInt.ult(MaxInt))
9559         Max = getConstant(BaseMaxInt);
9560       else
9561         Max = getConstant(MaxInt);
9562     }
9563     return ExitLimit(Exact, Max, false, Predicates);
9564   }
9565 
9566   // Solve the general equation.
9567   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9568                                                getNegativeSCEV(Start), *this);
9569   const SCEV *M = E == getCouldNotCompute()
9570                       ? E
9571                       : getConstant(getUnsignedRangeMax(E));
9572   return ExitLimit(E, M, false, Predicates);
9573 }
9574 
9575 ScalarEvolution::ExitLimit
9576 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9577   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9578   // handle them yet except for the trivial case.  This could be expanded in the
9579   // future as needed.
9580 
9581   // If the value is a constant, check to see if it is known to be non-zero
9582   // already.  If so, the backedge will execute zero times.
9583   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9584     if (!C->getValue()->isZero())
9585       return getZero(C->getType());
9586     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9587   }
9588 
9589   // We could implement others, but I really doubt anyone writes loops like
9590   // this, and if they did, they would already be constant folded.
9591   return getCouldNotCompute();
9592 }
9593 
9594 std::pair<const BasicBlock *, const BasicBlock *>
9595 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9596     const {
9597   // If the block has a unique predecessor, then there is no path from the
9598   // predecessor to the block that does not go through the direct edge
9599   // from the predecessor to the block.
9600   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9601     return {Pred, BB};
9602 
9603   // A loop's header is defined to be a block that dominates the loop.
9604   // If the header has a unique predecessor outside the loop, it must be
9605   // a block that has exactly one successor that can reach the loop.
9606   if (const Loop *L = LI.getLoopFor(BB))
9607     return {L->getLoopPredecessor(), L->getHeader()};
9608 
9609   return {nullptr, nullptr};
9610 }
9611 
9612 /// SCEV structural equivalence is usually sufficient for testing whether two
9613 /// expressions are equal, however for the purposes of looking for a condition
9614 /// guarding a loop, it can be useful to be a little more general, since a
9615 /// front-end may have replicated the controlling expression.
9616 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9617   // Quick check to see if they are the same SCEV.
9618   if (A == B) return true;
9619 
9620   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9621     // Not all instructions that are "identical" compute the same value.  For
9622     // instance, two distinct alloca instructions allocating the same type are
9623     // identical and do not read memory; but compute distinct values.
9624     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9625   };
9626 
9627   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9628   // two different instructions with the same value. Check for this case.
9629   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9630     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9631       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9632         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9633           if (ComputesEqualValues(AI, BI))
9634             return true;
9635 
9636   // Otherwise assume they may have a different value.
9637   return false;
9638 }
9639 
9640 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9641                                            const SCEV *&LHS, const SCEV *&RHS,
9642                                            unsigned Depth) {
9643   bool Changed = false;
9644   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9645   // '0 != 0'.
9646   auto TrivialCase = [&](bool TriviallyTrue) {
9647     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9648     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9649     return true;
9650   };
9651   // If we hit the max recursion limit bail out.
9652   if (Depth >= 3)
9653     return false;
9654 
9655   // Canonicalize a constant to the right side.
9656   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9657     // Check for both operands constant.
9658     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9659       if (ConstantExpr::getICmp(Pred,
9660                                 LHSC->getValue(),
9661                                 RHSC->getValue())->isNullValue())
9662         return TrivialCase(false);
9663       else
9664         return TrivialCase(true);
9665     }
9666     // Otherwise swap the operands to put the constant on the right.
9667     std::swap(LHS, RHS);
9668     Pred = ICmpInst::getSwappedPredicate(Pred);
9669     Changed = true;
9670   }
9671 
9672   // If we're comparing an addrec with a value which is loop-invariant in the
9673   // addrec's loop, put the addrec on the left. Also make a dominance check,
9674   // as both operands could be addrecs loop-invariant in each other's loop.
9675   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9676     const Loop *L = AR->getLoop();
9677     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9678       std::swap(LHS, RHS);
9679       Pred = ICmpInst::getSwappedPredicate(Pred);
9680       Changed = true;
9681     }
9682   }
9683 
9684   // If there's a constant operand, canonicalize comparisons with boundary
9685   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9686   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9687     const APInt &RA = RC->getAPInt();
9688 
9689     bool SimplifiedByConstantRange = false;
9690 
9691     if (!ICmpInst::isEquality(Pred)) {
9692       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9693       if (ExactCR.isFullSet())
9694         return TrivialCase(true);
9695       else if (ExactCR.isEmptySet())
9696         return TrivialCase(false);
9697 
9698       APInt NewRHS;
9699       CmpInst::Predicate NewPred;
9700       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9701           ICmpInst::isEquality(NewPred)) {
9702         // We were able to convert an inequality to an equality.
9703         Pred = NewPred;
9704         RHS = getConstant(NewRHS);
9705         Changed = SimplifiedByConstantRange = true;
9706       }
9707     }
9708 
9709     if (!SimplifiedByConstantRange) {
9710       switch (Pred) {
9711       default:
9712         break;
9713       case ICmpInst::ICMP_EQ:
9714       case ICmpInst::ICMP_NE:
9715         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9716         if (!RA)
9717           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9718             if (const SCEVMulExpr *ME =
9719                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9720               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9721                   ME->getOperand(0)->isAllOnesValue()) {
9722                 RHS = AE->getOperand(1);
9723                 LHS = ME->getOperand(1);
9724                 Changed = true;
9725               }
9726         break;
9727 
9728 
9729         // The "Should have been caught earlier!" messages refer to the fact
9730         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9731         // should have fired on the corresponding cases, and canonicalized the
9732         // check to trivial case.
9733 
9734       case ICmpInst::ICMP_UGE:
9735         assert(!RA.isMinValue() && "Should have been caught earlier!");
9736         Pred = ICmpInst::ICMP_UGT;
9737         RHS = getConstant(RA - 1);
9738         Changed = true;
9739         break;
9740       case ICmpInst::ICMP_ULE:
9741         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9742         Pred = ICmpInst::ICMP_ULT;
9743         RHS = getConstant(RA + 1);
9744         Changed = true;
9745         break;
9746       case ICmpInst::ICMP_SGE:
9747         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9748         Pred = ICmpInst::ICMP_SGT;
9749         RHS = getConstant(RA - 1);
9750         Changed = true;
9751         break;
9752       case ICmpInst::ICMP_SLE:
9753         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9754         Pred = ICmpInst::ICMP_SLT;
9755         RHS = getConstant(RA + 1);
9756         Changed = true;
9757         break;
9758       }
9759     }
9760   }
9761 
9762   // Check for obvious equality.
9763   if (HasSameValue(LHS, RHS)) {
9764     if (ICmpInst::isTrueWhenEqual(Pred))
9765       return TrivialCase(true);
9766     if (ICmpInst::isFalseWhenEqual(Pred))
9767       return TrivialCase(false);
9768   }
9769 
9770   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9771   // adding or subtracting 1 from one of the operands.
9772   switch (Pred) {
9773   case ICmpInst::ICMP_SLE:
9774     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9775       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9776                        SCEV::FlagNSW);
9777       Pred = ICmpInst::ICMP_SLT;
9778       Changed = true;
9779     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9780       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9781                        SCEV::FlagNSW);
9782       Pred = ICmpInst::ICMP_SLT;
9783       Changed = true;
9784     }
9785     break;
9786   case ICmpInst::ICMP_SGE:
9787     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9788       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9789                        SCEV::FlagNSW);
9790       Pred = ICmpInst::ICMP_SGT;
9791       Changed = true;
9792     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9793       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9794                        SCEV::FlagNSW);
9795       Pred = ICmpInst::ICMP_SGT;
9796       Changed = true;
9797     }
9798     break;
9799   case ICmpInst::ICMP_ULE:
9800     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9801       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9802                        SCEV::FlagNUW);
9803       Pred = ICmpInst::ICMP_ULT;
9804       Changed = true;
9805     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9806       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9807       Pred = ICmpInst::ICMP_ULT;
9808       Changed = true;
9809     }
9810     break;
9811   case ICmpInst::ICMP_UGE:
9812     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9813       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9814       Pred = ICmpInst::ICMP_UGT;
9815       Changed = true;
9816     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9817       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9818                        SCEV::FlagNUW);
9819       Pred = ICmpInst::ICMP_UGT;
9820       Changed = true;
9821     }
9822     break;
9823   default:
9824     break;
9825   }
9826 
9827   // TODO: More simplifications are possible here.
9828 
9829   // Recursively simplify until we either hit a recursion limit or nothing
9830   // changes.
9831   if (Changed)
9832     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9833 
9834   return Changed;
9835 }
9836 
9837 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9838   return getSignedRangeMax(S).isNegative();
9839 }
9840 
9841 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9842   return getSignedRangeMin(S).isStrictlyPositive();
9843 }
9844 
9845 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9846   return !getSignedRangeMin(S).isNegative();
9847 }
9848 
9849 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9850   return !getSignedRangeMax(S).isStrictlyPositive();
9851 }
9852 
9853 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9854   return getUnsignedRangeMin(S) != 0;
9855 }
9856 
9857 std::pair<const SCEV *, const SCEV *>
9858 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9859   // Compute SCEV on entry of loop L.
9860   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9861   if (Start == getCouldNotCompute())
9862     return { Start, Start };
9863   // Compute post increment SCEV for loop L.
9864   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9865   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9866   return { Start, PostInc };
9867 }
9868 
9869 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9870                                           const SCEV *LHS, const SCEV *RHS) {
9871   // First collect all loops.
9872   SmallPtrSet<const Loop *, 8> LoopsUsed;
9873   getUsedLoops(LHS, LoopsUsed);
9874   getUsedLoops(RHS, LoopsUsed);
9875 
9876   if (LoopsUsed.empty())
9877     return false;
9878 
9879   // Domination relationship must be a linear order on collected loops.
9880 #ifndef NDEBUG
9881   for (auto *L1 : LoopsUsed)
9882     for (auto *L2 : LoopsUsed)
9883       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9884               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9885              "Domination relationship is not a linear order");
9886 #endif
9887 
9888   const Loop *MDL =
9889       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9890                         [&](const Loop *L1, const Loop *L2) {
9891          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9892        });
9893 
9894   // Get init and post increment value for LHS.
9895   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9896   // if LHS contains unknown non-invariant SCEV then bail out.
9897   if (SplitLHS.first == getCouldNotCompute())
9898     return false;
9899   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9900   // Get init and post increment value for RHS.
9901   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9902   // if RHS contains unknown non-invariant SCEV then bail out.
9903   if (SplitRHS.first == getCouldNotCompute())
9904     return false;
9905   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9906   // It is possible that init SCEV contains an invariant load but it does
9907   // not dominate MDL and is not available at MDL loop entry, so we should
9908   // check it here.
9909   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9910       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9911     return false;
9912 
9913   // It seems backedge guard check is faster than entry one so in some cases
9914   // it can speed up whole estimation by short circuit
9915   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9916                                      SplitRHS.second) &&
9917          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9918 }
9919 
9920 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9921                                        const SCEV *LHS, const SCEV *RHS) {
9922   // Canonicalize the inputs first.
9923   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9924 
9925   if (isKnownViaInduction(Pred, LHS, RHS))
9926     return true;
9927 
9928   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9929     return true;
9930 
9931   // Otherwise see what can be done with some simple reasoning.
9932   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9933 }
9934 
9935 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9936                                                   const SCEV *LHS,
9937                                                   const SCEV *RHS) {
9938   if (isKnownPredicate(Pred, LHS, RHS))
9939     return true;
9940   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9941     return false;
9942   return None;
9943 }
9944 
9945 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9946                                          const SCEV *LHS, const SCEV *RHS,
9947                                          const Instruction *CtxI) {
9948   // TODO: Analyze guards and assumes from Context's block.
9949   return isKnownPredicate(Pred, LHS, RHS) ||
9950          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
9951 }
9952 
9953 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
9954                                                     const SCEV *LHS,
9955                                                     const SCEV *RHS,
9956                                                     const Instruction *CtxI) {
9957   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
9958   if (KnownWithoutContext)
9959     return KnownWithoutContext;
9960 
9961   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
9962     return true;
9963   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
9964                                           ICmpInst::getInversePredicate(Pred),
9965                                           LHS, RHS))
9966     return false;
9967   return None;
9968 }
9969 
9970 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9971                                               const SCEVAddRecExpr *LHS,
9972                                               const SCEV *RHS) {
9973   const Loop *L = LHS->getLoop();
9974   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9975          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9976 }
9977 
9978 Optional<ScalarEvolution::MonotonicPredicateType>
9979 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9980                                            ICmpInst::Predicate Pred) {
9981   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9982 
9983 #ifndef NDEBUG
9984   // Verify an invariant: inverting the predicate should turn a monotonically
9985   // increasing change to a monotonically decreasing one, and vice versa.
9986   if (Result) {
9987     auto ResultSwapped =
9988         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9989 
9990     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9991     assert(ResultSwapped.getValue() != Result.getValue() &&
9992            "monotonicity should flip as we flip the predicate");
9993   }
9994 #endif
9995 
9996   return Result;
9997 }
9998 
9999 Optional<ScalarEvolution::MonotonicPredicateType>
10000 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10001                                                ICmpInst::Predicate Pred) {
10002   // A zero step value for LHS means the induction variable is essentially a
10003   // loop invariant value. We don't really depend on the predicate actually
10004   // flipping from false to true (for increasing predicates, and the other way
10005   // around for decreasing predicates), all we care about is that *if* the
10006   // predicate changes then it only changes from false to true.
10007   //
10008   // A zero step value in itself is not very useful, but there may be places
10009   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10010   // as general as possible.
10011 
10012   // Only handle LE/LT/GE/GT predicates.
10013   if (!ICmpInst::isRelational(Pred))
10014     return None;
10015 
10016   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10017   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10018          "Should be greater or less!");
10019 
10020   // Check that AR does not wrap.
10021   if (ICmpInst::isUnsigned(Pred)) {
10022     if (!LHS->hasNoUnsignedWrap())
10023       return None;
10024     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10025   } else {
10026     assert(ICmpInst::isSigned(Pred) &&
10027            "Relational predicate is either signed or unsigned!");
10028     if (!LHS->hasNoSignedWrap())
10029       return None;
10030 
10031     const SCEV *Step = LHS->getStepRecurrence(*this);
10032 
10033     if (isKnownNonNegative(Step))
10034       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10035 
10036     if (isKnownNonPositive(Step))
10037       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10038 
10039     return None;
10040   }
10041 }
10042 
10043 Optional<ScalarEvolution::LoopInvariantPredicate>
10044 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10045                                            const SCEV *LHS, const SCEV *RHS,
10046                                            const Loop *L) {
10047 
10048   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10049   if (!isLoopInvariant(RHS, L)) {
10050     if (!isLoopInvariant(LHS, L))
10051       return None;
10052 
10053     std::swap(LHS, RHS);
10054     Pred = ICmpInst::getSwappedPredicate(Pred);
10055   }
10056 
10057   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10058   if (!ArLHS || ArLHS->getLoop() != L)
10059     return None;
10060 
10061   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10062   if (!MonotonicType)
10063     return None;
10064   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10065   // true as the loop iterates, and the backedge is control dependent on
10066   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10067   //
10068   //   * if the predicate was false in the first iteration then the predicate
10069   //     is never evaluated again, since the loop exits without taking the
10070   //     backedge.
10071   //   * if the predicate was true in the first iteration then it will
10072   //     continue to be true for all future iterations since it is
10073   //     monotonically increasing.
