1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     ListSeparator LS(OpStr);
325     for (const SCEV *Op : NAry->operands())
326       OS << LS << *Op;
327     OS << ")";
328     switch (NAry->getSCEVType()) {
329     case scAddExpr:
330     case scMulExpr:
331       if (NAry->hasNoUnsignedWrap())
332         OS << "<nuw>";
333       if (NAry->hasNoSignedWrap())
334         OS << "<nsw>";
335       break;
336     default:
337       // Nothing to print for other nary expressions.
338       break;
339     }
340     return;
341   }
342   case scUDivExpr: {
343     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345     return;
346   }
347   case scUnknown: {
348     const SCEVUnknown *U = cast<SCEVUnknown>(this);
349     Type *AllocTy;
350     if (U->isSizeOf(AllocTy)) {
351       OS << "sizeof(" << *AllocTy << ")";
352       return;
353     }
354     if (U->isAlignOf(AllocTy)) {
355       OS << "alignof(" << *AllocTy << ")";
356       return;
357     }
358 
359     Type *CTy;
360     Constant *FieldNo;
361     if (U->isOffsetOf(CTy, FieldNo)) {
362       OS << "offsetof(" << *CTy << ", ";
363       FieldNo->printAsOperand(OS, false);
364       OS << ")";
365       return;
366     }
367 
368     // Otherwise just print it normally.
369     U->getValue()->printAsOperand(OS, false);
370     return;
371   }
372   case scCouldNotCompute:
373     OS << "***COULDNOTCOMPUTE***";
374     return;
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
379 Type *SCEV::getType() const {
380   switch (getSCEVType()) {
381   case scConstant:
382     return cast<SCEVConstant>(this)->getType();
383   case scPtrToInt:
384   case scTruncate:
385   case scZeroExtend:
386   case scSignExtend:
387     return cast<SCEVCastExpr>(this)->getType();
388   case scAddRecExpr:
389     return cast<SCEVAddRecExpr>(this)->getType();
390   case scMulExpr:
391     return cast<SCEVMulExpr>(this)->getType();
392   case scUMaxExpr:
393   case scSMaxExpr:
394   case scUMinExpr:
395   case scSMinExpr:
396     return cast<SCEVMinMaxExpr>(this)->getType();
397   case scAddExpr:
398     return cast<SCEVAddExpr>(this)->getType();
399   case scUDivExpr:
400     return cast<SCEVUDivExpr>(this)->getType();
401   case scUnknown:
402     return cast<SCEVUnknown>(this)->getType();
403   case scCouldNotCompute:
404     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
405   }
406   llvm_unreachable("Unknown SCEV kind!");
407 }
408 
409 bool SCEV::isZero() const {
410   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
411     return SC->getValue()->isZero();
412   return false;
413 }
414 
415 bool SCEV::isOne() const {
416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
417     return SC->getValue()->isOne();
418   return false;
419 }
420 
421 bool SCEV::isAllOnesValue() const {
422   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423     return SC->getValue()->isMinusOne();
424   return false;
425 }
426 
427 bool SCEV::isNonConstantNegative() const {
428   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
429   if (!Mul) return false;
430 
431   // If there is a constant factor, it will be first.
432   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
433   if (!SC) return false;
434 
435   // Return true if the value is negative, this matches things like (-42 * V).
436   return SC->getAPInt().isNegative();
437 }
438 
439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
441 
442 bool SCEVCouldNotCompute::classof(const SCEV *S) {
443   return S->getSCEVType() == scCouldNotCompute;
444 }
445 
446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
447   FoldingSetNodeID ID;
448   ID.AddInteger(scConstant);
449   ID.AddPointer(V);
450   void *IP = nullptr;
451   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
452   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
453   UniqueSCEVs.InsertNode(S, IP);
454   return S;
455 }
456 
457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
458   return getConstant(ConstantInt::get(getContext(), Val));
459 }
460 
461 const SCEV *
462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
463   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
464   return getConstant(ConstantInt::get(ITy, V, isSigned));
465 }
466 
467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
468                            const SCEV *op, Type *ty)
469     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
470   Operands[0] = op;
471 }
472 
473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
474                                    Type *ITy)
475     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
476   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
477          "Must be a non-bit-width-changing pointer-to-integer cast!");
478 }
479 
480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
481                                            SCEVTypes SCEVTy, const SCEV *op,
482                                            Type *ty)
483     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
484 
485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
486                                    Type *ty)
487     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
488   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
489          "Cannot truncate non-integer value!");
490 }
491 
492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
493                                        const SCEV *op, Type *ty)
494     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
495   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
496          "Cannot zero extend non-integer value!");
497 }
498 
499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
500                                        const SCEV *op, Type *ty)
501     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
502   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
503          "Cannot sign extend non-integer value!");
504 }
505 
506 void SCEVUnknown::deleted() {
507   // Clear this SCEVUnknown from various maps.
508   SE->forgetMemoizedResults(this);
509 
510   // Remove this SCEVUnknown from the uniquing map.
511   SE->UniqueSCEVs.RemoveNode(this);
512 
513   // Release the value.
514   setValPtr(nullptr);
515 }
516 
517 void SCEVUnknown::allUsesReplacedWith(Value *New) {
518   // Remove this SCEVUnknown from the uniquing map.
519   SE->UniqueSCEVs.RemoveNode(this);
520 
521   // Update this SCEVUnknown to point to the new value. This is needed
522   // because there may still be outstanding SCEVs which still point to
523   // this SCEVUnknown.
524   setValPtr(New);
525 }
526 
527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
528   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
529     if (VCE->getOpcode() == Instruction::PtrToInt)
530       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
531         if (CE->getOpcode() == Instruction::GetElementPtr &&
532             CE->getOperand(0)->isNullValue() &&
533             CE->getNumOperands() == 2)
534           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
535             if (CI->isOne()) {
536               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
537               return true;
538             }
539 
540   return false;
541 }
542 
543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
544   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
545     if (VCE->getOpcode() == Instruction::PtrToInt)
546       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
547         if (CE->getOpcode() == Instruction::GetElementPtr &&
548             CE->getOperand(0)->isNullValue()) {
549           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
550           if (StructType *STy = dyn_cast<StructType>(Ty))
551             if (!STy->isPacked() &&
552                 CE->getNumOperands() == 3 &&
553                 CE->getOperand(1)->isNullValue()) {
554               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555                 if (CI->isOne() &&
556                     STy->getNumElements() == 2 &&
557                     STy->getElementType(0)->isIntegerTy(1)) {
558                   AllocTy = STy->getElementType(1);
559                   return true;
560                 }
561             }
562         }
563 
564   return false;
565 }
566 
567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569     if (VCE->getOpcode() == Instruction::PtrToInt)
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571         if (CE->getOpcode() == Instruction::GetElementPtr &&
572             CE->getNumOperands() == 3 &&
573             CE->getOperand(0)->isNullValue() &&
574             CE->getOperand(1)->isNullValue()) {
575           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
576           // Ignore vector types here so that ScalarEvolutionExpander doesn't
577           // emit getelementptrs that index into vectors.
578           if (Ty->isStructTy() || Ty->isArrayTy()) {
579             CTy = Ty;
580             FieldNo = CE->getOperand(2);
581             return true;
582           }
583         }
584 
585   return false;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                               SCEV Utilities
590 //===----------------------------------------------------------------------===//
591 
592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
594 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
595 /// have been previously deemed to be "equally complex" by this routine.  It is
596 /// intended to avoid exponential time complexity in cases like:
597 ///
598 ///   %a = f(%x, %y)
599 ///   %b = f(%a, %a)
600 ///   %c = f(%b, %b)
601 ///
602 ///   %d = f(%x, %y)
603 ///   %e = f(%d, %d)
604 ///   %f = f(%e, %e)
605 ///
606 ///   CompareValueComplexity(%f, %c)
607 ///
608 /// Since we do not continue running this routine on expression trees once we
609 /// have seen unequal values, there is no need to track them in the cache.
610 static int
611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
612                        const LoopInfo *const LI, Value *LV, Value *RV,
613                        unsigned Depth) {
614   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
615     return 0;
616 
617   // Order pointer values after integer values. This helps SCEVExpander form
618   // GEPs.
619   bool LIsPointer = LV->getType()->isPointerTy(),
620        RIsPointer = RV->getType()->isPointerTy();
621   if (LIsPointer != RIsPointer)
622     return (int)LIsPointer - (int)RIsPointer;
623 
624   // Compare getValueID values.
625   unsigned LID = LV->getValueID(), RID = RV->getValueID();
626   if (LID != RID)
627     return (int)LID - (int)RID;
628 
629   // Sort arguments by their position.
630   if (const auto *LA = dyn_cast<Argument>(LV)) {
631     const auto *RA = cast<Argument>(RV);
632     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
633     return (int)LArgNo - (int)RArgNo;
634   }
635 
636   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
637     const auto *RGV = cast<GlobalValue>(RV);
638 
639     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
640       auto LT = GV->getLinkage();
641       return !(GlobalValue::isPrivateLinkage(LT) ||
642                GlobalValue::isInternalLinkage(LT));
643     };
644 
645     // Use the names to distinguish the two values, but only if the
646     // names are semantically important.
647     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
648       return LGV->getName().compare(RGV->getName());
649   }
650 
651   // For instructions, compare their loop depth, and their operand count.  This
652   // is pretty loose.
653   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
654     const auto *RInst = cast<Instruction>(RV);
655 
656     // Compare loop depths.
657     const BasicBlock *LParent = LInst->getParent(),
658                      *RParent = RInst->getParent();
659     if (LParent != RParent) {
660       unsigned LDepth = LI->getLoopDepth(LParent),
661                RDepth = LI->getLoopDepth(RParent);
662       if (LDepth != RDepth)
663         return (int)LDepth - (int)RDepth;
664     }
665 
666     // Compare the number of operands.
667     unsigned LNumOps = LInst->getNumOperands(),
668              RNumOps = RInst->getNumOperands();
669     if (LNumOps != RNumOps)
670       return (int)LNumOps - (int)RNumOps;
671 
672     for (unsigned Idx : seq(0u, LNumOps)) {
673       int Result =
674           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
675                                  RInst->getOperand(Idx), Depth + 1);
676       if (Result != 0)
677         return Result;
678     }
679   }
680 
681   EqCacheValue.unionSets(LV, RV);
682   return 0;
683 }
684 
685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
686 // than RHS, respectively. A three-way result allows recursive comparisons to be
687 // more efficient.
688 // If the max analysis depth was reached, return None, assuming we do not know
689 // if they are equivalent for sure.
690 static Optional<int>
691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
692                       EquivalenceClasses<const Value *> &EqCacheValue,
693                       const LoopInfo *const LI, const SCEV *LHS,
694                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
695   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
696   if (LHS == RHS)
697     return 0;
698 
699   // Primarily, sort the SCEVs by their getSCEVType().
700   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
701   if (LType != RType)
702     return (int)LType - (int)RType;
703 
704   if (EqCacheSCEV.isEquivalent(LHS, RHS))
705     return 0;
706 
707   if (Depth > MaxSCEVCompareDepth)
708     return None;
709 
710   // Aside from the getSCEVType() ordering, the particular ordering
711   // isn't very important except that it's beneficial to be consistent,
712   // so that (a + b) and (b + a) don't end up as different expressions.
713   switch (LType) {
714   case scUnknown: {
715     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
716     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
717 
718     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
719                                    RU->getValue(), Depth + 1);
720     if (X == 0)
721       EqCacheSCEV.unionSets(LHS, RHS);
722     return X;
723   }
724 
725   case scConstant: {
726     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
727     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
728 
729     // Compare constant values.
730     const APInt &LA = LC->getAPInt();
731     const APInt &RA = RC->getAPInt();
732     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
733     if (LBitWidth != RBitWidth)
734       return (int)LBitWidth - (int)RBitWidth;
735     return LA.ult(RA) ? -1 : 1;
736   }
737 
738   case scAddRecExpr: {
739     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
740     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
741 
742     // There is always a dominance between two recs that are used by one SCEV,
743     // so we can safely sort recs by loop header dominance. We require such
744     // order in getAddExpr.
745     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
746     if (LLoop != RLoop) {
747       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
748       assert(LHead != RHead && "Two loops share the same header?");
749       if (DT.dominates(LHead, RHead))
750         return 1;
751       else
752         assert(DT.dominates(RHead, LHead) &&
753                "No dominance between recurrences used by one SCEV?");
754       return -1;
755     }
756 
757     // Addrec complexity grows with operand count.
758     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
759     if (LNumOps != RNumOps)
760       return (int)LNumOps - (int)RNumOps;
761 
762     // Lexicographically compare.
763     for (unsigned i = 0; i != LNumOps; ++i) {
764       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
765                                      LA->getOperand(i), RA->getOperand(i), DT,
766                                      Depth + 1);
767       if (X != 0)
768         return X;
769     }
770     EqCacheSCEV.unionSets(LHS, RHS);
771     return 0;
772   }
773 
774   case scAddExpr:
775   case scMulExpr:
776   case scSMaxExpr:
777   case scUMaxExpr:
778   case scSMinExpr:
779   case scUMinExpr: {
780     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
781     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
782 
783     // Lexicographically compare n-ary expressions.
784     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
785     if (LNumOps != RNumOps)
786       return (int)LNumOps - (int)RNumOps;
787 
788     for (unsigned i = 0; i != LNumOps; ++i) {
789       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
790                                      LC->getOperand(i), RC->getOperand(i), DT,
791                                      Depth + 1);
792       if (X != 0)
793         return X;
794     }
795     EqCacheSCEV.unionSets(LHS, RHS);
796     return 0;
797   }
798 
799   case scUDivExpr: {
800     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
801     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
802 
803     // Lexicographically compare udiv expressions.
804     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
805                                    RC->getLHS(), DT, Depth + 1);
806     if (X != 0)
807       return X;
808     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
809                               RC->getRHS(), DT, Depth + 1);
810     if (X == 0)
811       EqCacheSCEV.unionSets(LHS, RHS);
812     return X;
813   }
814 
815   case scPtrToInt:
816   case scTruncate:
817   case scZeroExtend:
818   case scSignExtend: {
819     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
820     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
821 
822     // Compare cast expressions by operand.
823     auto X =
824         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
825                               RC->getOperand(), DT, Depth + 1);
826     if (X == 0)
827       EqCacheSCEV.unionSets(LHS, RHS);
828     return X;
829   }
830 
831   case scCouldNotCompute:
832     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
833   }
834   llvm_unreachable("Unknown SCEV kind!");
835 }
836 
837 /// Given a list of SCEV objects, order them by their complexity, and group
838 /// objects of the same complexity together by value.  When this routine is
839 /// finished, we know that any duplicates in the vector are consecutive and that
840 /// complexity is monotonically increasing.
841 ///
842 /// Note that we go take special precautions to ensure that we get deterministic
843 /// results from this routine.  In other words, we don't want the results of
844 /// this to depend on where the addresses of various SCEV objects happened to
845 /// land in memory.
846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
847                               LoopInfo *LI, DominatorTree &DT) {
848   if (Ops.size() < 2) return;  // Noop
849 
850   EquivalenceClasses<const SCEV *> EqCacheSCEV;
851   EquivalenceClasses<const Value *> EqCacheValue;
852 
853   // Whether LHS has provably less complexity than RHS.
854   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
855     auto Complexity =
856         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
857     return Complexity && *Complexity < 0;
858   };
859   if (Ops.size() == 2) {
860     // This is the common case, which also happens to be trivially simple.
861     // Special case it.
862     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
863     if (IsLessComplex(RHS, LHS))
864       std::swap(LHS, RHS);
865     return;
866   }
867 
868   // Do the rough sort by complexity.
869   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
870     return IsLessComplex(LHS, RHS);
871   });
872 
873   // Now that we are sorted by complexity, group elements of the same
874   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
875   // be extremely short in practice.  Note that we take this approach because we
876   // do not want to depend on the addresses of the objects we are grouping.
877   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
878     const SCEV *S = Ops[i];
879     unsigned Complexity = S->getSCEVType();
880 
881     // If there are any objects of the same complexity and same value as this
882     // one, group them.
883     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
884       if (Ops[j] == S) { // Found a duplicate.
885         // Move it to immediately after i'th element.
886         std::swap(Ops[i+1], Ops[j]);
887         ++i;   // no need to rescan it.
888         if (i == e-2) return;  // Done!
889       }
890     }
891   }
892 }
893 
894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
895 /// least HugeExprThreshold nodes).
896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
897   return any_of(Ops, [](const SCEV *S) {
898     return S->getExpressionSize() >= HugeExprThreshold;
899   });
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //                      Simple SCEV method implementations
904 //===----------------------------------------------------------------------===//
905 
906 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
908                                        ScalarEvolution &SE,
909                                        Type *ResultTy) {
910   // Handle the simplest case efficiently.
911   if (K == 1)
912     return SE.getTruncateOrZeroExtend(It, ResultTy);
913 
914   // We are using the following formula for BC(It, K):
915   //
916   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
917   //
918   // Suppose, W is the bitwidth of the return value.  We must be prepared for
919   // overflow.  Hence, we must assure that the result of our computation is
920   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
921   // safe in modular arithmetic.
922   //
923   // However, this code doesn't use exactly that formula; the formula it uses
924   // is something like the following, where T is the number of factors of 2 in
925   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
926   // exponentiation:
927   //
928   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
929   //
930   // This formula is trivially equivalent to the previous formula.  However,
931   // this formula can be implemented much more efficiently.  The trick is that
932   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
933   // arithmetic.  To do exact division in modular arithmetic, all we have
934   // to do is multiply by the inverse.  Therefore, this step can be done at
935   // width W.
936   //
937   // The next issue is how to safely do the division by 2^T.  The way this
938   // is done is by doing the multiplication step at a width of at least W + T
939   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
940   // when we perform the division by 2^T (which is equivalent to a right shift
941   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
942   // truncated out after the division by 2^T.
943   //
944   // In comparison to just directly using the first formula, this technique
945   // is much more efficient; using the first formula requires W * K bits,
946   // but this formula less than W + K bits. Also, the first formula requires
947   // a division step, whereas this formula only requires multiplies and shifts.
948   //
949   // It doesn't matter whether the subtraction step is done in the calculation
950   // width or the input iteration count's width; if the subtraction overflows,
951   // the result must be zero anyway.  We prefer here to do it in the width of
952   // the induction variable because it helps a lot for certain cases; CodeGen
953   // isn't smart enough to ignore the overflow, which leads to much less
954   // efficient code if the width of the subtraction is wider than the native
955   // register width.
956   //
957   // (It's possible to not widen at all by pulling out factors of 2 before
958   // the multiplication; for example, K=2 can be calculated as
959   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
960   // extra arithmetic, so it's not an obvious win, and it gets
961   // much more complicated for K > 3.)
962 
963   // Protection from insane SCEVs; this bound is conservative,
964   // but it probably doesn't matter.
965   if (K > 1000)
966     return SE.getCouldNotCompute();
967 
968   unsigned W = SE.getTypeSizeInBits(ResultTy);
969 
970   // Calculate K! / 2^T and T; we divide out the factors of two before
971   // multiplying for calculating K! / 2^T to avoid overflow.
972   // Other overflow doesn't matter because we only care about the bottom
973   // W bits of the result.
974   APInt OddFactorial(W, 1);
975   unsigned T = 1;
976   for (unsigned i = 3; i <= K; ++i) {
977     APInt Mult(W, i);
978     unsigned TwoFactors = Mult.countTrailingZeros();
979     T += TwoFactors;
980     Mult.lshrInPlace(TwoFactors);
981     OddFactorial *= Mult;
982   }
983 
984   // We need at least W + T bits for the multiplication step
985   unsigned CalculationBits = W + T;
986 
987   // Calculate 2^T, at width T+W.
988   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
989 
990   // Calculate the multiplicative inverse of K! / 2^T;
991   // this multiplication factor will perform the exact division by
992   // K! / 2^T.
993   APInt Mod = APInt::getSignedMinValue(W+1);
994   APInt MultiplyFactor = OddFactorial.zext(W+1);
995   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
996   MultiplyFactor = MultiplyFactor.trunc(W);
997 
998   // Calculate the product, at width T+W
999   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1000                                                       CalculationBits);
1001   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1002   for (unsigned i = 1; i != K; ++i) {
1003     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1004     Dividend = SE.getMulExpr(Dividend,
1005                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1006   }
1007 
1008   // Divide by 2^T
1009   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1010 
1011   // Truncate the result, and divide by K! / 2^T.
1012 
1013   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1014                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1015 }
1016 
1017 /// Return the value of this chain of recurrences at the specified iteration
1018 /// number.  We can evaluate this recurrence by multiplying each element in the
1019 /// chain by the binomial coefficient corresponding to it.  In other words, we
1020 /// can evaluate {A,+,B,+,C,+,D} as:
1021 ///
1022 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1023 ///
1024 /// where BC(It, k) stands for binomial coefficient.
1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1026                                                 ScalarEvolution &SE) const {
1027   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1028 }
1029 
1030 const SCEV *
1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1032                                     const SCEV *It, ScalarEvolution &SE) {
1033   assert(Operands.size() > 0);
1034   const SCEV *Result = Operands[0];
1035   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1036     // The computation is correct in the face of overflow provided that the
1037     // multiplication is performed _after_ the evaluation of the binomial
1038     // coefficient.
1039     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1040     if (isa<SCEVCouldNotCompute>(Coeff))
1041       return Coeff;
1042 
1043     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1044   }
1045   return Result;
1046 }
1047 
1048 //===----------------------------------------------------------------------===//
1049 //                    SCEV Expression folder implementations
1050 //===----------------------------------------------------------------------===//
1051 
1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1053                                                      unsigned Depth) {
1054   assert(Depth <= 1 &&
1055          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1056 
1057   // We could be called with an integer-typed operands during SCEV rewrites.
1058   // Since the operand is an integer already, just perform zext/trunc/self cast.
1059   if (!Op->getType()->isPointerTy())
1060     return Op;
1061 
1062   // What would be an ID for such a SCEV cast expression?
1063   FoldingSetNodeID ID;
1064   ID.AddInteger(scPtrToInt);
1065   ID.AddPointer(Op);
1066 
1067   void *IP = nullptr;
1068 
1069   // Is there already an expression for such a cast?
1070   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1071     return S;
1072 
1073   // It isn't legal for optimizations to construct new ptrtoint expressions
1074   // for non-integral pointers.
1075   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1076     return getCouldNotCompute();
1077 
1078   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1079 
1080   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1081   // is sufficiently wide to represent all possible pointer values.
1082   // We could theoretically teach SCEV to truncate wider pointers, but
1083   // that isn't implemented for now.
1084   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1085       getDataLayout().getTypeSizeInBits(IntPtrTy))
1086     return getCouldNotCompute();
1087 
1088   // If not, is this expression something we can't reduce any further?
1089   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1090     // Perform some basic constant folding. If the operand of the ptr2int cast
1091     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1092     // left as-is), but produce a zero constant.
1093     // NOTE: We could handle a more general case, but lack motivational cases.
1094     if (isa<ConstantPointerNull>(U->getValue()))
1095       return getZero(IntPtrTy);
1096 
1097     // Create an explicit cast node.
1098     // We can reuse the existing insert position since if we get here,
1099     // we won't have made any changes which would invalidate it.
1100     SCEV *S = new (SCEVAllocator)
1101         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1102     UniqueSCEVs.InsertNode(S, IP);
1103     addToLoopUseLists(S);
1104     return S;
1105   }
1106 
1107   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1108                        "non-SCEVUnknown's.");
1109 
1110   // Otherwise, we've got some expression that is more complex than just a
1111   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1112   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1113   // only, and the expressions must otherwise be integer-typed.
1114   // So sink the cast down to the SCEVUnknown's.
1115 
1116   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1117   /// which computes a pointer-typed value, and rewrites the whole expression
1118   /// tree so that *all* the computations are done on integers, and the only
1119   /// pointer-typed operands in the expression are SCEVUnknown.
1120   class SCEVPtrToIntSinkingRewriter
1121       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1122     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1123 
1124   public:
1125     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1126 
1127     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1128       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1129       return Rewriter.visit(Scev);
1130     }
1131 
1132     const SCEV *visit(const SCEV *S) {
1133       Type *STy = S->getType();
1134       // If the expression is not pointer-typed, just keep it as-is.
1135       if (!STy->isPointerTy())
1136         return S;
1137       // Else, recursively sink the cast down into it.
1138       return Base::visit(S);
1139     }
1140 
1141     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1142       SmallVector<const SCEV *, 2> Operands;
1143       bool Changed = false;
1144       for (auto *Op : Expr->operands()) {
1145         Operands.push_back(visit(Op));
1146         Changed |= Op != Operands.back();
1147       }
1148       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1149     }
1150 
1151     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1152       SmallVector<const SCEV *, 2> Operands;
1153       bool Changed = false;
1154       for (auto *Op : Expr->operands()) {
1155         Operands.push_back(visit(Op));
1156         Changed |= Op != Operands.back();
1157       }
1158       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1159     }
1160 
1161     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1162       assert(Expr->getType()->isPointerTy() &&
1163              "Should only reach pointer-typed SCEVUnknown's.");
1164       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1165     }
1166   };
1167 
1168   // And actually perform the cast sinking.
