1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumArrayLenItCounts, 143 "Number of trip counts computed with array length"); 144 STATISTIC(NumTripCountsComputed, 145 "Number of loops with predictable loop counts"); 146 STATISTIC(NumTripCountsNotComputed, 147 "Number of loops without predictable loop counts"); 148 STATISTIC(NumBruteForceTripCountsComputed, 149 "Number of loops with trip counts computed by force"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 //===----------------------------------------------------------------------===// 237 // SCEV class definitions 238 //===----------------------------------------------------------------------===// 239 240 //===----------------------------------------------------------------------===// 241 // Implementation of the SCEV class. 242 // 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void SCEV::dump() const { 246 print(dbgs()); 247 dbgs() << '\n'; 248 } 249 #endif 250 251 void SCEV::print(raw_ostream &OS) const { 252 switch (getSCEVType()) { 253 case scConstant: 254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 255 return; 256 case scPtrToInt: { 257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 258 const SCEV *Op = PtrToInt->getOperand(); 259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 260 << *PtrToInt->getType() << ")"; 261 return; 262 } 263 case scTruncate: { 264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 265 const SCEV *Op = Trunc->getOperand(); 266 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 267 << *Trunc->getType() << ")"; 268 return; 269 } 270 case scZeroExtend: { 271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 272 const SCEV *Op = ZExt->getOperand(); 273 OS << "(zext " << *Op->getType() << " " << *Op << " to " 274 << *ZExt->getType() << ")"; 275 return; 276 } 277 case scSignExtend: { 278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 279 const SCEV *Op = SExt->getOperand(); 280 OS << "(sext " << *Op->getType() << " " << *Op << " to " 281 << *SExt->getType() << ")"; 282 return; 283 } 284 case scAddRecExpr: { 285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 286 OS << "{" << *AR->getOperand(0); 287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 288 OS << ",+," << *AR->getOperand(i); 289 OS << "}<"; 290 if (AR->hasNoUnsignedWrap()) 291 OS << "nuw><"; 292 if (AR->hasNoSignedWrap()) 293 OS << "nsw><"; 294 if (AR->hasNoSelfWrap() && 295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 296 OS << "nw><"; 297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 298 OS << ">"; 299 return; 300 } 301 case scAddExpr: 302 case scMulExpr: 303 case scUMaxExpr: 304 case scSMaxExpr: 305 case scUMinExpr: 306 case scSMinExpr: { 307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 308 const char *OpStr = nullptr; 309 switch (NAry->getSCEVType()) { 310 case scAddExpr: OpStr = " + "; break; 311 case scMulExpr: OpStr = " * "; break; 312 case scUMaxExpr: OpStr = " umax "; break; 313 case scSMaxExpr: OpStr = " smax "; break; 314 case scUMinExpr: 315 OpStr = " umin "; 316 break; 317 case scSMinExpr: 318 OpStr = " smin "; 319 break; 320 default: 321 llvm_unreachable("There are no other nary expression types."); 322 } 323 OS << "("; 324 ListSeparator LS(OpStr); 325 for (const SCEV *Op : NAry->operands()) 326 OS << LS << *Op; 327 OS << ")"; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: 330 case scMulExpr: 331 if (NAry->hasNoUnsignedWrap()) 332 OS << "<nuw>"; 333 if (NAry->hasNoSignedWrap()) 334 OS << "<nsw>"; 335 break; 336 default: 337 // Nothing to print for other nary expressions. 338 break; 339 } 340 return; 341 } 342 case scUDivExpr: { 343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 345 return; 346 } 347 case scUnknown: { 348 const SCEVUnknown *U = cast<SCEVUnknown>(this); 349 Type *AllocTy; 350 if (U->isSizeOf(AllocTy)) { 351 OS << "sizeof(" << *AllocTy << ")"; 352 return; 353 } 354 if (U->isAlignOf(AllocTy)) { 355 OS << "alignof(" << *AllocTy << ")"; 356 return; 357 } 358 359 Type *CTy; 360 Constant *FieldNo; 361 if (U->isOffsetOf(CTy, FieldNo)) { 362 OS << "offsetof(" << *CTy << ", "; 363 FieldNo->printAsOperand(OS, false); 364 OS << ")"; 365 return; 366 } 367 368 // Otherwise just print it normally. 369 U->getValue()->printAsOperand(OS, false); 370 return; 371 } 372 case scCouldNotCompute: 373 OS << "***COULDNOTCOMPUTE***"; 374 return; 375 } 376 llvm_unreachable("Unknown SCEV kind!"); 377 } 378 379 Type *SCEV::getType() const { 380 switch (getSCEVType()) { 381 case scConstant: 382 return cast<SCEVConstant>(this)->getType(); 383 case scPtrToInt: 384 case scTruncate: 385 case scZeroExtend: 386 case scSignExtend: 387 return cast<SCEVCastExpr>(this)->getType(); 388 case scAddRecExpr: 389 return cast<SCEVAddRecExpr>(this)->getType(); 390 case scMulExpr: 391 return cast<SCEVMulExpr>(this)->getType(); 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVMinMaxExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 537 return true; 538 } 539 540 return false; 541 } 542 543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 544 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 545 if (VCE->getOpcode() == Instruction::PtrToInt) 546 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 547 if (CE->getOpcode() == Instruction::GetElementPtr && 548 CE->getOperand(0)->isNullValue()) { 549 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 550 if (StructType *STy = dyn_cast<StructType>(Ty)) 551 if (!STy->isPacked() && 552 CE->getNumOperands() == 3 && 553 CE->getOperand(1)->isNullValue()) { 554 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 555 if (CI->isOne() && 556 STy->getNumElements() == 2 && 557 STy->getElementType(0)->isIntegerTy(1)) { 558 AllocTy = STy->getElementType(1); 559 return true; 560 } 561 } 562 } 563 564 return false; 565 } 566 567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 568 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 569 if (VCE->getOpcode() == Instruction::PtrToInt) 570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 571 if (CE->getOpcode() == Instruction::GetElementPtr && 572 CE->getNumOperands() == 3 && 573 CE->getOperand(0)->isNullValue() && 574 CE->getOperand(1)->isNullValue()) { 575 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 576 // Ignore vector types here so that ScalarEvolutionExpander doesn't 577 // emit getelementptrs that index into vectors. 578 if (Ty->isStructTy() || Ty->isArrayTy()) { 579 CTy = Ty; 580 FieldNo = CE->getOperand(2); 581 return true; 582 } 583 } 584 585 return false; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SCEV Utilities 590 //===----------------------------------------------------------------------===// 591 592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 594 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 595 /// have been previously deemed to be "equally complex" by this routine. It is 596 /// intended to avoid exponential time complexity in cases like: 597 /// 598 /// %a = f(%x, %y) 599 /// %b = f(%a, %a) 600 /// %c = f(%b, %b) 601 /// 602 /// %d = f(%x, %y) 603 /// %e = f(%d, %d) 604 /// %f = f(%e, %e) 605 /// 606 /// CompareValueComplexity(%f, %c) 607 /// 608 /// Since we do not continue running this routine on expression trees once we 609 /// have seen unequal values, there is no need to track them in the cache. 610 static int 611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 612 const LoopInfo *const LI, Value *LV, Value *RV, 613 unsigned Depth) { 614 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 615 return 0; 616 617 // Order pointer values after integer values. This helps SCEVExpander form 618 // GEPs. 619 bool LIsPointer = LV->getType()->isPointerTy(), 620 RIsPointer = RV->getType()->isPointerTy(); 621 if (LIsPointer != RIsPointer) 622 return (int)LIsPointer - (int)RIsPointer; 623 624 // Compare getValueID values. 625 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 626 if (LID != RID) 627 return (int)LID - (int)RID; 628 629 // Sort arguments by their position. 630 if (const auto *LA = dyn_cast<Argument>(LV)) { 631 const auto *RA = cast<Argument>(RV); 632 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 633 return (int)LArgNo - (int)RArgNo; 634 } 635 636 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 637 const auto *RGV = cast<GlobalValue>(RV); 638 639 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 640 auto LT = GV->getLinkage(); 641 return !(GlobalValue::isPrivateLinkage(LT) || 642 GlobalValue::isInternalLinkage(LT)); 643 }; 644 645 // Use the names to distinguish the two values, but only if the 646 // names are semantically important. 647 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 648 return LGV->getName().compare(RGV->getName()); 649 } 650 651 // For instructions, compare their loop depth, and their operand count. This 652 // is pretty loose. 653 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 654 const auto *RInst = cast<Instruction>(RV); 655 656 // Compare loop depths. 657 const BasicBlock *LParent = LInst->getParent(), 658 *RParent = RInst->getParent(); 659 if (LParent != RParent) { 660 unsigned LDepth = LI->getLoopDepth(LParent), 661 RDepth = LI->getLoopDepth(RParent); 662 if (LDepth != RDepth) 663 return (int)LDepth - (int)RDepth; 664 } 665 666 // Compare the number of operands. 667 unsigned LNumOps = LInst->getNumOperands(), 668 RNumOps = RInst->getNumOperands(); 669 if (LNumOps != RNumOps) 670 return (int)LNumOps - (int)RNumOps; 671 672 for (unsigned Idx : seq(0u, LNumOps)) { 673 int Result = 674 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 675 RInst->getOperand(Idx), Depth + 1); 676 if (Result != 0) 677 return Result; 678 } 679 } 680 681 EqCacheValue.unionSets(LV, RV); 682 return 0; 683 } 684 685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 686 // than RHS, respectively. A three-way result allows recursive comparisons to be 687 // more efficient. 688 // If the max analysis depth was reached, return None, assuming we do not know 689 // if they are equivalent for sure. 690 static Optional<int> 691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 692 EquivalenceClasses<const Value *> &EqCacheValue, 693 const LoopInfo *const LI, const SCEV *LHS, 694 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 695 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 696 if (LHS == RHS) 697 return 0; 698 699 // Primarily, sort the SCEVs by their getSCEVType(). 700 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 701 if (LType != RType) 702 return (int)LType - (int)RType; 703 704 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 705 return 0; 706 707 if (Depth > MaxSCEVCompareDepth) 708 return None; 709 710 // Aside from the getSCEVType() ordering, the particular ordering 711 // isn't very important except that it's beneficial to be consistent, 712 // so that (a + b) and (b + a) don't end up as different expressions. 713 switch (LType) { 714 case scUnknown: { 715 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 716 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 717 718 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 719 RU->getValue(), Depth + 1); 720 if (X == 0) 721 EqCacheSCEV.unionSets(LHS, RHS); 722 return X; 723 } 724 725 case scConstant: { 726 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 727 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 728 729 // Compare constant values. 730 const APInt &LA = LC->getAPInt(); 731 const APInt &RA = RC->getAPInt(); 732 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 733 if (LBitWidth != RBitWidth) 734 return (int)LBitWidth - (int)RBitWidth; 735 return LA.ult(RA) ? -1 : 1; 736 } 737 738 case scAddRecExpr: { 739 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 740 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 741 742 // There is always a dominance between two recs that are used by one SCEV, 743 // so we can safely sort recs by loop header dominance. We require such 744 // order in getAddExpr. 745 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 746 if (LLoop != RLoop) { 747 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 748 assert(LHead != RHead && "Two loops share the same header?"); 749 if (DT.dominates(LHead, RHead)) 750 return 1; 751 else 752 assert(DT.dominates(RHead, LHead) && 753 "No dominance between recurrences used by one SCEV?"); 754 return -1; 755 } 756 757 // Addrec complexity grows with operand count. 758 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 759 if (LNumOps != RNumOps) 760 return (int)LNumOps - (int)RNumOps; 761 762 // Lexicographically compare. 763 for (unsigned i = 0; i != LNumOps; ++i) { 764 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 765 LA->getOperand(i), RA->getOperand(i), DT, 766 Depth + 1); 767 if (X != 0) 768 return X; 769 } 770 EqCacheSCEV.unionSets(LHS, RHS); 771 return 0; 772 } 773 774 case scAddExpr: 775 case scMulExpr: 776 case scSMaxExpr: 777 case scUMaxExpr: 778 case scSMinExpr: 779 case scUMinExpr: { 780 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 781 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 782 783 // Lexicographically compare n-ary expressions. 784 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 785 if (LNumOps != RNumOps) 786 return (int)LNumOps - (int)RNumOps; 787 788 for (unsigned i = 0; i != LNumOps; ++i) { 789 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 790 LC->getOperand(i), RC->getOperand(i), DT, 791 Depth + 1); 792 if (X != 0) 793 return X; 794 } 795 EqCacheSCEV.unionSets(LHS, RHS); 796 return 0; 797 } 798 799 case scUDivExpr: { 800 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 801 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 802 803 // Lexicographically compare udiv expressions. 804 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 805 RC->getLHS(), DT, Depth + 1); 806 if (X != 0) 807 return X; 808 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 809 RC->getRHS(), DT, Depth + 1); 810 if (X == 0) 811 EqCacheSCEV.unionSets(LHS, RHS); 812 return X; 813 } 814 815 case scPtrToInt: 816 case scTruncate: 817 case scZeroExtend: 818 case scSignExtend: { 819 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 820 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 821 822 // Compare cast expressions by operand. 823 auto X = 824 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 825 RC->getOperand(), DT, Depth + 1); 826 if (X == 0) 827 EqCacheSCEV.unionSets(LHS, RHS); 828 return X; 829 } 830 831 case scCouldNotCompute: 832 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 833 } 834 llvm_unreachable("Unknown SCEV kind!"); 835 } 836 837 /// Given a list of SCEV objects, order them by their complexity, and group 838 /// objects of the same complexity together by value. When this routine is 839 /// finished, we know that any duplicates in the vector are consecutive and that 840 /// complexity is monotonically increasing. 841 /// 842 /// Note that we go take special precautions to ensure that we get deterministic 843 /// results from this routine. In other words, we don't want the results of 844 /// this to depend on where the addresses of various SCEV objects happened to 845 /// land in memory. 846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 847 LoopInfo *LI, DominatorTree &DT) { 848 if (Ops.size() < 2) return; // Noop 849 850 EquivalenceClasses<const SCEV *> EqCacheSCEV; 851 EquivalenceClasses<const Value *> EqCacheValue; 852 853 // Whether LHS has provably less complexity than RHS. 854 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 855 auto Complexity = 856 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 857 return Complexity && *Complexity < 0; 858 }; 859 if (Ops.size() == 2) { 860 // This is the common case, which also happens to be trivially simple. 861 // Special case it. 862 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 863 if (IsLessComplex(RHS, LHS)) 864 std::swap(LHS, RHS); 865 return; 866 } 867 868 // Do the rough sort by complexity. 869 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 870 return IsLessComplex(LHS, RHS); 871 }); 872 873 // Now that we are sorted by complexity, group elements of the same 874 // complexity. Note that this is, at worst, N^2, but the vector is likely to 875 // be extremely short in practice. Note that we take this approach because we 876 // do not want to depend on the addresses of the objects we are grouping. 877 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 878 const SCEV *S = Ops[i]; 879 unsigned Complexity = S->getSCEVType(); 880 881 // If there are any objects of the same complexity and same value as this 882 // one, group them. 883 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 884 if (Ops[j] == S) { // Found a duplicate. 885 // Move it to immediately after i'th element. 886 std::swap(Ops[i+1], Ops[j]); 887 ++i; // no need to rescan it. 888 if (i == e-2) return; // Done! 889 } 890 } 891 } 892 } 893 894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 895 /// least HugeExprThreshold nodes). 896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 897 return any_of(Ops, [](const SCEV *S) { 898 return S->getExpressionSize() >= HugeExprThreshold; 899 }); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Simple SCEV method implementations 904 //===----------------------------------------------------------------------===// 905 906 /// Compute BC(It, K). The result has width W. Assume, K > 0. 907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 908 ScalarEvolution &SE, 909 Type *ResultTy) { 910 // Handle the simplest case efficiently. 911 if (K == 1) 912 return SE.getTruncateOrZeroExtend(It, ResultTy); 913 914 // We are using the following formula for BC(It, K): 915 // 916 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 917 // 918 // Suppose, W is the bitwidth of the return value. We must be prepared for 919 // overflow. Hence, we must assure that the result of our computation is 920 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 921 // safe in modular arithmetic. 922 // 923 // However, this code doesn't use exactly that formula; the formula it uses 924 // is something like the following, where T is the number of factors of 2 in 925 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 926 // exponentiation: 927 // 928 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 929 // 930 // This formula is trivially equivalent to the previous formula. However, 931 // this formula can be implemented much more efficiently. The trick is that 932 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 933 // arithmetic. To do exact division in modular arithmetic, all we have 934 // to do is multiply by the inverse. Therefore, this step can be done at 935 // width W. 936 // 937 // The next issue is how to safely do the division by 2^T. The way this 938 // is done is by doing the multiplication step at a width of at least W + T 939 // bits. This way, the bottom W+T bits of the product are accurate. Then, 940 // when we perform the division by 2^T (which is equivalent to a right shift 941 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 942 // truncated out after the division by 2^T. 943 // 944 // In comparison to just directly using the first formula, this technique 945 // is much more efficient; using the first formula requires W * K bits, 946 // but this formula less than W + K bits. Also, the first formula requires 947 // a division step, whereas this formula only requires multiplies and shifts. 948 // 949 // It doesn't matter whether the subtraction step is done in the calculation 950 // width or the input iteration count's width; if the subtraction overflows, 951 // the result must be zero anyway. We prefer here to do it in the width of 952 // the induction variable because it helps a lot for certain cases; CodeGen 953 // isn't smart enough to ignore the overflow, which leads to much less 954 // efficient code if the width of the subtraction is wider than the native 955 // register width. 956 // 957 // (It's possible to not widen at all by pulling out factors of 2 before 958 // the multiplication; for example, K=2 can be calculated as 959 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 960 // extra arithmetic, so it's not an obvious win, and it gets 961 // much more complicated for K > 3.) 962 963 // Protection from insane SCEVs; this bound is conservative, 964 // but it probably doesn't matter. 965 if (K > 1000) 966 return SE.getCouldNotCompute(); 967 968 unsigned W = SE.getTypeSizeInBits(ResultTy); 969 970 // Calculate K! / 2^T and T; we divide out the factors of two before 971 // multiplying for calculating K! / 2^T to avoid overflow. 972 // Other overflow doesn't matter because we only care about the bottom 973 // W bits of the result. 974 APInt OddFactorial(W, 1); 975 unsigned T = 1; 976 for (unsigned i = 3; i <= K; ++i) { 977 APInt Mult(W, i); 978 unsigned TwoFactors = Mult.countTrailingZeros(); 979 T += TwoFactors; 980 Mult.lshrInPlace(TwoFactors); 981 OddFactorial *= Mult; 982 } 983 984 // We need at least W + T bits for the multiplication step 985 unsigned CalculationBits = W + T; 986 987 // Calculate 2^T, at width T+W. 988 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 989 990 // Calculate the multiplicative inverse of K! / 2^T; 991 // this multiplication factor will perform the exact division by 992 // K! / 2^T. 993 APInt Mod = APInt::getSignedMinValue(W+1); 994 APInt MultiplyFactor = OddFactorial.zext(W+1); 995 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 996 MultiplyFactor = MultiplyFactor.trunc(W); 997 998 // Calculate the product, at width T+W 999 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1000 CalculationBits); 1001 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1002 for (unsigned i = 1; i != K; ++i) { 1003 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1004 Dividend = SE.getMulExpr(Dividend, 1005 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1006 } 1007 1008 // Divide by 2^T 1009 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1010 1011 // Truncate the result, and divide by K! / 2^T. 1012 1013 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1014 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1015 } 1016 1017 /// Return the value of this chain of recurrences at the specified iteration 1018 /// number. We can evaluate this recurrence by multiplying each element in the 1019 /// chain by the binomial coefficient corresponding to it. In other words, we 1020 /// can evaluate {A,+,B,+,C,+,D} as: 1021 /// 1022 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1023 /// 1024 /// where BC(It, k) stands for binomial coefficient. 1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1026 ScalarEvolution &SE) const { 1027 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1028 } 1029 1030 const SCEV * 1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1032 const SCEV *It, ScalarEvolution &SE) { 1033 assert(Operands.size() > 0); 1034 const SCEV *Result = Operands[0]; 1035 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1036 // The computation is correct in the face of overflow provided that the 1037 // multiplication is performed _after_ the evaluation of the binomial 1038 // coefficient. 1039 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1040 if (isa<SCEVCouldNotCompute>(Coeff)) 1041 return Coeff; 1042 1043 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1044 } 1045 return Result; 1046 } 1047 1048 //===----------------------------------------------------------------------===// 1049 // SCEV Expression folder implementations 1050 //===----------------------------------------------------------------------===// 1051 1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1053 unsigned Depth) { 1054 assert(Depth <= 1 && 1055 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1056 1057 // We could be called with an integer-typed operands during SCEV rewrites. 1058 // Since the operand is an integer already, just perform zext/trunc/self cast. 1059 if (!Op->getType()->isPointerTy()) 1060 return Op; 1061 1062 // What would be an ID for such a SCEV cast expression? 1063 FoldingSetNodeID ID; 1064 ID.AddInteger(scPtrToInt); 1065 ID.AddPointer(Op); 1066 1067 void *IP = nullptr; 1068 1069 // Is there already an expression for such a cast? 1070 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1071 return S; 1072 1073 // It isn't legal for optimizations to construct new ptrtoint expressions 1074 // for non-integral pointers. 1075 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1076 return getCouldNotCompute(); 1077 1078 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1079 1080 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1081 // is sufficiently wide to represent all possible pointer values. 1082 // We could theoretically teach SCEV to truncate wider pointers, but 1083 // that isn't implemented for now. 1084 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1085 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1086 return getCouldNotCompute(); 1087 1088 // If not, is this expression something we can't reduce any further? 1089 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1090 // Perform some basic constant folding. If the operand of the ptr2int cast 1091 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1092 // left as-is), but produce a zero constant. 1093 // NOTE: We could handle a more general case, but lack motivational cases. 1094 if (isa<ConstantPointerNull>(U->getValue())) 1095 return getZero(IntPtrTy); 1096 1097 // Create an explicit cast node. 1098 // We can reuse the existing insert position since if we get here, 1099 // we won't have made any changes which would invalidate it. 1100 SCEV *S = new (SCEVAllocator) 1101 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1102 UniqueSCEVs.InsertNode(S, IP); 1103 addToLoopUseLists(S); 1104 return S; 1105 } 1106 1107 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1108 "non-SCEVUnknown's."); 1109 1110 // Otherwise, we've got some expression that is more complex than just a 1111 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1112 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1113 // only, and the expressions must otherwise be integer-typed. 1114 // So sink the cast down to the SCEVUnknown's. 1115 1116 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1117 /// which computes a pointer-typed value, and rewrites the whole expression 1118 /// tree so that *all* the computations are done on integers, and the only 1119 /// pointer-typed operands in the expression are SCEVUnknown. 1120 class SCEVPtrToIntSinkingRewriter 1121 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1122 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1123 1124 public: 1125 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1126 1127 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1128 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1129 return Rewriter.visit(Scev); 1130 } 1131 1132 const SCEV *visit(const SCEV *S) { 1133 Type *STy = S->getType(); 1134 // If the expression is not pointer-typed, just keep it as-is. 1135 if (!STy->isPointerTy()) 1136 return S; 1137 // Else, recursively sink the cast down into it. 1138 return Base::visit(S); 1139 } 1140 1141 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1142 SmallVector<const SCEV *, 2> Operands; 1143 bool Changed = false; 1144 for (auto *Op : Expr->operands()) { 1145 Operands.push_back(visit(Op)); 1146 Changed |= Op != Operands.back(); 1147 } 1148 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1149 } 1150 1151 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1152 SmallVector<const SCEV *, 2> Operands; 1153 bool Changed = false; 1154 for (auto *Op : Expr->operands()) { 1155 Operands.push_back(visit(Op)); 1156 Changed |= Op != Operands.back(); 1157 } 1158 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1159 } 1160 1161 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1162 assert(Expr->getType()->isPointerTy() && 1163 "Should only reach pointer-typed SCEVUnknown's."); 1164 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1165 } 1166 }; 1167 1168 // And actually perform the cast sinking. 1169 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1170 assert(IntOp->getType()->isIntegerTy() && 1171 "We must have succeeded in sinking the cast, " 1172 "and ending up with an integer-typed expression!"); 1173 return IntOp; 1174 } 1175 1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1177 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1178 1179 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1180 if (isa<SCEVCouldNotCompute>(IntOp)) 1181 return IntOp; 1182 1183 return getTruncateOrZeroExtend(IntOp, Ty); 1184 } 1185 1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1187 unsigned Depth) { 1188 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1189 "This is not a truncating conversion!"); 1190 assert(isSCEVable(Ty) && 1191 "This is not a conversion to a SCEVable type!"); 1192 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1193 Ty = getEffectiveSCEVType(Ty); 1194 1195 FoldingSetNodeID ID; 1196 ID.AddInteger(scTruncate); 1197 ID.AddPointer(Op); 1198 ID.AddPointer(Ty); 1199 void *IP = nullptr; 1200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1201 1202 // Fold if the operand is constant. 1203 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1204 return getConstant( 1205 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1206 1207 // trunc(trunc(x)) --> trunc(x) 1208 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1209 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1210 1211 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1212 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1213 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1214 1215 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1216 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1217 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1218 1219 if (Depth > MaxCastDepth) { 1220 SCEV *S = 1221 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1222 UniqueSCEVs.InsertNode(S, IP); 1223 addToLoopUseLists(S); 1224 return S; 1225 } 1226 1227 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1228 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1229 // if after transforming we have at most one truncate, not counting truncates 1230 // that replace other casts. 1231 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1232 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1233 SmallVector<const SCEV *, 4> Operands; 1234 unsigned numTruncs = 0; 1235 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1236 ++i) { 1237 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1238 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1239 isa<SCEVTruncateExpr>(S)) 1240 numTruncs++; 1241 Operands.push_back(S); 1242 } 1243 if (numTruncs < 2) { 1244 if (isa<SCEVAddExpr>(Op)) 1245 return getAddExpr(Operands); 1246 else if (isa<SCEVMulExpr>(Op)) 1247 return getMulExpr(Operands); 1248 else 1249 llvm_unreachable("Unexpected SCEV type for Op."); 1250 } 1251 // Although we checked in the beginning that ID is not in the cache, it is 1252 // possible that during recursion and different modification ID was inserted 1253 // into the cache. So if we find it, just return it. 1254 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1255 return S; 1256 } 1257 1258 // If the input value is a chrec scev, truncate the chrec's operands. 1259 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1260 SmallVector<const SCEV *, 4> Operands; 1261 for (const SCEV *Op : AddRec->operands()) 1262 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1263 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1264 } 1265 1266 // Return zero if truncating to known zeros. 1267 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1268 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1269 return getZero(Ty); 1270 1271 // The cast wasn't folded; create an explicit cast node. We can reuse 1272 // the existing insert position since if we get here, we won't have 1273 // made any changes which would invalidate it. 1274 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1275 Op, Ty); 1276 UniqueSCEVs.InsertNode(S, IP); 1277 addToLoopUseLists(S); 1278 return S; 1279 } 1280 1281 // Get the limit of a recurrence such that incrementing by Step cannot cause 1282 // signed overflow as long as the value of the recurrence within the 1283 // loop does not exceed this limit before incrementing. 1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1285 ICmpInst::Predicate *Pred, 1286 ScalarEvolution *SE) { 1287 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1288 if (SE->isKnownPositive(Step)) { 1289 *Pred = ICmpInst::ICMP_SLT; 1290 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1291 SE->getSignedRangeMax(Step)); 1292 } 1293 if (SE->isKnownNegative(Step)) { 1294 *Pred = ICmpInst::ICMP_SGT; 1295 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1296 SE->getSignedRangeMin(Step)); 1297 } 1298 return nullptr; 1299 } 1300 1301 // Get the limit of a recurrence such that incrementing by Step cannot cause 1302 // unsigned overflow as long as the value of the recurrence within the loop does 1303 // not exceed this limit before incrementing. 1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1305 ICmpInst::Predicate *Pred, 1306 ScalarEvolution *SE) { 1307 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1308 *Pred = ICmpInst::ICMP_ULT; 1309 1310 return SE->getConstant(APInt::getMinValue(BitWidth) - 1311 SE->getUnsignedRangeMax(Step)); 1312 } 1313 1314 namespace { 1315 1316 struct ExtendOpTraitsBase { 1317 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1318 unsigned); 1319 }; 1320 1321 // Used to make code generic over signed and unsigned overflow. 1322 template <typename ExtendOp> struct ExtendOpTraits { 1323 // Members present: 1324 // 1325 // static const SCEV::NoWrapFlags WrapType; 1326 // 1327 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1328 // 1329 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1330 // ICmpInst::Predicate *Pred, 1331 // ScalarEvolution *SE); 1332 }; 1333 1334 template <> 1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1336 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1337 1338 static const GetExtendExprTy GetExtendExpr; 1339 1340 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1341 ICmpInst::Predicate *Pred, 1342 ScalarEvolution *SE) { 1343 return getSignedOverflowLimitForStep(Step, Pred, SE); 1344 } 1345 }; 1346 1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1348 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1349 1350 template <> 1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1352 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1353 1354 static const GetExtendExprTy GetExtendExpr; 1355 1356 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1357 ICmpInst::Predicate *Pred, 1358 ScalarEvolution *SE) { 1359 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1360 } 1361 }; 1362 1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1364 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1365 1366 } // end anonymous namespace 1367 1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1373 // expression "Step + sext/zext(PreIncAR)" is congruent with 1374 // "sext/zext(PostIncAR)" 1375 template <typename ExtendOpTy> 1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1377 ScalarEvolution *SE, unsigned Depth) { 1378 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1379 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1380 1381 const Loop *L = AR->getLoop(); 1382 const SCEV *Start = AR->getStart(); 1383 const SCEV *Step = AR->getStepRecurrence(*SE); 1384 1385 // Check for a simple looking step prior to loop entry. 1386 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1387 if (!SA) 1388 return nullptr; 1389 1390 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1391 // subtraction is expensive. For this purpose, perform a quick and dirty 1392 // difference, by checking for Step in the operand list. 1393 SmallVector<const SCEV *, 4> DiffOps; 1394 for (const SCEV *Op : SA->operands()) 1395 if (Op != Step) 1396 DiffOps.push_back(Op); 1397 1398 if (DiffOps.size() == SA->getNumOperands()) 1399 return nullptr; 1400 1401 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1402 // `Step`: 1403 1404 // 1. NSW/NUW flags on the step increment. 1405 auto PreStartFlags = 1406 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1407 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1408 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1409 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1410 1411 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1412 // "S+X does not sign/unsign-overflow". 1413 // 1414 1415 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1416 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1417 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1418 return PreStart; 1419 1420 // 2. Direct overflow check on the step operation's expression. 1421 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1422 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1423 const SCEV *OperandExtendedStart = 1424 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1425 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1426 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1427 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1428 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1429 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1430 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1431 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1432 } 1433 return PreStart; 1434 } 1435 1436 // 3. Loop precondition. 1437 ICmpInst::Predicate Pred; 1438 const SCEV *OverflowLimit = 1439 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1440 1441 if (OverflowLimit && 1442 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1443 return PreStart; 1444 1445 return nullptr; 1446 } 1447 1448 // Get the normalized zero or sign extended expression for this AddRec's Start. 1449 template <typename ExtendOpTy> 1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1451 ScalarEvolution *SE, 1452 unsigned Depth) { 1453 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1454 1455 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1456 if (!PreStart) 1457 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1458 1459 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1460 Depth), 1461 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1462 } 1463 1464 // Try to prove away overflow by looking at "nearby" add recurrences. A 1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1467 // 1468 // Formally: 1469 // 1470 // {S,+,X} == {S-T,+,X} + T 1471 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1472 // 1473 // If ({S-T,+,X} + T) does not overflow ... (1) 1474 // 1475 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1476 // 1477 // If {S-T,+,X} does not overflow ... (2) 1478 // 1479 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1480 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1481 // 1482 // If (S-T)+T does not overflow ... (3) 1483 // 1484 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1485 // == {Ext(S),+,Ext(X)} == LHS 1486 // 1487 // Thus, if (1), (2) and (3) are true for some T, then 1488 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1489 // 1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1491 // does not overflow" restricted to the 0th iteration. Therefore we only need 1492 // to check for (1) and (2). 1493 // 1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1495 // is `Delta` (defined below). 1496 template <typename ExtendOpTy> 1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1498 const SCEV *Step, 1499 const Loop *L) { 1500 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1501 1502 // We restrict `Start` to a constant to prevent SCEV from spending too much 1503 // time here. It is correct (but more expensive) to continue with a 1504 // non-constant `Start` and do a general SCEV subtraction to compute 1505 // `PreStart` below. 1506 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1507 if (!StartC) 1508 return false; 1509 1510 APInt StartAI = StartC->getAPInt(); 1511 1512 for (unsigned Delta : {-2, -1, 1, 2}) { 1513 const SCEV *PreStart = getConstant(StartAI - Delta); 1514 1515 FoldingSetNodeID ID; 1516 ID.AddInteger(scAddRecExpr); 1517 ID.AddPointer(PreStart); 1518 ID.AddPointer(Step); 1519 ID.AddPointer(L); 1520 void *IP = nullptr; 1521 const auto *PreAR = 1522 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1523 1524 // Give up if we don't already have the add recurrence we need because 1525 // actually constructing an add recurrence is relatively expensive. 1526 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1527 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1528 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1529 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1530 DeltaS, &Pred, this); 1531 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1532 return true; 1533 } 1534 } 1535 1536 return false; 1537 } 1538 1539 // Finds an integer D for an expression (C + x + y + ...) such that the top 1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1543 // the (C + x + y + ...) expression is \p WholeAddExpr. 1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1545 const SCEVConstant *ConstantTerm, 1546 const SCEVAddExpr *WholeAddExpr) { 1547 const APInt &C = ConstantTerm->getAPInt(); 1548 const unsigned BitWidth = C.getBitWidth(); 1549 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1550 uint32_t TZ = BitWidth; 1551 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1552 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1553 if (TZ) { 1554 // Set D to be as many least significant bits of C as possible while still 1555 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1556 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1557 } 1558 return APInt(BitWidth, 0); 1559 } 1560 1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1566 const APInt &ConstantStart, 1567 const SCEV *Step) { 1568 const unsigned BitWidth = ConstantStart.getBitWidth(); 1569 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1570 if (TZ) 1571 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1572 : ConstantStart; 1573 return APInt(BitWidth, 0); 1574 } 1575 1576 const SCEV * 1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1578 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1579 "This is not an extending conversion!"); 1580 assert(isSCEVable(Ty) && 1581 "This is not a conversion to a SCEVable type!"); 1582 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1583 Ty = getEffectiveSCEVType(Ty); 1584 1585 // Fold if the operand is constant. 1586 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1587 return getConstant( 1588 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1589 1590 // zext(zext(x)) --> zext(x) 1591 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1592 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1593 1594 // Before doing any expensive analysis, check to see if we've already 1595 // computed a SCEV for this Op and Ty. 1596 FoldingSetNodeID ID; 1597 ID.AddInteger(scZeroExtend); 1598 ID.AddPointer(Op); 1599 ID.AddPointer(Ty); 1600 void *IP = nullptr; 1601 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1602 if (Depth > MaxCastDepth) { 1603 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1604 Op, Ty); 1605 UniqueSCEVs.InsertNode(S, IP); 1606 addToLoopUseLists(S); 1607 return S; 1608 } 1609 1610 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1611 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1612 // It's possible the bits taken off by the truncate were all zero bits. If 1613 // so, we should be able to simplify this further. 1614 const SCEV *X = ST->getOperand(); 1615 ConstantRange CR = getUnsignedRange(X); 1616 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1617 unsigned NewBits = getTypeSizeInBits(Ty); 1618 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1619 CR.zextOrTrunc(NewBits))) 1620 return getTruncateOrZeroExtend(X, Ty, Depth); 1621 } 1622 1623 // If the input value is a chrec scev, and we can prove that the value 1624 // did not overflow the old, smaller, value, we can zero extend all of the 1625 // operands (often constants). This allows analysis of something like 1626 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1627 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1628 if (AR->isAffine()) { 1629 const SCEV *Start = AR->getStart(); 1630 const SCEV *Step = AR->getStepRecurrence(*this); 1631 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1632 const Loop *L = AR->getLoop(); 1633 1634 if (!AR->hasNoUnsignedWrap()) { 1635 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1636 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1637 } 1638 1639 // If we have special knowledge that this addrec won't overflow, 1640 // we don't need to do any further analysis. 1641 if (AR->hasNoUnsignedWrap()) 1642 return getAddRecExpr( 1643 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1644 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1645 1646 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1647 // Note that this serves two purposes: It filters out loops that are 1648 // simply not analyzable, and it covers the case where this code is 1649 // being called from within backedge-taken count analysis, such that 1650 // attempting to ask for the backedge-taken count would likely result 1651 // in infinite recursion. In the later case, the analysis code will 1652 // cope with a conservative value, and it will take care to purge 1653 // that value once it has finished. 1654 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1655 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1656 // Manually compute the final value for AR, checking for overflow. 1657 1658 // Check whether the backedge-taken count can be losslessly casted to 1659 // the addrec's type. The count is always unsigned. 1660 const SCEV *CastedMaxBECount = 1661 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1662 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1663 CastedMaxBECount, MaxBECount->getType(), Depth); 1664 if (MaxBECount == RecastedMaxBECount) { 1665 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1666 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1667 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1668 SCEV::FlagAnyWrap, Depth + 1); 1669 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1670 SCEV::FlagAnyWrap, 1671 Depth + 1), 1672 WideTy, Depth + 1); 1673 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1674 const SCEV *WideMaxBECount = 1675 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1676 const SCEV *OperandExtendedAdd = 1677 getAddExpr(WideStart, 1678 getMulExpr(WideMaxBECount, 1679 getZeroExtendExpr(Step, WideTy, Depth + 1), 1680 SCEV::FlagAnyWrap, Depth + 1), 1681 SCEV::FlagAnyWrap, Depth + 1); 1682 if (ZAdd == OperandExtendedAdd) { 1683 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1684 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1685 // Return the expression with the addrec on the outside. 1686 return getAddRecExpr( 1687 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1688 Depth + 1), 1689 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1690 AR->getNoWrapFlags()); 1691 } 1692 // Similar to above, only this time treat the step value as signed. 1693 // This covers loops that count down. 1694 OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getSignExtendExpr(Step, WideTy, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1); 1700 if (ZAdd == OperandExtendedAdd) { 1701 // Cache knowledge of AR NW, which is propagated to this AddRec. 1702 // Negative step causes unsigned wrap, but it still can't self-wrap. 1703 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1704 // Return the expression with the addrec on the outside. 1705 return getAddRecExpr( 1706 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1707 Depth + 1), 1708 getSignExtendExpr(Step, Ty, Depth + 1), L, 1709 AR->getNoWrapFlags()); 1710 } 1711 } 1712 } 1713 1714 // Normally, in the cases we can prove no-overflow via a 1715 // backedge guarding condition, we can also compute a backedge 1716 // taken count for the loop. The exceptions are assumptions and 1717 // guards present in the loop -- SCEV is not great at exploiting 1718 // these to compute max backedge taken counts, but can still use 1719 // these to prove lack of overflow. Use this fact to avoid 1720 // doing extra work that may not pay off. 1721 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1722 !AC.assumptions().empty()) { 1723 1724 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1725 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1726 if (AR->hasNoUnsignedWrap()) { 1727 // Same as nuw case above - duplicated here to avoid a compile time 1728 // issue. It's not clear that the order of checks does matter, but 1729 // it's one of two issue possible causes for a change which was 1730 // reverted. Be conservative for the moment. 1731 return getAddRecExpr( 1732 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1733 Depth + 1), 1734 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1735 AR->getNoWrapFlags()); 1736 } 1737 1738 // For a negative step, we can extend the operands iff doing so only 1739 // traverses values in the range zext([0,UINT_MAX]). 1740 if (isKnownNegative(Step)) { 1741 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1742 getSignedRangeMin(Step)); 1743 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1744 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1745 // Cache knowledge of AR NW, which is propagated to this 1746 // AddRec. Negative step causes unsigned wrap, but it 1747 // still can't self-wrap. 1748 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1749 // Return the expression with the addrec on the outside. 1750 return getAddRecExpr( 1751 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1752 Depth + 1), 1753 getSignExtendExpr(Step, Ty, Depth + 1), L, 1754 AR->getNoWrapFlags()); 1755 } 1756 } 1757 } 1758 1759 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1760 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1761 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1762 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1763 const APInt &C = SC->getAPInt(); 1764 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1765 if (D != 0) { 1766 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1767 const SCEV *SResidual = 1768 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1769 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1770 return getAddExpr(SZExtD, SZExtR, 1771 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1772 Depth + 1); 1773 } 1774 } 1775 1776 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1777 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1778 return getAddRecExpr( 1779 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1780 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1781 } 1782 } 1783 1784 // zext(A % B) --> zext(A) % zext(B) 1785 { 1786 const SCEV *LHS; 1787 const SCEV *RHS; 1788 if (matchURem(Op, LHS, RHS)) 1789 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1790 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1791 } 1792 1793 // zext(A / B) --> zext(A) / zext(B). 1794 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1795 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1796 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1797 1798 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1799 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1800 if (SA->hasNoUnsignedWrap()) { 1801 // If the addition does not unsign overflow then we can, by definition, 1802 // commute the zero extension with the addition operation. 1803 SmallVector<const SCEV *, 4> Ops; 1804 for (const auto *Op : SA->operands()) 1805 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1806 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1807 } 1808 1809 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1810 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1811 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1812 // 1813 // Often address arithmetics contain expressions like 1814 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1815 // This transformation is useful while proving that such expressions are 1816 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1817 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1818 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1819 if (D != 0) { 1820 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1821 const SCEV *SResidual = 1822 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1823 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1824 return getAddExpr(SZExtD, SZExtR, 1825 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1826 Depth + 1); 1827 } 1828 } 1829 } 1830 1831 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1832 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1833 if (SM->hasNoUnsignedWrap()) { 1834 // If the multiply does not unsign overflow then we can, by definition, 1835 // commute the zero extension with the multiply operation. 1836 SmallVector<const SCEV *, 4> Ops; 1837 for (const auto *Op : SM->operands()) 1838 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1839 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1840 } 1841 1842 // zext(2^K * (trunc X to iN)) to iM -> 1843 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1844 // 1845 // Proof: 1846 // 1847 // zext(2^K * (trunc X to iN)) to iM 1848 // = zext((trunc X to iN) << K) to iM 1849 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1850 // (because shl removes the top K bits) 1851 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1852 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1853 // 1854 if (SM->getNumOperands() == 2) 1855 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1856 if (MulLHS->getAPInt().isPowerOf2()) 1857 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1858 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1859 MulLHS->getAPInt().logBase2(); 1860 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1861 return getMulExpr( 1862 getZeroExtendExpr(MulLHS, Ty), 1863 getZeroExtendExpr( 1864 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1865 SCEV::FlagNUW, Depth + 1); 1866 } 1867 } 1868 1869 // The cast wasn't folded; create an explicit cast node. 1870 // Recompute the insert position, as it may have been invalidated. 1871 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1872 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1873 Op, Ty); 1874 UniqueSCEVs.InsertNode(S, IP); 1875 addToLoopUseLists(S); 1876 return S; 1877 } 1878 1879 const SCEV * 1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1882 "This is not an extending conversion!"); 1883 assert(isSCEVable(Ty) && 1884 "This is not a conversion to a SCEVable type!"); 1885 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1886 Ty = getEffectiveSCEVType(Ty); 1887 1888 // Fold if the operand is constant. 1889 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1890 return getConstant( 1891 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1892 1893 // sext(sext(x)) --> sext(x) 1894 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1895 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1896 1897 // sext(zext(x)) --> zext(x) 1898 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1899 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1900 1901 // Before doing any expensive analysis, check to see if we've already 1902 // computed a SCEV for this Op and Ty. 1903 FoldingSetNodeID ID; 1904 ID.AddInteger(scSignExtend); 1905 ID.AddPointer(Op); 1906 ID.AddPointer(Ty); 1907 void *IP = nullptr; 1908 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1909 // Limit recursion depth. 1910 if (Depth > MaxCastDepth) { 1911 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1912 Op, Ty); 1913 UniqueSCEVs.InsertNode(S, IP); 1914 addToLoopUseLists(S); 1915 return S; 1916 } 1917 1918 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1919 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1920 // It's possible the bits taken off by the truncate were all sign bits. If 1921 // so, we should be able to simplify this further. 1922 const SCEV *X = ST->getOperand(); 1923 ConstantRange CR = getSignedRange(X); 1924 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1925 unsigned NewBits = getTypeSizeInBits(Ty); 1926 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1927 CR.sextOrTrunc(NewBits))) 1928 return getTruncateOrSignExtend(X, Ty, Depth); 1929 } 1930 1931 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1932 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1933 if (SA->hasNoSignedWrap()) { 1934 // If the addition does not sign overflow then we can, by definition, 1935 // commute the sign extension with the addition operation. 1936 SmallVector<const SCEV *, 4> Ops; 1937 for (const auto *Op : SA->operands()) 1938 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1939 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1940 } 1941 1942 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1943 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1944 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1945 // 1946 // For instance, this will bring two seemingly different expressions: 1947 // 1 + sext(5 + 20 * %x + 24 * %y) and 1948 // sext(6 + 20 * %x + 24 * %y) 1949 // to the same form: 1950 // 2 + sext(4 + 20 * %x + 24 * %y) 1951 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1952 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1953 if (D != 0) { 1954 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1955 const SCEV *SResidual = 1956 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1957 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1958 return getAddExpr(SSExtD, SSExtR, 1959 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1960 Depth + 1); 1961 } 1962 } 1963 } 1964 // If the input value is a chrec scev, and we can prove that the value 1965 // did not overflow the old, smaller, value, we can sign extend all of the 1966 // operands (often constants). This allows analysis of something like 1967 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1968 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1969 if (AR->isAffine()) { 1970 const SCEV *Start = AR->getStart(); 1971 const SCEV *Step = AR->getStepRecurrence(*this); 1972 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1973 const Loop *L = AR->getLoop(); 1974 1975 if (!AR->hasNoSignedWrap()) { 1976 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1977 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1978 } 1979 1980 // If we have special knowledge that this addrec won't overflow, 1981 // we don't need to do any further analysis. 1982 if (AR->hasNoSignedWrap()) 1983 return getAddRecExpr( 1984 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1985 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1986 1987 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1988 // Note that this serves two purposes: It filters out loops that are 1989 // simply not analyzable, and it covers the case where this code is 1990 // being called from within backedge-taken count analysis, such that 1991 // attempting to ask for the backedge-taken count would likely result 1992 // in infinite recursion. In the later case, the analysis code will 1993 // cope with a conservative value, and it will take care to purge 1994 // that value once it has finished. 1995 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1996 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1997 // Manually compute the final value for AR, checking for 1998 // overflow. 1999 2000 // Check whether the backedge-taken count can be losslessly casted to 2001 // the addrec's type. The count is always unsigned. 2002 const SCEV *CastedMaxBECount = 2003 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2004 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2005 CastedMaxBECount, MaxBECount->getType(), Depth); 2006 if (MaxBECount == RecastedMaxBECount) { 2007 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2008 // Check whether Start+Step*MaxBECount has no signed overflow. 2009 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2010 SCEV::FlagAnyWrap, Depth + 1); 2011 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2012 SCEV::FlagAnyWrap, 2013 Depth + 1), 2014 WideTy, Depth + 1); 2015 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2016 const SCEV *WideMaxBECount = 2017 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2018 const SCEV *OperandExtendedAdd = 2019 getAddExpr(WideStart, 2020 getMulExpr(WideMaxBECount, 2021 getSignExtendExpr(Step, WideTy, Depth + 1), 2022 SCEV::FlagAnyWrap, Depth + 1), 2023 SCEV::FlagAnyWrap, Depth + 1); 2024 if (SAdd == OperandExtendedAdd) { 2025 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2026 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2027 // Return the expression with the addrec on the outside. 2028 return getAddRecExpr( 2029 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2030 Depth + 1), 2031 getSignExtendExpr(Step, Ty, Depth + 1), L, 2032 AR->getNoWrapFlags()); 2033 } 2034 // Similar to above, only this time treat the step value as unsigned. 2035 // This covers loops that count up with an unsigned step. 2036 OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getZeroExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // If AR wraps around then 2044 // 2045 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2046 // => SAdd != OperandExtendedAdd 2047 // 2048 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2049 // (SAdd == OperandExtendedAdd => AR is NW) 2050 2051 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2052 2053 // Return the expression with the addrec on the outside. 2054 return getAddRecExpr( 2055 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2056 Depth + 1), 2057 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2058 AR->getNoWrapFlags()); 2059 } 2060 } 2061 } 2062 2063 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2064 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2065 if (AR->hasNoSignedWrap()) { 2066 // Same as nsw case above - duplicated here to avoid a compile time 2067 // issue. It's not clear that the order of checks does matter, but 2068 // it's one of two issue possible causes for a change which was 2069 // reverted. Be conservative for the moment. 