10074   //
10075   // For both the above possibilities, we can replace the loop varying
10076   // predicate with its value on the first iteration of the loop (which is
10077   // loop invariant).
10078   //
10079   // A similar reasoning applies for a monotonically decreasing predicate, by
10080   // replacing true with false and false with true in the above two bullets.
10081   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10082   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10083 
10084   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10085     return None;
10086 
10087   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10088 }
10089 
10090 Optional<ScalarEvolution::LoopInvariantPredicate>
10091 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10092     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10093     const Instruction *CtxI, const SCEV *MaxIter) {
10094   // Try to prove the following set of facts:
10095   // - The predicate is monotonic in the iteration space.
10096   // - If the check does not fail on the 1st iteration:
10097   //   - No overflow will happen during first MaxIter iterations;
10098   //   - It will not fail on the MaxIter'th iteration.
10099   // If the check does fail on the 1st iteration, we leave the loop and no
10100   // other checks matter.
10101 
10102   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10103   if (!isLoopInvariant(RHS, L)) {
10104     if (!isLoopInvariant(LHS, L))
10105       return None;
10106 
10107     std::swap(LHS, RHS);
10108     Pred = ICmpInst::getSwappedPredicate(Pred);
10109   }
10110 
10111   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10112   if (!AR || AR->getLoop() != L)
10113     return None;
10114 
10115   // The predicate must be relational (i.e. <, <=, >=, >).
10116   if (!ICmpInst::isRelational(Pred))
10117     return None;
10118 
10119   // TODO: Support steps other than +/- 1.
10120   const SCEV *Step = AR->getStepRecurrence(*this);
10121   auto *One = getOne(Step->getType());
10122   auto *MinusOne = getNegativeSCEV(One);
10123   if (Step != One && Step != MinusOne)
10124     return None;
10125 
10126   // Type mismatch here means that MaxIter is potentially larger than max
10127   // unsigned value in start type, which mean we cannot prove no wrap for the
10128   // indvar.
10129   if (AR->getType() != MaxIter->getType())
10130     return None;
10131 
10132   // Value of IV on suggested last iteration.
10133   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10134   // Does it still meet the requirement?
10135   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10136     return None;
10137   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10138   // not exceed max unsigned value of this type), this effectively proves
10139   // that there is no wrap during the iteration. To prove that there is no
10140   // signed/unsigned wrap, we need to check that
10141   // Start <= Last for step = 1 or Start >= Last for step = -1.
10142   ICmpInst::Predicate NoOverflowPred =
10143       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10144   if (Step == MinusOne)
10145     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10146   const SCEV *Start = AR->getStart();
10147   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10148     return None;
10149 
10150   // Everything is fine.
10151   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10152 }
10153 
10154 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10155     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10156   if (HasSameValue(LHS, RHS))
10157     return ICmpInst::isTrueWhenEqual(Pred);
10158 
10159   // This code is split out from isKnownPredicate because it is called from
10160   // within isLoopEntryGuardedByCond.
10161 
10162   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10163                          const ConstantRange &RangeRHS) {
10164     return RangeLHS.icmp(Pred, RangeRHS);
10165   };
10166 
10167   // The check at the top of the function catches the case where the values are
10168   // known to be equal.
10169   if (Pred == CmpInst::ICMP_EQ)
10170     return false;
10171 
10172   if (Pred == CmpInst::ICMP_NE) {
10173     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10174         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10175       return true;
10176     auto *Diff = getMinusSCEV(LHS, RHS);
10177     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10178   }
10179 
10180   if (CmpInst::isSigned(Pred))
10181     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10182 
10183   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10184 }
10185 
10186 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10187                                                     const SCEV *LHS,
10188                                                     const SCEV *RHS) {
10189   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10190   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10191   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10192   // OutC1 and OutC2.
10193   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10194                                       APInt &OutC1, APInt &OutC2,
10195                                       SCEV::NoWrapFlags ExpectedFlags) {
10196     const SCEV *XNonConstOp, *XConstOp;
10197     const SCEV *YNonConstOp, *YConstOp;
10198     SCEV::NoWrapFlags XFlagsPresent;
10199     SCEV::NoWrapFlags YFlagsPresent;
10200 
10201     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10202       XConstOp = getZero(X->getType());
10203       XNonConstOp = X;
10204       XFlagsPresent = ExpectedFlags;
10205     }
10206     if (!isa<SCEVConstant>(XConstOp) ||
10207         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10208       return false;
10209 
10210     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10211       YConstOp = getZero(Y->getType());
10212       YNonConstOp = Y;
10213       YFlagsPresent = ExpectedFlags;
10214     }
10215 
10216     if (!isa<SCEVConstant>(YConstOp) ||
10217         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10218       return false;
10219 
10220     if (YNonConstOp != XNonConstOp)
10221       return false;
10222 
10223     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10224     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10225 
10226     return true;
10227   };
10228 
10229   APInt C1;
10230   APInt C2;
10231 
10232   switch (Pred) {
10233   default:
10234     break;
10235 
10236   case ICmpInst::ICMP_SGE:
10237     std::swap(LHS, RHS);
10238     LLVM_FALLTHROUGH;
10239   case ICmpInst::ICMP_SLE:
10240     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10241     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10242       return true;
10243 
10244     break;
10245 
10246   case ICmpInst::ICMP_SGT:
10247     std::swap(LHS, RHS);
10248     LLVM_FALLTHROUGH;
10249   case ICmpInst::ICMP_SLT:
10250     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10251     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10252       return true;
10253 
10254     break;
10255 
10256   case ICmpInst::ICMP_UGE:
10257     std::swap(LHS, RHS);
10258     LLVM_FALLTHROUGH;
10259   case ICmpInst::ICMP_ULE:
10260     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10261     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10262       return true;
10263 
10264     break;
10265 
10266   case ICmpInst::ICMP_UGT:
10267     std::swap(LHS, RHS);
10268     LLVM_FALLTHROUGH;
10269   case ICmpInst::ICMP_ULT:
10270     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10271     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10272       return true;
10273     break;
10274   }
10275 
10276   return false;
10277 }
10278 
10279 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10280                                                    const SCEV *LHS,
10281                                                    const SCEV *RHS) {
10282   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10283     return false;
10284 
10285   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10286   // the stack can result in exponential time complexity.
10287   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10288 
10289   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10290   //
10291   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10292   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10293   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10294   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10295   // use isKnownPredicate later if needed.
10296   return isKnownNonNegative(RHS) &&
10297          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10298          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10299 }
10300 
10301 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10302                                         ICmpInst::Predicate Pred,
10303                                         const SCEV *LHS, const SCEV *RHS) {
10304   // No need to even try if we know the module has no guards.
10305   if (!HasGuards)
10306     return false;
10307 
10308   return any_of(*BB, [&](const Instruction &I) {
10309     using namespace llvm::PatternMatch;
10310 
10311     Value *Condition;
10312     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10313                          m_Value(Condition))) &&
10314            isImpliedCond(Pred, LHS, RHS, Condition, false);
10315   });
10316 }
10317 
10318 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10319 /// protected by a conditional between LHS and RHS.  This is used to
10320 /// to eliminate casts.
10321 bool
10322 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10323                                              ICmpInst::Predicate Pred,
10324                                              const SCEV *LHS, const SCEV *RHS) {
10325   // Interpret a null as meaning no loop, where there is obviously no guard
10326   // (interprocedural conditions notwithstanding).
10327   if (!L) return true;
10328 
10329   if (VerifyIR)
10330     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10331            "This cannot be done on broken IR!");
10332 
10333 
10334   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10335     return true;
10336 
10337   BasicBlock *Latch = L->getLoopLatch();
10338   if (!Latch)
10339     return false;
10340 
10341   BranchInst *LoopContinuePredicate =
10342     dyn_cast<BranchInst>(Latch->getTerminator());
10343   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10344       isImpliedCond(Pred, LHS, RHS,
10345                     LoopContinuePredicate->getCondition(),
10346                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10347     return true;
10348 
10349   // We don't want more than one activation of the following loops on the stack
10350   // -- that can lead to O(n!) time complexity.
10351   if (WalkingBEDominatingConds)
10352     return false;
10353 
10354   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10355 
10356   // See if we can exploit a trip count to prove the predicate.
10357   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10358   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10359   if (LatchBECount != getCouldNotCompute()) {
10360     // We know that Latch branches back to the loop header exactly
10361     // LatchBECount times.  This means the backdege condition at Latch is
10362     // equivalent to  "{0,+,1} u< LatchBECount".
10363     Type *Ty = LatchBECount->getType();
10364     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10365     const SCEV *LoopCounter =
10366       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10367     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10368                       LatchBECount))
10369       return true;
10370   }
10371 
10372   // Check conditions due to any @llvm.assume intrinsics.
10373   for (auto &AssumeVH : AC.assumptions()) {
10374     if (!AssumeVH)
10375       continue;
10376     auto *CI = cast<CallInst>(AssumeVH);
10377     if (!DT.dominates(CI, Latch->getTerminator()))
10378       continue;
10379 
10380     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10381       return true;
10382   }
10383 
10384   // If the loop is not reachable from the entry block, we risk running into an
10385   // infinite loop as we walk up into the dom tree.  These loops do not matter
10386   // anyway, so we just return a conservative answer when we see them.
10387   if (!DT.isReachableFromEntry(L->getHeader()))
10388     return false;
10389 
10390   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10391     return true;
10392 
10393   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10394        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10395     assert(DTN && "should reach the loop header before reaching the root!");
10396 
10397     BasicBlock *BB = DTN->getBlock();
10398     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10399       return true;
10400 
10401     BasicBlock *PBB = BB->getSinglePredecessor();
10402     if (!PBB)
10403       continue;
10404 
10405     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10406     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10407       continue;
10408 
10409     Value *Condition = ContinuePredicate->getCondition();
10410 
10411     // If we have an edge `E` within the loop body that dominates the only
10412     // latch, the condition guarding `E` also guards the backedge.  This
10413     // reasoning works only for loops with a single latch.
10414 
10415     BasicBlockEdge DominatingEdge(PBB, BB);
10416     if (DominatingEdge.isSingleEdge()) {
10417       // We're constructively (and conservatively) enumerating edges within the
10418       // loop body that dominate the latch.  The dominator tree better agree
10419       // with us on this:
10420       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10421 
10422       if (isImpliedCond(Pred, LHS, RHS, Condition,
10423                         BB != ContinuePredicate->getSuccessor(0)))
10424         return true;
10425     }
10426   }
10427 
10428   return false;
10429 }
10430 
10431 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10432                                                      ICmpInst::Predicate Pred,
10433                                                      const SCEV *LHS,
10434                                                      const SCEV *RHS) {
10435   if (VerifyIR)
10436     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10437            "This cannot be done on broken IR!");
10438 
10439   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10440   // the facts (a >= b && a != b) separately. A typical situation is when the
10441   // non-strict comparison is known from ranges and non-equality is known from
10442   // dominating predicates. If we are proving strict comparison, we always try
10443   // to prove non-equality and non-strict comparison separately.
10444   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10445   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10446   bool ProvedNonStrictComparison = false;
10447   bool ProvedNonEquality = false;
10448 
10449   auto SplitAndProve =
10450     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10451     if (!ProvedNonStrictComparison)
10452       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10453     if (!ProvedNonEquality)
10454       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10455     if (ProvedNonStrictComparison && ProvedNonEquality)
10456       return true;
10457     return false;
10458   };
10459 
10460   if (ProvingStrictComparison) {
10461     auto ProofFn = [&](ICmpInst::Predicate P) {
10462       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10463     };
10464     if (SplitAndProve(ProofFn))
10465       return true;
10466   }
10467 
10468   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10469   auto ProveViaGuard = [&](const BasicBlock *Block) {
10470     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10471       return true;
10472     if (ProvingStrictComparison) {
10473       auto ProofFn = [&](ICmpInst::Predicate P) {
10474         return isImpliedViaGuard(Block, P, LHS, RHS);
10475       };
10476       if (SplitAndProve(ProofFn))
10477         return true;
10478     }
10479     return false;
10480   };
10481 
10482   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10483   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10484     const Instruction *CtxI = &BB->front();
10485     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
10486       return true;
10487     if (ProvingStrictComparison) {
10488       auto ProofFn = [&](ICmpInst::Predicate P) {
10489         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
10490       };
10491       if (SplitAndProve(ProofFn))
10492         return true;
10493     }
10494     return false;
10495   };
10496 
10497   // Starting at the block's predecessor, climb up the predecessor chain, as long
10498   // as there are predecessors that can be found that have unique successors
10499   // leading to the original block.
10500   const Loop *ContainingLoop = LI.getLoopFor(BB);
10501   const BasicBlock *PredBB;
10502   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10503     PredBB = ContainingLoop->getLoopPredecessor();
10504   else
10505     PredBB = BB->getSinglePredecessor();
10506   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10507        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10508     if (ProveViaGuard(Pair.first))
10509       return true;
10510 
10511     const BranchInst *LoopEntryPredicate =
10512         dyn_cast<BranchInst>(Pair.first->getTerminator());
10513     if (!LoopEntryPredicate ||
10514         LoopEntryPredicate->isUnconditional())
10515       continue;
10516 
10517     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10518                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10519       return true;
10520   }
10521 
10522   // Check conditions due to any @llvm.assume intrinsics.
10523   for (auto &AssumeVH : AC.assumptions()) {
10524     if (!AssumeVH)
10525       continue;
10526     auto *CI = cast<CallInst>(AssumeVH);
10527     if (!DT.dominates(CI, BB))
10528       continue;
10529 
10530     if (ProveViaCond(CI->getArgOperand(0), false))
10531       return true;
10532   }
10533 
10534   return false;
10535 }
10536 
10537 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10538                                                ICmpInst::Predicate Pred,
10539                                                const SCEV *LHS,
10540                                                const SCEV *RHS) {
10541   // Interpret a null as meaning no loop, where there is obviously no guard
10542   // (interprocedural conditions notwithstanding).
10543   if (!L)
10544     return false;
10545 
10546   // Both LHS and RHS must be available at loop entry.
10547   assert(isAvailableAtLoopEntry(LHS, L) &&
10548          "LHS is not available at Loop Entry");
10549   assert(isAvailableAtLoopEntry(RHS, L) &&
10550          "RHS is not available at Loop Entry");
10551 
10552   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10553     return true;
10554 
10555   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10556 }
10557 
10558 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10559                                     const SCEV *RHS,
10560                                     const Value *FoundCondValue, bool Inverse,
10561                                     const Instruction *CtxI) {
10562   // False conditions implies anything. Do not bother analyzing it further.
10563   if (FoundCondValue ==
10564       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10565     return true;
10566 
10567   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10568     return false;
10569 
10570   auto ClearOnExit =
10571       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10572 
10573   // Recursively handle And and Or conditions.
10574   const Value *Op0, *Op1;
10575   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10576     if (!Inverse)
10577       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10578              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10579   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10580     if (Inverse)
10581       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10582              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10583   }
10584 
10585   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10586   if (!ICI) return false;
10587 
10588   // Now that we found a conditional branch that dominates the loop or controls
10589   // the loop latch. Check to see if it is the comparison we are looking for.
10590   ICmpInst::Predicate FoundPred;
10591   if (Inverse)
10592     FoundPred = ICI->getInversePredicate();
10593   else
10594     FoundPred = ICI->getPredicate();
10595 
10596   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10597   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10598 
10599   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
10600 }
10601 
10602 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10603                                     const SCEV *RHS,
10604                                     ICmpInst::Predicate FoundPred,
10605                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10606                                     const Instruction *CtxI) {
10607   // Balance the types.