1169   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1170   assert(IntOp->getType()->isIntegerTy() &&
1171          "We must have succeeded in sinking the cast, "
1172          "and ending up with an integer-typed expression!");
1173   return IntOp;
1174 }
1175 
1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1177   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1178 
1179   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1180   if (isa<SCEVCouldNotCompute>(IntOp))
1181     return IntOp;
1182 
1183   return getTruncateOrZeroExtend(IntOp, Ty);
1184 }
1185 
1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1187                                              unsigned Depth) {
1188   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1189          "This is not a truncating conversion!");
1190   assert(isSCEVable(Ty) &&
1191          "This is not a conversion to a SCEVable type!");
1192   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1193   Ty = getEffectiveSCEVType(Ty);
1194 
1195   FoldingSetNodeID ID;
1196   ID.AddInteger(scTruncate);
1197   ID.AddPointer(Op);
1198   ID.AddPointer(Ty);
1199   void *IP = nullptr;
1200   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1201 
1202   // Fold if the operand is constant.
1203   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1204     return getConstant(
1205       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1206 
1207   // trunc(trunc(x)) --> trunc(x)
1208   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1209     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1210 
1211   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1212   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1213     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1214 
1215   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1216   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1217     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1218 
1219   if (Depth > MaxCastDepth) {
1220     SCEV *S =
1221         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1222     UniqueSCEVs.InsertNode(S, IP);
1223     addToLoopUseLists(S);
1224     return S;
1225   }
1226 
1227   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1228   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1229   // if after transforming we have at most one truncate, not counting truncates
1230   // that replace other casts.
1231   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1232     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1233     SmallVector<const SCEV *, 4> Operands;
1234     unsigned numTruncs = 0;
1235     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1236          ++i) {
1237       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1238       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1239           isa<SCEVTruncateExpr>(S))
1240         numTruncs++;
1241       Operands.push_back(S);
1242     }
1243     if (numTruncs < 2) {
1244       if (isa<SCEVAddExpr>(Op))
1245         return getAddExpr(Operands);
1246       else if (isa<SCEVMulExpr>(Op))
1247         return getMulExpr(Operands);
1248       else
1249         llvm_unreachable("Unexpected SCEV type for Op.");
1250     }
1251     // Although we checked in the beginning that ID is not in the cache, it is
1252     // possible that during recursion and different modification ID was inserted
1253     // into the cache. So if we find it, just return it.
1254     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1255       return S;
1256   }
1257 
1258   // If the input value is a chrec scev, truncate the chrec's operands.
1259   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1260     SmallVector<const SCEV *, 4> Operands;
1261     for (const SCEV *Op : AddRec->operands())
1262       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1263     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1264   }
1265 
1266   // Return zero if truncating to known zeros.
1267   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1268   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1269     return getZero(Ty);
1270 
1271   // The cast wasn't folded; create an explicit cast node. We can reuse
1272   // the existing insert position since if we get here, we won't have
1273   // made any changes which would invalidate it.
1274   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1275                                                  Op, Ty);
1276   UniqueSCEVs.InsertNode(S, IP);
1277   addToLoopUseLists(S);
1278   return S;
1279 }
1280 
1281 // Get the limit of a recurrence such that incrementing by Step cannot cause
1282 // signed overflow as long as the value of the recurrence within the
1283 // loop does not exceed this limit before incrementing.
1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1285                                                  ICmpInst::Predicate *Pred,
1286                                                  ScalarEvolution *SE) {
1287   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1288   if (SE->isKnownPositive(Step)) {
1289     *Pred = ICmpInst::ICMP_SLT;
1290     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1291                            SE->getSignedRangeMax(Step));
1292   }
1293   if (SE->isKnownNegative(Step)) {
1294     *Pred = ICmpInst::ICMP_SGT;
1295     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1296                            SE->getSignedRangeMin(Step));
1297   }
1298   return nullptr;
1299 }
1300 
1301 // Get the limit of a recurrence such that incrementing by Step cannot cause
1302 // unsigned overflow as long as the value of the recurrence within the loop does
1303 // not exceed this limit before incrementing.
1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1305                                                    ICmpInst::Predicate *Pred,
1306                                                    ScalarEvolution *SE) {
1307   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1308   *Pred = ICmpInst::ICMP_ULT;
1309 
1310   return SE->getConstant(APInt::getMinValue(BitWidth) -
1311                          SE->getUnsignedRangeMax(Step));
1312 }
1313 
1314 namespace {
1315 
1316 struct ExtendOpTraitsBase {
1317   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1318                                                           unsigned);
1319 };
1320 
1321 // Used to make code generic over signed and unsigned overflow.
1322 template <typename ExtendOp> struct ExtendOpTraits {
1323   // Members present:
1324   //
1325   // static const SCEV::NoWrapFlags WrapType;
1326   //
1327   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1328   //
1329   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1330   //                                           ICmpInst::Predicate *Pred,
1331   //                                           ScalarEvolution *SE);
1332 };
1333 
1334 template <>
1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1336   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1337 
1338   static const GetExtendExprTy GetExtendExpr;
1339 
1340   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1341                                              ICmpInst::Predicate *Pred,
1342                                              ScalarEvolution *SE) {
1343     return getSignedOverflowLimitForStep(Step, Pred, SE);
1344   }
1345 };
1346 
1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1348     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1349 
1350 template <>
1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1352   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1353 
1354   static const GetExtendExprTy GetExtendExpr;
1355 
1356   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1357                                              ICmpInst::Predicate *Pred,
1358                                              ScalarEvolution *SE) {
1359     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1360   }
1361 };
1362 
1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1364     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1365 
1366 } // end anonymous namespace
1367 
1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1373 // expression "Step + sext/zext(PreIncAR)" is congruent with
1374 // "sext/zext(PostIncAR)"
1375 template <typename ExtendOpTy>
1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1377                                         ScalarEvolution *SE, unsigned Depth) {
1378   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1379   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1380 
1381   const Loop *L = AR->getLoop();
1382   const SCEV *Start = AR->getStart();
1383   const SCEV *Step = AR->getStepRecurrence(*SE);
1384 
1385   // Check for a simple looking step prior to loop entry.
1386   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1387   if (!SA)
1388     return nullptr;
1389 
1390   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1391   // subtraction is expensive. For this purpose, perform a quick and dirty
1392   // difference, by checking for Step in the operand list.
1393   SmallVector<const SCEV *, 4> DiffOps;
1394   for (const SCEV *Op : SA->operands())
1395     if (Op != Step)
1396       DiffOps.push_back(Op);
1397 
1398   if (DiffOps.size() == SA->getNumOperands())
1399     return nullptr;
1400 
1401   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1402   // `Step`:
1403 
1404   // 1. NSW/NUW flags on the step increment.
1405   auto PreStartFlags =
1406     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1407   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1408   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1409       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1410 
1411   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1412   // "S+X does not sign/unsign-overflow".
1413   //
1414 
1415   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1416   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1417       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1418     return PreStart;
1419 
1420   // 2. Direct overflow check on the step operation's expression.
1421   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1422   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1423   const SCEV *OperandExtendedStart =
1424       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1425                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1426   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1427     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1428       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1429       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1430       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1431       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1432     }
1433     return PreStart;
1434   }
1435 
1436   // 3. Loop precondition.
1437   ICmpInst::Predicate Pred;
1438   const SCEV *OverflowLimit =
1439       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1440 
1441   if (OverflowLimit &&
1442       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1443     return PreStart;
1444 
1445   return nullptr;
1446 }
1447 
1448 // Get the normalized zero or sign extended expression for this AddRec's Start.
1449 template <typename ExtendOpTy>
1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1451                                         ScalarEvolution *SE,
1452                                         unsigned Depth) {
1453   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1454 
1455   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1456   if (!PreStart)
1457     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1458 
1459   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1460                                              Depth),
1461                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1462 }
1463 
1464 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1467 //
1468 // Formally:
1469 //
1470 //     {S,+,X} == {S-T,+,X} + T
1471 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1472 //
1473 // If ({S-T,+,X} + T) does not overflow  ... (1)
1474 //
1475 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1476 //
1477 // If {S-T,+,X} does not overflow  ... (2)
1478 //
1479 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1480 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1481 //
1482 // If (S-T)+T does not overflow  ... (3)
1483 //
1484 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1485 //      == {Ext(S),+,Ext(X)} == LHS
1486 //
1487 // Thus, if (1), (2) and (3) are true for some T, then
1488 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1489 //
1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1491 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1492 // to check for (1) and (2).
1493 //
1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1495 // is `Delta` (defined below).
1496 template <typename ExtendOpTy>
1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1498                                                 const SCEV *Step,
1499                                                 const Loop *L) {
1500   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1501 
1502   // We restrict `Start` to a constant to prevent SCEV from spending too much
1503   // time here.  It is correct (but more expensive) to continue with a
1504   // non-constant `Start` and do a general SCEV subtraction to compute
1505   // `PreStart` below.
1506   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1507   if (!StartC)
1508     return false;
1509 
1510   APInt StartAI = StartC->getAPInt();
1511 
1512   for (unsigned Delta : {-2, -1, 1, 2}) {
1513     const SCEV *PreStart = getConstant(StartAI - Delta);
1514 
1515     FoldingSetNodeID ID;
1516     ID.AddInteger(scAddRecExpr);
1517     ID.AddPointer(PreStart);
1518     ID.AddPointer(Step);
1519     ID.AddPointer(L);
1520     void *IP = nullptr;
1521     const auto *PreAR =
1522       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1523 
1524     // Give up if we don't already have the add recurrence we need because
1525     // actually constructing an add recurrence is relatively expensive.
1526     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1527       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1528       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1529       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1530           DeltaS, &Pred, this);
1531       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1532         return true;
1533     }
1534   }
1535 
1536   return false;
1537 }
1538 
1539 // Finds an integer D for an expression (C + x + y + ...) such that the top
1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1543 // the (C + x + y + ...) expression is \p WholeAddExpr.
1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1545                                             const SCEVConstant *ConstantTerm,
1546                                             const SCEVAddExpr *WholeAddExpr) {
1547   const APInt &C = ConstantTerm->getAPInt();
1548   const unsigned BitWidth = C.getBitWidth();
1549   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1550   uint32_t TZ = BitWidth;
1551   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1552     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1553   if (TZ) {
1554     // Set D to be as many least significant bits of C as possible while still
1555     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1556     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1557   }
1558   return APInt(BitWidth, 0);
1559 }
1560 
1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1566                                             const APInt &ConstantStart,
1567                                             const SCEV *Step) {
1568   const unsigned BitWidth = ConstantStart.getBitWidth();
1569   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1570   if (TZ)
1571     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1572                          : ConstantStart;
1573   return APInt(BitWidth, 0);
1574 }
1575 
1576 const SCEV *
1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1578   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1579          "This is not an extending conversion!");
1580   assert(isSCEVable(Ty) &&
1581          "This is not a conversion to a SCEVable type!");
1582   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1583   Ty = getEffectiveSCEVType(Ty);
1584 
1585   // Fold if the operand is constant.
1586   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1587     return getConstant(
1588       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1589 
1590   // zext(zext(x)) --> zext(x)
1591   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1592     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1593 
1594   // Before doing any expensive analysis, check to see if we've already
1595   // computed a SCEV for this Op and Ty.
1596   FoldingSetNodeID ID;
1597   ID.AddInteger(scZeroExtend);
1598   ID.AddPointer(Op);
1599   ID.AddPointer(Ty);
1600   void *IP = nullptr;
1601   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1602   if (Depth > MaxCastDepth) {
1603     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1604                                                      Op, Ty);
1605     UniqueSCEVs.InsertNode(S, IP);
1606     addToLoopUseLists(S);
1607     return S;
1608   }
1609 
1610   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1611   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1612     // It's possible the bits taken off by the truncate were all zero bits. If
1613     // so, we should be able to simplify this further.
1614     const SCEV *X = ST->getOperand();
1615     ConstantRange CR = getUnsignedRange(X);
1616     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1617     unsigned NewBits = getTypeSizeInBits(Ty);
1618     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1619             CR.zextOrTrunc(NewBits)))
1620       return getTruncateOrZeroExtend(X, Ty, Depth);
1621   }
1622 
1623   // If the input value is a chrec scev, and we can prove that the value
1624   // did not overflow the old, smaller, value, we can zero extend all of the
1625   // operands (often constants).  This allows analysis of something like
1626   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1627   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1628     if (AR->isAffine()) {
1629       const SCEV *Start = AR->getStart();
1630       const SCEV *Step = AR->getStepRecurrence(*this);
1631       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1632       const Loop *L = AR->getLoop();
1633 
1634       if (!AR->hasNoUnsignedWrap()) {
1635         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1636         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1637       }
1638 
1639       // If we have special knowledge that this addrec won't overflow,
1640       // we don't need to do any further analysis.
1641       if (AR->hasNoUnsignedWrap())
1642         return getAddRecExpr(
1643             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1644             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1645 
1646       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1647       // Note that this serves two purposes: It filters out loops that are
1648       // simply not analyzable, and it covers the case where this code is
1649       // being called from within backedge-taken count analysis, such that
1650       // attempting to ask for the backedge-taken count would likely result
1651       // in infinite recursion. In the later case, the analysis code will
1652       // cope with a conservative value, and it will take care to purge
1653       // that value once it has finished.
1654       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1655       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1656         // Manually compute the final value for AR, checking for overflow.
1657 
1658         // Check whether the backedge-taken count can be losslessly casted to
1659         // the addrec's type. The count is always unsigned.
1660         const SCEV *CastedMaxBECount =
1661             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1662         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1663             CastedMaxBECount, MaxBECount->getType(), Depth);
1664         if (MaxBECount == RecastedMaxBECount) {
1665           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1666           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1667           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1668                                         SCEV::FlagAnyWrap, Depth + 1);
1669           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1670                                                           SCEV::FlagAnyWrap,
1671                                                           Depth + 1),
1672                                                WideTy, Depth + 1);
1673           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1674           const SCEV *WideMaxBECount =
1675             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1676           const SCEV *OperandExtendedAdd =
1677             getAddExpr(WideStart,
1678                        getMulExpr(WideMaxBECount,
1679                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1680                                   SCEV::FlagAnyWrap, Depth + 1),
1681                        SCEV::FlagAnyWrap, Depth + 1);
1682           if (ZAdd == OperandExtendedAdd) {
1683             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1684             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1685             // Return the expression with the addrec on the outside.
1686             return getAddRecExpr(
1687                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1688                                                          Depth + 1),
1689                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1690                 AR->getNoWrapFlags());
1691           }
1692           // Similar to above, only this time treat the step value as signed.
1693           // This covers loops that count down.
1694           OperandExtendedAdd =
1695             getAddExpr(WideStart,
1696                        getMulExpr(WideMaxBECount,
1697                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1698                                   SCEV::FlagAnyWrap, Depth + 1),
1699                        SCEV::FlagAnyWrap, Depth + 1);
1700           if (ZAdd == OperandExtendedAdd) {
1701             // Cache knowledge of AR NW, which is propagated to this AddRec.
1702             // Negative step causes unsigned wrap, but it still can't self-wrap.
1703             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1704             // Return the expression with the addrec on the outside.
1705             return getAddRecExpr(
1706                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1707                                                          Depth + 1),
1708                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1709                 AR->getNoWrapFlags());
1710           }
1711         }
1712       }
1713 
1714       // Normally, in the cases we can prove no-overflow via a
1715       // backedge guarding condition, we can also compute a backedge
1716       // taken count for the loop.  The exceptions are assumptions and
1717       // guards present in the loop -- SCEV is not great at exploiting
1718       // these to compute max backedge taken counts, but can still use
1719       // these to prove lack of overflow.  Use this fact to avoid
1720       // doing extra work that may not pay off.
1721       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1722           !AC.assumptions().empty()) {
1723 
1724         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1725         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1726         if (AR->hasNoUnsignedWrap()) {
1727           // Same as nuw case above - duplicated here to avoid a compile time
1728           // issue.  It's not clear that the order of checks does matter, but
1729           // it's one of two issue possible causes for a change which was
1730           // reverted.  Be conservative for the moment.
1731           return getAddRecExpr(
1732                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1733                                                          Depth + 1),
1734                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1735                 AR->getNoWrapFlags());
1736         }
1737 
1738         // For a negative step, we can extend the operands iff doing so only
1739         // traverses values in the range zext([0,UINT_MAX]).
1740         if (isKnownNegative(Step)) {
1741           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1742                                       getSignedRangeMin(Step));
1743           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1744               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1745             // Cache knowledge of AR NW, which is propagated to this
1746             // AddRec.  Negative step causes unsigned wrap, but it
1747             // still can't self-wrap.
1748             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1752                                                          Depth + 1),
1753                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1754                 AR->getNoWrapFlags());
1755           }
1756         }
1757       }
1758 
1759       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1760       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1761       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1762       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1763         const APInt &C = SC->getAPInt();
1764         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1765         if (D != 0) {
1766           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1767           const SCEV *SResidual =
1768               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1769           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1770           return getAddExpr(SZExtD, SZExtR,
1771                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1772                             Depth + 1);
1773         }
1774       }
1775 
1776       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1777         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1778         return getAddRecExpr(
1779             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1780             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1781       }
1782     }
1783 
1784   // zext(A % B) --> zext(A) % zext(B)
1785   {
1786     const SCEV *LHS;
1787     const SCEV *RHS;
1788     if (matchURem(Op, LHS, RHS))
1789       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1790                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1791   }
1792 
1793   // zext(A / B) --> zext(A) / zext(B).
1794   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1795     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1796                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1797 
1798   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1799     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1800     if (SA->hasNoUnsignedWrap()) {
1801       // If the addition does not unsign overflow then we can, by definition,
1802       // commute the zero extension with the addition operation.
1803       SmallVector<const SCEV *, 4> Ops;
1804       for (const auto *Op : SA->operands())
1805         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1806       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1807     }
1808 
1809     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1810     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1811     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1812     //
1813     // Often address arithmetics contain expressions like
1814     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1815     // This transformation is useful while proving that such expressions are
1816     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1817     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1818       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1819       if (D != 0) {
1820         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1821         const SCEV *SResidual =
1822             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1823         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1824         return getAddExpr(SZExtD, SZExtR,
1825                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1826                           Depth + 1);
1827       }
1828     }
1829   }
1830 
1831   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1832     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1833     if (SM->hasNoUnsignedWrap()) {
1834       // If the multiply does not unsign overflow then we can, by definition,
1835       // commute the zero extension with the multiply operation.
1836       SmallVector<const SCEV *, 4> Ops;
1837       for (const auto *Op : SM->operands())
1838         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1839       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1840     }
1841 
1842     // zext(2^K * (trunc X to iN)) to iM ->
1843     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1844     //
1845     // Proof:
1846     //
1847     //     zext(2^K * (trunc X to iN)) to iM
1848     //   = zext((trunc X to iN) << K) to iM
1849     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1850     //     (because shl removes the top K bits)
1851     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1852     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1853     //
1854     if (SM->getNumOperands() == 2)
1855       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1856         if (MulLHS->getAPInt().isPowerOf2())
1857           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1858             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1859                                MulLHS->getAPInt().logBase2();
1860             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1861             return getMulExpr(
1862                 getZeroExtendExpr(MulLHS, Ty),
1863                 getZeroExtendExpr(
1864                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1865                 SCEV::FlagNUW, Depth + 1);
1866           }
1867   }
1868 
1869   // The cast wasn't folded; create an explicit cast node.
1870   // Recompute the insert position, as it may have been invalidated.
1871   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1872   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1873                                                    Op, Ty);
1874   UniqueSCEVs.InsertNode(S, IP);
1875   addToLoopUseLists(S);
1876   return S;
1877 }
1878 
1879 const SCEV *
1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1881   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1882          "This is not an extending conversion!");
1883   assert(isSCEVable(Ty) &&
1884          "This is not a conversion to a SCEVable type!");
1885   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1886   Ty = getEffectiveSCEVType(Ty);
1887 
1888   // Fold if the operand is constant.
1889   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1890     return getConstant(
1891       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1892 
1893   // sext(sext(x)) --> sext(x)
1894   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1895     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1896 
1897   // sext(zext(x)) --> zext(x)
1898   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1899     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1900 
1901   // Before doing any expensive analysis, check to see if we've already
1902   // computed a SCEV for this Op and Ty.
1903   FoldingSetNodeID ID;
1904   ID.AddInteger(scSignExtend);
1905   ID.AddPointer(Op);
1906   ID.AddPointer(Ty);
1907   void *IP = nullptr;
1908   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1909   // Limit recursion depth.
1910   if (Depth > MaxCastDepth) {
1911     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1912                                                      Op, Ty);
1913     UniqueSCEVs.InsertNode(S, IP);
1914     addToLoopUseLists(S);
1915     return S;
1916   }
1917 
1918   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1919   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1920     // It's possible the bits taken off by the truncate were all sign bits. If
1921     // so, we should be able to simplify this further.
1922     const SCEV *X = ST->getOperand();
1923     ConstantRange CR = getSignedRange(X);
1924     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1925     unsigned NewBits = getTypeSizeInBits(Ty);
1926     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1927             CR.sextOrTrunc(NewBits)))
1928       return getTruncateOrSignExtend(X, Ty, Depth);
1929   }
1930 
1931   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1932     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1933     if (SA->hasNoSignedWrap()) {
1934       // If the addition does not sign overflow then we can, by definition,
1935       // commute the sign extension with the addition operation.
1936       SmallVector<const SCEV *, 4> Ops;
1937       for (const auto *Op : SA->operands())
1938         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1939       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1940     }
1941 
1942     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1943     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1944     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1945     //
1946     // For instance, this will bring two seemingly different expressions:
1947     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1948     //         sext(6 + 20 * %x + 24 * %y)
1949     // to the same form:
1950     //     2 + sext(4 + 20 * %x + 24 * %y)
1951     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1952       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1953       if (D != 0) {
1954         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1955         const SCEV *SResidual =
1956             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1957         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1958         return getAddExpr(SSExtD, SSExtR,
1959                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1960                           Depth + 1);
1961       }
1962     }
1963   }
1964   // If the input value is a chrec scev, and we can prove that the value
1965   // did not overflow the old, smaller, value, we can sign extend all of the
1966   // operands (often constants).  This allows analysis of something like
1967   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1968   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1969     if (AR->isAffine()) {
1970       const SCEV *Start = AR->getStart();
1971       const SCEV *Step = AR->getStepRecurrence(*this);
1972       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1973       const Loop *L = AR->getLoop();
1974 
1975       if (!AR->hasNoSignedWrap()) {
1976         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1977         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1978       }
1979 
1980       // If we have special knowledge that this addrec won't overflow,
1981       // we don't need to do any further analysis.
1982       if (AR->hasNoSignedWrap())
1983         return getAddRecExpr(
1984             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1985             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1986 
1987       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1988       // Note that this serves two purposes: It filters out loops that are
1989       // simply not analyzable, and it covers the case where this code is
1990       // being called from within backedge-taken count analysis, such that
1991       // attempting to ask for the backedge-taken count would likely result
1992       // in infinite recursion. In the later case, the analysis code will
1993       // cope with a conservative value, and it will take care to purge
1994       // that value once it has finished.
1995       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1996       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1997         // Manually compute the final value for AR, checking for
1998         // overflow.
1999 
2000         // Check whether the backedge-taken count can be losslessly casted to
2001         // the addrec's type. The count is always unsigned.
2002         const SCEV *CastedMaxBECount =
2003             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2004         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2005             CastedMaxBECount, MaxBECount->getType(), Depth);
2006         if (MaxBECount == RecastedMaxBECount) {
2007           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2008           // Check whether Start+Step*MaxBECount has no signed overflow.
2009           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2010                                         SCEV::FlagAnyWrap, Depth + 1);
2011           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2012                                                           SCEV::FlagAnyWrap,
2013                                                           Depth + 1),
2014                                                WideTy, Depth + 1);
2015           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2016           const SCEV *WideMaxBECount =
2017             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2018           const SCEV *OperandExtendedAdd =
2019             getAddExpr(WideStart,
2020                        getMulExpr(WideMaxBECount,
2021                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2022                                   SCEV::FlagAnyWrap, Depth + 1),
2023                        SCEV::FlagAnyWrap, Depth + 1);
2024           if (SAdd == OperandExtendedAdd) {
2025             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2026             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2027             // Return the expression with the addrec on the outside.
2028             return getAddRecExpr(
2029                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2030                                                          Depth + 1),
2031                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2032                 AR->getNoWrapFlags());
2033           }
2034           // Similar to above, only this time treat the step value as unsigned.