2070 return getAddRecExpr( 2071 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2072 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2073 } 2074 2075 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2076 // if D + (C - D + Step * n) could be proven to not signed wrap 2077 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2078 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2079 const APInt &C = SC->getAPInt(); 2080 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2081 if (D != 0) { 2082 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2083 const SCEV *SResidual = 2084 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2085 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2086 return getAddExpr(SSExtD, SSExtR, 2087 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2088 Depth + 1); 2089 } 2090 } 2091 2092 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2093 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2094 return getAddRecExpr( 2095 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2096 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2097 } 2098 } 2099 2100 // If the input value is provably positive and we could not simplify 2101 // away the sext build a zext instead. 2102 if (isKnownNonNegative(Op)) 2103 return getZeroExtendExpr(Op, Ty, Depth + 1); 2104 2105 // The cast wasn't folded; create an explicit cast node. 2106 // Recompute the insert position, as it may have been invalidated. 2107 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2108 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2109 Op, Ty); 2110 UniqueSCEVs.InsertNode(S, IP); 2111 addToLoopUseLists(S); 2112 return S; 2113 } 2114 2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2116 /// unspecified bits out to the given type. 2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2118 Type *Ty) { 2119 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2120 "This is not an extending conversion!"); 2121 assert(isSCEVable(Ty) && 2122 "This is not a conversion to a SCEVable type!"); 2123 Ty = getEffectiveSCEVType(Ty); 2124 2125 // Sign-extend negative constants. 2126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2127 if (SC->getAPInt().isNegative()) 2128 return getSignExtendExpr(Op, Ty); 2129 2130 // Peel off a truncate cast. 2131 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2132 const SCEV *NewOp = T->getOperand(); 2133 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2134 return getAnyExtendExpr(NewOp, Ty); 2135 return getTruncateOrNoop(NewOp, Ty); 2136 } 2137 2138 // Next try a zext cast. If the cast is folded, use it. 2139 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2140 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2141 return ZExt; 2142 2143 // Next try a sext cast. If the cast is folded, use it. 2144 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2145 if (!isa<SCEVSignExtendExpr>(SExt)) 2146 return SExt; 2147 2148 // Force the cast to be folded into the operands of an addrec. 2149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2150 SmallVector<const SCEV *, 4> Ops; 2151 for (const SCEV *Op : AR->operands()) 2152 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2153 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2154 } 2155 2156 // If the expression is obviously signed, use the sext cast value. 2157 if (isa<SCEVSMaxExpr>(Op)) 2158 return SExt; 2159 2160 // Absent any other information, use the zext cast value. 2161 return ZExt; 2162 } 2163 2164 /// Process the given Ops list, which is a list of operands to be added under 2165 /// the given scale, update the given map. This is a helper function for 2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2167 /// that would form an add expression like this: 2168 /// 2169 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2170 /// 2171 /// where A and B are constants, update the map with these values: 2172 /// 2173 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2174 /// 2175 /// and add 13 + A*B*29 to AccumulatedConstant. 2176 /// This will allow getAddRecExpr to produce this: 2177 /// 2178 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2179 /// 2180 /// This form often exposes folding opportunities that are hidden in 2181 /// the original operand list. 2182 /// 2183 /// Return true iff it appears that any interesting folding opportunities 2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2185 /// the common case where no interesting opportunities are present, and 2186 /// is also used as a check to avoid infinite recursion. 2187 static bool 2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2189 SmallVectorImpl<const SCEV *> &NewOps, 2190 APInt &AccumulatedConstant, 2191 const SCEV *const *Ops, size_t NumOperands, 2192 const APInt &Scale, 2193 ScalarEvolution &SE) { 2194 bool Interesting = false; 2195 2196 // Iterate over the add operands. They are sorted, with constants first. 2197 unsigned i = 0; 2198 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2199 ++i; 2200 // Pull a buried constant out to the outside. 2201 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2202 Interesting = true; 2203 AccumulatedConstant += Scale * C->getAPInt(); 2204 } 2205 2206 // Next comes everything else. We're especially interested in multiplies 2207 // here, but they're in the middle, so just visit the rest with one loop. 2208 for (; i != NumOperands; ++i) { 2209 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2210 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2211 APInt NewScale = 2212 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2213 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2214 // A multiplication of a constant with another add; recurse. 2215 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2216 Interesting |= 2217 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2218 Add->op_begin(), Add->getNumOperands(), 2219 NewScale, SE); 2220 } else { 2221 // A multiplication of a constant with some other value. Update 2222 // the map. 2223 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2224 const SCEV *Key = SE.getMulExpr(MulOps); 2225 auto Pair = M.insert({Key, NewScale}); 2226 if (Pair.second) { 2227 NewOps.push_back(Pair.first->first); 2228 } else { 2229 Pair.first->second += NewScale; 2230 // The map already had an entry for this value, which may indicate 2231 // a folding opportunity. 2232 Interesting = true; 2233 } 2234 } 2235 } else { 2236 // An ordinary operand. Update the map. 2237 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2238 M.insert({Ops[i], Scale}); 2239 if (Pair.second) { 2240 NewOps.push_back(Pair.first->first); 2241 } else { 2242 Pair.first->second += Scale; 2243 // The map already had an entry for this value, which may indicate 2244 // a folding opportunity. 2245 Interesting = true; 2246 } 2247 } 2248 } 2249 2250 return Interesting; 2251 } 2252 2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2254 const SCEV *LHS, const SCEV *RHS) { 2255 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2256 SCEV::NoWrapFlags, unsigned); 2257 switch (BinOp) { 2258 default: 2259 llvm_unreachable("Unsupported binary op"); 2260 case Instruction::Add: 2261 Operation = &ScalarEvolution::getAddExpr; 2262 break; 2263 case Instruction::Sub: 2264 Operation = &ScalarEvolution::getMinusSCEV; 2265 break; 2266 case Instruction::Mul: 2267 Operation = &ScalarEvolution::getMulExpr; 2268 break; 2269 } 2270 2271 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2272 Signed ? &ScalarEvolution::getSignExtendExpr 2273 : &ScalarEvolution::getZeroExtendExpr; 2274 2275 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2276 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2277 auto *WideTy = 2278 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2279 2280 const SCEV *A = (this->*Extension)( 2281 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2282 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2283 (this->*Extension)(RHS, WideTy, 0), 2284 SCEV::FlagAnyWrap, 0); 2285 return A == B; 2286 } 2287 2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2290 const OverflowingBinaryOperator *OBO) { 2291 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2292 2293 if (OBO->hasNoUnsignedWrap()) 2294 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2295 if (OBO->hasNoSignedWrap()) 2296 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2297 2298 bool Deduced = false; 2299 2300 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2301 return {Flags, Deduced}; 2302 2303 if (OBO->getOpcode() != Instruction::Add && 2304 OBO->getOpcode() != Instruction::Sub && 2305 OBO->getOpcode() != Instruction::Mul) 2306 return {Flags, Deduced}; 2307 2308 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2309 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2310 2311 if (!OBO->hasNoUnsignedWrap() && 2312 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2313 /* Signed */ false, LHS, RHS)) { 2314 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2315 Deduced = true; 2316 } 2317 2318 if (!OBO->hasNoSignedWrap() && 2319 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2320 /* Signed */ true, LHS, RHS)) { 2321 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2322 Deduced = true; 2323 } 2324 2325 return {Flags, Deduced}; 2326 } 2327 2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2329 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2330 // can't-overflow flags for the operation if possible. 2331 static SCEV::NoWrapFlags 2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2333 const ArrayRef<const SCEV *> Ops, 2334 SCEV::NoWrapFlags Flags) { 2335 using namespace std::placeholders; 2336 2337 using OBO = OverflowingBinaryOperator; 2338 2339 bool CanAnalyze = 2340 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2341 (void)CanAnalyze; 2342 assert(CanAnalyze && "don't call from other places!"); 2343 2344 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2345 SCEV::NoWrapFlags SignOrUnsignWrap = 2346 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2347 2348 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2349 auto IsKnownNonNegative = [&](const SCEV *S) { 2350 return SE->isKnownNonNegative(S); 2351 }; 2352 2353 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2354 Flags = 2355 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2356 2357 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2358 2359 if (SignOrUnsignWrap != SignOrUnsignMask && 2360 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2361 isa<SCEVConstant>(Ops[0])) { 2362 2363 auto Opcode = [&] { 2364 switch (Type) { 2365 case scAddExpr: 2366 return Instruction::Add; 2367 case scMulExpr: 2368 return Instruction::Mul; 2369 default: 2370 llvm_unreachable("Unexpected SCEV op."); 2371 } 2372 }(); 2373 2374 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2375 2376 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2377 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2378 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2379 Opcode, C, OBO::NoSignedWrap); 2380 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2381 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2382 } 2383 2384 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2385 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2386 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2387 Opcode, C, OBO::NoUnsignedWrap); 2388 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2389 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2390 } 2391 } 2392 2393 // <0,+,nonnegative><nw> is also nuw 2394 // TODO: Add corresponding nsw case 2395 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2396 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2397 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2398 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2399 2400 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2401 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2402 Ops.size() == 2) { 2403 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2404 if (UDiv->getOperand(1) == Ops[1]) 2405 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2406 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2407 if (UDiv->getOperand(1) == Ops[0]) 2408 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2409 } 2410 2411 return Flags; 2412 } 2413 2414 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2415 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2416 } 2417 2418 /// Get a canonical add expression, or something simpler if possible. 2419 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2420 SCEV::NoWrapFlags OrigFlags, 2421 unsigned Depth) { 2422 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2423 "only nuw or nsw allowed"); 2424 assert(!Ops.empty() && "Cannot get empty add!"); 2425 if (Ops.size() == 1) return Ops[0]; 2426 #ifndef NDEBUG 2427 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2428 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2429 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2430 "SCEVAddExpr operand types don't match!"); 2431 unsigned NumPtrs = count_if( 2432 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2433 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2434 #endif 2435 2436 // Sort by complexity, this groups all similar expression types together. 2437 GroupByComplexity(Ops, &LI, DT); 2438 2439 // If there are any constants, fold them together. 2440 unsigned Idx = 0; 2441 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2442 ++Idx; 2443 assert(Idx < Ops.size()); 2444 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2445 // We found two constants, fold them together! 2446 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2447 if (Ops.size() == 2) return Ops[0]; 2448 Ops.erase(Ops.begin()+1); // Erase the folded element 2449 LHSC = cast<SCEVConstant>(Ops[0]); 2450 } 2451 2452 // If we are left with a constant zero being added, strip it off. 2453 if (LHSC->getValue()->isZero()) { 2454 Ops.erase(Ops.begin()); 2455 --Idx; 2456 } 2457 2458 if (Ops.size() == 1) return Ops[0]; 2459 } 2460 2461 // Delay expensive flag strengthening until necessary. 2462 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2463 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2464 }; 2465 2466 // Limit recursion calls depth. 2467 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2468 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2469 2470 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2471 // Don't strengthen flags if we have no new information. 2472 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2473 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2474 Add->setNoWrapFlags(ComputeFlags(Ops)); 2475 return S; 2476 } 2477 2478 // Okay, check to see if the same value occurs in the operand list more than 2479 // once. If so, merge them together into an multiply expression. Since we 2480 // sorted the list, these values are required to be adjacent. 2481 Type *Ty = Ops[0]->getType(); 2482 bool FoundMatch = false; 2483 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2484 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2485 // Scan ahead to count how many equal operands there are. 2486 unsigned Count = 2; 2487 while (i+Count != e && Ops[i+Count] == Ops[i]) 2488 ++Count; 2489 // Merge the values into a multiply. 2490 const SCEV *Scale = getConstant(Ty, Count); 2491 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2492 if (Ops.size() == Count) 2493 return Mul; 2494 Ops[i] = Mul; 2495 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2496 --i; e -= Count - 1; 2497 FoundMatch = true; 2498 } 2499 if (FoundMatch) 2500 return getAddExpr(Ops, OrigFlags, Depth + 1); 2501 2502 // Check for truncates. If all the operands are truncated from the same 2503 // type, see if factoring out the truncate would permit the result to be 2504 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2505 // if the contents of the resulting outer trunc fold to something simple. 2506 auto FindTruncSrcType = [&]() -> Type * { 2507 // We're ultimately looking to fold an addrec of truncs and muls of only 2508 // constants and truncs, so if we find any other types of SCEV 2509 // as operands of the addrec then we bail and return nullptr here. 2510 // Otherwise, we return the type of the operand of a trunc that we find. 2511 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2512 return T->getOperand()->getType(); 2513 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2514 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2515 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2516 return T->getOperand()->getType(); 2517 } 2518 return nullptr; 2519 }; 2520 if (auto *SrcType = FindTruncSrcType()) { 2521 SmallVector<const SCEV *, 8> LargeOps; 2522 bool Ok = true; 2523 // Check all the operands to see if they can be represented in the 2524 // source type of the truncate. 2525 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2526 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2527 if (T->getOperand()->getType() != SrcType) { 2528 Ok = false; 2529 break; 2530 } 2531 LargeOps.push_back(T->getOperand()); 2532 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2533 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2534 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2535 SmallVector<const SCEV *, 8> LargeMulOps; 2536 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2537 if (const SCEVTruncateExpr *T = 2538 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2539 if (T->getOperand()->getType() != SrcType) { 2540 Ok = false; 2541 break; 2542 } 2543 LargeMulOps.push_back(T->getOperand()); 2544 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2545 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2546 } else { 2547 Ok = false; 2548 break; 2549 } 2550 } 2551 if (Ok) 2552 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2553 } else { 2554 Ok = false; 2555 break; 2556 } 2557 } 2558 if (Ok) { 2559 // Evaluate the expression in the larger type. 2560 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2561 // If it folds to something simple, use it. Otherwise, don't. 2562 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2563 return getTruncateExpr(Fold, Ty); 2564 } 2565 } 2566 2567 if (Ops.size() == 2) { 2568 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2569 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2570 // C1). 2571 const SCEV *A = Ops[0]; 2572 const SCEV *B = Ops[1]; 2573 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2574 auto *C = dyn_cast<SCEVConstant>(A); 2575 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2576 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2577 auto C2 = C->getAPInt(); 2578 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2579 2580 APInt ConstAdd = C1 + C2; 2581 auto AddFlags = AddExpr->getNoWrapFlags(); 2582 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2583 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2584 ConstAdd.ule(C1)) { 2585 PreservedFlags = 2586 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2587 } 2588 2589 // Adding a constant with the same sign and small magnitude is NSW, if the 2590 // original AddExpr was NSW. 2591 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2592 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2593 ConstAdd.abs().ule(C1.abs())) { 2594 PreservedFlags = 2595 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2596 } 2597 2598 if (PreservedFlags != SCEV::FlagAnyWrap) { 2599 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2600 NewOps[0] = getConstant(ConstAdd); 2601 return getAddExpr(NewOps, PreservedFlags); 2602 } 2603 } 2604 } 2605 2606 // Skip past any other cast SCEVs. 2607 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2608 ++Idx; 2609 2610 // If there are add operands they would be next. 2611 if (Idx < Ops.size()) { 2612 bool DeletedAdd = false; 2613 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2614 // common NUW flag for expression after inlining. Other flags cannot be 2615 // preserved, because they may depend on the original order of operations. 2616 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2617 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2618 if (Ops.size() > AddOpsInlineThreshold || 2619 Add->getNumOperands() > AddOpsInlineThreshold) 2620 break; 2621 // If we have an add, expand the add operands onto the end of the operands 2622 // list. 2623 Ops.erase(Ops.begin()+Idx); 2624 Ops.append(Add->op_begin(), Add->op_end()); 2625 DeletedAdd = true; 2626 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2627 } 2628 2629 // If we deleted at least one add, we added operands to the end of the list, 2630 // and they are not necessarily sorted. Recurse to resort and resimplify 2631 // any operands we just acquired. 2632 if (DeletedAdd) 2633 return getAddExpr(Ops, CommonFlags, Depth + 1); 2634 } 2635 2636 // Skip over the add expression until we get to a multiply. 2637 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2638 ++Idx; 2639 2640 // Check to see if there are any folding opportunities present with 2641 // operands multiplied by constant values. 2642 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2643 uint64_t BitWidth = getTypeSizeInBits(Ty); 2644 DenseMap<const SCEV *, APInt> M; 2645 SmallVector<const SCEV *, 8> NewOps; 2646 APInt AccumulatedConstant(BitWidth, 0); 2647 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2648 Ops.data(), Ops.size(), 2649 APInt(BitWidth, 1), *this)) { 2650 struct APIntCompare { 2651 bool operator()(const APInt &LHS, const APInt &RHS) const { 2652 return LHS.ult(RHS); 2653 } 2654 }; 2655 2656 // Some interesting folding opportunity is present, so its worthwhile to 2657 // re-generate the operands list. Group the operands by constant scale, 2658 // to avoid multiplying by the same constant scale multiple times. 2659 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2660 for (const SCEV *NewOp : NewOps) 2661 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2662 // Re-generate the operands list. 2663 Ops.clear(); 2664 if (AccumulatedConstant != 0) 2665 Ops.push_back(getConstant(AccumulatedConstant)); 2666 for (auto &MulOp : MulOpLists) { 2667 if (MulOp.first == 1) { 2668 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2669 } else if (MulOp.first != 0) { 2670 Ops.push_back(getMulExpr( 2671 getConstant(MulOp.first), 2672 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2673 SCEV::FlagAnyWrap, Depth + 1)); 2674 } 2675 } 2676 if (Ops.empty()) 2677 return getZero(Ty); 2678 if (Ops.size() == 1) 2679 return Ops[0]; 2680 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2681 } 2682 } 2683 2684 // If we are adding something to a multiply expression, make sure the 2685 // something is not already an operand of the multiply. If so, merge it into 2686 // the multiply. 2687 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2688 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2689 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2690 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2691 if (isa<SCEVConstant>(MulOpSCEV)) 2692 continue; 2693 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2694 if (MulOpSCEV == Ops[AddOp]) { 2695 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2696 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2697 if (Mul->getNumOperands() != 2) { 2698 // If the multiply has more than two operands, we must get the 2699 // Y*Z term. 2700 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2701 Mul->op_begin()+MulOp); 2702 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2703 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2704 } 2705 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2706 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2707 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2708 SCEV::FlagAnyWrap, Depth + 1); 2709 if (Ops.size() == 2) return OuterMul; 2710 if (AddOp < Idx) { 2711 Ops.erase(Ops.begin()+AddOp); 2712 Ops.erase(Ops.begin()+Idx-1); 2713 } else { 2714 Ops.erase(Ops.begin()+Idx); 2715 Ops.erase(Ops.begin()+AddOp-1); 2716 } 2717 Ops.push_back(OuterMul); 2718 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2719 } 2720 2721 // Check this multiply against other multiplies being added together. 2722 for (unsigned OtherMulIdx = Idx+1; 2723 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2724 ++OtherMulIdx) { 2725 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2726 // If MulOp occurs in OtherMul, we can fold the two multiplies 2727 // together. 2728 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2729 OMulOp != e; ++OMulOp) 2730 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2731 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2732 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2733 if (Mul->getNumOperands() != 2) { 2734 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2735 Mul->op_begin()+MulOp); 2736 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2737 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2738 } 2739 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2740 if (OtherMul->getNumOperands() != 2) { 2741 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2742 OtherMul->op_begin()+OMulOp); 2743 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2744 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2745 } 2746 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2747 const SCEV *InnerMulSum = 2748 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2749 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2750 SCEV::FlagAnyWrap, Depth + 1); 2751 if (Ops.size() == 2) return OuterMul; 2752 Ops.erase(Ops.begin()+Idx); 2753 Ops.erase(Ops.begin()+OtherMulIdx-1); 2754 Ops.push_back(OuterMul); 2755 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2756 } 2757 } 2758 } 2759 } 2760 2761 // If there are any add recurrences in the operands list, see if any other 2762 // added values are loop invariant. If so, we can fold them into the 2763 // recurrence. 2764 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2765 ++Idx; 2766 2767 // Scan over all recurrences, trying to fold loop invariants into them. 2768 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2769 // Scan all of the other operands to this add and add them to the vector if 2770 // they are loop invariant w.r.t. the recurrence. 2771 SmallVector<const SCEV *, 8> LIOps; 2772 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2773 const Loop *AddRecLoop = AddRec->getLoop(); 2774 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2775 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2776 LIOps.push_back(Ops[i]); 2777 Ops.erase(Ops.begin()+i); 2778 --i; --e; 2779 } 2780 2781 // If we found some loop invariants, fold them into the recurrence. 2782 if (!LIOps.empty()) { 2783 // Compute nowrap flags for the addition of the loop-invariant ops and 2784 // the addrec. Temporarily push it as an operand for that purpose. These 2785 // flags are valid in the scope of the addrec only. 2786 LIOps.push_back(AddRec); 2787 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2788 LIOps.pop_back(); 2789 2790 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2791 LIOps.push_back(AddRec->getStart()); 2792 2793 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2794 2795 // It is not in general safe to propagate flags valid on an add within 2796 // the addrec scope to one outside it. We must prove that the inner 2797 // scope is guaranteed to execute if the outer one does to be able to 2798 // safely propagate. We know the program is undefined if poison is 2799 // produced on the inner scoped addrec. We also know that *for this use* 2800 // the outer scoped add can't overflow (because of the flags we just 2801 // computed for the inner scoped add) without the program being undefined. 2802 // Proving that entry to the outer scope neccesitates entry to the inner 2803 // scope, thus proves the program undefined if the flags would be violated 2804 // in the outer scope. 2805 SCEV::NoWrapFlags AddFlags = Flags; 2806 if (AddFlags != SCEV::FlagAnyWrap) { 2807 auto *DefI = getDefiningScopeBound(LIOps); 2808 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2809 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2810 AddFlags = SCEV::FlagAnyWrap; 2811 } 2812 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2813 2814 // Build the new addrec. Propagate the NUW and NSW flags if both the 2815 // outer add and the inner addrec are guaranteed to have no overflow. 2816 // Always propagate NW. 2817 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2818 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2819 2820 // If all of the other operands were loop invariant, we are done. 2821 if (Ops.size() == 1) return NewRec; 2822 2823 // Otherwise, add the folded AddRec by the non-invariant parts. 2824 for (unsigned i = 0;; ++i) 2825 if (Ops[i] == AddRec) { 2826 Ops[i] = NewRec; 2827 break; 2828 } 2829 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2830 } 2831 2832 // Okay, if there weren't any loop invariants to be folded, check to see if 2833 // there are multiple AddRec's with the same loop induction variable being 2834 // added together. If so, we can fold them. 2835 for (unsigned OtherIdx = Idx+1; 2836 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2837 ++OtherIdx) { 2838 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2839 // so that the 1st found AddRecExpr is dominated by all others. 2840 assert(DT.dominates( 2841 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2842 AddRec->getLoop()->getHeader()) && 2843 "AddRecExprs are not sorted in reverse dominance order?"); 2844 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2845 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2846 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2847 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2848 ++OtherIdx) { 2849 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2850 if (OtherAddRec->getLoop() == AddRecLoop) { 2851 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2852 i != e; ++i) { 2853 if (i >= AddRecOps.size()) { 2854 AddRecOps.append(OtherAddRec->op_begin()+i, 2855 OtherAddRec->op_end()); 2856 break; 2857 } 2858 SmallVector<const SCEV *, 2> TwoOps = { 2859 AddRecOps[i], OtherAddRec->getOperand(i)}; 2860 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2861 } 2862 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2863 } 2864 } 2865 // Step size has changed, so we cannot guarantee no self-wraparound. 2866 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2867 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2868 } 2869 } 2870 2871 // Otherwise couldn't fold anything into this recurrence. Move onto the 2872 // next one. 2873 } 2874 2875 // Okay, it looks like we really DO need an add expr. Check to see if we 2876 // already have one, otherwise create a new one. 2877 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2878 } 2879 2880 const SCEV * 2881 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2882 SCEV::NoWrapFlags Flags) { 2883 FoldingSetNodeID ID; 2884 ID.AddInteger(scAddExpr); 2885 for (const SCEV *Op : Ops) 2886 ID.AddPointer(Op); 2887 void *IP = nullptr; 2888 SCEVAddExpr *S = 2889 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2890 if (!S) { 2891 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2892 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2893 S = new (SCEVAllocator) 2894 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2895 UniqueSCEVs.InsertNode(S, IP); 2896 addToLoopUseLists(S); 2897 } 2898 S->setNoWrapFlags(Flags); 2899 return S; 2900 } 2901 2902 const SCEV * 2903 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2904 const Loop *L, SCEV::NoWrapFlags Flags) { 2905 FoldingSetNodeID ID; 2906 ID.AddInteger(scAddRecExpr); 2907 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2908 ID.AddPointer(Ops[i]); 2909 ID.AddPointer(L); 2910 void *IP = nullptr; 2911 SCEVAddRecExpr *S = 2912 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2913 if (!S) { 2914 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2915 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2916 S = new (SCEVAllocator) 2917 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2918 UniqueSCEVs.InsertNode(S, IP); 2919 addToLoopUseLists(S); 2920 } 2921 setNoWrapFlags(S, Flags); 2922 return S; 2923 } 2924 2925 const SCEV * 2926 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2927 SCEV::NoWrapFlags Flags) { 2928 FoldingSetNodeID ID; 2929 ID.AddInteger(scMulExpr); 2930 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2931 ID.AddPointer(Ops[i]); 2932 void *IP = nullptr; 2933 SCEVMulExpr *S = 2934 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2935 if (!S) { 2936 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2937 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2938 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2939 O, Ops.size()); 2940 UniqueSCEVs.InsertNode(S, IP); 2941 addToLoopUseLists(S); 2942 } 2943 S->setNoWrapFlags(Flags); 2944 return S; 2945 } 2946 2947 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2948 uint64_t k = i*j; 2949 if (j > 1 && k / j != i) Overflow = true; 2950 return k; 2951 } 2952 2953 /// Compute the result of "n choose k", the binomial coefficient. If an 2954 /// intermediate computation overflows, Overflow will be set and the return will 2955 /// be garbage. Overflow is not cleared on absence of overflow. 2956 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2957 // We use the multiplicative formula: 2958 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2959 // At each iteration, we take the n-th term of the numeral and divide by the 2960 // (k-n)th term of the denominator. This division will always produce an 2961 // integral result, and helps reduce the chance of overflow in the 2962 // intermediate computations. However, we can still overflow even when the 2963 // final result would fit. 2964 2965 if (n == 0 || n == k) return 1; 2966 if (k > n) return 0; 2967 2968 if (k > n/2) 2969 k = n-k; 2970 2971 uint64_t r = 1; 2972 for (uint64_t i = 1; i <= k; ++i) { 2973 r = umul_ov(r, n-(i-1), Overflow); 2974 r /= i; 2975 } 2976 return r; 2977 } 2978 2979 /// Determine if any of the operands in this SCEV are a constant or if 2980 /// any of the add or multiply expressions in this SCEV contain a constant. 2981 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2982 struct FindConstantInAddMulChain { 2983 bool FoundConstant = false; 2984 2985 bool follow(const SCEV *S) { 2986 FoundConstant |= isa<SCEVConstant>(S); 2987 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2988 } 2989 2990 bool isDone() const { 2991 return FoundConstant; 2992 } 2993 }; 2994 2995 FindConstantInAddMulChain F; 2996 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2997 ST.visitAll(StartExpr); 2998 return F.FoundConstant; 2999 } 3000 3001 /// Get a canonical multiply expression, or something simpler if possible. 3002 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3003 SCEV::NoWrapFlags OrigFlags, 3004 unsigned Depth) { 3005 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3006 "only nuw or nsw allowed"); 3007 assert(!Ops.empty() && "Cannot get empty mul!"); 3008 if (Ops.size() == 1) return Ops[0]; 3009 #ifndef NDEBUG 3010 Type *ETy = Ops[0]->getType(); 3011 assert(!ETy->isPointerTy()); 3012 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3013 assert(Ops[i]->getType() == ETy && 3014 "SCEVMulExpr operand types don't match!"); 3015 #endif 3016 3017 // Sort by complexity, this groups all similar expression types together. 3018 GroupByComplexity(Ops, &LI, DT); 3019 3020 // If there are any constants, fold them together. 3021 unsigned Idx = 0; 3022 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3023 ++Idx; 3024 assert(Idx < Ops.size()); 3025 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3026 // We found two constants, fold them together! 3027 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3028 if (Ops.size() == 2) return Ops[0]; 3029 Ops.erase(Ops.begin()+1); // Erase the folded element 3030 LHSC = cast<SCEVConstant>(Ops[0]); 3031 } 3032 3033 // If we have a multiply of zero, it will always be zero. 3034 if (LHSC->getValue()->isZero()) 3035 return LHSC; 3036 3037 // If we are left with a constant one being multiplied, strip it off. 3038 if (LHSC->getValue()->isOne()) { 3039 Ops.erase(Ops.begin()); 3040 --Idx; 3041 } 3042 3043 if (Ops.size() == 1) 3044 return Ops[0]; 3045 } 3046 3047 // Delay expensive flag strengthening until necessary. 3048 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3049 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3050 }; 3051 3052 // Limit recursion calls depth. 3053 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3054 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3055 3056 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3057 // Don't strengthen flags if we have no new information. 3058 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3059 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3060 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3061 return S; 3062 } 3063 3064 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3065 if (Ops.size() == 2) { 3066 // C1*(C2+V) -> C1*C2 + C1*V 3067 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3068 // If any of Add's ops are Adds or Muls with a constant, apply this 3069 // transformation as well. 3070 // 3071 // TODO: There are some cases where this transformation is not 3072 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3073 // this transformation should be narrowed down. 3074 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3075 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3076 SCEV::FlagAnyWrap, Depth + 1), 3077 getMulExpr(LHSC, Add->getOperand(1), 3078 SCEV::FlagAnyWrap, Depth + 1), 3079 SCEV::FlagAnyWrap, Depth + 1); 3080 3081 if (Ops[0]->isAllOnesValue()) { 3082 // If we have a mul by -1 of an add, try distributing the -1 among the 3083 // add operands. 3084 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3085 SmallVector<const SCEV *, 4> NewOps; 3086 bool AnyFolded = false; 3087 for (const SCEV *AddOp : Add->operands()) { 3088 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3089 Depth + 1); 3090 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3091 NewOps.push_back(Mul); 3092 } 3093 if (AnyFolded) 3094 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3095 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3096 // Negation preserves a recurrence's no self-wrap property. 3097 SmallVector<const SCEV *, 4> Operands; 3098 for (const SCEV *AddRecOp : AddRec->operands()) 3099 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3100 Depth + 1)); 3101 3102 return getAddRecExpr(Operands, AddRec->getLoop(), 3103 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3104 } 3105 } 3106 } 3107 } 3108 3109 // Skip over the add expression until we get to a multiply. 3110 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3111 ++Idx; 3112 3113 // If there are mul operands inline them all into this expression. 3114 if (Idx < Ops.size()) { 3115 bool DeletedMul = false; 3116 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3117 if (Ops.size() > MulOpsInlineThreshold) 3118 break; 3119 // If we have an mul, expand the mul operands onto the end of the 3120 // operands list. 3121 Ops.erase(Ops.begin()+Idx); 3122 Ops.append(Mul->op_begin(), Mul->op_end()); 3123 DeletedMul = true; 3124 } 3125 3126 // If we deleted at least one mul, we added operands to the end of the 3127 // list, and they are not necessarily sorted. Recurse to resort and 3128 // resimplify any operands we just acquired. 3129 if (DeletedMul) 3130 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3131 } 3132 3133 // If there are any add recurrences in the operands list, see if any other 3134 // added values are loop invariant. If so, we can fold them into the 3135 // recurrence. 3136 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3137 ++Idx; 3138 3139 // Scan over all recurrences, trying to fold loop invariants into them. 3140 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3141 // Scan all of the other operands to this mul and add them to the vector 3142 // if they are loop invariant w.r.t. the recurrence. 3143 SmallVector<const SCEV *, 8> LIOps; 3144 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3145 const Loop *AddRecLoop = AddRec->getLoop(); 3146 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3147 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3148 LIOps.push_back(Ops[i]); 3149 Ops.erase(Ops.begin()+i); 3150 --i; --e; 3151 } 3152 3153 // If we found some loop invariants, fold them into the recurrence. 3154 if (!LIOps.empty()) { 3155 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3156 SmallVector<const SCEV *, 4> NewOps; 3157 NewOps.reserve(AddRec->getNumOperands()); 3158 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3159 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3160 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3161 SCEV::FlagAnyWrap, Depth + 1)); 3162 3163 // Build the new addrec. Propagate the NUW and NSW flags if both the 3164 // outer mul and the inner addrec are guaranteed to have no overflow. 3165 // 3166 // No self-wrap cannot be guaranteed after changing the step size, but 3167 // will be inferred if either NUW or NSW is true. 3168 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3169 const SCEV *NewRec = getAddRecExpr( 3170 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3171 3172 // If all of the other operands were loop invariant, we are done. 3173 if (Ops.size() == 1) return NewRec; 3174 3175 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3176 for (unsigned i = 0;; ++i) 3177 if (Ops[i] == AddRec) { 3178 Ops[i] = NewRec; 3179 break; 3180 } 3181 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3182 } 3183 3184 // Okay, if there weren't any loop invariants to be folded, check to see 3185 // if there are multiple AddRec's with the same loop induction variable 3186 // being multiplied together. If so, we can fold them. 3187 3188 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3189 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3190 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3191 // ]]],+,...up to x=2n}. 3192 // Note that the arguments to choose() are always integers with values 3193 // known at compile time, never SCEV objects. 3194 // 3195 // The implementation avoids pointless extra computations when the two 3196 // addrec's are of different length (mathematically, it's equivalent to 3197 // an infinite stream of zeros on the right). 3198 bool OpsModified = false; 3199 for (unsigned OtherIdx = Idx+1; 3200 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3201 ++OtherIdx) { 3202 const SCEVAddRecExpr *OtherAddRec = 3203 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3204 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3205 continue; 3206 3207 // Limit max number of arguments to avoid creation of unreasonably big 3208 // SCEVAddRecs with very complex operands. 3209 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3210 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3211 continue; 3212 3213 bool Overflow = false; 3214 Type *Ty = AddRec->getType(); 3215 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3216 SmallVector<const SCEV*, 7> AddRecOps; 3217 for (int x = 0, xe = AddRec->getNumOperands() + 3218 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3219 SmallVector <const SCEV *, 7> SumOps; 3220 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3221 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3222 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3223 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3224 z < ze && !Overflow; ++z) { 3225 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3226 uint64_t Coeff; 3227 if (LargerThan64Bits) 3228 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3229 else 3230 Coeff = Coeff1*Coeff2; 3231 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3232 const SCEV *Term1 = AddRec->getOperand(y-z); 3233 const SCEV *Term2 = OtherAddRec->getOperand(z); 3234 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3235 SCEV::FlagAnyWrap, Depth + 1)); 3236 } 3237 } 3238 if (SumOps.empty()) 3239 SumOps.push_back(getZero(Ty)); 3240 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3241 } 3242 if (!Overflow) { 3243 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3244 SCEV::FlagAnyWrap); 3245 if (Ops.size() == 2) return NewAddRec; 3246 Ops[Idx] = NewAddRec; 3247 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3248 OpsModified = true; 3249 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3250 if (!AddRec) 3251 break; 3252 } 3253 } 3254 if (OpsModified) 3255 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3256 3257 // Otherwise couldn't fold anything into this recurrence. Move onto the 3258 // next one. 3259 } 3260 3261 // Okay, it looks like we really DO need an mul expr. Check to see if we 3262 // already have one, otherwise create a new one. 3263 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3264 } 3265 3266 /// Represents an unsigned remainder expression based on unsigned division. 3267 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3268 const SCEV *RHS) { 3269 assert(getEffectiveSCEVType(LHS->getType()) == 3270 getEffectiveSCEVType(RHS->getType()) && 3271 "SCEVURemExpr operand types don't match!"); 3272 3273 // Short-circuit easy cases 3274 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3275 // If constant is one, the result is trivial 3276 if (RHSC->getValue()->isOne()) 3277 return getZero(LHS->getType()); // X urem 1 --> 0 3278 3279 // If constant is a power of two, fold into a zext(trunc(LHS)). 3280 if (RHSC->getAPInt().isPowerOf2()) { 3281 Type *FullTy = LHS->getType(); 3282 Type *TruncTy = 3283 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3284 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3285 } 3286 } 3287 3288 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3289 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3290 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3291 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3292 } 3293 3294 /// Get a canonical unsigned division expression, or something simpler if 3295 /// possible. 3296 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3297 const SCEV *RHS) { 3298 assert(!LHS->getType()->isPointerTy() && 3299 "SCEVUDivExpr operand can't be pointer!"); 3300 assert(LHS->getType() == RHS->getType() && 3301 "SCEVUDivExpr operand types don't match!"); 3302 3303 FoldingSetNodeID ID; 3304 ID.AddInteger(scUDivExpr); 3305 ID.AddPointer(LHS); 3306 ID.AddPointer(RHS); 3307 void *IP = nullptr; 3308 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3309 return S; 3310 3311 // 0 udiv Y == 0 3312 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3313 if (LHSC->getValue()->isZero()) 3314 return LHS; 3315 3316 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3317 if (RHSC->getValue()->isOne()) 3318 return LHS; // X udiv 1 --> x 3319 // If the denominator is zero, the result of the udiv is undefined. Don't 3320 // try to analyze it, because the resolution chosen here may differ from 3321 // the resolution chosen in other parts of the compiler. 3322 if (!RHSC->getValue()->isZero()) { 3323 // Determine if the division can be folded into the operands of 3324 // its operands. 3325 // TODO: Generalize this to non-constants by using known-bits information. 3326 Type *Ty = LHS->getType(); 3327 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3328 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3329 // For non-power-of-two values, effectively round the value up to the 3330 // nearest power of two. 3331 if (!RHSC->getAPInt().isPowerOf2()) 3332 ++MaxShiftAmt; 3333 IntegerType *ExtTy = 3334 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3335 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3336 if (const SCEVConstant *Step = 3337 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3338 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3339 const APInt &StepInt = Step->getAPInt(); 3340 const APInt &DivInt = RHSC->getAPInt(); 3341 if (!StepInt.urem(DivInt) && 3342 getZeroExtendExpr(AR, ExtTy) == 3343 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3344 getZeroExtendExpr(Step, ExtTy), 3345 AR->getLoop(), SCEV::FlagAnyWrap)) { 3346 SmallVector<const SCEV *, 4> Operands; 3347 for (const SCEV *Op : AR->operands()) 3348 Operands.push_back(getUDivExpr(Op, RHS)); 3349 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3350 } 3351 /// Get a canonical UDivExpr for a recurrence. 3352 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3353 // We can currently only fold X%N if X is constant. 3354 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3355 if (StartC && !DivInt.urem(StepInt) && 3356 getZeroExtendExpr(AR, ExtTy) == 3357 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3358 getZeroExtendExpr(Step, ExtTy), 3359 AR->getLoop(), SCEV::FlagAnyWrap)) { 3360 const APInt &StartInt = StartC->getAPInt(); 3361 const APInt &StartRem = StartInt.urem(StepInt); 3362 if (StartRem != 0) { 3363 const SCEV *NewLHS = 3364 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3365 AR->getLoop(), SCEV::FlagNW); 3366 if (LHS != NewLHS) { 3367 LHS = NewLHS; 3368 3369 // Reset the ID to include the new LHS, and check if it is 3370 // already cached. 3371 ID.clear(); 3372 ID.AddInteger(scUDivExpr); 3373 ID.AddPointer(LHS); 3374 ID.AddPointer(RHS); 3375 IP = nullptr; 3376 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3377 return S; 3378 } 3379 } 3380 } 3381 } 3382 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3383 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3384 SmallVector<const SCEV *, 4> Operands; 3385 for (const SCEV *Op : M->operands()) 3386 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3387 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3388 // Find an operand that's safely divisible. 3389 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3390 const SCEV *Op = M->getOperand(i); 3391 const SCEV *Div = getUDivExpr(Op, RHSC); 3392 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3393 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3394 Operands[i] = Div; 3395 return getMulExpr(Operands); 3396 } 3397 } 3398 } 3399 3400 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3401 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3402 if (auto *DivisorConstant = 3403 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3404 bool Overflow = false; 3405 APInt NewRHS = 3406 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3407 if (Overflow) { 3408 return getConstant(RHSC->getType(), 0, false); 3409 } 3410 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3411 } 3412 } 3413 3414 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3415 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3416 SmallVector<const SCEV *, 4> Operands; 3417 for (const SCEV *Op : A->operands()) 3418 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3419 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3420 Operands.clear(); 3421 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3422 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3423 if (isa<SCEVUDivExpr>(Op) || 3424 getMulExpr(Op, RHS) != A->getOperand(i)) 3425 break; 3426 Operands.push_back(Op); 3427 } 3428 if (Operands.size() == A->getNumOperands()) 3429 return getAddExpr(Operands); 3430 } 3431 } 3432 3433 // Fold if both operands are constant. 3434 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3435 Constant *LHSCV = LHSC->getValue(); 3436 Constant *RHSCV = RHSC->getValue(); 3437 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3438 RHSCV))); 3439 } 3440 } 3441 } 3442 3443 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3444 // changes). Make sure we get a new one. 3445 IP = nullptr; 3446 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3447 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3448 LHS, RHS); 3449 UniqueSCEVs.InsertNode(S, IP); 3450 addToLoopUseLists(S); 3451 return S; 3452 } 3453 3454 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3455 APInt A = C1->getAPInt().abs(); 3456 APInt B = C2->getAPInt().abs(); 3457 uint32_t ABW = A.getBitWidth(); 3458 uint32_t BBW = B.getBitWidth(); 3459 3460 if (ABW > BBW) 3461 B = B.zext(ABW); 3462 else if (ABW < BBW) 3463 A = A.zext(BBW); 3464 3465 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3466 } 3467 3468 /// Get a canonical unsigned division expression, or something simpler if 3469 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3470 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3471 /// it's not exact because the udiv may be clearing bits. 3472 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3473 const SCEV *RHS) { 3474 // TODO: we could try to find factors in all sorts of things, but for now we 3475 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3476 // end of this file for inspiration. 3477 3478 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3479 if (!Mul || !Mul->hasNoUnsignedWrap()) 3480 return getUDivExpr(LHS, RHS); 3481 3482 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3483 // If the mulexpr multiplies by a constant, then that constant must be the 3484 // first element of the mulexpr. 3485 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3486 if (LHSCst == RHSCst) { 3487 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3488 return getMulExpr(Operands); 3489 } 3490 3491 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3492 // that there's a factor provided by one of the other terms. We need to 3493 // check. 3494 APInt Factor = gcd(LHSCst, RHSCst); 3495 if (!Factor.isIntN(1)) { 3496 LHSCst = 3497 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3498 RHSCst = 3499 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3500 SmallVector<const SCEV *, 2> Operands; 3501 Operands.push_back(LHSCst); 3502 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3503 LHS = getMulExpr(Operands); 3504 RHS = RHSCst; 3505 Mul = dyn_cast<SCEVMulExpr>(LHS); 3506 if (!Mul) 3507 return getUDivExactExpr(LHS, RHS); 3508 } 3509 } 3510 } 3511 3512 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3513 if (Mul->getOperand(i) == RHS) { 3514 SmallVector<const SCEV *, 2> Operands; 3515 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3516 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3517 return getMulExpr(Operands); 3518 } 3519 } 3520 3521 return getUDivExpr(LHS, RHS); 3522 } 3523 3524 /// Get an add recurrence expression for the specified loop. Simplify the 3525 /// expression as much as possible. 3526 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3527 const Loop *L, 3528 SCEV::NoWrapFlags Flags) { 3529 SmallVector<const SCEV *, 4> Operands; 3530 Operands.push_back(Start); 3531 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3532 if (StepChrec->getLoop() == L) { 3533 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3534 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3535 } 3536 3537 Operands.push_back(Step); 3538 return getAddRecExpr(Operands, L, Flags); 3539 } 3540 3541 /// Get an add recurrence expression for the specified loop. Simplify the 3542 /// expression as much as possible. 3543 const SCEV * 3544 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3545 const Loop *L, SCEV::NoWrapFlags Flags) { 3546 if (Operands.size() == 1) return Operands[0]; 3547 #ifndef NDEBUG 3548 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3549 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3550 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3551 "SCEVAddRecExpr operand types don't match!"); 3552 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3553 } 3554 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3555 assert(isLoopInvariant(Operands[i], L) && 3556 "SCEVAddRecExpr operand is not loop-invariant!"); 3557 #endif 3558 3559 if (Operands.back()->isZero()) { 3560 Operands.pop_back(); 3561 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3562 } 3563 3564 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3565 // use that information to infer NUW and NSW flags. However, computing a 3566 // BE count requires calling getAddRecExpr, so we may not yet have a 3567 // meaningful BE count at this point (and if we don't, we'd be stuck 3568 // with a SCEVCouldNotCompute as the cached BE count). 3569 3570 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3571 3572 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3573 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3574 const Loop *NestedLoop = NestedAR->getLoop(); 3575 if (L->contains(NestedLoop) 3576 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3577 : (!NestedLoop->contains(L) && 3578 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3579 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3580 Operands[0] = NestedAR->getStart(); 3581 // AddRecs require their operands be loop-invariant with respect to their 3582 // loops. Don't perform this transformation if it would break this 3583 // requirement. 3584 bool AllInvariant = all_of( 3585 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3586 3587 if (AllInvariant) { 3588 // Create a recurrence for the outer loop with the same step size. 3589 // 3590 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3591 // inner recurrence has the same property. 3592 SCEV::NoWrapFlags OuterFlags = 3593 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3594 3595 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3596 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3597 return isLoopInvariant(Op, NestedLoop); 3598 }); 3599 3600 if (AllInvariant) { 3601 // Ok, both add recurrences are valid after the transformation. 3602 // 3603 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3604 // the outer recurrence has the same property. 3605 SCEV::NoWrapFlags InnerFlags = 3606 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3607 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3608 } 3609 } 3610 // Reset Operands to its original state. 3611 Operands[0] = NestedAR; 3612 } 3613 } 3614 3615 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3616 // already have one, otherwise create a new one. 3617 return getOrCreateAddRecExpr(Operands, L, Flags); 3618 } 3619 3620 const SCEV * 3621 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3622 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3623 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3624 // getSCEV(Base)->getType() has the same address space as Base->getType() 3625 // because SCEV::getType() preserves the address space. 3626 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3627 const bool AssumeInBoundsFlags = [&]() { 3628 if (!GEP->isInBounds()) 3629 return false; 3630 3631 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3632 // but to do that, we have to ensure that said flag is valid in the entire 3633 // defined scope of the SCEV. 3634 auto *GEPI = dyn_cast<Instruction>(GEP); 3635 // TODO: non-instructions have global scope. We might be able to prove 3636 // some global scope cases 3637 return GEPI && isSCEVExprNeverPoison(GEPI); 3638 }(); 3639 3640 SCEV::NoWrapFlags OffsetWrap = 3641 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3642 3643 Type *CurTy = GEP->getType(); 3644 bool FirstIter = true; 3645 SmallVector<const SCEV *, 4> Offsets; 3646 for (const SCEV *IndexExpr : IndexExprs) { 3647 // Compute the (potentially symbolic) offset in bytes for this index. 3648 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3649 // For a struct, add the member offset. 3650 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3651 unsigned FieldNo = Index->getZExtValue(); 3652 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3653 Offsets.push_back(FieldOffset); 3654 3655 // Update CurTy to the type of the field at Index. 3656 CurTy = STy->getTypeAtIndex(Index); 3657 } else { 3658 // Update CurTy to its element type. 3659 if (FirstIter) { 3660 assert(isa<PointerType>(CurTy) && 3661 "The first index of a GEP indexes a pointer"); 3662 CurTy = GEP->getSourceElementType(); 3663 FirstIter = false; 3664 } else { 3665 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3666 } 3667 // For an array, add the element offset, explicitly scaled. 3668 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3669 // Getelementptr indices are signed. 3670 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3671 3672 // Multiply the index by the element size to compute the element offset. 3673 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3674 Offsets.push_back(LocalOffset); 3675 } 3676 } 3677 3678 // Handle degenerate case of GEP without offsets. 3679 if (Offsets.empty()) 3680 return BaseExpr; 3681 3682 // Add the offsets together, assuming nsw if inbounds. 3683 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3684 // Add the base address and the offset. We cannot use the nsw flag, as the 3685 // base address is unsigned. However, if we know that the offset is 3686 // non-negative, we can use nuw. 3687 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3688 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3689 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3690 assert(BaseExpr->getType() == GEPExpr->getType() && 3691 "GEP should not change type mid-flight."); 3692 return GEPExpr; 3693 } 3694 3695 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3696 ArrayRef<const SCEV *> Ops) { 3697 FoldingSetNodeID ID; 3698 ID.AddInteger(SCEVType); 3699 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3700 ID.AddPointer(Ops[i]); 3701 void *IP = nullptr; 3702 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3703 } 3704 3705 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3706 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3707 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3708 } 3709 3710 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3711 SmallVectorImpl<const SCEV *> &Ops) { 3712 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3713 if (Ops.size() == 1) return Ops[0]; 3714 #ifndef NDEBUG 3715 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3716 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3717 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3718 "Operand types don't match!"); 3719 assert(Ops[0]->getType()->isPointerTy() == 3720 Ops[i]->getType()->isPointerTy() && 3721 "min/max should be consistently pointerish"); 3722 } 3723 #endif 3724 3725 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3726 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3727 3728 // Sort by complexity, this groups all similar expression types together. 