10608   if (getTypeSizeInBits(LHS->getType()) <
10609       getTypeSizeInBits(FoundLHS->getType())) {
10610     // For unsigned and equality predicates, try to prove that both found
10611     // operands fit into narrow unsigned range. If so, try to prove facts in
10612     // narrow types.
10613     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10614       auto *NarrowType = LHS->getType();
10615       auto *WideType = FoundLHS->getType();
10616       auto BitWidth = getTypeSizeInBits(NarrowType);
10617       const SCEV *MaxValue = getZeroExtendExpr(
10618           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10619       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10620           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10621         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10622         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10623         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10624                                        TruncFoundRHS, CtxI))
10625           return true;
10626       }
10627     }
10628 
10629     if (LHS->getType()->isPointerTy())
10630       return false;
10631     if (CmpInst::isSigned(Pred)) {
10632       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10633       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10634     } else {
10635       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10636       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10637     }
10638   } else if (getTypeSizeInBits(LHS->getType()) >
10639       getTypeSizeInBits(FoundLHS->getType())) {
10640     if (FoundLHS->getType()->isPointerTy())
10641       return false;
10642     if (CmpInst::isSigned(FoundPred)) {
10643       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10644       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10645     } else {
10646       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10647       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10648     }
10649   }
10650   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10651                                     FoundRHS, CtxI);
10652 }
10653 
10654 bool ScalarEvolution::isImpliedCondBalancedTypes(
10655     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10656     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10657     const Instruction *CtxI) {
10658   assert(getTypeSizeInBits(LHS->getType()) ==
10659              getTypeSizeInBits(FoundLHS->getType()) &&
10660          "Types should be balanced!");
10661   // Canonicalize the query to match the way instcombine will have
10662   // canonicalized the comparison.
10663   if (SimplifyICmpOperands(Pred, LHS, RHS))
10664     if (LHS == RHS)
10665       return CmpInst::isTrueWhenEqual(Pred);
10666   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10667     if (FoundLHS == FoundRHS)
10668       return CmpInst::isFalseWhenEqual(FoundPred);
10669 
10670   // Check to see if we can make the LHS or RHS match.
10671   if (LHS == FoundRHS || RHS == FoundLHS) {
10672     if (isa<SCEVConstant>(RHS)) {
10673       std::swap(FoundLHS, FoundRHS);
10674       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10675     } else {
10676       std::swap(LHS, RHS);
10677       Pred = ICmpInst::getSwappedPredicate(Pred);
10678     }
10679   }
10680 
10681   // Check whether the found predicate is the same as the desired predicate.
10682   if (FoundPred == Pred)
10683     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10684 
10685   // Check whether swapping the found predicate makes it the same as the
10686   // desired predicate.
10687   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10688     // We can write the implication
10689     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10690     // using one of the following ways:
10691     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10692     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10693     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10694     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10695     // Forms 1. and 2. require swapping the operands of one condition. Don't
10696     // do this if it would break canonical constant/addrec ordering.
10697     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10698       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10699                                    CtxI);
10700     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10701       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
10702 
10703     // There's no clear preference between forms 3. and 4., try both.  Avoid
10704     // forming getNotSCEV of pointer values as the resulting subtract is
10705     // not legal.
10706     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
10707         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10708                               FoundLHS, FoundRHS, CtxI))
10709       return true;
10710 
10711     if (!FoundLHS->getType()->isPointerTy() &&
10712         !FoundRHS->getType()->isPointerTy() &&
10713         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10714                               getNotSCEV(FoundRHS), CtxI))
10715       return true;
10716 
10717     return false;
10718   }
10719 
10720   // Unsigned comparison is the same as signed comparison when both the operands
10721   // are non-negative or negative.
10722   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
10723                                    CmpInst::Predicate P2) {
10724     assert(P1 != P2 && "Handled earlier!");
10725     return CmpInst::isRelational(P2) &&
10726            P1 == CmpInst::getFlippedSignednessPredicate(P2);
10727   };
10728   if (IsSignFlippedPredicate(Pred, FoundPred) &&
10729       ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
10730        (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))))
10731     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10732 
10733   // Check if we can make progress by sharpening ranges.
10734   if (FoundPred == ICmpInst::ICMP_NE &&
10735       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10736 
10737     const SCEVConstant *C = nullptr;
10738     const SCEV *V = nullptr;
10739 
10740     if (isa<SCEVConstant>(FoundLHS)) {
10741       C = cast<SCEVConstant>(FoundLHS);
10742       V = FoundRHS;
10743     } else {
10744       C = cast<SCEVConstant>(FoundRHS);
10745       V = FoundLHS;
10746     }
10747 
10748     // The guarding predicate tells us that C != V. If the known range
10749     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10750     // range we consider has to correspond to same signedness as the
10751     // predicate we're interested in folding.
10752 
10753     APInt Min = ICmpInst::isSigned(Pred) ?
10754         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10755 
10756     if (Min == C->getAPInt()) {
10757       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10758       // This is true even if (Min + 1) wraps around -- in case of
10759       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10760 
10761       APInt SharperMin = Min + 1;
10762 
10763       switch (Pred) {
10764         case ICmpInst::ICMP_SGE:
10765         case ICmpInst::ICMP_UGE:
10766           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10767           // RHS, we're done.
10768           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10769                                     CtxI))
10770             return true;
10771           LLVM_FALLTHROUGH;
10772 
10773         case ICmpInst::ICMP_SGT:
10774         case ICmpInst::ICMP_UGT:
10775           // We know from the range information that (V `Pred` Min ||
10776           // V == Min).  We know from the guarding condition that !(V
10777           // == Min).  This gives us
10778           //
10779           //       V `Pred` Min || V == Min && !(V == Min)
10780           //   =>  V `Pred` Min
10781           //
10782           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10783 
10784           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
10785             return true;
10786           break;
10787 
10788         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10789         case ICmpInst::ICMP_SLE:
10790         case ICmpInst::ICMP_ULE:
10791           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10792                                     LHS, V, getConstant(SharperMin), CtxI))
10793             return true;
10794           LLVM_FALLTHROUGH;
10795 
10796         case ICmpInst::ICMP_SLT:
10797         case ICmpInst::ICMP_ULT:
10798           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10799                                     LHS, V, getConstant(Min), CtxI))
10800             return true;
10801           break;
10802 
10803         default:
10804           // No change
10805           break;
10806       }
10807     }
10808   }
10809 
10810   // Check whether the actual condition is beyond sufficient.
10811   if (FoundPred == ICmpInst::ICMP_EQ)
10812     if (ICmpInst::isTrueWhenEqual(Pred))
10813       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10814         return true;
10815   if (Pred == ICmpInst::ICMP_NE)
10816     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10817       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10818         return true;
10819 
10820   // Otherwise assume the worst.
10821   return false;
10822 }
10823 
10824 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10825                                      const SCEV *&L, const SCEV *&R,
10826                                      SCEV::NoWrapFlags &Flags) {
10827   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10828   if (!AE || AE->getNumOperands() != 2)
10829     return false;
10830 
10831   L = AE->getOperand(0);
10832   R = AE->getOperand(1);
10833   Flags = AE->getNoWrapFlags();
10834   return true;
10835 }
10836 
10837 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10838                                                            const SCEV *Less) {
10839   // We avoid subtracting expressions here because this function is usually
10840   // fairly deep in the call stack (i.e. is called many times).
10841 
10842   // X - X = 0.
10843   if (More == Less)
10844     return APInt(getTypeSizeInBits(More->getType()), 0);
10845 
10846   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10847     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10848     const auto *MAR = cast<SCEVAddRecExpr>(More);
10849 
10850     if (LAR->getLoop() != MAR->getLoop())
10851       return None;
10852 
10853     // We look at affine expressions only; not for correctness but to keep
10854     // getStepRecurrence cheap.
10855     if (!LAR->isAffine() || !MAR->isAffine())
10856       return None;
10857 
10858     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10859       return None;
10860 
10861     Less = LAR->getStart();
10862     More = MAR->getStart();
10863 
10864     // fall through
10865   }
10866 
10867   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10868     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10869     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10870     return M - L;
10871   }
10872 
10873   SCEV::NoWrapFlags Flags;
10874   const SCEV *LLess = nullptr, *RLess = nullptr;
10875   const SCEV *LMore = nullptr, *RMore = nullptr;
10876   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10877   // Compare (X + C1) vs X.
10878   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10879     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10880       if (RLess == More)
10881         return -(C1->getAPInt());
10882 
10883   // Compare X vs (X + C2).
10884   if (splitBinaryAdd(More, LMore, RMore, Flags))
10885     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10886       if (RMore == Less)
10887         return C2->getAPInt();
10888 
10889   // Compare (X + C1) vs (X + C2).
10890   if (C1 && C2 && RLess == RMore)
10891     return C2->getAPInt() - C1->getAPInt();
10892 
10893   return None;
10894 }
10895 
10896 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10897     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10898     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
10899   // Try to recognize the following pattern:
10900   //
10901   //   FoundRHS = ...
10902   // ...
10903   // loop:
10904   //   FoundLHS = {Start,+,W}
10905   // context_bb: // Basic block from the same loop
10906   //   known(Pred, FoundLHS, FoundRHS)
10907   //
10908   // If some predicate is known in the context of a loop, it is also known on
10909   // each iteration of this loop, including the first iteration. Therefore, in
10910   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10911   // prove the original pred using this fact.
10912   if (!CtxI)
10913     return false;
10914   const BasicBlock *ContextBB = CtxI->getParent();
10915   // Make sure AR varies in the context block.
10916   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10917     const Loop *L = AR->getLoop();
10918     // Make sure that context belongs to the loop and executes on 1st iteration
10919     // (if it ever executes at all).
10920     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10921       return false;
10922     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10923       return false;
10924     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10925   }
10926 
10927   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10928     const Loop *L = AR->getLoop();
10929     // Make sure that context belongs to the loop and executes on 1st iteration
10930     // (if it ever executes at all).
10931     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10932       return false;
10933     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10934       return false;
10935     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10936   }
10937 
10938   return false;
10939 }
10940 
10941 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10942     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10943     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10944   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10945     return false;
10946 
10947   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10948   if (!AddRecLHS)
10949     return false;
10950 
10951   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10952   if (!AddRecFoundLHS)
10953     return false;
10954 
10955   // We'd like to let SCEV reason about control dependencies, so we constrain
10956   // both the inequalities to be about add recurrences on the same loop.  This
10957   // way we can use isLoopEntryGuardedByCond later.
10958 
10959   const Loop *L = AddRecFoundLHS->getLoop();
10960   if (L != AddRecLHS->getLoop())
10961     return false;
10962 
10963   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10964   //
10965   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10966   //                                                                  ... (2)
10967   //
10968   // Informal proof for (2), assuming (1) [*]:
10969   //
10970   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10971   //
10972   // Then
10973   //
10974   //       FoundLHS s< FoundRHS s< INT_MIN - C
10975   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10976   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10977   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10978   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10979   // <=>  FoundLHS + C s< FoundRHS + C
10980   //
10981   // [*]: (1) can be proved by ruling out overflow.
10982   //
10983   // [**]: This can be proved by analyzing all the four possibilities:
10984   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10985   //    (A s>= 0, B s>= 0).
10986   //
10987   // Note:
10988   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10989   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10990   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10991   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10992   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10993   // C)".
10994 
10995   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10996   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10997   if (!LDiff || !RDiff || *LDiff != *RDiff)
10998     return false;
10999 
11000   if (LDiff->isMinValue())
11001     return true;
11002 
11003   APInt FoundRHSLimit;
11004 
11005   if (Pred == CmpInst::ICMP_ULT) {
11006     FoundRHSLimit = -(*RDiff);
11007   } else {
11008     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
11009     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11010   }
11011 
11012   // Try to prove (1) or (2), as needed.
11013   return isAvailableAtLoopEntry(FoundRHS, L) &&
11014          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11015                                   getConstant(FoundRHSLimit));
11016 }
11017 
11018 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11019                                         const SCEV *LHS, const SCEV *RHS,
11020                                         const SCEV *FoundLHS,
11021                                         const SCEV *FoundRHS, unsigned Depth) {
11022   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11023 
11024   auto ClearOnExit = make_scope_exit([&]() {
11025     if (LPhi) {
11026       bool Erased = PendingMerges.erase(LPhi);
11027       assert(Erased && "Failed to erase LPhi!");
11028       (void)Erased;
11029     }
11030     if (RPhi) {
11031       bool Erased = PendingMerges.erase(RPhi);
11032       assert(Erased && "Failed to erase RPhi!");
11033       (void)Erased;
11034     }
11035   });
11036 
11037   // Find respective Phis and check that they are not being pending.
11038   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11039     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11040       if (!PendingMerges.insert(Phi).second)
11041         return false;
11042       LPhi = Phi;
11043     }
11044   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11045     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11046       // If we detect a loop of Phi nodes being processed by this method, for
11047       // example:
11048       //
11049       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11050       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11051       //
11052       // we don't want to deal with a case that complex, so return conservative
11053       // answer false.
11054       if (!PendingMerges.insert(Phi).second)
11055         return false;
11056       RPhi = Phi;
11057     }
11058 
11059   // If none of LHS, RHS is a Phi, nothing to do here.
11060   if (!LPhi && !RPhi)
11061     return false;
11062 
11063   // If there is a SCEVUnknown Phi we are interested in, make it left.
11064   if (!LPhi) {
11065     std::swap(LHS, RHS);
11066     std::swap(FoundLHS, FoundRHS);
11067     std::swap(LPhi, RPhi);
11068     Pred = ICmpInst::getSwappedPredicate(Pred);
11069   }
11070 
11071   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11072   const BasicBlock *LBB = LPhi->getParent();
11073   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11074 
11075   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11076     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11077            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11078            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11079   };
11080 
11081   if (RPhi && RPhi->getParent() == LBB) {
11082     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11083     // If we compare two Phis from the same block, and for each entry block
11084     // the predicate is true for incoming values from this block, then the
11085     // predicate is also true for the Phis.
11086     for (const BasicBlock *IncBB : predecessors(LBB)) {
11087       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11088       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11089       if (!ProvedEasily(L, R))
11090         return false;
11091     }
11092   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11093     // Case two: RHS is also a Phi from the same basic block, and it is an
11094     // AddRec. It means that there is a loop which has both AddRec and Unknown
11095     // PHIs, for it we can compare incoming values of AddRec from above the loop
11096     // and latch with their respective incoming values of LPhi.
11097     // TODO: Generalize to handle loops with many inputs in a header.
11098     if (LPhi->getNumIncomingValues() != 2) return false;
11099 
11100     auto *RLoop = RAR->getLoop();
11101     auto *Predecessor = RLoop->getLoopPredecessor();
11102     assert(Predecessor && "Loop with AddRec with no predecessor?");
11103     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11104     if (!ProvedEasily(L1, RAR->getStart()))
11105       return false;
11106     auto *Latch = RLoop->getLoopLatch();
11107     assert(Latch && "Loop with AddRec with no latch?");
11108     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11109     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11110       return false;
11111   } else {
11112     // In all other cases go over inputs of LHS and compare each of them to RHS,
11113     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11114     // At this point RHS is either a non-Phi, or it is a Phi from some block
11115     // different from LBB.
11116     for (const BasicBlock *IncBB : predecessors(LBB)) {
11117       // Check that RHS is available in this block.
11118       if (!dominates(RHS, IncBB))
11119         return false;
11120       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11121       // Make sure L does not refer to a value from a potentially previous
11122       // iteration of a loop.