2035           // This covers loops that count up with an unsigned step.
2036           OperandExtendedAdd =
2037             getAddExpr(WideStart,
2038                        getMulExpr(WideMaxBECount,
2039                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2040                                   SCEV::FlagAnyWrap, Depth + 1),
2041                        SCEV::FlagAnyWrap, Depth + 1);
2042           if (SAdd == OperandExtendedAdd) {
2043             // If AR wraps around then
2044             //
2045             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2046             // => SAdd != OperandExtendedAdd
2047             //
2048             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2049             // (SAdd == OperandExtendedAdd => AR is NW)
2050 
2051             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2052 
2053             // Return the expression with the addrec on the outside.
2054             return getAddRecExpr(
2055                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2056                                                          Depth + 1),
2057                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2058                 AR->getNoWrapFlags());
2059           }
2060         }
2061       }
2062 
2063       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2064       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2065       if (AR->hasNoSignedWrap()) {
2066         // Same as nsw case above - duplicated here to avoid a compile time
2067         // issue.  It's not clear that the order of checks does matter, but
2068         // it's one of two issue possible causes for a change which was
2069         // reverted.  Be conservative for the moment.
2070         return getAddRecExpr(
2071             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2072             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2073       }
2074 
2075       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2076       // if D + (C - D + Step * n) could be proven to not signed wrap
2077       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2078       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2079         const APInt &C = SC->getAPInt();
2080         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2081         if (D != 0) {
2082           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2083           const SCEV *SResidual =
2084               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2085           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2086           return getAddExpr(SSExtD, SSExtR,
2087                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2088                             Depth + 1);
2089         }
2090       }
2091 
2092       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2093         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2094         return getAddRecExpr(
2095             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2096             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2097       }
2098     }
2099 
2100   // If the input value is provably positive and we could not simplify
2101   // away the sext build a zext instead.
2102   if (isKnownNonNegative(Op))
2103     return getZeroExtendExpr(Op, Ty, Depth + 1);
2104 
2105   // The cast wasn't folded; create an explicit cast node.
2106   // Recompute the insert position, as it may have been invalidated.
2107   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2108   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2109                                                    Op, Ty);
2110   UniqueSCEVs.InsertNode(S, IP);
2111   addToLoopUseLists(S);
2112   return S;
2113 }
2114 
2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2116 /// unspecified bits out to the given type.
2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2118                                               Type *Ty) {
2119   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2120          "This is not an extending conversion!");
2121   assert(isSCEVable(Ty) &&
2122          "This is not a conversion to a SCEVable type!");
2123   Ty = getEffectiveSCEVType(Ty);
2124 
2125   // Sign-extend negative constants.
2126   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2127     if (SC->getAPInt().isNegative())
2128       return getSignExtendExpr(Op, Ty);
2129 
2130   // Peel off a truncate cast.
2131   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2132     const SCEV *NewOp = T->getOperand();
2133     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2134       return getAnyExtendExpr(NewOp, Ty);
2135     return getTruncateOrNoop(NewOp, Ty);
2136   }
2137 
2138   // Next try a zext cast. If the cast is folded, use it.
2139   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2140   if (!isa<SCEVZeroExtendExpr>(ZExt))
2141     return ZExt;
2142 
2143   // Next try a sext cast. If the cast is folded, use it.
2144   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2145   if (!isa<SCEVSignExtendExpr>(SExt))
2146     return SExt;
2147 
2148   // Force the cast to be folded into the operands of an addrec.
2149   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2150     SmallVector<const SCEV *, 4> Ops;
2151     for (const SCEV *Op : AR->operands())
2152       Ops.push_back(getAnyExtendExpr(Op, Ty));
2153     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2154   }
2155 
2156   // If the expression is obviously signed, use the sext cast value.
2157   if (isa<SCEVSMaxExpr>(Op))
2158     return SExt;
2159 
2160   // Absent any other information, use the zext cast value.
2161   return ZExt;
2162 }
2163 
2164 /// Process the given Ops list, which is a list of operands to be added under
2165 /// the given scale, update the given map. This is a helper function for
2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2167 /// that would form an add expression like this:
2168 ///
2169 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2170 ///
2171 /// where A and B are constants, update the map with these values:
2172 ///
2173 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2174 ///
2175 /// and add 13 + A*B*29 to AccumulatedConstant.
2176 /// This will allow getAddRecExpr to produce this:
2177 ///
2178 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2179 ///
2180 /// This form often exposes folding opportunities that are hidden in
2181 /// the original operand list.
2182 ///
2183 /// Return true iff it appears that any interesting folding opportunities
2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2185 /// the common case where no interesting opportunities are present, and
2186 /// is also used as a check to avoid infinite recursion.
2187 static bool
2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2189                              SmallVectorImpl<const SCEV *> &NewOps,
2190                              APInt &AccumulatedConstant,
2191                              const SCEV *const *Ops, size_t NumOperands,
2192                              const APInt &Scale,
2193                              ScalarEvolution &SE) {
2194   bool Interesting = false;
2195 
2196   // Iterate over the add operands. They are sorted, with constants first.
2197   unsigned i = 0;
2198   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2199     ++i;
2200     // Pull a buried constant out to the outside.
2201     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2202       Interesting = true;
2203     AccumulatedConstant += Scale * C->getAPInt();
2204   }
2205 
2206   // Next comes everything else. We're especially interested in multiplies
2207   // here, but they're in the middle, so just visit the rest with one loop.
2208   for (; i != NumOperands; ++i) {
2209     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2210     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2211       APInt NewScale =
2212           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2213       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2214         // A multiplication of a constant with another add; recurse.
2215         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2216         Interesting |=
2217           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2218                                        Add->op_begin(), Add->getNumOperands(),
2219                                        NewScale, SE);
2220       } else {
2221         // A multiplication of a constant with some other value. Update
2222         // the map.
2223         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2224         const SCEV *Key = SE.getMulExpr(MulOps);
2225         auto Pair = M.insert({Key, NewScale});
2226         if (Pair.second) {
2227           NewOps.push_back(Pair.first->first);
2228         } else {
2229           Pair.first->second += NewScale;
2230           // The map already had an entry for this value, which may indicate
2231           // a folding opportunity.
2232           Interesting = true;
2233         }
2234       }
2235     } else {
2236       // An ordinary operand. Update the map.
2237       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2238           M.insert({Ops[i], Scale});
2239       if (Pair.second) {
2240         NewOps.push_back(Pair.first->first);
2241       } else {
2242         Pair.first->second += Scale;
2243         // The map already had an entry for this value, which may indicate
2244         // a folding opportunity.
2245         Interesting = true;
2246       }
2247     }
2248   }
2249 
2250   return Interesting;
2251 }
2252 
2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2254                                       const SCEV *LHS, const SCEV *RHS) {
2255   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2256                                             SCEV::NoWrapFlags, unsigned);
2257   switch (BinOp) {
2258   default:
2259     llvm_unreachable("Unsupported binary op");
2260   case Instruction::Add:
2261     Operation = &ScalarEvolution::getAddExpr;
2262     break;
2263   case Instruction::Sub:
2264     Operation = &ScalarEvolution::getMinusSCEV;
2265     break;
2266   case Instruction::Mul:
2267     Operation = &ScalarEvolution::getMulExpr;
2268     break;
2269   }
2270 
2271   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2272       Signed ? &ScalarEvolution::getSignExtendExpr
2273              : &ScalarEvolution::getZeroExtendExpr;
2274 
2275   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2276   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2277   auto *WideTy =
2278       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2279 
2280   const SCEV *A = (this->*Extension)(
2281       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2282   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2283                                      (this->*Extension)(RHS, WideTy, 0),
2284                                      SCEV::FlagAnyWrap, 0);
2285   return A == B;
2286 }
2287 
2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2290     const OverflowingBinaryOperator *OBO) {
2291   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2292 
2293   if (OBO->hasNoUnsignedWrap())
2294     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2295   if (OBO->hasNoSignedWrap())
2296     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2297 
2298   bool Deduced = false;
2299 
2300   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2301     return {Flags, Deduced};
2302 
2303   if (OBO->getOpcode() != Instruction::Add &&
2304       OBO->getOpcode() != Instruction::Sub &&
2305       OBO->getOpcode() != Instruction::Mul)
2306     return {Flags, Deduced};
2307 
2308   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2309   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2310 
2311   if (!OBO->hasNoUnsignedWrap() &&
2312       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2313                       /* Signed */ false, LHS, RHS)) {
2314     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2315     Deduced = true;
2316   }
2317 
2318   if (!OBO->hasNoSignedWrap() &&
2319       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2320                       /* Signed */ true, LHS, RHS)) {
2321     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2322     Deduced = true;
2323   }
2324 
2325   return {Flags, Deduced};
2326 }
2327 
2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2329 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2330 // can't-overflow flags for the operation if possible.
2331 static SCEV::NoWrapFlags
2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2333                       const ArrayRef<const SCEV *> Ops,
2334                       SCEV::NoWrapFlags Flags) {
2335   using namespace std::placeholders;
2336 
2337   using OBO = OverflowingBinaryOperator;
2338 
2339   bool CanAnalyze =
2340       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2341   (void)CanAnalyze;
2342   assert(CanAnalyze && "don't call from other places!");
2343 
2344   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2345   SCEV::NoWrapFlags SignOrUnsignWrap =
2346       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2347 
2348   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2349   auto IsKnownNonNegative = [&](const SCEV *S) {
2350     return SE->isKnownNonNegative(S);
2351   };
2352 
2353   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2354     Flags =
2355         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2356 
2357   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2358 
2359   if (SignOrUnsignWrap != SignOrUnsignMask &&
2360       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2361       isa<SCEVConstant>(Ops[0])) {
2362 
2363     auto Opcode = [&] {
2364       switch (Type) {
2365       case scAddExpr:
2366         return Instruction::Add;
2367       case scMulExpr:
2368         return Instruction::Mul;
2369       default:
2370         llvm_unreachable("Unexpected SCEV op.");
2371       }
2372     }();
2373 
2374     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2375 
2376     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2377     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2378       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2379           Opcode, C, OBO::NoSignedWrap);
2380       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2381         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2382     }
2383 
2384     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2385     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2386       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2387           Opcode, C, OBO::NoUnsignedWrap);
2388       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2389         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2390     }
2391   }
2392 
2393   // <0,+,nonnegative><nw> is also nuw
2394   // TODO: Add corresponding nsw case
2395   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2396       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2397       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2398     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2399 
2400   return Flags;
2401 }
2402 
2403 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2404   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2405 }
2406 
2407 /// Get a canonical add expression, or something simpler if possible.
2408 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2409                                         SCEV::NoWrapFlags OrigFlags,
2410                                         unsigned Depth) {
2411   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2412          "only nuw or nsw allowed");
2413   assert(!Ops.empty() && "Cannot get empty add!");
2414   if (Ops.size() == 1) return Ops[0];
2415 #ifndef NDEBUG
2416   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2417   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2418     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2419            "SCEVAddExpr operand types don't match!");
2420   unsigned NumPtrs = count_if(
2421       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2422   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2423 #endif
2424 
2425   // Sort by complexity, this groups all similar expression types together.
2426   GroupByComplexity(Ops, &LI, DT);
2427 
2428   // If there are any constants, fold them together.
2429   unsigned Idx = 0;
2430   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2431     ++Idx;
2432     assert(Idx < Ops.size());
2433     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2434       // We found two constants, fold them together!
2435       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2436       if (Ops.size() == 2) return Ops[0];
2437       Ops.erase(Ops.begin()+1);  // Erase the folded element
2438       LHSC = cast<SCEVConstant>(Ops[0]);
2439     }
2440 
2441     // If we are left with a constant zero being added, strip it off.
2442     if (LHSC->getValue()->isZero()) {
2443       Ops.erase(Ops.begin());
2444       --Idx;
2445     }
2446 
2447     if (Ops.size() == 1) return Ops[0];
2448   }
2449 
2450   // Delay expensive flag strengthening until necessary.
2451   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2452     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2453   };
2454 
2455   // Limit recursion calls depth.
2456   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2457     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2458 
2459   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2460     // Don't strengthen flags if we have no new information.
2461     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2462     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2463       Add->setNoWrapFlags(ComputeFlags(Ops));
2464     return S;
2465   }
2466 
2467   // Okay, check to see if the same value occurs in the operand list more than
2468   // once.  If so, merge them together into an multiply expression.  Since we
2469   // sorted the list, these values are required to be adjacent.
2470   Type *Ty = Ops[0]->getType();
2471   bool FoundMatch = false;
2472   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2473     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2474       // Scan ahead to count how many equal operands there are.
2475       unsigned Count = 2;
2476       while (i+Count != e && Ops[i+Count] == Ops[i])
2477         ++Count;
2478       // Merge the values into a multiply.
2479       const SCEV *Scale = getConstant(Ty, Count);
2480       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2481       if (Ops.size() == Count)
2482         return Mul;
2483       Ops[i] = Mul;
2484       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2485       --i; e -= Count - 1;
2486       FoundMatch = true;
2487     }
2488   if (FoundMatch)
2489     return getAddExpr(Ops, OrigFlags, Depth + 1);
2490 
2491   // Check for truncates. If all the operands are truncated from the same
2492   // type, see if factoring out the truncate would permit the result to be
2493   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2494   // if the contents of the resulting outer trunc fold to something simple.
2495   auto FindTruncSrcType = [&]() -> Type * {
2496     // We're ultimately looking to fold an addrec of truncs and muls of only
2497     // constants and truncs, so if we find any other types of SCEV
2498     // as operands of the addrec then we bail and return nullptr here.
2499     // Otherwise, we return the type of the operand of a trunc that we find.
2500     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2501       return T->getOperand()->getType();
2502     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2503       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2504       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2505         return T->getOperand()->getType();
2506     }
2507     return nullptr;
2508   };
2509   if (auto *SrcType = FindTruncSrcType()) {
2510     SmallVector<const SCEV *, 8> LargeOps;
2511     bool Ok = true;
2512     // Check all the operands to see if they can be represented in the
2513     // source type of the truncate.
2514     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2515       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2516         if (T->getOperand()->getType() != SrcType) {
2517           Ok = false;
2518           break;
2519         }
2520         LargeOps.push_back(T->getOperand());
2521       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2522         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2523       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2524         SmallVector<const SCEV *, 8> LargeMulOps;
2525         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2526           if (const SCEVTruncateExpr *T =
2527                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2528             if (T->getOperand()->getType() != SrcType) {
2529               Ok = false;
2530               break;
2531             }
2532             LargeMulOps.push_back(T->getOperand());
2533           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2534             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2535           } else {
2536             Ok = false;
2537             break;
2538           }
2539         }
2540         if (Ok)
2541           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2542       } else {
2543         Ok = false;
2544         break;
2545       }
2546     }
2547     if (Ok) {
2548       // Evaluate the expression in the larger type.
2549       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2550       // If it folds to something simple, use it. Otherwise, don't.
2551       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2552         return getTruncateExpr(Fold, Ty);
2553     }
2554   }
2555 
2556   if (Ops.size() == 2) {
2557     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2558     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2559     // C1).
2560     const SCEV *A = Ops[0];
2561     const SCEV *B = Ops[1];
2562     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2563     auto *C = dyn_cast<SCEVConstant>(A);
2564     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2565       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2566       auto C2 = C->getAPInt();
2567       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2568 
2569       APInt ConstAdd = C1 + C2;
2570       auto AddFlags = AddExpr->getNoWrapFlags();
2571       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2572       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2573           ConstAdd.ule(C1)) {
2574         PreservedFlags =
2575             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2576       }
2577 
2578       // Adding a constant with the same sign and small magnitude is NSW, if the
2579       // original AddExpr was NSW.
2580       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2581           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2582           ConstAdd.abs().ule(C1.abs())) {
2583         PreservedFlags =
2584             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2585       }
2586 
2587       if (PreservedFlags != SCEV::FlagAnyWrap) {
2588         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2589         NewOps[0] = getConstant(ConstAdd);
2590         return getAddExpr(NewOps, PreservedFlags);
2591       }
2592     }
2593   }
2594 
2595   // Skip past any other cast SCEVs.
2596   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2597     ++Idx;
2598 
2599   // If there are add operands they would be next.
2600   if (Idx < Ops.size()) {
2601     bool DeletedAdd = false;
2602     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2603     // common NUW flag for expression after inlining. Other flags cannot be
2604     // preserved, because they may depend on the original order of operations.
2605     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2606     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2607       if (Ops.size() > AddOpsInlineThreshold ||
2608           Add->getNumOperands() > AddOpsInlineThreshold)
2609         break;
2610       // If we have an add, expand the add operands onto the end of the operands
2611       // list.
2612       Ops.erase(Ops.begin()+Idx);
2613       Ops.append(Add->op_begin(), Add->op_end());
2614       DeletedAdd = true;
2615       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2616     }
2617 
2618     // If we deleted at least one add, we added operands to the end of the list,
2619     // and they are not necessarily sorted.  Recurse to resort and resimplify
2620     // any operands we just acquired.
2621     if (DeletedAdd)
2622       return getAddExpr(Ops, CommonFlags, Depth + 1);
2623   }
2624 
2625   // Skip over the add expression until we get to a multiply.
2626   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2627     ++Idx;
2628 
2629   // Check to see if there are any folding opportunities present with
2630   // operands multiplied by constant values.
2631   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2632     uint64_t BitWidth = getTypeSizeInBits(Ty);
2633     DenseMap<const SCEV *, APInt> M;
2634     SmallVector<const SCEV *, 8> NewOps;
2635     APInt AccumulatedConstant(BitWidth, 0);
2636     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2637                                      Ops.data(), Ops.size(),
2638                                      APInt(BitWidth, 1), *this)) {
2639       struct APIntCompare {
2640         bool operator()(const APInt &LHS, const APInt &RHS) const {
2641           return LHS.ult(RHS);
2642         }
2643       };
2644 
2645       // Some interesting folding opportunity is present, so its worthwhile to
2646       // re-generate the operands list. Group the operands by constant scale,
2647       // to avoid multiplying by the same constant scale multiple times.
2648       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2649       for (const SCEV *NewOp : NewOps)
2650         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2651       // Re-generate the operands list.
2652       Ops.clear();
2653       if (AccumulatedConstant != 0)
2654         Ops.push_back(getConstant(AccumulatedConstant));
2655       for (auto &MulOp : MulOpLists) {
2656         if (MulOp.first == 1) {
2657           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2658         } else if (MulOp.first != 0) {
2659           Ops.push_back(getMulExpr(
2660               getConstant(MulOp.first),
2661               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2662               SCEV::FlagAnyWrap, Depth + 1));
2663         }
2664       }
2665       if (Ops.empty())
2666         return getZero(Ty);
2667       if (Ops.size() == 1)
2668         return Ops[0];
2669       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2670     }
2671   }
2672 
2673   // If we are adding something to a multiply expression, make sure the
2674   // something is not already an operand of the multiply.  If so, merge it into
2675   // the multiply.
2676   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2677     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2678     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2679       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2680       if (isa<SCEVConstant>(MulOpSCEV))
2681         continue;
2682       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2683         if (MulOpSCEV == Ops[AddOp]) {
2684           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2685           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2686           if (Mul->getNumOperands() != 2) {
2687             // If the multiply has more than two operands, we must get the
2688             // Y*Z term.
2689             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2690                                                 Mul->op_begin()+MulOp);
2691             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2692             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2693           }
2694           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2695           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2696           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2697                                             SCEV::FlagAnyWrap, Depth + 1);
2698           if (Ops.size() == 2) return OuterMul;
2699           if (AddOp < Idx) {
2700             Ops.erase(Ops.begin()+AddOp);
2701             Ops.erase(Ops.begin()+Idx-1);
2702           } else {
2703             Ops.erase(Ops.begin()+Idx);
2704             Ops.erase(Ops.begin()+AddOp-1);
2705           }
2706           Ops.push_back(OuterMul);
2707           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2708         }
2709 
2710       // Check this multiply against other multiplies being added together.
2711       for (unsigned OtherMulIdx = Idx+1;
2712            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2713            ++OtherMulIdx) {
2714         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2715         // If MulOp occurs in OtherMul, we can fold the two multiplies
2716         // together.
2717         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2718              OMulOp != e; ++OMulOp)
2719           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2720             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2721             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2722             if (Mul->getNumOperands() != 2) {
2723               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2724                                                   Mul->op_begin()+MulOp);
2725               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2726               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2727             }
2728             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2729             if (OtherMul->getNumOperands() != 2) {
2730               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2731                                                   OtherMul->op_begin()+OMulOp);
2732               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2733               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2734             }
2735             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2736             const SCEV *InnerMulSum =
2737                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2738             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2739                                               SCEV::FlagAnyWrap, Depth + 1);
2740             if (Ops.size() == 2) return OuterMul;
2741             Ops.erase(Ops.begin()+Idx);
2742             Ops.erase(Ops.begin()+OtherMulIdx-1);
2743             Ops.push_back(OuterMul);
2744             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2745           }
2746       }
2747     }
2748   }
2749 
2750   // If there are any add recurrences in the operands list, see if any other
2751   // added values are loop invariant.  If so, we can fold them into the
2752   // recurrence.
2753   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2754     ++Idx;
2755 
2756   // Scan over all recurrences, trying to fold loop invariants into them.
2757   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2758     // Scan all of the other operands to this add and add them to the vector if
2759     // they are loop invariant w.r.t. the recurrence.
2760     SmallVector<const SCEV *, 8> LIOps;
2761     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2762     const Loop *AddRecLoop = AddRec->getLoop();
2763     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2764       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2765         LIOps.push_back(Ops[i]);
2766         Ops.erase(Ops.begin()+i);
2767         --i; --e;
2768       }
2769 
2770     // If we found some loop invariants, fold them into the recurrence.
2771     if (!LIOps.empty()) {
2772       // Compute nowrap flags for the addition of the loop-invariant ops and
2773       // the addrec. Temporarily push it as an operand for that purpose.
2774       LIOps.push_back(AddRec);
2775       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2776       LIOps.pop_back();
2777 
2778       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2779       LIOps.push_back(AddRec->getStart());
2780 
2781       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2782       // This follows from the fact that the no-wrap flags on the outer add
2783       // expression are applicable on the 0th iteration, when the add recurrence
2784       // will be equal to its start value.
2785       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2786 
2787       // Build the new addrec. Propagate the NUW and NSW flags if both the
2788       // outer add and the inner addrec are guaranteed to have no overflow.
2789       // Always propagate NW.
2790       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2791       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2792 
2793       // If all of the other operands were loop invariant, we are done.
2794       if (Ops.size() == 1) return NewRec;
2795 
2796       // Otherwise, add the folded AddRec by the non-invariant parts.
2797       for (unsigned i = 0;; ++i)
2798         if (Ops[i] == AddRec) {
2799           Ops[i] = NewRec;
2800           break;
2801         }
2802       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2803     }
2804 
2805     // Okay, if there weren't any loop invariants to be folded, check to see if
2806     // there are multiple AddRec's with the same loop induction variable being
2807     // added together.  If so, we can fold them.
2808     for (unsigned OtherIdx = Idx+1;
2809          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2810          ++OtherIdx) {
2811       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2812       // so that the 1st found AddRecExpr is dominated by all others.
2813       assert(DT.dominates(
2814            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2815            AddRec->getLoop()->getHeader()) &&
2816         "AddRecExprs are not sorted in reverse dominance order?");
2817       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2818         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2819         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2820         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2821              ++OtherIdx) {
2822           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2823           if (OtherAddRec->getLoop() == AddRecLoop) {
2824             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2825                  i != e; ++i) {
2826               if (i >= AddRecOps.size()) {
2827                 AddRecOps.append(OtherAddRec->op_begin()+i,
2828                                  OtherAddRec->op_end());
2829                 break;
2830               }
2831               SmallVector<const SCEV *, 2> TwoOps = {
2832                   AddRecOps[i], OtherAddRec->getOperand(i)};
2833               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2834             }
2835             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2836           }
2837         }
2838         // Step size has changed, so we cannot guarantee no self-wraparound.
2839         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2840         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2841       }
2842     }
2843 
2844     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2845     // next one.
2846   }
2847 
2848   // Okay, it looks like we really DO need an add expr.  Check to see if we
2849   // already have one, otherwise create a new one.