3729 GroupByComplexity(Ops, &LI, DT); 3730 3731 // Check if we have created the same expression before. 3732 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3733 return S; 3734 } 3735 3736 // If there are any constants, fold them together. 3737 unsigned Idx = 0; 3738 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3739 ++Idx; 3740 assert(Idx < Ops.size()); 3741 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3742 if (Kind == scSMaxExpr) 3743 return APIntOps::smax(LHS, RHS); 3744 else if (Kind == scSMinExpr) 3745 return APIntOps::smin(LHS, RHS); 3746 else if (Kind == scUMaxExpr) 3747 return APIntOps::umax(LHS, RHS); 3748 else if (Kind == scUMinExpr) 3749 return APIntOps::umin(LHS, RHS); 3750 llvm_unreachable("Unknown SCEV min/max opcode"); 3751 }; 3752 3753 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3754 // We found two constants, fold them together! 3755 ConstantInt *Fold = ConstantInt::get( 3756 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3757 Ops[0] = getConstant(Fold); 3758 Ops.erase(Ops.begin()+1); // Erase the folded element 3759 if (Ops.size() == 1) return Ops[0]; 3760 LHSC = cast<SCEVConstant>(Ops[0]); 3761 } 3762 3763 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3764 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3765 3766 if (IsMax ? IsMinV : IsMaxV) { 3767 // If we are left with a constant minimum(/maximum)-int, strip it off. 3768 Ops.erase(Ops.begin()); 3769 --Idx; 3770 } else if (IsMax ? IsMaxV : IsMinV) { 3771 // If we have a max(/min) with a constant maximum(/minimum)-int, 3772 // it will always be the extremum. 3773 return LHSC; 3774 } 3775 3776 if (Ops.size() == 1) return Ops[0]; 3777 } 3778 3779 // Find the first operation of the same kind 3780 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3781 ++Idx; 3782 3783 // Check to see if one of the operands is of the same kind. If so, expand its 3784 // operands onto our operand list, and recurse to simplify. 3785 if (Idx < Ops.size()) { 3786 bool DeletedAny = false; 3787 while (Ops[Idx]->getSCEVType() == Kind) { 3788 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3789 Ops.erase(Ops.begin()+Idx); 3790 Ops.append(SMME->op_begin(), SMME->op_end()); 3791 DeletedAny = true; 3792 } 3793 3794 if (DeletedAny) 3795 return getMinMaxExpr(Kind, Ops); 3796 } 3797 3798 // Okay, check to see if the same value occurs in the operand list twice. If 3799 // so, delete one. Since we sorted the list, these values are required to 3800 // be adjacent. 3801 llvm::CmpInst::Predicate GEPred = 3802 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3803 llvm::CmpInst::Predicate LEPred = 3804 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3805 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3806 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3807 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3808 if (Ops[i] == Ops[i + 1] || 3809 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3810 // X op Y op Y --> X op Y 3811 // X op Y --> X, if we know X, Y are ordered appropriately 3812 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3813 --i; 3814 --e; 3815 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3816 Ops[i + 1])) { 3817 // X op Y --> Y, if we know X, Y are ordered appropriately 3818 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3819 --i; 3820 --e; 3821 } 3822 } 3823 3824 if (Ops.size() == 1) return Ops[0]; 3825 3826 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3827 3828 // Okay, it looks like we really DO need an expr. Check to see if we 3829 // already have one, otherwise create a new one. 3830 FoldingSetNodeID ID; 3831 ID.AddInteger(Kind); 3832 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3833 ID.AddPointer(Ops[i]); 3834 void *IP = nullptr; 3835 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3836 if (ExistingSCEV) 3837 return ExistingSCEV; 3838 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3839 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3840 SCEV *S = new (SCEVAllocator) 3841 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3842 3843 UniqueSCEVs.InsertNode(S, IP); 3844 addToLoopUseLists(S); 3845 return S; 3846 } 3847 3848 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3849 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3850 return getSMaxExpr(Ops); 3851 } 3852 3853 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3854 return getMinMaxExpr(scSMaxExpr, Ops); 3855 } 3856 3857 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3858 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3859 return getUMaxExpr(Ops); 3860 } 3861 3862 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3863 return getMinMaxExpr(scUMaxExpr, Ops); 3864 } 3865 3866 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3867 const SCEV *RHS) { 3868 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3869 return getSMinExpr(Ops); 3870 } 3871 3872 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3873 return getMinMaxExpr(scSMinExpr, Ops); 3874 } 3875 3876 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3877 const SCEV *RHS) { 3878 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3879 return getUMinExpr(Ops); 3880 } 3881 3882 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3883 return getMinMaxExpr(scUMinExpr, Ops); 3884 } 3885 3886 const SCEV * 3887 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3888 ScalableVectorType *ScalableTy) { 3889 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3890 Constant *One = ConstantInt::get(IntTy, 1); 3891 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3892 // Note that the expression we created is the final expression, we don't 3893 // want to simplify it any further Also, if we call a normal getSCEV(), 3894 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3895 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3896 } 3897 3898 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3899 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3900 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3901 // We can bypass creating a target-independent constant expression and then 3902 // folding it back into a ConstantInt. This is just a compile-time 3903 // optimization. 3904 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3905 } 3906 3907 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3908 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3909 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3910 // We can bypass creating a target-independent constant expression and then 3911 // folding it back into a ConstantInt. This is just a compile-time 3912 // optimization. 3913 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3914 } 3915 3916 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3917 StructType *STy, 3918 unsigned FieldNo) { 3919 // We can bypass creating a target-independent constant expression and then 3920 // folding it back into a ConstantInt. This is just a compile-time 3921 // optimization. 3922 return getConstant( 3923 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3924 } 3925 3926 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3927 // Don't attempt to do anything other than create a SCEVUnknown object 3928 // here. createSCEV only calls getUnknown after checking for all other 3929 // interesting possibilities, and any other code that calls getUnknown 3930 // is doing so in order to hide a value from SCEV canonicalization. 3931 3932 FoldingSetNodeID ID; 3933 ID.AddInteger(scUnknown); 3934 ID.AddPointer(V); 3935 void *IP = nullptr; 3936 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3937 assert(cast<SCEVUnknown>(S)->getValue() == V && 3938 "Stale SCEVUnknown in uniquing map!"); 3939 return S; 3940 } 3941 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3942 FirstUnknown); 3943 FirstUnknown = cast<SCEVUnknown>(S); 3944 UniqueSCEVs.InsertNode(S, IP); 3945 return S; 3946 } 3947 3948 //===----------------------------------------------------------------------===// 3949 // Basic SCEV Analysis and PHI Idiom Recognition Code 3950 // 3951 3952 /// Test if values of the given type are analyzable within the SCEV 3953 /// framework. This primarily includes integer types, and it can optionally 3954 /// include pointer types if the ScalarEvolution class has access to 3955 /// target-specific information. 3956 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3957 // Integers and pointers are always SCEVable. 3958 return Ty->isIntOrPtrTy(); 3959 } 3960 3961 /// Return the size in bits of the specified type, for which isSCEVable must 3962 /// return true. 3963 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3964 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3965 if (Ty->isPointerTy()) 3966 return getDataLayout().getIndexTypeSizeInBits(Ty); 3967 return getDataLayout().getTypeSizeInBits(Ty); 3968 } 3969 3970 /// Return a type with the same bitwidth as the given type and which represents 3971 /// how SCEV will treat the given type, for which isSCEVable must return 3972 /// true. For pointer types, this is the pointer index sized integer type. 3973 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3974 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3975 3976 if (Ty->isIntegerTy()) 3977 return Ty; 3978 3979 // The only other support type is pointer. 3980 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3981 return getDataLayout().getIndexType(Ty); 3982 } 3983 3984 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3985 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3986 } 3987 3988 const SCEV *ScalarEvolution::getCouldNotCompute() { 3989 return CouldNotCompute.get(); 3990 } 3991 3992 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3993 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3994 auto *SU = dyn_cast<SCEVUnknown>(S); 3995 return SU && SU->getValue() == nullptr; 3996 }); 3997 3998 return !ContainsNulls; 3999 } 4000 4001 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4002 HasRecMapType::iterator I = HasRecMap.find(S); 4003 if (I != HasRecMap.end()) 4004 return I->second; 4005 4006 bool FoundAddRec = 4007 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4008 HasRecMap.insert({S, FoundAddRec}); 4009 return FoundAddRec; 4010 } 4011 4012 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 4013 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 4014 /// offset I, then return {S', I}, else return {\p S, nullptr}. 4015 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 4016 const auto *Add = dyn_cast<SCEVAddExpr>(S); 4017 if (!Add) 4018 return {S, nullptr}; 4019 4020 if (Add->getNumOperands() != 2) 4021 return {S, nullptr}; 4022 4023 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 4024 if (!ConstOp) 4025 return {S, nullptr}; 4026 4027 return {Add->getOperand(1), ConstOp->getValue()}; 4028 } 4029 4030 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4031 /// by the value and offset from any ValueOffsetPair in the set. 4032 ScalarEvolution::ValueOffsetPairSetVector * 4033 ScalarEvolution::getSCEVValues(const SCEV *S) { 4034 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4035 if (SI == ExprValueMap.end()) 4036 return nullptr; 4037 #ifndef NDEBUG 4038 if (VerifySCEVMap) { 4039 // Check there is no dangling Value in the set returned. 4040 for (const auto &VE : SI->second) 4041 assert(ValueExprMap.count(VE.first)); 4042 } 4043 #endif 4044 return &SI->second; 4045 } 4046 4047 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4048 /// cannot be used separately. eraseValueFromMap should be used to remove 4049 /// V from ValueExprMap and ExprValueMap at the same time. 4050 void ScalarEvolution::eraseValueFromMap(Value *V) { 4051 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4052 if (I != ValueExprMap.end()) { 4053 const SCEV *S = I->second; 4054 // Remove {V, 0} from the set of ExprValueMap[S] 4055 if (auto *SV = getSCEVValues(S)) 4056 SV->remove({V, nullptr}); 4057 4058 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4059 const SCEV *Stripped; 4060 ConstantInt *Offset; 4061 std::tie(Stripped, Offset) = splitAddExpr(S); 4062 if (Offset != nullptr) { 4063 if (auto *SV = getSCEVValues(Stripped)) 4064 SV->remove({V, Offset}); 4065 } 4066 ValueExprMap.erase(V); 4067 } 4068 } 4069 4070 /// Check whether value has nuw/nsw/exact set but SCEV does not. 4071 /// TODO: In reality it is better to check the poison recursively 4072 /// but this is better than nothing. 4073 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 4074 if (auto *I = dyn_cast<Instruction>(V)) { 4075 if (isa<OverflowingBinaryOperator>(I)) { 4076 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 4077 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 4078 return true; 4079 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 4080 return true; 4081 } 4082 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 4083 return true; 4084 } 4085 return false; 4086 } 4087 4088 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4089 /// create a new one. 4090 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4091 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4092 4093 const SCEV *S = getExistingSCEV(V); 4094 if (S == nullptr) { 4095 S = createSCEV(V); 4096 // During PHI resolution, it is possible to create two SCEVs for the same 4097 // V, so it is needed to double check whether V->S is inserted into 4098 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4099 std::pair<ValueExprMapType::iterator, bool> Pair = 4100 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4101 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 4102 ExprValueMap[S].insert({V, nullptr}); 4103 4104 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4105 // ExprValueMap. 4106 const SCEV *Stripped = S; 4107 ConstantInt *Offset = nullptr; 4108 std::tie(Stripped, Offset) = splitAddExpr(S); 4109 // If stripped is SCEVUnknown, don't bother to save 4110 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4111 // increase the complexity of the expansion code. 4112 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4113 // because it may generate add/sub instead of GEP in SCEV expansion. 4114 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4115 !isa<GetElementPtrInst>(V)) 4116 ExprValueMap[Stripped].insert({V, Offset}); 4117 } 4118 } 4119 return S; 4120 } 4121 4122 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4123 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4124 4125 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4126 if (I != ValueExprMap.end()) { 4127 const SCEV *S = I->second; 4128 if (checkValidity(S)) 4129 return S; 4130 eraseValueFromMap(V); 4131 forgetMemoizedResults(S); 4132 } 4133 return nullptr; 4134 } 4135 4136 /// Return a SCEV corresponding to -V = -1*V 4137 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4138 SCEV::NoWrapFlags Flags) { 4139 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4140 return getConstant( 4141 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4142 4143 Type *Ty = V->getType(); 4144 Ty = getEffectiveSCEVType(Ty); 4145 return getMulExpr(V, getMinusOne(Ty), Flags); 4146 } 4147 4148 /// If Expr computes ~A, return A else return nullptr 4149 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4150 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4151 if (!Add || Add->getNumOperands() != 2 || 4152 !Add->getOperand(0)->isAllOnesValue()) 4153 return nullptr; 4154 4155 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4156 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4157 !AddRHS->getOperand(0)->isAllOnesValue()) 4158 return nullptr; 4159 4160 return AddRHS->getOperand(1); 4161 } 4162 4163 /// Return a SCEV corresponding to ~V = -1-V 4164 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4165 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4166 4167 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4168 return getConstant( 4169 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4170 4171 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4172 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4173 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4174 SmallVector<const SCEV *, 2> MatchedOperands; 4175 for (const SCEV *Operand : MME->operands()) { 4176 const SCEV *Matched = MatchNotExpr(Operand); 4177 if (!Matched) 4178 return (const SCEV *)nullptr; 4179 MatchedOperands.push_back(Matched); 4180 } 4181 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4182 MatchedOperands); 4183 }; 4184 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4185 return Replaced; 4186 } 4187 4188 Type *Ty = V->getType(); 4189 Ty = getEffectiveSCEVType(Ty); 4190 return getMinusSCEV(getMinusOne(Ty), V); 4191 } 4192 4193 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4194 assert(P->getType()->isPointerTy()); 4195 4196 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4197 // The base of an AddRec is the first operand. 4198 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4199 Ops[0] = removePointerBase(Ops[0]); 4200 // Don't try to transfer nowrap flags for now. We could in some cases 4201 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4202 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4203 } 4204 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4205 // The base of an Add is the pointer operand. 4206 SmallVector<const SCEV *> Ops{Add->operands()}; 4207 const SCEV **PtrOp = nullptr; 4208 for (const SCEV *&AddOp : Ops) { 4209 if (AddOp->getType()->isPointerTy()) { 4210 assert(!PtrOp && "Cannot have multiple pointer ops"); 4211 PtrOp = &AddOp; 4212 } 4213 } 4214 *PtrOp = removePointerBase(*PtrOp); 4215 // Don't try to transfer nowrap flags for now. We could in some cases 4216 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4217 return getAddExpr(Ops); 4218 } 4219 // Any other expression must be a pointer base. 4220 return getZero(P->getType()); 4221 } 4222 4223 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4224 SCEV::NoWrapFlags Flags, 4225 unsigned Depth) { 4226 // Fast path: X - X --> 0. 4227 if (LHS == RHS) 4228 return getZero(LHS->getType()); 4229 4230 // If we subtract two pointers with different pointer bases, bail. 4231 // Eventually, we're going to add an assertion to getMulExpr that we 4232 // can't multiply by a pointer. 4233 if (RHS->getType()->isPointerTy()) { 4234 if (!LHS->getType()->isPointerTy() || 4235 getPointerBase(LHS) != getPointerBase(RHS)) 4236 return getCouldNotCompute(); 4237 LHS = removePointerBase(LHS); 4238 RHS = removePointerBase(RHS); 4239 } 4240 4241 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4242 // makes it so that we cannot make much use of NUW. 4243 auto AddFlags = SCEV::FlagAnyWrap; 4244 const bool RHSIsNotMinSigned = 4245 !getSignedRangeMin(RHS).isMinSignedValue(); 4246 if (hasFlags(Flags, SCEV::FlagNSW)) { 4247 // Let M be the minimum representable signed value. Then (-1)*RHS 4248 // signed-wraps if and only if RHS is M. That can happen even for 4249 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4250 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4251 // (-1)*RHS, we need to prove that RHS != M. 4252 // 4253 // If LHS is non-negative and we know that LHS - RHS does not 4254 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4255 // either by proving that RHS > M or that LHS >= 0. 4256 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4257 AddFlags = SCEV::FlagNSW; 4258 } 4259 } 4260 4261 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4262 // RHS is NSW and LHS >= 0. 4263 // 4264 // The difficulty here is that the NSW flag may have been proven 4265 // relative to a loop that is to be found in a recurrence in LHS and 4266 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4267 // larger scope than intended. 4268 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4269 4270 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4271 } 4272 4273 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4274 unsigned Depth) { 4275 Type *SrcTy = V->getType(); 4276 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4277 "Cannot truncate or zero extend with non-integer arguments!"); 4278 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4279 return V; // No conversion 4280 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4281 return getTruncateExpr(V, Ty, Depth); 4282 return getZeroExtendExpr(V, Ty, Depth); 4283 } 4284 4285 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4286 unsigned Depth) { 4287 Type *SrcTy = V->getType(); 4288 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4289 "Cannot truncate or zero extend with non-integer arguments!"); 4290 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4291 return V; // No conversion 4292 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4293 return getTruncateExpr(V, Ty, Depth); 4294 return getSignExtendExpr(V, Ty, Depth); 4295 } 4296 4297 const SCEV * 4298 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4299 Type *SrcTy = V->getType(); 4300 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4301 "Cannot noop or zero extend with non-integer arguments!"); 4302 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4303 "getNoopOrZeroExtend cannot truncate!"); 4304 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4305 return V; // No conversion 4306 return getZeroExtendExpr(V, Ty); 4307 } 4308 4309 const SCEV * 4310 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4311 Type *SrcTy = V->getType(); 4312 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4313 "Cannot noop or sign extend with non-integer arguments!"); 4314 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4315 "getNoopOrSignExtend cannot truncate!"); 4316 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4317 return V; // No conversion 4318 return getSignExtendExpr(V, Ty); 4319 } 4320 4321 const SCEV * 4322 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4323 Type *SrcTy = V->getType(); 4324 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4325 "Cannot noop or any extend with non-integer arguments!"); 4326 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4327 "getNoopOrAnyExtend cannot truncate!"); 4328 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4329 return V; // No conversion 4330 return getAnyExtendExpr(V, Ty); 4331 } 4332 4333 const SCEV * 4334 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4335 Type *SrcTy = V->getType(); 4336 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4337 "Cannot truncate or noop with non-integer arguments!"); 4338 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4339 "getTruncateOrNoop cannot extend!"); 4340 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4341 return V; // No conversion 4342 return getTruncateExpr(V, Ty); 4343 } 4344 4345 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4346 const SCEV *RHS) { 4347 const SCEV *PromotedLHS = LHS; 4348 const SCEV *PromotedRHS = RHS; 4349 4350 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4351 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4352 else 4353 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4354 4355 return getUMaxExpr(PromotedLHS, PromotedRHS); 4356 } 4357 4358 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4359 const SCEV *RHS) { 4360 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4361 return getUMinFromMismatchedTypes(Ops); 4362 } 4363 4364 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4365 SmallVectorImpl<const SCEV *> &Ops) { 4366 assert(!Ops.empty() && "At least one operand must be!"); 4367 // Trivial case. 4368 if (Ops.size() == 1) 4369 return Ops[0]; 4370 4371 // Find the max type first. 4372 Type *MaxType = nullptr; 4373 for (auto *S : Ops) 4374 if (MaxType) 4375 MaxType = getWiderType(MaxType, S->getType()); 4376 else 4377 MaxType = S->getType(); 4378 assert(MaxType && "Failed to find maximum type!"); 4379 4380 // Extend all ops to max type. 4381 SmallVector<const SCEV *, 2> PromotedOps; 4382 for (auto *S : Ops) 4383 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4384 4385 // Generate umin. 4386 return getUMinExpr(PromotedOps); 4387 } 4388 4389 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4390 // A pointer operand may evaluate to a nonpointer expression, such as null. 4391 if (!V->getType()->isPointerTy()) 4392 return V; 4393 4394 while (true) { 4395 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4396 V = AddRec->getStart(); 4397 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4398 const SCEV *PtrOp = nullptr; 4399 for (const SCEV *AddOp : Add->operands()) { 4400 if (AddOp->getType()->isPointerTy()) { 4401 assert(!PtrOp && "Cannot have multiple pointer ops"); 4402 PtrOp = AddOp; 4403 } 4404 } 4405 assert(PtrOp && "Must have pointer op"); 4406 V = PtrOp; 4407 } else // Not something we can look further into. 4408 return V; 4409 } 4410 } 4411 4412 /// Push users of the given Instruction onto the given Worklist. 4413 static void PushDefUseChildren(Instruction *I, 4414 SmallVectorImpl<Instruction *> &Worklist, 4415 SmallPtrSetImpl<Instruction *> &Visited) { 4416 // Push the def-use children onto the Worklist stack. 4417 for (User *U : I->users()) { 4418 auto *UserInsn = cast<Instruction>(U); 4419 if (Visited.insert(UserInsn).second) 4420 Worklist.push_back(UserInsn); 4421 } 4422 } 4423 4424 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4425 SmallVector<Instruction *, 16> Worklist; 4426 SmallPtrSet<Instruction *, 8> Visited; 4427 Visited.insert(PN); 4428 Worklist.push_back(PN); 4429 while (!Worklist.empty()) { 4430 Instruction *I = Worklist.pop_back_val(); 4431 4432 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4433 if (It != ValueExprMap.end()) { 4434 const SCEV *Old = It->second; 4435 4436 // Short-circuit the def-use traversal if the symbolic name 4437 // ceases to appear in expressions. 4438 if (Old != SymName && !hasOperand(Old, SymName)) 4439 continue; 4440 4441 // SCEVUnknown for a PHI either means that it has an unrecognized 4442 // structure, it's a PHI that's in the progress of being computed 4443 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4444 // additional loop trip count information isn't going to change anything. 4445 // In the second case, createNodeForPHI will perform the necessary 4446 // updates on its own when it gets to that point. In the third, we do 4447 // want to forget the SCEVUnknown. 4448 if (!isa<PHINode>(I) || 4449 !isa<SCEVUnknown>(Old) || 4450 (I != PN && Old == SymName)) { 4451 eraseValueFromMap(It->first); 4452 forgetMemoizedResults(Old); 4453 } 4454 } 4455 4456 PushDefUseChildren(I, Worklist, Visited); 4457 } 4458 } 4459 4460 namespace { 4461 4462 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4463 /// expression in case its Loop is L. If it is not L then 4464 /// if IgnoreOtherLoops is true then use AddRec itself 4465 /// otherwise rewrite cannot be done. 4466 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4467 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4468 public: 4469 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4470 bool IgnoreOtherLoops = true) { 4471 SCEVInitRewriter Rewriter(L, SE); 4472 const SCEV *Result = Rewriter.visit(S); 4473 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4474 return SE.getCouldNotCompute(); 4475 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4476 ? SE.getCouldNotCompute() 4477 : Result; 4478 } 4479 4480 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4481 if (!SE.isLoopInvariant(Expr, L)) 4482 SeenLoopVariantSCEVUnknown = true; 4483 return Expr; 4484 } 4485 4486 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4487 // Only re-write AddRecExprs for this loop. 4488 if (Expr->getLoop() == L) 4489 return Expr->getStart(); 4490 SeenOtherLoops = true; 4491 return Expr; 4492 } 4493 4494 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4495 4496 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4497 4498 private: 4499 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4500 : SCEVRewriteVisitor(SE), L(L) {} 4501 4502 const Loop *L; 4503 bool SeenLoopVariantSCEVUnknown = false; 4504 bool SeenOtherLoops = false; 4505 }; 4506 4507 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4508 /// increment expression in case its Loop is L. If it is not L then 4509 /// use AddRec itself. 4510 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4511 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4512 public: 4513 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4514 SCEVPostIncRewriter Rewriter(L, SE); 4515 const SCEV *Result = Rewriter.visit(S); 4516 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4517 ? SE.getCouldNotCompute() 4518 : Result; 4519 } 4520 4521 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4522 if (!SE.isLoopInvariant(Expr, L)) 4523 SeenLoopVariantSCEVUnknown = true; 4524 return Expr; 4525 } 4526 4527 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4528 // Only re-write AddRecExprs for this loop. 4529 if (Expr->getLoop() == L) 4530 return Expr->getPostIncExpr(SE); 4531 SeenOtherLoops = true; 4532 return Expr; 4533 } 4534 4535 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4536 4537 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4538 4539 private: 4540 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4541 : SCEVRewriteVisitor(SE), L(L) {} 4542 4543 const Loop *L; 4544 bool SeenLoopVariantSCEVUnknown = false; 4545 bool SeenOtherLoops = false; 4546 }; 4547 4548 /// This class evaluates the compare condition by matching it against the 4549 /// condition of loop latch. If there is a match we assume a true value 4550 /// for the condition while building SCEV nodes. 4551 class SCEVBackedgeConditionFolder 4552 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4553 public: 4554 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4555 ScalarEvolution &SE) { 4556 bool IsPosBECond = false; 4557 Value *BECond = nullptr; 4558 if (BasicBlock *Latch = L->getLoopLatch()) { 4559 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4560 if (BI && BI->isConditional()) { 4561 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4562 "Both outgoing branches should not target same header!"); 4563 BECond = BI->getCondition(); 4564 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4565 } else { 4566 return S; 4567 } 4568 } 4569 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4570 return Rewriter.visit(S); 4571 } 4572 4573 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4574 const SCEV *Result = Expr; 4575 bool InvariantF = SE.isLoopInvariant(Expr, L); 4576 4577 if (!InvariantF) { 4578 Instruction *I = cast<Instruction>(Expr->getValue()); 4579 switch (I->getOpcode()) { 4580 case Instruction::Select: { 4581 SelectInst *SI = cast<SelectInst>(I); 4582 Optional<const SCEV *> Res = 4583 compareWithBackedgeCondition(SI->getCondition()); 4584 if (Res.hasValue()) { 4585 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4586 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4587 } 4588 break; 4589 } 4590 default: { 4591 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4592 if (Res.hasValue()) 4593 Result = Res.getValue(); 4594 break; 4595 } 4596 } 4597 } 4598 return Result; 4599 } 4600 4601 private: 4602 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4603 bool IsPosBECond, ScalarEvolution &SE) 4604 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4605 IsPositiveBECond(IsPosBECond) {} 4606 4607 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4608 4609 const Loop *L; 4610 /// Loop back condition. 4611 Value *BackedgeCond = nullptr; 4612 /// Set to true if loop back is on positive branch condition. 4613 bool IsPositiveBECond; 4614 }; 4615 4616 Optional<const SCEV *> 4617 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4618 4619 // If value matches the backedge condition for loop latch, 4620 // then return a constant evolution node based on loopback 4621 // branch taken. 4622 if (BackedgeCond == IC) 4623 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4624 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4625 return None; 4626 } 4627 4628 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4629 public: 4630 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4631 ScalarEvolution &SE) { 4632 SCEVShiftRewriter Rewriter(L, SE); 4633 const SCEV *Result = Rewriter.visit(S); 4634 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4635 } 4636 4637 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4638 // Only allow AddRecExprs for this loop. 4639 if (!SE.isLoopInvariant(Expr, L)) 4640 Valid = false; 4641 return Expr; 4642 } 4643 4644 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4645 if (Expr->getLoop() == L && Expr->isAffine()) 4646 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4647 Valid = false; 4648 return Expr; 4649 } 4650 4651 bool isValid() { return Valid; } 4652 4653 private: 4654 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4655 : SCEVRewriteVisitor(SE), L(L) {} 4656 4657 const Loop *L; 4658 bool Valid = true; 4659 }; 4660 4661 } // end anonymous namespace 4662 4663 SCEV::NoWrapFlags 4664 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4665 if (!AR->isAffine()) 4666 return SCEV::FlagAnyWrap; 4667 4668 using OBO = OverflowingBinaryOperator; 4669 4670 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4671 4672 if (!AR->hasNoSignedWrap()) { 4673 ConstantRange AddRecRange = getSignedRange(AR); 4674 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4675 4676 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4677 Instruction::Add, IncRange, OBO::NoSignedWrap); 4678 if (NSWRegion.contains(AddRecRange)) 4679 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4680 } 4681 4682 if (!AR->hasNoUnsignedWrap()) { 4683 ConstantRange AddRecRange = getUnsignedRange(AR); 4684 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4685 4686 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4687 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4688 if (NUWRegion.contains(AddRecRange)) 4689 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4690 } 4691 4692 return Result; 4693 } 4694 4695 SCEV::NoWrapFlags 4696 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4697 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4698 4699 if (AR->hasNoSignedWrap()) 4700 return Result; 4701 4702 if (!AR->isAffine()) 4703 return Result; 4704 4705 const SCEV *Step = AR->getStepRecurrence(*this); 4706 const Loop *L = AR->getLoop(); 4707 4708 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4709 // Note that this serves two purposes: It filters out loops that are 4710 // simply not analyzable, and it covers the case where this code is 4711 // being called from within backedge-taken count analysis, such that 4712 // attempting to ask for the backedge-taken count would likely result 4713 // in infinite recursion. In the later case, the analysis code will 4714 // cope with a conservative value, and it will take care to purge 4715 // that value once it has finished. 4716 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4717 4718 // Normally, in the cases we can prove no-overflow via a 4719 // backedge guarding condition, we can also compute a backedge 4720 // taken count for the loop. The exceptions are assumptions and 4721 // guards present in the loop -- SCEV is not great at exploiting 4722 // these to compute max backedge taken counts, but can still use 4723 // these to prove lack of overflow. Use this fact to avoid 4724 // doing extra work that may not pay off. 4725 4726 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4727 AC.assumptions().empty()) 4728 return Result; 4729 4730 // If the backedge is guarded by a comparison with the pre-inc value the 4731 // addrec is safe. Also, if the entry is guarded by a comparison with the 4732 // start value and the backedge is guarded by a comparison with the post-inc 4733 // value, the addrec is safe. 4734 ICmpInst::Predicate Pred; 4735 const SCEV *OverflowLimit = 4736 getSignedOverflowLimitForStep(Step, &Pred, this); 4737 if (OverflowLimit && 4738 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4739 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4740 Result = setFlags(Result, SCEV::FlagNSW); 4741 } 4742 return Result; 4743 } 4744 SCEV::NoWrapFlags 4745 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4746 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4747 4748 if (AR->hasNoUnsignedWrap()) 4749 return Result; 4750 4751 if (!AR->isAffine()) 4752 return Result; 4753 4754 const SCEV *Step = AR->getStepRecurrence(*this); 4755 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4756 const Loop *L = AR->getLoop(); 4757 4758 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4759 // Note that this serves two purposes: It filters out loops that are 4760 // simply not analyzable, and it covers the case where this code is 4761 // being called from within backedge-taken count analysis, such that 4762 // attempting to ask for the backedge-taken count would likely result 4763 // in infinite recursion. In the later case, the analysis code will 4764 // cope with a conservative value, and it will take care to purge 4765 // that value once it has finished. 4766 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4767 4768 // Normally, in the cases we can prove no-overflow via a 4769 // backedge guarding condition, we can also compute a backedge 4770 // taken count for the loop. The exceptions are assumptions and 4771 // guards present in the loop -- SCEV is not great at exploiting 4772 // these to compute max backedge taken counts, but can still use 4773 // these to prove lack of overflow. Use this fact to avoid 4774 // doing extra work that may not pay off. 4775 4776 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4777 AC.assumptions().empty()) 4778 return Result; 4779 4780 // If the backedge is guarded by a comparison with the pre-inc value the 4781 // addrec is safe. Also, if the entry is guarded by a comparison with the 4782 // start value and the backedge is guarded by a comparison with the post-inc 4783 // value, the addrec is safe. 4784 if (isKnownPositive(Step)) { 4785 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4786 getUnsignedRangeMax(Step)); 4787 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4788 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4789 Result = setFlags(Result, SCEV::FlagNUW); 4790 } 4791 } 4792 4793 return Result; 4794 } 4795 4796 namespace { 4797 4798 /// Represents an abstract binary operation. This may exist as a 4799 /// normal instruction or constant expression, or may have been 4800 /// derived from an expression tree. 4801 struct BinaryOp { 4802 unsigned Opcode; 4803 Value *LHS; 4804 Value *RHS; 4805 bool IsNSW = false; 4806 bool IsNUW = false; 4807 4808 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4809 /// constant expression. 4810 Operator *Op = nullptr; 4811 4812 explicit BinaryOp(Operator *Op) 4813 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4814 Op(Op) { 4815 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4816 IsNSW = OBO->hasNoSignedWrap(); 4817 IsNUW = OBO->hasNoUnsignedWrap(); 4818 } 4819 } 4820 4821 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4822 bool IsNUW = false) 4823 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4824 }; 4825 4826 } // end anonymous namespace 4827 4828 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4829 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4830 auto *Op = dyn_cast<Operator>(V); 4831 if (!Op) 4832 return None; 4833 4834 // Implementation detail: all the cleverness here should happen without 4835 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4836 // SCEV expressions when possible, and we should not break that. 4837 4838 switch (Op->getOpcode()) { 4839 case Instruction::Add: 4840 case Instruction::Sub: 4841 case Instruction::Mul: 4842 case Instruction::UDiv: 4843 case Instruction::URem: 4844 case Instruction::And: 4845 case Instruction::Or: 4846 case Instruction::AShr: 4847 case Instruction::Shl: 4848 return BinaryOp(Op); 4849 4850 case Instruction::Xor: 4851 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4852 // If the RHS of the xor is a signmask, then this is just an add. 4853 // Instcombine turns add of signmask into xor as a strength reduction step. 4854 if (RHSC->getValue().isSignMask()) 4855 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4856 return BinaryOp(Op); 4857 4858 case Instruction::LShr: 4859 // Turn logical shift right of a constant into a unsigned divide. 4860 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4861 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4862 4863 // If the shift count is not less than the bitwidth, the result of 4864 // the shift is undefined. Don't try to analyze it, because the 4865 // resolution chosen here may differ from the resolution chosen in 4866 // other parts of the compiler. 4867 if (SA->getValue().ult(BitWidth)) { 4868 Constant *X = 4869 ConstantInt::get(SA->getContext(), 4870 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4871 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4872 } 4873 } 4874 return BinaryOp(Op); 4875 4876 case Instruction::ExtractValue: { 4877 auto *EVI = cast<ExtractValueInst>(Op); 4878 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4879 break; 4880 4881 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4882 if (!WO) 4883 break; 4884 4885 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4886 bool Signed = WO->isSigned(); 4887 // TODO: Should add nuw/nsw flags for mul as well. 4888 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4889 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4890 4891 // Now that we know that all uses of the arithmetic-result component of 4892 // CI are guarded by the overflow check, we can go ahead and pretend 4893 // that the arithmetic is non-overflowing. 4894 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4895 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4896 } 4897 4898 default: 4899 break; 4900 } 4901 4902 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4903 // semantics as a Sub, return a binary sub expression. 4904 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4905 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4906 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4907 4908 return None; 4909 } 4910 4911 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4912 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4913 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4914 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4915 /// follows one of the following patterns: 4916 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4917 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4918 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4919 /// we return the type of the truncation operation, and indicate whether the 4920 /// truncated type should be treated as signed/unsigned by setting 4921 /// \p Signed to true/false, respectively. 4922 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4923 bool &Signed, ScalarEvolution &SE) { 4924 // The case where Op == SymbolicPHI (that is, with no type conversions on 4925 // the way) is handled by the regular add recurrence creating logic and 4926 // would have already been triggered in createAddRecForPHI. Reaching it here 4927 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4928 // because one of the other operands of the SCEVAddExpr updating this PHI is 4929 // not invariant). 4930 // 4931 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4932 // this case predicates that allow us to prove that Op == SymbolicPHI will 4933 // be added. 4934 if (Op == SymbolicPHI) 4935 return nullptr; 4936 4937 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4938 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4939 if (SourceBits != NewBits) 4940 return nullptr; 4941 4942 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4943 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4944 if (!SExt && !ZExt) 4945 return nullptr; 4946 const SCEVTruncateExpr *Trunc = 4947 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4948 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4949 if (!Trunc) 4950 return nullptr; 4951 const SCEV *X = Trunc->getOperand(); 4952 if (X != SymbolicPHI) 4953 return nullptr; 4954 Signed = SExt != nullptr; 4955 return Trunc->getType(); 4956 } 4957 4958 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4959 if (!PN->getType()->isIntegerTy()) 4960 return nullptr; 4961 const Loop *L = LI.getLoopFor(PN->getParent()); 4962 if (!L || L->getHeader() != PN->getParent()) 4963 return nullptr; 4964 return L; 4965 } 4966 4967 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4968 // computation that updates the phi follows the following pattern: 4969 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4970 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4971 // If so, try to see if it can be rewritten as an AddRecExpr under some 4972 // Predicates. If successful, return them as a pair. Also cache the results 4973 // of the analysis. 4974 // 4975 // Example usage scenario: 4976 // Say the Rewriter is called for the following SCEV: 4977 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4978 // where: 4979 // %X = phi i64 (%Start, %BEValue) 4980 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4981 // and call this function with %SymbolicPHI = %X. 4982 // 4983 // The analysis will find that the value coming around the backedge has 4984 // the following SCEV: 4985 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4986 // Upon concluding that this matches the desired pattern, the function 4987 // will return the pair {NewAddRec, SmallPredsVec} where: 4988 // NewAddRec = {%Start,+,%Step} 4989 // SmallPredsVec = {P1, P2, P3} as follows: 4990 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4991 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4992 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4993 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4994 // under the predicates {P1,P2,P3}. 4995 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4996 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4997 // 4998 // TODO's: 4999 // 5000 // 1) Extend the Induction descriptor to also support inductions that involve 5001 // casts: When needed (namely, when we are called in the context of the 5002 // vectorizer induction analysis), a Set of cast instructions will be 5003 // populated by this method, and provided back to isInductionPHI. This is 5004 // needed to allow the vectorizer to properly record them to be ignored by 5005 // the cost model and to avoid vectorizing them (otherwise these casts, 5006 // which are redundant under the runtime overflow checks, will be 5007 // vectorized, which can be costly). 5008 // 5009 // 2) Support additional induction/PHISCEV patterns: We also want to support 5010 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5011 // after the induction update operation (the induction increment): 5012 // 5013 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5014 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5015 // 5016 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5017 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5018 // 5019 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5020 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5021 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5022 SmallVector<const SCEVPredicate *, 3> Predicates; 5023 5024 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5025 // return an AddRec expression under some predicate. 5026 5027 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5028 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5029 assert(L && "Expecting an integer loop header phi"); 5030 5031 // The loop may have multiple entrances or multiple exits; we can analyze 5032 // this phi as an addrec if it has a unique entry value and a unique 5033 // backedge value. 5034 Value *BEValueV = nullptr, *StartValueV = nullptr; 5035 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5036 Value *V = PN->getIncomingValue(i); 5037 if (L->contains(PN->getIncomingBlock(i))) { 5038 if (!BEValueV) { 5039 BEValueV = V; 5040 } else if (BEValueV != V) { 5041 BEValueV = nullptr; 5042 break; 5043 } 5044 } else if (!StartValueV) { 5045 StartValueV = V; 5046 } else if (StartValueV != V) { 5047 StartValueV = nullptr; 5048 break; 5049 } 5050 } 5051 if (!BEValueV || !StartValueV) 5052 return None; 5053 5054 const SCEV *BEValue = getSCEV(BEValueV); 5055 5056 // If the value coming around the backedge is an add with the symbolic 5057 // value we just inserted, possibly with casts that we can ignore under 5058 // an appropriate runtime guard, then we found a simple induction variable! 5059 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5060 if (!Add) 5061 return None; 5062 5063 // If there is a single occurrence of the symbolic value, possibly 5064 // casted, replace it with a recurrence. 5065 unsigned FoundIndex = Add->getNumOperands(); 5066 Type *TruncTy = nullptr; 5067 bool Signed; 5068 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5069 if ((TruncTy = 5070 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5071 if (FoundIndex == e) { 5072 FoundIndex = i; 5073 break; 5074 } 5075 5076 if (FoundIndex == Add->getNumOperands()) 5077 return None; 5078 5079 // Create an add with everything but the specified operand. 5080 SmallVector<const SCEV *, 8> Ops; 5081 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5082 if (i != FoundIndex) 5083 Ops.push_back(Add->getOperand(i)); 5084 const SCEV *Accum = getAddExpr(Ops); 5085 5086 // The runtime checks will not be valid if the step amount is 5087 // varying inside the loop. 5088 if (!isLoopInvariant(Accum, L)) 5089 return None; 5090 5091 // *** Part2: Create the predicates 5092 5093 // Analysis was successful: we have a phi-with-cast pattern for which we 5094 // can return an AddRec expression under the following predicates: 5095 // 5096 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5097 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5098 // P2: An Equal predicate that guarantees that 5099 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5100 // P3: An Equal predicate that guarantees that 5101 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5102 // 5103 // As we next prove, the above predicates guarantee that: 5104 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5105 // 5106 // 5107 // More formally, we want to prove that: 5108 // Expr(i+1) = Start + (i+1) * Accum 5109 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5110 // 5111 // Given that: 5112 // 1) Expr(0) = Start 5113 // 2) Expr(1) = Start + Accum 5114 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5115 // 3) Induction hypothesis (step i): 5116 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5117 // 5118 // Proof: 5119 // Expr(i+1) = 5120 // = Start + (i+1)*Accum 5121 // = (Start + i*Accum) + Accum 5122 // = Expr(i) + Accum 5123 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5124 // :: from step i 5125 // 5126 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5127 // 5128 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5129 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5130 // + Accum :: from P3 5131 // 5132 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5133 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5134 // 5135 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5136 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5137 // 5138 // By induction, the same applies to all iterations 1<=i<n: 5139 // 5140 5141 // Create a truncated addrec for which we will add a no overflow check (P1). 5142 const SCEV *StartVal = getSCEV(StartValueV); 5143 const SCEV *PHISCEV = 5144 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5145 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5146 5147 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5148 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5149 // will be constant. 5150 // 5151 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5152 // add P1. 5153 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5154 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5155 Signed ? SCEVWrapPredicate::IncrementNSSW 5156 : SCEVWrapPredicate::IncrementNUSW; 5157 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5158 Predicates.push_back(AddRecPred); 5159 } 5160 5161 // Create the Equal Predicates P2,P3: 5162 5163 // It is possible that the predicates P2 and/or P3 are computable at 5164 // compile time due to StartVal and/or Accum being constants. 5165 // If either one is, then we can check that now and escape if either P2 5166 // or P3 is false. 5167 5168 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5169 // for each of StartVal and Accum 5170 auto getExtendedExpr = [&](const SCEV *Expr, 5171 bool CreateSignExtend) -> const SCEV * { 5172 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5173 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5174 const SCEV *ExtendedExpr = 5175 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5176 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5177 return ExtendedExpr; 5178 }; 5179 5180 // Given: 5181 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5182 // = getExtendedExpr(Expr) 5183 // Determine whether the predicate P: Expr == ExtendedExpr 5184 // is known to be false at compile time 5185 auto PredIsKnownFalse = [&](const SCEV *Expr, 5186 const SCEV *ExtendedExpr) -> bool { 5187 return Expr != ExtendedExpr && 5188 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5189 }; 5190 5191 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5192 if (PredIsKnownFalse(StartVal, StartExtended)) { 5193 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5194 return None; 5195 } 5196 5197 // The Step is always Signed (because the overflow checks are either 5198 // NSSW or NUSW) 5199 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5200 if (PredIsKnownFalse(Accum, AccumExtended)) { 5201 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5202 return None; 5203 } 5204 5205 auto AppendPredicate = [&](const SCEV *Expr, 5206 const SCEV *ExtendedExpr) -> void { 5207 if (Expr != ExtendedExpr && 5208 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5209 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5210 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5211 Predicates.push_back(Pred); 5212 } 5213 }; 5214 5215 AppendPredicate(StartVal, StartExtended); 5216 AppendPredicate(Accum, AccumExtended); 5217 5218 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5219 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5220 // into NewAR if it will also add the runtime overflow checks specified in 5221 // Predicates. 5222 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5223 5224 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5225 std::make_pair(NewAR, Predicates); 5226 // Remember the result of the analysis for this SCEV at this locayyytion. 5227 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5228 return PredRewrite; 5229 } 5230 5231 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5232 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5233 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5234 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5235 if (!L) 5236 return None; 5237 5238 // Check to see if we already analyzed this PHI. 5239 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5240 if (I != PredicatedSCEVRewrites.end()) { 5241 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5242 I->second; 5243 // Analysis was done before and failed to create an AddRec: 5244 if (Rewrite.first == SymbolicPHI) 5245 return None; 5246 // Analysis was done before and succeeded to create an AddRec under 5247 // a predicate: 5248 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5249 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5250 return Rewrite; 5251 } 5252 5253 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5254 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5255 5256 // Record in the cache that the analysis failed 5257 if (!Rewrite) { 5258 SmallVector<const SCEVPredicate *, 3> Predicates; 5259 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5260 return None; 5261 } 5262 5263 return Rewrite; 5264 } 5265 5266 // FIXME: This utility is currently required because the Rewriter currently 5267 // does not rewrite this expression: 5268 // {0, +, (sext ix (trunc iy to ix) to iy)} 5269 // into {0, +, %step}, 5270 // even when the following Equal predicate exists: 5271 // "%step == (sext ix (trunc iy to ix) to iy)". 5272 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5273 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5274 if (AR1 == AR2) 5275 return true; 5276 5277 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5278 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5279 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5280 return false; 5281 return true; 5282 }; 5283 5284 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5285 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5286 return false; 5287 return true; 5288 } 5289 5290 /// A helper function for createAddRecFromPHI to handle simple cases. 5291 /// 5292 /// This function tries to find an AddRec expression for the simplest (yet most 5293 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5294 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5295 /// technique for finding the AddRec expression. 5296 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5297 Value *BEValueV, 5298 Value *StartValueV) { 5299 const Loop *L = LI.getLoopFor(PN->getParent()); 5300 assert(L && L->getHeader() == PN->getParent()); 5301 assert(BEValueV && StartValueV); 5302 5303 auto BO = MatchBinaryOp(BEValueV, DT); 5304 if (!BO) 5305 return nullptr; 5306 5307 if (BO->Opcode != Instruction::Add) 5308 return nullptr; 5309 5310 const SCEV *Accum = nullptr; 5311 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5312 Accum = getSCEV(BO->RHS); 5313 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5314 Accum = getSCEV(BO->LHS); 5315 5316 if (!Accum) 5317 return nullptr; 5318 5319 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5320 if (BO->IsNUW) 5321 Flags = setFlags(Flags, SCEV::FlagNUW); 5322 if (BO->IsNSW) 5323 Flags = setFlags(Flags, SCEV::FlagNSW); 5324 5325 const SCEV *StartVal = getSCEV(StartValueV); 5326 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5327 5328 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5329 5330 // We can add Flags to the post-inc expression only if we 5331 // know that it is *undefined behavior* for BEValueV to 5332 // overflow. 5333 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5334 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5335 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5336 5337 return PHISCEV; 5338 } 5339 5340 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5341 const Loop *L = LI.getLoopFor(PN->getParent()); 5342 if (!L || L->getHeader() != PN->getParent()) 5343 return nullptr; 5344 5345 // The loop may have multiple entrances or multiple exits; we can analyze 5346 // this phi as an addrec if it has a unique entry value and a unique 5347 // backedge value. 5348 Value *BEValueV = nullptr, *StartValueV = nullptr; 5349 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5350 Value *V = PN->getIncomingValue(i); 5351 if (L->contains(PN->getIncomingBlock(i))) { 5352 if (!BEValueV) { 5353 BEValueV = V; 5354 } else if (BEValueV != V) { 5355 BEValueV = nullptr; 5356 break; 5357 } 5358 } else if (!StartValueV) { 5359 StartValueV = V; 5360 } else if (StartValueV != V) { 5361 StartValueV = nullptr; 5362 break; 5363 } 5364 } 5365 if (!BEValueV || !StartValueV) 5366 return nullptr; 5367 5368 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5369 "PHI node already processed?"); 5370 5371 // First, try to find AddRec expression without creating a fictituos symbolic 5372 // value for PN. 5373 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5374 return S; 5375 5376 // Handle PHI node value symbolically. 5377 const SCEV *SymbolicName = getUnknown(PN); 5378 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5379 5380 // Using this symbolic name for the PHI, analyze the value coming around 5381 // the back-edge. 5382 const SCEV *BEValue = getSCEV(BEValueV); 5383 5384 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5385 // has a special value for the first iteration of the loop. 5386 5387 // If the value coming around the backedge is an add with the symbolic 5388 // value we just inserted, then we found a simple induction variable! 5389 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5390 // If there is a single occurrence of the symbolic value, replace it 5391 // with a recurrence. 5392 unsigned FoundIndex = Add->getNumOperands(); 5393 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5394 if (Add->getOperand(i) == SymbolicName) 5395 if (FoundIndex == e) { 5396 FoundIndex = i; 5397 break; 5398 } 5399 5400 if (FoundIndex != Add->getNumOperands()) { 5401 // Create an add with everything but the specified operand. 5402 SmallVector<const SCEV *, 8> Ops; 5403 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5404 if (i != FoundIndex) 5405 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5406 L, *this)); 5407 const SCEV *Accum = getAddExpr(Ops); 5408 5409 // This is not a valid addrec if the step amount is varying each 5410 // loop iteration, but is not itself an addrec in this loop. 5411 if (isLoopInvariant(Accum, L) || 5412 (isa<SCEVAddRecExpr>(Accum) && 5413 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5414 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5415 5416 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5417 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5418 if (BO->IsNUW) 5419 Flags = setFlags(Flags, SCEV::FlagNUW); 5420 if (BO->IsNSW) 5421 Flags = setFlags(Flags, SCEV::FlagNSW); 5422 } 5423 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5424 // If the increment is an inbounds GEP, then we know the address 5425 // space cannot be wrapped around. We cannot make any guarantee 5426 // about signed or unsigned overflow because pointers are 5427 // unsigned but we may have a negative index from the base 5428 // pointer. We can guarantee that no unsigned wrap occurs if the 5429 // indices form a positive value. 5430 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5431 Flags = setFlags(Flags, SCEV::FlagNW); 5432 5433 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5434 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5435 Flags = setFlags(Flags, SCEV::FlagNUW); 5436 } 5437 5438 // We cannot transfer nuw and nsw flags from subtraction 5439 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5440 // for instance. 