11123       if (!properlyDominates(L, IncBB))
11124         return false;
11125       if (!ProvedEasily(L, RHS))
11126         return false;
11127     }
11128   }
11129   return true;
11130 }
11131 
11132 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11133                                             const SCEV *LHS, const SCEV *RHS,
11134                                             const SCEV *FoundLHS,
11135                                             const SCEV *FoundRHS,
11136                                             const Instruction *CtxI) {
11137   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11138     return true;
11139 
11140   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11141     return true;
11142 
11143   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11144                                           CtxI))
11145     return true;
11146 
11147   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11148                                      FoundLHS, FoundRHS);
11149 }
11150 
11151 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11152 template <typename MinMaxExprType>
11153 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11154                                  const SCEV *Candidate) {
11155   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11156   if (!MinMaxExpr)
11157     return false;
11158 
11159   return is_contained(MinMaxExpr->operands(), Candidate);
11160 }
11161 
11162 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11163                                            ICmpInst::Predicate Pred,
11164                                            const SCEV *LHS, const SCEV *RHS) {
11165   // If both sides are affine addrecs for the same loop, with equal
11166   // steps, and we know the recurrences don't wrap, then we only
11167   // need to check the predicate on the starting values.
11168 
11169   if (!ICmpInst::isRelational(Pred))
11170     return false;
11171 
11172   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11173   if (!LAR)
11174     return false;
11175   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11176   if (!RAR)
11177     return false;
11178   if (LAR->getLoop() != RAR->getLoop())
11179     return false;
11180   if (!LAR->isAffine() || !RAR->isAffine())
11181     return false;
11182 
11183   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11184     return false;
11185 
11186   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11187                          SCEV::FlagNSW : SCEV::FlagNUW;
11188   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11189     return false;
11190 
11191   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11192 }
11193 
11194 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11195 /// expression?
11196 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11197                                         ICmpInst::Predicate Pred,
11198                                         const SCEV *LHS, const SCEV *RHS) {
11199   switch (Pred) {
11200   default:
11201     return false;
11202 
11203   case ICmpInst::ICMP_SGE:
11204     std::swap(LHS, RHS);
11205     LLVM_FALLTHROUGH;
11206   case ICmpInst::ICMP_SLE:
11207     return
11208         // min(A, ...) <= A
11209         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11210         // A <= max(A, ...)
11211         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11212 
11213   case ICmpInst::ICMP_UGE:
11214     std::swap(LHS, RHS);
11215     LLVM_FALLTHROUGH;
11216   case ICmpInst::ICMP_ULE:
11217     return
11218         // min(A, ...) <= A
11219         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11220         // A <= max(A, ...)
11221         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11222   }
11223 
11224   llvm_unreachable("covered switch fell through?!");
11225 }
11226 
11227 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11228                                              const SCEV *LHS, const SCEV *RHS,
11229                                              const SCEV *FoundLHS,
11230                                              const SCEV *FoundRHS,
11231                                              unsigned Depth) {
11232   assert(getTypeSizeInBits(LHS->getType()) ==
11233              getTypeSizeInBits(RHS->getType()) &&
11234          "LHS and RHS have different sizes?");
11235   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11236              getTypeSizeInBits(FoundRHS->getType()) &&
11237          "FoundLHS and FoundRHS have different sizes?");
11238   // We want to avoid hurting the compile time with analysis of too big trees.
11239   if (Depth > MaxSCEVOperationsImplicationDepth)
11240     return false;
11241 
11242   // We only want to work with GT comparison so far.
11243   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11244     Pred = CmpInst::getSwappedPredicate(Pred);
11245     std::swap(LHS, RHS);
11246     std::swap(FoundLHS, FoundRHS);
11247   }
11248 
11249   // For unsigned, try to reduce it to corresponding signed comparison.
11250   if (Pred == ICmpInst::ICMP_UGT)
11251     // We can replace unsigned predicate with its signed counterpart if all
11252     // involved values are non-negative.
11253     // TODO: We could have better support for unsigned.
11254     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11255       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11256       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11257       // use this fact to prove that LHS and RHS are non-negative.
11258       const SCEV *MinusOne = getMinusOne(LHS->getType());
11259       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11260                                 FoundRHS) &&
11261           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11262                                 FoundRHS))
11263         Pred = ICmpInst::ICMP_SGT;
11264     }
11265 
11266   if (Pred != ICmpInst::ICMP_SGT)
11267     return false;
11268 
11269   auto GetOpFromSExt = [&](const SCEV *S) {
11270     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11271       return Ext->getOperand();
11272     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11273     // the constant in some cases.
11274     return S;
11275   };
11276 
11277   // Acquire values from extensions.
11278   auto *OrigLHS = LHS;
11279   auto *OrigFoundLHS = FoundLHS;
11280   LHS = GetOpFromSExt(LHS);
11281   FoundLHS = GetOpFromSExt(FoundLHS);
11282 
11283   // Is the SGT predicate can be proved trivially or using the found context.
11284   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11285     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11286            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11287                                   FoundRHS, Depth + 1);
11288   };
11289 
11290   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11291     // We want to avoid creation of any new non-constant SCEV. Since we are
11292     // going to compare the operands to RHS, we should be certain that we don't
11293     // need any size extensions for this. So let's decline all cases when the
11294     // sizes of types of LHS and RHS do not match.
11295     // TODO: Maybe try to get RHS from sext to catch more cases?
11296     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11297       return false;
11298 
11299     // Should not overflow.
11300     if (!LHSAddExpr->hasNoSignedWrap())
11301       return false;
11302 
11303     auto *LL = LHSAddExpr->getOperand(0);
11304     auto *LR = LHSAddExpr->getOperand(1);
11305     auto *MinusOne = getMinusOne(RHS->getType());
11306 
11307     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11308     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11309       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11310     };
11311     // Try to prove the following rule:
11312     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11313     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11314     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11315       return true;
11316   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11317     Value *LL, *LR;
11318     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11319 
11320     using namespace llvm::PatternMatch;
11321 
11322     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11323       // Rules for division.
11324       // We are going to perform some comparisons with Denominator and its
11325       // derivative expressions. In general case, creating a SCEV for it may
11326       // lead to a complex analysis of the entire graph, and in particular it
11327       // can request trip count recalculation for the same loop. This would
11328       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11329       // this, we only want to create SCEVs that are constants in this section.
11330       // So we bail if Denominator is not a constant.
11331       if (!isa<ConstantInt>(LR))
11332         return false;
11333 
11334       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11335 
11336       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11337       // then a SCEV for the numerator already exists and matches with FoundLHS.
11338       auto *Numerator = getExistingSCEV(LL);
11339       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11340         return false;
11341 
11342       // Make sure that the numerator matches with FoundLHS and the denominator
11343       // is positive.
11344       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11345         return false;
11346 
11347       auto *DTy = Denominator->getType();
11348       auto *FRHSTy = FoundRHS->getType();
11349       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11350         // One of types is a pointer and another one is not. We cannot extend
11351         // them properly to a wider type, so let us just reject this case.
11352         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11353         // to avoid this check.
11354         return false;
11355 
11356       // Given that:
11357       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11358       auto *WTy = getWiderType(DTy, FRHSTy);
11359       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11360       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11361 
11362       // Try to prove the following rule:
11363       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11364       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11365       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11366       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11367       if (isKnownNonPositive(RHS) &&
11368           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11369         return true;
11370 
11371       // Try to prove the following rule:
11372       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11373       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11374       // If we divide it by Denominator > 2, then:
11375       // 1. If FoundLHS is negative, then the result is 0.
11376       // 2. If FoundLHS is non-negative, then the result is non-negative.
11377       // Anyways, the result is non-negative.
11378       auto *MinusOne = getMinusOne(WTy);
11379       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11380       if (isKnownNegative(RHS) &&
11381           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11382         return true;
11383     }
11384   }
11385 
11386   // If our expression contained SCEVUnknown Phis, and we split it down and now
11387   // need to prove something for them, try to prove the predicate for every
11388   // possible incoming values of those Phis.
11389   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11390     return true;
11391 
11392   return false;
11393 }
11394 
11395 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11396                                         const SCEV *LHS, const SCEV *RHS) {
11397   // zext x u<= sext x, sext x s<= zext x
11398   switch (Pred) {
11399   case ICmpInst::ICMP_SGE:
11400     std::swap(LHS, RHS);
11401     LLVM_FALLTHROUGH;
11402   case ICmpInst::ICMP_SLE: {
11403     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11404     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11405     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11406     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11407       return true;
11408     break;
11409   }
11410   case ICmpInst::ICMP_UGE:
11411     std::swap(LHS, RHS);
11412     LLVM_FALLTHROUGH;
11413   case ICmpInst::ICMP_ULE: {
11414     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11415     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11416     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11417     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11418       return true;
11419     break;
11420   }
11421   default:
11422     break;
11423   };
11424   return false;
11425 }
11426 
11427 bool
11428 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11429                                            const SCEV *LHS, const SCEV *RHS) {
11430   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11431          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11432          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11433          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11434          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11435 }
11436 
11437 bool
11438 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11439                                              const SCEV *LHS, const SCEV *RHS,
11440                                              const SCEV *FoundLHS,
11441                                              const SCEV *FoundRHS) {
11442   switch (Pred) {
11443   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11444   case ICmpInst::ICMP_EQ:
11445   case ICmpInst::ICMP_NE:
11446     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11447       return true;
11448     break;
11449   case ICmpInst::ICMP_SLT:
11450   case ICmpInst::ICMP_SLE:
11451     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11452         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11453       return true;
11454     break;
11455   case ICmpInst::ICMP_SGT:
11456   case ICmpInst::ICMP_SGE:
11457     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11458         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11459       return true;
11460     break;
11461   case ICmpInst::ICMP_ULT:
11462   case ICmpInst::ICMP_ULE:
11463     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11464         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11465       return true;
11466     break;
11467   case ICmpInst::ICMP_UGT:
11468   case ICmpInst::ICMP_UGE:
11469     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11470         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11471       return true;
11472     break;
11473   }
11474 
11475   // Maybe it can be proved via operations?
11476   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11477     return true;
11478 
11479   return false;
11480 }
11481 
11482 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11483                                                      const SCEV *LHS,
11484                                                      const SCEV *RHS,
11485                                                      const SCEV *FoundLHS,
11486                                                      const SCEV *FoundRHS) {
11487   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11488     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11489     // reduce the compile time impact of this optimization.
11490     return false;
11491 
11492   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11493   if (!Addend)
11494     return false;
11495 
11496   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11497 
11498   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11499   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11500   ConstantRange FoundLHSRange =
11501       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11502 
11503   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11504   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11505 
11506   // We can also compute the range of values for `LHS` that satisfy the
11507   // consequent, "`LHS` `Pred` `RHS`":
11508   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11509   // The antecedent implies the consequent if every value of `LHS` that
11510   // satisfies the antecedent also satisfies the consequent.
11511   return LHSRange.icmp(Pred, ConstRHS);
11512 }
11513 
11514 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11515                                         bool IsSigned) {
11516   assert(isKnownPositive(Stride) && "Positive stride expected!");
11517 
11518   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11519   const SCEV *One = getOne(Stride->getType());
11520 
11521   if (IsSigned) {
11522     APInt MaxRHS = getSignedRangeMax(RHS);
11523     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11524     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11525 
11526     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11527     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11528   }
11529 
11530   APInt MaxRHS = getUnsignedRangeMax(RHS);
11531   APInt MaxValue = APInt::getMaxValue(BitWidth);
11532   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11533 
11534   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11535   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11536 }
11537 
11538 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11539                                         bool IsSigned) {
11540 
11541   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11542   const SCEV *One = getOne(Stride->getType());
11543 
11544   if (IsSigned) {
11545     APInt MinRHS = getSignedRangeMin(RHS);
11546     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11547     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11548 
11549     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11550     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11551   }
11552 
11553   APInt MinRHS = getUnsignedRangeMin(RHS);
11554   APInt MinValue = APInt::getMinValue(BitWidth);
11555   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11556 
11557   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11558   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11559 }
11560 
11561 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11562   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11563   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11564   // expression fixes the case of N=0.
11565   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11566   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11567   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11568 }
11569 
11570 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11571                                                     const SCEV *Stride,
11572                                                     const SCEV *End,
11573                                                     unsigned BitWidth,
11574                                                     bool IsSigned) {
11575   // The logic in this function assumes we can represent a positive stride.
11576   // If we can't, the backedge-taken count must be zero.
11577   if (IsSigned && BitWidth == 1)
11578     return getZero(Stride->getType());
11579 
11580   // This code has only been closely audited for negative strides in the
11581   // unsigned comparison case, it may be correct for signed comparison, but
11582   // that needs to be established.
11583   assert((!IsSigned || !isKnownNonPositive(Stride)) &&
11584          "Stride is expected strictly positive for signed case!");
11585 
11586   // Calculate the maximum backedge count based on the range of values
11587   // permitted by Start, End, and Stride.
11588   APInt MinStart =
11589       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11590 
11591   APInt MinStride =
11592       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11593 
11594   // We assume either the stride is positive, or the backedge-taken count
11595   // is zero. So force StrideForMaxBECount to be at least one.
11596   APInt One(BitWidth, 1);
11597   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11598                                        : APIntOps::umax(One, MinStride);
11599 
11600   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11601                             : APInt::getMaxValue(BitWidth);
11602   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11603 
11604   // Although End can be a MAX expression we estimate MaxEnd considering only
11605   // the case End = RHS of the loop termination condition. This is safe because
11606   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11607   // taken count.
11608   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11609                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11610 
11611   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11612   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11613                     : APIntOps::umax(MaxEnd, MinStart);
11614 
11615   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11616                          getConstant(StrideForMaxBECount) /* Step */);
11617 }
11618 
11619 ScalarEvolution::ExitLimit
11620 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11621                                   const Loop *L, bool IsSigned,
11622                                   bool ControlsExit, bool AllowPredicates) {
11623   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11624 
11625   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11626   bool PredicatedIV = false;
11627 
11628   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
11629     // Can we prove this loop *must* be UB if overflow of IV occurs?
11630     // Reasoning goes as follows:
11631     // * Suppose the IV did self wrap.
11632     // * If Stride evenly divides the iteration space, then once wrap
11633     //   occurs, the loop must revisit the same values.
11634     // * We know that RHS is invariant, and that none of those values
11635     //   caused this exit to be taken previously.  Thus, this exit is
11636     //   dynamically dead.
11637     // * If this is the sole exit, then a dead exit implies the loop
11638     //   must be infinite if there are no abnormal exits.
11639     // * If the loop were infinite, then it must either not be mustprogress
11640     //   or have side effects. Otherwise, it must be UB.
11641     // * It can't (by assumption), be UB so we have contradicted our
11642     //   premise and can conclude the IV did not in fact self-wrap.
11643     if (!isLoopInvariant(RHS, L))
11644       return false;
11645 
11646     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
11647     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11648       return false;
11649 
11650     if (!ControlsExit || !loopHasNoAbnormalExits(L))
11651       return false;
11652 
11653     return loopIsFiniteByAssumption(L);
11654   };
11655 
11656   if (!IV) {
11657     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
11658       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
11659       if (AR && AR->getLoop() == L && AR->isAffine()) {
11660         auto Flags = AR->getNoWrapFlags();
11661         if (!hasFlags(Flags, SCEV::FlagNW) && canAssumeNoSelfWrap(AR)) {
11662           Flags = setFlags(Flags, SCEV::FlagNW);
11663 
11664           SmallVector<const SCEV*> Operands{AR->operands()};
11665           Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
11666 
11667           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
11668         }
11669         if (AR->hasNoUnsignedWrap()) {
11670           // Emulate what getZeroExtendExpr would have done during construction
11671           // if we'd been able to infer the fact just above at that time.