2850   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2851 }
2852 
2853 const SCEV *
2854 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2855                                     SCEV::NoWrapFlags Flags) {
2856   FoldingSetNodeID ID;
2857   ID.AddInteger(scAddExpr);
2858   for (const SCEV *Op : Ops)
2859     ID.AddPointer(Op);
2860   void *IP = nullptr;
2861   SCEVAddExpr *S =
2862       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2863   if (!S) {
2864     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2865     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2866     S = new (SCEVAllocator)
2867         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2868     UniqueSCEVs.InsertNode(S, IP);
2869     addToLoopUseLists(S);
2870   }
2871   S->setNoWrapFlags(Flags);
2872   return S;
2873 }
2874 
2875 const SCEV *
2876 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2877                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2878   FoldingSetNodeID ID;
2879   ID.AddInteger(scAddRecExpr);
2880   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2881     ID.AddPointer(Ops[i]);
2882   ID.AddPointer(L);
2883   void *IP = nullptr;
2884   SCEVAddRecExpr *S =
2885       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2886   if (!S) {
2887     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2888     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2889     S = new (SCEVAllocator)
2890         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2891     UniqueSCEVs.InsertNode(S, IP);
2892     addToLoopUseLists(S);
2893   }
2894   setNoWrapFlags(S, Flags);
2895   return S;
2896 }
2897 
2898 const SCEV *
2899 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2900                                     SCEV::NoWrapFlags Flags) {
2901   FoldingSetNodeID ID;
2902   ID.AddInteger(scMulExpr);
2903   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2904     ID.AddPointer(Ops[i]);
2905   void *IP = nullptr;
2906   SCEVMulExpr *S =
2907     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2908   if (!S) {
2909     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2910     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2911     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2912                                         O, Ops.size());
2913     UniqueSCEVs.InsertNode(S, IP);
2914     addToLoopUseLists(S);
2915   }
2916   S->setNoWrapFlags(Flags);
2917   return S;
2918 }
2919 
2920 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2921   uint64_t k = i*j;
2922   if (j > 1 && k / j != i) Overflow = true;
2923   return k;
2924 }
2925 
2926 /// Compute the result of "n choose k", the binomial coefficient.  If an
2927 /// intermediate computation overflows, Overflow will be set and the return will
2928 /// be garbage. Overflow is not cleared on absence of overflow.
2929 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2930   // We use the multiplicative formula:
2931   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2932   // At each iteration, we take the n-th term of the numeral and divide by the
2933   // (k-n)th term of the denominator.  This division will always produce an
2934   // integral result, and helps reduce the chance of overflow in the
2935   // intermediate computations. However, we can still overflow even when the
2936   // final result would fit.
2937 
2938   if (n == 0 || n == k) return 1;
2939   if (k > n) return 0;
2940 
2941   if (k > n/2)
2942     k = n-k;
2943 
2944   uint64_t r = 1;
2945   for (uint64_t i = 1; i <= k; ++i) {
2946     r = umul_ov(r, n-(i-1), Overflow);
2947     r /= i;
2948   }
2949   return r;
2950 }
2951 
2952 /// Determine if any of the operands in this SCEV are a constant or if
2953 /// any of the add or multiply expressions in this SCEV contain a constant.
2954 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2955   struct FindConstantInAddMulChain {
2956     bool FoundConstant = false;
2957 
2958     bool follow(const SCEV *S) {
2959       FoundConstant |= isa<SCEVConstant>(S);
2960       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2961     }
2962 
2963     bool isDone() const {
2964       return FoundConstant;
2965     }
2966   };
2967 
2968   FindConstantInAddMulChain F;
2969   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2970   ST.visitAll(StartExpr);
2971   return F.FoundConstant;
2972 }
2973 
2974 /// Get a canonical multiply expression, or something simpler if possible.
2975 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2976                                         SCEV::NoWrapFlags OrigFlags,
2977                                         unsigned Depth) {
2978   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2979          "only nuw or nsw allowed");
2980   assert(!Ops.empty() && "Cannot get empty mul!");
2981   if (Ops.size() == 1) return Ops[0];
2982 #ifndef NDEBUG
2983   Type *ETy = Ops[0]->getType();
2984   assert(!ETy->isPointerTy());
2985   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2986     assert(Ops[i]->getType() == ETy &&
2987            "SCEVMulExpr operand types don't match!");
2988 #endif
2989 
2990   // Sort by complexity, this groups all similar expression types together.
2991   GroupByComplexity(Ops, &LI, DT);
2992 
2993   // If there are any constants, fold them together.
2994   unsigned Idx = 0;
2995   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2996     ++Idx;
2997     assert(Idx < Ops.size());
2998     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2999       // We found two constants, fold them together!
3000       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3001       if (Ops.size() == 2) return Ops[0];
3002       Ops.erase(Ops.begin()+1);  // Erase the folded element
3003       LHSC = cast<SCEVConstant>(Ops[0]);
3004     }
3005 
3006     // If we have a multiply of zero, it will always be zero.
3007     if (LHSC->getValue()->isZero())
3008       return LHSC;
3009 
3010     // If we are left with a constant one being multiplied, strip it off.
3011     if (LHSC->getValue()->isOne()) {
3012       Ops.erase(Ops.begin());
3013       --Idx;
3014     }
3015 
3016     if (Ops.size() == 1)
3017       return Ops[0];
3018   }
3019 
3020   // Delay expensive flag strengthening until necessary.
3021   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3022     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3023   };
3024 
3025   // Limit recursion calls depth.
3026   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3027     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3028 
3029   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3030     // Don't strengthen flags if we have no new information.
3031     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3032     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3033       Mul->setNoWrapFlags(ComputeFlags(Ops));
3034     return S;
3035   }
3036 
3037   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3038     if (Ops.size() == 2) {
3039       // C1*(C2+V) -> C1*C2 + C1*V
3040       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3041         // If any of Add's ops are Adds or Muls with a constant, apply this
3042         // transformation as well.
3043         //
3044         // TODO: There are some cases where this transformation is not
3045         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3046         // this transformation should be narrowed down.
3047         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3048           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3049                                        SCEV::FlagAnyWrap, Depth + 1),
3050                             getMulExpr(LHSC, Add->getOperand(1),
3051                                        SCEV::FlagAnyWrap, Depth + 1),
3052                             SCEV::FlagAnyWrap, Depth + 1);
3053 
3054       if (Ops[0]->isAllOnesValue()) {
3055         // If we have a mul by -1 of an add, try distributing the -1 among the
3056         // add operands.
3057         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3058           SmallVector<const SCEV *, 4> NewOps;
3059           bool AnyFolded = false;
3060           for (const SCEV *AddOp : Add->operands()) {
3061             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3062                                          Depth + 1);
3063             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3064             NewOps.push_back(Mul);
3065           }
3066           if (AnyFolded)
3067             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3068         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3069           // Negation preserves a recurrence's no self-wrap property.
3070           SmallVector<const SCEV *, 4> Operands;
3071           for (const SCEV *AddRecOp : AddRec->operands())
3072             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3073                                           Depth + 1));
3074 
3075           return getAddRecExpr(Operands, AddRec->getLoop(),
3076                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3077         }
3078       }
3079     }
3080   }
3081 
3082   // Skip over the add expression until we get to a multiply.
3083   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3084     ++Idx;
3085 
3086   // If there are mul operands inline them all into this expression.
3087   if (Idx < Ops.size()) {
3088     bool DeletedMul = false;
3089     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3090       if (Ops.size() > MulOpsInlineThreshold)
3091         break;
3092       // If we have an mul, expand the mul operands onto the end of the
3093       // operands list.
3094       Ops.erase(Ops.begin()+Idx);
3095       Ops.append(Mul->op_begin(), Mul->op_end());
3096       DeletedMul = true;
3097     }
3098 
3099     // If we deleted at least one mul, we added operands to the end of the
3100     // list, and they are not necessarily sorted.  Recurse to resort and
3101     // resimplify any operands we just acquired.
3102     if (DeletedMul)
3103       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3104   }
3105 
3106   // If there are any add recurrences in the operands list, see if any other
3107   // added values are loop invariant.  If so, we can fold them into the
3108   // recurrence.
3109   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3110     ++Idx;
3111 
3112   // Scan over all recurrences, trying to fold loop invariants into them.
3113   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3114     // Scan all of the other operands to this mul and add them to the vector
3115     // if they are loop invariant w.r.t. the recurrence.
3116     SmallVector<const SCEV *, 8> LIOps;
3117     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3118     const Loop *AddRecLoop = AddRec->getLoop();
3119     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3120       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3121         LIOps.push_back(Ops[i]);
3122         Ops.erase(Ops.begin()+i);
3123         --i; --e;
3124       }
3125 
3126     // If we found some loop invariants, fold them into the recurrence.
3127     if (!LIOps.empty()) {
3128       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3129       SmallVector<const SCEV *, 4> NewOps;
3130       NewOps.reserve(AddRec->getNumOperands());
3131       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3132       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3133         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3134                                     SCEV::FlagAnyWrap, Depth + 1));
3135 
3136       // Build the new addrec. Propagate the NUW and NSW flags if both the
3137       // outer mul and the inner addrec are guaranteed to have no overflow.
3138       //
3139       // No self-wrap cannot be guaranteed after changing the step size, but
3140       // will be inferred if either NUW or NSW is true.
3141       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3142       const SCEV *NewRec = getAddRecExpr(
3143           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3144 
3145       // If all of the other operands were loop invariant, we are done.
3146       if (Ops.size() == 1) return NewRec;
3147 
3148       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3149       for (unsigned i = 0;; ++i)
3150         if (Ops[i] == AddRec) {
3151           Ops[i] = NewRec;
3152           break;
3153         }
3154       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3155     }
3156 
3157     // Okay, if there weren't any loop invariants to be folded, check to see
3158     // if there are multiple AddRec's with the same loop induction variable
3159     // being multiplied together.  If so, we can fold them.
3160 
3161     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3162     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3163     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3164     //   ]]],+,...up to x=2n}.
3165     // Note that the arguments to choose() are always integers with values
3166     // known at compile time, never SCEV objects.
3167     //
3168     // The implementation avoids pointless extra computations when the two
3169     // addrec's are of different length (mathematically, it's equivalent to
3170     // an infinite stream of zeros on the right).
3171     bool OpsModified = false;
3172     for (unsigned OtherIdx = Idx+1;
3173          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3174          ++OtherIdx) {
3175       const SCEVAddRecExpr *OtherAddRec =
3176         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3177       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3178         continue;
3179 
3180       // Limit max number of arguments to avoid creation of unreasonably big
3181       // SCEVAddRecs with very complex operands.
3182       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3183           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3184         continue;
3185 
3186       bool Overflow = false;
3187       Type *Ty = AddRec->getType();
3188       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3189       SmallVector<const SCEV*, 7> AddRecOps;
3190       for (int x = 0, xe = AddRec->getNumOperands() +
3191              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3192         SmallVector <const SCEV *, 7> SumOps;
3193         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3194           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3195           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3196                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3197                z < ze && !Overflow; ++z) {
3198             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3199             uint64_t Coeff;
3200             if (LargerThan64Bits)
3201               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3202             else
3203               Coeff = Coeff1*Coeff2;
3204             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3205             const SCEV *Term1 = AddRec->getOperand(y-z);
3206             const SCEV *Term2 = OtherAddRec->getOperand(z);
3207             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3208                                         SCEV::FlagAnyWrap, Depth + 1));
3209           }
3210         }
3211         if (SumOps.empty())
3212           SumOps.push_back(getZero(Ty));
3213         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3214       }
3215       if (!Overflow) {
3216         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3217                                               SCEV::FlagAnyWrap);
3218         if (Ops.size() == 2) return NewAddRec;
3219         Ops[Idx] = NewAddRec;
3220         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3221         OpsModified = true;
3222         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3223         if (!AddRec)
3224           break;
3225       }
3226     }
3227     if (OpsModified)
3228       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3229 
3230     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3231     // next one.
3232   }
3233 
3234   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3235   // already have one, otherwise create a new one.
3236   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3237 }
3238 
3239 /// Represents an unsigned remainder expression based on unsigned division.
3240 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3241                                          const SCEV *RHS) {
3242   assert(getEffectiveSCEVType(LHS->getType()) ==
3243          getEffectiveSCEVType(RHS->getType()) &&
3244          "SCEVURemExpr operand types don't match!");
3245 
3246   // Short-circuit easy cases
3247   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3248     // If constant is one, the result is trivial
3249     if (RHSC->getValue()->isOne())
3250       return getZero(LHS->getType()); // X urem 1 --> 0
3251 
3252     // If constant is a power of two, fold into a zext(trunc(LHS)).
3253     if (RHSC->getAPInt().isPowerOf2()) {
3254       Type *FullTy = LHS->getType();
3255       Type *TruncTy =
3256           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3257       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3258     }
3259   }
3260 
3261   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3262   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3263   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3264   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3265 }
3266 
3267 /// Get a canonical unsigned division expression, or something simpler if
3268 /// possible.
3269 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3270                                          const SCEV *RHS) {
3271   assert(!LHS->getType()->isPointerTy() &&
3272          "SCEVUDivExpr operand can't be pointer!");
3273   assert(LHS->getType() == RHS->getType() &&
3274          "SCEVUDivExpr operand types don't match!");
3275 
3276   FoldingSetNodeID ID;
3277   ID.AddInteger(scUDivExpr);
3278   ID.AddPointer(LHS);
3279   ID.AddPointer(RHS);
3280   void *IP = nullptr;
3281   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3282     return S;
3283 
3284   // 0 udiv Y == 0
3285   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3286     if (LHSC->getValue()->isZero())
3287       return LHS;
3288 
3289   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3290     if (RHSC->getValue()->isOne())
3291       return LHS;                               // X udiv 1 --> x
3292     // If the denominator is zero, the result of the udiv is undefined. Don't
3293     // try to analyze it, because the resolution chosen here may differ from
3294     // the resolution chosen in other parts of the compiler.
3295     if (!RHSC->getValue()->isZero()) {
3296       // Determine if the division can be folded into the operands of
3297       // its operands.
3298       // TODO: Generalize this to non-constants by using known-bits information.
3299       Type *Ty = LHS->getType();
3300       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3301       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3302       // For non-power-of-two values, effectively round the value up to the
3303       // nearest power of two.
3304       if (!RHSC->getAPInt().isPowerOf2())
3305         ++MaxShiftAmt;
3306       IntegerType *ExtTy =
3307         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3308       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3309         if (const SCEVConstant *Step =
3310             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3311           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3312           const APInt &StepInt = Step->getAPInt();
3313           const APInt &DivInt = RHSC->getAPInt();
3314           if (!StepInt.urem(DivInt) &&
3315               getZeroExtendExpr(AR, ExtTy) ==
3316               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3317                             getZeroExtendExpr(Step, ExtTy),
3318                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3319             SmallVector<const SCEV *, 4> Operands;
3320             for (const SCEV *Op : AR->operands())
3321               Operands.push_back(getUDivExpr(Op, RHS));
3322             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3323           }
3324           /// Get a canonical UDivExpr for a recurrence.
3325           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3326           // We can currently only fold X%N if X is constant.
3327           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3328           if (StartC && !DivInt.urem(StepInt) &&
3329               getZeroExtendExpr(AR, ExtTy) ==
3330               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3331                             getZeroExtendExpr(Step, ExtTy),
3332                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3333             const APInt &StartInt = StartC->getAPInt();
3334             const APInt &StartRem = StartInt.urem(StepInt);
3335             if (StartRem != 0) {
3336               const SCEV *NewLHS =
3337                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3338                                 AR->getLoop(), SCEV::FlagNW);
3339               if (LHS != NewLHS) {
3340                 LHS = NewLHS;
3341 
3342                 // Reset the ID to include the new LHS, and check if it is
3343                 // already cached.
3344                 ID.clear();
3345                 ID.AddInteger(scUDivExpr);
3346                 ID.AddPointer(LHS);
3347                 ID.AddPointer(RHS);
3348                 IP = nullptr;
3349                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3350                   return S;
3351               }
3352             }
3353           }
3354         }
3355       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3356       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3357         SmallVector<const SCEV *, 4> Operands;
3358         for (const SCEV *Op : M->operands())
3359           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3360         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3361           // Find an operand that's safely divisible.
3362           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3363             const SCEV *Op = M->getOperand(i);
3364             const SCEV *Div = getUDivExpr(Op, RHSC);
3365             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3366               Operands = SmallVector<const SCEV *, 4>(M->operands());
3367               Operands[i] = Div;
3368               return getMulExpr(Operands);
3369             }
3370           }
3371       }
3372 
3373       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3374       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3375         if (auto *DivisorConstant =
3376                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3377           bool Overflow = false;
3378           APInt NewRHS =
3379               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3380           if (Overflow) {
3381             return getConstant(RHSC->getType(), 0, false);
3382           }
3383           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3384         }
3385       }
3386 
3387       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3388       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3389         SmallVector<const SCEV *, 4> Operands;
3390         for (const SCEV *Op : A->operands())
3391           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3392         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3393           Operands.clear();
3394           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3395             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3396             if (isa<SCEVUDivExpr>(Op) ||
3397                 getMulExpr(Op, RHS) != A->getOperand(i))
3398               break;
3399             Operands.push_back(Op);
3400           }
3401           if (Operands.size() == A->getNumOperands())
3402             return getAddExpr(Operands);
3403         }
3404       }
3405 
3406       // Fold if both operands are constant.
3407       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3408         Constant *LHSCV = LHSC->getValue();
3409         Constant *RHSCV = RHSC->getValue();
3410         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3411                                                                    RHSCV)));
3412       }
3413     }
3414   }
3415 
3416   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3417   // changes). Make sure we get a new one.
3418   IP = nullptr;
3419   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3420   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3421                                              LHS, RHS);
3422   UniqueSCEVs.InsertNode(S, IP);
3423   addToLoopUseLists(S);
3424   return S;
3425 }
3426 
3427 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3428   APInt A = C1->getAPInt().abs();
3429   APInt B = C2->getAPInt().abs();
3430   uint32_t ABW = A.getBitWidth();
3431   uint32_t BBW = B.getBitWidth();
3432 
3433   if (ABW > BBW)
3434     B = B.zext(ABW);
3435   else if (ABW < BBW)
3436     A = A.zext(BBW);
3437 
3438   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3439 }
3440 
3441 /// Get a canonical unsigned division expression, or something simpler if
3442 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3443 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3444 /// it's not exact because the udiv may be clearing bits.
3445 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3446                                               const SCEV *RHS) {
3447   // TODO: we could try to find factors in all sorts of things, but for now we
3448   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3449   // end of this file for inspiration.
3450 
3451   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3452   if (!Mul || !Mul->hasNoUnsignedWrap())
3453     return getUDivExpr(LHS, RHS);
3454 
3455   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3456     // If the mulexpr multiplies by a constant, then that constant must be the
3457     // first element of the mulexpr.
3458     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3459       if (LHSCst == RHSCst) {
3460         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3461         return getMulExpr(Operands);
3462       }
3463 
3464       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3465       // that there's a factor provided by one of the other terms. We need to
3466       // check.
3467       APInt Factor = gcd(LHSCst, RHSCst);
3468       if (!Factor.isIntN(1)) {
3469         LHSCst =
3470             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3471         RHSCst =
3472             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3473         SmallVector<const SCEV *, 2> Operands;
3474         Operands.push_back(LHSCst);
3475         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3476         LHS = getMulExpr(Operands);
3477         RHS = RHSCst;
3478         Mul = dyn_cast<SCEVMulExpr>(LHS);
3479         if (!Mul)
3480           return getUDivExactExpr(LHS, RHS);
3481       }
3482     }
3483   }
3484 
3485   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3486     if (Mul->getOperand(i) == RHS) {
3487       SmallVector<const SCEV *, 2> Operands;
3488       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3489       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3490       return getMulExpr(Operands);
3491     }
3492   }
3493 
3494   return getUDivExpr(LHS, RHS);
3495 }
3496 
3497 /// Get an add recurrence expression for the specified loop.  Simplify the
3498 /// expression as much as possible.
3499 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3500                                            const Loop *L,
3501                                            SCEV::NoWrapFlags Flags) {
3502   SmallVector<const SCEV *, 4> Operands;
3503   Operands.push_back(Start);
3504   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3505     if (StepChrec->getLoop() == L) {
3506       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3507       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3508     }
3509 
3510   Operands.push_back(Step);
3511   return getAddRecExpr(Operands, L, Flags);
3512 }
3513 
3514 /// Get an add recurrence expression for the specified loop.  Simplify the
3515 /// expression as much as possible.
3516 const SCEV *
3517 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3518                                const Loop *L, SCEV::NoWrapFlags Flags) {
3519   if (Operands.size() == 1) return Operands[0];
3520 #ifndef NDEBUG
3521   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3522   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3523     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3524            "SCEVAddRecExpr operand types don't match!");
3525     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3526   }
3527   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3528     assert(isLoopInvariant(Operands[i], L) &&
3529            "SCEVAddRecExpr operand is not loop-invariant!");
3530 #endif
3531 
3532   if (Operands.back()->isZero()) {
3533     Operands.pop_back();
3534     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3535   }
3536 
3537   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3538   // use that information to infer NUW and NSW flags. However, computing a
3539   // BE count requires calling getAddRecExpr, so we may not yet have a
3540   // meaningful BE count at this point (and if we don't, we'd be stuck
3541   // with a SCEVCouldNotCompute as the cached BE count).
3542 
3543   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3544 
3545   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3546   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3547     const Loop *NestedLoop = NestedAR->getLoop();
3548     if (L->contains(NestedLoop)
3549             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3550             : (!NestedLoop->contains(L) &&
3551                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3552       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3553       Operands[0] = NestedAR->getStart();
3554       // AddRecs require their operands be loop-invariant with respect to their
3555       // loops. Don't perform this transformation if it would break this
3556       // requirement.
3557       bool AllInvariant = all_of(
3558           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3559 
3560       if (AllInvariant) {
3561         // Create a recurrence for the outer loop with the same step size.
3562         //
3563         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3564         // inner recurrence has the same property.
3565         SCEV::NoWrapFlags OuterFlags =
3566           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3567 
3568         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3569         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3570           return isLoopInvariant(Op, NestedLoop);
3571         });
3572 
3573         if (AllInvariant) {
3574           // Ok, both add recurrences are valid after the transformation.
3575           //
3576           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3577           // the outer recurrence has the same property.
3578           SCEV::NoWrapFlags InnerFlags =
3579             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3580           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3581         }
3582       }
3583       // Reset Operands to its original state.
3584       Operands[0] = NestedAR;
3585     }
3586   }
3587 
3588   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3589   // already have one, otherwise create a new one.
3590   return getOrCreateAddRecExpr(Operands, L, Flags);
3591 }
3592 
3593 const SCEV *
3594 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3595                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3596   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3597   // getSCEV(Base)->getType() has the same address space as Base->getType()
3598   // because SCEV::getType() preserves the address space.
3599   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3600   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3601   // instruction to its SCEV, because the Instruction may be guarded by control
3602   // flow and the no-overflow bits may not be valid for the expression in any
3603   // context. This can be fixed similarly to how these flags are handled for
3604   // adds.
3605   SCEV::NoWrapFlags OffsetWrap =
3606       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3607 
3608   Type *CurTy = GEP->getType();
3609   bool FirstIter = true;
3610   SmallVector<const SCEV *, 4> Offsets;
3611   for (const SCEV *IndexExpr : IndexExprs) {
3612     // Compute the (potentially symbolic) offset in bytes for this index.
3613     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3614       // For a struct, add the member offset.
3615       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3616       unsigned FieldNo = Index->getZExtValue();
3617       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3618       Offsets.push_back(FieldOffset);
3619 
3620       // Update CurTy to the type of the field at Index.
3621       CurTy = STy->getTypeAtIndex(Index);
3622     } else {
3623       // Update CurTy to its element type.
3624       if (FirstIter) {
3625         assert(isa<PointerType>(CurTy) &&
3626                "The first index of a GEP indexes a pointer");
3627         CurTy = GEP->getSourceElementType();
3628         FirstIter = false;
3629       } else {
3630         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3631       }
3632       // For an array, add the element offset, explicitly scaled.
3633       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3634       // Getelementptr indices are signed.
3635       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3636 
3637       // Multiply the index by the element size to compute the element offset.
3638       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3639       Offsets.push_back(LocalOffset);
3640     }
3641   }
3642 
3643   // Handle degenerate case of GEP without offsets.
3644   if (Offsets.empty())
3645     return BaseExpr;
3646 
3647   // Add the offsets together, assuming nsw if inbounds.
3648   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3649   // Add the base address and the offset. We cannot use the nsw flag, as the
3650   // base address is unsigned. However, if we know that the offset is
3651   // non-negative, we can use nuw.
3652   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3653                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3654   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3655   assert(BaseExpr->getType() == GEPExpr->getType() &&
3656          "GEP should not change type mid-flight.");
3657   return GEPExpr;
3658 }
3659 
3660 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3661                                                ArrayRef<const SCEV *> Ops) {
3662   FoldingSetNodeID ID;
3663   ID.AddInteger(SCEVType);
3664   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3665     ID.AddPointer(Ops[i]);
3666   void *IP = nullptr;
3667   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3668 }
3669 
3670 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3671   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3672   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3673 }
3674 
3675 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3676                                            SmallVectorImpl<const SCEV *> &Ops) {
3677   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3678   if (Ops.size() == 1) return Ops[0];
3679 #ifndef NDEBUG
3680   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3681   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3682     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3683            "Operand types don't match!");
3684     assert(Ops[0]->getType()->isPointerTy() ==
3685                Ops[i]->getType()->isPointerTy() &&
3686            "min/max should be consistently pointerish");
3687   }
3688 #endif
3689 
3690   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3691   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3692 
3693   // Sort by complexity, this groups all similar expression types together.