5441 } 5442 5443 const SCEV *StartVal = getSCEV(StartValueV); 5444 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5445 5446 // Okay, for the entire analysis of this edge we assumed the PHI 5447 // to be symbolic. We now need to go back and purge all of the 5448 // entries for the scalars that use the symbolic expression. 5449 forgetSymbolicName(PN, SymbolicName); 5450 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5451 5452 // We can add Flags to the post-inc expression only if we 5453 // know that it is *undefined behavior* for BEValueV to 5454 // overflow. 5455 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5456 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5457 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5458 5459 return PHISCEV; 5460 } 5461 } 5462 } else { 5463 // Otherwise, this could be a loop like this: 5464 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5465 // In this case, j = {1,+,1} and BEValue is j. 5466 // Because the other in-value of i (0) fits the evolution of BEValue 5467 // i really is an addrec evolution. 5468 // 5469 // We can generalize this saying that i is the shifted value of BEValue 5470 // by one iteration: 5471 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5472 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5473 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5474 if (Shifted != getCouldNotCompute() && 5475 Start != getCouldNotCompute()) { 5476 const SCEV *StartVal = getSCEV(StartValueV); 5477 if (Start == StartVal) { 5478 // Okay, for the entire analysis of this edge we assumed the PHI 5479 // to be symbolic. We now need to go back and purge all of the 5480 // entries for the scalars that use the symbolic expression. 5481 forgetSymbolicName(PN, SymbolicName); 5482 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5483 return Shifted; 5484 } 5485 } 5486 } 5487 5488 // Remove the temporary PHI node SCEV that has been inserted while intending 5489 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5490 // as it will prevent later (possibly simpler) SCEV expressions to be added 5491 // to the ValueExprMap. 5492 eraseValueFromMap(PN); 5493 5494 return nullptr; 5495 } 5496 5497 // Checks if the SCEV S is available at BB. S is considered available at BB 5498 // if S can be materialized at BB without introducing a fault. 5499 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5500 BasicBlock *BB) { 5501 struct CheckAvailable { 5502 bool TraversalDone = false; 5503 bool Available = true; 5504 5505 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5506 BasicBlock *BB = nullptr; 5507 DominatorTree &DT; 5508 5509 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5510 : L(L), BB(BB), DT(DT) {} 5511 5512 bool setUnavailable() { 5513 TraversalDone = true; 5514 Available = false; 5515 return false; 5516 } 5517 5518 bool follow(const SCEV *S) { 5519 switch (S->getSCEVType()) { 5520 case scConstant: 5521 case scPtrToInt: 5522 case scTruncate: 5523 case scZeroExtend: 5524 case scSignExtend: 5525 case scAddExpr: 5526 case scMulExpr: 5527 case scUMaxExpr: 5528 case scSMaxExpr: 5529 case scUMinExpr: 5530 case scSMinExpr: 5531 // These expressions are available if their operand(s) is/are. 5532 return true; 5533 5534 case scAddRecExpr: { 5535 // We allow add recurrences that are on the loop BB is in, or some 5536 // outer loop. This guarantees availability because the value of the 5537 // add recurrence at BB is simply the "current" value of the induction 5538 // variable. We can relax this in the future; for instance an add 5539 // recurrence on a sibling dominating loop is also available at BB. 5540 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5541 if (L && (ARLoop == L || ARLoop->contains(L))) 5542 return true; 5543 5544 return setUnavailable(); 5545 } 5546 5547 case scUnknown: { 5548 // For SCEVUnknown, we check for simple dominance. 5549 const auto *SU = cast<SCEVUnknown>(S); 5550 Value *V = SU->getValue(); 5551 5552 if (isa<Argument>(V)) 5553 return false; 5554 5555 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5556 return false; 5557 5558 return setUnavailable(); 5559 } 5560 5561 case scUDivExpr: 5562 case scCouldNotCompute: 5563 // We do not try to smart about these at all. 5564 return setUnavailable(); 5565 } 5566 llvm_unreachable("Unknown SCEV kind!"); 5567 } 5568 5569 bool isDone() { return TraversalDone; } 5570 }; 5571 5572 CheckAvailable CA(L, BB, DT); 5573 SCEVTraversal<CheckAvailable> ST(CA); 5574 5575 ST.visitAll(S); 5576 return CA.Available; 5577 } 5578 5579 // Try to match a control flow sequence that branches out at BI and merges back 5580 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5581 // match. 5582 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5583 Value *&C, Value *&LHS, Value *&RHS) { 5584 C = BI->getCondition(); 5585 5586 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5587 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5588 5589 if (!LeftEdge.isSingleEdge()) 5590 return false; 5591 5592 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5593 5594 Use &LeftUse = Merge->getOperandUse(0); 5595 Use &RightUse = Merge->getOperandUse(1); 5596 5597 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5598 LHS = LeftUse; 5599 RHS = RightUse; 5600 return true; 5601 } 5602 5603 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5604 LHS = RightUse; 5605 RHS = LeftUse; 5606 return true; 5607 } 5608 5609 return false; 5610 } 5611 5612 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5613 auto IsReachable = 5614 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5615 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5616 const Loop *L = LI.getLoopFor(PN->getParent()); 5617 5618 // We don't want to break LCSSA, even in a SCEV expression tree. 5619 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5620 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5621 return nullptr; 5622 5623 // Try to match 5624 // 5625 // br %cond, label %left, label %right 5626 // left: 5627 // br label %merge 5628 // right: 5629 // br label %merge 5630 // merge: 5631 // V = phi [ %x, %left ], [ %y, %right ] 5632 // 5633 // as "select %cond, %x, %y" 5634 5635 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5636 assert(IDom && "At least the entry block should dominate PN"); 5637 5638 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5639 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5640 5641 if (BI && BI->isConditional() && 5642 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5643 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5644 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5645 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5646 } 5647 5648 return nullptr; 5649 } 5650 5651 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5652 if (const SCEV *S = createAddRecFromPHI(PN)) 5653 return S; 5654 5655 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5656 return S; 5657 5658 // If the PHI has a single incoming value, follow that value, unless the 5659 // PHI's incoming blocks are in a different loop, in which case doing so 5660 // risks breaking LCSSA form. Instcombine would normally zap these, but 5661 // it doesn't have DominatorTree information, so it may miss cases. 5662 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5663 if (LI.replacementPreservesLCSSAForm(PN, V)) 5664 return getSCEV(V); 5665 5666 // If it's not a loop phi, we can't handle it yet. 5667 return getUnknown(PN); 5668 } 5669 5670 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5671 Value *Cond, 5672 Value *TrueVal, 5673 Value *FalseVal) { 5674 // Handle "constant" branch or select. This can occur for instance when a 5675 // loop pass transforms an inner loop and moves on to process the outer loop. 5676 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5677 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5678 5679 // Try to match some simple smax or umax patterns. 5680 auto *ICI = dyn_cast<ICmpInst>(Cond); 5681 if (!ICI) 5682 return getUnknown(I); 5683 5684 Value *LHS = ICI->getOperand(0); 5685 Value *RHS = ICI->getOperand(1); 5686 5687 switch (ICI->getPredicate()) { 5688 case ICmpInst::ICMP_SLT: 5689 case ICmpInst::ICMP_SLE: 5690 case ICmpInst::ICMP_ULT: 5691 case ICmpInst::ICMP_ULE: 5692 std::swap(LHS, RHS); 5693 LLVM_FALLTHROUGH; 5694 case ICmpInst::ICMP_SGT: 5695 case ICmpInst::ICMP_SGE: 5696 case ICmpInst::ICMP_UGT: 5697 case ICmpInst::ICMP_UGE: 5698 // a > b ? a+x : b+x -> max(a, b)+x 5699 // a > b ? b+x : a+x -> min(a, b)+x 5700 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5701 bool Signed = ICI->isSigned(); 5702 const SCEV *LA = getSCEV(TrueVal); 5703 const SCEV *RA = getSCEV(FalseVal); 5704 const SCEV *LS = getSCEV(LHS); 5705 const SCEV *RS = getSCEV(RHS); 5706 if (LA->getType()->isPointerTy()) { 5707 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5708 // Need to make sure we can't produce weird expressions involving 5709 // negated pointers. 5710 if (LA == LS && RA == RS) 5711 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5712 if (LA == RS && RA == LS) 5713 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5714 } 5715 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5716 if (Op->getType()->isPointerTy()) { 5717 Op = getLosslessPtrToIntExpr(Op); 5718 if (isa<SCEVCouldNotCompute>(Op)) 5719 return Op; 5720 } 5721 if (Signed) 5722 Op = getNoopOrSignExtend(Op, I->getType()); 5723 else 5724 Op = getNoopOrZeroExtend(Op, I->getType()); 5725 return Op; 5726 }; 5727 LS = CoerceOperand(LS); 5728 RS = CoerceOperand(RS); 5729 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5730 break; 5731 const SCEV *LDiff = getMinusSCEV(LA, LS); 5732 const SCEV *RDiff = getMinusSCEV(RA, RS); 5733 if (LDiff == RDiff) 5734 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5735 LDiff); 5736 LDiff = getMinusSCEV(LA, RS); 5737 RDiff = getMinusSCEV(RA, LS); 5738 if (LDiff == RDiff) 5739 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5740 LDiff); 5741 } 5742 break; 5743 case ICmpInst::ICMP_NE: 5744 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5745 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5746 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5747 const SCEV *One = getOne(I->getType()); 5748 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5749 const SCEV *LA = getSCEV(TrueVal); 5750 const SCEV *RA = getSCEV(FalseVal); 5751 const SCEV *LDiff = getMinusSCEV(LA, LS); 5752 const SCEV *RDiff = getMinusSCEV(RA, One); 5753 if (LDiff == RDiff) 5754 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5755 } 5756 break; 5757 case ICmpInst::ICMP_EQ: 5758 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5759 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5760 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5761 const SCEV *One = getOne(I->getType()); 5762 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5763 const SCEV *LA = getSCEV(TrueVal); 5764 const SCEV *RA = getSCEV(FalseVal); 5765 const SCEV *LDiff = getMinusSCEV(LA, One); 5766 const SCEV *RDiff = getMinusSCEV(RA, LS); 5767 if (LDiff == RDiff) 5768 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5769 } 5770 break; 5771 default: 5772 break; 5773 } 5774 5775 return getUnknown(I); 5776 } 5777 5778 /// Expand GEP instructions into add and multiply operations. This allows them 5779 /// to be analyzed by regular SCEV code. 5780 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5781 // Don't attempt to analyze GEPs over unsized objects. 5782 if (!GEP->getSourceElementType()->isSized()) 5783 return getUnknown(GEP); 5784 5785 SmallVector<const SCEV *, 4> IndexExprs; 5786 for (Value *Index : GEP->indices()) 5787 IndexExprs.push_back(getSCEV(Index)); 5788 return getGEPExpr(GEP, IndexExprs); 5789 } 5790 5791 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5792 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5793 return C->getAPInt().countTrailingZeros(); 5794 5795 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5796 return GetMinTrailingZeros(I->getOperand()); 5797 5798 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5799 return std::min(GetMinTrailingZeros(T->getOperand()), 5800 (uint32_t)getTypeSizeInBits(T->getType())); 5801 5802 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5803 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5804 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5805 ? getTypeSizeInBits(E->getType()) 5806 : OpRes; 5807 } 5808 5809 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5810 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5811 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5812 ? getTypeSizeInBits(E->getType()) 5813 : OpRes; 5814 } 5815 5816 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5817 // The result is the min of all operands results. 5818 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5819 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5820 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5821 return MinOpRes; 5822 } 5823 5824 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5825 // The result is the sum of all operands results. 5826 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5827 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5828 for (unsigned i = 1, e = M->getNumOperands(); 5829 SumOpRes != BitWidth && i != e; ++i) 5830 SumOpRes = 5831 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5832 return SumOpRes; 5833 } 5834 5835 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5836 // The result is the min of all operands results. 5837 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5838 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5839 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5840 return MinOpRes; 5841 } 5842 5843 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5844 // The result is the min of all operands results. 5845 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5846 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5847 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5848 return MinOpRes; 5849 } 5850 5851 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5852 // The result is the min of all operands results. 5853 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5854 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5855 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5856 return MinOpRes; 5857 } 5858 5859 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5860 // For a SCEVUnknown, ask ValueTracking. 5861 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5862 return Known.countMinTrailingZeros(); 5863 } 5864 5865 // SCEVUDivExpr 5866 return 0; 5867 } 5868 5869 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5870 auto I = MinTrailingZerosCache.find(S); 5871 if (I != MinTrailingZerosCache.end()) 5872 return I->second; 5873 5874 uint32_t Result = GetMinTrailingZerosImpl(S); 5875 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5876 assert(InsertPair.second && "Should insert a new key"); 5877 return InsertPair.first->second; 5878 } 5879 5880 /// Helper method to assign a range to V from metadata present in the IR. 5881 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5882 if (Instruction *I = dyn_cast<Instruction>(V)) 5883 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5884 return getConstantRangeFromMetadata(*MD); 5885 5886 return None; 5887 } 5888 5889 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5890 SCEV::NoWrapFlags Flags) { 5891 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5892 AddRec->setNoWrapFlags(Flags); 5893 UnsignedRanges.erase(AddRec); 5894 SignedRanges.erase(AddRec); 5895 } 5896 } 5897 5898 ConstantRange ScalarEvolution:: 5899 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5900 const DataLayout &DL = getDataLayout(); 5901 5902 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5903 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5904 5905 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5906 // use information about the trip count to improve our available range. Note 5907 // that the trip count independent cases are already handled by known bits. 5908 // WARNING: The definition of recurrence used here is subtly different than 5909 // the one used by AddRec (and thus most of this file). Step is allowed to 5910 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5911 // and other addrecs in the same loop (for non-affine addrecs). The code 5912 // below intentionally handles the case where step is not loop invariant. 5913 auto *P = dyn_cast<PHINode>(U->getValue()); 5914 if (!P) 5915 return FullSet; 5916 5917 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5918 // even the values that are not available in these blocks may come from them, 5919 // and this leads to false-positive recurrence test. 5920 for (auto *Pred : predecessors(P->getParent())) 5921 if (!DT.isReachableFromEntry(Pred)) 5922 return FullSet; 5923 5924 BinaryOperator *BO; 5925 Value *Start, *Step; 5926 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5927 return FullSet; 5928 5929 // If we found a recurrence in reachable code, we must be in a loop. Note 5930 // that BO might be in some subloop of L, and that's completely okay. 5931 auto *L = LI.getLoopFor(P->getParent()); 5932 assert(L && L->getHeader() == P->getParent()); 5933 if (!L->contains(BO->getParent())) 5934 // NOTE: This bailout should be an assert instead. However, asserting 5935 // the condition here exposes a case where LoopFusion is querying SCEV 5936 // with malformed loop information during the midst of the transform. 5937 // There doesn't appear to be an obvious fix, so for the moment bailout 5938 // until the caller issue can be fixed. PR49566 tracks the bug. 5939 return FullSet; 5940 5941 // TODO: Extend to other opcodes such as mul, and div 5942 switch (BO->getOpcode()) { 5943 default: 5944 return FullSet; 5945 case Instruction::AShr: 5946 case Instruction::LShr: 5947 case Instruction::Shl: 5948 break; 5949 }; 5950 5951 if (BO->getOperand(0) != P) 5952 // TODO: Handle the power function forms some day. 5953 return FullSet; 5954 5955 unsigned TC = getSmallConstantMaxTripCount(L); 5956 if (!TC || TC >= BitWidth) 5957 return FullSet; 5958 5959 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5960 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5961 assert(KnownStart.getBitWidth() == BitWidth && 5962 KnownStep.getBitWidth() == BitWidth); 5963 5964 // Compute total shift amount, being careful of overflow and bitwidths. 5965 auto MaxShiftAmt = KnownStep.getMaxValue(); 5966 APInt TCAP(BitWidth, TC-1); 5967 bool Overflow = false; 5968 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5969 if (Overflow) 5970 return FullSet; 5971 5972 switch (BO->getOpcode()) { 5973 default: 5974 llvm_unreachable("filtered out above"); 5975 case Instruction::AShr: { 5976 // For each ashr, three cases: 5977 // shift = 0 => unchanged value 5978 // saturation => 0 or -1 5979 // other => a value closer to zero (of the same sign) 5980 // Thus, the end value is closer to zero than the start. 5981 auto KnownEnd = KnownBits::ashr(KnownStart, 5982 KnownBits::makeConstant(TotalShift)); 5983 if (KnownStart.isNonNegative()) 5984 // Analogous to lshr (simply not yet canonicalized) 5985 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5986 KnownStart.getMaxValue() + 1); 5987 if (KnownStart.isNegative()) 5988 // End >=u Start && End <=s Start 5989 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 5990 KnownEnd.getMaxValue() + 1); 5991 break; 5992 } 5993 case Instruction::LShr: { 5994 // For each lshr, three cases: 5995 // shift = 0 => unchanged value 5996 // saturation => 0 5997 // other => a smaller positive number 5998 // Thus, the low end of the unsigned range is the last value produced. 5999 auto KnownEnd = KnownBits::lshr(KnownStart, 6000 KnownBits::makeConstant(TotalShift)); 6001 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6002 KnownStart.getMaxValue() + 1); 6003 } 6004 case Instruction::Shl: { 6005 // Iff no bits are shifted out, value increases on every shift. 6006 auto KnownEnd = KnownBits::shl(KnownStart, 6007 KnownBits::makeConstant(TotalShift)); 6008 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6009 return ConstantRange(KnownStart.getMinValue(), 6010 KnownEnd.getMaxValue() + 1); 6011 break; 6012 } 6013 }; 6014 return FullSet; 6015 } 6016 6017 /// Determine the range for a particular SCEV. If SignHint is 6018 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6019 /// with a "cleaner" unsigned (resp. signed) representation. 6020 const ConstantRange & 6021 ScalarEvolution::getRangeRef(const SCEV *S, 6022 ScalarEvolution::RangeSignHint SignHint) { 6023 DenseMap<const SCEV *, ConstantRange> &Cache = 6024 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6025 : SignedRanges; 6026 ConstantRange::PreferredRangeType RangeType = 6027 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6028 ? ConstantRange::Unsigned : ConstantRange::Signed; 6029 6030 // See if we've computed this range already. 6031 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6032 if (I != Cache.end()) 6033 return I->second; 6034 6035 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6036 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6037 6038 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6039 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6040 using OBO = OverflowingBinaryOperator; 6041 6042 // If the value has known zeros, the maximum value will have those known zeros 6043 // as well. 6044 uint32_t TZ = GetMinTrailingZeros(S); 6045 if (TZ != 0) { 6046 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6047 ConservativeResult = 6048 ConstantRange(APInt::getMinValue(BitWidth), 6049 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6050 else 6051 ConservativeResult = ConstantRange( 6052 APInt::getSignedMinValue(BitWidth), 6053 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6054 } 6055 6056 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6057 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6058 unsigned WrapType = OBO::AnyWrap; 6059 if (Add->hasNoSignedWrap()) 6060 WrapType |= OBO::NoSignedWrap; 6061 if (Add->hasNoUnsignedWrap()) 6062 WrapType |= OBO::NoUnsignedWrap; 6063 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6064 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6065 WrapType, RangeType); 6066 return setRange(Add, SignHint, 6067 ConservativeResult.intersectWith(X, RangeType)); 6068 } 6069 6070 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6071 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6072 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6073 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6074 return setRange(Mul, SignHint, 6075 ConservativeResult.intersectWith(X, RangeType)); 6076 } 6077 6078 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 6079 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 6080 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 6081 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 6082 return setRange(SMax, SignHint, 6083 ConservativeResult.intersectWith(X, RangeType)); 6084 } 6085 6086 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 6087 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 6088 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 6089 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 6090 return setRange(UMax, SignHint, 6091 ConservativeResult.intersectWith(X, RangeType)); 6092 } 6093 6094 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 6095 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 6096 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 6097 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 6098 return setRange(SMin, SignHint, 6099 ConservativeResult.intersectWith(X, RangeType)); 6100 } 6101 6102 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 6103 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 6104 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 6105 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 6106 return setRange(UMin, SignHint, 6107 ConservativeResult.intersectWith(X, RangeType)); 6108 } 6109 6110 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6111 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6112 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6113 return setRange(UDiv, SignHint, 6114 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6115 } 6116 6117 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6118 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6119 return setRange(ZExt, SignHint, 6120 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6121 RangeType)); 6122 } 6123 6124 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6125 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6126 return setRange(SExt, SignHint, 6127 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6128 RangeType)); 6129 } 6130 6131 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6132 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6133 return setRange(PtrToInt, SignHint, X); 6134 } 6135 6136 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6137 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6138 return setRange(Trunc, SignHint, 6139 ConservativeResult.intersectWith(X.truncate(BitWidth), 6140 RangeType)); 6141 } 6142 6143 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6144 // If there's no unsigned wrap, the value will never be less than its 6145 // initial value. 6146 if (AddRec->hasNoUnsignedWrap()) { 6147 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6148 if (!UnsignedMinValue.isZero()) 6149 ConservativeResult = ConservativeResult.intersectWith( 6150 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6151 } 6152 6153 // If there's no signed wrap, and all the operands except initial value have 6154 // the same sign or zero, the value won't ever be: 6155 // 1: smaller than initial value if operands are non negative, 6156 // 2: bigger than initial value if operands are non positive. 6157 // For both cases, value can not cross signed min/max boundary. 6158 if (AddRec->hasNoSignedWrap()) { 6159 bool AllNonNeg = true; 6160 bool AllNonPos = true; 6161 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6162 if (!isKnownNonNegative(AddRec->getOperand(i))) 6163 AllNonNeg = false; 6164 if (!isKnownNonPositive(AddRec->getOperand(i))) 6165 AllNonPos = false; 6166 } 6167 if (AllNonNeg) 6168 ConservativeResult = ConservativeResult.intersectWith( 6169 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6170 APInt::getSignedMinValue(BitWidth)), 6171 RangeType); 6172 else if (AllNonPos) 6173 ConservativeResult = ConservativeResult.intersectWith( 6174 ConstantRange::getNonEmpty( 6175 APInt::getSignedMinValue(BitWidth), 6176 getSignedRangeMax(AddRec->getStart()) + 1), 6177 RangeType); 6178 } 6179 6180 // TODO: non-affine addrec 6181 if (AddRec->isAffine()) { 6182 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6183 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6184 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6185 auto RangeFromAffine = getRangeForAffineAR( 6186 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6187 BitWidth); 6188 ConservativeResult = 6189 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6190 6191 auto RangeFromFactoring = getRangeViaFactoring( 6192 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6193 BitWidth); 6194 ConservativeResult = 6195 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6196 } 6197 6198 // Now try symbolic BE count and more powerful methods. 6199 if (UseExpensiveRangeSharpening) { 6200 const SCEV *SymbolicMaxBECount = 6201 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6202 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6203 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6204 AddRec->hasNoSelfWrap()) { 6205 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6206 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6207 ConservativeResult = 6208 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6209 } 6210 } 6211 } 6212 6213 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6214 } 6215 6216 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6217 6218 // Check if the IR explicitly contains !range metadata. 6219 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6220 if (MDRange.hasValue()) 6221 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6222 RangeType); 6223 6224 // Use facts about recurrences in the underlying IR. Note that add 6225 // recurrences are AddRecExprs and thus don't hit this path. This 6226 // primarily handles shift recurrences. 6227 auto CR = getRangeForUnknownRecurrence(U); 6228 ConservativeResult = ConservativeResult.intersectWith(CR); 6229 6230 // See if ValueTracking can give us a useful range. 6231 const DataLayout &DL = getDataLayout(); 6232 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6233 if (Known.getBitWidth() != BitWidth) 6234 Known = Known.zextOrTrunc(BitWidth); 6235 6236 // ValueTracking may be able to compute a tighter result for the number of 6237 // sign bits than for the value of those sign bits. 6238 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6239 if (U->getType()->isPointerTy()) { 6240 // If the pointer size is larger than the index size type, this can cause 6241 // NS to be larger than BitWidth. So compensate for this. 6242 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6243 int ptrIdxDiff = ptrSize - BitWidth; 6244 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6245 NS -= ptrIdxDiff; 6246 } 6247 6248 if (NS > 1) { 6249 // If we know any of the sign bits, we know all of the sign bits. 6250 if (!Known.Zero.getHiBits(NS).isZero()) 6251 Known.Zero.setHighBits(NS); 6252 if (!Known.One.getHiBits(NS).isZero()) 6253 Known.One.setHighBits(NS); 6254 } 6255 6256 if (Known.getMinValue() != Known.getMaxValue() + 1) 6257 ConservativeResult = ConservativeResult.intersectWith( 6258 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6259 RangeType); 6260 if (NS > 1) 6261 ConservativeResult = ConservativeResult.intersectWith( 6262 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6263 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6264 RangeType); 6265 6266 // A range of Phi is a subset of union of all ranges of its input. 6267 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6268 // Make sure that we do not run over cycled Phis. 6269 if (PendingPhiRanges.insert(Phi).second) { 6270 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6271 for (auto &Op : Phi->operands()) { 6272 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6273 RangeFromOps = RangeFromOps.unionWith(OpRange); 6274 // No point to continue if we already have a full set. 6275 if (RangeFromOps.isFullSet()) 6276 break; 6277 } 6278 ConservativeResult = 6279 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6280 bool Erased = PendingPhiRanges.erase(Phi); 6281 assert(Erased && "Failed to erase Phi properly?"); 6282 (void) Erased; 6283 } 6284 } 6285 6286 return setRange(U, SignHint, std::move(ConservativeResult)); 6287 } 6288 6289 return setRange(S, SignHint, std::move(ConservativeResult)); 6290 } 6291 6292 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6293 // values that the expression can take. Initially, the expression has a value 6294 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6295 // argument defines if we treat Step as signed or unsigned. 6296 static ConstantRange getRangeForAffineARHelper(APInt Step, 6297 const ConstantRange &StartRange, 6298 const APInt &MaxBECount, 6299 unsigned BitWidth, bool Signed) { 6300 // If either Step or MaxBECount is 0, then the expression won't change, and we 6301 // just need to return the initial range. 6302 if (Step == 0 || MaxBECount == 0) 6303 return StartRange; 6304 6305 // If we don't know anything about the initial value (i.e. StartRange is 6306 // FullRange), then we don't know anything about the final range either. 6307 // Return FullRange. 6308 if (StartRange.isFullSet()) 6309 return ConstantRange::getFull(BitWidth); 6310 6311 // If Step is signed and negative, then we use its absolute value, but we also 6312 // note that we're moving in the opposite direction. 6313 bool Descending = Signed && Step.isNegative(); 6314 6315 if (Signed) 6316 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6317 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6318 // This equations hold true due to the well-defined wrap-around behavior of 6319 // APInt. 6320 Step = Step.abs(); 6321 6322 // Check if Offset is more than full span of BitWidth. If it is, the 6323 // expression is guaranteed to overflow. 6324 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6325 return ConstantRange::getFull(BitWidth); 6326 6327 // Offset is by how much the expression can change. Checks above guarantee no 6328 // overflow here. 6329 APInt Offset = Step * MaxBECount; 6330 6331 // Minimum value of the final range will match the minimal value of StartRange 6332 // if the expression is increasing and will be decreased by Offset otherwise. 6333 // Maximum value of the final range will match the maximal value of StartRange 6334 // if the expression is decreasing and will be increased by Offset otherwise. 6335 APInt StartLower = StartRange.getLower(); 6336 APInt StartUpper = StartRange.getUpper() - 1; 6337 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6338 : (StartUpper + std::move(Offset)); 6339 6340 // It's possible that the new minimum/maximum value will fall into the initial 6341 // range (due to wrap around). This means that the expression can take any 6342 // value in this bitwidth, and we have to return full range. 6343 if (StartRange.contains(MovedBoundary)) 6344 return ConstantRange::getFull(BitWidth); 6345 6346 APInt NewLower = 6347 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6348 APInt NewUpper = 6349 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6350 NewUpper += 1; 6351 6352 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6353 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6354 } 6355 6356 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6357 const SCEV *Step, 6358 const SCEV *MaxBECount, 6359 unsigned BitWidth) { 6360 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6361 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6362 "Precondition!"); 6363 6364 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6365 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6366 6367 // First, consider step signed. 6368 ConstantRange StartSRange = getSignedRange(Start); 6369 ConstantRange StepSRange = getSignedRange(Step); 6370 6371 // If Step can be both positive and negative, we need to find ranges for the 6372 // maximum absolute step values in both directions and union them. 6373 ConstantRange SR = 6374 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6375 MaxBECountValue, BitWidth, /* Signed = */ true); 6376 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6377 StartSRange, MaxBECountValue, 6378 BitWidth, /* Signed = */ true)); 6379 6380 // Next, consider step unsigned. 6381 ConstantRange UR = getRangeForAffineARHelper( 6382 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6383 MaxBECountValue, BitWidth, /* Signed = */ false); 6384 6385 // Finally, intersect signed and unsigned ranges. 6386 return SR.intersectWith(UR, ConstantRange::Smallest); 6387 } 6388 6389 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6390 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6391 ScalarEvolution::RangeSignHint SignHint) { 6392 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6393 assert(AddRec->hasNoSelfWrap() && 6394 "This only works for non-self-wrapping AddRecs!"); 6395 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6396 const SCEV *Step = AddRec->getStepRecurrence(*this); 6397 // Only deal with constant step to save compile time. 6398 if (!isa<SCEVConstant>(Step)) 6399 return ConstantRange::getFull(BitWidth); 6400 // Let's make sure that we can prove that we do not self-wrap during 6401 // MaxBECount iterations. We need this because MaxBECount is a maximum 6402 // iteration count estimate, and we might infer nw from some exit for which we 6403 // do not know max exit count (or any other side reasoning). 6404 // TODO: Turn into assert at some point. 6405 if (getTypeSizeInBits(MaxBECount->getType()) > 6406 getTypeSizeInBits(AddRec->getType())) 6407 return ConstantRange::getFull(BitWidth); 6408 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6409 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6410 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6411 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6412 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6413 MaxItersWithoutWrap)) 6414 return ConstantRange::getFull(BitWidth); 6415 6416 ICmpInst::Predicate LEPred = 6417 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6418 ICmpInst::Predicate GEPred = 6419 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6420 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6421 6422 // We know that there is no self-wrap. Let's take Start and End values and 6423 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6424 // the iteration. They either lie inside the range [Min(Start, End), 6425 // Max(Start, End)] or outside it: 6426 // 6427 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6428 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6429 // 6430 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6431 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6432 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6433 // Start <= End and step is positive, or Start >= End and step is negative. 6434 const SCEV *Start = AddRec->getStart(); 6435 ConstantRange StartRange = getRangeRef(Start, SignHint); 6436 ConstantRange EndRange = getRangeRef(End, SignHint); 6437 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6438 // If they already cover full iteration space, we will know nothing useful 6439 // even if we prove what we want to prove. 6440 if (RangeBetween.isFullSet()) 6441 return RangeBetween; 6442 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6443 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6444 : RangeBetween.isWrappedSet(); 6445 if (IsWrappedSet) 6446 return ConstantRange::getFull(BitWidth); 6447 6448 if (isKnownPositive(Step) && 6449 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6450 return RangeBetween; 6451 else if (isKnownNegative(Step) && 6452 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6453 return RangeBetween; 6454 return ConstantRange::getFull(BitWidth); 6455 } 6456 6457 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6458 const SCEV *Step, 6459 const SCEV *MaxBECount, 6460 unsigned BitWidth) { 6461 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6462 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6463 6464 struct SelectPattern { 6465 Value *Condition = nullptr; 6466 APInt TrueValue; 6467 APInt FalseValue; 6468 6469 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6470 const SCEV *S) { 6471 Optional<unsigned> CastOp; 6472 APInt Offset(BitWidth, 0); 6473 6474 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6475 "Should be!"); 6476 6477 // Peel off a constant offset: 6478 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6479 // In the future we could consider being smarter here and handle 6480 // {Start+Step,+,Step} too. 6481 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6482 return; 6483 6484 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6485 S = SA->getOperand(1); 6486 } 6487 6488 // Peel off a cast operation 6489 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6490 CastOp = SCast->getSCEVType(); 6491 S = SCast->getOperand(); 6492 } 6493 6494 using namespace llvm::PatternMatch; 6495 6496 auto *SU = dyn_cast<SCEVUnknown>(S); 6497 const APInt *TrueVal, *FalseVal; 6498 if (!SU || 6499 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6500 m_APInt(FalseVal)))) { 6501 Condition = nullptr; 6502 return; 6503 } 6504 6505 TrueValue = *TrueVal; 6506 FalseValue = *FalseVal; 6507 6508 // Re-apply the cast we peeled off earlier 6509 if (CastOp.hasValue()) 6510 switch (*CastOp) { 6511 default: 6512 llvm_unreachable("Unknown SCEV cast type!"); 6513 6514 case scTruncate: 6515 TrueValue = TrueValue.trunc(BitWidth); 6516 FalseValue = FalseValue.trunc(BitWidth); 6517 break; 6518 case scZeroExtend: 6519 TrueValue = TrueValue.zext(BitWidth); 6520 FalseValue = FalseValue.zext(BitWidth); 6521 break; 6522 case scSignExtend: 6523 TrueValue = TrueValue.sext(BitWidth); 6524 FalseValue = FalseValue.sext(BitWidth); 6525 break; 6526 } 6527 6528 // Re-apply the constant offset we peeled off earlier 6529 TrueValue += Offset; 6530 FalseValue += Offset; 6531 } 6532 6533 bool isRecognized() { return Condition != nullptr; } 6534 }; 6535 6536 SelectPattern StartPattern(*this, BitWidth, Start); 6537 if (!StartPattern.isRecognized()) 6538 return ConstantRange::getFull(BitWidth); 6539 6540 SelectPattern StepPattern(*this, BitWidth, Step); 6541 if (!StepPattern.isRecognized()) 6542 return ConstantRange::getFull(BitWidth); 6543 6544 if (StartPattern.Condition != StepPattern.Condition) { 6545 // We don't handle this case today; but we could, by considering four 6546 // possibilities below instead of two. I'm not sure if there are cases where 6547 // that will help over what getRange already does, though. 6548 return ConstantRange::getFull(BitWidth); 6549 } 6550 6551 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6552 // construct arbitrary general SCEV expressions here. This function is called 6553 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6554 // say) can end up caching a suboptimal value. 6555 6556 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6557 // C2352 and C2512 (otherwise it isn't needed). 6558 6559 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6560 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6561 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6562 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6563 6564 ConstantRange TrueRange = 6565 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6566 ConstantRange FalseRange = 6567 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6568 6569 return TrueRange.unionWith(FalseRange); 6570 } 6571 6572 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6573 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6574 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6575 6576 // Return early if there are no flags to propagate to the SCEV. 6577 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6578 if (BinOp->hasNoUnsignedWrap()) 6579 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6580 if (BinOp->hasNoSignedWrap()) 6581 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6582 if (Flags == SCEV::FlagAnyWrap) 6583 return SCEV::FlagAnyWrap; 6584 6585 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6586 } 6587 6588 const Instruction * 6589 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6590 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6591 return &*AddRec->getLoop()->getHeader()->begin(); 6592 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6593 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6594 return I; 6595 return nullptr; 6596 } 6597 6598 const Instruction * 6599 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 6600 // Do a bounded search of the def relation of the requested SCEVs. 6601 SmallSet<const SCEV *, 16> Visited; 6602 SmallVector<const SCEV *> Worklist; 6603 auto pushOp = [&](const SCEV *S) { 6604 if (!Visited.insert(S).second) 6605 return; 6606 // Threshold of 30 here is arbitrary. 6607 if (Visited.size() > 30) 6608 return; 6609 Worklist.push_back(S); 6610 }; 6611 6612 for (auto *S : Ops) 6613 pushOp(S); 6614 6615 const Instruction *Bound = nullptr; 6616 while (!Worklist.empty()) { 6617 auto *S = Worklist.pop_back_val(); 6618 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 6619 if (!Bound || DT.dominates(Bound, DefI)) 6620 Bound = DefI; 6621 } else if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6622 for (auto *Op : S2->operands()) 6623 pushOp(Op); 6624 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6625 for (auto *Op : S2->operands()) 6626 pushOp(Op); 6627 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6628 for (auto *Op : S2->operands()) 6629 pushOp(Op); 6630 } 6631 return Bound ? Bound : &*F.getEntryBlock().begin(); 6632 } 6633 6634 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 6635 const Instruction *B) { 6636 if (A->getParent() == B->getParent() && 6637 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6638 B->getIterator())) 6639 return true; 6640 6641 auto *BLoop = LI.getLoopFor(B->getParent()); 6642 if (BLoop && BLoop->getHeader() == B->getParent() && 6643 BLoop->getLoopPreheader() == A->getParent() && 6644 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6645 A->getParent()->end()) && 6646 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 6647 B->getIterator())) 6648 return true; 6649 return false; 6650 } 6651 6652 6653 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6654 // Only proceed if we can prove that I does not yield poison. 6655 if (!programUndefinedIfPoison(I)) 6656 return false; 6657 6658 // At this point we know that if I is executed, then it does not wrap 6659 // according to at least one of NSW or NUW. If I is not executed, then we do 6660 // not know if the calculation that I represents would wrap. Multiple 6661 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6662 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6663 // derived from other instructions that map to the same SCEV. We cannot make 6664 // that guarantee for cases where I is not executed. So we need to find a 6665 // upper bound on the defining scope for the SCEV, and prove that I is 6666 // executed every time we enter that scope. When the bounding scope is a 6667 // loop (the common case), this is equivalent to proving I executes on every 6668 // iteration of that loop. 6669 SmallVector<const SCEV *> SCEVOps; 6670 for (const Use &Op : I->operands()) { 6671 // I could be an extractvalue from a call to an overflow intrinsic. 6672 // TODO: We can do better here in some cases. 6673 if (isSCEVable(Op->getType())) 6674 SCEVOps.push_back(getSCEV(Op)); 6675 } 6676 auto *DefI = getDefiningScopeBound(SCEVOps); 6677 return isGuaranteedToTransferExecutionTo(DefI, I); 6678 } 6679 6680 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6681 // If we know that \c I can never be poison period, then that's enough. 6682 if (isSCEVExprNeverPoison(I)) 6683 return true; 6684 6685 // For an add recurrence specifically, we assume that infinite loops without 6686 // side effects are undefined behavior, and then reason as follows: 6687 // 6688 // If the add recurrence is poison in any iteration, it is poison on all 6689 // future iterations (since incrementing poison yields poison). If the result 6690 // of the add recurrence is fed into the loop latch condition and the loop 6691 // does not contain any throws or exiting blocks other than the latch, we now 6692 // have the ability to "choose" whether the backedge is taken or not (by 6693 // choosing a sufficiently evil value for the poison feeding into the branch) 6694 // for every iteration including and after the one in which \p I first became 6695 // poison. There are two possibilities (let's call the iteration in which \p 6696 // I first became poison as K): 6697 // 6698 // 1. In the set of iterations including and after K, the loop body executes 6699 // no side effects. In this case executing the backege an infinte number 6700 // of times will yield undefined behavior. 6701 // 6702 // 2. In the set of iterations including and after K, the loop body executes 6703 // at least one side effect. In this case, that specific instance of side 6704 // effect is control dependent on poison, which also yields undefined 6705 // behavior. 6706 6707 auto *ExitingBB = L->getExitingBlock(); 6708 auto *LatchBB = L->getLoopLatch(); 6709 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6710 return false; 6711 6712 SmallPtrSet<const Instruction *, 16> Pushed; 6713 SmallVector<const Instruction *, 8> PoisonStack; 6714 6715 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6716 // things that are known to be poison under that assumption go on the 6717 // PoisonStack. 6718 Pushed.insert(I); 6719 PoisonStack.push_back(I); 6720 6721 bool LatchControlDependentOnPoison = false; 6722 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6723 const Instruction *Poison = PoisonStack.pop_back_val(); 6724 6725 for (auto *PoisonUser : Poison->users()) { 6726 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6727 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6728 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6729 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6730 assert(BI->isConditional() && "Only possibility!"); 6731 if (BI->getParent() == LatchBB) { 6732 LatchControlDependentOnPoison = true; 6733 break; 6734 } 6735 } 6736 } 6737 } 6738 6739 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6740 } 6741 6742 ScalarEvolution::LoopProperties 6743 ScalarEvolution::getLoopProperties(const Loop *L) { 6744 using LoopProperties = ScalarEvolution::LoopProperties; 6745 6746 auto Itr = LoopPropertiesCache.find(L); 6747 if (Itr == LoopPropertiesCache.end()) { 6748 auto HasSideEffects = [](Instruction *I) { 6749 if (auto *SI = dyn_cast<StoreInst>(I)) 6750 return !SI->isSimple(); 6751 6752 return I->mayThrow() || I->mayWriteToMemory(); 6753 }; 6754 6755 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6756 /*HasNoSideEffects*/ true}; 6757 6758 for (auto *BB : L->getBlocks()) 6759 for (auto &I : *BB) { 6760 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6761 LP.HasNoAbnormalExits = false; 6762 if (HasSideEffects(&I)) 6763 LP.HasNoSideEffects = false; 6764 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6765 break; // We're already as pessimistic as we can get. 6766 } 6767 6768 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6769 assert(InsertPair.second && "We just checked!"); 6770 Itr = InsertPair.first; 6771 } 6772 6773 return Itr->second; 6774 } 6775 6776 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6777 // A mustprogress loop without side effects must be finite. 6778 // TODO: The check used here is very conservative. It's only *specific* 6779 // side effects which are well defined in infinite loops. 6780 return isMustProgress(L) && loopHasNoSideEffects(L); 6781 } 6782 6783 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6784 if (!isSCEVable(V->getType())) 6785 return getUnknown(V); 6786 6787 if (Instruction *I = dyn_cast<Instruction>(V)) { 6788 // Don't attempt to analyze instructions in blocks that aren't 6789 // reachable. Such instructions don't matter, and they aren't required 6790 // to obey basic rules for definitions dominating uses which this 6791 // analysis depends on. 6792 if (!DT.isReachableFromEntry(I->getParent())) 6793 return getUnknown(UndefValue::get(V->getType())); 6794 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6795 return getConstant(CI); 6796 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6797 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6798 else if (!isa<ConstantExpr>(V)) 6799 return getUnknown(V); 6800 6801 Operator *U = cast<Operator>(V); 6802 if (auto BO = MatchBinaryOp(U, DT)) { 6803 switch (BO->Opcode) { 6804 case Instruction::Add: { 6805 // The simple thing to do would be to just call getSCEV on both operands 6806 // and call getAddExpr with the result. However if we're looking at a 6807 // bunch of things all added together, this can be quite inefficient, 6808 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6809 // Instead, gather up all the operands and make a single getAddExpr call. 6810 // LLVM IR canonical form means we need only traverse the left operands. 6811 SmallVector<const SCEV *, 4> AddOps; 6812 do { 6813 if (BO->Op) { 6814 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6815 AddOps.push_back(OpSCEV); 6816 break; 6817 } 6818 6819 // If a NUW or NSW flag can be applied to the SCEV for this 6820 // addition, then compute the SCEV for this addition by itself 6821 // with a separate call to getAddExpr. We need to do that 6822 // instead of pushing the operands of the addition onto AddOps, 6823 // since the flags are only known to apply to this particular 6824 // addition - they may not apply to other additions that can be 6825 // formed with operands from AddOps. 6826 const SCEV *RHS = getSCEV(BO->RHS); 6827 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6828 if (Flags != SCEV::FlagAnyWrap) { 6829 const SCEV *LHS = getSCEV(BO->LHS); 6830 if (BO->Opcode == Instruction::Sub) 6831 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6832 else 6833 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6834 break; 6835 } 6836 } 6837 6838 if (BO->Opcode == Instruction::Sub) 6839 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6840 else 6841 AddOps.push_back(getSCEV(BO->RHS)); 6842 6843 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6844 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6845 NewBO->Opcode != Instruction::Sub)) { 6846 AddOps.push_back(getSCEV(BO->LHS)); 6847 break; 6848 } 6849 BO = NewBO; 6850 } while (true); 6851 6852 return getAddExpr(AddOps); 6853 } 6854 6855 case Instruction::Mul: { 6856 SmallVector<const SCEV *, 4> MulOps; 6857 do { 6858 if (BO->Op) { 6859 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6860 MulOps.push_back(OpSCEV); 6861 break; 6862 } 6863 6864 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6865 if (Flags != SCEV::FlagAnyWrap) { 6866 MulOps.push_back( 6867 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6868 break; 6869 } 6870 } 6871 6872 MulOps.push_back(getSCEV(BO->RHS)); 6873 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6874 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6875 MulOps.push_back(getSCEV(BO->LHS)); 6876 break; 6877 } 6878 BO = NewBO; 6879 } while (true); 6880 6881 return getMulExpr(MulOps); 6882 } 6883 case Instruction::UDiv: 6884 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6885 case Instruction::URem: 6886 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6887 case Instruction::Sub: { 6888 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6889 if (BO->Op) 6890 Flags = getNoWrapFlagsFromUB(BO->Op); 6891 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6892 } 6893 case Instruction::And: 6894 // For an expression like x&255 that merely masks off the high bits, 6895 // use zext(trunc(x)) as the SCEV expression. 6896 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6897 if (CI->isZero()) 6898 return getSCEV(BO->RHS); 6899 if (CI->isMinusOne()) 6900 return getSCEV(BO->LHS); 6901 const APInt &A = CI->getValue(); 6902 6903 // Instcombine's ShrinkDemandedConstant may strip bits out of 6904 // constants, obscuring what would otherwise be a low-bits mask. 6905 // Use computeKnownBits to compute what ShrinkDemandedConstant 6906 // knew about to reconstruct a low-bits mask value. 6907 unsigned LZ = A.countLeadingZeros(); 6908 unsigned TZ = A.countTrailingZeros(); 6909 unsigned BitWidth = A.getBitWidth(); 6910 KnownBits Known(BitWidth); 6911 computeKnownBits(BO->LHS, Known, getDataLayout(), 6912 0, &AC, nullptr, &DT); 6913 6914 APInt EffectiveMask = 6915 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6916 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6917 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6918 const SCEV *LHS = getSCEV(BO->LHS); 6919 const SCEV *ShiftedLHS = nullptr; 6920 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6921 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6922 // For an expression like (x * 8) & 8, simplify the multiply. 6923 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6924 unsigned GCD = std::min(MulZeros, TZ); 6925 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6926 SmallVector<const SCEV*, 4> MulOps; 6927 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6928 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6929 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6930 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6931 } 6932 } 6933 if (!ShiftedLHS) 6934 ShiftedLHS = getUDivExpr(LHS, MulCount); 6935 return getMulExpr( 6936 getZeroExtendExpr( 6937 getTruncateExpr(ShiftedLHS, 6938 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6939 BO->LHS->getType()), 6940 MulCount); 6941 } 6942 } 6943 break; 6944 6945 case Instruction::Or: 6946 // If the RHS of the Or is a constant, we may have something like: 6947 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6948 // optimizations will transparently handle this case. 6949 // 6950 // In order for this transformation to be safe, the LHS must be of the 6951 // form X*(2^n) and the Or constant must be less than 2^n. 6952 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6953 const SCEV *LHS = getSCEV(BO->LHS); 6954 const APInt &CIVal = CI->getValue(); 6955 if (GetMinTrailingZeros(LHS) >= 6956 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6957 // Build a plain add SCEV. 6958 return getAddExpr(LHS, getSCEV(CI), 6959 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6960 } 6961 } 6962 break; 6963 6964 case Instruction::Xor: 6965 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6966 // If the RHS of xor is -1, then this is a not operation. 6967 if (CI->isMinusOne()) 6968 return getNotSCEV(getSCEV(BO->LHS)); 6969 6970 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6971 // This is a variant of the check for xor with -1, and it handles 6972 // the case where instcombine has trimmed non-demanded bits out 6973 // of an xor with -1. 6974 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6975 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6976 if (LBO->getOpcode() == Instruction::And && 6977 LCI->getValue() == CI->getValue()) 6978 if (const SCEVZeroExtendExpr *Z = 6979 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6980 Type *UTy = BO->LHS->getType(); 6981 const SCEV *Z0 = Z->getOperand(); 6982 Type *Z0Ty = Z0->getType(); 6983 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6984 6985 // If C is a low-bits mask, the zero extend is serving to 6986 // mask off the high bits. Complement the operand and 6987 // re-apply the zext. 6988 if (CI->getValue().isMask(Z0TySize)) 6989 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6990 6991 // If C is a single bit, it may be in the sign-bit position 6992 // before the zero-extend. In this case, represent the xor 6993 // using an add, which is equivalent, and re-apply the zext. 6994 APInt Trunc = CI->getValue().trunc(Z0TySize); 6995 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6996 Trunc.isSignMask()) 6997 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6998 UTy); 6999 } 7000 } 7001 break; 7002 7003 case Instruction::Shl: 7004 // Turn shift left of a constant amount into a multiply. 7005 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7006 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7007 7008 // If the shift count is not less than the bitwidth, the result of 7009 // the shift is undefined. Don't try to analyze it, because the 7010 // resolution chosen here may differ from the resolution chosen in 7011 // other parts of the compiler. 7012 if (SA->getValue().uge(BitWidth)) 7013 break; 7014 7015 // We can safely preserve the nuw flag in all cases. It's also safe to 7016 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7017 // requires special handling. It can be preserved as long as we're not 7018 // left shifting by bitwidth - 1. 7019 auto Flags = SCEV::FlagAnyWrap; 7020 if (BO->Op) { 7021 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7022 if ((MulFlags & SCEV::FlagNSW) && 7023 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7024 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7025 if (MulFlags & SCEV::FlagNUW) 7026 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7027 } 7028 7029 Constant *X = ConstantInt::get( 7030 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7031 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 7032 } 7033 break; 7034 7035 case Instruction::AShr: { 7036 // AShr X, C, where C is a constant. 7037 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7038 if (!CI) 7039 break; 7040 7041 Type *OuterTy = BO->LHS->getType(); 7042 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7043 // If the shift count is not less than the bitwidth, the result of 7044 // the shift is undefined. Don't try to analyze it, because the 7045 // resolution chosen here may differ from the resolution chosen in 7046 // other parts of the compiler. 7047 if (CI->getValue().uge(BitWidth)) 7048 break; 7049 7050 if (CI->isZero()) 7051 return getSCEV(BO->LHS); // shift by zero --> noop 7052 7053 uint64_t AShrAmt = CI->getZExtValue(); 7054 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7055 7056 Operator *L = dyn_cast<Operator>(BO->LHS); 7057 if (L && L->getOpcode() == Instruction::Shl) { 7058 // X = Shl A, n 7059 // Y = AShr X, m 7060 // Both n and m are constant. 7061 7062 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7063 if (L->getOperand(1) == BO->RHS) 7064 // For a two-shift sext-inreg, i.e. n = m, 7065 // use sext(trunc(x)) as the SCEV expression. 7066 return getSignExtendExpr( 7067 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7068 7069 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7070 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7071 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7072 if (ShlAmt > AShrAmt) { 7073 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7074 // expression. We already checked that ShlAmt < BitWidth, so 7075 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7076 // ShlAmt - AShrAmt < Amt. 7077 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7078 ShlAmt - AShrAmt); 7079 return getSignExtendExpr( 7080 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7081 getConstant(Mul)), OuterTy); 7082 } 7083 } 7084 } 7085 break; 7086 } 7087 } 7088 } 7089 7090 switch (U->getOpcode()) { 7091 case Instruction::Trunc: 7092 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7093 7094 case Instruction::ZExt: 7095 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7096 7097 case Instruction::SExt: 7098 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7099 // The NSW flag of a subtract does not always survive the conversion to 7100 // A + (-1)*B. By pushing sign extension onto its operands we are much 7101 // more likely to preserve NSW and allow later AddRec optimisations. 