11672           const SCEV *Step = AR->getStepRecurrence(*this);
11673           Type *Ty = ZExt->getType();
11674           auto *S = getAddRecExpr(
11675             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
11676             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
11677           IV = dyn_cast<SCEVAddRecExpr>(S);
11678         }
11679       }
11680     }
11681   }
11682 
11683 
11684   if (!IV && AllowPredicates) {
11685     // Try to make this an AddRec using runtime tests, in the first X
11686     // iterations of this loop, where X is the SCEV expression found by the
11687     // algorithm below.
11688     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11689     PredicatedIV = true;
11690   }
11691 
11692   // Avoid weird loops
11693   if (!IV || IV->getLoop() != L || !IV->isAffine())
11694     return getCouldNotCompute();
11695 
11696   // A precondition of this method is that the condition being analyzed
11697   // reaches an exiting branch which dominates the latch.  Given that, we can
11698   // assume that an increment which violates the nowrap specification and
11699   // produces poison must cause undefined behavior when the resulting poison
11700   // value is branched upon and thus we can conclude that the backedge is
11701   // taken no more often than would be required to produce that poison value.
11702   // Note that a well defined loop can exit on the iteration which violates
11703   // the nowrap specification if there is another exit (either explicit or
11704   // implicit/exceptional) which causes the loop to execute before the
11705   // exiting instruction we're analyzing would trigger UB.
11706   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11707   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11708   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11709 
11710   const SCEV *Stride = IV->getStepRecurrence(*this);
11711 
11712   bool PositiveStride = isKnownPositive(Stride);
11713 
11714   // Avoid negative or zero stride values.
11715   if (!PositiveStride) {
11716     // We can compute the correct backedge taken count for loops with unknown
11717     // strides if we can prove that the loop is not an infinite loop with side
11718     // effects. Here's the loop structure we are trying to handle -
11719     //
11720     // i = start
11721     // do {
11722     //   A[i] = i;
11723     //   i += s;
11724     // } while (i < end);
11725     //
11726     // The backedge taken count for such loops is evaluated as -
11727     // (max(end, start + stride) - start - 1) /u stride
11728     //
11729     // The additional preconditions that we need to check to prove correctness
11730     // of the above formula is as follows -
11731     //
11732     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11733     //    NoWrap flag).
11734     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
11735     //    no side effects within the loop)
11736     // c) loop has a single static exit (with no abnormal exits)
11737     //
11738     // Precondition a) implies that if the stride is negative, this is a single
11739     // trip loop. The backedge taken count formula reduces to zero in this case.
11740     //
11741     // Precondition b) and c) combine to imply that if rhs is invariant in L,
11742     // then a zero stride means the backedge can't be taken without executing
11743     // undefined behavior.
11744     //
11745     // The positive stride case is the same as isKnownPositive(Stride) returning
11746     // true (original behavior of the function).
11747     //
11748     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
11749         !loopHasNoAbnormalExits(L))
11750       return getCouldNotCompute();
11751 
11752     // This bailout is protecting the logic in computeMaxBECountForLT which
11753     // has not yet been sufficiently auditted or tested with negative strides.
11754     // We used to filter out all known-non-positive cases here, we're in the
11755     // process of being less restrictive bit by bit.
11756     if (IsSigned && isKnownNonPositive(Stride))
11757       return getCouldNotCompute();
11758 
11759     if (!isKnownNonZero(Stride)) {
11760       // If we have a step of zero, and RHS isn't invariant in L, we don't know
11761       // if it might eventually be greater than start and if so, on which
11762       // iteration.  We can't even produce a useful upper bound.
11763       if (!isLoopInvariant(RHS, L))
11764         return getCouldNotCompute();
11765 
11766       // We allow a potentially zero stride, but we need to divide by stride
11767       // below.  Since the loop can't be infinite and this check must control
11768       // the sole exit, we can infer the exit must be taken on the first
11769       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
11770       // we know the numerator in the divides below must be zero, so we can
11771       // pick an arbitrary non-zero value for the denominator (e.g. stride)
11772       // and produce the right result.
11773       // FIXME: Handle the case where Stride is poison?
11774       auto wouldZeroStrideBeUB = [&]() {
11775         // Proof by contradiction.  Suppose the stride were zero.  If we can
11776         // prove that the backedge *is* taken on the first iteration, then since
11777         // we know this condition controls the sole exit, we must have an
11778         // infinite loop.  We can't have a (well defined) infinite loop per
11779         // check just above.
11780         // Note: The (Start - Stride) term is used to get the start' term from
11781         // (start' + stride,+,stride). Remember that we only care about the
11782         // result of this expression when stride == 0 at runtime.
11783         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
11784         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
11785       };
11786       if (!wouldZeroStrideBeUB()) {
11787         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
11788       }
11789     }
11790   } else if (!Stride->isOne() && !NoWrap) {
11791     auto isUBOnWrap = [&]() {
11792       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11793       // follows trivially from the fact that every (un)signed-wrapped, but
11794       // not self-wrapped value must be LT than the last value before
11795       // (un)signed wrap.  Since we know that last value didn't exit, nor
11796       // will any smaller one.
11797       return canAssumeNoSelfWrap(IV);
11798     };
11799 
11800     // Avoid proven overflow cases: this will ensure that the backedge taken
11801     // count will not generate any unsigned overflow. Relaxed no-overflow
11802     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11803     // undefined behaviors like the case of C language.
11804     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11805       return getCouldNotCompute();
11806   }
11807 
11808   // On all paths just preceeding, we established the following invariant:
11809   //   IV can be assumed not to overflow up to and including the exiting
11810   //   iteration.  We proved this in one of two ways:
11811   //   1) We can show overflow doesn't occur before the exiting iteration
11812   //      1a) canIVOverflowOnLT, and b) step of one
11813   //   2) We can show that if overflow occurs, the loop must execute UB
11814   //      before any possible exit.
11815   // Note that we have not yet proved RHS invariant (in general).
11816 
11817   const SCEV *Start = IV->getStart();
11818 
11819   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11820   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
11821   // Use integer-typed versions for actual computation; we can't subtract
11822   // pointers in general.
11823   const SCEV *OrigStart = Start;
11824   const SCEV *OrigRHS = RHS;
11825   if (Start->getType()->isPointerTy()) {
11826     Start = getLosslessPtrToIntExpr(Start);
11827     if (isa<SCEVCouldNotCompute>(Start))
11828       return Start;
11829   }
11830   if (RHS->getType()->isPointerTy()) {
11831     RHS = getLosslessPtrToIntExpr(RHS);
11832     if (isa<SCEVCouldNotCompute>(RHS))
11833       return RHS;
11834   }
11835 
11836   // When the RHS is not invariant, we do not know the end bound of the loop and
11837   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11838   // calculate the MaxBECount, given the start, stride and max value for the end
11839   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11840   // checked above).
11841   if (!isLoopInvariant(RHS, L)) {
11842     const SCEV *MaxBECount = computeMaxBECountForLT(
11843         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11844     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11845                      false /*MaxOrZero*/, Predicates);
11846   }
11847 
11848   // We use the expression (max(End,Start)-Start)/Stride to describe the
11849   // backedge count, as if the backedge is taken at least once max(End,Start)
11850   // is End and so the result is as above, and if not max(End,Start) is Start
11851   // so we get a backedge count of zero.
11852   const SCEV *BECount = nullptr;
11853   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
11854   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
11855   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
11856   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
11857   // Can we prove (max(RHS,Start) > Start - Stride?
11858   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
11859       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
11860     // In this case, we can use a refined formula for computing backedge taken
11861     // count.  The general formula remains:
11862     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
11863     // We want to use the alternate formula:
11864     //   "((End - 1) - (Start - Stride)) /u Stride"
11865     // Let's do a quick case analysis to show these are equivalent under
11866     // our precondition that max(RHS,Start) > Start - Stride.
11867     // * For RHS <= Start, the backedge-taken count must be zero.
11868     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11869     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
11870     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
11871     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
11872     //     this to the stride of 1 case.
11873     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
11874     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11875     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
11876     //   "((RHS - (Start - Stride) - 1) /u Stride".
11877     //   Our preconditions trivially imply no overflow in that form.
11878     const SCEV *MinusOne = getMinusOne(Stride->getType());
11879     const SCEV *Numerator =
11880         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
11881     BECount = getUDivExpr(Numerator, Stride);
11882   }
11883 
11884   const SCEV *BECountIfBackedgeTaken = nullptr;
11885   if (!BECount) {
11886     auto canProveRHSGreaterThanEqualStart = [&]() {
11887       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11888       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
11889         return true;
11890 
11891       // (RHS > Start - 1) implies RHS >= Start.
11892       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
11893       //   "Start - 1" doesn't overflow.
11894       // * For signed comparison, if Start - 1 does overflow, it's equal
11895       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
11896       // * For unsigned comparison, if Start - 1 does overflow, it's equal
11897       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
11898       //
11899       // FIXME: Should isLoopEntryGuardedByCond do this for us?
11900       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11901       auto *StartMinusOne = getAddExpr(OrigStart,
11902                                        getMinusOne(OrigStart->getType()));
11903       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
11904     };
11905 
11906     // If we know that RHS >= Start in the context of loop, then we know that
11907     // max(RHS, Start) = RHS at this point.
11908     const SCEV *End;
11909     if (canProveRHSGreaterThanEqualStart()) {
11910       End = RHS;
11911     } else {
11912       // If RHS < Start, the backedge will be taken zero times.  So in
11913       // general, we can write the backedge-taken count as:
11914       //
11915       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
11916       //
11917       // We convert it to the following to make it more convenient for SCEV:
11918       //
11919       //     ceil(max(RHS, Start) - Start) / Stride
11920       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11921 
11922       // See what would happen if we assume the backedge is taken. This is
11923       // used to compute MaxBECount.
11924       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
11925     }
11926 
11927     // At this point, we know:
11928     //
11929     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
11930     // 2. The index variable doesn't overflow.
11931     //
11932     // Therefore, we know N exists such that
11933     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
11934     // doesn't overflow.
11935     //
11936     // Using this information, try to prove whether the addition in
11937     // "(Start - End) + (Stride - 1)" has unsigned overflow.
11938     const SCEV *One = getOne(Stride->getType());
11939     bool MayAddOverflow = [&] {
11940       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
11941         if (StrideC->getAPInt().isPowerOf2()) {
11942           // Suppose Stride is a power of two, and Start/End are unsigned
11943           // integers.  Let UMAX be the largest representable unsigned
11944           // integer.
11945           //
11946           // By the preconditions of this function, we know
11947           // "(Start + Stride * N) >= End", and this doesn't overflow.
11948           // As a formula:
11949           //
11950           //   End <= (Start + Stride * N) <= UMAX
11951           //
11952           // Subtracting Start from all the terms:
11953           //
11954           //   End - Start <= Stride * N <= UMAX - Start
11955           //
11956           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
11957           //
11958           //   End - Start <= Stride * N <= UMAX
11959           //
11960           // Stride * N is a multiple of Stride. Therefore,
11961           //
11962           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
11963           //
11964           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
11965           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
11966           //
11967           //   End - Start <= Stride * N <= UMAX - Stride - 1
11968           //
11969           // Dropping the middle term:
11970           //
11971           //   End - Start <= UMAX - Stride - 1
11972           //
11973           // Adding Stride - 1 to both sides:
11974           //
11975           //   (End - Start) + (Stride - 1) <= UMAX
11976           //
11977           // In other words, the addition doesn't have unsigned overflow.
11978           //
11979           // A similar proof works if we treat Start/End as signed values.
11980           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
11981           // use signed max instead of unsigned max. Note that we're trying
11982           // to prove a lack of unsigned overflow in either case.
11983           return false;
11984         }
11985       }
11986       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
11987         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
11988         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
11989         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
11990         //
11991         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
11992         return false;
11993       }
11994       return true;
11995     }();
11996 
11997     const SCEV *Delta = getMinusSCEV(End, Start);
11998     if (!MayAddOverflow) {
11999       // floor((D + (S - 1)) / S)
12000       // We prefer this formulation if it's legal because it's fewer operations.
12001       BECount =
12002           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
12003     } else {
12004       BECount = getUDivCeilSCEV(Delta, Stride);
12005     }
12006   }
12007 
12008   const SCEV *MaxBECount;
12009   bool MaxOrZero = false;
12010   if (isa<SCEVConstant>(BECount)) {
12011     MaxBECount = BECount;
12012   } else if (BECountIfBackedgeTaken &&
12013              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
12014     // If we know exactly how many times the backedge will be taken if it's
12015     // taken at least once, then the backedge count will either be that or
12016     // zero.
12017     MaxBECount = BECountIfBackedgeTaken;
12018     MaxOrZero = true;
12019   } else {
12020     MaxBECount = computeMaxBECountForLT(
12021         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12022   }
12023 
12024   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12025       !isa<SCEVCouldNotCompute>(BECount))
12026     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12027 
12028   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12029 }
12030 
12031 ScalarEvolution::ExitLimit
12032 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12033                                      const Loop *L, bool IsSigned,
12034                                      bool ControlsExit, bool AllowPredicates) {
12035   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12036   // We handle only IV > Invariant
12037   if (!isLoopInvariant(RHS, L))
12038     return getCouldNotCompute();
12039 
12040   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12041   if (!IV && AllowPredicates)
12042     // Try to make this an AddRec using runtime tests, in the first X
12043     // iterations of this loop, where X is the SCEV expression found by the
12044     // algorithm below.
12045     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12046 
12047   // Avoid weird loops
12048   if (!IV || IV->getLoop() != L || !IV->isAffine())
12049     return getCouldNotCompute();
12050 
12051   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12052   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12053   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12054 
12055   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12056 
12057   // Avoid negative or zero stride values
12058   if (!isKnownPositive(Stride))
12059     return getCouldNotCompute();
12060 
12061   // Avoid proven overflow cases: this will ensure that the backedge taken count
12062   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12063   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12064   // behaviors like the case of C language.
12065   if (!Stride->isOne() && !NoWrap)
12066     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12067       return getCouldNotCompute();
12068 
12069   const SCEV *Start = IV->getStart();
12070   const SCEV *End = RHS;
12071   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12072     // If we know that Start >= RHS in the context of loop, then we know that
12073     // min(RHS, Start) = RHS at this point.
12074     if (isLoopEntryGuardedByCond(
12075             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12076       End = RHS;
12077     else
12078       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12079   }
12080 
12081   if (Start->getType()->isPointerTy()) {
12082     Start = getLosslessPtrToIntExpr(Start);
12083     if (isa<SCEVCouldNotCompute>(Start))
12084       return Start;
12085   }
12086   if (End->getType()->isPointerTy()) {
12087     End = getLosslessPtrToIntExpr(End);
12088     if (isa<SCEVCouldNotCompute>(End))
12089       return End;
12090   }
12091 
12092   // Compute ((Start - End) + (Stride - 1)) / Stride.
12093   // FIXME: This can overflow. Holding off on fixing this for now;
12094   // howManyGreaterThans will hopefully be gone soon.
12095   const SCEV *One = getOne(Stride->getType());
12096   const SCEV *BECount = getUDivExpr(
12097       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12098 
12099   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12100                             : getUnsignedRangeMax(Start);
12101 
12102   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12103                              : getUnsignedRangeMin(Stride);
12104 
12105   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12106   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12107                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12108 
12109   // Although End can be a MIN expression we estimate MinEnd considering only
12110   // the case End = RHS. This is safe because in the other case (Start - End)
12111   // is zero, leading to a zero maximum backedge taken count.