3694   GroupByComplexity(Ops, &LI, DT);
3695 
3696   // Check if we have created the same expression before.
3697   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3698     return S;
3699   }
3700 
3701   // If there are any constants, fold them together.
3702   unsigned Idx = 0;
3703   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3704     ++Idx;
3705     assert(Idx < Ops.size());
3706     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3707       if (Kind == scSMaxExpr)
3708         return APIntOps::smax(LHS, RHS);
3709       else if (Kind == scSMinExpr)
3710         return APIntOps::smin(LHS, RHS);
3711       else if (Kind == scUMaxExpr)
3712         return APIntOps::umax(LHS, RHS);
3713       else if (Kind == scUMinExpr)
3714         return APIntOps::umin(LHS, RHS);
3715       llvm_unreachable("Unknown SCEV min/max opcode");
3716     };
3717 
3718     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3719       // We found two constants, fold them together!
3720       ConstantInt *Fold = ConstantInt::get(
3721           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3722       Ops[0] = getConstant(Fold);
3723       Ops.erase(Ops.begin()+1);  // Erase the folded element
3724       if (Ops.size() == 1) return Ops[0];
3725       LHSC = cast<SCEVConstant>(Ops[0]);
3726     }
3727 
3728     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3729     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3730 
3731     if (IsMax ? IsMinV : IsMaxV) {
3732       // If we are left with a constant minimum(/maximum)-int, strip it off.
3733       Ops.erase(Ops.begin());
3734       --Idx;
3735     } else if (IsMax ? IsMaxV : IsMinV) {
3736       // If we have a max(/min) with a constant maximum(/minimum)-int,
3737       // it will always be the extremum.
3738       return LHSC;
3739     }
3740 
3741     if (Ops.size() == 1) return Ops[0];
3742   }
3743 
3744   // Find the first operation of the same kind
3745   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3746     ++Idx;
3747 
3748   // Check to see if one of the operands is of the same kind. If so, expand its
3749   // operands onto our operand list, and recurse to simplify.
3750   if (Idx < Ops.size()) {
3751     bool DeletedAny = false;
3752     while (Ops[Idx]->getSCEVType() == Kind) {
3753       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3754       Ops.erase(Ops.begin()+Idx);
3755       Ops.append(SMME->op_begin(), SMME->op_end());
3756       DeletedAny = true;
3757     }
3758 
3759     if (DeletedAny)
3760       return getMinMaxExpr(Kind, Ops);
3761   }
3762 
3763   // Okay, check to see if the same value occurs in the operand list twice.  If
3764   // so, delete one.  Since we sorted the list, these values are required to
3765   // be adjacent.
3766   llvm::CmpInst::Predicate GEPred =
3767       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3768   llvm::CmpInst::Predicate LEPred =
3769       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3770   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3771   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3772   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3773     if (Ops[i] == Ops[i + 1] ||
3774         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3775       //  X op Y op Y  -->  X op Y
3776       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3777       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3778       --i;
3779       --e;
3780     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3781                                                Ops[i + 1])) {
3782       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3783       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3784       --i;
3785       --e;
3786     }
3787   }
3788 
3789   if (Ops.size() == 1) return Ops[0];
3790 
3791   assert(!Ops.empty() && "Reduced smax down to nothing!");
3792 
3793   // Okay, it looks like we really DO need an expr.  Check to see if we
3794   // already have one, otherwise create a new one.
3795   FoldingSetNodeID ID;
3796   ID.AddInteger(Kind);
3797   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3798     ID.AddPointer(Ops[i]);
3799   void *IP = nullptr;
3800   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3801   if (ExistingSCEV)
3802     return ExistingSCEV;
3803   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3804   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3805   SCEV *S = new (SCEVAllocator)
3806       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3807 
3808   UniqueSCEVs.InsertNode(S, IP);
3809   addToLoopUseLists(S);
3810   return S;
3811 }
3812 
3813 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3814   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3815   return getSMaxExpr(Ops);
3816 }
3817 
3818 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3819   return getMinMaxExpr(scSMaxExpr, Ops);
3820 }
3821 
3822 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3823   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3824   return getUMaxExpr(Ops);
3825 }
3826 
3827 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3828   return getMinMaxExpr(scUMaxExpr, Ops);
3829 }
3830 
3831 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3832                                          const SCEV *RHS) {
3833   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3834   return getSMinExpr(Ops);
3835 }
3836 
3837 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3838   return getMinMaxExpr(scSMinExpr, Ops);
3839 }
3840 
3841 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3842                                          const SCEV *RHS) {
3843   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3844   return getUMinExpr(Ops);
3845 }
3846 
3847 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3848   return getMinMaxExpr(scUMinExpr, Ops);
3849 }
3850 
3851 const SCEV *
3852 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3853                                              ScalableVectorType *ScalableTy) {
3854   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3855   Constant *One = ConstantInt::get(IntTy, 1);
3856   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3857   // Note that the expression we created is the final expression, we don't
3858   // want to simplify it any further Also, if we call a normal getSCEV(),
3859   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3860   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3861 }
3862 
3863 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3864   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3865     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3866   // We can bypass creating a target-independent constant expression and then
3867   // folding it back into a ConstantInt. This is just a compile-time
3868   // optimization.
3869   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3870 }
3871 
3872 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3873   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3874     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3875   // We can bypass creating a target-independent constant expression and then
3876   // folding it back into a ConstantInt. This is just a compile-time
3877   // optimization.
3878   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3879 }
3880 
3881 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3882                                              StructType *STy,
3883                                              unsigned FieldNo) {
3884   // We can bypass creating a target-independent constant expression and then
3885   // folding it back into a ConstantInt. This is just a compile-time
3886   // optimization.
3887   return getConstant(
3888       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3889 }
3890 
3891 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3892   // Don't attempt to do anything other than create a SCEVUnknown object
3893   // here.  createSCEV only calls getUnknown after checking for all other
3894   // interesting possibilities, and any other code that calls getUnknown
3895   // is doing so in order to hide a value from SCEV canonicalization.
3896 
3897   FoldingSetNodeID ID;
3898   ID.AddInteger(scUnknown);
3899   ID.AddPointer(V);
3900   void *IP = nullptr;
3901   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3902     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3903            "Stale SCEVUnknown in uniquing map!");
3904     return S;
3905   }
3906   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3907                                             FirstUnknown);
3908   FirstUnknown = cast<SCEVUnknown>(S);
3909   UniqueSCEVs.InsertNode(S, IP);
3910   return S;
3911 }
3912 
3913 //===----------------------------------------------------------------------===//
3914 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3915 //
3916 
3917 /// Test if values of the given type are analyzable within the SCEV
3918 /// framework. This primarily includes integer types, and it can optionally
3919 /// include pointer types if the ScalarEvolution class has access to
3920 /// target-specific information.
3921 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3922   // Integers and pointers are always SCEVable.
3923   return Ty->isIntOrPtrTy();
3924 }
3925 
3926 /// Return the size in bits of the specified type, for which isSCEVable must
3927 /// return true.
3928 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3929   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3930   if (Ty->isPointerTy())
3931     return getDataLayout().getIndexTypeSizeInBits(Ty);
3932   return getDataLayout().getTypeSizeInBits(Ty);
3933 }
3934 
3935 /// Return a type with the same bitwidth as the given type and which represents
3936 /// how SCEV will treat the given type, for which isSCEVable must return
3937 /// true. For pointer types, this is the pointer index sized integer type.
3938 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3939   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3940 
3941   if (Ty->isIntegerTy())
3942     return Ty;
3943 
3944   // The only other support type is pointer.
3945   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3946   return getDataLayout().getIndexType(Ty);
3947 }
3948 
3949 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3950   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3951 }
3952 
3953 const SCEV *ScalarEvolution::getCouldNotCompute() {
3954   return CouldNotCompute.get();
3955 }
3956 
3957 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3958   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3959     auto *SU = dyn_cast<SCEVUnknown>(S);
3960     return SU && SU->getValue() == nullptr;
3961   });
3962 
3963   return !ContainsNulls;
3964 }
3965 
3966 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3967   HasRecMapType::iterator I = HasRecMap.find(S);
3968   if (I != HasRecMap.end())
3969     return I->second;
3970 
3971   bool FoundAddRec =
3972       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3973   HasRecMap.insert({S, FoundAddRec});
3974   return FoundAddRec;
3975 }
3976 
3977 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3978 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3979 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3980 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3981   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3982   if (!Add)
3983     return {S, nullptr};
3984 
3985   if (Add->getNumOperands() != 2)
3986     return {S, nullptr};
3987 
3988   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3989   if (!ConstOp)
3990     return {S, nullptr};
3991 
3992   return {Add->getOperand(1), ConstOp->getValue()};
3993 }
3994 
3995 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3996 /// by the value and offset from any ValueOffsetPair in the set.
3997 ScalarEvolution::ValueOffsetPairSetVector *
3998 ScalarEvolution::getSCEVValues(const SCEV *S) {
3999   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4000   if (SI == ExprValueMap.end())
4001     return nullptr;
4002 #ifndef NDEBUG
4003   if (VerifySCEVMap) {
4004     // Check there is no dangling Value in the set returned.
4005     for (const auto &VE : SI->second)
4006       assert(ValueExprMap.count(VE.first));
4007   }
4008 #endif
4009   return &SI->second;
4010 }
4011 
4012 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4013 /// cannot be used separately. eraseValueFromMap should be used to remove
4014 /// V from ValueExprMap and ExprValueMap at the same time.
4015 void ScalarEvolution::eraseValueFromMap(Value *V) {
4016   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4017   if (I != ValueExprMap.end()) {
4018     const SCEV *S = I->second;
4019     // Remove {V, 0} from the set of ExprValueMap[S]
4020     if (auto *SV = getSCEVValues(S))
4021       SV->remove({V, nullptr});
4022 
4023     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4024     const SCEV *Stripped;
4025     ConstantInt *Offset;
4026     std::tie(Stripped, Offset) = splitAddExpr(S);
4027     if (Offset != nullptr) {
4028       if (auto *SV = getSCEVValues(Stripped))
4029         SV->remove({V, Offset});
4030     }
4031     ValueExprMap.erase(V);
4032   }
4033 }
4034 
4035 /// Check whether value has nuw/nsw/exact set but SCEV does not.
4036 /// TODO: In reality it is better to check the poison recursively
4037 /// but this is better than nothing.
4038 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
4039   if (auto *I = dyn_cast<Instruction>(V)) {
4040     if (isa<OverflowingBinaryOperator>(I)) {
4041       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
4042         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
4043           return true;
4044         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
4045           return true;
4046       }
4047     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
4048       return true;
4049   }
4050   return false;
4051 }
4052 
4053 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4054 /// create a new one.
4055 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4056   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4057 
4058   const SCEV *S = getExistingSCEV(V);
4059   if (S == nullptr) {
4060     S = createSCEV(V);
4061     // During PHI resolution, it is possible to create two SCEVs for the same
4062     // V, so it is needed to double check whether V->S is inserted into
4063     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4064     std::pair<ValueExprMapType::iterator, bool> Pair =
4065         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4066     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
4067       ExprValueMap[S].insert({V, nullptr});
4068 
4069       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4070       // ExprValueMap.
4071       const SCEV *Stripped = S;
4072       ConstantInt *Offset = nullptr;
4073       std::tie(Stripped, Offset) = splitAddExpr(S);
4074       // If stripped is SCEVUnknown, don't bother to save
4075       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4076       // increase the complexity of the expansion code.
4077       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4078       // because it may generate add/sub instead of GEP in SCEV expansion.
4079       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4080           !isa<GetElementPtrInst>(V))
4081         ExprValueMap[Stripped].insert({V, Offset});
4082     }
4083   }
4084   return S;
4085 }
4086 
4087 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4088   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4089 
4090   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4091   if (I != ValueExprMap.end()) {
4092     const SCEV *S = I->second;
4093     if (checkValidity(S))
4094       return S;
4095     eraseValueFromMap(V);
4096     forgetMemoizedResults(S);
4097   }
4098   return nullptr;
4099 }
4100 
4101 /// Return a SCEV corresponding to -V = -1*V
4102 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4103                                              SCEV::NoWrapFlags Flags) {
4104   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4105     return getConstant(
4106                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4107 
4108   Type *Ty = V->getType();
4109   Ty = getEffectiveSCEVType(Ty);
4110   return getMulExpr(V, getMinusOne(Ty), Flags);
4111 }
4112 
4113 /// If Expr computes ~A, return A else return nullptr
4114 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4115   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4116   if (!Add || Add->getNumOperands() != 2 ||
4117       !Add->getOperand(0)->isAllOnesValue())
4118     return nullptr;
4119 
4120   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4121   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4122       !AddRHS->getOperand(0)->isAllOnesValue())
4123     return nullptr;
4124 
4125   return AddRHS->getOperand(1);
4126 }
4127 
4128 /// Return a SCEV corresponding to ~V = -1-V
4129 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4130   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4131     return getConstant(
4132                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4133 
4134   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4135   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4136     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4137       SmallVector<const SCEV *, 2> MatchedOperands;
4138       for (const SCEV *Operand : MME->operands()) {
4139         const SCEV *Matched = MatchNotExpr(Operand);
4140         if (!Matched)
4141           return (const SCEV *)nullptr;
4142         MatchedOperands.push_back(Matched);
4143       }
4144       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4145                            MatchedOperands);
4146     };
4147     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4148       return Replaced;
4149   }
4150 
4151   Type *Ty = V->getType();
4152   Ty = getEffectiveSCEVType(Ty);
4153   return getMinusSCEV(getMinusOne(Ty), V);
4154 }
4155 
4156 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4157   assert(P->getType()->isPointerTy());
4158 
4159   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4160     // The base of an AddRec is the first operand.
4161     SmallVector<const SCEV *> Ops{AddRec->operands()};
4162     Ops[0] = removePointerBase(Ops[0]);
4163     // Don't try to transfer nowrap flags for now. We could in some cases
4164     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4165     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4166   }
4167   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4168     // The base of an Add is the pointer operand.
4169     SmallVector<const SCEV *> Ops{Add->operands()};
4170     const SCEV **PtrOp = nullptr;
4171     for (const SCEV *&AddOp : Ops) {
4172       if (AddOp->getType()->isPointerTy()) {
4173         assert(!PtrOp && "Cannot have multiple pointer ops");
4174         PtrOp = &AddOp;
4175       }
4176     }
4177     *PtrOp = removePointerBase(*PtrOp);
4178     // Don't try to transfer nowrap flags for now. We could in some cases
4179     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4180     return getAddExpr(Ops);
4181   }
4182   // Any other expression must be a pointer base.
4183   return getZero(P->getType());
4184 }
4185 
4186 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4187                                           SCEV::NoWrapFlags Flags,
4188                                           unsigned Depth) {
4189   // Fast path: X - X --> 0.
4190   if (LHS == RHS)
4191     return getZero(LHS->getType());
4192 
4193   // If we subtract two pointers with different pointer bases, bail.
4194   // Eventually, we're going to add an assertion to getMulExpr that we
4195   // can't multiply by a pointer.
4196   if (RHS->getType()->isPointerTy()) {
4197     if (!LHS->getType()->isPointerTy() ||
4198         getPointerBase(LHS) != getPointerBase(RHS))
4199       return getCouldNotCompute();
4200     LHS = removePointerBase(LHS);
4201     RHS = removePointerBase(RHS);
4202   }
4203 
4204   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4205   // makes it so that we cannot make much use of NUW.
4206   auto AddFlags = SCEV::FlagAnyWrap;
4207   const bool RHSIsNotMinSigned =
4208       !getSignedRangeMin(RHS).isMinSignedValue();
4209   if (hasFlags(Flags, SCEV::FlagNSW)) {
4210     // Let M be the minimum representable signed value. Then (-1)*RHS
4211     // signed-wraps if and only if RHS is M. That can happen even for
4212     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4213     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4214     // (-1)*RHS, we need to prove that RHS != M.
4215     //
4216     // If LHS is non-negative and we know that LHS - RHS does not
4217     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4218     // either by proving that RHS > M or that LHS >= 0.
4219     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4220       AddFlags = SCEV::FlagNSW;
4221     }
4222   }
4223 
4224   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4225   // RHS is NSW and LHS >= 0.
4226   //
4227   // The difficulty here is that the NSW flag may have been proven
4228   // relative to a loop that is to be found in a recurrence in LHS and
4229   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4230   // larger scope than intended.
4231   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4232 
4233   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4234 }
4235 
4236 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4237                                                      unsigned Depth) {
4238   Type *SrcTy = V->getType();
4239   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4240          "Cannot truncate or zero extend with non-integer arguments!");
4241   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4242     return V;  // No conversion
4243   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4244     return getTruncateExpr(V, Ty, Depth);
4245   return getZeroExtendExpr(V, Ty, Depth);
4246 }
4247 
4248 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4249                                                      unsigned Depth) {
4250   Type *SrcTy = V->getType();
4251   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4252          "Cannot truncate or zero extend with non-integer arguments!");
4253   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4254     return V;  // No conversion
4255   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4256     return getTruncateExpr(V, Ty, Depth);
4257   return getSignExtendExpr(V, Ty, Depth);
4258 }
4259 
4260 const SCEV *
4261 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4262   Type *SrcTy = V->getType();
4263   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4264          "Cannot noop or zero extend with non-integer arguments!");
4265   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4266          "getNoopOrZeroExtend cannot truncate!");
4267   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4268     return V;  // No conversion
4269   return getZeroExtendExpr(V, Ty);
4270 }
4271 
4272 const SCEV *
4273 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4274   Type *SrcTy = V->getType();
4275   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4276          "Cannot noop or sign extend with non-integer arguments!");
4277   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4278          "getNoopOrSignExtend cannot truncate!");
4279   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4280     return V;  // No conversion
4281   return getSignExtendExpr(V, Ty);
4282 }
4283 
4284 const SCEV *
4285 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4286   Type *SrcTy = V->getType();
4287   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4288          "Cannot noop or any extend with non-integer arguments!");
4289   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4290          "getNoopOrAnyExtend cannot truncate!");
4291   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4292     return V;  // No conversion
4293   return getAnyExtendExpr(V, Ty);
4294 }
4295 
4296 const SCEV *
4297 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4298   Type *SrcTy = V->getType();
4299   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4300          "Cannot truncate or noop with non-integer arguments!");
4301   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4302          "getTruncateOrNoop cannot extend!");
4303   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4304     return V;  // No conversion
4305   return getTruncateExpr(V, Ty);
4306 }
4307 
4308 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4309                                                         const SCEV *RHS) {
4310   const SCEV *PromotedLHS = LHS;
4311   const SCEV *PromotedRHS = RHS;
4312 
4313   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4314     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4315   else
4316     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4317 
4318   return getUMaxExpr(PromotedLHS, PromotedRHS);
4319 }
4320 
4321 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4322                                                         const SCEV *RHS) {
4323   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4324   return getUMinFromMismatchedTypes(Ops);
4325 }
4326 
4327 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4328     SmallVectorImpl<const SCEV *> &Ops) {
4329   assert(!Ops.empty() && "At least one operand must be!");
4330   // Trivial case.
4331   if (Ops.size() == 1)
4332     return Ops[0];
4333 
4334   // Find the max type first.
4335   Type *MaxType = nullptr;
4336   for (auto *S : Ops)
4337     if (MaxType)
4338       MaxType = getWiderType(MaxType, S->getType());
4339     else
4340       MaxType = S->getType();
4341   assert(MaxType && "Failed to find maximum type!");
4342 
4343   // Extend all ops to max type.
4344   SmallVector<const SCEV *, 2> PromotedOps;
4345   for (auto *S : Ops)
4346     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4347 
4348   // Generate umin.
4349   return getUMinExpr(PromotedOps);
4350 }
4351 
4352 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4353   // A pointer operand may evaluate to a nonpointer expression, such as null.
4354   if (!V->getType()->isPointerTy())
4355     return V;
4356 
4357   while (true) {
4358     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4359       V = AddRec->getStart();
4360     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4361       const SCEV *PtrOp = nullptr;
4362       for (const SCEV *AddOp : Add->operands()) {
4363         if (AddOp->getType()->isPointerTy()) {
4364           assert(!PtrOp && "Cannot have multiple pointer ops");
4365           PtrOp = AddOp;
4366         }
4367       }
4368       assert(PtrOp && "Must have pointer op");
4369       V = PtrOp;
4370     } else // Not something we can look further into.
4371       return V;
4372   }
4373 }
4374 
4375 /// Push users of the given Instruction onto the given Worklist.
4376 static void
4377 PushDefUseChildren(Instruction *I,
4378                    SmallVectorImpl<Instruction *> &Worklist) {
4379   // Push the def-use children onto the Worklist stack.
4380   for (User *U : I->users())
4381     Worklist.push_back(cast<Instruction>(U));
4382 }
4383 
4384 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4385   SmallVector<Instruction *, 16> Worklist;
4386   PushDefUseChildren(PN, Worklist);
4387 
4388   SmallPtrSet<Instruction *, 8> Visited;
4389   Visited.insert(PN);
4390   while (!Worklist.empty()) {
4391     Instruction *I = Worklist.pop_back_val();
4392     if (!Visited.insert(I).second)
4393       continue;
4394 
4395     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4396     if (It != ValueExprMap.end()) {
4397       const SCEV *Old = It->second;
4398 
4399       // Short-circuit the def-use traversal if the symbolic name
4400       // ceases to appear in expressions.
4401       if (Old != SymName && !hasOperand(Old, SymName))
4402         continue;
4403 
4404       // SCEVUnknown for a PHI either means that it has an unrecognized
4405       // structure, it's a PHI that's in the progress of being computed
4406       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4407       // additional loop trip count information isn't going to change anything.
4408       // In the second case, createNodeForPHI will perform the necessary
4409       // updates on its own when it gets to that point. In the third, we do
4410       // want to forget the SCEVUnknown.
4411       if (!isa<PHINode>(I) ||
4412           !isa<SCEVUnknown>(Old) ||
4413           (I != PN && Old == SymName)) {
4414         eraseValueFromMap(It->first);
4415         forgetMemoizedResults(Old);
4416       }
4417     }
4418 
4419     PushDefUseChildren(I, Worklist);
4420   }
4421 }
4422 
4423 namespace {
4424 
4425 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4426 /// expression in case its Loop is L. If it is not L then
4427 /// if IgnoreOtherLoops is true then use AddRec itself
4428 /// otherwise rewrite cannot be done.
4429 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4430 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4431 public:
4432   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4433                              bool IgnoreOtherLoops = true) {
4434     SCEVInitRewriter Rewriter(L, SE);
4435     const SCEV *Result = Rewriter.visit(S);
4436     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4437       return SE.getCouldNotCompute();
4438     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4439                ? SE.getCouldNotCompute()
4440                : Result;
4441   }
4442 
4443   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4444     if (!SE.isLoopInvariant(Expr, L))
4445       SeenLoopVariantSCEVUnknown = true;
4446     return Expr;
4447   }
4448 
4449   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4450     // Only re-write AddRecExprs for this loop.
4451     if (Expr->getLoop() == L)
4452       return Expr->getStart();
4453     SeenOtherLoops = true;
4454     return Expr;
4455   }
4456 
4457   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4458 
4459   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4460 
4461 private:
4462   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4463       : SCEVRewriteVisitor(SE), L(L) {}
4464 
4465   const Loop *L;
4466   bool SeenLoopVariantSCEVUnknown = false;
4467   bool SeenOtherLoops = false;
4468 };
4469 
4470 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4471 /// increment expression in case its Loop is L. If it is not L then
4472 /// use AddRec itself.
4473 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4474 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4475 public:
4476   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4477     SCEVPostIncRewriter Rewriter(L, SE);
4478     const SCEV *Result = Rewriter.visit(S);
4479     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4480         ? SE.getCouldNotCompute()
4481         : Result;
4482   }
4483 
4484   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4485     if (!SE.isLoopInvariant(Expr, L))
4486       SeenLoopVariantSCEVUnknown = true;
4487     return Expr;
4488   }
4489 
4490   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4491     // Only re-write AddRecExprs for this loop.
4492     if (Expr->getLoop() == L)
4493       return Expr->getPostIncExpr(SE);
4494     SeenOtherLoops = true;
4495     return Expr;
4496   }
4497 
4498   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4499 
4500   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4501 
4502 private:
4503   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4504       : SCEVRewriteVisitor(SE), L(L) {}
4505 
4506   const Loop *L;
4507   bool SeenLoopVariantSCEVUnknown = false;
4508   bool SeenOtherLoops = false;
4509 };
4510 
4511 /// This class evaluates the compare condition by matching it against the
4512 /// condition of loop latch. If there is a match we assume a true value
4513 /// for the condition while building SCEV nodes.