7102 // 7103 // NOTE: This is effectively duplicating this logic from getSignExtend: 7104 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7105 // but by that point the NSW information has potentially been lost. 7106 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7107 Type *Ty = U->getType(); 7108 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7109 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7110 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7111 } 7112 } 7113 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7114 7115 case Instruction::BitCast: 7116 // BitCasts are no-op casts so we just eliminate the cast. 7117 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7118 return getSCEV(U->getOperand(0)); 7119 break; 7120 7121 case Instruction::PtrToInt: { 7122 // Pointer to integer cast is straight-forward, so do model it. 7123 const SCEV *Op = getSCEV(U->getOperand(0)); 7124 Type *DstIntTy = U->getType(); 7125 // But only if effective SCEV (integer) type is wide enough to represent 7126 // all possible pointer values. 7127 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7128 if (isa<SCEVCouldNotCompute>(IntOp)) 7129 return getUnknown(V); 7130 return IntOp; 7131 } 7132 case Instruction::IntToPtr: 7133 // Just don't deal with inttoptr casts. 7134 return getUnknown(V); 7135 7136 case Instruction::SDiv: 7137 // If both operands are non-negative, this is just an udiv. 7138 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7139 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7140 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7141 break; 7142 7143 case Instruction::SRem: 7144 // If both operands are non-negative, this is just an urem. 7145 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7146 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7147 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7148 break; 7149 7150 case Instruction::GetElementPtr: 7151 return createNodeForGEP(cast<GEPOperator>(U)); 7152 7153 case Instruction::PHI: 7154 return createNodeForPHI(cast<PHINode>(U)); 7155 7156 case Instruction::Select: 7157 // U can also be a select constant expr, which let fall through. Since 7158 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7159 // constant expressions cannot have instructions as operands, we'd have 7160 // returned getUnknown for a select constant expressions anyway. 7161 if (isa<Instruction>(U)) 7162 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7163 U->getOperand(1), U->getOperand(2)); 7164 break; 7165 7166 case Instruction::Call: 7167 case Instruction::Invoke: 7168 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7169 return getSCEV(RV); 7170 7171 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7172 switch (II->getIntrinsicID()) { 7173 case Intrinsic::abs: 7174 return getAbsExpr( 7175 getSCEV(II->getArgOperand(0)), 7176 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7177 case Intrinsic::umax: 7178 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7179 getSCEV(II->getArgOperand(1))); 7180 case Intrinsic::umin: 7181 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7182 getSCEV(II->getArgOperand(1))); 7183 case Intrinsic::smax: 7184 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7185 getSCEV(II->getArgOperand(1))); 7186 case Intrinsic::smin: 7187 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7188 getSCEV(II->getArgOperand(1))); 7189 case Intrinsic::usub_sat: { 7190 const SCEV *X = getSCEV(II->getArgOperand(0)); 7191 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7192 const SCEV *ClampedY = getUMinExpr(X, Y); 7193 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7194 } 7195 case Intrinsic::uadd_sat: { 7196 const SCEV *X = getSCEV(II->getArgOperand(0)); 7197 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7198 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7199 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7200 } 7201 case Intrinsic::start_loop_iterations: 7202 // A start_loop_iterations is just equivalent to the first operand for 7203 // SCEV purposes. 7204 return getSCEV(II->getArgOperand(0)); 7205 default: 7206 break; 7207 } 7208 } 7209 break; 7210 } 7211 7212 return getUnknown(V); 7213 } 7214 7215 //===----------------------------------------------------------------------===// 7216 // Iteration Count Computation Code 7217 // 7218 7219 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7220 bool Extend) { 7221 if (isa<SCEVCouldNotCompute>(ExitCount)) 7222 return getCouldNotCompute(); 7223 7224 auto *ExitCountType = ExitCount->getType(); 7225 assert(ExitCountType->isIntegerTy()); 7226 7227 if (!Extend) 7228 return getAddExpr(ExitCount, getOne(ExitCountType)); 7229 7230 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7231 1 + ExitCountType->getScalarSizeInBits()); 7232 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7233 getOne(WiderType)); 7234 } 7235 7236 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7237 if (!ExitCount) 7238 return 0; 7239 7240 ConstantInt *ExitConst = ExitCount->getValue(); 7241 7242 // Guard against huge trip counts. 7243 if (ExitConst->getValue().getActiveBits() > 32) 7244 return 0; 7245 7246 // In case of integer overflow, this returns 0, which is correct. 7247 return ((unsigned)ExitConst->getZExtValue()) + 1; 7248 } 7249 7250 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7251 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7252 return getConstantTripCount(ExitCount); 7253 } 7254 7255 unsigned 7256 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7257 const BasicBlock *ExitingBlock) { 7258 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7259 assert(L->isLoopExiting(ExitingBlock) && 7260 "Exiting block must actually branch out of the loop!"); 7261 const SCEVConstant *ExitCount = 7262 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7263 return getConstantTripCount(ExitCount); 7264 } 7265 7266 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7267 const auto *MaxExitCount = 7268 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7269 return getConstantTripCount(MaxExitCount); 7270 } 7271 7272 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7273 SmallVector<BasicBlock *, 8> ExitingBlocks; 7274 L->getExitingBlocks(ExitingBlocks); 7275 7276 Optional<unsigned> Res = None; 7277 for (auto *ExitingBB : ExitingBlocks) { 7278 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7279 if (!Res) 7280 Res = Multiple; 7281 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7282 } 7283 return Res.getValueOr(1); 7284 } 7285 7286 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7287 const SCEV *ExitCount) { 7288 if (ExitCount == getCouldNotCompute()) 7289 return 1; 7290 7291 // Get the trip count 7292 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7293 7294 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7295 if (!TC) 7296 // Attempt to factor more general cases. Returns the greatest power of 7297 // two divisor. If overflow happens, the trip count expression is still 7298 // divisible by the greatest power of 2 divisor returned. 7299 return 1U << std::min((uint32_t)31, 7300 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7301 7302 ConstantInt *Result = TC->getValue(); 7303 7304 // Guard against huge trip counts (this requires checking 7305 // for zero to handle the case where the trip count == -1 and the 7306 // addition wraps). 7307 if (!Result || Result->getValue().getActiveBits() > 32 || 7308 Result->getValue().getActiveBits() == 0) 7309 return 1; 7310 7311 return (unsigned)Result->getZExtValue(); 7312 } 7313 7314 /// Returns the largest constant divisor of the trip count of this loop as a 7315 /// normal unsigned value, if possible. This means that the actual trip count is 7316 /// always a multiple of the returned value (don't forget the trip count could 7317 /// very well be zero as well!). 7318 /// 7319 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7320 /// multiple of a constant (which is also the case if the trip count is simply 7321 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7322 /// if the trip count is very large (>= 2^32). 7323 /// 7324 /// As explained in the comments for getSmallConstantTripCount, this assumes 7325 /// that control exits the loop via ExitingBlock. 7326 unsigned 7327 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7328 const BasicBlock *ExitingBlock) { 7329 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7330 assert(L->isLoopExiting(ExitingBlock) && 7331 "Exiting block must actually branch out of the loop!"); 7332 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7333 return getSmallConstantTripMultiple(L, ExitCount); 7334 } 7335 7336 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7337 const BasicBlock *ExitingBlock, 7338 ExitCountKind Kind) { 7339 switch (Kind) { 7340 case Exact: 7341 case SymbolicMaximum: 7342 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7343 case ConstantMaximum: 7344 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7345 }; 7346 llvm_unreachable("Invalid ExitCountKind!"); 7347 } 7348 7349 const SCEV * 7350 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7351 SCEVUnionPredicate &Preds) { 7352 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7353 } 7354 7355 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7356 ExitCountKind Kind) { 7357 switch (Kind) { 7358 case Exact: 7359 return getBackedgeTakenInfo(L).getExact(L, this); 7360 case ConstantMaximum: 7361 return getBackedgeTakenInfo(L).getConstantMax(this); 7362 case SymbolicMaximum: 7363 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7364 }; 7365 llvm_unreachable("Invalid ExitCountKind!"); 7366 } 7367 7368 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7369 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7370 } 7371 7372 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7373 static void PushLoopPHIs(const Loop *L, 7374 SmallVectorImpl<Instruction *> &Worklist, 7375 SmallPtrSetImpl<Instruction *> &Visited) { 7376 BasicBlock *Header = L->getHeader(); 7377 7378 // Push all Loop-header PHIs onto the Worklist stack. 7379 for (PHINode &PN : Header->phis()) 7380 if (Visited.insert(&PN).second) 7381 Worklist.push_back(&PN); 7382 } 7383 7384 const ScalarEvolution::BackedgeTakenInfo & 7385 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7386 auto &BTI = getBackedgeTakenInfo(L); 7387 if (BTI.hasFullInfo()) 7388 return BTI; 7389 7390 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7391 7392 if (!Pair.second) 7393 return Pair.first->second; 7394 7395 BackedgeTakenInfo Result = 7396 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7397 7398 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7399 } 7400 7401 ScalarEvolution::BackedgeTakenInfo & 7402 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7403 // Initially insert an invalid entry for this loop. If the insertion 7404 // succeeds, proceed to actually compute a backedge-taken count and 7405 // update the value. The temporary CouldNotCompute value tells SCEV 7406 // code elsewhere that it shouldn't attempt to request a new 7407 // backedge-taken count, which could result in infinite recursion. 7408 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7409 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7410 if (!Pair.second) 7411 return Pair.first->second; 7412 7413 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7414 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7415 // must be cleared in this scope. 7416 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7417 7418 // In product build, there are no usage of statistic. 7419 (void)NumTripCountsComputed; 7420 (void)NumTripCountsNotComputed; 7421 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7422 const SCEV *BEExact = Result.getExact(L, this); 7423 if (BEExact != getCouldNotCompute()) { 7424 assert(isLoopInvariant(BEExact, L) && 7425 isLoopInvariant(Result.getConstantMax(this), L) && 7426 "Computed backedge-taken count isn't loop invariant for loop!"); 7427 ++NumTripCountsComputed; 7428 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7429 isa<PHINode>(L->getHeader()->begin())) { 7430 // Only count loops that have phi nodes as not being computable. 7431 ++NumTripCountsNotComputed; 7432 } 7433 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7434 7435 // Now that we know more about the trip count for this loop, forget any 7436 // existing SCEV values for PHI nodes in this loop since they are only 7437 // conservative estimates made without the benefit of trip count 7438 // information. This is similar to the code in forgetLoop, except that 7439 // it handles SCEVUnknown PHI nodes specially. 7440 if (Result.hasAnyInfo()) { 7441 SmallVector<Instruction *, 16> Worklist; 7442 SmallPtrSet<Instruction *, 8> Discovered; 7443 PushLoopPHIs(L, Worklist, Discovered); 7444 while (!Worklist.empty()) { 7445 Instruction *I = Worklist.pop_back_val(); 7446 7447 ValueExprMapType::iterator It = 7448 ValueExprMap.find_as(static_cast<Value *>(I)); 7449 if (It != ValueExprMap.end()) { 7450 const SCEV *Old = It->second; 7451 7452 // SCEVUnknown for a PHI either means that it has an unrecognized 7453 // structure, or it's a PHI that's in the progress of being computed 7454 // by createNodeForPHI. In the former case, additional loop trip 7455 // count information isn't going to change anything. In the later 7456 // case, createNodeForPHI will perform the necessary updates on its 7457 // own when it gets to that point. 7458 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7459 eraseValueFromMap(It->first); 7460 forgetMemoizedResults(Old); 7461 } 7462 if (PHINode *PN = dyn_cast<PHINode>(I)) 7463 ConstantEvolutionLoopExitValue.erase(PN); 7464 } 7465 7466 // Since we don't need to invalidate anything for correctness and we're 7467 // only invalidating to make SCEV's results more precise, we get to stop 7468 // early to avoid invalidating too much. This is especially important in 7469 // cases like: 7470 // 7471 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7472 // loop0: 7473 // %pn0 = phi 7474 // ... 7475 // loop1: 7476 // %pn1 = phi 7477 // ... 7478 // 7479 // where both loop0 and loop1's backedge taken count uses the SCEV 7480 // expression for %v. If we don't have the early stop below then in cases 7481 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7482 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7483 // count for loop1, effectively nullifying SCEV's trip count cache. 7484 for (auto *U : I->users()) 7485 if (auto *I = dyn_cast<Instruction>(U)) { 7486 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7487 if (LoopForUser && L->contains(LoopForUser) && 7488 Discovered.insert(I).second) 7489 Worklist.push_back(I); 7490 } 7491 } 7492 } 7493 7494 // Re-lookup the insert position, since the call to 7495 // computeBackedgeTakenCount above could result in a 7496 // recusive call to getBackedgeTakenInfo (on a different 7497 // loop), which would invalidate the iterator computed 7498 // earlier. 7499 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7500 } 7501 7502 void ScalarEvolution::forgetAllLoops() { 7503 // This method is intended to forget all info about loops. It should 7504 // invalidate caches as if the following happened: 7505 // - The trip counts of all loops have changed arbitrarily 7506 // - Every llvm::Value has been updated in place to produce a different 7507 // result. 7508 BackedgeTakenCounts.clear(); 7509 PredicatedBackedgeTakenCounts.clear(); 7510 LoopPropertiesCache.clear(); 7511 ConstantEvolutionLoopExitValue.clear(); 7512 ValueExprMap.clear(); 7513 ValuesAtScopes.clear(); 7514 LoopDispositions.clear(); 7515 BlockDispositions.clear(); 7516 UnsignedRanges.clear(); 7517 SignedRanges.clear(); 7518 ExprValueMap.clear(); 7519 HasRecMap.clear(); 7520 MinTrailingZerosCache.clear(); 7521 PredicatedSCEVRewrites.clear(); 7522 } 7523 7524 void ScalarEvolution::forgetLoop(const Loop *L) { 7525 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7526 SmallVector<Instruction *, 32> Worklist; 7527 SmallPtrSet<Instruction *, 16> Visited; 7528 7529 // Iterate over all the loops and sub-loops to drop SCEV information. 7530 while (!LoopWorklist.empty()) { 7531 auto *CurrL = LoopWorklist.pop_back_val(); 7532 7533 // Drop any stored trip count value. 7534 BackedgeTakenCounts.erase(CurrL); 7535 PredicatedBackedgeTakenCounts.erase(CurrL); 7536 7537 // Drop information about predicated SCEV rewrites for this loop. 7538 for (auto I = PredicatedSCEVRewrites.begin(); 7539 I != PredicatedSCEVRewrites.end();) { 7540 std::pair<const SCEV *, const Loop *> Entry = I->first; 7541 if (Entry.second == CurrL) 7542 PredicatedSCEVRewrites.erase(I++); 7543 else 7544 ++I; 7545 } 7546 7547 auto LoopUsersItr = LoopUsers.find(CurrL); 7548 if (LoopUsersItr != LoopUsers.end()) { 7549 for (auto *S : LoopUsersItr->second) 7550 forgetMemoizedResults(S); 7551 LoopUsers.erase(LoopUsersItr); 7552 } 7553 7554 // Drop information about expressions based on loop-header PHIs. 7555 PushLoopPHIs(CurrL, Worklist, Visited); 7556 7557 while (!Worklist.empty()) { 7558 Instruction *I = Worklist.pop_back_val(); 7559 7560 ValueExprMapType::iterator It = 7561 ValueExprMap.find_as(static_cast<Value *>(I)); 7562 if (It != ValueExprMap.end()) { 7563 eraseValueFromMap(It->first); 7564 forgetMemoizedResults(It->second); 7565 if (PHINode *PN = dyn_cast<PHINode>(I)) 7566 ConstantEvolutionLoopExitValue.erase(PN); 7567 } 7568 7569 PushDefUseChildren(I, Worklist, Visited); 7570 } 7571 7572 LoopPropertiesCache.erase(CurrL); 7573 // Forget all contained loops too, to avoid dangling entries in the 7574 // ValuesAtScopes map. 7575 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7576 } 7577 } 7578 7579 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7580 while (Loop *Parent = L->getParentLoop()) 7581 L = Parent; 7582 forgetLoop(L); 7583 } 7584 7585 void ScalarEvolution::forgetValue(Value *V) { 7586 Instruction *I = dyn_cast<Instruction>(V); 7587 if (!I) return; 7588 7589 // Drop information about expressions based on loop-header PHIs. 7590 SmallVector<Instruction *, 16> Worklist; 7591 SmallPtrSet<Instruction *, 8> Visited; 7592 Worklist.push_back(I); 7593 Visited.insert(I); 7594 7595 while (!Worklist.empty()) { 7596 I = Worklist.pop_back_val(); 7597 ValueExprMapType::iterator It = 7598 ValueExprMap.find_as(static_cast<Value *>(I)); 7599 if (It != ValueExprMap.end()) { 7600 eraseValueFromMap(It->first); 7601 forgetMemoizedResults(It->second); 7602 if (PHINode *PN = dyn_cast<PHINode>(I)) 7603 ConstantEvolutionLoopExitValue.erase(PN); 7604 } 7605 7606 PushDefUseChildren(I, Worklist, Visited); 7607 } 7608 } 7609 7610 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7611 LoopDispositions.clear(); 7612 } 7613 7614 /// Get the exact loop backedge taken count considering all loop exits. A 7615 /// computable result can only be returned for loops with all exiting blocks 7616 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7617 /// is never skipped. This is a valid assumption as long as the loop exits via 7618 /// that test. For precise results, it is the caller's responsibility to specify 7619 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7620 const SCEV * 7621 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7622 SCEVUnionPredicate *Preds) const { 7623 // If any exits were not computable, the loop is not computable. 7624 if (!isComplete() || ExitNotTaken.empty()) 7625 return SE->getCouldNotCompute(); 7626 7627 const BasicBlock *Latch = L->getLoopLatch(); 7628 // All exiting blocks we have collected must dominate the only backedge. 7629 if (!Latch) 7630 return SE->getCouldNotCompute(); 7631 7632 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7633 // count is simply a minimum out of all these calculated exit counts. 7634 SmallVector<const SCEV *, 2> Ops; 7635 for (auto &ENT : ExitNotTaken) { 7636 const SCEV *BECount = ENT.ExactNotTaken; 7637 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7638 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7639 "We should only have known counts for exiting blocks that dominate " 7640 "latch!"); 7641 7642 Ops.push_back(BECount); 7643 7644 if (Preds && !ENT.hasAlwaysTruePredicate()) 7645 Preds->add(ENT.Predicate.get()); 7646 7647 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7648 "Predicate should be always true!"); 7649 } 7650 7651 return SE->getUMinFromMismatchedTypes(Ops); 7652 } 7653 7654 /// Get the exact not taken count for this loop exit. 7655 const SCEV * 7656 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7657 ScalarEvolution *SE) const { 7658 for (auto &ENT : ExitNotTaken) 7659 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7660 return ENT.ExactNotTaken; 7661 7662 return SE->getCouldNotCompute(); 7663 } 7664 7665 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7666 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7667 for (auto &ENT : ExitNotTaken) 7668 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7669 return ENT.MaxNotTaken; 7670 7671 return SE->getCouldNotCompute(); 7672 } 7673 7674 /// getConstantMax - Get the constant max backedge taken count for the loop. 7675 const SCEV * 7676 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7677 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7678 return !ENT.hasAlwaysTruePredicate(); 7679 }; 7680 7681 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 7682 return SE->getCouldNotCompute(); 7683 7684 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7685 isa<SCEVConstant>(getConstantMax())) && 7686 "No point in having a non-constant max backedge taken count!"); 7687 return getConstantMax(); 7688 } 7689 7690 const SCEV * 7691 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7692 ScalarEvolution *SE) { 7693 if (!SymbolicMax) 7694 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7695 return SymbolicMax; 7696 } 7697 7698 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7699 ScalarEvolution *SE) const { 7700 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7701 return !ENT.hasAlwaysTruePredicate(); 7702 }; 7703 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7704 } 7705 7706 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const { 7707 return Operands.contains(S); 7708 } 7709 7710 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7711 : ExitLimit(E, E, false, None) { 7712 } 7713 7714 ScalarEvolution::ExitLimit::ExitLimit( 7715 const SCEV *E, const SCEV *M, bool MaxOrZero, 7716 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7717 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7718 // If we prove the max count is zero, so is the symbolic bound. This happens 7719 // in practice due to differences in a) how context sensitive we've chosen 7720 // to be and b) how we reason about bounds impied by UB. 7721 if (MaxNotTaken->isZero()) 7722 ExactNotTaken = MaxNotTaken; 7723 7724 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7725 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7726 "Exact is not allowed to be less precise than Max"); 7727 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7728 isa<SCEVConstant>(MaxNotTaken)) && 7729 "No point in having a non-constant max backedge taken count!"); 7730 for (auto *PredSet : PredSetList) 7731 for (auto *P : *PredSet) 7732 addPredicate(P); 7733 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7734 "Backedge count should be int"); 7735 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7736 "Max backedge count should be int"); 7737 } 7738 7739 ScalarEvolution::ExitLimit::ExitLimit( 7740 const SCEV *E, const SCEV *M, bool MaxOrZero, 7741 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7742 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7743 } 7744 7745 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7746 bool MaxOrZero) 7747 : ExitLimit(E, M, MaxOrZero, None) { 7748 } 7749 7750 class SCEVRecordOperands { 7751 SmallPtrSetImpl<const SCEV *> &Operands; 7752 7753 public: 7754 SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands) 7755 : Operands(Operands) {} 7756 bool follow(const SCEV *S) { 7757 Operands.insert(S); 7758 return true; 7759 } 7760 bool isDone() { return false; } 7761 }; 7762 7763 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7764 /// computable exit into a persistent ExitNotTakenInfo array. 7765 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7766 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7767 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7768 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7769 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7770 7771 ExitNotTaken.reserve(ExitCounts.size()); 7772 std::transform( 7773 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7774 [&](const EdgeExitInfo &EEI) { 7775 BasicBlock *ExitBB = EEI.first; 7776 const ExitLimit &EL = EEI.second; 7777 if (EL.Predicates.empty()) 7778 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7779 nullptr); 7780 7781 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7782 for (auto *Pred : EL.Predicates) 7783 Predicate->add(Pred); 7784 7785 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7786 std::move(Predicate)); 7787 }); 7788 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7789 isa<SCEVConstant>(ConstantMax)) && 7790 "No point in having a non-constant max backedge taken count!"); 7791 7792 SCEVRecordOperands RecordOperands(Operands); 7793 SCEVTraversal<SCEVRecordOperands> ST(RecordOperands); 7794 if (!isa<SCEVCouldNotCompute>(ConstantMax)) 7795 ST.visitAll(ConstantMax); 7796 for (auto &ENT : ExitNotTaken) 7797 if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken)) 7798 ST.visitAll(ENT.ExactNotTaken); 7799 } 7800 7801 /// Compute the number of times the backedge of the specified loop will execute. 7802 ScalarEvolution::BackedgeTakenInfo 7803 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7804 bool AllowPredicates) { 7805 SmallVector<BasicBlock *, 8> ExitingBlocks; 7806 L->getExitingBlocks(ExitingBlocks); 7807 7808 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7809 7810 SmallVector<EdgeExitInfo, 4> ExitCounts; 7811 bool CouldComputeBECount = true; 7812 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7813 const SCEV *MustExitMaxBECount = nullptr; 7814 const SCEV *MayExitMaxBECount = nullptr; 7815 bool MustExitMaxOrZero = false; 7816 7817 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7818 // and compute maxBECount. 7819 // Do a union of all the predicates here. 7820 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7821 BasicBlock *ExitBB = ExitingBlocks[i]; 7822 7823 // We canonicalize untaken exits to br (constant), ignore them so that 7824 // proving an exit untaken doesn't negatively impact our ability to reason 7825 // about the loop as whole. 7826 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7827 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7828 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7829 if (ExitIfTrue == CI->isZero()) 7830 continue; 7831 } 7832 7833 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7834 7835 assert((AllowPredicates || EL.Predicates.empty()) && 7836 "Predicated exit limit when predicates are not allowed!"); 7837 7838 // 1. For each exit that can be computed, add an entry to ExitCounts. 7839 // CouldComputeBECount is true only if all exits can be computed. 7840 if (EL.ExactNotTaken == getCouldNotCompute()) 7841 // We couldn't compute an exact value for this exit, so 7842 // we won't be able to compute an exact value for the loop. 7843 CouldComputeBECount = false; 7844 else 7845 ExitCounts.emplace_back(ExitBB, EL); 7846 7847 // 2. Derive the loop's MaxBECount from each exit's max number of 7848 // non-exiting iterations. Partition the loop exits into two kinds: 7849 // LoopMustExits and LoopMayExits. 7850 // 7851 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7852 // is a LoopMayExit. If any computable LoopMustExit is found, then 7853 // MaxBECount is the minimum EL.MaxNotTaken of computable 7854 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7855 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7856 // computable EL.MaxNotTaken. 7857 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7858 DT.dominates(ExitBB, Latch)) { 7859 if (!MustExitMaxBECount) { 7860 MustExitMaxBECount = EL.MaxNotTaken; 7861 MustExitMaxOrZero = EL.MaxOrZero; 7862 } else { 7863 MustExitMaxBECount = 7864 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7865 } 7866 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7867 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7868 MayExitMaxBECount = EL.MaxNotTaken; 7869 else { 7870 MayExitMaxBECount = 7871 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7872 } 7873 } 7874 } 7875 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7876 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7877 // The loop backedge will be taken the maximum or zero times if there's 7878 // a single exit that must be taken the maximum or zero times. 7879 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7880 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7881 MaxBECount, MaxOrZero); 7882 } 7883 7884 ScalarEvolution::ExitLimit 7885 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7886 bool AllowPredicates) { 7887 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7888 // If our exiting block does not dominate the latch, then its connection with 7889 // loop's exit limit may be far from trivial. 7890 const BasicBlock *Latch = L->getLoopLatch(); 7891 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7892 return getCouldNotCompute(); 7893 7894 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7895 Instruction *Term = ExitingBlock->getTerminator(); 7896 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7897 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7898 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7899 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7900 "It should have one successor in loop and one exit block!"); 7901 // Proceed to the next level to examine the exit condition expression. 7902 return computeExitLimitFromCond( 7903 L, BI->getCondition(), ExitIfTrue, 7904 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7905 } 7906 7907 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7908 // For switch, make sure that there is a single exit from the loop. 7909 BasicBlock *Exit = nullptr; 7910 for (auto *SBB : successors(ExitingBlock)) 7911 if (!L->contains(SBB)) { 7912 if (Exit) // Multiple exit successors. 7913 return getCouldNotCompute(); 7914 Exit = SBB; 7915 } 7916 assert(Exit && "Exiting block must have at least one exit"); 7917 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7918 /*ControlsExit=*/IsOnlyExit); 7919 } 7920 7921 return getCouldNotCompute(); 7922 } 7923 7924 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7925 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7926 bool ControlsExit, bool AllowPredicates) { 7927 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7928 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7929 ControlsExit, AllowPredicates); 7930 } 7931 7932 Optional<ScalarEvolution::ExitLimit> 7933 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7934 bool ExitIfTrue, bool ControlsExit, 7935 bool AllowPredicates) { 7936 (void)this->L; 7937 (void)this->ExitIfTrue; 7938 (void)this->AllowPredicates; 7939 7940 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7941 this->AllowPredicates == AllowPredicates && 7942 "Variance in assumed invariant key components!"); 7943 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7944 if (Itr == TripCountMap.end()) 7945 return None; 7946 return Itr->second; 7947 } 7948 7949 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7950 bool ExitIfTrue, 7951 bool ControlsExit, 7952 bool AllowPredicates, 7953 const ExitLimit &EL) { 7954 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7955 this->AllowPredicates == AllowPredicates && 7956 "Variance in assumed invariant key components!"); 7957 7958 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7959 assert(InsertResult.second && "Expected successful insertion!"); 7960 (void)InsertResult; 7961 (void)ExitIfTrue; 7962 } 7963 7964 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7965 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7966 bool ControlsExit, bool AllowPredicates) { 7967 7968 if (auto MaybeEL = 7969 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7970 return *MaybeEL; 7971 7972 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7973 ControlsExit, AllowPredicates); 7974 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7975 return EL; 7976 } 7977 7978 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7979 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7980 bool ControlsExit, bool AllowPredicates) { 7981 // Handle BinOp conditions (And, Or). 7982 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7983 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7984 return *LimitFromBinOp; 7985 7986 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7987 // Proceed to the next level to examine the icmp. 7988 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7989 ExitLimit EL = 7990 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7991 if (EL.hasFullInfo() || !AllowPredicates) 7992 return EL; 7993 7994 // Try again, but use SCEV predicates this time. 7995 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7996 /*AllowPredicates=*/true); 7997 } 7998 7999 // Check for a constant condition. These are normally stripped out by 8000 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8001 // preserve the CFG and is temporarily leaving constant conditions 8002 // in place. 8003 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8004 if (ExitIfTrue == !CI->getZExtValue()) 8005 // The backedge is always taken. 8006 return getCouldNotCompute(); 8007 else 8008 // The backedge is never taken. 8009 return getZero(CI->getType()); 8010 } 8011 8012 // If it's not an integer or pointer comparison then compute it the hard way. 8013 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8014 } 8015 8016 Optional<ScalarEvolution::ExitLimit> 8017 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8018 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8019 bool ControlsExit, bool AllowPredicates) { 8020 // Check if the controlling expression for this loop is an And or Or. 8021 Value *Op0, *Op1; 8022 bool IsAnd = false; 8023 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8024 IsAnd = true; 8025 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8026 IsAnd = false; 8027 else 8028 return None; 8029 8030 // EitherMayExit is true in these two cases: 8031 // br (and Op0 Op1), loop, exit 8032 // br (or Op0 Op1), exit, loop 8033 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8034 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8035 ControlsExit && !EitherMayExit, 8036 AllowPredicates); 8037 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8038 ControlsExit && !EitherMayExit, 8039 AllowPredicates); 8040 8041 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8042 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8043 if (isa<ConstantInt>(Op1)) 8044 return Op1 == NeutralElement ? EL0 : EL1; 8045 if (isa<ConstantInt>(Op0)) 8046 return Op0 == NeutralElement ? EL1 : EL0; 8047 8048 const SCEV *BECount = getCouldNotCompute(); 8049 const SCEV *MaxBECount = getCouldNotCompute(); 8050 if (EitherMayExit) { 8051 // Both conditions must be same for the loop to continue executing. 8052 // Choose the less conservative count. 8053 // If ExitCond is a short-circuit form (select), using 8054 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 8055 // To see the detailed examples, please see 8056 // test/Analysis/ScalarEvolution/exit-count-select.ll 8057 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 8058 if (!PoisonSafe) 8059 // Even if ExitCond is select, we can safely derive BECount using both 8060 // EL0 and EL1 in these cases: 8061 // (1) EL0.ExactNotTaken is non-zero 8062 // (2) EL1.ExactNotTaken is non-poison 8063 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 8064 // it cannot be umin(0, ..)) 8065 // The PoisonSafe assignment below is simplified and the assertion after 8066 // BECount calculation fully guarantees the condition (3). 8067 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 8068 isa<SCEVConstant>(EL1.ExactNotTaken); 8069 if (EL0.ExactNotTaken != getCouldNotCompute() && 8070 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 8071 BECount = 8072 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 8073 8074 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8075 // it should have been simplified to zero (see the condition (3) above) 8076 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8077 BECount->isZero()); 8078 } 8079 if (EL0.MaxNotTaken == getCouldNotCompute()) 8080 MaxBECount = EL1.MaxNotTaken; 8081 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8082 MaxBECount = EL0.MaxNotTaken; 8083 else 8084 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8085 } else { 8086 // Both conditions must be same at the same time for the loop to exit. 8087 // For now, be conservative. 8088 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8089 BECount = EL0.ExactNotTaken; 8090 } 8091 8092 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8093 // to be more aggressive when computing BECount than when computing 8094 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8095 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8096 // to not. 8097 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8098 !isa<SCEVCouldNotCompute>(BECount)) 8099 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8100 8101 return ExitLimit(BECount, MaxBECount, false, 8102 { &EL0.Predicates, &EL1.Predicates }); 8103 } 8104 8105 ScalarEvolution::ExitLimit 8106 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8107 ICmpInst *ExitCond, 8108 bool ExitIfTrue, 8109 bool ControlsExit, 8110 bool AllowPredicates) { 8111 // If the condition was exit on true, convert the condition to exit on false 8112 ICmpInst::Predicate Pred; 8113 if (!ExitIfTrue) 8114 Pred = ExitCond->getPredicate(); 8115 else 8116 Pred = ExitCond->getInversePredicate(); 8117 const ICmpInst::Predicate OriginalPred = Pred; 8118 8119 // Handle common loops like: for (X = "string"; *X; ++X) 8120 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 8121 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 8122 ExitLimit ItCnt = 8123 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 8124 if (ItCnt.hasAnyInfo()) 8125 return ItCnt; 8126 } 8127 8128 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8129 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8130 8131 // Try to evaluate any dependencies out of the loop. 8132 LHS = getSCEVAtScope(LHS, L); 8133 RHS = getSCEVAtScope(RHS, L); 8134 8135 // At this point, we would like to compute how many iterations of the 8136 // loop the predicate will return true for these inputs. 8137 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8138 // If there is a loop-invariant, force it into the RHS. 8139 std::swap(LHS, RHS); 8140 Pred = ICmpInst::getSwappedPredicate(Pred); 8141 } 8142 8143 // Simplify the operands before analyzing them. 8144 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8145 8146 // If we have a comparison of a chrec against a constant, try to use value 8147 // ranges to answer this query. 8148 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8149 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8150 if (AddRec->getLoop() == L) { 8151 // Form the constant range. 8152 ConstantRange CompRange = 8153 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8154 8155 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8156 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8157 } 8158 8159 switch (Pred) { 8160 case ICmpInst::ICMP_NE: { // while (X != Y) 8161 // Convert to: while (X-Y != 0) 8162 if (LHS->getType()->isPointerTy()) { 8163 LHS = getLosslessPtrToIntExpr(LHS); 8164 if (isa<SCEVCouldNotCompute>(LHS)) 8165 return LHS; 8166 } 8167 if (RHS->getType()->isPointerTy()) { 8168 RHS = getLosslessPtrToIntExpr(RHS); 8169 if (isa<SCEVCouldNotCompute>(RHS)) 8170 return RHS; 8171 } 8172 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8173 AllowPredicates); 8174 if (EL.hasAnyInfo()) return EL; 8175 break; 8176 } 8177 case ICmpInst::ICMP_EQ: { // while (X == Y) 8178 // Convert to: while (X-Y == 0) 8179 if (LHS->getType()->isPointerTy()) { 8180 LHS = getLosslessPtrToIntExpr(LHS); 8181 if (isa<SCEVCouldNotCompute>(LHS)) 8182 return LHS; 8183 } 8184 if (RHS->getType()->isPointerTy()) { 8185 RHS = getLosslessPtrToIntExpr(RHS); 8186 if (isa<SCEVCouldNotCompute>(RHS)) 8187 return RHS; 8188 } 8189 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8190 if (EL.hasAnyInfo()) return EL; 8191 break; 8192 } 8193 case ICmpInst::ICMP_SLT: 8194 case ICmpInst::ICMP_ULT: { // while (X < Y) 8195 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8196 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8197 AllowPredicates); 8198 if (EL.hasAnyInfo()) return EL; 8199 break; 8200 } 8201 case ICmpInst::ICMP_SGT: 8202 case ICmpInst::ICMP_UGT: { // while (X > Y) 8203 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8204 ExitLimit EL = 8205 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8206 AllowPredicates); 8207 if (EL.hasAnyInfo()) return EL; 8208 break; 8209 } 8210 default: 8211 break; 8212 } 8213 8214 auto *ExhaustiveCount = 8215 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8216 8217 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8218 return ExhaustiveCount; 8219 8220 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8221 ExitCond->getOperand(1), L, OriginalPred); 8222 } 8223 8224 ScalarEvolution::ExitLimit 8225 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8226 SwitchInst *Switch, 8227 BasicBlock *ExitingBlock, 8228 bool ControlsExit) { 8229 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8230 8231 // Give up if the exit is the default dest of a switch. 8232 if (Switch->getDefaultDest() == ExitingBlock) 8233 return getCouldNotCompute(); 8234 8235 assert(L->contains(Switch->getDefaultDest()) && 8236 "Default case must not exit the loop!"); 8237 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8238 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8239 8240 // while (X != Y) --> while (X-Y != 0) 8241 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8242 if (EL.hasAnyInfo()) 8243 return EL; 8244 8245 return getCouldNotCompute(); 8246 } 8247 8248 static ConstantInt * 8249 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8250 ScalarEvolution &SE) { 8251 const SCEV *InVal = SE.getConstant(C); 8252 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8253 assert(isa<SCEVConstant>(Val) && 8254 "Evaluation of SCEV at constant didn't fold correctly?"); 8255 return cast<SCEVConstant>(Val)->getValue(); 8256 } 8257 8258 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 8259 /// compute the backedge execution count. 8260 ScalarEvolution::ExitLimit 8261 ScalarEvolution::computeLoadConstantCompareExitLimit( 8262 LoadInst *LI, 8263 Constant *RHS, 8264 const Loop *L, 8265 ICmpInst::Predicate predicate) { 8266 if (LI->isVolatile()) return getCouldNotCompute(); 8267 8268 // Check to see if the loaded pointer is a getelementptr of a global. 8269 // TODO: Use SCEV instead of manually grubbing with GEPs. 8270 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 8271 if (!GEP) return getCouldNotCompute(); 8272 8273 // Make sure that it is really a constant global we are gepping, with an 8274 // initializer, and make sure the first IDX is really 0. 8275 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 8276 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 8277 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 8278 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 8279 return getCouldNotCompute(); 8280 8281 // Okay, we allow one non-constant index into the GEP instruction. 8282 Value *VarIdx = nullptr; 8283 std::vector<Constant*> Indexes; 8284 unsigned VarIdxNum = 0; 8285 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 8286 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 8287 Indexes.push_back(CI); 8288 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 8289 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 8290 VarIdx = GEP->getOperand(i); 8291 VarIdxNum = i-2; 8292 Indexes.push_back(nullptr); 8293 } 8294 8295 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 8296 if (!VarIdx) 8297 return getCouldNotCompute(); 8298 8299 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 8300 // Check to see if X is a loop variant variable value now. 8301 const SCEV *Idx = getSCEV(VarIdx); 8302 Idx = getSCEVAtScope(Idx, L); 8303 8304 // We can only recognize very limited forms of loop index expressions, in 8305 // particular, only affine AddRec's like {C1,+,C2}<L>. 8306 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 8307 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() || 8308 isLoopInvariant(IdxExpr, L) || 8309 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 8310 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 8311 return getCouldNotCompute(); 8312 8313 unsigned MaxSteps = MaxBruteForceIterations; 8314 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 8315 ConstantInt *ItCst = ConstantInt::get( 8316 cast<IntegerType>(IdxExpr->getType()), IterationNum); 8317 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 8318 8319 // Form the GEP offset. 8320 Indexes[VarIdxNum] = Val; 8321 8322 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 8323 Indexes); 8324 if (!Result) break; // Cannot compute! 8325 8326 // Evaluate the condition for this iteration. 8327 Result = ConstantExpr::getICmp(predicate, Result, RHS); 8328 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 8329 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 8330 ++NumArrayLenItCounts; 8331 return getConstant(ItCst); // Found terminating iteration! 8332 } 8333 } 8334 return getCouldNotCompute(); 8335 } 8336 8337 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8338 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8339 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8340 if (!RHS) 8341 return getCouldNotCompute(); 8342 8343 const BasicBlock *Latch = L->getLoopLatch(); 8344 if (!Latch) 8345 return getCouldNotCompute(); 8346 8347 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8348 if (!Predecessor) 8349 return getCouldNotCompute(); 8350 8351 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8352 // Return LHS in OutLHS and shift_opt in OutOpCode. 8353 auto MatchPositiveShift = 8354 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8355 8356 using namespace PatternMatch; 8357 8358 ConstantInt *ShiftAmt; 8359 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8360 OutOpCode = Instruction::LShr; 8361 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8362 OutOpCode = Instruction::AShr; 8363 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8364 OutOpCode = Instruction::Shl; 8365 else 8366 return false; 8367 8368 return ShiftAmt->getValue().isStrictlyPositive(); 8369 }; 8370 8371 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8372 // 8373 // loop: 8374 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8375 // %iv.shifted = lshr i32 %iv, <positive constant> 8376 // 8377 // Return true on a successful match. Return the corresponding PHI node (%iv 8378 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8379 auto MatchShiftRecurrence = 8380 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8381 Optional<Instruction::BinaryOps> PostShiftOpCode; 8382 8383 { 8384 Instruction::BinaryOps OpC; 8385 Value *V; 8386 8387 // If we encounter a shift instruction, "peel off" the shift operation, 8388 // and remember that we did so. Later when we inspect %iv's backedge 8389 // value, we will make sure that the backedge value uses the same 8390 // operation. 8391 // 8392 // Note: the peeled shift operation does not have to be the same 8393 // instruction as the one feeding into the PHI's backedge value. We only 8394 // really care about it being the same *kind* of shift instruction -- 8395 // that's all that is required for our later inferences to hold. 8396 if (MatchPositiveShift(LHS, V, OpC)) { 8397 PostShiftOpCode = OpC; 8398 LHS = V; 8399 } 8400 } 8401 8402 PNOut = dyn_cast<PHINode>(LHS); 8403 if (!PNOut || PNOut->getParent() != L->getHeader()) 8404 return false; 8405 8406 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8407 Value *OpLHS; 8408 8409 return 8410 // The backedge value for the PHI node must be a shift by a positive 8411 // amount 8412 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8413 8414 // of the PHI node itself 8415 OpLHS == PNOut && 8416 8417 // and the kind of shift should be match the kind of shift we peeled 8418 // off, if any. 8419 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8420 }; 8421 8422 PHINode *PN; 8423 Instruction::BinaryOps OpCode; 8424 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8425 return getCouldNotCompute(); 8426 8427 const DataLayout &DL = getDataLayout(); 8428 8429 // The key rationale for this optimization is that for some kinds of shift 8430 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8431 // within a finite number of iterations. If the condition guarding the 8432 // backedge (in the sense that the backedge is taken if the condition is true) 8433 // is false for the value the shift recurrence stabilizes to, then we know 8434 // that the backedge is taken only a finite number of times. 8435 8436 ConstantInt *StableValue = nullptr; 8437 switch (OpCode) { 8438 default: 8439 llvm_unreachable("Impossible case!"); 8440 8441 case Instruction::AShr: { 8442 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8443 // bitwidth(K) iterations. 8444 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8445 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8446 Predecessor->getTerminator(), &DT); 8447 auto *Ty = cast<IntegerType>(RHS->getType()); 8448 if (Known.isNonNegative()) 8449 StableValue = ConstantInt::get(Ty, 0); 8450 else if (Known.isNegative()) 8451 StableValue = ConstantInt::get(Ty, -1, true); 8452 else 8453 return getCouldNotCompute(); 8454 8455 break; 8456 } 8457 case Instruction::LShr: 8458 case Instruction::Shl: 8459 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8460 // stabilize to 0 in at most bitwidth(K) iterations. 8461 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8462 break; 8463 } 8464 8465 auto *Result = 8466 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8467 assert(Result->getType()->isIntegerTy(1) && 8468 "Otherwise cannot be an operand to a branch instruction"); 8469 8470 if (Result->isZeroValue()) { 8471 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8472 const SCEV *UpperBound = 8473 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8474 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8475 } 8476 8477 return getCouldNotCompute(); 8478 } 8479 8480 /// Return true if we can constant fold an instruction of the specified type, 8481 /// assuming that all operands were constants. 8482 static bool CanConstantFold(const Instruction *I) { 8483 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8484 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8485 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8486 return true; 8487 8488 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8489 if (const Function *F = CI->getCalledFunction()) 8490 return canConstantFoldCallTo(CI, F); 8491 return false; 8492 } 8493 8494 /// Determine whether this instruction can constant evolve within this loop 8495 /// assuming its operands can all constant evolve. 8496 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8497 // An instruction outside of the loop can't be derived from a loop PHI. 8498 if (!L->contains(I)) return false; 8499 8500 if (isa<PHINode>(I)) { 8501 // We don't currently keep track of the control flow needed to evaluate 8502 // PHIs, so we cannot handle PHIs inside of loops. 8503 return L->getHeader() == I->getParent(); 8504 } 8505 8506 // If we won't be able to constant fold this expression even if the operands 8507 // are constants, bail early. 8508 return CanConstantFold(I); 8509 } 8510 8511 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8512 /// recursing through each instruction operand until reaching a loop header phi. 8513 static PHINode * 8514 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8515 DenseMap<Instruction *, PHINode *> &PHIMap, 8516 unsigned Depth) { 8517 if (Depth > MaxConstantEvolvingDepth) 8518 return nullptr; 8519 8520 // Otherwise, we can evaluate this instruction if all of its operands are 8521 // constant or derived from a PHI node themselves. 8522 PHINode *PHI = nullptr; 8523 for (Value *Op : UseInst->operands()) { 8524 if (isa<Constant>(Op)) continue; 8525 8526 Instruction *OpInst = dyn_cast<Instruction>(Op); 8527 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8528 8529 PHINode *P = dyn_cast<PHINode>(OpInst); 8530 if (!P) 8531 // If this operand is already visited, reuse the prior result. 8532 // We may have P != PHI if this is the deepest point at which the 8533 // inconsistent paths meet. 8534 P = PHIMap.lookup(OpInst); 8535 if (!P) { 8536 // Recurse and memoize the results, whether a phi is found or not. 8537 // This recursive call invalidates pointers into PHIMap. 8538 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8539 PHIMap[OpInst] = P; 8540 } 8541 if (!P) 8542 return nullptr; // Not evolving from PHI 8543 if (PHI && PHI != P) 8544 return nullptr; // Evolving from multiple different PHIs. 8545 PHI = P; 8546 } 8547 // This is a expression evolving from a constant PHI! 8548 return PHI; 8549 } 8550 8551 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8552 /// in the loop that V is derived from. We allow arbitrary operations along the 8553 /// way, but the operands of an operation must either be constants or a value 8554 /// derived from a constant PHI. If this expression does not fit with these 8555 /// constraints, return null. 8556 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8557 Instruction *I = dyn_cast<Instruction>(V); 8558 if (!I || !canConstantEvolve(I, L)) return nullptr; 8559 8560 if (PHINode *PN = dyn_cast<PHINode>(I)) 8561 return PN; 8562 8563 // Record non-constant instructions contained by the loop. 8564 DenseMap<Instruction *, PHINode *> PHIMap; 8565 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8566 } 8567 8568 /// EvaluateExpression - Given an expression that passes the 8569 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8570 /// in the loop has the value PHIVal. If we can't fold this expression for some 8571 /// reason, return null. 8572 static Constant *EvaluateExpression(Value *V, const Loop *L, 8573 DenseMap<Instruction *, Constant *> &Vals, 8574 const DataLayout &DL, 8575 const TargetLibraryInfo *TLI) { 8576 // Convenient constant check, but redundant for recursive calls. 8577 if (Constant *C = dyn_cast<Constant>(V)) return C; 8578 Instruction *I = dyn_cast<Instruction>(V); 8579 if (!I) return nullptr; 8580 8581 if (Constant *C = Vals.lookup(I)) return C; 8582 8583 // An instruction inside the loop depends on a value outside the loop that we 8584 // weren't given a mapping for, or a value such as a call inside the loop. 8585 if (!canConstantEvolve(I, L)) return nullptr; 8586 8587 // An unmapped PHI can be due to a branch or another loop inside this loop, 8588 // or due to this not being the initial iteration through a loop where we 8589 // couldn't compute the evolution of this particular PHI last time. 8590 if (isa<PHINode>(I)) return nullptr; 8591 8592 std::vector<Constant*> Operands(I->getNumOperands()); 8593 8594 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8595 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8596 if (!Operand) { 8597 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8598 if (!Operands[i]) return nullptr; 8599 continue; 8600 } 8601 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8602 Vals[Operand] = C; 8603 if (!C) return nullptr; 8604 Operands[i] = C; 8605 } 8606 8607 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8608 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8609 Operands[1], DL, TLI); 8610 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8611 if (!LI->isVolatile()) 8612 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8613 } 8614 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8615 } 8616 8617 8618 // If every incoming value to PN except the one for BB is a specific Constant, 8619 // return that, else return nullptr. 8620 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8621 Constant *IncomingVal = nullptr; 8622 8623 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8624 if (PN->getIncomingBlock(i) == BB) 8625 continue; 8626 8627 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8628 if (!CurrentVal) 8629 return nullptr; 8630 8631 if (IncomingVal != CurrentVal) { 8632 if (IncomingVal) 8633 return nullptr; 8634 IncomingVal = CurrentVal; 8635 } 8636 } 8637 8638 return IncomingVal; 8639 } 8640 8641 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8642 /// in the header of its containing loop, we know the loop executes a 8643 /// constant number of times, and the PHI node is just a recurrence 8644 /// involving constants, fold it. 8645 Constant * 8646 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8647 const APInt &BEs, 8648 const Loop *L) { 8649 auto I = ConstantEvolutionLoopExitValue.find(PN); 8650 if (I != ConstantEvolutionLoopExitValue.end()) 8651 return I->second; 8652 8653 if (BEs.ugt(MaxBruteForceIterations)) 8654 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8655 8656 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8657 8658 DenseMap<Instruction *, Constant *> CurrentIterVals; 8659 BasicBlock *Header = L->getHeader(); 8660 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8661 8662 BasicBlock *Latch = L->getLoopLatch(); 8663 if (!Latch) 8664 return nullptr; 8665 8666 for (PHINode &PHI : Header->phis()) { 8667 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8668 CurrentIterVals[&PHI] = StartCST; 8669 } 8670 if (!CurrentIterVals.count(PN)) 8671 return RetVal = nullptr; 8672 8673 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8674 8675 // Execute the loop symbolically to determine the exit value. 8676 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8677 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8678 8679 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8680 unsigned IterationNum = 0; 8681 const DataLayout &DL = getDataLayout(); 8682 for (; ; ++IterationNum) { 8683 if (IterationNum == NumIterations) 8684 return RetVal = CurrentIterVals[PN]; // Got exit value! 8685 8686 // Compute the value of the PHIs for the next iteration. 8687 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8688 DenseMap<Instruction *, Constant *> NextIterVals; 8689 Constant *NextPHI = 8690 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8691 if (!NextPHI) 8692 return nullptr; // Couldn't evaluate! 8693 NextIterVals[PN] = NextPHI; 8694 8695 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8696 8697 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8698 // cease to be able to evaluate one of them or if they stop evolving, 8699 // because that doesn't necessarily prevent us from computing PN. 8700 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8701 for (const auto &I : CurrentIterVals) { 8702 PHINode *PHI = dyn_cast<PHINode>(I.first); 8703 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8704 PHIsToCompute.emplace_back(PHI, I.second); 8705 } 8706 // We use two distinct loops because EvaluateExpression may invalidate any 8707 // iterators into CurrentIterVals. 8708 for (const auto &I : PHIsToCompute) { 8709 PHINode *PHI = I.first; 8710 Constant *&NextPHI = NextIterVals[PHI]; 8711 if (!NextPHI) { // Not already computed. 8712 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8713 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8714 } 8715 if (NextPHI != I.second) 8716 StoppedEvolving = false; 8717 } 8718 8719 // If all entries in CurrentIterVals == NextIterVals then we can stop 8720 // iterating, the loop can't continue to change. 8721 if (StoppedEvolving) 8722 return RetVal = CurrentIterVals[PN]; 8723 8724 CurrentIterVals.swap(NextIterVals); 8725 } 8726 } 8727 8728 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8729 Value *Cond, 8730 bool ExitWhen) { 8731 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8732 if (!PN) return getCouldNotCompute(); 8733 8734 // If the loop is canonicalized, the PHI will have exactly two entries. 8735 // That's the only form we support here. 8736 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8737 8738 DenseMap<Instruction *, Constant *> CurrentIterVals; 8739 BasicBlock *Header = L->getHeader(); 8740 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8741 8742 BasicBlock *Latch = L->getLoopLatch(); 8743 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8744 8745 for (PHINode &PHI : Header->phis()) { 8746 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8747 CurrentIterVals[&PHI] = StartCST; 8748 } 8749 if (!CurrentIterVals.count(PN)) 8750 return getCouldNotCompute(); 8751 8752 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8753 // the loop symbolically to determine when the condition gets a value of 8754 // "ExitWhen". 8755 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8756 const DataLayout &DL = getDataLayout(); 8757 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8758 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8759 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8760 8761 // Couldn't symbolically evaluate. 8762 if (!CondVal) return getCouldNotCompute(); 8763 8764 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8765 ++NumBruteForceTripCountsComputed; 8766 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8767 } 8768 8769 // Update all the PHI nodes for the next iteration. 8770 DenseMap<Instruction *, Constant *> NextIterVals; 8771 8772 // Create a list of which PHIs we need to compute. We want to do this before 8773 // calling EvaluateExpression on them because that may invalidate iterators 8774 // into CurrentIterVals. 8775 SmallVector<PHINode *, 8> PHIsToCompute; 8776 for (const auto &I : CurrentIterVals) { 8777 PHINode *PHI = dyn_cast<PHINode>(I.first); 8778 if (!PHI || PHI->getParent() != Header) continue; 8779 PHIsToCompute.push_back(PHI); 8780 } 8781 for (PHINode *PHI : PHIsToCompute) { 8782 Constant *&NextPHI = NextIterVals[PHI]; 8783 if (NextPHI) continue; // Already computed! 