12112   APInt MinEnd =
12113     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12114              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12115 
12116   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12117                                ? BECount
12118                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12119                                                  getConstant(MinStride));
12120 
12121   if (isa<SCEVCouldNotCompute>(MaxBECount))
12122     MaxBECount = BECount;
12123 
12124   return ExitLimit(BECount, MaxBECount, false, Predicates);
12125 }
12126 
12127 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12128                                                     ScalarEvolution &SE) const {
12129   if (Range.isFullSet())  // Infinite loop.
12130     return SE.getCouldNotCompute();
12131 
12132   // If the start is a non-zero constant, shift the range to simplify things.
12133   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12134     if (!SC->getValue()->isZero()) {
12135       SmallVector<const SCEV *, 4> Operands(operands());
12136       Operands[0] = SE.getZero(SC->getType());
12137       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12138                                              getNoWrapFlags(FlagNW));
12139       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12140         return ShiftedAddRec->getNumIterationsInRange(
12141             Range.subtract(SC->getAPInt()), SE);
12142       // This is strange and shouldn't happen.
12143       return SE.getCouldNotCompute();
12144     }
12145 
12146   // The only time we can solve this is when we have all constant indices.
12147   // Otherwise, we cannot determine the overflow conditions.
12148   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12149     return SE.getCouldNotCompute();
12150 
12151   // Okay at this point we know that all elements of the chrec are constants and
12152   // that the start element is zero.
12153 
12154   // First check to see if the range contains zero.  If not, the first
12155   // iteration exits.
12156   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12157   if (!Range.contains(APInt(BitWidth, 0)))
12158     return SE.getZero(getType());
12159 
12160   if (isAffine()) {
12161     // If this is an affine expression then we have this situation:
12162     //   Solve {0,+,A} in Range  ===  Ax in Range
12163 
12164     // We know that zero is in the range.  If A is positive then we know that
12165     // the upper value of the range must be the first possible exit value.
12166     // If A is negative then the lower of the range is the last possible loop
12167     // value.  Also note that we already checked for a full range.
12168     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12169     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12170 
12171     // The exit value should be (End+A)/A.
12172     APInt ExitVal = (End + A).udiv(A);
12173     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12174 
12175     // Evaluate at the exit value.  If we really did fall out of the valid
12176     // range, then we computed our trip count, otherwise wrap around or other
12177     // things must have happened.
12178     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12179     if (Range.contains(Val->getValue()))
12180       return SE.getCouldNotCompute();  // Something strange happened
12181 
12182     // Ensure that the previous value is in the range.  This is a sanity check.
12183     assert(Range.contains(
12184            EvaluateConstantChrecAtConstant(this,
12185            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12186            "Linear scev computation is off in a bad way!");
12187     return SE.getConstant(ExitValue);
12188   }
12189 
12190   if (isQuadratic()) {
12191     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12192       return SE.getConstant(S.getValue());
12193   }
12194 
12195   return SE.getCouldNotCompute();
12196 }
12197 
12198 const SCEVAddRecExpr *
12199 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12200   assert(getNumOperands() > 1 && "AddRec with zero step?");
12201   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12202   // but in this case we cannot guarantee that the value returned will be an
12203   // AddRec because SCEV does not have a fixed point where it stops
12204   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12205   // may happen if we reach arithmetic depth limit while simplifying. So we
12206   // construct the returned value explicitly.
12207   SmallVector<const SCEV *, 3> Ops;
12208   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12209   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12210   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12211     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12212   // We know that the last operand is not a constant zero (otherwise it would
12213   // have been popped out earlier). This guarantees us that if the result has
12214   // the same last operand, then it will also not be popped out, meaning that
12215   // the returned value will be an AddRec.
12216   const SCEV *Last = getOperand(getNumOperands() - 1);
12217   assert(!Last->isZero() && "Recurrency with zero step?");
12218   Ops.push_back(Last);
12219   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12220                                                SCEV::FlagAnyWrap));
12221 }
12222 
12223 // Return true when S contains at least an undef value.
12224 static inline bool containsUndefs(const SCEV *S) {
12225   return SCEVExprContains(S, [](const SCEV *S) {
12226     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12227       return isa<UndefValue>(SU->getValue());
12228     return false;
12229   });
12230 }
12231 
12232 /// Return the size of an element read or written by Inst.
12233 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12234   Type *Ty;
12235   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12236     Ty = Store->getValueOperand()->getType();
12237   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12238     Ty = Load->getType();
12239   else
12240     return nullptr;
12241 
12242   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12243   return getSizeOfExpr(ETy, Ty);
12244 }
12245 
12246 //===----------------------------------------------------------------------===//
12247 //                   SCEVCallbackVH Class Implementation
12248 //===----------------------------------------------------------------------===//
12249 
12250 void ScalarEvolution::SCEVCallbackVH::deleted() {
12251   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12252   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12253     SE->ConstantEvolutionLoopExitValue.erase(PN);
12254   SE->eraseValueFromMap(getValPtr());
12255   // this now dangles!
12256 }
12257 
12258 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12259   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12260 
12261   // Forget all the expressions associated with users of the old value,
12262   // so that future queries will recompute the expressions using the new
12263   // value.
12264   Value *Old = getValPtr();
12265   SmallVector<User *, 16> Worklist(Old->users());
12266   SmallPtrSet<User *, 8> Visited;
12267   while (!Worklist.empty()) {
12268     User *U = Worklist.pop_back_val();
12269     // Deleting the Old value will cause this to dangle. Postpone
12270     // that until everything else is done.
12271     if (U == Old)
12272       continue;
12273     if (!Visited.insert(U).second)
12274       continue;
12275     if (PHINode *PN = dyn_cast<PHINode>(U))
12276       SE->ConstantEvolutionLoopExitValue.erase(PN);
12277     SE->eraseValueFromMap(U);
12278     llvm::append_range(Worklist, U->users());
12279   }
12280   // Delete the Old value.
12281   if (PHINode *PN = dyn_cast<PHINode>(Old))
12282     SE->ConstantEvolutionLoopExitValue.erase(PN);
12283   SE->eraseValueFromMap(Old);
12284   // this now dangles!
12285 }
12286 
12287 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12288   : CallbackVH(V), SE(se) {}
12289 
12290 //===----------------------------------------------------------------------===//
12291 //                   ScalarEvolution Class Implementation
12292 //===----------------------------------------------------------------------===//
12293 
12294 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12295                                  AssumptionCache &AC, DominatorTree &DT,
12296                                  LoopInfo &LI)
12297     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12298       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12299       LoopDispositions(64), BlockDispositions(64) {
12300   // To use guards for proving predicates, we need to scan every instruction in
12301   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12302   // time if the IR does not actually contain any calls to
12303   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12304   //
12305   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12306   // to _add_ guards to the module when there weren't any before, and wants
12307   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12308   // efficient in lieu of being smart in that rather obscure case.
12309 
12310   auto *GuardDecl = F.getParent()->getFunction(
12311       Intrinsic::getName(Intrinsic::experimental_guard));
12312   HasGuards = GuardDecl && !GuardDecl->use_empty();
12313 }
12314 
12315 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12316     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12317       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12318       ValueExprMap(std::move(Arg.ValueExprMap)),
12319       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12320       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12321       PendingMerges(std::move(Arg.PendingMerges)),
12322       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12323       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12324       PredicatedBackedgeTakenCounts(
12325           std::move(Arg.PredicatedBackedgeTakenCounts)),
12326       ConstantEvolutionLoopExitValue(
12327           std::move(Arg.ConstantEvolutionLoopExitValue)),
12328       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12329       LoopDispositions(std::move(Arg.LoopDispositions)),
12330       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12331       BlockDispositions(std::move(Arg.BlockDispositions)),
12332       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12333       SignedRanges(std::move(Arg.SignedRanges)),
12334       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12335       UniquePreds(std::move(Arg.UniquePreds)),
12336       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12337       LoopUsers(std::move(Arg.LoopUsers)),
12338       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12339       FirstUnknown(Arg.FirstUnknown) {
12340   Arg.FirstUnknown = nullptr;
12341 }
12342 
12343 ScalarEvolution::~ScalarEvolution() {
12344   // Iterate through all the SCEVUnknown instances and call their
12345   // destructors, so that they release their references to their values.
12346   for (SCEVUnknown *U = FirstUnknown; U;) {
12347     SCEVUnknown *Tmp = U;
12348     U = U->Next;
12349     Tmp->~SCEVUnknown();
12350   }
12351   FirstUnknown = nullptr;
12352 
12353   ExprValueMap.clear();
12354   ValueExprMap.clear();
12355   HasRecMap.clear();
12356   BackedgeTakenCounts.clear();
12357   PredicatedBackedgeTakenCounts.clear();
12358 
12359   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12360   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12361   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12362   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12363   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12364 }
12365 
12366 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12367   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12368 }
12369 
12370 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12371                           const Loop *L) {
12372   // Print all inner loops first
12373   for (Loop *I : *L)
12374     PrintLoopInfo(OS, SE, I);
12375 
12376   OS << "Loop ";
12377   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12378   OS << ": ";
12379 
12380   SmallVector<BasicBlock *, 8> ExitingBlocks;
12381   L->getExitingBlocks(ExitingBlocks);
12382   if (ExitingBlocks.size() != 1)
12383     OS << "<multiple exits> ";
12384 
12385   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12386     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12387   else
12388     OS << "Unpredictable backedge-taken count.\n";
12389 
12390   if (ExitingBlocks.size() > 1)
12391     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12392       OS << "  exit count for " << ExitingBlock->getName() << ": "
12393          << *SE->getExitCount(L, ExitingBlock) << "\n";
12394     }
12395 
12396   OS << "Loop ";
12397   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12398   OS << ": ";
12399 
12400   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12401     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12402     if (SE->isBackedgeTakenCountMaxOrZero(L))
12403       OS << ", actual taken count either this or zero.";
12404   } else {
12405     OS << "Unpredictable max backedge-taken count. ";
12406   }
12407 
12408   OS << "\n"
12409         "Loop ";
12410   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12411   OS << ": ";
12412 
12413   SCEVUnionPredicate Pred;
12414   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12415   if (!isa<SCEVCouldNotCompute>(PBT)) {
12416     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12417     OS << " Predicates:\n";
12418     Pred.print(OS, 4);
12419   } else {
12420     OS << "Unpredictable predicated backedge-taken count. ";
12421   }
12422   OS << "\n";
12423 
12424   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12425     OS << "Loop ";
12426     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12427     OS << ": ";
12428     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12429   }
12430 }
12431 
12432 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12433   switch (LD) {
12434   case ScalarEvolution::LoopVariant:
12435     return "Variant";
12436   case ScalarEvolution::LoopInvariant:
12437     return "Invariant";
12438   case ScalarEvolution::LoopComputable:
12439     return "Computable";
12440   }
12441   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12442 }
12443 
12444 void ScalarEvolution::print(raw_ostream &OS) const {
12445   // ScalarEvolution's implementation of the print method is to print
12446   // out SCEV values of all instructions that are interesting. Doing
12447   // this potentially causes it to create new SCEV objects though,
12448   // which technically conflicts with the const qualifier. This isn't
12449   // observable from outside the class though, so casting away the
12450   // const isn't dangerous.
12451   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12452 
12453   if (ClassifyExpressions) {
12454     OS << "Classifying expressions for: ";
12455     F.printAsOperand(OS, /*PrintType=*/false);
12456     OS << "\n";
12457     for (Instruction &I : instructions(F))
12458       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12459         OS << I << '\n';
12460         OS << "  -->  ";
12461         const SCEV *SV = SE.getSCEV(&I);
12462         SV->print(OS);
12463         if (!isa<SCEVCouldNotCompute>(SV)) {
12464           OS << " U: ";
12465           SE.getUnsignedRange(SV).print(OS);
12466           OS << " S: ";
12467           SE.getSignedRange(SV).print(OS);
12468         }
12469 
12470         const Loop *L = LI.getLoopFor(I.getParent());
12471 
12472         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12473         if (AtUse != SV) {
12474           OS << "  -->  ";
12475           AtUse->print(OS);
12476           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12477             OS << " U: ";
12478             SE.getUnsignedRange(AtUse).print(OS);
12479             OS << " S: ";
12480             SE.getSignedRange(AtUse).print(OS);
12481           }
12482         }
12483 
12484         if (L) {
12485           OS << "\t\t" "Exits: ";
12486           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12487           if (!SE.isLoopInvariant(ExitValue, L)) {
12488             OS << "<<Unknown>>";
12489           } else {
12490             OS << *ExitValue;
12491           }
12492 
12493           bool First = true;
12494           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12495             if (First) {
12496               OS << "\t\t" "LoopDispositions: { ";
12497               First = false;
12498             } else {
12499               OS << ", ";
12500             }
12501 
12502             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12503             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12504           }
12505 
12506           for (auto *InnerL : depth_first(L)) {
12507             if (InnerL == L)
12508               continue;
12509             if (First) {
12510               OS << "\t\t" "LoopDispositions: { ";
12511               First = false;
12512             } else {
12513               OS << ", ";
12514             }
12515 
12516             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12517             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12518           }
12519 
12520           OS << " }";
12521         }
12522 
12523         OS << "\n";
12524       }
12525   }
12526 
12527   OS << "Determining loop execution counts for: ";
12528   F.printAsOperand(OS, /*PrintType=*/false);
12529   OS << "\n";
12530   for (Loop *I : LI)
12531     PrintLoopInfo(OS, &SE, I);
12532 }
12533 
12534 ScalarEvolution::LoopDisposition
12535 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12536   auto &Values = LoopDispositions[S];
12537   for (auto &V : Values) {
12538     if (V.getPointer() == L)
12539       return V.getInt();
12540   }
12541   Values.emplace_back(L, LoopVariant);
12542   LoopDisposition D = computeLoopDisposition(S, L);
12543   auto &Values2 = LoopDispositions[S];
12544   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12545     if (V.getPointer() == L) {
12546       V.setInt(D);
12547       break;
12548     }
12549   }
12550   return D;
12551 }
12552 
12553 ScalarEvolution::LoopDisposition
12554 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12555   switch (S->getSCEVType()) {
12556   case scConstant:
12557     return LoopInvariant;
12558   case scPtrToInt:
12559   case scTruncate:
12560   case scZeroExtend:
12561   case scSignExtend:
12562     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12563   case scAddRecExpr: {
12564     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12565 
12566     // If L is the addrec's loop, it's computable.
12567     if (AR->getLoop() == L)
12568       return LoopComputable;
12569 
12570     // Add recurrences are never invariant in the function-body (null loop).
12571     if (!L)
12572       return LoopVariant;
12573 
12574     // Everything that is not defined at loop entry is variant.
12575     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12576       return LoopVariant;
12577     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12578            " dominate the contained loop's header?");
12579 
12580     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12581     if (AR->getLoop()->contains(L))
12582       return LoopInvariant;
12583 
12584     // This recurrence is variant w.r.t. L if any of its operands
12585     // are variant.
12586     for (auto *Op : AR->operands())
12587       if (!isLoopInvariant(Op, L))
12588         return LoopVariant;
12589 
12590     // Otherwise it's loop-invariant.