4514 class SCEVBackedgeConditionFolder
4515     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4516 public:
4517   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4518                              ScalarEvolution &SE) {
4519     bool IsPosBECond = false;
4520     Value *BECond = nullptr;
4521     if (BasicBlock *Latch = L->getLoopLatch()) {
4522       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4523       if (BI && BI->isConditional()) {
4524         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4525                "Both outgoing branches should not target same header!");
4526         BECond = BI->getCondition();
4527         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4528       } else {
4529         return S;
4530       }
4531     }
4532     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4533     return Rewriter.visit(S);
4534   }
4535 
4536   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4537     const SCEV *Result = Expr;
4538     bool InvariantF = SE.isLoopInvariant(Expr, L);
4539 
4540     if (!InvariantF) {
4541       Instruction *I = cast<Instruction>(Expr->getValue());
4542       switch (I->getOpcode()) {
4543       case Instruction::Select: {
4544         SelectInst *SI = cast<SelectInst>(I);
4545         Optional<const SCEV *> Res =
4546             compareWithBackedgeCondition(SI->getCondition());
4547         if (Res.hasValue()) {
4548           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4549           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4550         }
4551         break;
4552       }
4553       default: {
4554         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4555         if (Res.hasValue())
4556           Result = Res.getValue();
4557         break;
4558       }
4559       }
4560     }
4561     return Result;
4562   }
4563 
4564 private:
4565   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4566                                        bool IsPosBECond, ScalarEvolution &SE)
4567       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4568         IsPositiveBECond(IsPosBECond) {}
4569 
4570   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4571 
4572   const Loop *L;
4573   /// Loop back condition.
4574   Value *BackedgeCond = nullptr;
4575   /// Set to true if loop back is on positive branch condition.
4576   bool IsPositiveBECond;
4577 };
4578 
4579 Optional<const SCEV *>
4580 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4581 
4582   // If value matches the backedge condition for loop latch,
4583   // then return a constant evolution node based on loopback
4584   // branch taken.
4585   if (BackedgeCond == IC)
4586     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4587                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4588   return None;
4589 }
4590 
4591 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4592 public:
4593   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4594                              ScalarEvolution &SE) {
4595     SCEVShiftRewriter Rewriter(L, SE);
4596     const SCEV *Result = Rewriter.visit(S);
4597     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4598   }
4599 
4600   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4601     // Only allow AddRecExprs for this loop.
4602     if (!SE.isLoopInvariant(Expr, L))
4603       Valid = false;
4604     return Expr;
4605   }
4606 
4607   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4608     if (Expr->getLoop() == L && Expr->isAffine())
4609       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4610     Valid = false;
4611     return Expr;
4612   }
4613 
4614   bool isValid() { return Valid; }
4615 
4616 private:
4617   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4618       : SCEVRewriteVisitor(SE), L(L) {}
4619 
4620   const Loop *L;
4621   bool Valid = true;
4622 };
4623 
4624 } // end anonymous namespace
4625 
4626 SCEV::NoWrapFlags
4627 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4628   if (!AR->isAffine())
4629     return SCEV::FlagAnyWrap;
4630 
4631   using OBO = OverflowingBinaryOperator;
4632 
4633   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4634 
4635   if (!AR->hasNoSignedWrap()) {
4636     ConstantRange AddRecRange = getSignedRange(AR);
4637     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4638 
4639     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4640         Instruction::Add, IncRange, OBO::NoSignedWrap);
4641     if (NSWRegion.contains(AddRecRange))
4642       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4643   }
4644 
4645   if (!AR->hasNoUnsignedWrap()) {
4646     ConstantRange AddRecRange = getUnsignedRange(AR);
4647     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4648 
4649     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4650         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4651     if (NUWRegion.contains(AddRecRange))
4652       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4653   }
4654 
4655   return Result;
4656 }
4657 
4658 SCEV::NoWrapFlags
4659 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4660   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4661 
4662   if (AR->hasNoSignedWrap())
4663     return Result;
4664 
4665   if (!AR->isAffine())
4666     return Result;
4667 
4668   const SCEV *Step = AR->getStepRecurrence(*this);
4669   const Loop *L = AR->getLoop();
4670 
4671   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4672   // Note that this serves two purposes: It filters out loops that are
4673   // simply not analyzable, and it covers the case where this code is
4674   // being called from within backedge-taken count analysis, such that
4675   // attempting to ask for the backedge-taken count would likely result
4676   // in infinite recursion. In the later case, the analysis code will
4677   // cope with a conservative value, and it will take care to purge
4678   // that value once it has finished.
4679   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4680 
4681   // Normally, in the cases we can prove no-overflow via a
4682   // backedge guarding condition, we can also compute a backedge
4683   // taken count for the loop.  The exceptions are assumptions and
4684   // guards present in the loop -- SCEV is not great at exploiting
4685   // these to compute max backedge taken counts, but can still use
4686   // these to prove lack of overflow.  Use this fact to avoid
4687   // doing extra work that may not pay off.
4688 
4689   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4690       AC.assumptions().empty())
4691     return Result;
4692 
4693   // If the backedge is guarded by a comparison with the pre-inc  value the
4694   // addrec is safe. Also, if the entry is guarded by a comparison with the
4695   // start value and the backedge is guarded by a comparison with the post-inc
4696   // value, the addrec is safe.
4697   ICmpInst::Predicate Pred;
4698   const SCEV *OverflowLimit =
4699     getSignedOverflowLimitForStep(Step, &Pred, this);
4700   if (OverflowLimit &&
4701       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4702        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4703     Result = setFlags(Result, SCEV::FlagNSW);
4704   }
4705   return Result;
4706 }
4707 SCEV::NoWrapFlags
4708 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4709   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4710 
4711   if (AR->hasNoUnsignedWrap())
4712     return Result;
4713 
4714   if (!AR->isAffine())
4715     return Result;
4716 
4717   const SCEV *Step = AR->getStepRecurrence(*this);
4718   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4719   const Loop *L = AR->getLoop();
4720 
4721   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4722   // Note that this serves two purposes: It filters out loops that are
4723   // simply not analyzable, and it covers the case where this code is
4724   // being called from within backedge-taken count analysis, such that
4725   // attempting to ask for the backedge-taken count would likely result
4726   // in infinite recursion. In the later case, the analysis code will
4727   // cope with a conservative value, and it will take care to purge
4728   // that value once it has finished.
4729   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4730 
4731   // Normally, in the cases we can prove no-overflow via a
4732   // backedge guarding condition, we can also compute a backedge
4733   // taken count for the loop.  The exceptions are assumptions and
4734   // guards present in the loop -- SCEV is not great at exploiting
4735   // these to compute max backedge taken counts, but can still use
4736   // these to prove lack of overflow.  Use this fact to avoid
4737   // doing extra work that may not pay off.
4738 
4739   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4740       AC.assumptions().empty())
4741     return Result;
4742 
4743   // If the backedge is guarded by a comparison with the pre-inc  value the
4744   // addrec is safe. Also, if the entry is guarded by a comparison with the
4745   // start value and the backedge is guarded by a comparison with the post-inc
4746   // value, the addrec is safe.
4747   if (isKnownPositive(Step)) {
4748     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4749                                 getUnsignedRangeMax(Step));
4750     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4751         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4752       Result = setFlags(Result, SCEV::FlagNUW);
4753     }
4754   }
4755 
4756   return Result;
4757 }
4758 
4759 namespace {
4760 
4761 /// Represents an abstract binary operation.  This may exist as a
4762 /// normal instruction or constant expression, or may have been
4763 /// derived from an expression tree.
4764 struct BinaryOp {
4765   unsigned Opcode;
4766   Value *LHS;
4767   Value *RHS;
4768   bool IsNSW = false;
4769   bool IsNUW = false;
4770 
4771   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4772   /// constant expression.
4773   Operator *Op = nullptr;
4774 
4775   explicit BinaryOp(Operator *Op)
4776       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4777         Op(Op) {
4778     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4779       IsNSW = OBO->hasNoSignedWrap();
4780       IsNUW = OBO->hasNoUnsignedWrap();
4781     }
4782   }
4783 
4784   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4785                     bool IsNUW = false)
4786       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4787 };
4788 
4789 } // end anonymous namespace
4790 
4791 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4792 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4793   auto *Op = dyn_cast<Operator>(V);
4794   if (!Op)
4795     return None;
4796 
4797   // Implementation detail: all the cleverness here should happen without
4798   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4799   // SCEV expressions when possible, and we should not break that.
4800 
4801   switch (Op->getOpcode()) {
4802   case Instruction::Add:
4803   case Instruction::Sub:
4804   case Instruction::Mul:
4805   case Instruction::UDiv:
4806   case Instruction::URem:
4807   case Instruction::And:
4808   case Instruction::Or:
4809   case Instruction::AShr:
4810   case Instruction::Shl:
4811     return BinaryOp(Op);
4812 
4813   case Instruction::Xor:
4814     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4815       // If the RHS of the xor is a signmask, then this is just an add.
4816       // Instcombine turns add of signmask into xor as a strength reduction step.
4817       if (RHSC->getValue().isSignMask())
4818         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4819     return BinaryOp(Op);
4820 
4821   case Instruction::LShr:
4822     // Turn logical shift right of a constant into a unsigned divide.
4823     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4824       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4825 
4826       // If the shift count is not less than the bitwidth, the result of
4827       // the shift is undefined. Don't try to analyze it, because the
4828       // resolution chosen here may differ from the resolution chosen in
4829       // other parts of the compiler.
4830       if (SA->getValue().ult(BitWidth)) {
4831         Constant *X =
4832             ConstantInt::get(SA->getContext(),
4833                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4834         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4835       }
4836     }
4837     return BinaryOp(Op);
4838 
4839   case Instruction::ExtractValue: {
4840     auto *EVI = cast<ExtractValueInst>(Op);
4841     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4842       break;
4843 
4844     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4845     if (!WO)
4846       break;
4847 
4848     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4849     bool Signed = WO->isSigned();
4850     // TODO: Should add nuw/nsw flags for mul as well.
4851     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4852       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4853 
4854     // Now that we know that all uses of the arithmetic-result component of
4855     // CI are guarded by the overflow check, we can go ahead and pretend
4856     // that the arithmetic is non-overflowing.
4857     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4858                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4859   }
4860 
4861   default:
4862     break;
4863   }
4864 
4865   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4866   // semantics as a Sub, return a binary sub expression.
4867   if (auto *II = dyn_cast<IntrinsicInst>(V))
4868     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4869       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4870 
4871   return None;
4872 }
4873 
4874 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4875 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4876 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4877 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4878 /// follows one of the following patterns:
4879 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4880 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4881 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4882 /// we return the type of the truncation operation, and indicate whether the
4883 /// truncated type should be treated as signed/unsigned by setting
4884 /// \p Signed to true/false, respectively.
4885 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4886                                bool &Signed, ScalarEvolution &SE) {
4887   // The case where Op == SymbolicPHI (that is, with no type conversions on
4888   // the way) is handled by the regular add recurrence creating logic and
4889   // would have already been triggered in createAddRecForPHI. Reaching it here
4890   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4891   // because one of the other operands of the SCEVAddExpr updating this PHI is
4892   // not invariant).
4893   //
4894   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4895   // this case predicates that allow us to prove that Op == SymbolicPHI will
4896   // be added.
4897   if (Op == SymbolicPHI)
4898     return nullptr;
4899 
4900   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4901   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4902   if (SourceBits != NewBits)
4903     return nullptr;
4904 
4905   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4906   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4907   if (!SExt && !ZExt)
4908     return nullptr;
4909   const SCEVTruncateExpr *Trunc =
4910       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4911            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4912   if (!Trunc)
4913     return nullptr;
4914   const SCEV *X = Trunc->getOperand();
4915   if (X != SymbolicPHI)
4916     return nullptr;
4917   Signed = SExt != nullptr;
4918   return Trunc->getType();
4919 }
4920 
4921 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4922   if (!PN->getType()->isIntegerTy())
4923     return nullptr;
4924   const Loop *L = LI.getLoopFor(PN->getParent());
4925   if (!L || L->getHeader() != PN->getParent())
4926     return nullptr;
4927   return L;
4928 }
4929 
4930 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4931 // computation that updates the phi follows the following pattern:
4932 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4933 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4934 // If so, try to see if it can be rewritten as an AddRecExpr under some
4935 // Predicates. If successful, return them as a pair. Also cache the results
4936 // of the analysis.
4937 //
4938 // Example usage scenario:
4939 //    Say the Rewriter is called for the following SCEV:
4940 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4941 //    where:
4942 //         %X = phi i64 (%Start, %BEValue)
4943 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4944 //    and call this function with %SymbolicPHI = %X.
4945 //
4946 //    The analysis will find that the value coming around the backedge has
4947 //    the following SCEV:
4948 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4949 //    Upon concluding that this matches the desired pattern, the function
4950 //    will return the pair {NewAddRec, SmallPredsVec} where:
4951 //         NewAddRec = {%Start,+,%Step}
4952 //         SmallPredsVec = {P1, P2, P3} as follows:
4953 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4954 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4955 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4956 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4957 //    under the predicates {P1,P2,P3}.
4958 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4959 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4960 //
4961 // TODO's:
4962 //
4963 // 1) Extend the Induction descriptor to also support inductions that involve
4964 //    casts: When needed (namely, when we are called in the context of the
4965 //    vectorizer induction analysis), a Set of cast instructions will be
4966 //    populated by this method, and provided back to isInductionPHI. This is
4967 //    needed to allow the vectorizer to properly record them to be ignored by
4968 //    the cost model and to avoid vectorizing them (otherwise these casts,
4969 //    which are redundant under the runtime overflow checks, will be
4970 //    vectorized, which can be costly).
4971 //
4972 // 2) Support additional induction/PHISCEV patterns: We also want to support
4973 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4974 //    after the induction update operation (the induction increment):
4975 //
4976 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4977 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4978 //
4979 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4980 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4981 //
4982 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4983 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4984 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4985   SmallVector<const SCEVPredicate *, 3> Predicates;
4986 
4987   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4988   // return an AddRec expression under some predicate.
4989 
4990   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4991   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4992   assert(L && "Expecting an integer loop header phi");
4993 
4994   // The loop may have multiple entrances or multiple exits; we can analyze
4995   // this phi as an addrec if it has a unique entry value and a unique
4996   // backedge value.
4997   Value *BEValueV = nullptr, *StartValueV = nullptr;
4998   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4999     Value *V = PN->getIncomingValue(i);
5000     if (L->contains(PN->getIncomingBlock(i))) {
5001       if (!BEValueV) {
5002         BEValueV = V;
5003       } else if (BEValueV != V) {
5004         BEValueV = nullptr;
5005         break;
5006       }
5007     } else if (!StartValueV) {
5008       StartValueV = V;
5009     } else if (StartValueV != V) {
5010       StartValueV = nullptr;
5011       break;
5012     }
5013   }
5014   if (!BEValueV || !StartValueV)
5015     return None;
5016 
5017   const SCEV *BEValue = getSCEV(BEValueV);
5018 
5019   // If the value coming around the backedge is an add with the symbolic
5020   // value we just inserted, possibly with casts that we can ignore under
5021   // an appropriate runtime guard, then we found a simple induction variable!
5022   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5023   if (!Add)
5024     return None;
5025 
5026   // If there is a single occurrence of the symbolic value, possibly
5027   // casted, replace it with a recurrence.
5028   unsigned FoundIndex = Add->getNumOperands();
5029   Type *TruncTy = nullptr;
5030   bool Signed;
5031   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5032     if ((TruncTy =
5033              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5034       if (FoundIndex == e) {
5035         FoundIndex = i;
5036         break;
5037       }
5038 
5039   if (FoundIndex == Add->getNumOperands())
5040     return None;
5041 
5042   // Create an add with everything but the specified operand.
5043   SmallVector<const SCEV *, 8> Ops;
5044   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5045     if (i != FoundIndex)
5046       Ops.push_back(Add->getOperand(i));
5047   const SCEV *Accum = getAddExpr(Ops);
5048 
5049   // The runtime checks will not be valid if the step amount is
5050   // varying inside the loop.
5051   if (!isLoopInvariant(Accum, L))
5052     return None;
5053 
5054   // *** Part2: Create the predicates
5055 
5056   // Analysis was successful: we have a phi-with-cast pattern for which we
5057   // can return an AddRec expression under the following predicates:
5058   //
5059   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5060   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5061   // P2: An Equal predicate that guarantees that
5062   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5063   // P3: An Equal predicate that guarantees that
5064   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5065   //
5066   // As we next prove, the above predicates guarantee that:
5067   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5068   //
5069   //
5070   // More formally, we want to prove that:
5071   //     Expr(i+1) = Start + (i+1) * Accum
5072   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5073   //
5074   // Given that:
5075   // 1) Expr(0) = Start
5076   // 2) Expr(1) = Start + Accum
5077   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5078   // 3) Induction hypothesis (step i):
5079   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5080   //
5081   // Proof:
5082   //  Expr(i+1) =
5083   //   = Start + (i+1)*Accum
5084   //   = (Start + i*Accum) + Accum
5085   //   = Expr(i) + Accum
5086   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5087   //                                                             :: from step i
5088   //
5089   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5090   //
5091   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5092   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5093   //     + Accum                                                     :: from P3
5094   //
5095   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5096   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5097   //
5098   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5099   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5100   //
5101   // By induction, the same applies to all iterations 1<=i<n:
5102   //
5103 
5104   // Create a truncated addrec for which we will add a no overflow check (P1).
5105   const SCEV *StartVal = getSCEV(StartValueV);
5106   const SCEV *PHISCEV =
5107       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5108                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5109 
5110   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5111   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5112   // will be constant.
5113   //
5114   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5115   // add P1.
5116   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5117     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5118         Signed ? SCEVWrapPredicate::IncrementNSSW
5119                : SCEVWrapPredicate::IncrementNUSW;
5120     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5121     Predicates.push_back(AddRecPred);
5122   }
5123 
5124   // Create the Equal Predicates P2,P3:
5125 
5126   // It is possible that the predicates P2 and/or P3 are computable at
5127   // compile time due to StartVal and/or Accum being constants.
5128   // If either one is, then we can check that now and escape if either P2
5129   // or P3 is false.
5130 
5131   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5132   // for each of StartVal and Accum
5133   auto getExtendedExpr = [&](const SCEV *Expr,
5134                              bool CreateSignExtend) -> const SCEV * {
5135     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5136     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5137     const SCEV *ExtendedExpr =
5138         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5139                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5140     return ExtendedExpr;
5141   };
5142 
5143   // Given:
5144   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5145   //               = getExtendedExpr(Expr)
5146   // Determine whether the predicate P: Expr == ExtendedExpr
5147   // is known to be false at compile time
5148   auto PredIsKnownFalse = [&](const SCEV *Expr,
5149                               const SCEV *ExtendedExpr) -> bool {
5150     return Expr != ExtendedExpr &&
5151            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5152   };
5153 
5154   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5155   if (PredIsKnownFalse(StartVal, StartExtended)) {
5156     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5157     return None;
5158   }
5159 
5160   // The Step is always Signed (because the overflow checks are either
5161   // NSSW or NUSW)
5162   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5163   if (PredIsKnownFalse(Accum, AccumExtended)) {
5164     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5165     return None;
5166   }
5167 
5168   auto AppendPredicate = [&](const SCEV *Expr,
5169                              const SCEV *ExtendedExpr) -> void {
5170     if (Expr != ExtendedExpr &&
5171         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5172       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5173       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5174       Predicates.push_back(Pred);
5175     }
5176   };
5177 
5178   AppendPredicate(StartVal, StartExtended);
5179   AppendPredicate(Accum, AccumExtended);
5180 
5181   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5182   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5183   // into NewAR if it will also add the runtime overflow checks specified in
5184   // Predicates.
5185   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5186 
5187   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5188       std::make_pair(NewAR, Predicates);
5189   // Remember the result of the analysis for this SCEV at this locayyytion.
5190   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5191   return PredRewrite;
5192 }
5193 
5194 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5195 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5196   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5197   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5198   if (!L)
5199     return None;
5200 
5201   // Check to see if we already analyzed this PHI.
5202   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5203   if (I != PredicatedSCEVRewrites.end()) {
5204     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5205         I->second;
5206     // Analysis was done before and failed to create an AddRec:
5207     if (Rewrite.first == SymbolicPHI)
5208       return None;
5209     // Analysis was done before and succeeded to create an AddRec under
5210     // a predicate:
5211     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5212     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5213     return Rewrite;
5214   }
5215 
5216   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5217     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5218 
5219   // Record in the cache that the analysis failed
5220   if (!Rewrite) {
5221     SmallVector<const SCEVPredicate *, 3> Predicates;
5222     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5223     return None;
5224   }
5225 
5226   return Rewrite;
5227 }
5228 
5229 // FIXME: This utility is currently required because the Rewriter currently
5230 // does not rewrite this expression:
5231 // {0, +, (sext ix (trunc iy to ix) to iy)}
5232 // into {0, +, %step},
5233 // even when the following Equal predicate exists:
5234 // "%step == (sext ix (trunc iy to ix) to iy)".
5235 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5236     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5237   if (AR1 == AR2)
5238     return true;
5239 
5240   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5241     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5242         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5243       return false;
5244     return true;
5245   };
5246 
5247   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5248       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5249     return false;
5250   return true;
5251 }
5252 
5253 /// A helper function for createAddRecFromPHI to handle simple cases.
5254 ///
5255 /// This function tries to find an AddRec expression for the simplest (yet most
5256 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5257 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5258 /// technique for finding the AddRec expression.
5259 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5260                                                       Value *BEValueV,
5261                                                       Value *StartValueV) {
5262   const Loop *L = LI.getLoopFor(PN->getParent());
5263   assert(L && L->getHeader() == PN->getParent());
5264   assert(BEValueV && StartValueV);
5265 
5266   auto BO = MatchBinaryOp(BEValueV, DT);
5267   if (!BO)
5268     return nullptr;
5269 
5270   if (BO->Opcode != Instruction::Add)
5271     return nullptr;
5272 
5273   const SCEV *Accum = nullptr;
5274   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5275     Accum = getSCEV(BO->RHS);
5276   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5277     Accum = getSCEV(BO->LHS);
5278 
5279   if (!Accum)
5280     return nullptr;
5281 
5282   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5283   if (BO->IsNUW)
5284     Flags = setFlags(Flags, SCEV::FlagNUW);
5285   if (BO->IsNSW)
5286     Flags = setFlags(Flags, SCEV::FlagNSW);
5287 
5288   const SCEV *StartVal = getSCEV(StartValueV);
5289   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5290 
5291   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5292 
5293   // We can add Flags to the post-inc expression only if we
5294   // know that it is *undefined behavior* for BEValueV to
5295   // overflow.
5296   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5297     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5298       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5299 
5300   return PHISCEV;
5301 }
5302 
5303 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5304   const Loop *L = LI.getLoopFor(PN->getParent());
5305   if (!L || L->getHeader() != PN->getParent())
5306     return nullptr;
5307 
5308   // The loop may have multiple entrances or multiple exits; we can analyze
5309   // this phi as an addrec if it has a unique entry value and a unique
5310   // backedge value.
5311   Value *BEValueV = nullptr, *StartValueV = nullptr;
5312   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5313     Value *V = PN->getIncomingValue(i);
5314     if (L->contains(PN->getIncomingBlock(i))) {
5315       if (!BEValueV) {
5316         BEValueV = V;
5317       } else if (BEValueV != V) {
5318         BEValueV = nullptr;
5319         break;
5320       }
5321     } else if (!StartValueV) {
5322       StartValueV = V;
5323     } else if (StartValueV != V) {
5324       StartValueV = nullptr;
5325       break;
5326     }
5327   }
5328   if (!BEValueV || !StartValueV)
5329     return nullptr;
5330 
5331   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5332          "PHI node already processed?");
5333 
5334   // First, try to find AddRec expression without creating a fictituos symbolic
5335   // value for PN.
5336   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5337     return S;
5338 
5339   // Handle PHI node value symbolically.
5340   const SCEV *SymbolicName = getUnknown(PN);
5341   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5342 
5343   // Using this symbolic name for the PHI, analyze the value coming around
5344   // the back-edge.
5345   const SCEV *BEValue = getSCEV(BEValueV);
5346 
5347   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5348   // has a special value for the first iteration of the loop.
5349 
5350   // If the value coming around the backedge is an add with the symbolic
5351   // value we just inserted, then we found a simple induction variable!
5352   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5353     // If there is a single occurrence of the symbolic value, replace it
5354     // with a recurrence.
5355     unsigned FoundIndex = Add->getNumOperands();
5356     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5357       if (Add->getOperand(i) == SymbolicName)
5358         if (FoundIndex == e) {
5359           FoundIndex = i;
5360           break;
5361         }
5362 
5363     if (FoundIndex != Add->getNumOperands()) {
5364       // Create an add with everything but the specified operand.