8784 8785 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8786 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8787 } 8788 CurrentIterVals.swap(NextIterVals); 8789 } 8790 8791 // Too many iterations were needed to evaluate. 8792 return getCouldNotCompute(); 8793 } 8794 8795 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8796 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8797 ValuesAtScopes[V]; 8798 // Check to see if we've folded this expression at this loop before. 8799 for (auto &LS : Values) 8800 if (LS.first == L) 8801 return LS.second ? LS.second : V; 8802 8803 Values.emplace_back(L, nullptr); 8804 8805 // Otherwise compute it. 8806 const SCEV *C = computeSCEVAtScope(V, L); 8807 for (auto &LS : reverse(ValuesAtScopes[V])) 8808 if (LS.first == L) { 8809 LS.second = C; 8810 break; 8811 } 8812 return C; 8813 } 8814 8815 /// This builds up a Constant using the ConstantExpr interface. That way, we 8816 /// will return Constants for objects which aren't represented by a 8817 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8818 /// Returns NULL if the SCEV isn't representable as a Constant. 8819 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8820 switch (V->getSCEVType()) { 8821 case scCouldNotCompute: 8822 case scAddRecExpr: 8823 return nullptr; 8824 case scConstant: 8825 return cast<SCEVConstant>(V)->getValue(); 8826 case scUnknown: 8827 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8828 case scSignExtend: { 8829 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8830 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8831 return ConstantExpr::getSExt(CastOp, SS->getType()); 8832 return nullptr; 8833 } 8834 case scZeroExtend: { 8835 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8836 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8837 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8838 return nullptr; 8839 } 8840 case scPtrToInt: { 8841 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8842 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8843 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8844 8845 return nullptr; 8846 } 8847 case scTruncate: { 8848 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8849 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8850 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8851 return nullptr; 8852 } 8853 case scAddExpr: { 8854 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8855 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8856 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8857 unsigned AS = PTy->getAddressSpace(); 8858 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8859 C = ConstantExpr::getBitCast(C, DestPtrTy); 8860 } 8861 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8862 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8863 if (!C2) 8864 return nullptr; 8865 8866 // First pointer! 8867 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8868 unsigned AS = C2->getType()->getPointerAddressSpace(); 8869 std::swap(C, C2); 8870 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8871 // The offsets have been converted to bytes. We can add bytes to an 8872 // i8* by GEP with the byte count in the first index. 8873 C = ConstantExpr::getBitCast(C, DestPtrTy); 8874 } 8875 8876 // Don't bother trying to sum two pointers. We probably can't 8877 // statically compute a load that results from it anyway. 8878 if (C2->getType()->isPointerTy()) 8879 return nullptr; 8880 8881 if (C->getType()->isPointerTy()) { 8882 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 8883 C, C2); 8884 } else { 8885 C = ConstantExpr::getAdd(C, C2); 8886 } 8887 } 8888 return C; 8889 } 8890 return nullptr; 8891 } 8892 case scMulExpr: { 8893 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8894 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8895 // Don't bother with pointers at all. 8896 if (C->getType()->isPointerTy()) 8897 return nullptr; 8898 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8899 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8900 if (!C2 || C2->getType()->isPointerTy()) 8901 return nullptr; 8902 C = ConstantExpr::getMul(C, C2); 8903 } 8904 return C; 8905 } 8906 return nullptr; 8907 } 8908 case scUDivExpr: { 8909 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8910 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8911 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8912 if (LHS->getType() == RHS->getType()) 8913 return ConstantExpr::getUDiv(LHS, RHS); 8914 return nullptr; 8915 } 8916 case scSMaxExpr: 8917 case scUMaxExpr: 8918 case scSMinExpr: 8919 case scUMinExpr: 8920 return nullptr; // TODO: smax, umax, smin, umax. 8921 } 8922 llvm_unreachable("Unknown SCEV kind!"); 8923 } 8924 8925 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8926 if (isa<SCEVConstant>(V)) return V; 8927 8928 // If this instruction is evolved from a constant-evolving PHI, compute the 8929 // exit value from the loop without using SCEVs. 8930 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8931 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8932 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8933 const Loop *CurrLoop = this->LI[I->getParent()]; 8934 // Looking for loop exit value. 8935 if (CurrLoop && CurrLoop->getParentLoop() == L && 8936 PN->getParent() == CurrLoop->getHeader()) { 8937 // Okay, there is no closed form solution for the PHI node. Check 8938 // to see if the loop that contains it has a known backedge-taken 8939 // count. If so, we may be able to force computation of the exit 8940 // value. 8941 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8942 // This trivial case can show up in some degenerate cases where 8943 // the incoming IR has not yet been fully simplified. 8944 if (BackedgeTakenCount->isZero()) { 8945 Value *InitValue = nullptr; 8946 bool MultipleInitValues = false; 8947 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8948 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8949 if (!InitValue) 8950 InitValue = PN->getIncomingValue(i); 8951 else if (InitValue != PN->getIncomingValue(i)) { 8952 MultipleInitValues = true; 8953 break; 8954 } 8955 } 8956 } 8957 if (!MultipleInitValues && InitValue) 8958 return getSCEV(InitValue); 8959 } 8960 // Do we have a loop invariant value flowing around the backedge 8961 // for a loop which must execute the backedge? 8962 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8963 isKnownPositive(BackedgeTakenCount) && 8964 PN->getNumIncomingValues() == 2) { 8965 8966 unsigned InLoopPred = 8967 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8968 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8969 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8970 return getSCEV(BackedgeVal); 8971 } 8972 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8973 // Okay, we know how many times the containing loop executes. If 8974 // this is a constant evolving PHI node, get the final value at 8975 // the specified iteration number. 8976 Constant *RV = getConstantEvolutionLoopExitValue( 8977 PN, BTCC->getAPInt(), CurrLoop); 8978 if (RV) return getSCEV(RV); 8979 } 8980 } 8981 8982 // If there is a single-input Phi, evaluate it at our scope. If we can 8983 // prove that this replacement does not break LCSSA form, use new value. 8984 if (PN->getNumOperands() == 1) { 8985 const SCEV *Input = getSCEV(PN->getOperand(0)); 8986 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8987 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8988 // for the simplest case just support constants. 8989 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8990 } 8991 } 8992 8993 // Okay, this is an expression that we cannot symbolically evaluate 8994 // into a SCEV. Check to see if it's possible to symbolically evaluate 8995 // the arguments into constants, and if so, try to constant propagate the 8996 // result. This is particularly useful for computing loop exit values. 8997 if (CanConstantFold(I)) { 8998 SmallVector<Constant *, 4> Operands; 8999 bool MadeImprovement = false; 9000 for (Value *Op : I->operands()) { 9001 if (Constant *C = dyn_cast<Constant>(Op)) { 9002 Operands.push_back(C); 9003 continue; 9004 } 9005 9006 // If any of the operands is non-constant and if they are 9007 // non-integer and non-pointer, don't even try to analyze them 9008 // with scev techniques. 9009 if (!isSCEVable(Op->getType())) 9010 return V; 9011 9012 const SCEV *OrigV = getSCEV(Op); 9013 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9014 MadeImprovement |= OrigV != OpV; 9015 9016 Constant *C = BuildConstantFromSCEV(OpV); 9017 if (!C) return V; 9018 if (C->getType() != Op->getType()) 9019 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9020 Op->getType(), 9021 false), 9022 C, Op->getType()); 9023 Operands.push_back(C); 9024 } 9025 9026 // Check to see if getSCEVAtScope actually made an improvement. 9027 if (MadeImprovement) { 9028 Constant *C = nullptr; 9029 const DataLayout &DL = getDataLayout(); 9030 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9031 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9032 Operands[1], DL, &TLI); 9033 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9034 if (!Load->isVolatile()) 9035 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9036 DL); 9037 } else 9038 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9039 if (!C) return V; 9040 return getSCEV(C); 9041 } 9042 } 9043 } 9044 9045 // This is some other type of SCEVUnknown, just return it. 9046 return V; 9047 } 9048 9049 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 9050 // Avoid performing the look-up in the common case where the specified 9051 // expression has no loop-variant portions. 9052 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9053 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9054 if (OpAtScope != Comm->getOperand(i)) { 9055 // Okay, at least one of these operands is loop variant but might be 9056 // foldable. Build a new instance of the folded commutative expression. 9057 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9058 Comm->op_begin()+i); 9059 NewOps.push_back(OpAtScope); 9060 9061 for (++i; i != e; ++i) { 9062 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9063 NewOps.push_back(OpAtScope); 9064 } 9065 if (isa<SCEVAddExpr>(Comm)) 9066 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9067 if (isa<SCEVMulExpr>(Comm)) 9068 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9069 if (isa<SCEVMinMaxExpr>(Comm)) 9070 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9071 llvm_unreachable("Unknown commutative SCEV type!"); 9072 } 9073 } 9074 // If we got here, all operands are loop invariant. 9075 return Comm; 9076 } 9077 9078 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9079 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9080 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9081 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9082 return Div; // must be loop invariant 9083 return getUDivExpr(LHS, RHS); 9084 } 9085 9086 // If this is a loop recurrence for a loop that does not contain L, then we 9087 // are dealing with the final value computed by the loop. 9088 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9089 // First, attempt to evaluate each operand. 9090 // Avoid performing the look-up in the common case where the specified 9091 // expression has no loop-variant portions. 9092 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9093 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9094 if (OpAtScope == AddRec->getOperand(i)) 9095 continue; 9096 9097 // Okay, at least one of these operands is loop variant but might be 9098 // foldable. Build a new instance of the folded commutative expression. 9099 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9100 AddRec->op_begin()+i); 9101 NewOps.push_back(OpAtScope); 9102 for (++i; i != e; ++i) 9103 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9104 9105 const SCEV *FoldedRec = 9106 getAddRecExpr(NewOps, AddRec->getLoop(), 9107 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9108 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9109 // The addrec may be folded to a nonrecurrence, for example, if the 9110 // induction variable is multiplied by zero after constant folding. Go 9111 // ahead and return the folded value. 9112 if (!AddRec) 9113 return FoldedRec; 9114 break; 9115 } 9116 9117 // If the scope is outside the addrec's loop, evaluate it by using the 9118 // loop exit value of the addrec. 9119 if (!AddRec->getLoop()->contains(L)) { 9120 // To evaluate this recurrence, we need to know how many times the AddRec 9121 // loop iterates. Compute this now. 9122 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9123 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9124 9125 // Then, evaluate the AddRec. 9126 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9127 } 9128 9129 return AddRec; 9130 } 9131 9132 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 9133 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9134 if (Op == Cast->getOperand()) 9135 return Cast; // must be loop invariant 9136 return getZeroExtendExpr(Op, Cast->getType()); 9137 } 9138 9139 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 9140 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9141 if (Op == Cast->getOperand()) 9142 return Cast; // must be loop invariant 9143 return getSignExtendExpr(Op, Cast->getType()); 9144 } 9145 9146 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 9147 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9148 if (Op == Cast->getOperand()) 9149 return Cast; // must be loop invariant 9150 return getTruncateExpr(Op, Cast->getType()); 9151 } 9152 9153 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 9154 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9155 if (Op == Cast->getOperand()) 9156 return Cast; // must be loop invariant 9157 return getPtrToIntExpr(Op, Cast->getType()); 9158 } 9159 9160 llvm_unreachable("Unknown SCEV type!"); 9161 } 9162 9163 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9164 return getSCEVAtScope(getSCEV(V), L); 9165 } 9166 9167 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9168 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9169 return stripInjectiveFunctions(ZExt->getOperand()); 9170 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9171 return stripInjectiveFunctions(SExt->getOperand()); 9172 return S; 9173 } 9174 9175 /// Finds the minimum unsigned root of the following equation: 9176 /// 9177 /// A * X = B (mod N) 9178 /// 9179 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9180 /// A and B isn't important. 9181 /// 9182 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9183 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9184 ScalarEvolution &SE) { 9185 uint32_t BW = A.getBitWidth(); 9186 assert(BW == SE.getTypeSizeInBits(B->getType())); 9187 assert(A != 0 && "A must be non-zero."); 9188 9189 // 1. D = gcd(A, N) 9190 // 9191 // The gcd of A and N may have only one prime factor: 2. The number of 9192 // trailing zeros in A is its multiplicity 9193 uint32_t Mult2 = A.countTrailingZeros(); 9194 // D = 2^Mult2 9195 9196 // 2. Check if B is divisible by D. 9197 // 9198 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9199 // is not less than multiplicity of this prime factor for D. 9200 if (SE.GetMinTrailingZeros(B) < Mult2) 9201 return SE.getCouldNotCompute(); 9202 9203 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9204 // modulo (N / D). 9205 // 9206 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9207 // (N / D) in general. The inverse itself always fits into BW bits, though, 9208 // so we immediately truncate it. 9209 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9210 APInt Mod(BW + 1, 0); 9211 Mod.setBit(BW - Mult2); // Mod = N / D 9212 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9213 9214 // 4. Compute the minimum unsigned root of the equation: 9215 // I * (B / D) mod (N / D) 9216 // To simplify the computation, we factor out the divide by D: 9217 // (I * B mod N) / D 9218 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9219 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9220 } 9221 9222 /// For a given quadratic addrec, generate coefficients of the corresponding 9223 /// quadratic equation, multiplied by a common value to ensure that they are 9224 /// integers. 9225 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9226 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9227 /// were multiplied by, and BitWidth is the bit width of the original addrec 9228 /// coefficients. 9229 /// This function returns None if the addrec coefficients are not compile- 9230 /// time constants. 9231 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9232 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9233 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9234 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9235 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9236 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9237 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9238 << *AddRec << '\n'); 9239 9240 // We currently can only solve this if the coefficients are constants. 9241 if (!LC || !MC || !NC) { 9242 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9243 return None; 9244 } 9245 9246 APInt L = LC->getAPInt(); 9247 APInt M = MC->getAPInt(); 9248 APInt N = NC->getAPInt(); 9249 assert(!N.isZero() && "This is not a quadratic addrec"); 9250 9251 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9252 unsigned NewWidth = BitWidth + 1; 9253 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9254 << BitWidth << '\n'); 9255 // The sign-extension (as opposed to a zero-extension) here matches the 9256 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9257 N = N.sext(NewWidth); 9258 M = M.sext(NewWidth); 9259 L = L.sext(NewWidth); 9260 9261 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9262 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9263 // L+M, L+2M+N, L+3M+3N, ... 9264 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9265 // 9266 // The equation Acc = 0 is then 9267 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9268 // In a quadratic form it becomes: 9269 // N n^2 + (2M-N) n + 2L = 0. 9270 9271 APInt A = N; 9272 APInt B = 2 * M - A; 9273 APInt C = 2 * L; 9274 APInt T = APInt(NewWidth, 2); 9275 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9276 << "x + " << C << ", coeff bw: " << NewWidth 9277 << ", multiplied by " << T << '\n'); 9278 return std::make_tuple(A, B, C, T, BitWidth); 9279 } 9280 9281 /// Helper function to compare optional APInts: 9282 /// (a) if X and Y both exist, return min(X, Y), 9283 /// (b) if neither X nor Y exist, return None, 9284 /// (c) if exactly one of X and Y exists, return that value. 9285 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9286 if (X.hasValue() && Y.hasValue()) { 9287 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9288 APInt XW = X->sextOrSelf(W); 9289 APInt YW = Y->sextOrSelf(W); 9290 return XW.slt(YW) ? *X : *Y; 9291 } 9292 if (!X.hasValue() && !Y.hasValue()) 9293 return None; 9294 return X.hasValue() ? *X : *Y; 9295 } 9296 9297 /// Helper function to truncate an optional APInt to a given BitWidth. 9298 /// When solving addrec-related equations, it is preferable to return a value 9299 /// that has the same bit width as the original addrec's coefficients. If the 9300 /// solution fits in the original bit width, truncate it (except for i1). 9301 /// Returning a value of a different bit width may inhibit some optimizations. 9302 /// 9303 /// In general, a solution to a quadratic equation generated from an addrec 9304 /// may require BW+1 bits, where BW is the bit width of the addrec's 9305 /// coefficients. The reason is that the coefficients of the quadratic 9306 /// equation are BW+1 bits wide (to avoid truncation when converting from 9307 /// the addrec to the equation). 9308 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9309 if (!X.hasValue()) 9310 return None; 9311 unsigned W = X->getBitWidth(); 9312 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9313 return X->trunc(BitWidth); 9314 return X; 9315 } 9316 9317 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9318 /// iterations. The values L, M, N are assumed to be signed, and they 9319 /// should all have the same bit widths. 9320 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9321 /// where BW is the bit width of the addrec's coefficients. 9322 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9323 /// returned as such, otherwise the bit width of the returned value may 9324 /// be greater than BW. 9325 /// 9326 /// This function returns None if 9327 /// (a) the addrec coefficients are not constant, or 9328 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9329 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9330 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9331 static Optional<APInt> 9332 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9333 APInt A, B, C, M; 9334 unsigned BitWidth; 9335 auto T = GetQuadraticEquation(AddRec); 9336 if (!T.hasValue()) 9337 return None; 9338 9339 std::tie(A, B, C, M, BitWidth) = *T; 9340 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9341 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9342 if (!X.hasValue()) 9343 return None; 9344 9345 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9346 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9347 if (!V->isZero()) 9348 return None; 9349 9350 return TruncIfPossible(X, BitWidth); 9351 } 9352 9353 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9354 /// iterations. The values M, N are assumed to be signed, and they 9355 /// should all have the same bit widths. 9356 /// Find the least n such that c(n) does not belong to the given range, 9357 /// while c(n-1) does. 9358 /// 9359 /// This function returns None if 9360 /// (a) the addrec coefficients are not constant, or 9361 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9362 /// bounds of the range. 9363 static Optional<APInt> 9364 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9365 const ConstantRange &Range, ScalarEvolution &SE) { 9366 assert(AddRec->getOperand(0)->isZero() && 9367 "Starting value of addrec should be 0"); 9368 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9369 << Range << ", addrec " << *AddRec << '\n'); 9370 // This case is handled in getNumIterationsInRange. Here we can assume that 9371 // we start in the range. 9372 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9373 "Addrec's initial value should be in range"); 9374 9375 APInt A, B, C, M; 9376 unsigned BitWidth; 9377 auto T = GetQuadraticEquation(AddRec); 9378 if (!T.hasValue()) 9379 return None; 9380 9381 // Be careful about the return value: there can be two reasons for not 9382 // returning an actual number. First, if no solutions to the equations 9383 // were found, and second, if the solutions don't leave the given range. 9384 // The first case means that the actual solution is "unknown", the second 9385 // means that it's known, but not valid. If the solution is unknown, we 9386 // cannot make any conclusions. 9387 // Return a pair: the optional solution and a flag indicating if the 9388 // solution was found. 9389 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9390 // Solve for signed overflow and unsigned overflow, pick the lower 9391 // solution. 9392 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9393 << Bound << " (before multiplying by " << M << ")\n"); 9394 Bound *= M; // The quadratic equation multiplier. 9395 9396 Optional<APInt> SO = None; 9397 if (BitWidth > 1) { 9398 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9399 "signed overflow\n"); 9400 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9401 } 9402 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9403 "unsigned overflow\n"); 9404 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9405 BitWidth+1); 9406 9407 auto LeavesRange = [&] (const APInt &X) { 9408 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9409 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9410 if (Range.contains(V0->getValue())) 9411 return false; 9412 // X should be at least 1, so X-1 is non-negative. 9413 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9414 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9415 if (Range.contains(V1->getValue())) 9416 return true; 9417 return false; 9418 }; 9419 9420 // If SolveQuadraticEquationWrap returns None, it means that there can 9421 // be a solution, but the function failed to find it. We cannot treat it 9422 // as "no solution". 9423 if (!SO.hasValue() || !UO.hasValue()) 9424 return { None, false }; 9425 9426 // Check the smaller value first to see if it leaves the range. 9427 // At this point, both SO and UO must have values. 9428 Optional<APInt> Min = MinOptional(SO, UO); 9429 if (LeavesRange(*Min)) 9430 return { Min, true }; 9431 Optional<APInt> Max = Min == SO ? UO : SO; 9432 if (LeavesRange(*Max)) 9433 return { Max, true }; 9434 9435 // Solutions were found, but were eliminated, hence the "true". 9436 return { None, true }; 9437 }; 9438 9439 std::tie(A, B, C, M, BitWidth) = *T; 9440 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9441 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9442 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9443 auto SL = SolveForBoundary(Lower); 9444 auto SU = SolveForBoundary(Upper); 9445 // If any of the solutions was unknown, no meaninigful conclusions can 9446 // be made. 9447 if (!SL.second || !SU.second) 9448 return None; 9449 9450 // Claim: The correct solution is not some value between Min and Max. 9451 // 9452 // Justification: Assuming that Min and Max are different values, one of 9453 // them is when the first signed overflow happens, the other is when the 9454 // first unsigned overflow happens. Crossing the range boundary is only 9455 // possible via an overflow (treating 0 as a special case of it, modeling 9456 // an overflow as crossing k*2^W for some k). 9457 // 9458 // The interesting case here is when Min was eliminated as an invalid 9459 // solution, but Max was not. The argument is that if there was another 9460 // overflow between Min and Max, it would also have been eliminated if 9461 // it was considered. 9462 // 9463 // For a given boundary, it is possible to have two overflows of the same 9464 // type (signed/unsigned) without having the other type in between: this 9465 // can happen when the vertex of the parabola is between the iterations 9466 // corresponding to the overflows. This is only possible when the two 9467 // overflows cross k*2^W for the same k. In such case, if the second one 9468 // left the range (and was the first one to do so), the first overflow 9469 // would have to enter the range, which would mean that either we had left 9470 // the range before or that we started outside of it. Both of these cases 9471 // are contradictions. 9472 // 9473 // Claim: In the case where SolveForBoundary returns None, the correct 9474 // solution is not some value between the Max for this boundary and the 9475 // Min of the other boundary. 9476 // 9477 // Justification: Assume that we had such Max_A and Min_B corresponding 9478 // to range boundaries A and B and such that Max_A < Min_B. If there was 9479 // a solution between Max_A and Min_B, it would have to be caused by an 9480 // overflow corresponding to either A or B. It cannot correspond to B, 9481 // since Min_B is the first occurrence of such an overflow. If it 9482 // corresponded to A, it would have to be either a signed or an unsigned 9483 // overflow that is larger than both eliminated overflows for A. But 9484 // between the eliminated overflows and this overflow, the values would 9485 // cover the entire value space, thus crossing the other boundary, which 9486 // is a contradiction. 9487 9488 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9489 } 9490 9491 ScalarEvolution::ExitLimit 9492 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9493 bool AllowPredicates) { 9494 9495 // This is only used for loops with a "x != y" exit test. The exit condition 9496 // is now expressed as a single expression, V = x-y. So the exit test is 9497 // effectively V != 0. We know and take advantage of the fact that this 9498 // expression only being used in a comparison by zero context. 9499 9500 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9501 // If the value is a constant 9502 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9503 // If the value is already zero, the branch will execute zero times. 9504 if (C->getValue()->isZero()) return C; 9505 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9506 } 9507 9508 const SCEVAddRecExpr *AddRec = 9509 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9510 9511 if (!AddRec && AllowPredicates) 9512 // Try to make this an AddRec using runtime tests, in the first X 9513 // iterations of this loop, where X is the SCEV expression found by the 9514 // algorithm below. 9515 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9516 9517 if (!AddRec || AddRec->getLoop() != L) 9518 return getCouldNotCompute(); 9519 9520 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9521 // the quadratic equation to solve it. 9522 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9523 // We can only use this value if the chrec ends up with an exact zero 9524 // value at this index. When solving for "X*X != 5", for example, we 9525 // should not accept a root of 2. 9526 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9527 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9528 return ExitLimit(R, R, false, Predicates); 9529 } 9530 return getCouldNotCompute(); 9531 } 9532 9533 // Otherwise we can only handle this if it is affine. 9534 if (!AddRec->isAffine()) 9535 return getCouldNotCompute(); 9536 9537 // If this is an affine expression, the execution count of this branch is 9538 // the minimum unsigned root of the following equation: 9539 // 9540 // Start + Step*N = 0 (mod 2^BW) 9541 // 9542 // equivalent to: 9543 // 9544 // Step*N = -Start (mod 2^BW) 9545 // 9546 // where BW is the common bit width of Start and Step. 9547 9548 // Get the initial value for the loop. 9549 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9550 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9551 9552 // For now we handle only constant steps. 9553 // 9554 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9555 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9556 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9557 // We have not yet seen any such cases. 9558 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9559 if (!StepC || StepC->getValue()->isZero()) 9560 return getCouldNotCompute(); 9561 9562 // For positive steps (counting up until unsigned overflow): 9563 // N = -Start/Step (as unsigned) 9564 // For negative steps (counting down to zero): 9565 // N = Start/-Step 9566 // First compute the unsigned distance from zero in the direction of Step. 9567 bool CountDown = StepC->getAPInt().isNegative(); 9568 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9569 9570 // Handle unitary steps, which cannot wraparound. 9571 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9572 // N = Distance (as unsigned) 9573 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9574 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9575 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9576 if (MaxBECountBase.ult(MaxBECount)) 9577 MaxBECount = MaxBECountBase; 9578 9579 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9580 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9581 // case, and see if we can improve the bound. 9582 // 9583 // Explicitly handling this here is necessary because getUnsignedRange 9584 // isn't context-sensitive; it doesn't know that we only care about the 9585 // range inside the loop. 9586 const SCEV *Zero = getZero(Distance->getType()); 9587 const SCEV *One = getOne(Distance->getType()); 9588 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9589 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9590 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9591 // as "unsigned_max(Distance + 1) - 1". 9592 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9593 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9594 } 9595 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9596 } 9597 9598 // If the condition controls loop exit (the loop exits only if the expression 9599 // is true) and the addition is no-wrap we can use unsigned divide to 9600 // compute the backedge count. In this case, the step may not divide the 9601 // distance, but we don't care because if the condition is "missed" the loop 9602 // will have undefined behavior due to wrapping. 9603 if (ControlsExit && AddRec->hasNoSelfWrap() && 9604 loopHasNoAbnormalExits(AddRec->getLoop())) { 9605 const SCEV *Exact = 9606 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9607 const SCEV *Max = getCouldNotCompute(); 9608 if (Exact != getCouldNotCompute()) { 9609 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9610 APInt BaseMaxInt = getUnsignedRangeMax(Exact); 9611 if (BaseMaxInt.ult(MaxInt)) 9612 Max = getConstant(BaseMaxInt); 9613 else 9614 Max = getConstant(MaxInt); 9615 } 9616 return ExitLimit(Exact, Max, false, Predicates); 9617 } 9618 9619 // Solve the general equation. 9620 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9621 getNegativeSCEV(Start), *this); 9622 const SCEV *M = E == getCouldNotCompute() 9623 ? E 9624 : getConstant(getUnsignedRangeMax(E)); 9625 return ExitLimit(E, M, false, Predicates); 9626 } 9627 9628 ScalarEvolution::ExitLimit 9629 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9630 // Loops that look like: while (X == 0) are very strange indeed. We don't 9631 // handle them yet except for the trivial case. This could be expanded in the 9632 // future as needed. 9633 9634 // If the value is a constant, check to see if it is known to be non-zero 9635 // already. If so, the backedge will execute zero times. 9636 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9637 if (!C->getValue()->isZero()) 9638 return getZero(C->getType()); 9639 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9640 } 9641 9642 // We could implement others, but I really doubt anyone writes loops like 9643 // this, and if they did, they would already be constant folded. 9644 return getCouldNotCompute(); 9645 } 9646 9647 std::pair<const BasicBlock *, const BasicBlock *> 9648 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9649 const { 9650 // If the block has a unique predecessor, then there is no path from the 9651 // predecessor to the block that does not go through the direct edge 9652 // from the predecessor to the block. 9653 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9654 return {Pred, BB}; 9655 9656 // A loop's header is defined to be a block that dominates the loop. 9657 // If the header has a unique predecessor outside the loop, it must be 9658 // a block that has exactly one successor that can reach the loop. 9659 if (const Loop *L = LI.getLoopFor(BB)) 9660 return {L->getLoopPredecessor(), L->getHeader()}; 9661 9662 return {nullptr, nullptr}; 9663 } 9664 9665 /// SCEV structural equivalence is usually sufficient for testing whether two 9666 /// expressions are equal, however for the purposes of looking for a condition 9667 /// guarding a loop, it can be useful to be a little more general, since a 9668 /// front-end may have replicated the controlling expression. 9669 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9670 // Quick check to see if they are the same SCEV. 9671 if (A == B) return true; 9672 9673 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9674 // Not all instructions that are "identical" compute the same value. For 9675 // instance, two distinct alloca instructions allocating the same type are 9676 // identical and do not read memory; but compute distinct values. 9677 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9678 }; 9679 9680 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9681 // two different instructions with the same value. Check for this case. 9682 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9683 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9684 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9685 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9686 if (ComputesEqualValues(AI, BI)) 9687 return true; 9688 9689 // Otherwise assume they may have a different value. 9690 return false; 9691 } 9692 9693 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9694 const SCEV *&LHS, const SCEV *&RHS, 9695 unsigned Depth) { 9696 bool Changed = false; 9697 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9698 // '0 != 0'. 9699 auto TrivialCase = [&](bool TriviallyTrue) { 9700 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9701 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9702 return true; 9703 }; 9704 // If we hit the max recursion limit bail out. 9705 if (Depth >= 3) 9706 return false; 9707 9708 // Canonicalize a constant to the right side. 9709 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9710 // Check for both operands constant. 9711 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9712 if (ConstantExpr::getICmp(Pred, 9713 LHSC->getValue(), 9714 RHSC->getValue())->isNullValue()) 9715 return TrivialCase(false); 9716 else 9717 return TrivialCase(true); 9718 } 9719 // Otherwise swap the operands to put the constant on the right. 9720 std::swap(LHS, RHS); 9721 Pred = ICmpInst::getSwappedPredicate(Pred); 9722 Changed = true; 9723 } 9724 9725 // If we're comparing an addrec with a value which is loop-invariant in the 9726 // addrec's loop, put the addrec on the left. Also make a dominance check, 9727 // as both operands could be addrecs loop-invariant in each other's loop. 9728 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9729 const Loop *L = AR->getLoop(); 9730 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9731 std::swap(LHS, RHS); 9732 Pred = ICmpInst::getSwappedPredicate(Pred); 9733 Changed = true; 9734 } 9735 } 9736 9737 // If there's a constant operand, canonicalize comparisons with boundary 9738 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9739 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9740 const APInt &RA = RC->getAPInt(); 9741 9742 bool SimplifiedByConstantRange = false; 9743 9744 if (!ICmpInst::isEquality(Pred)) { 9745 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9746 if (ExactCR.isFullSet()) 9747 return TrivialCase(true); 9748 else if (ExactCR.isEmptySet()) 9749 return TrivialCase(false); 9750 9751 APInt NewRHS; 9752 CmpInst::Predicate NewPred; 9753 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9754 ICmpInst::isEquality(NewPred)) { 9755 // We were able to convert an inequality to an equality. 9756 Pred = NewPred; 9757 RHS = getConstant(NewRHS); 9758 Changed = SimplifiedByConstantRange = true; 9759 } 9760 } 9761 9762 if (!SimplifiedByConstantRange) { 9763 switch (Pred) { 9764 default: 9765 break; 9766 case ICmpInst::ICMP_EQ: 9767 case ICmpInst::ICMP_NE: 9768 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9769 if (!RA) 9770 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9771 if (const SCEVMulExpr *ME = 9772 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9773 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9774 ME->getOperand(0)->isAllOnesValue()) { 9775 RHS = AE->getOperand(1); 9776 LHS = ME->getOperand(1); 9777 Changed = true; 9778 } 9779 break; 9780 9781 9782 // The "Should have been caught earlier!" messages refer to the fact 9783 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9784 // should have fired on the corresponding cases, and canonicalized the 9785 // check to trivial case. 9786 9787 case ICmpInst::ICMP_UGE: 9788 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9789 Pred = ICmpInst::ICMP_UGT; 9790 RHS = getConstant(RA - 1); 9791 Changed = true; 9792 break; 9793 case ICmpInst::ICMP_ULE: 9794 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9795 Pred = ICmpInst::ICMP_ULT; 9796 RHS = getConstant(RA + 1); 9797 Changed = true; 9798 break; 9799 case ICmpInst::ICMP_SGE: 9800 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9801 Pred = ICmpInst::ICMP_SGT; 9802 RHS = getConstant(RA - 1); 9803 Changed = true; 9804 break; 9805 case ICmpInst::ICMP_SLE: 9806 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9807 Pred = ICmpInst::ICMP_SLT; 9808 RHS = getConstant(RA + 1); 9809 Changed = true; 9810 break; 9811 } 9812 } 9813 } 9814 9815 // Check for obvious equality. 9816 if (HasSameValue(LHS, RHS)) { 9817 if (ICmpInst::isTrueWhenEqual(Pred)) 9818 return TrivialCase(true); 9819 if (ICmpInst::isFalseWhenEqual(Pred)) 9820 return TrivialCase(false); 9821 } 9822 9823 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9824 // adding or subtracting 1 from one of the operands. 9825 switch (Pred) { 9826 case ICmpInst::ICMP_SLE: 9827 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9828 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9829 SCEV::FlagNSW); 9830 Pred = ICmpInst::ICMP_SLT; 9831 Changed = true; 9832 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9833 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9834 SCEV::FlagNSW); 9835 Pred = ICmpInst::ICMP_SLT; 9836 Changed = true; 9837 } 9838 break; 9839 case ICmpInst::ICMP_SGE: 9840 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9841 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9842 SCEV::FlagNSW); 9843 Pred = ICmpInst::ICMP_SGT; 9844 Changed = true; 9845 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9846 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9847 SCEV::FlagNSW); 9848 Pred = ICmpInst::ICMP_SGT; 9849 Changed = true; 9850 } 9851 break; 9852 case ICmpInst::ICMP_ULE: 9853 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9854 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9855 SCEV::FlagNUW); 9856 Pred = ICmpInst::ICMP_ULT; 9857 Changed = true; 9858 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9859 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9860 Pred = ICmpInst::ICMP_ULT; 9861 Changed = true; 9862 } 9863 break; 9864 case ICmpInst::ICMP_UGE: 9865 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9866 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9867 Pred = ICmpInst::ICMP_UGT; 9868 Changed = true; 9869 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9870 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9871 SCEV::FlagNUW); 9872 Pred = ICmpInst::ICMP_UGT; 9873 Changed = true; 9874 } 9875 break; 9876 default: 9877 break; 9878 } 9879 9880 // TODO: More simplifications are possible here. 9881 9882 // Recursively simplify until we either hit a recursion limit or nothing 9883 // changes. 9884 if (Changed) 9885 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9886 9887 return Changed; 9888 } 9889 9890 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9891 return getSignedRangeMax(S).isNegative(); 9892 } 9893 9894 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9895 return getSignedRangeMin(S).isStrictlyPositive(); 9896 } 9897 9898 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9899 return !getSignedRangeMin(S).isNegative(); 9900 } 9901 9902 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9903 return !getSignedRangeMax(S).isStrictlyPositive(); 9904 } 9905 9906 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9907 return getUnsignedRangeMin(S) != 0; 9908 } 9909 9910 std::pair<const SCEV *, const SCEV *> 9911 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9912 // Compute SCEV on entry of loop L. 9913 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9914 if (Start == getCouldNotCompute()) 9915 return { Start, Start }; 9916 // Compute post increment SCEV for loop L. 9917 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9918 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9919 return { Start, PostInc }; 9920 } 9921 9922 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9923 const SCEV *LHS, const SCEV *RHS) { 9924 // First collect all loops. 9925 SmallPtrSet<const Loop *, 8> LoopsUsed; 9926 getUsedLoops(LHS, LoopsUsed); 9927 getUsedLoops(RHS, LoopsUsed); 9928 9929 if (LoopsUsed.empty()) 9930 return false; 9931 9932 // Domination relationship must be a linear order on collected loops. 9933 #ifndef NDEBUG 9934 for (auto *L1 : LoopsUsed) 9935 for (auto *L2 : LoopsUsed) 9936 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9937 DT.dominates(L2->getHeader(), L1->getHeader())) && 9938 "Domination relationship is not a linear order"); 9939 #endif 9940 9941 const Loop *MDL = 9942 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9943 [&](const Loop *L1, const Loop *L2) { 9944 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9945 }); 9946 9947 // Get init and post increment value for LHS. 9948 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9949 // if LHS contains unknown non-invariant SCEV then bail out. 9950 if (SplitLHS.first == getCouldNotCompute()) 9951 return false; 9952 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9953 // Get init and post increment value for RHS. 9954 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9955 // if RHS contains unknown non-invariant SCEV then bail out. 9956 if (SplitRHS.first == getCouldNotCompute()) 9957 return false; 9958 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9959 // It is possible that init SCEV contains an invariant load but it does 9960 // not dominate MDL and is not available at MDL loop entry, so we should 9961 // check it here. 9962 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9963 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9964 return false; 9965 9966 // It seems backedge guard check is faster than entry one so in some cases 9967 // it can speed up whole estimation by short circuit 9968 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9969 SplitRHS.second) && 9970 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9971 } 9972 9973 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9974 const SCEV *LHS, const SCEV *RHS) { 9975 // Canonicalize the inputs first. 9976 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9977 9978 if (isKnownViaInduction(Pred, LHS, RHS)) 9979 return true; 9980 9981 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9982 return true; 9983 9984 // Otherwise see what can be done with some simple reasoning. 9985 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9986 } 9987 9988 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 9989 const SCEV *LHS, 9990 const SCEV *RHS) { 9991 if (isKnownPredicate(Pred, LHS, RHS)) 9992 return true; 9993 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 9994 return false; 9995 return None; 9996 } 9997 9998 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9999 const SCEV *LHS, const SCEV *RHS, 10000 const Instruction *CtxI) { 10001 // TODO: Analyze guards and assumes from Context's block. 10002 return isKnownPredicate(Pred, LHS, RHS) || 10003 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10004 } 10005 10006 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10007 const SCEV *LHS, 10008 const SCEV *RHS, 10009 const Instruction *CtxI) { 10010 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10011 if (KnownWithoutContext) 10012 return KnownWithoutContext; 10013 10014 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10015 return true; 10016 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10017 ICmpInst::getInversePredicate(Pred), 10018 LHS, RHS)) 10019 return false; 10020 return None; 10021 } 10022 10023 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10024 const SCEVAddRecExpr *LHS, 10025 const SCEV *RHS) { 10026 const Loop *L = LHS->getLoop(); 10027 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10028 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10029 } 10030 10031 Optional<ScalarEvolution::MonotonicPredicateType> 10032 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10033 ICmpInst::Predicate Pred) { 10034 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10035 10036 #ifndef NDEBUG 10037 // Verify an invariant: inverting the predicate should turn a monotonically 10038 // increasing change to a monotonically decreasing one, and vice versa. 10039 if (Result) { 10040 auto ResultSwapped = 10041 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10042 10043 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10044 assert(ResultSwapped.getValue() != Result.getValue() && 10045 "monotonicity should flip as we flip the predicate"); 10046 } 10047 #endif 10048 10049 return Result; 10050 } 10051 10052 Optional<ScalarEvolution::MonotonicPredicateType> 10053 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10054 ICmpInst::Predicate Pred) { 10055 // A zero step value for LHS means the induction variable is essentially a 10056 // loop invariant value. We don't really depend on the predicate actually 10057 // flipping from false to true (for increasing predicates, and the other way 10058 // around for decreasing predicates), all we care about is that *if* the 10059 // predicate changes then it only changes from false to true. 10060 // 10061 // A zero step value in itself is not very useful, but there may be places 10062 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10063 // as general as possible. 10064 10065 // Only handle LE/LT/GE/GT predicates. 10066 if (!ICmpInst::isRelational(Pred)) 10067 return None; 10068 10069 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10070 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10071 "Should be greater or less!"); 10072 10073 // Check that AR does not wrap. 10074 if (ICmpInst::isUnsigned(Pred)) { 10075 if (!LHS->hasNoUnsignedWrap()) 10076 return None; 10077 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10078 } else { 10079 assert(ICmpInst::isSigned(Pred) && 10080 "Relational predicate is either signed or unsigned!"); 10081 if (!LHS->hasNoSignedWrap()) 10082 return None; 10083 10084 const SCEV *Step = LHS->getStepRecurrence(*this); 10085 10086 if (isKnownNonNegative(Step)) 10087 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10088 10089 if (isKnownNonPositive(Step)) 10090 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10091 10092 return None; 10093 } 10094 } 10095 10096 Optional<ScalarEvolution::LoopInvariantPredicate> 10097 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10098 const SCEV *LHS, const SCEV *RHS, 10099 const Loop *L) { 10100 10101 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10102 if (!isLoopInvariant(RHS, L)) { 10103 if (!isLoopInvariant(LHS, L)) 10104 return None; 10105 10106 std::swap(LHS, RHS); 10107 Pred = ICmpInst::getSwappedPredicate(Pred); 10108 } 10109 10110 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10111 if (!ArLHS || ArLHS->getLoop() != L) 10112 return None; 10113 10114 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10115 if (!MonotonicType) 10116 return None; 10117 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10118 // true as the loop iterates, and the backedge is control dependent on 10119 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10120 // 10121 // * if the predicate was false in the first iteration then the predicate 10122 // is never evaluated again, since the loop exits without taking the 10123 // backedge. 10124 // * if the predicate was true in the first iteration then it will 10125 // continue to be true for all future iterations since it is 10126 // monotonically increasing. 10127 // 10128 // For both the above possibilities, we can replace the loop varying 10129 // predicate with its value on the first iteration of the loop (which is 10130 // loop invariant). 10131 // 10132 // A similar reasoning applies for a monotonically decreasing predicate, by 10133 // replacing true with false and false with true in the above two bullets. 10134 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10135 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10136 10137 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10138 return None; 10139 10140 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10141 } 10142 10143 Optional<ScalarEvolution::LoopInvariantPredicate> 10144 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10145 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10146 const Instruction *CtxI, const SCEV *MaxIter) { 10147 // Try to prove the following set of facts: 10148 // - The predicate is monotonic in the iteration space. 10149 // - If the check does not fail on the 1st iteration: 10150 // - No overflow will happen during first MaxIter iterations; 10151 // - It will not fail on the MaxIter'th iteration. 10152 // If the check does fail on the 1st iteration, we leave the loop and no 10153 // other checks matter. 10154 10155 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10156 if (!isLoopInvariant(RHS, L)) { 10157 if (!isLoopInvariant(LHS, L)) 10158 return None; 10159 10160 std::swap(LHS, RHS); 10161 Pred = ICmpInst::getSwappedPredicate(Pred); 10162 } 10163 10164 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10165 if (!AR || AR->getLoop() != L) 10166 return None; 10167 10168 // The predicate must be relational (i.e. <, <=, >=, >). 10169 if (!ICmpInst::isRelational(Pred)) 10170 return None; 10171 10172 // TODO: Support steps other than +/- 1. 10173 const SCEV *Step = AR->getStepRecurrence(*this); 10174 auto *One = getOne(Step->getType()); 10175 auto *MinusOne = getNegativeSCEV(One); 10176 if (Step != One && Step != MinusOne) 10177 return None; 10178 10179 // Type mismatch here means that MaxIter is potentially larger than max 10180 // unsigned value in start type, which mean we cannot prove no wrap for the 10181 // indvar. 10182 if (AR->getType() != MaxIter->getType()) 10183 return None; 10184 10185 // Value of IV on suggested last iteration. 10186 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10187 // Does it still meet the requirement? 10188 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10189 return None; 10190 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10191 // not exceed max unsigned value of this type), this effectively proves 10192 // that there is no wrap during the iteration. To prove that there is no 10193 // signed/unsigned wrap, we need to check that 10194 // Start <= Last for step = 1 or Start >= Last for step = -1. 10195 ICmpInst::Predicate NoOverflowPred = 10196 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10197 if (Step == MinusOne) 10198 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10199 const SCEV *Start = AR->getStart(); 10200 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10201 return None; 10202 10203 // Everything is fine. 10204 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10205 } 10206 10207 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10208 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10209 if (HasSameValue(LHS, RHS)) 10210 return ICmpInst::isTrueWhenEqual(Pred); 10211 10212 // This code is split out from isKnownPredicate because it is called from 10213 // within isLoopEntryGuardedByCond. 10214 10215 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10216 const ConstantRange &RangeRHS) { 10217 return RangeLHS.icmp(Pred, RangeRHS); 10218 }; 10219 10220 // The check at the top of the function catches the case where the values are 10221 // known to be equal. 10222 if (Pred == CmpInst::ICMP_EQ) 10223 return false; 10224 10225 if (Pred == CmpInst::ICMP_NE) { 10226 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10227 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10228 return true; 10229 auto *Diff = getMinusSCEV(LHS, RHS); 10230 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10231 } 10232 10233 if (CmpInst::isSigned(Pred)) 10234 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10235 10236 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10237 } 10238 10239 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10240 const SCEV *LHS, 10241 const SCEV *RHS) { 10242 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10243 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10244 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10245 // OutC1 and OutC2. 10246 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10247 APInt &OutC1, APInt &OutC2, 10248 SCEV::NoWrapFlags ExpectedFlags) { 10249 const SCEV *XNonConstOp, *XConstOp; 10250 const SCEV *YNonConstOp, *YConstOp; 10251 SCEV::NoWrapFlags XFlagsPresent; 10252 SCEV::NoWrapFlags YFlagsPresent; 10253 10254 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10255 XConstOp = getZero(X->getType()); 10256 XNonConstOp = X; 10257 XFlagsPresent = ExpectedFlags; 10258 } 10259 if (!isa<SCEVConstant>(XConstOp) || 10260 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10261 return false; 10262 10263 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10264 YConstOp = getZero(Y->getType()); 10265 YNonConstOp = Y; 10266 YFlagsPresent = ExpectedFlags; 10267 } 10268 10269 if (!isa<SCEVConstant>(YConstOp) || 10270 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10271 return false; 10272 10273 if (YNonConstOp != XNonConstOp) 10274 return false; 10275 10276 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10277 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10278 10279 return true; 10280 }; 10281 10282 APInt C1; 10283 APInt C2; 10284 10285 switch (Pred) { 10286 default: 10287 break; 10288 10289 case ICmpInst::ICMP_SGE: 10290 std::swap(LHS, RHS); 10291 LLVM_FALLTHROUGH; 10292 case ICmpInst::ICMP_SLE: 10293 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10294 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10295 return true; 10296 10297 break; 10298 10299 case ICmpInst::ICMP_SGT: 10300 std::swap(LHS, RHS); 10301 LLVM_FALLTHROUGH; 10302 case ICmpInst::ICMP_SLT: 10303 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10304 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10305 return true; 10306 10307 break; 10308 10309 case ICmpInst::ICMP_UGE: 10310 std::swap(LHS, RHS); 10311 LLVM_FALLTHROUGH; 10312 case ICmpInst::ICMP_ULE: 10313 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10314 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10315 return true; 10316 10317 break; 10318 10319 case ICmpInst::ICMP_UGT: 10320 std::swap(LHS, RHS); 10321 LLVM_FALLTHROUGH; 10322 case ICmpInst::ICMP_ULT: 10323 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10324 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10325 return true; 10326 break; 10327 } 10328 10329 return false; 10330 } 10331 10332 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10333 const SCEV *LHS, 10334 const SCEV *RHS) { 10335 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10336 return false; 10337 10338 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10339 // the stack can result in exponential time complexity. 10340 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10341 10342 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10343 // 10344 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10345 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10346 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10347 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10348 // use isKnownPredicate later if needed. 10349 return isKnownNonNegative(RHS) && 10350 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10351 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10352 } 10353 10354 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10355 ICmpInst::Predicate Pred, 10356 const SCEV *LHS, const SCEV *RHS) { 10357 // No need to even try if we know the module has no guards. 10358 if (!HasGuards) 10359 return false; 10360 10361 return any_of(*BB, [&](const Instruction &I) { 10362 using namespace llvm::PatternMatch; 10363 10364 Value *Condition; 10365 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10366 m_Value(Condition))) && 10367 isImpliedCond(Pred, LHS, RHS, Condition, false); 10368 }); 10369 } 10370 10371 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10372 /// protected by a conditional between LHS and RHS. This is used to 10373 /// to eliminate casts. 10374 bool 10375 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10376 ICmpInst::Predicate Pred, 10377 const SCEV *LHS, const SCEV *RHS) { 10378 // Interpret a null as meaning no loop, where there is obviously no guard 10379 // (interprocedural conditions notwithstanding). 10380 if (!L) return true; 10381 10382 if (VerifyIR) 10383 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10384 "This cannot be done on broken IR!"); 10385 10386 10387 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10388 return true; 10389 10390 BasicBlock *Latch = L->getLoopLatch(); 10391 if (!Latch) 10392 return false; 10393 10394 BranchInst *LoopContinuePredicate = 10395 dyn_cast<BranchInst>(Latch->getTerminator()); 10396 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10397 isImpliedCond(Pred, LHS, RHS, 10398 LoopContinuePredicate->getCondition(), 10399 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10400 return true; 10401 10402 // We don't want more than one activation of the following loops on the stack 10403 // -- that can lead to O(n!) time complexity. 10404 if (WalkingBEDominatingConds) 10405 return false; 10406 10407 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10408 10409 // See if we can exploit a trip count to prove the predicate. 10410 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10411 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10412 if (LatchBECount != getCouldNotCompute()) { 10413 // We know that Latch branches back to the loop header exactly 10414 // LatchBECount times. This means the backdege condition at Latch is 10415 // equivalent to "{0,+,1} u< LatchBECount". 10416 Type *Ty = LatchBECount->getType(); 10417 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10418 const SCEV *LoopCounter = 10419 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10420 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10421 LatchBECount)) 10422 return true; 10423 } 10424 10425 // Check conditions due to any @llvm.assume intrinsics. 