12591     return LoopInvariant;
12592   }
12593   case scAddExpr:
12594   case scMulExpr:
12595   case scUMaxExpr:
12596   case scSMaxExpr:
12597   case scUMinExpr:
12598   case scSMinExpr: {
12599     bool HasVarying = false;
12600     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12601       LoopDisposition D = getLoopDisposition(Op, L);
12602       if (D == LoopVariant)
12603         return LoopVariant;
12604       if (D == LoopComputable)
12605         HasVarying = true;
12606     }
12607     return HasVarying ? LoopComputable : LoopInvariant;
12608   }
12609   case scUDivExpr: {
12610     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12611     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12612     if (LD == LoopVariant)
12613       return LoopVariant;
12614     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12615     if (RD == LoopVariant)
12616       return LoopVariant;
12617     return (LD == LoopInvariant && RD == LoopInvariant) ?
12618            LoopInvariant : LoopComputable;
12619   }
12620   case scUnknown:
12621     // All non-instruction values are loop invariant.  All instructions are loop
12622     // invariant if they are not contained in the specified loop.
12623     // Instructions are never considered invariant in the function body
12624     // (null loop) because they are defined within the "loop".
12625     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12626       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12627     return LoopInvariant;
12628   case scCouldNotCompute:
12629     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12630   }
12631   llvm_unreachable("Unknown SCEV kind!");
12632 }
12633 
12634 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12635   return getLoopDisposition(S, L) == LoopInvariant;
12636 }
12637 
12638 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12639   return getLoopDisposition(S, L) == LoopComputable;
12640 }
12641 
12642 ScalarEvolution::BlockDisposition
12643 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12644   auto &Values = BlockDispositions[S];
12645   for (auto &V : Values) {
12646     if (V.getPointer() == BB)
12647       return V.getInt();
12648   }
12649   Values.emplace_back(BB, DoesNotDominateBlock);
12650   BlockDisposition D = computeBlockDisposition(S, BB);
12651   auto &Values2 = BlockDispositions[S];
12652   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12653     if (V.getPointer() == BB) {
12654       V.setInt(D);
12655       break;
12656     }
12657   }
12658   return D;
12659 }
12660 
12661 ScalarEvolution::BlockDisposition
12662 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12663   switch (S->getSCEVType()) {
12664   case scConstant:
12665     return ProperlyDominatesBlock;
12666   case scPtrToInt:
12667   case scTruncate:
12668   case scZeroExtend:
12669   case scSignExtend:
12670     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12671   case scAddRecExpr: {
12672     // This uses a "dominates" query instead of "properly dominates" query
12673     // to test for proper dominance too, because the instruction which
12674     // produces the addrec's value is a PHI, and a PHI effectively properly
12675     // dominates its entire containing block.
12676     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12677     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12678       return DoesNotDominateBlock;
12679 
12680     // Fall through into SCEVNAryExpr handling.
12681     LLVM_FALLTHROUGH;
12682   }
12683   case scAddExpr:
12684   case scMulExpr:
12685   case scUMaxExpr:
12686   case scSMaxExpr:
12687   case scUMinExpr:
12688   case scSMinExpr: {
12689     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12690     bool Proper = true;
12691     for (const SCEV *NAryOp : NAry->operands()) {
12692       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12693       if (D == DoesNotDominateBlock)
12694         return DoesNotDominateBlock;
12695       if (D == DominatesBlock)
12696         Proper = false;
12697     }
12698     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12699   }
12700   case scUDivExpr: {
12701     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12702     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12703     BlockDisposition LD = getBlockDisposition(LHS, BB);
12704     if (LD == DoesNotDominateBlock)
12705       return DoesNotDominateBlock;
12706     BlockDisposition RD = getBlockDisposition(RHS, BB);
12707     if (RD == DoesNotDominateBlock)
12708       return DoesNotDominateBlock;
12709     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12710       ProperlyDominatesBlock : DominatesBlock;
12711   }
12712   case scUnknown:
12713     if (Instruction *I =
12714           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12715       if (I->getParent() == BB)
12716         return DominatesBlock;
12717       if (DT.properlyDominates(I->getParent(), BB))
12718         return ProperlyDominatesBlock;
12719       return DoesNotDominateBlock;
12720     }
12721     return ProperlyDominatesBlock;
12722   case scCouldNotCompute:
12723     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12724   }
12725   llvm_unreachable("Unknown SCEV kind!");
12726 }
12727 
12728 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12729   return getBlockDisposition(S, BB) >= DominatesBlock;
12730 }
12731 
12732 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12733   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12734 }
12735 
12736 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12737   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12738 }
12739 
12740 void
12741 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12742   ValuesAtScopes.erase(S);
12743   LoopDispositions.erase(S);
12744   BlockDispositions.erase(S);
12745   UnsignedRanges.erase(S);
12746   SignedRanges.erase(S);
12747   ExprValueMap.erase(S);
12748   HasRecMap.erase(S);
12749   MinTrailingZerosCache.erase(S);
12750 
12751   for (auto I = PredicatedSCEVRewrites.begin();
12752        I != PredicatedSCEVRewrites.end();) {
12753     std::pair<const SCEV *, const Loop *> Entry = I->first;
12754     if (Entry.first == S)
12755       PredicatedSCEVRewrites.erase(I++);
12756     else
12757       ++I;
12758   }
12759 
12760   auto RemoveSCEVFromBackedgeMap =
12761       [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12762         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12763           BackedgeTakenInfo &BEInfo = I->second;
12764           if (BEInfo.hasOperand(S))
12765             Map.erase(I++);
12766           else
12767             ++I;
12768         }
12769       };
12770 
12771   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12772   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12773 }
12774 
12775 void
12776 ScalarEvolution::getUsedLoops(const SCEV *S,
12777                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12778   struct FindUsedLoops {
12779     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12780         : LoopsUsed(LoopsUsed) {}
12781     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12782     bool follow(const SCEV *S) {
12783       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12784         LoopsUsed.insert(AR->getLoop());
12785       return true;
12786     }
12787 
12788     bool isDone() const { return false; }
12789   };
12790 
12791   FindUsedLoops F(LoopsUsed);
12792   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12793 }
12794 
12795 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12796   SmallPtrSet<const Loop *, 8> LoopsUsed;
12797   getUsedLoops(S, LoopsUsed);
12798   for (auto *L : LoopsUsed)
12799     LoopUsers[L].push_back(S);
12800 }
12801 
12802 void ScalarEvolution::verify() const {
12803   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12804   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12805 
12806   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12807 
12808   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12809   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12810     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12811 
12812     const SCEV *visitConstant(const SCEVConstant *Constant) {
12813       return SE.getConstant(Constant->getAPInt());
12814     }
12815 
12816     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12817       return SE.getUnknown(Expr->getValue());
12818     }
12819 
12820     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12821       return SE.getCouldNotCompute();
12822     }
12823   };
12824 
12825   SCEVMapper SCM(SE2);
12826 
12827   while (!LoopStack.empty()) {
12828     auto *L = LoopStack.pop_back_val();
12829     llvm::append_range(LoopStack, *L);
12830 
12831     auto *CurBECount = SCM.visit(
12832         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12833     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12834 
12835     if (CurBECount == SE2.getCouldNotCompute() ||
12836         NewBECount == SE2.getCouldNotCompute()) {
12837       // NB! This situation is legal, but is very suspicious -- whatever pass
12838       // change the loop to make a trip count go from could not compute to
12839       // computable or vice-versa *should have* invalidated SCEV.  However, we
12840       // choose not to assert here (for now) since we don't want false
12841       // positives.
12842       continue;
12843     }
12844 
12845     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12846       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12847       // not propagate undef aggressively).  This means we can (and do) fail
12848       // verification in cases where a transform makes the trip count of a loop
12849       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12850       // both cases the loop iterates "undef" times, but SCEV thinks we
12851       // increased the trip count of the loop by 1 incorrectly.
12852       continue;
12853     }
12854 
12855     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12856         SE.getTypeSizeInBits(NewBECount->getType()))
12857       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12858     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12859              SE.getTypeSizeInBits(NewBECount->getType()))
12860       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12861 
12862     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12863 
12864     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12865     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12866       dbgs() << "Trip Count for " << *L << " Changed!\n";
12867       dbgs() << "Old: " << *CurBECount << "\n";
12868       dbgs() << "New: " << *NewBECount << "\n";
12869       dbgs() << "Delta: " << *Delta << "\n";
12870       std::abort();
12871     }
12872   }
12873 
12874   // Collect all valid loops currently in LoopInfo.
12875   SmallPtrSet<Loop *, 32> ValidLoops;
12876   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12877   while (!Worklist.empty()) {
12878     Loop *L = Worklist.pop_back_val();
12879     if (ValidLoops.contains(L))
12880       continue;
12881     ValidLoops.insert(L);
12882     Worklist.append(L->begin(), L->end());
12883   }
12884   // Check for SCEV expressions referencing invalid/deleted loops.
12885   for (auto &KV : ValueExprMap) {
12886     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12887     if (!AR)
12888       continue;
12889     assert(ValidLoops.contains(AR->getLoop()) &&
12890            "AddRec references invalid loop");
12891   }
12892 }
12893 
12894 bool ScalarEvolution::invalidate(
12895     Function &F, const PreservedAnalyses &PA,
12896     FunctionAnalysisManager::Invalidator &Inv) {
12897   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12898   // of its dependencies is invalidated.
12899   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12900   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12901          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12902          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12903          Inv.invalidate<LoopAnalysis>(F, PA);
12904 }
12905 
12906 AnalysisKey ScalarEvolutionAnalysis::Key;
12907 
12908 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12909                                              FunctionAnalysisManager &AM) {
12910   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12911                          AM.getResult<AssumptionAnalysis>(F),
12912                          AM.getResult<DominatorTreeAnalysis>(F),
12913                          AM.getResult<LoopAnalysis>(F));
12914 }
12915 
12916 PreservedAnalyses
12917 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12918   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12919   return PreservedAnalyses::all();
12920 }
12921 
12922 PreservedAnalyses
12923 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12924   // For compatibility with opt's -analyze feature under legacy pass manager
12925   // which was not ported to NPM. This keeps tests using
12926   // update_analyze_test_checks.py working.
12927   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12928      << F.getName() << "':\n";
12929   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12930   return PreservedAnalyses::all();
12931 }
12932 
12933 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12934                       "Scalar Evolution Analysis", false, true)
12935 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12936 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12937 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12938 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12939 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12940                     "Scalar Evolution Analysis", false, true)
12941 
12942 char ScalarEvolutionWrapperPass::ID = 0;
12943 
12944 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12945   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12946 }
12947 
12948 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12949   SE.reset(new ScalarEvolution(
12950       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12951       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12952       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12953       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12954   return false;
12955 }
12956 
12957 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12958 
12959 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12960   SE->print(OS);
12961 }
12962 
12963 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12964   if (!VerifySCEV)
12965     return;
12966 
12967   SE->verify();
12968 }
12969 
12970 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12971   AU.setPreservesAll();
12972   AU.addRequiredTransitive<AssumptionCacheTracker>();
12973   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12974   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12975   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12976 }
12977 
12978 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12979                                                         const SCEV *RHS) {
12980   FoldingSetNodeID ID;
12981   assert(LHS->getType() == RHS->getType() &&
12982          "Type mismatch between LHS and RHS");
12983   // Unique this node based on the arguments
12984   ID.AddInteger(SCEVPredicate::P_Equal);
12985   ID.AddPointer(LHS);
12986   ID.AddPointer(RHS);
12987   void *IP = nullptr;
12988   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12989     return S;
12990   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12991       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12992   UniquePreds.InsertNode(Eq, IP);
12993   return Eq;
12994 }
12995 
12996 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12997     const SCEVAddRecExpr *AR,
12998     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12999   FoldingSetNodeID ID;
13000   // Unique this node based on the arguments
13001   ID.AddInteger(SCEVPredicate::P_Wrap);
13002   ID.AddPointer(AR);
13003   ID.AddInteger(AddedFlags);
13004   void *IP = nullptr;
13005   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13006     return S;
13007   auto *OF = new (SCEVAllocator)
13008       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13009   UniquePreds.InsertNode(OF, IP);
13010   return OF;
13011 }
13012 
13013 namespace {
13014 
13015 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13016 public:
13017 
13018   /// Rewrites \p S in the context of a loop L and the SCEV predication
13019   /// infrastructure.
13020   ///
13021   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13022   /// equivalences present in \p Pred.
13023   ///
13024   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13025   /// \p NewPreds such that the result will be an AddRecExpr.
13026   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13027                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13028                              SCEVUnionPredicate *Pred) {
13029     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13030     return Rewriter.visit(S);
13031   }
13032 
13033   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13034     if (Pred) {
13035       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13036       for (auto *Pred : ExprPreds)
13037         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13038           if (IPred->getLHS() == Expr)
13039             return IPred->getRHS();
13040     }
13041     return convertToAddRecWithPreds(Expr);
13042   }
13043 
13044   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13045     const SCEV *Operand = visit(Expr->getOperand());
13046     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13047     if (AR && AR->getLoop() == L && AR->isAffine()) {
13048       // This couldn't be folded because the operand didn't have the nuw
13049       // flag. Add the nusw flag as an assumption that we could make.
13050       const SCEV *Step = AR->getStepRecurrence(SE);
13051       Type *Ty = Expr->getType();
13052       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13053         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13054                                 SE.getSignExtendExpr(Step, Ty), L,
13055                                 AR->getNoWrapFlags());
13056     }
13057     return SE.getZeroExtendExpr(Operand, Expr->getType());
13058   }
13059 
13060   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13061     const SCEV *Operand = visit(Expr->getOperand());
13062     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13063     if (AR && AR->getLoop() == L && AR->isAffine()) {
13064       // This couldn't be folded because the operand didn't have the nsw
13065       // flag. Add the nssw flag as an assumption that we could make.
13066       const SCEV *Step = AR->getStepRecurrence(SE);
13067       Type *Ty = Expr->getType();
13068       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13069         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13070                                 SE.getSignExtendExpr(Step, Ty), L,
13071                                 AR->getNoWrapFlags());
13072     }
13073     return SE.getSignExtendExpr(Operand, Expr->getType());
13074   }
13075 
13076 private:
13077   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13078                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13079                         SCEVUnionPredicate *Pred)
13080       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13081 
13082   bool addOverflowAssumption(const SCEVPredicate *P) {
13083     if (!NewPreds) {
13084       // Check if we've already made this assumption.
13085       return Pred && Pred->implies(P);
13086     }
13087     NewPreds->insert(P);
13088     return true;
13089   }
13090 
13091   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13092                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13093     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13094     return addOverflowAssumption(A);
13095   }
13096 
13097   // If \p Expr represents a PHINode, we try to see if it can be represented
13098   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13099   // to add this predicate as a runtime overflow check, we return the AddRec.
13100   // If \p Expr does not meet these conditions (is not a PHI node, or we
13101   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13102   // return \p Expr.
13103   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13104     if (!isa<PHINode>(Expr->getValue()))
13105       return Expr;
13106     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13107     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13108     if (!PredicatedRewrite)
13109       return Expr;
13110     for (auto *P : PredicatedRewrite->second){
13111       // Wrap predicates from outer loops are not supported.
13112       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13113         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13114         if (L != AR->getLoop())
13115           return Expr;
13116       }
13117       if (!addOverflowAssumption(P))
13118         return Expr;
13119     }
13120     return PredicatedRewrite->first;
13121   }
13122 
13123   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13124   SCEVUnionPredicate *Pred;
13125   const Loop *L;
13126 };
13127 
13128 } // end anonymous namespace
13129 
13130 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13131                                                    SCEVUnionPredicate &Preds) {
13132   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13133 }
13134 
13135 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13136     const SCEV *S, const Loop *L,
13137     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13138   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13139   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13140   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13141 
13142   if (!AddRec)
13143     return nullptr;
13144 
13145   // Since the transformation was successful, we can now transfer the SCEV
13146   // predicates.