5365       SmallVector<const SCEV *, 8> Ops;
5366       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5367         if (i != FoundIndex)
5368           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5369                                                              L, *this));
5370       const SCEV *Accum = getAddExpr(Ops);
5371 
5372       // This is not a valid addrec if the step amount is varying each
5373       // loop iteration, but is not itself an addrec in this loop.
5374       if (isLoopInvariant(Accum, L) ||
5375           (isa<SCEVAddRecExpr>(Accum) &&
5376            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5377         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5378 
5379         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5380           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5381             if (BO->IsNUW)
5382               Flags = setFlags(Flags, SCEV::FlagNUW);
5383             if (BO->IsNSW)
5384               Flags = setFlags(Flags, SCEV::FlagNSW);
5385           }
5386         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5387           // If the increment is an inbounds GEP, then we know the address
5388           // space cannot be wrapped around. We cannot make any guarantee
5389           // about signed or unsigned overflow because pointers are
5390           // unsigned but we may have a negative index from the base
5391           // pointer. We can guarantee that no unsigned wrap occurs if the
5392           // indices form a positive value.
5393           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5394             Flags = setFlags(Flags, SCEV::FlagNW);
5395 
5396             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5397             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5398               Flags = setFlags(Flags, SCEV::FlagNUW);
5399           }
5400 
5401           // We cannot transfer nuw and nsw flags from subtraction
5402           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5403           // for instance.
5404         }
5405 
5406         const SCEV *StartVal = getSCEV(StartValueV);
5407         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5408 
5409         // Okay, for the entire analysis of this edge we assumed the PHI
5410         // to be symbolic.  We now need to go back and purge all of the
5411         // entries for the scalars that use the symbolic expression.
5412         forgetSymbolicName(PN, SymbolicName);
5413         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5414 
5415         // We can add Flags to the post-inc expression only if we
5416         // know that it is *undefined behavior* for BEValueV to
5417         // overflow.
5418         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5419           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5420             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5421 
5422         return PHISCEV;
5423       }
5424     }
5425   } else {
5426     // Otherwise, this could be a loop like this:
5427     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5428     // In this case, j = {1,+,1}  and BEValue is j.
5429     // Because the other in-value of i (0) fits the evolution of BEValue
5430     // i really is an addrec evolution.
5431     //
5432     // We can generalize this saying that i is the shifted value of BEValue
5433     // by one iteration:
5434     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5435     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5436     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5437     if (Shifted != getCouldNotCompute() &&
5438         Start != getCouldNotCompute()) {
5439       const SCEV *StartVal = getSCEV(StartValueV);
5440       if (Start == StartVal) {
5441         // Okay, for the entire analysis of this edge we assumed the PHI
5442         // to be symbolic.  We now need to go back and purge all of the
5443         // entries for the scalars that use the symbolic expression.
5444         forgetSymbolicName(PN, SymbolicName);
5445         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5446         return Shifted;
5447       }
5448     }
5449   }
5450 
5451   // Remove the temporary PHI node SCEV that has been inserted while intending
5452   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5453   // as it will prevent later (possibly simpler) SCEV expressions to be added
5454   // to the ValueExprMap.
5455   eraseValueFromMap(PN);
5456 
5457   return nullptr;
5458 }
5459 
5460 // Checks if the SCEV S is available at BB.  S is considered available at BB
5461 // if S can be materialized at BB without introducing a fault.
5462 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5463                                BasicBlock *BB) {
5464   struct CheckAvailable {
5465     bool TraversalDone = false;
5466     bool Available = true;
5467 
5468     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5469     BasicBlock *BB = nullptr;
5470     DominatorTree &DT;
5471 
5472     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5473       : L(L), BB(BB), DT(DT) {}
5474 
5475     bool setUnavailable() {
5476       TraversalDone = true;
5477       Available = false;
5478       return false;
5479     }
5480 
5481     bool follow(const SCEV *S) {
5482       switch (S->getSCEVType()) {
5483       case scConstant:
5484       case scPtrToInt:
5485       case scTruncate:
5486       case scZeroExtend:
5487       case scSignExtend:
5488       case scAddExpr:
5489       case scMulExpr:
5490       case scUMaxExpr:
5491       case scSMaxExpr:
5492       case scUMinExpr:
5493       case scSMinExpr:
5494         // These expressions are available if their operand(s) is/are.
5495         return true;
5496 
5497       case scAddRecExpr: {
5498         // We allow add recurrences that are on the loop BB is in, or some
5499         // outer loop.  This guarantees availability because the value of the
5500         // add recurrence at BB is simply the "current" value of the induction
5501         // variable.  We can relax this in the future; for instance an add
5502         // recurrence on a sibling dominating loop is also available at BB.
5503         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5504         if (L && (ARLoop == L || ARLoop->contains(L)))
5505           return true;
5506 
5507         return setUnavailable();
5508       }
5509 
5510       case scUnknown: {
5511         // For SCEVUnknown, we check for simple dominance.
5512         const auto *SU = cast<SCEVUnknown>(S);
5513         Value *V = SU->getValue();
5514 
5515         if (isa<Argument>(V))
5516           return false;
5517 
5518         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5519           return false;
5520 
5521         return setUnavailable();
5522       }
5523 
5524       case scUDivExpr:
5525       case scCouldNotCompute:
5526         // We do not try to smart about these at all.
5527         return setUnavailable();
5528       }
5529       llvm_unreachable("Unknown SCEV kind!");
5530     }
5531 
5532     bool isDone() { return TraversalDone; }
5533   };
5534 
5535   CheckAvailable CA(L, BB, DT);
5536   SCEVTraversal<CheckAvailable> ST(CA);
5537 
5538   ST.visitAll(S);
5539   return CA.Available;
5540 }
5541 
5542 // Try to match a control flow sequence that branches out at BI and merges back
5543 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5544 // match.
5545 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5546                           Value *&C, Value *&LHS, Value *&RHS) {
5547   C = BI->getCondition();
5548 
5549   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5550   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5551 
5552   if (!LeftEdge.isSingleEdge())
5553     return false;
5554 
5555   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5556 
5557   Use &LeftUse = Merge->getOperandUse(0);
5558   Use &RightUse = Merge->getOperandUse(1);
5559 
5560   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5561     LHS = LeftUse;
5562     RHS = RightUse;
5563     return true;
5564   }
5565 
5566   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5567     LHS = RightUse;
5568     RHS = LeftUse;
5569     return true;
5570   }
5571 
5572   return false;
5573 }
5574 
5575 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5576   auto IsReachable =
5577       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5578   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5579     const Loop *L = LI.getLoopFor(PN->getParent());
5580 
5581     // We don't want to break LCSSA, even in a SCEV expression tree.
5582     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5583       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5584         return nullptr;
5585 
5586     // Try to match
5587     //
5588     //  br %cond, label %left, label %right
5589     // left:
5590     //  br label %merge
5591     // right:
5592     //  br label %merge
5593     // merge:
5594     //  V = phi [ %x, %left ], [ %y, %right ]
5595     //
5596     // as "select %cond, %x, %y"
5597 
5598     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5599     assert(IDom && "At least the entry block should dominate PN");
5600 
5601     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5602     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5603 
5604     if (BI && BI->isConditional() &&
5605         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5606         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5607         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5608       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5609   }
5610 
5611   return nullptr;
5612 }
5613 
5614 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5615   if (const SCEV *S = createAddRecFromPHI(PN))
5616     return S;
5617 
5618   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5619     return S;
5620 
5621   // If the PHI has a single incoming value, follow that value, unless the
5622   // PHI's incoming blocks are in a different loop, in which case doing so
5623   // risks breaking LCSSA form. Instcombine would normally zap these, but
5624   // it doesn't have DominatorTree information, so it may miss cases.
5625   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5626     if (LI.replacementPreservesLCSSAForm(PN, V))
5627       return getSCEV(V);
5628 
5629   // If it's not a loop phi, we can't handle it yet.
5630   return getUnknown(PN);
5631 }
5632 
5633 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5634                                                       Value *Cond,
5635                                                       Value *TrueVal,
5636                                                       Value *FalseVal) {
5637   // Handle "constant" branch or select. This can occur for instance when a
5638   // loop pass transforms an inner loop and moves on to process the outer loop.
5639   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5640     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5641 
5642   // Try to match some simple smax or umax patterns.
5643   auto *ICI = dyn_cast<ICmpInst>(Cond);
5644   if (!ICI)
5645     return getUnknown(I);
5646 
5647   Value *LHS = ICI->getOperand(0);
5648   Value *RHS = ICI->getOperand(1);
5649 
5650   switch (ICI->getPredicate()) {
5651   case ICmpInst::ICMP_SLT:
5652   case ICmpInst::ICMP_SLE:
5653   case ICmpInst::ICMP_ULT:
5654   case ICmpInst::ICMP_ULE:
5655     std::swap(LHS, RHS);
5656     LLVM_FALLTHROUGH;
5657   case ICmpInst::ICMP_SGT:
5658   case ICmpInst::ICMP_SGE:
5659   case ICmpInst::ICMP_UGT:
5660   case ICmpInst::ICMP_UGE:
5661     // a > b ? a+x : b+x  ->  max(a, b)+x
5662     // a > b ? b+x : a+x  ->  min(a, b)+x
5663     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5664       bool Signed = ICI->isSigned();
5665       const SCEV *LA = getSCEV(TrueVal);
5666       const SCEV *RA = getSCEV(FalseVal);
5667       const SCEV *LS = getSCEV(LHS);
5668       const SCEV *RS = getSCEV(RHS);
5669       if (LA->getType()->isPointerTy()) {
5670         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5671         // Need to make sure we can't produce weird expressions involving
5672         // negated pointers.
5673         if (LA == LS && RA == RS)
5674           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5675         if (LA == RS && RA == LS)
5676           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5677       }
5678       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5679         if (Op->getType()->isPointerTy()) {
5680           Op = getLosslessPtrToIntExpr(Op);
5681           if (isa<SCEVCouldNotCompute>(Op))
5682             return Op;
5683         }
5684         if (Signed)
5685           Op = getNoopOrSignExtend(Op, I->getType());
5686         else
5687           Op = getNoopOrZeroExtend(Op, I->getType());
5688         return Op;
5689       };
5690       LS = CoerceOperand(LS);
5691       RS = CoerceOperand(RS);
5692       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5693         break;
5694       const SCEV *LDiff = getMinusSCEV(LA, LS);
5695       const SCEV *RDiff = getMinusSCEV(RA, RS);
5696       if (LDiff == RDiff)
5697         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5698                           LDiff);
5699       LDiff = getMinusSCEV(LA, RS);
5700       RDiff = getMinusSCEV(RA, LS);
5701       if (LDiff == RDiff)
5702         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5703                           LDiff);
5704     }
5705     break;
5706   case ICmpInst::ICMP_NE:
5707     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5708     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5709         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5710       const SCEV *One = getOne(I->getType());
5711       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5712       const SCEV *LA = getSCEV(TrueVal);
5713       const SCEV *RA = getSCEV(FalseVal);
5714       const SCEV *LDiff = getMinusSCEV(LA, LS);
5715       const SCEV *RDiff = getMinusSCEV(RA, One);
5716       if (LDiff == RDiff)
5717         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5718     }
5719     break;
5720   case ICmpInst::ICMP_EQ:
5721     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5722     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5723         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5724       const SCEV *One = getOne(I->getType());
5725       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5726       const SCEV *LA = getSCEV(TrueVal);
5727       const SCEV *RA = getSCEV(FalseVal);
5728       const SCEV *LDiff = getMinusSCEV(LA, One);
5729       const SCEV *RDiff = getMinusSCEV(RA, LS);
5730       if (LDiff == RDiff)
5731         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5732     }
5733     break;
5734   default:
5735     break;
5736   }
5737 
5738   return getUnknown(I);
5739 }
5740 
5741 /// Expand GEP instructions into add and multiply operations. This allows them
5742 /// to be analyzed by regular SCEV code.
5743 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5744   // Don't attempt to analyze GEPs over unsized objects.
5745   if (!GEP->getSourceElementType()->isSized())
5746     return getUnknown(GEP);
5747 
5748   SmallVector<const SCEV *, 4> IndexExprs;
5749   for (Value *Index : GEP->indices())
5750     IndexExprs.push_back(getSCEV(Index));
5751   return getGEPExpr(GEP, IndexExprs);
5752 }
5753 
5754 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5755   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5756     return C->getAPInt().countTrailingZeros();
5757 
5758   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5759     return GetMinTrailingZeros(I->getOperand());
5760 
5761   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5762     return std::min(GetMinTrailingZeros(T->getOperand()),
5763                     (uint32_t)getTypeSizeInBits(T->getType()));
5764 
5765   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5766     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5767     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5768                ? getTypeSizeInBits(E->getType())
5769                : OpRes;
5770   }
5771 
5772   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5773     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5774     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5775                ? getTypeSizeInBits(E->getType())
5776                : OpRes;
5777   }
5778 
5779   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5780     // The result is the min of all operands results.
5781     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5782     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5783       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5784     return MinOpRes;
5785   }
5786 
5787   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5788     // The result is the sum of all operands results.
5789     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5790     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5791     for (unsigned i = 1, e = M->getNumOperands();
5792          SumOpRes != BitWidth && i != e; ++i)
5793       SumOpRes =
5794           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5795     return SumOpRes;
5796   }
5797 
5798   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5799     // The result is the min of all operands results.
5800     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5801     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5802       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5803     return MinOpRes;
5804   }
5805 
5806   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5807     // The result is the min of all operands results.
5808     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5809     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5810       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5811     return MinOpRes;
5812   }
5813 
5814   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5815     // The result is the min of all operands results.
5816     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5817     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5818       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5819     return MinOpRes;
5820   }
5821 
5822   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5823     // For a SCEVUnknown, ask ValueTracking.
5824     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5825     return Known.countMinTrailingZeros();
5826   }
5827 
5828   // SCEVUDivExpr
5829   return 0;
5830 }
5831 
5832 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5833   auto I = MinTrailingZerosCache.find(S);
5834   if (I != MinTrailingZerosCache.end())
5835     return I->second;
5836 
5837   uint32_t Result = GetMinTrailingZerosImpl(S);
5838   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5839   assert(InsertPair.second && "Should insert a new key");
5840   return InsertPair.first->second;
5841 }
5842 
5843 /// Helper method to assign a range to V from metadata present in the IR.
5844 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5845   if (Instruction *I = dyn_cast<Instruction>(V))
5846     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5847       return getConstantRangeFromMetadata(*MD);
5848 
5849   return None;
5850 }
5851 
5852 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5853                                      SCEV::NoWrapFlags Flags) {
5854   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5855     AddRec->setNoWrapFlags(Flags);
5856     UnsignedRanges.erase(AddRec);
5857     SignedRanges.erase(AddRec);
5858   }
5859 }
5860 
5861 ConstantRange ScalarEvolution::
5862 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5863   const DataLayout &DL = getDataLayout();
5864 
5865   unsigned BitWidth = getTypeSizeInBits(U->getType());
5866   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5867 
5868   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5869   // use information about the trip count to improve our available range.  Note
5870   // that the trip count independent cases are already handled by known bits.
5871   // WARNING: The definition of recurrence used here is subtly different than
5872   // the one used by AddRec (and thus most of this file).  Step is allowed to
5873   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5874   // and other addrecs in the same loop (for non-affine addrecs).  The code
5875   // below intentionally handles the case where step is not loop invariant.
5876   auto *P = dyn_cast<PHINode>(U->getValue());
5877   if (!P)
5878     return FullSet;
5879 
5880   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5881   // even the values that are not available in these blocks may come from them,
5882   // and this leads to false-positive recurrence test.
5883   for (auto *Pred : predecessors(P->getParent()))
5884     if (!DT.isReachableFromEntry(Pred))
5885       return FullSet;
5886 
5887   BinaryOperator *BO;
5888   Value *Start, *Step;
5889   if (!matchSimpleRecurrence(P, BO, Start, Step))
5890     return FullSet;
5891 
5892   // If we found a recurrence in reachable code, we must be in a loop. Note
5893   // that BO might be in some subloop of L, and that's completely okay.
5894   auto *L = LI.getLoopFor(P->getParent());
5895   assert(L && L->getHeader() == P->getParent());
5896   if (!L->contains(BO->getParent()))
5897     // NOTE: This bailout should be an assert instead.  However, asserting
5898     // the condition here exposes a case where LoopFusion is querying SCEV
5899     // with malformed loop information during the midst of the transform.
5900     // There doesn't appear to be an obvious fix, so for the moment bailout
5901     // until the caller issue can be fixed.  PR49566 tracks the bug.
5902     return FullSet;
5903 
5904   // TODO: Extend to other opcodes such as mul, and div
5905   switch (BO->getOpcode()) {
5906   default:
5907     return FullSet;
5908   case Instruction::AShr:
5909   case Instruction::LShr:
5910   case Instruction::Shl:
5911     break;
5912   };
5913 
5914   if (BO->getOperand(0) != P)
5915     // TODO: Handle the power function forms some day.
5916     return FullSet;
5917 
5918   unsigned TC = getSmallConstantMaxTripCount(L);
5919   if (!TC || TC >= BitWidth)
5920     return FullSet;
5921 
5922   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5923   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5924   assert(KnownStart.getBitWidth() == BitWidth &&
5925          KnownStep.getBitWidth() == BitWidth);
5926 
5927   // Compute total shift amount, being careful of overflow and bitwidths.
5928   auto MaxShiftAmt = KnownStep.getMaxValue();
5929   APInt TCAP(BitWidth, TC-1);
5930   bool Overflow = false;
5931   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5932   if (Overflow)
5933     return FullSet;
5934 
5935   switch (BO->getOpcode()) {
5936   default:
5937     llvm_unreachable("filtered out above");
5938   case Instruction::AShr: {
5939     // For each ashr, three cases:
5940     //   shift = 0 => unchanged value
5941     //   saturation => 0 or -1
5942     //   other => a value closer to zero (of the same sign)
5943     // Thus, the end value is closer to zero than the start.
5944     auto KnownEnd = KnownBits::ashr(KnownStart,
5945                                     KnownBits::makeConstant(TotalShift));
5946     if (KnownStart.isNonNegative())
5947       // Analogous to lshr (simply not yet canonicalized)
5948       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5949                                         KnownStart.getMaxValue() + 1);
5950     if (KnownStart.isNegative())
5951       // End >=u Start && End <=s Start
5952       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5953                                         KnownEnd.getMaxValue() + 1);
5954     break;
5955   }
5956   case Instruction::LShr: {
5957     // For each lshr, three cases:
5958     //   shift = 0 => unchanged value
5959     //   saturation => 0
5960     //   other => a smaller positive number
5961     // Thus, the low end of the unsigned range is the last value produced.
5962     auto KnownEnd = KnownBits::lshr(KnownStart,
5963                                     KnownBits::makeConstant(TotalShift));
5964     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5965                                       KnownStart.getMaxValue() + 1);
5966   }
5967   case Instruction::Shl: {
5968     // Iff no bits are shifted out, value increases on every shift.
5969     auto KnownEnd = KnownBits::shl(KnownStart,
5970                                    KnownBits::makeConstant(TotalShift));
5971     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5972       return ConstantRange(KnownStart.getMinValue(),
5973                            KnownEnd.getMaxValue() + 1);
5974     break;
5975   }
5976   };
5977   return FullSet;
5978 }
5979 
5980 /// Determine the range for a particular SCEV.  If SignHint is
5981 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5982 /// with a "cleaner" unsigned (resp. signed) representation.
5983 const ConstantRange &
5984 ScalarEvolution::getRangeRef(const SCEV *S,
5985                              ScalarEvolution::RangeSignHint SignHint) {
5986   DenseMap<const SCEV *, ConstantRange> &Cache =
5987       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5988                                                        : SignedRanges;
5989   ConstantRange::PreferredRangeType RangeType =
5990       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5991           ? ConstantRange::Unsigned : ConstantRange::Signed;
5992 
5993   // See if we've computed this range already.
5994   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5995   if (I != Cache.end())
5996     return I->second;
5997 
5998   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5999     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6000 
6001   unsigned BitWidth = getTypeSizeInBits(S->getType());
6002   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6003   using OBO = OverflowingBinaryOperator;
6004 
6005   // If the value has known zeros, the maximum value will have those known zeros
6006   // as well.
6007   uint32_t TZ = GetMinTrailingZeros(S);
6008   if (TZ != 0) {
6009     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6010       ConservativeResult =
6011           ConstantRange(APInt::getMinValue(BitWidth),
6012                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6013     else
6014       ConservativeResult = ConstantRange(
6015           APInt::getSignedMinValue(BitWidth),
6016           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6017   }
6018 
6019   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6020     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6021     unsigned WrapType = OBO::AnyWrap;
6022     if (Add->hasNoSignedWrap())
6023       WrapType |= OBO::NoSignedWrap;
6024     if (Add->hasNoUnsignedWrap())
6025       WrapType |= OBO::NoUnsignedWrap;
6026     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6027       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6028                           WrapType, RangeType);
6029     return setRange(Add, SignHint,
6030                     ConservativeResult.intersectWith(X, RangeType));
6031   }
6032 
6033   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6034     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6035     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6036       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6037     return setRange(Mul, SignHint,
6038                     ConservativeResult.intersectWith(X, RangeType));
6039   }
6040 
6041   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
6042     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
6043     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
6044       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
6045     return setRange(SMax, SignHint,
6046                     ConservativeResult.intersectWith(X, RangeType));
6047   }
6048 
6049   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
6050     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
6051     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
6052       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
6053     return setRange(UMax, SignHint,
6054                     ConservativeResult.intersectWith(X, RangeType));
6055   }
6056 
6057   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
6058     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
6059     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
6060       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
6061     return setRange(SMin, SignHint,
6062                     ConservativeResult.intersectWith(X, RangeType));
6063   }
6064 
6065   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
6066     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
6067     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
6068       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
6069     return setRange(UMin, SignHint,
6070                     ConservativeResult.intersectWith(X, RangeType));
6071   }
6072 
6073   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6074     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6075     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6076     return setRange(UDiv, SignHint,
6077                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6078   }
6079 
6080   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6081     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6082     return setRange(ZExt, SignHint,
6083                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6084                                                      RangeType));
6085   }
6086 
6087   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6088     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6089     return setRange(SExt, SignHint,
6090                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6091                                                      RangeType));
6092   }
6093 
6094   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6095     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6096     return setRange(PtrToInt, SignHint, X);
6097   }
6098 
6099   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6100     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6101     return setRange(Trunc, SignHint,
6102                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6103                                                      RangeType));
6104   }
6105 
6106   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6107     // If there's no unsigned wrap, the value will never be less than its
6108     // initial value.
6109     if (AddRec->hasNoUnsignedWrap()) {
6110       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6111       if (!UnsignedMinValue.isNullValue())
6112         ConservativeResult = ConservativeResult.intersectWith(
6113             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6114     }
6115 
6116     // If there's no signed wrap, and all the operands except initial value have
6117     // the same sign or zero, the value won't ever be:
6118     // 1: smaller than initial value if operands are non negative,
6119     // 2: bigger than initial value if operands are non positive.
6120     // For both cases, value can not cross signed min/max boundary.
6121     if (AddRec->hasNoSignedWrap()) {
6122       bool AllNonNeg = true;
6123       bool AllNonPos = true;
6124       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6125         if (!isKnownNonNegative(AddRec->getOperand(i)))
6126           AllNonNeg = false;
6127         if (!isKnownNonPositive(AddRec->getOperand(i)))
6128           AllNonPos = false;
6129       }
6130       if (AllNonNeg)
6131         ConservativeResult = ConservativeResult.intersectWith(
6132             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6133                                        APInt::getSignedMinValue(BitWidth)),
6134             RangeType);
6135       else if (AllNonPos)
6136         ConservativeResult = ConservativeResult.intersectWith(
6137             ConstantRange::getNonEmpty(
6138                 APInt::getSignedMinValue(BitWidth),
6139                 getSignedRangeMax(AddRec->getStart()) + 1),
6140             RangeType);
6141     }
6142 
6143     // TODO: non-affine addrec
6144     if (AddRec->isAffine()) {
6145       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6146       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6147           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6148         auto RangeFromAffine = getRangeForAffineAR(
6149             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6150             BitWidth);
6151         ConservativeResult =
6152             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6153 
6154         auto RangeFromFactoring = getRangeViaFactoring(
6155             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6156             BitWidth);
6157         ConservativeResult =
6158             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6159       }
6160 
6161       // Now try symbolic BE count and more powerful methods.
6162       if (UseExpensiveRangeSharpening) {
6163         const SCEV *SymbolicMaxBECount =
6164             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6165         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6166             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6167             AddRec->hasNoSelfWrap()) {
6168           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6169               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6170           ConservativeResult =
6171               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6172         }
6173       }
6174     }
6175 
6176     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6177   }
6178 
6179   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6180 
6181     // Check if the IR explicitly contains !range metadata.