10426 for (auto &AssumeVH : AC.assumptions()) { 10427 if (!AssumeVH) 10428 continue; 10429 auto *CI = cast<CallInst>(AssumeVH); 10430 if (!DT.dominates(CI, Latch->getTerminator())) 10431 continue; 10432 10433 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10434 return true; 10435 } 10436 10437 // If the loop is not reachable from the entry block, we risk running into an 10438 // infinite loop as we walk up into the dom tree. These loops do not matter 10439 // anyway, so we just return a conservative answer when we see them. 10440 if (!DT.isReachableFromEntry(L->getHeader())) 10441 return false; 10442 10443 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10444 return true; 10445 10446 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10447 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10448 assert(DTN && "should reach the loop header before reaching the root!"); 10449 10450 BasicBlock *BB = DTN->getBlock(); 10451 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10452 return true; 10453 10454 BasicBlock *PBB = BB->getSinglePredecessor(); 10455 if (!PBB) 10456 continue; 10457 10458 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10459 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10460 continue; 10461 10462 Value *Condition = ContinuePredicate->getCondition(); 10463 10464 // If we have an edge `E` within the loop body that dominates the only 10465 // latch, the condition guarding `E` also guards the backedge. This 10466 // reasoning works only for loops with a single latch. 10467 10468 BasicBlockEdge DominatingEdge(PBB, BB); 10469 if (DominatingEdge.isSingleEdge()) { 10470 // We're constructively (and conservatively) enumerating edges within the 10471 // loop body that dominate the latch. The dominator tree better agree 10472 // with us on this: 10473 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10474 10475 if (isImpliedCond(Pred, LHS, RHS, Condition, 10476 BB != ContinuePredicate->getSuccessor(0))) 10477 return true; 10478 } 10479 } 10480 10481 return false; 10482 } 10483 10484 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10485 ICmpInst::Predicate Pred, 10486 const SCEV *LHS, 10487 const SCEV *RHS) { 10488 if (VerifyIR) 10489 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10490 "This cannot be done on broken IR!"); 10491 10492 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10493 // the facts (a >= b && a != b) separately. A typical situation is when the 10494 // non-strict comparison is known from ranges and non-equality is known from 10495 // dominating predicates. If we are proving strict comparison, we always try 10496 // to prove non-equality and non-strict comparison separately. 10497 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10498 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10499 bool ProvedNonStrictComparison = false; 10500 bool ProvedNonEquality = false; 10501 10502 auto SplitAndProve = 10503 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10504 if (!ProvedNonStrictComparison) 10505 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10506 if (!ProvedNonEquality) 10507 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10508 if (ProvedNonStrictComparison && ProvedNonEquality) 10509 return true; 10510 return false; 10511 }; 10512 10513 if (ProvingStrictComparison) { 10514 auto ProofFn = [&](ICmpInst::Predicate P) { 10515 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10516 }; 10517 if (SplitAndProve(ProofFn)) 10518 return true; 10519 } 10520 10521 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10522 auto ProveViaGuard = [&](const BasicBlock *Block) { 10523 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10524 return true; 10525 if (ProvingStrictComparison) { 10526 auto ProofFn = [&](ICmpInst::Predicate P) { 10527 return isImpliedViaGuard(Block, P, LHS, RHS); 10528 }; 10529 if (SplitAndProve(ProofFn)) 10530 return true; 10531 } 10532 return false; 10533 }; 10534 10535 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10536 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10537 const Instruction *CtxI = &BB->front(); 10538 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10539 return true; 10540 if (ProvingStrictComparison) { 10541 auto ProofFn = [&](ICmpInst::Predicate P) { 10542 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10543 }; 10544 if (SplitAndProve(ProofFn)) 10545 return true; 10546 } 10547 return false; 10548 }; 10549 10550 // Starting at the block's predecessor, climb up the predecessor chain, as long 10551 // as there are predecessors that can be found that have unique successors 10552 // leading to the original block. 10553 const Loop *ContainingLoop = LI.getLoopFor(BB); 10554 const BasicBlock *PredBB; 10555 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10556 PredBB = ContainingLoop->getLoopPredecessor(); 10557 else 10558 PredBB = BB->getSinglePredecessor(); 10559 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10560 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10561 if (ProveViaGuard(Pair.first)) 10562 return true; 10563 10564 const BranchInst *LoopEntryPredicate = 10565 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10566 if (!LoopEntryPredicate || 10567 LoopEntryPredicate->isUnconditional()) 10568 continue; 10569 10570 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10571 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10572 return true; 10573 } 10574 10575 // Check conditions due to any @llvm.assume intrinsics. 10576 for (auto &AssumeVH : AC.assumptions()) { 10577 if (!AssumeVH) 10578 continue; 10579 auto *CI = cast<CallInst>(AssumeVH); 10580 if (!DT.dominates(CI, BB)) 10581 continue; 10582 10583 if (ProveViaCond(CI->getArgOperand(0), false)) 10584 return true; 10585 } 10586 10587 return false; 10588 } 10589 10590 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10591 ICmpInst::Predicate Pred, 10592 const SCEV *LHS, 10593 const SCEV *RHS) { 10594 // Interpret a null as meaning no loop, where there is obviously no guard 10595 // (interprocedural conditions notwithstanding). 10596 if (!L) 10597 return false; 10598 10599 // Both LHS and RHS must be available at loop entry. 10600 assert(isAvailableAtLoopEntry(LHS, L) && 10601 "LHS is not available at Loop Entry"); 10602 assert(isAvailableAtLoopEntry(RHS, L) && 10603 "RHS is not available at Loop Entry"); 10604 10605 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10606 return true; 10607 10608 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10609 } 10610 10611 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10612 const SCEV *RHS, 10613 const Value *FoundCondValue, bool Inverse, 10614 const Instruction *CtxI) { 10615 // False conditions implies anything. Do not bother analyzing it further. 10616 if (FoundCondValue == 10617 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10618 return true; 10619 10620 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10621 return false; 10622 10623 auto ClearOnExit = 10624 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10625 10626 // Recursively handle And and Or conditions. 10627 const Value *Op0, *Op1; 10628 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10629 if (!Inverse) 10630 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10631 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10632 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10633 if (Inverse) 10634 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10635 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10636 } 10637 10638 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10639 if (!ICI) return false; 10640 10641 // Now that we found a conditional branch that dominates the loop or controls 10642 // the loop latch. Check to see if it is the comparison we are looking for. 10643 ICmpInst::Predicate FoundPred; 10644 if (Inverse) 10645 FoundPred = ICI->getInversePredicate(); 10646 else 10647 FoundPred = ICI->getPredicate(); 10648 10649 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10650 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10651 10652 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 10653 } 10654 10655 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10656 const SCEV *RHS, 10657 ICmpInst::Predicate FoundPred, 10658 const SCEV *FoundLHS, const SCEV *FoundRHS, 10659 const Instruction *CtxI) { 10660 // Balance the types. 10661 if (getTypeSizeInBits(LHS->getType()) < 10662 getTypeSizeInBits(FoundLHS->getType())) { 10663 // For unsigned and equality predicates, try to prove that both found 10664 // operands fit into narrow unsigned range. If so, try to prove facts in 10665 // narrow types. 10666 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) { 10667 auto *NarrowType = LHS->getType(); 10668 auto *WideType = FoundLHS->getType(); 10669 auto BitWidth = getTypeSizeInBits(NarrowType); 10670 const SCEV *MaxValue = getZeroExtendExpr( 10671 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10672 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 10673 MaxValue) && 10674 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 10675 MaxValue)) { 10676 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10677 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10678 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10679 TruncFoundRHS, CtxI)) 10680 return true; 10681 } 10682 } 10683 10684 if (LHS->getType()->isPointerTy()) 10685 return false; 10686 if (CmpInst::isSigned(Pred)) { 10687 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10688 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10689 } else { 10690 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10691 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10692 } 10693 } else if (getTypeSizeInBits(LHS->getType()) > 10694 getTypeSizeInBits(FoundLHS->getType())) { 10695 if (FoundLHS->getType()->isPointerTy()) 10696 return false; 10697 if (CmpInst::isSigned(FoundPred)) { 10698 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10699 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10700 } else { 10701 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10702 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10703 } 10704 } 10705 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10706 FoundRHS, CtxI); 10707 } 10708 10709 bool ScalarEvolution::isImpliedCondBalancedTypes( 10710 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10711 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10712 const Instruction *CtxI) { 10713 assert(getTypeSizeInBits(LHS->getType()) == 10714 getTypeSizeInBits(FoundLHS->getType()) && 10715 "Types should be balanced!"); 10716 // Canonicalize the query to match the way instcombine will have 10717 // canonicalized the comparison. 10718 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10719 if (LHS == RHS) 10720 return CmpInst::isTrueWhenEqual(Pred); 10721 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10722 if (FoundLHS == FoundRHS) 10723 return CmpInst::isFalseWhenEqual(FoundPred); 10724 10725 // Check to see if we can make the LHS or RHS match. 10726 if (LHS == FoundRHS || RHS == FoundLHS) { 10727 if (isa<SCEVConstant>(RHS)) { 10728 std::swap(FoundLHS, FoundRHS); 10729 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10730 } else { 10731 std::swap(LHS, RHS); 10732 Pred = ICmpInst::getSwappedPredicate(Pred); 10733 } 10734 } 10735 10736 // Check whether the found predicate is the same as the desired predicate. 10737 if (FoundPred == Pred) 10738 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10739 10740 // Check whether swapping the found predicate makes it the same as the 10741 // desired predicate. 10742 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10743 // We can write the implication 10744 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10745 // using one of the following ways: 10746 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10747 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10748 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10749 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10750 // Forms 1. and 2. require swapping the operands of one condition. Don't 10751 // do this if it would break canonical constant/addrec ordering. 10752 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10753 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10754 CtxI); 10755 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10756 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 10757 10758 // There's no clear preference between forms 3. and 4., try both. Avoid 10759 // forming getNotSCEV of pointer values as the resulting subtract is 10760 // not legal. 10761 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 10762 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10763 FoundLHS, FoundRHS, CtxI)) 10764 return true; 10765 10766 if (!FoundLHS->getType()->isPointerTy() && 10767 !FoundRHS->getType()->isPointerTy() && 10768 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10769 getNotSCEV(FoundRHS), CtxI)) 10770 return true; 10771 10772 return false; 10773 } 10774 10775 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 10776 CmpInst::Predicate P2) { 10777 assert(P1 != P2 && "Handled earlier!"); 10778 return CmpInst::isRelational(P2) && 10779 P1 == CmpInst::getFlippedSignednessPredicate(P2); 10780 }; 10781 if (IsSignFlippedPredicate(Pred, FoundPred)) { 10782 // Unsigned comparison is the same as signed comparison when both the 10783 // operands are non-negative or negative. 10784 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 10785 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 10786 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10787 // Create local copies that we can freely swap and canonicalize our 10788 // conditions to "le/lt". 10789 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 10790 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 10791 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 10792 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 10793 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 10794 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 10795 std::swap(CanonicalLHS, CanonicalRHS); 10796 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 10797 } 10798 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 10799 "Must be!"); 10800 assert((ICmpInst::isLT(CanonicalFoundPred) || 10801 ICmpInst::isLE(CanonicalFoundPred)) && 10802 "Must be!"); 10803 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 10804 // Use implication: 10805 // x <u y && y >=s 0 --> x <s y. 10806 // If we can prove the left part, the right part is also proven. 10807 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 10808 CanonicalRHS, CanonicalFoundLHS, 10809 CanonicalFoundRHS); 10810 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 10811 // Use implication: 10812 // x <s y && y <s 0 --> x <u y. 10813 // If we can prove the left part, the right part is also proven. 10814 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 10815 CanonicalRHS, CanonicalFoundLHS, 10816 CanonicalFoundRHS); 10817 } 10818 10819 // Check if we can make progress by sharpening ranges. 10820 if (FoundPred == ICmpInst::ICMP_NE && 10821 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10822 10823 const SCEVConstant *C = nullptr; 10824 const SCEV *V = nullptr; 10825 10826 if (isa<SCEVConstant>(FoundLHS)) { 10827 C = cast<SCEVConstant>(FoundLHS); 10828 V = FoundRHS; 10829 } else { 10830 C = cast<SCEVConstant>(FoundRHS); 10831 V = FoundLHS; 10832 } 10833 10834 // The guarding predicate tells us that C != V. If the known range 10835 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10836 // range we consider has to correspond to same signedness as the 10837 // predicate we're interested in folding. 10838 10839 APInt Min = ICmpInst::isSigned(Pred) ? 10840 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10841 10842 if (Min == C->getAPInt()) { 10843 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10844 // This is true even if (Min + 1) wraps around -- in case of 10845 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10846 10847 APInt SharperMin = Min + 1; 10848 10849 switch (Pred) { 10850 case ICmpInst::ICMP_SGE: 10851 case ICmpInst::ICMP_UGE: 10852 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10853 // RHS, we're done. 10854 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10855 CtxI)) 10856 return true; 10857 LLVM_FALLTHROUGH; 10858 10859 case ICmpInst::ICMP_SGT: 10860 case ICmpInst::ICMP_UGT: 10861 // We know from the range information that (V `Pred` Min || 10862 // V == Min). We know from the guarding condition that !(V 10863 // == Min). This gives us 10864 // 10865 // V `Pred` Min || V == Min && !(V == Min) 10866 // => V `Pred` Min 10867 // 10868 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10869 10870 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 10871 return true; 10872 break; 10873 10874 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10875 case ICmpInst::ICMP_SLE: 10876 case ICmpInst::ICMP_ULE: 10877 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10878 LHS, V, getConstant(SharperMin), CtxI)) 10879 return true; 10880 LLVM_FALLTHROUGH; 10881 10882 case ICmpInst::ICMP_SLT: 10883 case ICmpInst::ICMP_ULT: 10884 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10885 LHS, V, getConstant(Min), CtxI)) 10886 return true; 10887 break; 10888 10889 default: 10890 // No change 10891 break; 10892 } 10893 } 10894 } 10895 10896 // Check whether the actual condition is beyond sufficient. 10897 if (FoundPred == ICmpInst::ICMP_EQ) 10898 if (ICmpInst::isTrueWhenEqual(Pred)) 10899 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 10900 return true; 10901 if (Pred == ICmpInst::ICMP_NE) 10902 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10903 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 10904 return true; 10905 10906 // Otherwise assume the worst. 10907 return false; 10908 } 10909 10910 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10911 const SCEV *&L, const SCEV *&R, 10912 SCEV::NoWrapFlags &Flags) { 10913 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10914 if (!AE || AE->getNumOperands() != 2) 10915 return false; 10916 10917 L = AE->getOperand(0); 10918 R = AE->getOperand(1); 10919 Flags = AE->getNoWrapFlags(); 10920 return true; 10921 } 10922 10923 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10924 const SCEV *Less) { 10925 // We avoid subtracting expressions here because this function is usually 10926 // fairly deep in the call stack (i.e. is called many times). 10927 10928 // X - X = 0. 10929 if (More == Less) 10930 return APInt(getTypeSizeInBits(More->getType()), 0); 10931 10932 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10933 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10934 const auto *MAR = cast<SCEVAddRecExpr>(More); 10935 10936 if (LAR->getLoop() != MAR->getLoop()) 10937 return None; 10938 10939 // We look at affine expressions only; not for correctness but to keep 10940 // getStepRecurrence cheap. 10941 if (!LAR->isAffine() || !MAR->isAffine()) 10942 return None; 10943 10944 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10945 return None; 10946 10947 Less = LAR->getStart(); 10948 More = MAR->getStart(); 10949 10950 // fall through 10951 } 10952 10953 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10954 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10955 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10956 return M - L; 10957 } 10958 10959 SCEV::NoWrapFlags Flags; 10960 const SCEV *LLess = nullptr, *RLess = nullptr; 10961 const SCEV *LMore = nullptr, *RMore = nullptr; 10962 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10963 // Compare (X + C1) vs X. 10964 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10965 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10966 if (RLess == More) 10967 return -(C1->getAPInt()); 10968 10969 // Compare X vs (X + C2). 10970 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10971 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10972 if (RMore == Less) 10973 return C2->getAPInt(); 10974 10975 // Compare (X + C1) vs (X + C2). 10976 if (C1 && C2 && RLess == RMore) 10977 return C2->getAPInt() - C1->getAPInt(); 10978 10979 return None; 10980 } 10981 10982 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10983 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10984 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 10985 // Try to recognize the following pattern: 10986 // 10987 // FoundRHS = ... 10988 // ... 10989 // loop: 10990 // FoundLHS = {Start,+,W} 10991 // context_bb: // Basic block from the same loop 10992 // known(Pred, FoundLHS, FoundRHS) 10993 // 10994 // If some predicate is known in the context of a loop, it is also known on 10995 // each iteration of this loop, including the first iteration. Therefore, in 10996 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10997 // prove the original pred using this fact. 10998 if (!CtxI) 10999 return false; 11000 const BasicBlock *ContextBB = CtxI->getParent(); 11001 // Make sure AR varies in the context block. 11002 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11003 const Loop *L = AR->getLoop(); 11004 // Make sure that context belongs to the loop and executes on 1st iteration 11005 // (if it ever executes at all). 11006 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11007 return false; 11008 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11009 return false; 11010 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11011 } 11012 11013 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11014 const Loop *L = AR->getLoop(); 11015 // Make sure that context belongs to the loop and executes on 1st iteration 11016 // (if it ever executes at all). 11017 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11018 return false; 11019 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11020 return false; 11021 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11022 } 11023 11024 return false; 11025 } 11026 11027 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11028 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11029 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11030 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11031 return false; 11032 11033 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11034 if (!AddRecLHS) 11035 return false; 11036 11037 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11038 if (!AddRecFoundLHS) 11039 return false; 11040 11041 // We'd like to let SCEV reason about control dependencies, so we constrain 11042 // both the inequalities to be about add recurrences on the same loop. This 11043 // way we can use isLoopEntryGuardedByCond later. 11044 11045 const Loop *L = AddRecFoundLHS->getLoop(); 11046 if (L != AddRecLHS->getLoop()) 11047 return false; 11048 11049 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11050 // 11051 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11052 // ... (2) 11053 // 11054 // Informal proof for (2), assuming (1) [*]: 11055 // 11056 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11057 // 11058 // Then 11059 // 11060 // FoundLHS s< FoundRHS s< INT_MIN - C 11061 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11062 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11063 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11064 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11065 // <=> FoundLHS + C s< FoundRHS + C 11066 // 11067 // [*]: (1) can be proved by ruling out overflow. 11068 // 11069 // [**]: This can be proved by analyzing all the four possibilities: 11070 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11071 // (A s>= 0, B s>= 0). 11072 // 11073 // Note: 11074 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11075 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11076 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11077 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11078 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11079 // C)". 11080 11081 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11082 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11083 if (!LDiff || !RDiff || *LDiff != *RDiff) 11084 return false; 11085 11086 if (LDiff->isMinValue()) 11087 return true; 11088 11089 APInt FoundRHSLimit; 11090 11091 if (Pred == CmpInst::ICMP_ULT) { 11092 FoundRHSLimit = -(*RDiff); 11093 } else { 11094 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11095 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11096 } 11097 11098 // Try to prove (1) or (2), as needed. 11099 return isAvailableAtLoopEntry(FoundRHS, L) && 11100 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11101 getConstant(FoundRHSLimit)); 11102 } 11103 11104 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11105 const SCEV *LHS, const SCEV *RHS, 11106 const SCEV *FoundLHS, 11107 const SCEV *FoundRHS, unsigned Depth) { 11108 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11109 11110 auto ClearOnExit = make_scope_exit([&]() { 11111 if (LPhi) { 11112 bool Erased = PendingMerges.erase(LPhi); 11113 assert(Erased && "Failed to erase LPhi!"); 11114 (void)Erased; 11115 } 11116 if (RPhi) { 11117 bool Erased = PendingMerges.erase(RPhi); 11118 assert(Erased && "Failed to erase RPhi!"); 11119 (void)Erased; 11120 } 11121 }); 11122 11123 // Find respective Phis and check that they are not being pending. 11124 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11125 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11126 if (!PendingMerges.insert(Phi).second) 11127 return false; 11128 LPhi = Phi; 11129 } 11130 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11131 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11132 // If we detect a loop of Phi nodes being processed by this method, for 11133 // example: 11134 // 11135 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11136 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11137 // 11138 // we don't want to deal with a case that complex, so return conservative 11139 // answer false. 11140 if (!PendingMerges.insert(Phi).second) 11141 return false; 11142 RPhi = Phi; 11143 } 11144 11145 // If none of LHS, RHS is a Phi, nothing to do here. 11146 if (!LPhi && !RPhi) 11147 return false; 11148 11149 // If there is a SCEVUnknown Phi we are interested in, make it left. 11150 if (!LPhi) { 11151 std::swap(LHS, RHS); 11152 std::swap(FoundLHS, FoundRHS); 11153 std::swap(LPhi, RPhi); 11154 Pred = ICmpInst::getSwappedPredicate(Pred); 11155 } 11156 11157 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11158 const BasicBlock *LBB = LPhi->getParent(); 11159 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11160 11161 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11162 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11163 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11164 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11165 }; 11166 11167 if (RPhi && RPhi->getParent() == LBB) { 11168 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11169 // If we compare two Phis from the same block, and for each entry block 11170 // the predicate is true for incoming values from this block, then the 11171 // predicate is also true for the Phis. 11172 for (const BasicBlock *IncBB : predecessors(LBB)) { 11173 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11174 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11175 if (!ProvedEasily(L, R)) 11176 return false; 11177 } 11178 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11179 // Case two: RHS is also a Phi from the same basic block, and it is an 11180 // AddRec. It means that there is a loop which has both AddRec and Unknown 11181 // PHIs, for it we can compare incoming values of AddRec from above the loop 11182 // and latch with their respective incoming values of LPhi. 11183 // TODO: Generalize to handle loops with many inputs in a header. 11184 if (LPhi->getNumIncomingValues() != 2) return false; 11185 11186 auto *RLoop = RAR->getLoop(); 11187 auto *Predecessor = RLoop->getLoopPredecessor(); 11188 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11189 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11190 if (!ProvedEasily(L1, RAR->getStart())) 11191 return false; 11192 auto *Latch = RLoop->getLoopLatch(); 11193 assert(Latch && "Loop with AddRec with no latch?"); 11194 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11195 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11196 return false; 11197 } else { 11198 // In all other cases go over inputs of LHS and compare each of them to RHS, 11199 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11200 // At this point RHS is either a non-Phi, or it is a Phi from some block 11201 // different from LBB. 11202 for (const BasicBlock *IncBB : predecessors(LBB)) { 11203 // Check that RHS is available in this block. 11204 if (!dominates(RHS, IncBB)) 11205 return false; 11206 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11207 // Make sure L does not refer to a value from a potentially previous 11208 // iteration of a loop. 11209 if (!properlyDominates(L, IncBB)) 11210 return false; 11211 if (!ProvedEasily(L, RHS)) 11212 return false; 11213 } 11214 } 11215 return true; 11216 } 11217 11218 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11219 const SCEV *LHS, const SCEV *RHS, 11220 const SCEV *FoundLHS, 11221 const SCEV *FoundRHS, 11222 const Instruction *CtxI) { 11223 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11224 return true; 11225 11226 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11227 return true; 11228 11229 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11230 CtxI)) 11231 return true; 11232 11233 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11234 FoundLHS, FoundRHS); 11235 } 11236 11237 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11238 template <typename MinMaxExprType> 11239 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11240 const SCEV *Candidate) { 11241 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11242 if (!MinMaxExpr) 11243 return false; 11244 11245 return is_contained(MinMaxExpr->operands(), Candidate); 11246 } 11247 11248 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11249 ICmpInst::Predicate Pred, 11250 const SCEV *LHS, const SCEV *RHS) { 11251 // If both sides are affine addrecs for the same loop, with equal 11252 // steps, and we know the recurrences don't wrap, then we only 11253 // need to check the predicate on the starting values. 11254 11255 if (!ICmpInst::isRelational(Pred)) 11256 return false; 11257 11258 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11259 if (!LAR) 11260 return false; 11261 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11262 if (!RAR) 11263 return false; 11264 if (LAR->getLoop() != RAR->getLoop()) 11265 return false; 11266 if (!LAR->isAffine() || !RAR->isAffine()) 11267 return false; 11268 11269 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11270 return false; 11271 11272 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11273 SCEV::FlagNSW : SCEV::FlagNUW; 11274 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11275 return false; 11276 11277 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11278 } 11279 11280 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11281 /// expression? 11282 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11283 ICmpInst::Predicate Pred, 11284 const SCEV *LHS, const SCEV *RHS) { 11285 switch (Pred) { 11286 default: 11287 return false; 11288 11289 case ICmpInst::ICMP_SGE: 11290 std::swap(LHS, RHS); 11291 LLVM_FALLTHROUGH; 11292 case ICmpInst::ICMP_SLE: 11293 return 11294 // min(A, ...) <= A 11295 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11296 // A <= max(A, ...) 11297 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11298 11299 case ICmpInst::ICMP_UGE: 11300 std::swap(LHS, RHS); 11301 LLVM_FALLTHROUGH; 11302 case ICmpInst::ICMP_ULE: 11303 return 11304 // min(A, ...) <= A 11305 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11306 // A <= max(A, ...) 11307 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11308 } 11309 11310 llvm_unreachable("covered switch fell through?!"); 11311 } 11312 11313 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11314 const SCEV *LHS, const SCEV *RHS, 11315 const SCEV *FoundLHS, 11316 const SCEV *FoundRHS, 11317 unsigned Depth) { 11318 assert(getTypeSizeInBits(LHS->getType()) == 11319 getTypeSizeInBits(RHS->getType()) && 11320 "LHS and RHS have different sizes?"); 11321 assert(getTypeSizeInBits(FoundLHS->getType()) == 11322 getTypeSizeInBits(FoundRHS->getType()) && 11323 "FoundLHS and FoundRHS have different sizes?"); 11324 // We want to avoid hurting the compile time with analysis of too big trees. 11325 if (Depth > MaxSCEVOperationsImplicationDepth) 11326 return false; 11327 11328 // We only want to work with GT comparison so far. 11329 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11330 Pred = CmpInst::getSwappedPredicate(Pred); 11331 std::swap(LHS, RHS); 11332 std::swap(FoundLHS, FoundRHS); 11333 } 11334 11335 // For unsigned, try to reduce it to corresponding signed comparison. 11336 if (Pred == ICmpInst::ICMP_UGT) 11337 // We can replace unsigned predicate with its signed counterpart if all 11338 // involved values are non-negative. 11339 // TODO: We could have better support for unsigned. 11340 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11341 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11342 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11343 // use this fact to prove that LHS and RHS are non-negative. 11344 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11345 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11346 FoundRHS) && 11347 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11348 FoundRHS)) 11349 Pred = ICmpInst::ICMP_SGT; 11350 } 11351 11352 if (Pred != ICmpInst::ICMP_SGT) 11353 return false; 11354 11355 auto GetOpFromSExt = [&](const SCEV *S) { 11356 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11357 return Ext->getOperand(); 11358 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11359 // the constant in some cases. 11360 return S; 11361 }; 11362 11363 // Acquire values from extensions. 11364 auto *OrigLHS = LHS; 11365 auto *OrigFoundLHS = FoundLHS; 11366 LHS = GetOpFromSExt(LHS); 11367 FoundLHS = GetOpFromSExt(FoundLHS); 11368 11369 // Is the SGT predicate can be proved trivially or using the found context. 11370 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11371 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11372 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11373 FoundRHS, Depth + 1); 11374 }; 11375 11376 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11377 // We want to avoid creation of any new non-constant SCEV. Since we are 11378 // going to compare the operands to RHS, we should be certain that we don't 11379 // need any size extensions for this. So let's decline all cases when the 11380 // sizes of types of LHS and RHS do not match. 11381 // TODO: Maybe try to get RHS from sext to catch more cases? 11382 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11383 return false; 11384 11385 // Should not overflow. 11386 if (!LHSAddExpr->hasNoSignedWrap()) 11387 return false; 11388 11389 auto *LL = LHSAddExpr->getOperand(0); 11390 auto *LR = LHSAddExpr->getOperand(1); 11391 auto *MinusOne = getMinusOne(RHS->getType()); 11392 11393 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11394 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11395 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11396 }; 11397 // Try to prove the following rule: 11398 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11399 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11400 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11401 return true; 11402 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11403 Value *LL, *LR; 11404 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11405 11406 using namespace llvm::PatternMatch; 11407 11408 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11409 // Rules for division. 11410 // We are going to perform some comparisons with Denominator and its 11411 // derivative expressions. In general case, creating a SCEV for it may 11412 // lead to a complex analysis of the entire graph, and in particular it 11413 // can request trip count recalculation for the same loop. This would 11414 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11415 // this, we only want to create SCEVs that are constants in this section. 11416 // So we bail if Denominator is not a constant. 11417 if (!isa<ConstantInt>(LR)) 11418 return false; 11419 11420 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11421 11422 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11423 // then a SCEV for the numerator already exists and matches with FoundLHS. 11424 auto *Numerator = getExistingSCEV(LL); 11425 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11426 return false; 11427 11428 // Make sure that the numerator matches with FoundLHS and the denominator 11429 // is positive. 11430 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11431 return false; 11432 11433 auto *DTy = Denominator->getType(); 11434 auto *FRHSTy = FoundRHS->getType(); 11435 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11436 // One of types is a pointer and another one is not. We cannot extend 11437 // them properly to a wider type, so let us just reject this case. 11438 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11439 // to avoid this check. 11440 return false; 11441 11442 // Given that: 11443 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11444 auto *WTy = getWiderType(DTy, FRHSTy); 11445 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11446 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11447 11448 // Try to prove the following rule: 11449 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11450 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11451 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11452 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11453 if (isKnownNonPositive(RHS) && 11454 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11455 return true; 11456 11457 // Try to prove the following rule: 11458 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11459 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11460 // If we divide it by Denominator > 2, then: 11461 // 1. If FoundLHS is negative, then the result is 0. 11462 // 2. If FoundLHS is non-negative, then the result is non-negative. 11463 // Anyways, the result is non-negative. 11464 auto *MinusOne = getMinusOne(WTy); 11465 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11466 if (isKnownNegative(RHS) && 11467 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11468 return true; 11469 } 11470 } 11471 11472 // If our expression contained SCEVUnknown Phis, and we split it down and now 11473 // need to prove something for them, try to prove the predicate for every 11474 // possible incoming values of those Phis. 11475 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11476 return true; 11477 11478 return false; 11479 } 11480 11481 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11482 const SCEV *LHS, const SCEV *RHS) { 11483 // zext x u<= sext x, sext x s<= zext x 11484 switch (Pred) { 11485 case ICmpInst::ICMP_SGE: 11486 std::swap(LHS, RHS); 11487 LLVM_FALLTHROUGH; 11488 case ICmpInst::ICMP_SLE: { 11489 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11490 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11491 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11492 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11493 return true; 11494 break; 11495 } 11496 case ICmpInst::ICMP_UGE: 11497 std::swap(LHS, RHS); 11498 LLVM_FALLTHROUGH; 11499 case ICmpInst::ICMP_ULE: { 11500 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11501 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11502 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11503 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11504 return true; 11505 break; 11506 } 11507 default: 11508 break; 11509 }; 11510 return false; 11511 } 11512 11513 bool 11514 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11515 const SCEV *LHS, const SCEV *RHS) { 11516 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11517 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11518 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11519 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11520 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11521 } 11522 11523 bool 11524 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11525 const SCEV *LHS, const SCEV *RHS, 11526 const SCEV *FoundLHS, 11527 const SCEV *FoundRHS) { 11528 switch (Pred) { 11529 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11530 case ICmpInst::ICMP_EQ: 11531 case ICmpInst::ICMP_NE: 11532 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11533 return true; 11534 break; 11535 case ICmpInst::ICMP_SLT: 11536 case ICmpInst::ICMP_SLE: 11537 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11538 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11539 return true; 11540 break; 11541 case ICmpInst::ICMP_SGT: 11542 case ICmpInst::ICMP_SGE: 11543 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11544 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11545 return true; 11546 break; 11547 case ICmpInst::ICMP_ULT: 11548 case ICmpInst::ICMP_ULE: 11549 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11550 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11551 return true; 11552 break; 11553 case ICmpInst::ICMP_UGT: 11554 case ICmpInst::ICMP_UGE: 11555 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11556 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11557 return true; 11558 break; 11559 } 11560 11561 // Maybe it can be proved via operations? 11562 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11563 return true; 11564 11565 return false; 11566 } 11567 11568 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11569 const SCEV *LHS, 11570 const SCEV *RHS, 11571 const SCEV *FoundLHS, 11572 const SCEV *FoundRHS) { 11573 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11574 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11575 // reduce the compile time impact of this optimization. 11576 return false; 11577 11578 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11579 if (!Addend) 11580 return false; 11581 11582 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11583 11584 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11585 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11586 ConstantRange FoundLHSRange = 11587 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11588 11589 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11590 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11591 11592 // We can also compute the range of values for `LHS` that satisfy the 11593 // consequent, "`LHS` `Pred` `RHS`": 11594 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11595 // The antecedent implies the consequent if every value of `LHS` that 11596 // satisfies the antecedent also satisfies the consequent. 11597 return LHSRange.icmp(Pred, ConstRHS); 11598 } 11599 11600 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11601 bool IsSigned) { 11602 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11603 11604 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11605 const SCEV *One = getOne(Stride->getType()); 11606 11607 if (IsSigned) { 11608 APInt MaxRHS = getSignedRangeMax(RHS); 11609 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11610 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11611 11612 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11613 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11614 } 11615 11616 APInt MaxRHS = getUnsignedRangeMax(RHS); 11617 APInt MaxValue = APInt::getMaxValue(BitWidth); 11618 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11619 11620 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11621 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11622 } 11623 11624 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11625 bool IsSigned) { 11626 11627 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11628 const SCEV *One = getOne(Stride->getType()); 11629 11630 if (IsSigned) { 11631 APInt MinRHS = getSignedRangeMin(RHS); 11632 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11633 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11634 11635 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11636 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11637 } 11638 11639 APInt MinRHS = getUnsignedRangeMin(RHS); 11640 APInt MinValue = APInt::getMinValue(BitWidth); 11641 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11642 11643 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11644 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11645 } 11646 11647 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 11648 // umin(N, 1) + floor((N - umin(N, 1)) / D) 11649 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 11650 // expression fixes the case of N=0. 11651 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 11652 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 11653 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 11654 } 11655 11656 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11657 const SCEV *Stride, 11658 const SCEV *End, 11659 unsigned BitWidth, 11660 bool IsSigned) { 11661 // The logic in this function assumes we can represent a positive stride. 11662 // If we can't, the backedge-taken count must be zero. 11663 if (IsSigned && BitWidth == 1) 11664 return getZero(Stride->getType()); 11665 11666 // This code has only been closely audited for negative strides in the 11667 // unsigned comparison case, it may be correct for signed comparison, but 11668 // that needs to be established. 11669 assert((!IsSigned || !isKnownNonPositive(Stride)) && 11670 "Stride is expected strictly positive for signed case!"); 11671 11672 // Calculate the maximum backedge count based on the range of values 11673 // permitted by Start, End, and Stride. 11674 APInt MinStart = 11675 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11676 11677 APInt MinStride = 11678 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11679 11680 // We assume either the stride is positive, or the backedge-taken count 11681 // is zero. So force StrideForMaxBECount to be at least one. 11682 APInt One(BitWidth, 1); 11683 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 11684 : APIntOps::umax(One, MinStride); 11685 11686 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11687 : APInt::getMaxValue(BitWidth); 11688 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11689 11690 // Although End can be a MAX expression we estimate MaxEnd considering only 11691 // the case End = RHS of the loop termination condition. This is safe because 11692 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11693 // taken count. 11694 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11695 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11696 11697 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 11698 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 11699 : APIntOps::umax(MaxEnd, MinStart); 11700 11701 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 11702 getConstant(StrideForMaxBECount) /* Step */); 11703 } 11704 11705 ScalarEvolution::ExitLimit 11706 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11707 const Loop *L, bool IsSigned, 11708 bool ControlsExit, bool AllowPredicates) { 11709 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11710 11711 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11712 bool PredicatedIV = false; 11713 11714 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 11715 // Can we prove this loop *must* be UB if overflow of IV occurs? 11716 // Reasoning goes as follows: 11717 // * Suppose the IV did self wrap. 11718 // * If Stride evenly divides the iteration space, then once wrap 11719 // occurs, the loop must revisit the same values. 11720 // * We know that RHS is invariant, and that none of those values 11721 // caused this exit to be taken previously. Thus, this exit is 11722 // dynamically dead. 11723 // * If this is the sole exit, then a dead exit implies the loop 11724 // must be infinite if there are no abnormal exits. 11725 // * If the loop were infinite, then it must either not be mustprogress 11726 // or have side effects. Otherwise, it must be UB. 11727 // * It can't (by assumption), be UB so we have contradicted our 11728 // premise and can conclude the IV did not in fact self-wrap. 11729 if (!isLoopInvariant(RHS, L)) 11730 return false; 11731 11732 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 11733 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11734 return false; 11735 11736 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11737 return false; 11738 11739 return loopIsFiniteByAssumption(L); 11740 }; 11741 11742 if (!IV) { 11743 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 11744 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 11745 if (AR && AR->getLoop() == L && AR->isAffine()) { 11746 auto Flags = AR->getNoWrapFlags(); 11747 if (!hasFlags(Flags, SCEV::FlagNW) && canAssumeNoSelfWrap(AR)) { 11748 Flags = setFlags(Flags, SCEV::FlagNW); 11749 11750 SmallVector<const SCEV*> Operands{AR->operands()}; 11751 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 11752 11753 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 11754 } 11755 if (AR->hasNoUnsignedWrap()) { 11756 // Emulate what getZeroExtendExpr would have done during construction 11757 // if we'd been able to infer the fact just above at that time. 11758 const SCEV *Step = AR->getStepRecurrence(*this); 11759 Type *Ty = ZExt->getType(); 11760 auto *S = getAddRecExpr( 11761 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 11762 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 11763 IV = dyn_cast<SCEVAddRecExpr>(S); 11764 } 11765 } 11766 } 11767 } 11768 11769 11770 if (!IV && AllowPredicates) { 11771 // Try to make this an AddRec using runtime tests, in the first X 11772 // iterations of this loop, where X is the SCEV expression found by the 11773 // algorithm below. 11774 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11775 PredicatedIV = true; 11776 } 11777 11778 // Avoid weird loops 11779 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11780 return getCouldNotCompute(); 11781 11782 // A precondition of this method is that the condition being analyzed 11783 // reaches an exiting branch which dominates the latch. Given that, we can 11784 // assume that an increment which violates the nowrap specification and 11785 // produces poison must cause undefined behavior when the resulting poison 11786 // value is branched upon and thus we can conclude that the backedge is 11787 // taken no more often than would be required to produce that poison value. 11788 // Note that a well defined loop can exit on the iteration which violates 11789 // the nowrap specification if there is another exit (either explicit or 11790 // implicit/exceptional) which causes the loop to execute before the 11791 // exiting instruction we're analyzing would trigger UB. 11792 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11793 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11794 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11795 11796 const SCEV *Stride = IV->getStepRecurrence(*this); 11797 11798 bool PositiveStride = isKnownPositive(Stride); 11799 11800 // Avoid negative or zero stride values. 11801 if (!PositiveStride) { 11802 // We can compute the correct backedge taken count for loops with unknown 11803 // strides if we can prove that the loop is not an infinite loop with side 11804 // effects. Here's the loop structure we are trying to handle - 11805 // 11806 // i = start 11807 // do { 11808 // A[i] = i; 11809 // i += s; 11810 // } while (i < end); 11811 // 11812 // The backedge taken count for such loops is evaluated as - 11813 // (max(end, start + stride) - start - 1) /u stride 11814 // 11815 // The additional preconditions that we need to check to prove correctness 11816 // of the above formula is as follows - 11817 // 11818 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11819 // NoWrap flag). 11820 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 11821 // no side effects within the loop) 11822 // c) loop has a single static exit (with no abnormal exits) 11823 // 11824 // Precondition a) implies that if the stride is negative, this is a single 11825 // trip loop. The backedge taken count formula reduces to zero in this case. 11826 // 11827 // Precondition b) and c) combine to imply that if rhs is invariant in L, 11828 // then a zero stride means the backedge can't be taken without executing 11829 // undefined behavior. 11830 // 11831 // The positive stride case is the same as isKnownPositive(Stride) returning 11832 // true (original behavior of the function). 11833 // 11834 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 11835 !loopHasNoAbnormalExits(L)) 11836 return getCouldNotCompute(); 11837 11838 // This bailout is protecting the logic in computeMaxBECountForLT which 11839 // has not yet been sufficiently auditted or tested with negative strides. 11840 // We used to filter out all known-non-positive cases here, we're in the 11841 // process of being less restrictive bit by bit. 11842 if (IsSigned && isKnownNonPositive(Stride)) 11843 return getCouldNotCompute(); 11844 11845 if (!isKnownNonZero(Stride)) { 11846 // If we have a step of zero, and RHS isn't invariant in L, we don't know 11847 // if it might eventually be greater than start and if so, on which 11848 // iteration. We can't even produce a useful upper bound. 11849 if (!isLoopInvariant(RHS, L)) 11850 return getCouldNotCompute(); 11851 11852 // We allow a potentially zero stride, but we need to divide by stride 11853 // below. Since the loop can't be infinite and this check must control 11854 // the sole exit, we can infer the exit must be taken on the first 11855 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 11856 // we know the numerator in the divides below must be zero, so we can 11857 // pick an arbitrary non-zero value for the denominator (e.g. stride) 11858 // and produce the right result. 11859 // FIXME: Handle the case where Stride is poison? 11860 auto wouldZeroStrideBeUB = [&]() { 11861 // Proof by contradiction. Suppose the stride were zero. If we can 11862 // prove that the backedge *is* taken on the first iteration, then since 11863 // we know this condition controls the sole exit, we must have an 11864 // infinite loop. We can't have a (well defined) infinite loop per 11865 // check just above. 11866 // Note: The (Start - Stride) term is used to get the start' term from 11867 // (start' + stride,+,stride). Remember that we only care about the 11868 // result of this expression when stride == 0 at runtime. 11869 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 11870 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 11871 }; 11872 if (!wouldZeroStrideBeUB()) { 11873 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 11874 } 11875 } 11876 } else if (!Stride->isOne() && !NoWrap) { 11877 auto isUBOnWrap = [&]() { 11878 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 11879 // follows trivially from the fact that every (un)signed-wrapped, but 11880 // not self-wrapped value must be LT than the last value before 11881 // (un)signed wrap. Since we know that last value didn't exit, nor 11882 // will any smaller one. 11883 return canAssumeNoSelfWrap(IV); 11884 }; 11885 11886 // Avoid proven overflow cases: this will ensure that the backedge taken 11887 // count will not generate any unsigned overflow. Relaxed no-overflow 11888 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11889 // undefined behaviors like the case of C language. 11890 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 11891 return getCouldNotCompute(); 11892 } 11893 11894 // On all paths just preceeding, we established the following invariant: 11895 // IV can be assumed not to overflow up to and including the exiting 11896 // iteration. We proved this in one of two ways: 11897 // 1) We can show overflow doesn't occur before the exiting iteration 11898 // 1a) canIVOverflowOnLT, and b) step of one 11899 // 2) We can show that if overflow occurs, the loop must execute UB 11900 // before any possible exit. 11901 // Note that we have not yet proved RHS invariant (in general). 11902 11903 const SCEV *Start = IV->getStart(); 11904 11905 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 11906 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 11907 // Use integer-typed versions for actual computation; we can't subtract 11908 // pointers in general. 11909 const SCEV *OrigStart = Start; 11910 const SCEV *OrigRHS = RHS; 11911 if (Start->getType()->isPointerTy()) { 11912 Start = getLosslessPtrToIntExpr(Start); 11913 if (isa<SCEVCouldNotCompute>(Start)) 11914 return Start; 11915 } 11916 if (RHS->getType()->isPointerTy()) { 11917 RHS = getLosslessPtrToIntExpr(RHS); 11918 if (isa<SCEVCouldNotCompute>(RHS)) 11919 return RHS; 11920 } 11921 11922 // When the RHS is not invariant, we do not know the end bound of the loop and 11923 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11924 // calculate the MaxBECount, given the start, stride and max value for the end 11925 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11926 // checked above). 11927 if (!isLoopInvariant(RHS, L)) { 11928 const SCEV *MaxBECount = computeMaxBECountForLT( 11929 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11930 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11931 false /*MaxOrZero*/, Predicates); 11932 } 11933 11934 // We use the expression (max(End,Start)-Start)/Stride to describe the 11935 // backedge count, as if the backedge is taken at least once max(End,Start) 11936 // is End and so the result is as above, and if not max(End,Start) is Start 11937 // so we get a backedge count of zero. 11938 const SCEV *BECount = nullptr; 11939 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 11940 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 11941 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 11942 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 11943 // Can we prove (max(RHS,Start) > Start - Stride? 11944 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 11945 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 11946 // In this case, we can use a refined formula for computing backedge taken 11947 // count. The general formula remains: 11948 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 11949 // We want to use the alternate formula: 11950 // "((End - 1) - (Start - Stride)) /u Stride" 11951 // Let's do a quick case analysis to show these are equivalent under 11952 // our precondition that max(RHS,Start) > Start - Stride. 11953 // * For RHS <= Start, the backedge-taken count must be zero. 11954 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11955 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 11956 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 11957 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 11958 // this to the stride of 1 case. 11959 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 11960 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11961 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 11962 // "((RHS - (Start - Stride) - 1) /u Stride". 11963 // Our preconditions trivially imply no overflow in that form. 11964 const SCEV *MinusOne = getMinusOne(Stride->getType()); 11965 const SCEV *Numerator = 11966 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 11967 BECount = getUDivExpr(Numerator, Stride); 11968 } 11969 11970 const SCEV *BECountIfBackedgeTaken = nullptr; 11971 if (!BECount) { 11972 auto canProveRHSGreaterThanEqualStart = [&]() { 11973 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 11974 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 11975 return true; 11976 11977 // (RHS > Start - 1) implies RHS >= Start. 11978 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 11979 // "Start - 1" doesn't overflow. 11980 // * For signed comparison, if Start - 1 does overflow, it's equal 11981 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 11982 // * For unsigned comparison, if Start - 1 does overflow, it's equal 11983 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 11984 // 11985 // FIXME: Should isLoopEntryGuardedByCond do this for us? 11986 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11987 auto *StartMinusOne = getAddExpr(OrigStart, 11988 getMinusOne(OrigStart->getType())); 11989 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 11990 }; 11991 11992 // If we know that RHS >= Start in the context of loop, then we know that 11993 // max(RHS, Start) = RHS at this point. 11994 const SCEV *End; 11995 if (canProveRHSGreaterThanEqualStart()) { 11996 End = RHS; 11997 } else { 11998 // If RHS < Start, the backedge will be taken zero times. So in 11999 // general, we can write the backedge-taken count as: 12000 // 12001 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12002 // 12003 // We convert it to the following to make it more convenient for SCEV: 12004 // 12005 // ceil(max(RHS, Start) - Start) / Stride 12006 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12007 12008 // See what would happen if we assume the backedge is taken. This is 12009 // used to compute MaxBECount. 12010 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12011 } 12012 12013 // At this point, we know: 12014 // 12015 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12016 // 2. The index variable doesn't overflow. 12017 // 12018 // Therefore, we know N exists such that 12019 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12020 // doesn't overflow. 12021 // 12022 // Using this information, try to prove whether the addition in 12023 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12024 const SCEV *One = getOne(Stride->getType()); 12025 bool MayAddOverflow = [&] { 12026 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12027 if (StrideC->getAPInt().isPowerOf2()) { 12028 // Suppose Stride is a power of two, and Start/End are unsigned 12029 // integers. Let UMAX be the largest representable unsigned 12030 // integer. 12031 // 12032 // By the preconditions of this function, we know 12033 // "(Start + Stride * N) >= End", and this doesn't overflow. 12034 // As a formula: 12035 // 12036 // End <= (Start + Stride * N) <= UMAX 12037 // 12038 // Subtracting Start from all the terms: 12039 // 12040 // End - Start <= Stride * N <= UMAX - Start 12041 // 12042 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12043 // 12044 // End - Start <= Stride * N <= UMAX 12045 // 12046 // Stride * N is a multiple of Stride. Therefore, 12047 // 12048 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12049 // 12050 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12051 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12052 // 12053 // End - Start <= Stride * N <= UMAX - Stride - 1 12054 // 12055 // Dropping the middle term: 12056 // 12057 // End - Start <= UMAX - Stride - 1 12058 // 12059 // Adding Stride - 1 to both sides: 12060 // 12061 // (End - Start) + (Stride - 1) <= UMAX 12062 // 12063 // In other words, the addition doesn't have unsigned overflow. 