13147   for (auto *P : TransformPreds)
13148     Preds.insert(P);
13149 
13150   return AddRec;
13151 }
13152 
13153 /// SCEV predicates
13154 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13155                              SCEVPredicateKind Kind)
13156     : FastID(ID), Kind(Kind) {}
13157 
13158 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13159                                        const SCEV *LHS, const SCEV *RHS)
13160     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13161   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13162   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13163 }
13164 
13165 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13166   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13167 
13168   if (!Op)
13169     return false;
13170 
13171   return Op->LHS == LHS && Op->RHS == RHS;
13172 }
13173 
13174 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13175 
13176 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13177 
13178 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13179   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13180 }
13181 
13182 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13183                                      const SCEVAddRecExpr *AR,
13184                                      IncrementWrapFlags Flags)
13185     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13186 
13187 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13188 
13189 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13190   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13191 
13192   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13193 }
13194 
13195 bool SCEVWrapPredicate::isAlwaysTrue() const {
13196   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13197   IncrementWrapFlags IFlags = Flags;
13198 
13199   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13200     IFlags = clearFlags(IFlags, IncrementNSSW);
13201 
13202   return IFlags == IncrementAnyWrap;
13203 }
13204 
13205 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13206   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13207   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13208     OS << "<nusw>";
13209   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13210     OS << "<nssw>";
13211   OS << "\n";
13212 }
13213 
13214 SCEVWrapPredicate::IncrementWrapFlags
13215 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13216                                    ScalarEvolution &SE) {
13217   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13218   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13219 
13220   // We can safely transfer the NSW flag as NSSW.
13221   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13222     ImpliedFlags = IncrementNSSW;
13223 
13224   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13225     // If the increment is positive, the SCEV NUW flag will also imply the
13226     // WrapPredicate NUSW flag.
13227     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13228       if (Step->getValue()->getValue().isNonNegative())
13229         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13230   }
13231 
13232   return ImpliedFlags;
13233 }
13234 
13235 /// Union predicates don't get cached so create a dummy set ID for it.
13236 SCEVUnionPredicate::SCEVUnionPredicate()
13237     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13238 
13239 bool SCEVUnionPredicate::isAlwaysTrue() const {
13240   return all_of(Preds,
13241                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13242 }
13243 
13244 ArrayRef<const SCEVPredicate *>
13245 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13246   auto I = SCEVToPreds.find(Expr);
13247   if (I == SCEVToPreds.end())
13248     return ArrayRef<const SCEVPredicate *>();
13249   return I->second;
13250 }
13251 
13252 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13253   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13254     return all_of(Set->Preds,
13255                   [this](const SCEVPredicate *I) { return this->implies(I); });
13256 
13257   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13258   if (ScevPredsIt == SCEVToPreds.end())
13259     return false;
13260   auto &SCEVPreds = ScevPredsIt->second;
13261 
13262   return any_of(SCEVPreds,
13263                 [N](const SCEVPredicate *I) { return I->implies(N); });
13264 }
13265 
13266 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13267 
13268 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13269   for (auto Pred : Preds)
13270     Pred->print(OS, Depth);
13271 }
13272 
13273 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13274   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13275     for (auto Pred : Set->Preds)
13276       add(Pred);
13277     return;
13278   }
13279 
13280   if (implies(N))
13281     return;
13282 
13283   const SCEV *Key = N->getExpr();
13284   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13285                 " associated expression!");
13286 
13287   SCEVToPreds[Key].push_back(N);
13288   Preds.push_back(N);
13289 }
13290 
13291 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13292                                                      Loop &L)
13293     : SE(SE), L(L) {}
13294 
13295 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13296   const SCEV *Expr = SE.getSCEV(V);
13297   RewriteEntry &Entry = RewriteMap[Expr];
13298 
13299   // If we already have an entry and the version matches, return it.
13300   if (Entry.second && Generation == Entry.first)
13301     return Entry.second;
13302 
13303   // We found an entry but it's stale. Rewrite the stale entry
13304   // according to the current predicate.
13305   if (Entry.second)
13306     Expr = Entry.second;
13307 
13308   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13309   Entry = {Generation, NewSCEV};
13310 
13311   return NewSCEV;
13312 }
13313 
13314 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13315   if (!BackedgeCount) {
13316     SCEVUnionPredicate BackedgePred;
13317     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13318     addPredicate(BackedgePred);
13319   }
13320   return BackedgeCount;
13321 }
13322 
13323 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13324   if (Preds.implies(&Pred))
13325     return;
13326   Preds.add(&Pred);
13327   updateGeneration();
13328 }
13329 
13330 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13331   return Preds;
13332 }
13333 
13334 void PredicatedScalarEvolution::updateGeneration() {
13335   // If the generation number wrapped recompute everything.
13336   if (++Generation == 0) {
13337     for (auto &II : RewriteMap) {
13338       const SCEV *Rewritten = II.second.second;
13339       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13340     }
13341   }
13342 }
13343 
13344 void PredicatedScalarEvolution::setNoOverflow(
13345     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13346   const SCEV *Expr = getSCEV(V);
13347   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13348 
13349   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13350 
13351   // Clear the statically implied flags.
13352   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13353   addPredicate(*SE.getWrapPredicate(AR, Flags));
13354 
13355   auto II = FlagsMap.insert({V, Flags});
13356   if (!II.second)
13357     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13358 }
13359 
13360 bool PredicatedScalarEvolution::hasNoOverflow(
13361     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13362   const SCEV *Expr = getSCEV(V);
13363   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13364 
13365   Flags = SCEVWrapPredicate::clearFlags(
13366       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13367 
13368   auto II = FlagsMap.find(V);
13369 
13370   if (II != FlagsMap.end())
13371     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13372 
13373   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13374 }
13375 
13376 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13377   const SCEV *Expr = this->getSCEV(V);
13378   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13379   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13380 
13381   if (!New)
13382     return nullptr;
13383 
13384   for (auto *P : NewPreds)
13385     Preds.add(P);
13386 
13387   updateGeneration();
13388   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13389   return New;
13390 }
13391 
13392 PredicatedScalarEvolution::PredicatedScalarEvolution(
13393     const PredicatedScalarEvolution &Init)
13394     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13395       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13396   for (auto I : Init.FlagsMap)
13397     FlagsMap.insert(I);
13398 }
13399 
13400 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13401   // For each block.
13402   for (auto *BB : L.getBlocks())
13403     for (auto &I : *BB) {
13404       if (!SE.isSCEVable(I.getType()))
13405         continue;
13406 
13407       auto *Expr = SE.getSCEV(&I);
13408       auto II = RewriteMap.find(Expr);
13409 
13410       if (II == RewriteMap.end())
13411         continue;
13412 
13413       // Don't print things that are not interesting.
13414       if (II->second.second == Expr)
13415         continue;
13416 
13417       OS.indent(Depth) << "[PSE]" << I << ":\n";
13418       OS.indent(Depth + 2) << *Expr << "\n";
13419       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13420     }
13421 }
13422 
13423 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13424 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13425 // for URem with constant power-of-2 second operands.
13426 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13427 // 4, A / B becomes X / 8).
13428 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13429                                 const SCEV *&RHS) {
13430   // Try to match 'zext (trunc A to iB) to iY', which is used
13431   // for URem with constant power-of-2 second operands. Make sure the size of
13432   // the operand A matches the size of the whole expressions.
13433   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13434     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13435       LHS = Trunc->getOperand();
13436       // Bail out if the type of the LHS is larger than the type of the
13437       // expression for now.
13438       if (getTypeSizeInBits(LHS->getType()) >
13439           getTypeSizeInBits(Expr->getType()))
13440         return false;
13441       if (LHS->getType() != Expr->getType())
13442         LHS = getZeroExtendExpr(LHS, Expr->getType());
13443       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13444                         << getTypeSizeInBits(Trunc->getType()));
13445       return true;
13446     }
13447   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13448   if (Add == nullptr || Add->getNumOperands() != 2)
13449     return false;
13450 
13451   const SCEV *A = Add->getOperand(1);
13452   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13453 
13454   if (Mul == nullptr)
13455     return false;
13456 
13457   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13458     // (SomeExpr + (-(SomeExpr / B) * B)).
13459     if (Expr == getURemExpr(A, B)) {
13460       LHS = A;
13461       RHS = B;
13462       return true;
13463     }
13464     return false;
13465   };
13466 
13467   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13468   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13469     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13470            MatchURemWithDivisor(Mul->getOperand(2));
13471 
13472   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13473   if (Mul->getNumOperands() == 2)
13474     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13475            MatchURemWithDivisor(Mul->getOperand(0)) ||
13476            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13477            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13478   return false;
13479 }
13480 
13481 const SCEV *
13482 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13483   SmallVector<BasicBlock*, 16> ExitingBlocks;
13484   L->getExitingBlocks(ExitingBlocks);
13485 
13486   // Form an expression for the maximum exit count possible for this loop. We
13487   // merge the max and exact information to approximate a version of
13488   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13489   SmallVector<const SCEV*, 4> ExitCounts;
13490   for (BasicBlock *ExitingBB : ExitingBlocks) {
13491     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13492     if (isa<SCEVCouldNotCompute>(ExitCount))
13493       ExitCount = getExitCount(L, ExitingBB,
13494                                   ScalarEvolution::ConstantMaximum);
13495     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13496       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13497              "We should only have known counts for exiting blocks that "
13498              "dominate latch!");
13499       ExitCounts.push_back(ExitCount);
13500     }
13501   }
13502   if (ExitCounts.empty())
13503     return getCouldNotCompute();
13504   return getUMinFromMismatchedTypes(ExitCounts);
13505 }
13506 
13507 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13508 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13509 /// we cannot guarantee that the replacement is loop invariant in the loop of
13510 /// the AddRec.
13511 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13512   ValueToSCEVMapTy &Map;
13513 
13514 public:
13515   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13516       : SCEVRewriteVisitor(SE), Map(M) {}
13517 
13518   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13519 
13520   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13521     auto I = Map.find(Expr->getValue());
13522     if (I == Map.end())
13523       return Expr;
13524     return I->second;
13525   }
13526 };
13527 
13528 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13529   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13530                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13531     // WARNING: It is generally unsound to apply any wrap flags to the proposed
13532     // replacement SCEV which isn't directly implied by the structure of that
13533     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
13534     // legal.  See the scoping rules for flags in the header to understand why.
13535 
13536     // If we have LHS == 0, check if LHS is computing a property of some unknown
13537     // SCEV %v which we can rewrite %v to express explicitly.
13538     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13539     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13540         RHSC->getValue()->isNullValue()) {
13541       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13542       // explicitly express that.
13543       const SCEV *URemLHS = nullptr;
13544       const SCEV *URemRHS = nullptr;
13545       if (matchURem(LHS, URemLHS, URemRHS)) {
13546         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13547           Value *V = LHSUnknown->getValue();
13548           RewriteMap[V] = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
13549           return;
13550         }
13551       }
13552     }
13553 
13554     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
13555       std::swap(LHS, RHS);
13556       Predicate = CmpInst::getSwappedPredicate(Predicate);
13557     }
13558 
13559     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
13560     // create this form when combining two checks of the form (X u< C2 + C1) and
13561     // (X >=u C1).
13562     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() {
13563       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
13564       if (!AddExpr || AddExpr->getNumOperands() != 2)
13565         return false;
13566 
13567       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
13568       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
13569       auto *C2 = dyn_cast<SCEVConstant>(RHS);
13570       if (!C1 || !C2 || !LHSUnknown)
13571         return false;
13572 
13573       auto ExactRegion =
13574           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
13575               .sub(C1->getAPInt());
13576 
13577       // Bail out, unless we have a non-wrapping, monotonic range.
13578       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
13579         return false;
13580       auto I = RewriteMap.find(LHSUnknown->getValue());
13581       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
13582       RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(
13583           getConstant(ExactRegion.getUnsignedMin()),
13584           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
13585       return true;
13586     };
13587     if (MatchRangeCheckIdiom())
13588       return;
13589 
13590     // For now, limit to conditions that provide information about unknown
13591     // expressions. RHS also cannot contain add recurrences.
13592     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13593     if (!LHSUnknown || containsAddRecurrence(RHS))
13594       return;
13595 
13596     // Check whether LHS has already been rewritten. In that case we want to
13597     // chain further rewrites onto the already rewritten value.
13598     auto I = RewriteMap.find(LHSUnknown->getValue());
13599     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13600     const SCEV *RewrittenRHS = nullptr;
13601     switch (Predicate) {
13602     case CmpInst::ICMP_ULT:
13603       RewrittenRHS =
13604           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13605       break;
13606     case CmpInst::ICMP_SLT:
13607       RewrittenRHS =
13608           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13609       break;
13610     case CmpInst::ICMP_ULE:
13611       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
13612       break;
13613     case CmpInst::ICMP_SLE:
13614       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
13615       break;
13616     case CmpInst::ICMP_UGT:
13617       RewrittenRHS =
13618           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13619       break;
13620     case CmpInst::ICMP_SGT:
13621       RewrittenRHS =
13622           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13623       break;
13624     case CmpInst::ICMP_UGE:
13625       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
13626       break;
13627     case CmpInst::ICMP_SGE:
13628       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
13629       break;
13630     case CmpInst::ICMP_EQ:
13631       if (isa<SCEVConstant>(RHS))
13632         RewrittenRHS = RHS;
13633       break;
13634     case CmpInst::ICMP_NE:
13635       if (isa<SCEVConstant>(RHS) &&
13636           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13637         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
13638       break;
13639     default:
13640       break;
13641     }
13642 
13643     if (RewrittenRHS)
13644       RewriteMap[LHSUnknown->getValue()] = RewrittenRHS;
13645   };
13646   // Starting at the loop predecessor, climb up the predecessor chain, as long
13647   // as there are predecessors that can be found that have unique successors
13648   // leading to the original header.
13649   // TODO: share this logic with isLoopEntryGuardedByCond.
13650   ValueToSCEVMapTy RewriteMap;
13651   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13652            L->getLoopPredecessor(), L->getHeader());
13653        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13654 
13655     const BranchInst *LoopEntryPredicate =
13656         dyn_cast<BranchInst>(Pair.first->getTerminator());
13657     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13658       continue;
13659 
13660     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
13661     SmallVector<Value *, 8> Worklist;
13662     SmallPtrSet<Value *, 8> Visited;
13663     Worklist.push_back(LoopEntryPredicate->getCondition());
13664     while (!Worklist.empty()) {
13665       Value *Cond = Worklist.pop_back_val();
13666       if (!Visited.insert(Cond).second)
13667         continue;
13668 
13669       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13670         auto Predicate =
13671             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
13672         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13673                          getSCEV(Cmp->getOperand(1)), RewriteMap);
13674         continue;
13675       }
13676 
13677       Value *L, *R;
13678       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
13679                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
13680         Worklist.push_back(L);
13681         Worklist.push_back(R);
13682       }
13683     }
13684   }
13685 
13686   // Also collect information from assumptions dominating the loop.
13687   for (auto &AssumeVH : AC.assumptions()) {
13688     if (!AssumeVH)
13689       continue;
13690     auto *AssumeI = cast<CallInst>(AssumeVH);
13691     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13692     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13693       continue;
13694     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13695                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13696   }
13697 
13698   if (RewriteMap.empty())
13699     return Expr;
13700   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13701   return Rewriter.visit(Expr);
13702 }
13703