12064 // 12065 // A similar proof works if we treat Start/End as signed values. 12066 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12067 // use signed max instead of unsigned max. Note that we're trying 12068 // to prove a lack of unsigned overflow in either case. 12069 return false; 12070 } 12071 } 12072 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12073 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12074 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12075 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12076 // 12077 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12078 return false; 12079 } 12080 return true; 12081 }(); 12082 12083 const SCEV *Delta = getMinusSCEV(End, Start); 12084 if (!MayAddOverflow) { 12085 // floor((D + (S - 1)) / S) 12086 // We prefer this formulation if it's legal because it's fewer operations. 12087 BECount = 12088 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12089 } else { 12090 BECount = getUDivCeilSCEV(Delta, Stride); 12091 } 12092 } 12093 12094 const SCEV *MaxBECount; 12095 bool MaxOrZero = false; 12096 if (isa<SCEVConstant>(BECount)) { 12097 MaxBECount = BECount; 12098 } else if (BECountIfBackedgeTaken && 12099 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12100 // If we know exactly how many times the backedge will be taken if it's 12101 // taken at least once, then the backedge count will either be that or 12102 // zero. 12103 MaxBECount = BECountIfBackedgeTaken; 12104 MaxOrZero = true; 12105 } else { 12106 MaxBECount = computeMaxBECountForLT( 12107 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12108 } 12109 12110 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12111 !isa<SCEVCouldNotCompute>(BECount)) 12112 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12113 12114 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12115 } 12116 12117 ScalarEvolution::ExitLimit 12118 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12119 const Loop *L, bool IsSigned, 12120 bool ControlsExit, bool AllowPredicates) { 12121 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12122 // We handle only IV > Invariant 12123 if (!isLoopInvariant(RHS, L)) 12124 return getCouldNotCompute(); 12125 12126 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12127 if (!IV && AllowPredicates) 12128 // Try to make this an AddRec using runtime tests, in the first X 12129 // iterations of this loop, where X is the SCEV expression found by the 12130 // algorithm below. 12131 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12132 12133 // Avoid weird loops 12134 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12135 return getCouldNotCompute(); 12136 12137 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12138 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12139 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12140 12141 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12142 12143 // Avoid negative or zero stride values 12144 if (!isKnownPositive(Stride)) 12145 return getCouldNotCompute(); 12146 12147 // Avoid proven overflow cases: this will ensure that the backedge taken count 12148 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12149 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12150 // behaviors like the case of C language. 12151 if (!Stride->isOne() && !NoWrap) 12152 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12153 return getCouldNotCompute(); 12154 12155 const SCEV *Start = IV->getStart(); 12156 const SCEV *End = RHS; 12157 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12158 // If we know that Start >= RHS in the context of loop, then we know that 12159 // min(RHS, Start) = RHS at this point. 12160 if (isLoopEntryGuardedByCond( 12161 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12162 End = RHS; 12163 else 12164 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12165 } 12166 12167 if (Start->getType()->isPointerTy()) { 12168 Start = getLosslessPtrToIntExpr(Start); 12169 if (isa<SCEVCouldNotCompute>(Start)) 12170 return Start; 12171 } 12172 if (End->getType()->isPointerTy()) { 12173 End = getLosslessPtrToIntExpr(End); 12174 if (isa<SCEVCouldNotCompute>(End)) 12175 return End; 12176 } 12177 12178 // Compute ((Start - End) + (Stride - 1)) / Stride. 12179 // FIXME: This can overflow. Holding off on fixing this for now; 12180 // howManyGreaterThans will hopefully be gone soon. 12181 const SCEV *One = getOne(Stride->getType()); 12182 const SCEV *BECount = getUDivExpr( 12183 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12184 12185 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12186 : getUnsignedRangeMax(Start); 12187 12188 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12189 : getUnsignedRangeMin(Stride); 12190 12191 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12192 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12193 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12194 12195 // Although End can be a MIN expression we estimate MinEnd considering only 12196 // the case End = RHS. This is safe because in the other case (Start - End) 12197 // is zero, leading to a zero maximum backedge taken count. 12198 APInt MinEnd = 12199 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12200 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12201 12202 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12203 ? BECount 12204 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12205 getConstant(MinStride)); 12206 12207 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12208 MaxBECount = BECount; 12209 12210 return ExitLimit(BECount, MaxBECount, false, Predicates); 12211 } 12212 12213 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12214 ScalarEvolution &SE) const { 12215 if (Range.isFullSet()) // Infinite loop. 12216 return SE.getCouldNotCompute(); 12217 12218 // If the start is a non-zero constant, shift the range to simplify things. 12219 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12220 if (!SC->getValue()->isZero()) { 12221 SmallVector<const SCEV *, 4> Operands(operands()); 12222 Operands[0] = SE.getZero(SC->getType()); 12223 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12224 getNoWrapFlags(FlagNW)); 12225 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12226 return ShiftedAddRec->getNumIterationsInRange( 12227 Range.subtract(SC->getAPInt()), SE); 12228 // This is strange and shouldn't happen. 12229 return SE.getCouldNotCompute(); 12230 } 12231 12232 // The only time we can solve this is when we have all constant indices. 12233 // Otherwise, we cannot determine the overflow conditions. 12234 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12235 return SE.getCouldNotCompute(); 12236 12237 // Okay at this point we know that all elements of the chrec are constants and 12238 // that the start element is zero. 12239 12240 // First check to see if the range contains zero. If not, the first 12241 // iteration exits. 12242 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12243 if (!Range.contains(APInt(BitWidth, 0))) 12244 return SE.getZero(getType()); 12245 12246 if (isAffine()) { 12247 // If this is an affine expression then we have this situation: 12248 // Solve {0,+,A} in Range === Ax in Range 12249 12250 // We know that zero is in the range. If A is positive then we know that 12251 // the upper value of the range must be the first possible exit value. 12252 // If A is negative then the lower of the range is the last possible loop 12253 // value. Also note that we already checked for a full range. 12254 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12255 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12256 12257 // The exit value should be (End+A)/A. 12258 APInt ExitVal = (End + A).udiv(A); 12259 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12260 12261 // Evaluate at the exit value. If we really did fall out of the valid 12262 // range, then we computed our trip count, otherwise wrap around or other 12263 // things must have happened. 12264 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12265 if (Range.contains(Val->getValue())) 12266 return SE.getCouldNotCompute(); // Something strange happened 12267 12268 // Ensure that the previous value is in the range. This is a sanity check. 12269 assert(Range.contains( 12270 EvaluateConstantChrecAtConstant(this, 12271 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12272 "Linear scev computation is off in a bad way!"); 12273 return SE.getConstant(ExitValue); 12274 } 12275 12276 if (isQuadratic()) { 12277 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12278 return SE.getConstant(S.getValue()); 12279 } 12280 12281 return SE.getCouldNotCompute(); 12282 } 12283 12284 const SCEVAddRecExpr * 12285 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12286 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12287 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12288 // but in this case we cannot guarantee that the value returned will be an 12289 // AddRec because SCEV does not have a fixed point where it stops 12290 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12291 // may happen if we reach arithmetic depth limit while simplifying. So we 12292 // construct the returned value explicitly. 12293 SmallVector<const SCEV *, 3> Ops; 12294 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12295 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12296 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12297 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12298 // We know that the last operand is not a constant zero (otherwise it would 12299 // have been popped out earlier). This guarantees us that if the result has 12300 // the same last operand, then it will also not be popped out, meaning that 12301 // the returned value will be an AddRec. 12302 const SCEV *Last = getOperand(getNumOperands() - 1); 12303 assert(!Last->isZero() && "Recurrency with zero step?"); 12304 Ops.push_back(Last); 12305 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12306 SCEV::FlagAnyWrap)); 12307 } 12308 12309 // Return true when S contains at least an undef value. 12310 static inline bool containsUndefs(const SCEV *S) { 12311 return SCEVExprContains(S, [](const SCEV *S) { 12312 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12313 return isa<UndefValue>(SU->getValue()); 12314 return false; 12315 }); 12316 } 12317 12318 /// Return the size of an element read or written by Inst. 12319 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12320 Type *Ty; 12321 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12322 Ty = Store->getValueOperand()->getType(); 12323 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12324 Ty = Load->getType(); 12325 else 12326 return nullptr; 12327 12328 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12329 return getSizeOfExpr(ETy, Ty); 12330 } 12331 12332 //===----------------------------------------------------------------------===// 12333 // SCEVCallbackVH Class Implementation 12334 //===----------------------------------------------------------------------===// 12335 12336 void ScalarEvolution::SCEVCallbackVH::deleted() { 12337 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12338 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12339 SE->ConstantEvolutionLoopExitValue.erase(PN); 12340 SE->eraseValueFromMap(getValPtr()); 12341 // this now dangles! 12342 } 12343 12344 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12345 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12346 12347 // Forget all the expressions associated with users of the old value, 12348 // so that future queries will recompute the expressions using the new 12349 // value. 12350 Value *Old = getValPtr(); 12351 SmallVector<User *, 16> Worklist(Old->users()); 12352 SmallPtrSet<User *, 8> Visited; 12353 while (!Worklist.empty()) { 12354 User *U = Worklist.pop_back_val(); 12355 // Deleting the Old value will cause this to dangle. Postpone 12356 // that until everything else is done. 12357 if (U == Old) 12358 continue; 12359 if (!Visited.insert(U).second) 12360 continue; 12361 if (PHINode *PN = dyn_cast<PHINode>(U)) 12362 SE->ConstantEvolutionLoopExitValue.erase(PN); 12363 SE->eraseValueFromMap(U); 12364 llvm::append_range(Worklist, U->users()); 12365 } 12366 // Delete the Old value. 12367 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12368 SE->ConstantEvolutionLoopExitValue.erase(PN); 12369 SE->eraseValueFromMap(Old); 12370 // this now dangles! 12371 } 12372 12373 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12374 : CallbackVH(V), SE(se) {} 12375 12376 //===----------------------------------------------------------------------===// 12377 // ScalarEvolution Class Implementation 12378 //===----------------------------------------------------------------------===// 12379 12380 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12381 AssumptionCache &AC, DominatorTree &DT, 12382 LoopInfo &LI) 12383 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12384 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12385 LoopDispositions(64), BlockDispositions(64) { 12386 // To use guards for proving predicates, we need to scan every instruction in 12387 // relevant basic blocks, and not just terminators. Doing this is a waste of 12388 // time if the IR does not actually contain any calls to 12389 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12390 // 12391 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12392 // to _add_ guards to the module when there weren't any before, and wants 12393 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12394 // efficient in lieu of being smart in that rather obscure case. 12395 12396 auto *GuardDecl = F.getParent()->getFunction( 12397 Intrinsic::getName(Intrinsic::experimental_guard)); 12398 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12399 } 12400 12401 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12402 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12403 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12404 ValueExprMap(std::move(Arg.ValueExprMap)), 12405 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12406 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12407 PendingMerges(std::move(Arg.PendingMerges)), 12408 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12409 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12410 PredicatedBackedgeTakenCounts( 12411 std::move(Arg.PredicatedBackedgeTakenCounts)), 12412 ConstantEvolutionLoopExitValue( 12413 std::move(Arg.ConstantEvolutionLoopExitValue)), 12414 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12415 LoopDispositions(std::move(Arg.LoopDispositions)), 12416 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12417 BlockDispositions(std::move(Arg.BlockDispositions)), 12418 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12419 SignedRanges(std::move(Arg.SignedRanges)), 12420 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12421 UniquePreds(std::move(Arg.UniquePreds)), 12422 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12423 LoopUsers(std::move(Arg.LoopUsers)), 12424 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12425 FirstUnknown(Arg.FirstUnknown) { 12426 Arg.FirstUnknown = nullptr; 12427 } 12428 12429 ScalarEvolution::~ScalarEvolution() { 12430 // Iterate through all the SCEVUnknown instances and call their 12431 // destructors, so that they release their references to their values. 12432 for (SCEVUnknown *U = FirstUnknown; U;) { 12433 SCEVUnknown *Tmp = U; 12434 U = U->Next; 12435 Tmp->~SCEVUnknown(); 12436 } 12437 FirstUnknown = nullptr; 12438 12439 ExprValueMap.clear(); 12440 ValueExprMap.clear(); 12441 HasRecMap.clear(); 12442 BackedgeTakenCounts.clear(); 12443 PredicatedBackedgeTakenCounts.clear(); 12444 12445 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12446 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12447 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12448 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12449 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12450 } 12451 12452 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12453 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12454 } 12455 12456 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12457 const Loop *L) { 12458 // Print all inner loops first 12459 for (Loop *I : *L) 12460 PrintLoopInfo(OS, SE, I); 12461 12462 OS << "Loop "; 12463 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12464 OS << ": "; 12465 12466 SmallVector<BasicBlock *, 8> ExitingBlocks; 12467 L->getExitingBlocks(ExitingBlocks); 12468 if (ExitingBlocks.size() != 1) 12469 OS << "<multiple exits> "; 12470 12471 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12472 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12473 else 12474 OS << "Unpredictable backedge-taken count.\n"; 12475 12476 if (ExitingBlocks.size() > 1) 12477 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12478 OS << " exit count for " << ExitingBlock->getName() << ": " 12479 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12480 } 12481 12482 OS << "Loop "; 12483 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12484 OS << ": "; 12485 12486 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12487 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12488 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12489 OS << ", actual taken count either this or zero."; 12490 } else { 12491 OS << "Unpredictable max backedge-taken count. "; 12492 } 12493 12494 OS << "\n" 12495 "Loop "; 12496 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12497 OS << ": "; 12498 12499 SCEVUnionPredicate Pred; 12500 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12501 if (!isa<SCEVCouldNotCompute>(PBT)) { 12502 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12503 OS << " Predicates:\n"; 12504 Pred.print(OS, 4); 12505 } else { 12506 OS << "Unpredictable predicated backedge-taken count. "; 12507 } 12508 OS << "\n"; 12509 12510 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12511 OS << "Loop "; 12512 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12513 OS << ": "; 12514 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12515 } 12516 } 12517 12518 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12519 switch (LD) { 12520 case ScalarEvolution::LoopVariant: 12521 return "Variant"; 12522 case ScalarEvolution::LoopInvariant: 12523 return "Invariant"; 12524 case ScalarEvolution::LoopComputable: 12525 return "Computable"; 12526 } 12527 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12528 } 12529 12530 void ScalarEvolution::print(raw_ostream &OS) const { 12531 // ScalarEvolution's implementation of the print method is to print 12532 // out SCEV values of all instructions that are interesting. Doing 12533 // this potentially causes it to create new SCEV objects though, 12534 // which technically conflicts with the const qualifier. This isn't 12535 // observable from outside the class though, so casting away the 12536 // const isn't dangerous. 12537 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12538 12539 if (ClassifyExpressions) { 12540 OS << "Classifying expressions for: "; 12541 F.printAsOperand(OS, /*PrintType=*/false); 12542 OS << "\n"; 12543 for (Instruction &I : instructions(F)) 12544 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12545 OS << I << '\n'; 12546 OS << " --> "; 12547 const SCEV *SV = SE.getSCEV(&I); 12548 SV->print(OS); 12549 if (!isa<SCEVCouldNotCompute>(SV)) { 12550 OS << " U: "; 12551 SE.getUnsignedRange(SV).print(OS); 12552 OS << " S: "; 12553 SE.getSignedRange(SV).print(OS); 12554 } 12555 12556 const Loop *L = LI.getLoopFor(I.getParent()); 12557 12558 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12559 if (AtUse != SV) { 12560 OS << " --> "; 12561 AtUse->print(OS); 12562 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12563 OS << " U: "; 12564 SE.getUnsignedRange(AtUse).print(OS); 12565 OS << " S: "; 12566 SE.getSignedRange(AtUse).print(OS); 12567 } 12568 } 12569 12570 if (L) { 12571 OS << "\t\t" "Exits: "; 12572 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12573 if (!SE.isLoopInvariant(ExitValue, L)) { 12574 OS << "<<Unknown>>"; 12575 } else { 12576 OS << *ExitValue; 12577 } 12578 12579 bool First = true; 12580 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12581 if (First) { 12582 OS << "\t\t" "LoopDispositions: { "; 12583 First = false; 12584 } else { 12585 OS << ", "; 12586 } 12587 12588 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12589 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12590 } 12591 12592 for (auto *InnerL : depth_first(L)) { 12593 if (InnerL == L) 12594 continue; 12595 if (First) { 12596 OS << "\t\t" "LoopDispositions: { "; 12597 First = false; 12598 } else { 12599 OS << ", "; 12600 } 12601 12602 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12603 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12604 } 12605 12606 OS << " }"; 12607 } 12608 12609 OS << "\n"; 12610 } 12611 } 12612 12613 OS << "Determining loop execution counts for: "; 12614 F.printAsOperand(OS, /*PrintType=*/false); 12615 OS << "\n"; 12616 for (Loop *I : LI) 12617 PrintLoopInfo(OS, &SE, I); 12618 } 12619 12620 ScalarEvolution::LoopDisposition 12621 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12622 auto &Values = LoopDispositions[S]; 12623 for (auto &V : Values) { 12624 if (V.getPointer() == L) 12625 return V.getInt(); 12626 } 12627 Values.emplace_back(L, LoopVariant); 12628 LoopDisposition D = computeLoopDisposition(S, L); 12629 auto &Values2 = LoopDispositions[S]; 12630 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12631 if (V.getPointer() == L) { 12632 V.setInt(D); 12633 break; 12634 } 12635 } 12636 return D; 12637 } 12638 12639 ScalarEvolution::LoopDisposition 12640 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12641 switch (S->getSCEVType()) { 12642 case scConstant: 12643 return LoopInvariant; 12644 case scPtrToInt: 12645 case scTruncate: 12646 case scZeroExtend: 12647 case scSignExtend: 12648 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12649 case scAddRecExpr: { 12650 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12651 12652 // If L is the addrec's loop, it's computable. 12653 if (AR->getLoop() == L) 12654 return LoopComputable; 12655 12656 // Add recurrences are never invariant in the function-body (null loop). 12657 if (!L) 12658 return LoopVariant; 12659 12660 // Everything that is not defined at loop entry is variant. 12661 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12662 return LoopVariant; 12663 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12664 " dominate the contained loop's header?"); 12665 12666 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12667 if (AR->getLoop()->contains(L)) 12668 return LoopInvariant; 12669 12670 // This recurrence is variant w.r.t. L if any of its operands 12671 // are variant. 12672 for (auto *Op : AR->operands()) 12673 if (!isLoopInvariant(Op, L)) 12674 return LoopVariant; 12675 12676 // Otherwise it's loop-invariant. 12677 return LoopInvariant; 12678 } 12679 case scAddExpr: 12680 case scMulExpr: 12681 case scUMaxExpr: 12682 case scSMaxExpr: 12683 case scUMinExpr: 12684 case scSMinExpr: { 12685 bool HasVarying = false; 12686 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12687 LoopDisposition D = getLoopDisposition(Op, L); 12688 if (D == LoopVariant) 12689 return LoopVariant; 12690 if (D == LoopComputable) 12691 HasVarying = true; 12692 } 12693 return HasVarying ? LoopComputable : LoopInvariant; 12694 } 12695 case scUDivExpr: { 12696 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12697 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12698 if (LD == LoopVariant) 12699 return LoopVariant; 12700 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12701 if (RD == LoopVariant) 12702 return LoopVariant; 12703 return (LD == LoopInvariant && RD == LoopInvariant) ? 12704 LoopInvariant : LoopComputable; 12705 } 12706 case scUnknown: 12707 // All non-instruction values are loop invariant. All instructions are loop 12708 // invariant if they are not contained in the specified loop. 12709 // Instructions are never considered invariant in the function body 12710 // (null loop) because they are defined within the "loop". 12711 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12712 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12713 return LoopInvariant; 12714 case scCouldNotCompute: 12715 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12716 } 12717 llvm_unreachable("Unknown SCEV kind!"); 12718 } 12719 12720 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12721 return getLoopDisposition(S, L) == LoopInvariant; 12722 } 12723 12724 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12725 return getLoopDisposition(S, L) == LoopComputable; 12726 } 12727 12728 ScalarEvolution::BlockDisposition 12729 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12730 auto &Values = BlockDispositions[S]; 12731 for (auto &V : Values) { 12732 if (V.getPointer() == BB) 12733 return V.getInt(); 12734 } 12735 Values.emplace_back(BB, DoesNotDominateBlock); 12736 BlockDisposition D = computeBlockDisposition(S, BB); 12737 auto &Values2 = BlockDispositions[S]; 12738 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12739 if (V.getPointer() == BB) { 12740 V.setInt(D); 12741 break; 12742 } 12743 } 12744 return D; 12745 } 12746 12747 ScalarEvolution::BlockDisposition 12748 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12749 switch (S->getSCEVType()) { 12750 case scConstant: 12751 return ProperlyDominatesBlock; 12752 case scPtrToInt: 12753 case scTruncate: 12754 case scZeroExtend: 12755 case scSignExtend: 12756 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12757 case scAddRecExpr: { 12758 // This uses a "dominates" query instead of "properly dominates" query 12759 // to test for proper dominance too, because the instruction which 12760 // produces the addrec's value is a PHI, and a PHI effectively properly 12761 // dominates its entire containing block. 12762 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12763 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12764 return DoesNotDominateBlock; 12765 12766 // Fall through into SCEVNAryExpr handling. 12767 LLVM_FALLTHROUGH; 12768 } 12769 case scAddExpr: 12770 case scMulExpr: 12771 case scUMaxExpr: 12772 case scSMaxExpr: 12773 case scUMinExpr: 12774 case scSMinExpr: { 12775 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12776 bool Proper = true; 12777 for (const SCEV *NAryOp : NAry->operands()) { 12778 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12779 if (D == DoesNotDominateBlock) 12780 return DoesNotDominateBlock; 12781 if (D == DominatesBlock) 12782 Proper = false; 12783 } 12784 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12785 } 12786 case scUDivExpr: { 12787 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12788 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12789 BlockDisposition LD = getBlockDisposition(LHS, BB); 12790 if (LD == DoesNotDominateBlock) 12791 return DoesNotDominateBlock; 12792 BlockDisposition RD = getBlockDisposition(RHS, BB); 12793 if (RD == DoesNotDominateBlock) 12794 return DoesNotDominateBlock; 12795 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12796 ProperlyDominatesBlock : DominatesBlock; 12797 } 12798 case scUnknown: 12799 if (Instruction *I = 12800 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12801 if (I->getParent() == BB) 12802 return DominatesBlock; 12803 if (DT.properlyDominates(I->getParent(), BB)) 12804 return ProperlyDominatesBlock; 12805 return DoesNotDominateBlock; 12806 } 12807 return ProperlyDominatesBlock; 12808 case scCouldNotCompute: 12809 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12810 } 12811 llvm_unreachable("Unknown SCEV kind!"); 12812 } 12813 12814 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12815 return getBlockDisposition(S, BB) >= DominatesBlock; 12816 } 12817 12818 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12819 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12820 } 12821 12822 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12823 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12824 } 12825 12826 void 12827 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12828 ValuesAtScopes.erase(S); 12829 LoopDispositions.erase(S); 12830 BlockDispositions.erase(S); 12831 UnsignedRanges.erase(S); 12832 SignedRanges.erase(S); 12833 ExprValueMap.erase(S); 12834 HasRecMap.erase(S); 12835 MinTrailingZerosCache.erase(S); 12836 12837 for (auto I = PredicatedSCEVRewrites.begin(); 12838 I != PredicatedSCEVRewrites.end();) { 12839 std::pair<const SCEV *, const Loop *> Entry = I->first; 12840 if (Entry.first == S) 12841 PredicatedSCEVRewrites.erase(I++); 12842 else 12843 ++I; 12844 } 12845 12846 auto RemoveSCEVFromBackedgeMap = 12847 [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12848 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12849 BackedgeTakenInfo &BEInfo = I->second; 12850 if (BEInfo.hasOperand(S)) 12851 Map.erase(I++); 12852 else 12853 ++I; 12854 } 12855 }; 12856 12857 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12858 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12859 } 12860 12861 void 12862 ScalarEvolution::getUsedLoops(const SCEV *S, 12863 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12864 struct FindUsedLoops { 12865 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12866 : LoopsUsed(LoopsUsed) {} 12867 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12868 bool follow(const SCEV *S) { 12869 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12870 LoopsUsed.insert(AR->getLoop()); 12871 return true; 12872 } 12873 12874 bool isDone() const { return false; } 12875 }; 12876 12877 FindUsedLoops F(LoopsUsed); 12878 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12879 } 12880 12881 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12882 SmallPtrSet<const Loop *, 8> LoopsUsed; 12883 getUsedLoops(S, LoopsUsed); 12884 for (auto *L : LoopsUsed) 12885 LoopUsers[L].push_back(S); 12886 } 12887 12888 void ScalarEvolution::verify() const { 12889 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12890 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12891 12892 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12893 12894 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12895 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12896 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12897 12898 const SCEV *visitConstant(const SCEVConstant *Constant) { 12899 return SE.getConstant(Constant->getAPInt()); 12900 } 12901 12902 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12903 return SE.getUnknown(Expr->getValue()); 12904 } 12905 12906 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12907 return SE.getCouldNotCompute(); 12908 } 12909 }; 12910 12911 SCEVMapper SCM(SE2); 12912 12913 while (!LoopStack.empty()) { 12914 auto *L = LoopStack.pop_back_val(); 12915 llvm::append_range(LoopStack, *L); 12916 12917 auto *CurBECount = SCM.visit( 12918 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12919 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12920 12921 if (CurBECount == SE2.getCouldNotCompute() || 12922 NewBECount == SE2.getCouldNotCompute()) { 12923 // NB! This situation is legal, but is very suspicious -- whatever pass 12924 // change the loop to make a trip count go from could not compute to 12925 // computable or vice-versa *should have* invalidated SCEV. However, we 12926 // choose not to assert here (for now) since we don't want false 12927 // positives. 12928 continue; 12929 } 12930 12931 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12932 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12933 // not propagate undef aggressively). This means we can (and do) fail 12934 // verification in cases where a transform makes the trip count of a loop 12935 // go from "undef" to "undef+1" (say). The transform is fine, since in 12936 // both cases the loop iterates "undef" times, but SCEV thinks we 12937 // increased the trip count of the loop by 1 incorrectly. 12938 continue; 12939 } 12940 12941 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12942 SE.getTypeSizeInBits(NewBECount->getType())) 12943 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12944 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12945 SE.getTypeSizeInBits(NewBECount->getType())) 12946 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12947 12948 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12949 12950 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12951 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12952 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12953 dbgs() << "Old: " << *CurBECount << "\n"; 12954 dbgs() << "New: " << *NewBECount << "\n"; 12955 dbgs() << "Delta: " << *Delta << "\n"; 12956 std::abort(); 12957 } 12958 } 12959 12960 // Collect all valid loops currently in LoopInfo. 12961 SmallPtrSet<Loop *, 32> ValidLoops; 12962 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12963 while (!Worklist.empty()) { 12964 Loop *L = Worklist.pop_back_val(); 12965 if (ValidLoops.contains(L)) 12966 continue; 12967 ValidLoops.insert(L); 12968 Worklist.append(L->begin(), L->end()); 12969 } 12970 // Check for SCEV expressions referencing invalid/deleted loops. 12971 for (auto &KV : ValueExprMap) { 12972 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12973 if (!AR) 12974 continue; 12975 assert(ValidLoops.contains(AR->getLoop()) && 12976 "AddRec references invalid loop"); 12977 } 12978 } 12979 12980 bool ScalarEvolution::invalidate( 12981 Function &F, const PreservedAnalyses &PA, 12982 FunctionAnalysisManager::Invalidator &Inv) { 12983 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12984 // of its dependencies is invalidated. 12985 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12986 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12987 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12988 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12989 Inv.invalidate<LoopAnalysis>(F, PA); 12990 } 12991 12992 AnalysisKey ScalarEvolutionAnalysis::Key; 12993 12994 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12995 FunctionAnalysisManager &AM) { 12996 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12997 AM.getResult<AssumptionAnalysis>(F), 12998 AM.getResult<DominatorTreeAnalysis>(F), 12999 AM.getResult<LoopAnalysis>(F)); 13000 } 13001 13002 PreservedAnalyses 13003 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13004 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13005 return PreservedAnalyses::all(); 13006 } 13007 13008 PreservedAnalyses 13009 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13010 // For compatibility with opt's -analyze feature under legacy pass manager 13011 // which was not ported to NPM. This keeps tests using 13012 // update_analyze_test_checks.py working. 13013 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13014 << F.getName() << "':\n"; 13015 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13016 return PreservedAnalyses::all(); 13017 } 13018 13019 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13020 "Scalar Evolution Analysis", false, true) 13021 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13022 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13023 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13024 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13025 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13026 "Scalar Evolution Analysis", false, true) 13027 13028 char ScalarEvolutionWrapperPass::ID = 0; 13029 13030 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13031 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13032 } 13033 13034 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13035 SE.reset(new ScalarEvolution( 13036 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13037 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13038 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13039 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13040 return false; 13041 } 13042 13043 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13044 13045 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13046 SE->print(OS); 13047 } 13048 13049 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13050 if (!VerifySCEV) 13051 return; 13052 13053 SE->verify(); 13054 } 13055 13056 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13057 AU.setPreservesAll(); 13058 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13059 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13060 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13061 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13062 } 13063 13064 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13065 const SCEV *RHS) { 13066 FoldingSetNodeID ID; 13067 assert(LHS->getType() == RHS->getType() && 13068 "Type mismatch between LHS and RHS"); 13069 // Unique this node based on the arguments 13070 ID.AddInteger(SCEVPredicate::P_Equal); 13071 ID.AddPointer(LHS); 13072 ID.AddPointer(RHS); 13073 void *IP = nullptr; 13074 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13075 return S; 13076 SCEVEqualPredicate *Eq = new (SCEVAllocator) 13077 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 13078 UniquePreds.InsertNode(Eq, IP); 13079 return Eq; 13080 } 13081 13082 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13083 const SCEVAddRecExpr *AR, 13084 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13085 FoldingSetNodeID ID; 13086 // Unique this node based on the arguments 13087 ID.AddInteger(SCEVPredicate::P_Wrap); 13088 ID.AddPointer(AR); 13089 ID.AddInteger(AddedFlags); 13090 void *IP = nullptr; 13091 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13092 return S; 13093 auto *OF = new (SCEVAllocator) 13094 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13095 UniquePreds.InsertNode(OF, IP); 13096 return OF; 13097 } 13098 13099 namespace { 13100 13101 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13102 public: 13103 13104 /// Rewrites \p S in the context of a loop L and the SCEV predication 13105 /// infrastructure. 13106 /// 13107 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13108 /// equivalences present in \p Pred. 13109 /// 13110 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13111 /// \p NewPreds such that the result will be an AddRecExpr. 13112 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13113 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13114 SCEVUnionPredicate *Pred) { 13115 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13116 return Rewriter.visit(S); 13117 } 13118 13119 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13120 if (Pred) { 13121 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13122 for (auto *Pred : ExprPreds) 13123 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13124 if (IPred->getLHS() == Expr) 13125 return IPred->getRHS(); 13126 } 13127 return convertToAddRecWithPreds(Expr); 13128 } 13129 13130 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13131 const SCEV *Operand = visit(Expr->getOperand()); 13132 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13133 if (AR && AR->getLoop() == L && AR->isAffine()) { 13134 // This couldn't be folded because the operand didn't have the nuw 13135 // flag. Add the nusw flag as an assumption that we could make. 13136 const SCEV *Step = AR->getStepRecurrence(SE); 13137 Type *Ty = Expr->getType(); 13138 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13139 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13140 SE.getSignExtendExpr(Step, Ty), L, 13141 AR->getNoWrapFlags()); 13142 } 13143 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13144 } 13145 13146 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13147 const SCEV *Operand = visit(Expr->getOperand()); 13148 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13149 if (AR && AR->getLoop() == L && AR->isAffine()) { 13150 // This couldn't be folded because the operand didn't have the nsw 13151 // flag. Add the nssw flag as an assumption that we could make. 13152 const SCEV *Step = AR->getStepRecurrence(SE); 13153 Type *Ty = Expr->getType(); 13154 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13155 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13156 SE.getSignExtendExpr(Step, Ty), L, 13157 AR->getNoWrapFlags()); 13158 } 13159 return SE.getSignExtendExpr(Operand, Expr->getType()); 13160 } 13161 13162 private: 13163 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13164 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13165 SCEVUnionPredicate *Pred) 13166 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13167 13168 bool addOverflowAssumption(const SCEVPredicate *P) { 13169 if (!NewPreds) { 13170 // Check if we've already made this assumption. 13171 return Pred && Pred->implies(P); 13172 } 13173 NewPreds->insert(P); 13174 return true; 13175 } 13176 13177 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13178 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13179 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13180 return addOverflowAssumption(A); 13181 } 13182 13183 // If \p Expr represents a PHINode, we try to see if it can be represented 13184 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13185 // to add this predicate as a runtime overflow check, we return the AddRec. 13186 // If \p Expr does not meet these conditions (is not a PHI node, or we 13187 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13188 // return \p Expr. 13189 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13190 if (!isa<PHINode>(Expr->getValue())) 13191 return Expr; 13192 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13193 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13194 if (!PredicatedRewrite) 13195 return Expr; 13196 for (auto *P : PredicatedRewrite->second){ 13197 // Wrap predicates from outer loops are not supported. 13198 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13199 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13200 if (L != AR->getLoop()) 13201 return Expr; 13202 } 13203 if (!addOverflowAssumption(P)) 13204 return Expr; 13205 } 13206 return PredicatedRewrite->first; 13207 } 13208 13209 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13210 SCEVUnionPredicate *Pred; 13211 const Loop *L; 13212 }; 13213 13214 } // end anonymous namespace 13215 13216 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13217 SCEVUnionPredicate &Preds) { 13218 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13219 } 13220 13221 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13222 const SCEV *S, const Loop *L, 13223 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13224 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13225 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13226 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13227 13228 if (!AddRec) 13229 return nullptr; 13230 13231 // Since the transformation was successful, we can now transfer the SCEV 13232 // predicates. 13233 for (auto *P : TransformPreds) 13234 Preds.insert(P); 13235 13236 return AddRec; 13237 } 13238 13239 /// SCEV predicates 13240 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13241 SCEVPredicateKind Kind) 13242 : FastID(ID), Kind(Kind) {} 13243 13244 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13245 const SCEV *LHS, const SCEV *RHS) 13246 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13247 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13248 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13249 } 13250 13251 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13252 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13253 13254 if (!Op) 13255 return false; 13256 13257 return Op->LHS == LHS && Op->RHS == RHS; 13258 } 13259 13260 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13261 13262 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13263 13264 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13265 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13266 } 13267 13268 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13269 const SCEVAddRecExpr *AR, 13270 IncrementWrapFlags Flags) 13271 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13272 13273 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13274 13275 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13276 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13277 13278 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13279 } 13280 13281 bool SCEVWrapPredicate::isAlwaysTrue() const { 13282 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13283 IncrementWrapFlags IFlags = Flags; 13284 13285 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13286 IFlags = clearFlags(IFlags, IncrementNSSW); 13287 13288 return IFlags == IncrementAnyWrap; 13289 } 13290 13291 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13292 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13293 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13294 OS << "<nusw>"; 13295 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13296 OS << "<nssw>"; 13297 OS << "\n"; 13298 } 13299 13300 SCEVWrapPredicate::IncrementWrapFlags 13301 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13302 ScalarEvolution &SE) { 13303 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13304 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13305 13306 // We can safely transfer the NSW flag as NSSW. 13307 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13308 ImpliedFlags = IncrementNSSW; 13309 13310 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13311 // If the increment is positive, the SCEV NUW flag will also imply the 13312 // WrapPredicate NUSW flag. 13313 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13314 if (Step->getValue()->getValue().isNonNegative()) 13315 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13316 } 13317 13318 return ImpliedFlags; 13319 } 13320 13321 /// Union predicates don't get cached so create a dummy set ID for it. 13322 SCEVUnionPredicate::SCEVUnionPredicate() 13323 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13324 13325 bool SCEVUnionPredicate::isAlwaysTrue() const { 13326 return all_of(Preds, 13327 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13328 } 13329 13330 ArrayRef<const SCEVPredicate *> 13331 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13332 auto I = SCEVToPreds.find(Expr); 13333 if (I == SCEVToPreds.end()) 13334 return ArrayRef<const SCEVPredicate *>(); 13335 return I->second; 13336 } 13337 13338 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13339 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13340 return all_of(Set->Preds, 13341 [this](const SCEVPredicate *I) { return this->implies(I); }); 13342 13343 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13344 if (ScevPredsIt == SCEVToPreds.end()) 13345 return false; 13346 auto &SCEVPreds = ScevPredsIt->second; 13347 13348 return any_of(SCEVPreds, 13349 [N](const SCEVPredicate *I) { return I->implies(N); }); 13350 } 13351 13352 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13353 13354 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13355 for (auto Pred : Preds) 13356 Pred->print(OS, Depth); 13357 } 13358 13359 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13360 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13361 for (auto Pred : Set->Preds) 13362 add(Pred); 13363 return; 13364 } 13365 13366 if (implies(N)) 13367 return; 13368 13369 const SCEV *Key = N->getExpr(); 13370 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13371 " associated expression!"); 13372 13373 SCEVToPreds[Key].push_back(N); 13374 Preds.push_back(N); 13375 } 13376 13377 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13378 Loop &L) 13379 : SE(SE), L(L) {} 13380 13381 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13382 const SCEV *Expr = SE.getSCEV(V); 13383 RewriteEntry &Entry = RewriteMap[Expr]; 13384 13385 // If we already have an entry and the version matches, return it. 13386 if (Entry.second && Generation == Entry.first) 13387 return Entry.second; 13388 13389 // We found an entry but it's stale. Rewrite the stale entry 13390 // according to the current predicate. 13391 if (Entry.second) 13392 Expr = Entry.second; 13393 13394 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13395 Entry = {Generation, NewSCEV}; 13396 13397 return NewSCEV; 13398 } 13399 13400 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13401 if (!BackedgeCount) { 13402 SCEVUnionPredicate BackedgePred; 13403 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13404 addPredicate(BackedgePred); 13405 } 13406 return BackedgeCount; 13407 } 13408 13409 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13410 if (Preds.implies(&Pred)) 13411 return; 13412 Preds.add(&Pred); 13413 updateGeneration(); 13414 } 13415 13416 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13417 return Preds; 13418 } 13419 13420 void PredicatedScalarEvolution::updateGeneration() { 13421 // If the generation number wrapped recompute everything. 13422 if (++Generation == 0) { 13423 for (auto &II : RewriteMap) { 13424 const SCEV *Rewritten = II.second.second; 13425 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13426 } 13427 } 13428 } 13429 13430 void PredicatedScalarEvolution::setNoOverflow( 13431 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13432 const SCEV *Expr = getSCEV(V); 13433 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13434 13435 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13436 13437 // Clear the statically implied flags. 13438 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13439 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13440 13441 auto II = FlagsMap.insert({V, Flags}); 13442 if (!II.second) 13443 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13444 } 13445 13446 bool PredicatedScalarEvolution::hasNoOverflow( 13447 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13448 const SCEV *Expr = getSCEV(V); 13449 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13450 13451 Flags = SCEVWrapPredicate::clearFlags( 13452 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13453 13454 auto II = FlagsMap.find(V); 13455 13456 if (II != FlagsMap.end()) 13457 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13458 13459 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13460 } 13461 13462 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13463 const SCEV *Expr = this->getSCEV(V); 13464 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13465 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13466 13467 if (!New) 13468 return nullptr; 13469 13470 for (auto *P : NewPreds) 13471 Preds.add(P); 13472 13473 updateGeneration(); 13474 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13475 return New; 13476 } 13477 13478 PredicatedScalarEvolution::PredicatedScalarEvolution( 13479 const PredicatedScalarEvolution &Init) 13480 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13481 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13482 for (auto I : Init.FlagsMap) 13483 FlagsMap.insert(I); 13484 } 13485 13486 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13487 // For each block. 13488 for (auto *BB : L.getBlocks()) 13489 for (auto &I : *BB) { 13490 if (!SE.isSCEVable(I.getType())) 13491 continue; 13492 13493 auto *Expr = SE.getSCEV(&I); 13494 auto II = RewriteMap.find(Expr); 13495 13496 if (II == RewriteMap.end()) 13497 continue; 13498 13499 // Don't print things that are not interesting. 13500 if (II->second.second == Expr) 13501 continue; 13502 13503 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13504 OS.indent(Depth + 2) << *Expr << "\n"; 13505 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13506 } 13507 } 13508 13509 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13510 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13511 // for URem with constant power-of-2 second operands. 13512 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13513 // 4, A / B becomes X / 8). 13514 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13515 const SCEV *&RHS) { 13516 // Try to match 'zext (trunc A to iB) to iY', which is used 13517 // for URem with constant power-of-2 second operands. Make sure the size of 13518 // the operand A matches the size of the whole expressions. 13519 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13520 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13521 LHS = Trunc->getOperand(); 13522 // Bail out if the type of the LHS is larger than the type of the 13523 // expression for now. 13524 if (getTypeSizeInBits(LHS->getType()) > 13525 getTypeSizeInBits(Expr->getType())) 13526 return false; 13527 if (LHS->getType() != Expr->getType()) 13528 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13529 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13530 << getTypeSizeInBits(Trunc->getType())); 13531 return true; 13532 } 13533 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13534 if (Add == nullptr || Add->getNumOperands() != 2) 13535 return false; 13536 13537 const SCEV *A = Add->getOperand(1); 13538 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13539 13540 if (Mul == nullptr) 13541 return false; 13542 13543 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13544 // (SomeExpr + (-(SomeExpr / B) * B)). 13545 if (Expr == getURemExpr(A, B)) { 13546 LHS = A; 13547 RHS = B; 13548 return true; 13549 } 13550 return false; 13551 }; 13552 13553 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13554 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13555 return MatchURemWithDivisor(Mul->getOperand(1)) || 13556 MatchURemWithDivisor(Mul->getOperand(2)); 13557 13558 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13559 if (Mul->getNumOperands() == 2) 13560 return MatchURemWithDivisor(Mul->getOperand(1)) || 13561 MatchURemWithDivisor(Mul->getOperand(0)) || 13562 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13563 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13564 return false; 13565 } 13566 13567 const SCEV * 13568 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13569 SmallVector<BasicBlock*, 16> ExitingBlocks; 13570 L->getExitingBlocks(ExitingBlocks); 13571 13572 // Form an expression for the maximum exit count possible for this loop. We 13573 // merge the max and exact information to approximate a version of 13574 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13575 SmallVector<const SCEV*, 4> ExitCounts; 13576 for (BasicBlock *ExitingBB : ExitingBlocks) { 13577 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13578 if (isa<SCEVCouldNotCompute>(ExitCount)) 13579 ExitCount = getExitCount(L, ExitingBB, 13580 ScalarEvolution::ConstantMaximum); 13581 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13582 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13583 "We should only have known counts for exiting blocks that " 13584 "dominate latch!"); 13585 ExitCounts.push_back(ExitCount); 13586 } 13587 } 13588 if (ExitCounts.empty()) 13589 return getCouldNotCompute(); 13590 return getUMinFromMismatchedTypes(ExitCounts); 13591 } 13592 13593 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13594 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13595 /// we cannot guarantee that the replacement is loop invariant in the loop of 13596 /// the AddRec. 13597 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13598 ValueToSCEVMapTy ⤅ 13599 13600 public: 13601 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13602 : SCEVRewriteVisitor(SE), Map(M) {} 13603 13604 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13605 13606 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13607 auto I = Map.find(Expr->getValue()); 13608 if (I == Map.end()) 13609 return Expr; 13610 return I->second; 13611 } 13612 }; 13613 13614 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13615 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13616 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13617 // WARNING: It is generally unsound to apply any wrap flags to the proposed 13618 // replacement SCEV which isn't directly implied by the structure of that 13619 // SCEV. In particular, using contextual facts to imply flags is *NOT* 13620 // legal. See the scoping rules for flags in the header to understand why. 13621 13622 // If we have LHS == 0, check if LHS is computing a property of some unknown 13623 // SCEV %v which we can rewrite %v to express explicitly. 13624 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13625 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13626 RHSC->getValue()->isNullValue()) { 13627 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13628 // explicitly express that. 13629 const SCEV *URemLHS = nullptr; 13630 const SCEV *URemRHS = nullptr; 13631 if (matchURem(LHS, URemLHS, URemRHS)) { 13632 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13633 Value *V = LHSUnknown->getValue(); 13634 RewriteMap[V] = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 13635 return; 13636 } 13637 } 13638 } 13639 13640 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 13641 std::swap(LHS, RHS); 13642 Predicate = CmpInst::getSwappedPredicate(Predicate); 13643 } 13644 13645 // Check for a condition of the form (-C1 + X < C2). InstCombine will 13646 // create this form when combining two checks of the form (X u< C2 + C1) and 13647 // (X >=u C1). 13648 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() { 13649 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 13650 if (!AddExpr || AddExpr->getNumOperands() != 2) 13651 return false; 13652 13653 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 13654 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 13655 auto *C2 = dyn_cast<SCEVConstant>(RHS); 13656 if (!C1 || !C2 || !LHSUnknown) 13657 return false; 13658 13659 auto ExactRegion = 13660 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 13661 .sub(C1->getAPInt()); 13662 13663 // Bail out, unless we have a non-wrapping, monotonic range. 13664 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 13665 return false; 13666 auto I = RewriteMap.find(LHSUnknown->getValue()); 13667 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 13668 RewriteMap[LHSUnknown->getValue()] = getUMaxExpr( 13669 getConstant(ExactRegion.getUnsignedMin()), 13670 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 13671 return true; 13672 }; 13673 if (MatchRangeCheckIdiom()) 13674 return; 13675 13676 // For now, limit to conditions that provide information about unknown 13677 // expressions. RHS also cannot contain add recurrences. 13678 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13679 if (!LHSUnknown || containsAddRecurrence(RHS)) 13680 return; 13681 13682 // Check whether LHS has already been rewritten. In that case we want to 13683 // chain further rewrites onto the already rewritten value. 13684 auto I = RewriteMap.find(LHSUnknown->getValue()); 13685 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13686 const SCEV *RewrittenRHS = nullptr; 13687 switch (Predicate) { 13688 case CmpInst::ICMP_ULT: 13689 RewrittenRHS = 13690 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13691 break; 13692 case CmpInst::ICMP_SLT: 13693 RewrittenRHS = 13694 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13695 break; 13696 case CmpInst::ICMP_ULE: 13697 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 13698 break; 13699 case CmpInst::ICMP_SLE: 13700 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 13701 break; 13702 case CmpInst::ICMP_UGT: 13703 RewrittenRHS = 13704 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13705 break; 13706 case CmpInst::ICMP_SGT: 13707 RewrittenRHS = 13708 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13709 break; 13710 case CmpInst::ICMP_UGE: 13711 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 13712 break; 13713 case CmpInst::ICMP_SGE: 13714 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 13715 break; 13716 case CmpInst::ICMP_EQ: 13717 if (isa<SCEVConstant>(RHS)) 13718 RewrittenRHS = RHS; 13719 break; 13720 case CmpInst::ICMP_NE: 13721 if (isa<SCEVConstant>(RHS) && 13722 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13723 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 13724 break; 13725 default: 13726 break; 13727 } 13728 13729 if (RewrittenRHS) 13730 RewriteMap[LHSUnknown->getValue()] = RewrittenRHS; 13731 }; 13732 // Starting at the loop predecessor, climb up the predecessor chain, as long 13733 // as there are predecessors that can be found that have unique successors 13734 // leading to the original header. 13735 // TODO: share this logic with isLoopEntryGuardedByCond. 13736 ValueToSCEVMapTy RewriteMap; 13737 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13738 L->getLoopPredecessor(), L->getHeader()); 13739 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13740 13741 const BranchInst *LoopEntryPredicate = 13742 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13743 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13744 continue; 13745 13746 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 13747 SmallVector<Value *, 8> Worklist; 13748 SmallPtrSet<Value *, 8> Visited; 13749 Worklist.push_back(LoopEntryPredicate->getCondition()); 13750 while (!Worklist.empty()) { 13751 Value *Cond = Worklist.pop_back_val(); 13752 if (!Visited.insert(Cond).second) 13753 continue; 13754 13755 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13756 auto Predicate = 13757 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 13758 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13759 getSCEV(Cmp->getOperand(1)), RewriteMap); 13760 continue; 13761 } 13762 13763 Value *L, *R; 13764 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 13765 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 13766 Worklist.push_back(L); 13767 Worklist.push_back(R); 13768 } 13769 } 13770 } 13771 13772 // Also collect information from assumptions dominating the loop. 13773 for (auto &AssumeVH : AC.assumptions()) { 13774 if (!AssumeVH) 13775 continue; 13776 auto *AssumeI = cast<CallInst>(AssumeVH); 13777 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13778 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13779 continue; 13780 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13781 getSCEV(Cmp->getOperand(1)), RewriteMap); 13782 } 13783 13784 if (RewriteMap.empty()) 13785 return Expr; 13786 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13787 return Rewriter.visit(Expr); 13788 } 13789