6182     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6183     if (MDRange.hasValue())
6184       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6185                                                             RangeType);
6186 
6187     // Use facts about recurrences in the underlying IR.  Note that add
6188     // recurrences are AddRecExprs and thus don't hit this path.  This
6189     // primarily handles shift recurrences.
6190     auto CR = getRangeForUnknownRecurrence(U);
6191     ConservativeResult = ConservativeResult.intersectWith(CR);
6192 
6193     // See if ValueTracking can give us a useful range.
6194     const DataLayout &DL = getDataLayout();
6195     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6196     if (Known.getBitWidth() != BitWidth)
6197       Known = Known.zextOrTrunc(BitWidth);
6198 
6199     // ValueTracking may be able to compute a tighter result for the number of
6200     // sign bits than for the value of those sign bits.
6201     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6202     if (U->getType()->isPointerTy()) {
6203       // If the pointer size is larger than the index size type, this can cause
6204       // NS to be larger than BitWidth. So compensate for this.
6205       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6206       int ptrIdxDiff = ptrSize - BitWidth;
6207       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6208         NS -= ptrIdxDiff;
6209     }
6210 
6211     if (NS > 1) {
6212       // If we know any of the sign bits, we know all of the sign bits.
6213       if (!Known.Zero.getHiBits(NS).isNullValue())
6214         Known.Zero.setHighBits(NS);
6215       if (!Known.One.getHiBits(NS).isNullValue())
6216         Known.One.setHighBits(NS);
6217     }
6218 
6219     if (Known.getMinValue() != Known.getMaxValue() + 1)
6220       ConservativeResult = ConservativeResult.intersectWith(
6221           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6222           RangeType);
6223     if (NS > 1)
6224       ConservativeResult = ConservativeResult.intersectWith(
6225           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6226                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6227           RangeType);
6228 
6229     // A range of Phi is a subset of union of all ranges of its input.
6230     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6231       // Make sure that we do not run over cycled Phis.
6232       if (PendingPhiRanges.insert(Phi).second) {
6233         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6234         for (auto &Op : Phi->operands()) {
6235           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6236           RangeFromOps = RangeFromOps.unionWith(OpRange);
6237           // No point to continue if we already have a full set.
6238           if (RangeFromOps.isFullSet())
6239             break;
6240         }
6241         ConservativeResult =
6242             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6243         bool Erased = PendingPhiRanges.erase(Phi);
6244         assert(Erased && "Failed to erase Phi properly?");
6245         (void) Erased;
6246       }
6247     }
6248 
6249     return setRange(U, SignHint, std::move(ConservativeResult));
6250   }
6251 
6252   return setRange(S, SignHint, std::move(ConservativeResult));
6253 }
6254 
6255 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6256 // values that the expression can take. Initially, the expression has a value
6257 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6258 // argument defines if we treat Step as signed or unsigned.
6259 static ConstantRange getRangeForAffineARHelper(APInt Step,
6260                                                const ConstantRange &StartRange,
6261                                                const APInt &MaxBECount,
6262                                                unsigned BitWidth, bool Signed) {
6263   // If either Step or MaxBECount is 0, then the expression won't change, and we
6264   // just need to return the initial range.
6265   if (Step == 0 || MaxBECount == 0)
6266     return StartRange;
6267 
6268   // If we don't know anything about the initial value (i.e. StartRange is
6269   // FullRange), then we don't know anything about the final range either.
6270   // Return FullRange.
6271   if (StartRange.isFullSet())
6272     return ConstantRange::getFull(BitWidth);
6273 
6274   // If Step is signed and negative, then we use its absolute value, but we also
6275   // note that we're moving in the opposite direction.
6276   bool Descending = Signed && Step.isNegative();
6277 
6278   if (Signed)
6279     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6280     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6281     // This equations hold true due to the well-defined wrap-around behavior of
6282     // APInt.
6283     Step = Step.abs();
6284 
6285   // Check if Offset is more than full span of BitWidth. If it is, the
6286   // expression is guaranteed to overflow.
6287   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6288     return ConstantRange::getFull(BitWidth);
6289 
6290   // Offset is by how much the expression can change. Checks above guarantee no
6291   // overflow here.
6292   APInt Offset = Step * MaxBECount;
6293 
6294   // Minimum value of the final range will match the minimal value of StartRange
6295   // if the expression is increasing and will be decreased by Offset otherwise.
6296   // Maximum value of the final range will match the maximal value of StartRange
6297   // if the expression is decreasing and will be increased by Offset otherwise.
6298   APInt StartLower = StartRange.getLower();
6299   APInt StartUpper = StartRange.getUpper() - 1;
6300   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6301                                    : (StartUpper + std::move(Offset));
6302 
6303   // It's possible that the new minimum/maximum value will fall into the initial
6304   // range (due to wrap around). This means that the expression can take any
6305   // value in this bitwidth, and we have to return full range.
6306   if (StartRange.contains(MovedBoundary))
6307     return ConstantRange::getFull(BitWidth);
6308 
6309   APInt NewLower =
6310       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6311   APInt NewUpper =
6312       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6313   NewUpper += 1;
6314 
6315   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6316   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6317 }
6318 
6319 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6320                                                    const SCEV *Step,
6321                                                    const SCEV *MaxBECount,
6322                                                    unsigned BitWidth) {
6323   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6324          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6325          "Precondition!");
6326 
6327   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6328   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6329 
6330   // First, consider step signed.
6331   ConstantRange StartSRange = getSignedRange(Start);
6332   ConstantRange StepSRange = getSignedRange(Step);
6333 
6334   // If Step can be both positive and negative, we need to find ranges for the
6335   // maximum absolute step values in both directions and union them.
6336   ConstantRange SR =
6337       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6338                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6339   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6340                                               StartSRange, MaxBECountValue,
6341                                               BitWidth, /* Signed = */ true));
6342 
6343   // Next, consider step unsigned.
6344   ConstantRange UR = getRangeForAffineARHelper(
6345       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6346       MaxBECountValue, BitWidth, /* Signed = */ false);
6347 
6348   // Finally, intersect signed and unsigned ranges.
6349   return SR.intersectWith(UR, ConstantRange::Smallest);
6350 }
6351 
6352 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6353     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6354     ScalarEvolution::RangeSignHint SignHint) {
6355   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6356   assert(AddRec->hasNoSelfWrap() &&
6357          "This only works for non-self-wrapping AddRecs!");
6358   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6359   const SCEV *Step = AddRec->getStepRecurrence(*this);
6360   // Only deal with constant step to save compile time.
6361   if (!isa<SCEVConstant>(Step))
6362     return ConstantRange::getFull(BitWidth);
6363   // Let's make sure that we can prove that we do not self-wrap during
6364   // MaxBECount iterations. We need this because MaxBECount is a maximum
6365   // iteration count estimate, and we might infer nw from some exit for which we
6366   // do not know max exit count (or any other side reasoning).
6367   // TODO: Turn into assert at some point.
6368   if (getTypeSizeInBits(MaxBECount->getType()) >
6369       getTypeSizeInBits(AddRec->getType()))
6370     return ConstantRange::getFull(BitWidth);
6371   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6372   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6373   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6374   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6375   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6376                                          MaxItersWithoutWrap))
6377     return ConstantRange::getFull(BitWidth);
6378 
6379   ICmpInst::Predicate LEPred =
6380       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6381   ICmpInst::Predicate GEPred =
6382       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6383   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6384 
6385   // We know that there is no self-wrap. Let's take Start and End values and
6386   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6387   // the iteration. They either lie inside the range [Min(Start, End),
6388   // Max(Start, End)] or outside it:
6389   //
6390   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6391   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6392   //
6393   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6394   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6395   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6396   // Start <= End and step is positive, or Start >= End and step is negative.
6397   const SCEV *Start = AddRec->getStart();
6398   ConstantRange StartRange = getRangeRef(Start, SignHint);
6399   ConstantRange EndRange = getRangeRef(End, SignHint);
6400   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6401   // If they already cover full iteration space, we will know nothing useful
6402   // even if we prove what we want to prove.
6403   if (RangeBetween.isFullSet())
6404     return RangeBetween;
6405   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6406   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6407                                : RangeBetween.isWrappedSet();
6408   if (IsWrappedSet)
6409     return ConstantRange::getFull(BitWidth);
6410 
6411   if (isKnownPositive(Step) &&
6412       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6413     return RangeBetween;
6414   else if (isKnownNegative(Step) &&
6415            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6416     return RangeBetween;
6417   return ConstantRange::getFull(BitWidth);
6418 }
6419 
6420 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6421                                                     const SCEV *Step,
6422                                                     const SCEV *MaxBECount,
6423                                                     unsigned BitWidth) {
6424   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6425   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6426 
6427   struct SelectPattern {
6428     Value *Condition = nullptr;
6429     APInt TrueValue;
6430     APInt FalseValue;
6431 
6432     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6433                            const SCEV *S) {
6434       Optional<unsigned> CastOp;
6435       APInt Offset(BitWidth, 0);
6436 
6437       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6438              "Should be!");
6439 
6440       // Peel off a constant offset:
6441       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6442         // In the future we could consider being smarter here and handle
6443         // {Start+Step,+,Step} too.
6444         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6445           return;
6446 
6447         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6448         S = SA->getOperand(1);
6449       }
6450 
6451       // Peel off a cast operation
6452       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6453         CastOp = SCast->getSCEVType();
6454         S = SCast->getOperand();
6455       }
6456 
6457       using namespace llvm::PatternMatch;
6458 
6459       auto *SU = dyn_cast<SCEVUnknown>(S);
6460       const APInt *TrueVal, *FalseVal;
6461       if (!SU ||
6462           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6463                                           m_APInt(FalseVal)))) {
6464         Condition = nullptr;
6465         return;
6466       }
6467 
6468       TrueValue = *TrueVal;
6469       FalseValue = *FalseVal;
6470 
6471       // Re-apply the cast we peeled off earlier
6472       if (CastOp.hasValue())
6473         switch (*CastOp) {
6474         default:
6475           llvm_unreachable("Unknown SCEV cast type!");
6476 
6477         case scTruncate:
6478           TrueValue = TrueValue.trunc(BitWidth);
6479           FalseValue = FalseValue.trunc(BitWidth);
6480           break;
6481         case scZeroExtend:
6482           TrueValue = TrueValue.zext(BitWidth);
6483           FalseValue = FalseValue.zext(BitWidth);
6484           break;
6485         case scSignExtend:
6486           TrueValue = TrueValue.sext(BitWidth);
6487           FalseValue = FalseValue.sext(BitWidth);
6488           break;
6489         }
6490 
6491       // Re-apply the constant offset we peeled off earlier
6492       TrueValue += Offset;
6493       FalseValue += Offset;
6494     }
6495 
6496     bool isRecognized() { return Condition != nullptr; }
6497   };
6498 
6499   SelectPattern StartPattern(*this, BitWidth, Start);
6500   if (!StartPattern.isRecognized())
6501     return ConstantRange::getFull(BitWidth);
6502 
6503   SelectPattern StepPattern(*this, BitWidth, Step);
6504   if (!StepPattern.isRecognized())
6505     return ConstantRange::getFull(BitWidth);
6506 
6507   if (StartPattern.Condition != StepPattern.Condition) {
6508     // We don't handle this case today; but we could, by considering four
6509     // possibilities below instead of two. I'm not sure if there are cases where
6510     // that will help over what getRange already does, though.
6511     return ConstantRange::getFull(BitWidth);
6512   }
6513 
6514   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6515   // construct arbitrary general SCEV expressions here.  This function is called
6516   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6517   // say) can end up caching a suboptimal value.
6518 
6519   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6520   // C2352 and C2512 (otherwise it isn't needed).
6521 
6522   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6523   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6524   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6525   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6526 
6527   ConstantRange TrueRange =
6528       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6529   ConstantRange FalseRange =
6530       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6531 
6532   return TrueRange.unionWith(FalseRange);
6533 }
6534 
6535 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6536   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6537   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6538 
6539   // Return early if there are no flags to propagate to the SCEV.
6540   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6541   if (BinOp->hasNoUnsignedWrap())
6542     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6543   if (BinOp->hasNoSignedWrap())
6544     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6545   if (Flags == SCEV::FlagAnyWrap)
6546     return SCEV::FlagAnyWrap;
6547 
6548   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6549 }
6550 
6551 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6552   // Here we check that I is in the header of the innermost loop containing I,
6553   // since we only deal with instructions in the loop header. The actual loop we
6554   // need to check later will come from an add recurrence, but getting that
6555   // requires computing the SCEV of the operands, which can be expensive. This
6556   // check we can do cheaply to rule out some cases early.
6557   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6558   if (InnermostContainingLoop == nullptr ||
6559       InnermostContainingLoop->getHeader() != I->getParent())
6560     return false;
6561 
6562   // Only proceed if we can prove that I does not yield poison.
6563   if (!programUndefinedIfPoison(I))
6564     return false;
6565 
6566   // At this point we know that if I is executed, then it does not wrap
6567   // according to at least one of NSW or NUW. If I is not executed, then we do
6568   // not know if the calculation that I represents would wrap. Multiple
6569   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6570   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6571   // derived from other instructions that map to the same SCEV. We cannot make
6572   // that guarantee for cases where I is not executed. So we need to find the
6573   // loop that I is considered in relation to and prove that I is executed for
6574   // every iteration of that loop. That implies that the value that I
6575   // calculates does not wrap anywhere in the loop, so then we can apply the
6576   // flags to the SCEV.
6577   //
6578   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6579   // from different loops, so that we know which loop to prove that I is
6580   // executed in.
6581   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6582     // I could be an extractvalue from a call to an overflow intrinsic.
6583     // TODO: We can do better here in some cases.
6584     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6585       return false;
6586     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6587     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6588       bool AllOtherOpsLoopInvariant = true;
6589       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6590            ++OtherOpIndex) {
6591         if (OtherOpIndex != OpIndex) {
6592           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6593           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6594             AllOtherOpsLoopInvariant = false;
6595             break;
6596           }
6597         }
6598       }
6599       if (AllOtherOpsLoopInvariant &&
6600           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6601         return true;
6602     }
6603   }
6604   return false;
6605 }
6606 
6607 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6608   // If we know that \c I can never be poison period, then that's enough.
6609   if (isSCEVExprNeverPoison(I))
6610     return true;
6611 
6612   // For an add recurrence specifically, we assume that infinite loops without
6613   // side effects are undefined behavior, and then reason as follows:
6614   //
6615   // If the add recurrence is poison in any iteration, it is poison on all
6616   // future iterations (since incrementing poison yields poison). If the result
6617   // of the add recurrence is fed into the loop latch condition and the loop
6618   // does not contain any throws or exiting blocks other than the latch, we now
6619   // have the ability to "choose" whether the backedge is taken or not (by
6620   // choosing a sufficiently evil value for the poison feeding into the branch)
6621   // for every iteration including and after the one in which \p I first became
6622   // poison.  There are two possibilities (let's call the iteration in which \p
6623   // I first became poison as K):
6624   //
6625   //  1. In the set of iterations including and after K, the loop body executes
6626   //     no side effects.  In this case executing the backege an infinte number
6627   //     of times will yield undefined behavior.
6628   //
6629   //  2. In the set of iterations including and after K, the loop body executes
6630   //     at least one side effect.  In this case, that specific instance of side
6631   //     effect is control dependent on poison, which also yields undefined
6632   //     behavior.
6633 
6634   auto *ExitingBB = L->getExitingBlock();
6635   auto *LatchBB = L->getLoopLatch();
6636   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6637     return false;
6638 
6639   SmallPtrSet<const Instruction *, 16> Pushed;
6640   SmallVector<const Instruction *, 8> PoisonStack;
6641 
6642   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6643   // things that are known to be poison under that assumption go on the
6644   // PoisonStack.
6645   Pushed.insert(I);
6646   PoisonStack.push_back(I);
6647 
6648   bool LatchControlDependentOnPoison = false;
6649   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6650     const Instruction *Poison = PoisonStack.pop_back_val();
6651 
6652     for (auto *PoisonUser : Poison->users()) {
6653       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6654         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6655           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6656       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6657         assert(BI->isConditional() && "Only possibility!");
6658         if (BI->getParent() == LatchBB) {
6659           LatchControlDependentOnPoison = true;
6660           break;
6661         }
6662       }
6663     }
6664   }
6665 
6666   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6667 }
6668 
6669 ScalarEvolution::LoopProperties
6670 ScalarEvolution::getLoopProperties(const Loop *L) {
6671   using LoopProperties = ScalarEvolution::LoopProperties;
6672 
6673   auto Itr = LoopPropertiesCache.find(L);
6674   if (Itr == LoopPropertiesCache.end()) {
6675     auto HasSideEffects = [](Instruction *I) {
6676       if (auto *SI = dyn_cast<StoreInst>(I))
6677         return !SI->isSimple();
6678 
6679       return I->mayThrow() || I->mayWriteToMemory();
6680     };
6681 
6682     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6683                          /*HasNoSideEffects*/ true};
6684 
6685     for (auto *BB : L->getBlocks())
6686       for (auto &I : *BB) {
6687         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6688           LP.HasNoAbnormalExits = false;
6689         if (HasSideEffects(&I))
6690           LP.HasNoSideEffects = false;
6691         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6692           break; // We're already as pessimistic as we can get.
6693       }
6694 
6695     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6696     assert(InsertPair.second && "We just checked!");
6697     Itr = InsertPair.first;
6698   }
6699 
6700   return Itr->second;
6701 }
6702 
6703 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6704   // A mustprogress loop without side effects must be finite.
6705   // TODO: The check used here is very conservative.  It's only *specific*
6706   // side effects which are well defined in infinite loops.
6707   return isMustProgress(L) && loopHasNoSideEffects(L);
6708 }
6709 
6710 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6711   if (!isSCEVable(V->getType()))
6712     return getUnknown(V);
6713 
6714   if (Instruction *I = dyn_cast<Instruction>(V)) {
6715     // Don't attempt to analyze instructions in blocks that aren't
6716     // reachable. Such instructions don't matter, and they aren't required
6717     // to obey basic rules for definitions dominating uses which this
6718     // analysis depends on.
6719     if (!DT.isReachableFromEntry(I->getParent()))
6720       return getUnknown(UndefValue::get(V->getType()));
6721   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6722     return getConstant(CI);
6723   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6724     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6725   else if (!isa<ConstantExpr>(V))
6726     return getUnknown(V);
6727 
6728   Operator *U = cast<Operator>(V);
6729   if (auto BO = MatchBinaryOp(U, DT)) {
6730     switch (BO->Opcode) {
6731     case Instruction::Add: {
6732       // The simple thing to do would be to just call getSCEV on both operands
6733       // and call getAddExpr with the result. However if we're looking at a
6734       // bunch of things all added together, this can be quite inefficient,
6735       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6736       // Instead, gather up all the operands and make a single getAddExpr call.
6737       // LLVM IR canonical form means we need only traverse the left operands.
6738       SmallVector<const SCEV *, 4> AddOps;
6739       do {
6740         if (BO->Op) {
6741           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6742             AddOps.push_back(OpSCEV);
6743             break;
6744           }
6745 
6746           // If a NUW or NSW flag can be applied to the SCEV for this
6747           // addition, then compute the SCEV for this addition by itself
6748           // with a separate call to getAddExpr. We need to do that
6749           // instead of pushing the operands of the addition onto AddOps,
6750           // since the flags are only known to apply to this particular
6751           // addition - they may not apply to other additions that can be
6752           // formed with operands from AddOps.
6753           const SCEV *RHS = getSCEV(BO->RHS);
6754           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6755           if (Flags != SCEV::FlagAnyWrap) {
6756             const SCEV *LHS = getSCEV(BO->LHS);
6757             if (BO->Opcode == Instruction::Sub)
6758               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6759             else
6760               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6761             break;
6762           }
6763         }
6764 
6765         if (BO->Opcode == Instruction::Sub)
6766           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6767         else
6768           AddOps.push_back(getSCEV(BO->RHS));
6769 
6770         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6771         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6772                        NewBO->Opcode != Instruction::Sub)) {
6773           AddOps.push_back(getSCEV(BO->LHS));
6774           break;
6775         }
6776         BO = NewBO;
6777       } while (true);
6778 
6779       return getAddExpr(AddOps);
6780     }
6781 
6782     case Instruction::Mul: {
6783       SmallVector<const SCEV *, 4> MulOps;
6784       do {
6785         if (BO->Op) {
6786           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6787             MulOps.push_back(OpSCEV);
6788             break;
6789           }
6790 
6791           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6792           if (Flags != SCEV::FlagAnyWrap) {
6793             MulOps.push_back(
6794                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6795             break;
6796           }
6797         }
6798 
6799         MulOps.push_back(getSCEV(BO->RHS));
6800         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6801         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6802           MulOps.push_back(getSCEV(BO->LHS));
6803           break;
6804         }
6805         BO = NewBO;
6806       } while (true);
6807 
6808       return getMulExpr(MulOps);
6809     }
6810     case Instruction::UDiv:
6811       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6812     case Instruction::URem:
6813       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6814     case Instruction::Sub: {
6815       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6816       if (BO->Op)
6817         Flags = getNoWrapFlagsFromUB(BO->Op);
6818       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6819     }
6820     case Instruction::And:
6821       // For an expression like x&255 that merely masks off the high bits,
6822       // use zext(trunc(x)) as the SCEV expression.
6823       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6824         if (CI->isZero())
6825           return getSCEV(BO->RHS);
6826         if (CI->isMinusOne())
6827           return getSCEV(BO->LHS);
6828         const APInt &A = CI->getValue();
6829 
6830         // Instcombine's ShrinkDemandedConstant may strip bits out of
6831         // constants, obscuring what would otherwise be a low-bits mask.
6832         // Use computeKnownBits to compute what ShrinkDemandedConstant
6833         // knew about to reconstruct a low-bits mask value.
6834         unsigned LZ = A.countLeadingZeros();
6835         unsigned TZ = A.countTrailingZeros();
6836         unsigned BitWidth = A.getBitWidth();
6837         KnownBits Known(BitWidth);
6838         computeKnownBits(BO->LHS, Known, getDataLayout(),
6839                          0, &AC, nullptr, &DT);
6840 
6841         APInt EffectiveMask =
6842             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6843         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6844           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6845           const SCEV *LHS = getSCEV(BO->LHS);
6846           const SCEV *ShiftedLHS = nullptr;
6847           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6848             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6849               // For an expression like (x * 8) & 8, simplify the multiply.
6850               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6851               unsigned GCD = std::min(MulZeros, TZ);
6852               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6853               SmallVector<const SCEV*, 4> MulOps;
6854               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6855               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6856               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6857               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6858             }
6859           }
6860           if (!ShiftedLHS)
6861             ShiftedLHS = getUDivExpr(LHS, MulCount);
6862           return getMulExpr(
6863               getZeroExtendExpr(
6864                   getTruncateExpr(ShiftedLHS,
6865                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6866                   BO->LHS->getType()),
6867               MulCount);
6868         }
6869       }
6870       break;
6871 
6872     case Instruction::Or:
6873       // If the RHS of the Or is a constant, we may have something like:
6874       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6875       // optimizations will transparently handle this case.
6876       //
6877       // In order for this transformation to be safe, the LHS must be of the
6878       // form X*(2^n) and the Or constant must be less than 2^n.
6879       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6880         const SCEV *LHS = getSCEV(BO->LHS);
6881         const APInt &CIVal = CI->getValue();
6882         if (GetMinTrailingZeros(LHS) >=
6883             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6884           // Build a plain add SCEV.
6885           return getAddExpr(LHS, getSCEV(CI),
6886                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6887         }
6888       }
6889       break;
6890 
6891     case Instruction::Xor:
6892       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6893         // If the RHS of xor is -1, then this is a not operation.
6894         if (CI->isMinusOne())
6895           return getNotSCEV(getSCEV(BO->LHS));
6896 
6897         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6898         // This is a variant of the check for xor with -1, and it handles
6899         // the case where instcombine has trimmed non-demanded bits out
6900         // of an xor with -1.
6901         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6902           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6903             if (LBO->getOpcode() == Instruction::And &&
6904                 LCI->getValue() == CI->getValue())
6905               if (const SCEVZeroExtendExpr *Z =
6906                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6907                 Type *UTy = BO->LHS->getType();
6908                 const SCEV *Z0 = Z->getOperand();
6909                 Type *Z0Ty = Z0->getType();
6910                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6911 
6912                 // If C is a low-bits mask, the zero extend is serving to
6913                 // mask off the high bits. Complement the operand and
6914                 // re-apply the zext.
6915                 if (CI->getValue().isMask(Z0TySize))
6916                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6917 
6918                 // If C is a single bit, it may be in the sign-bit position
6919                 // before the zero-extend. In this case, represent the xor
6920                 // using an add, which is equivalent, and re-apply the zext.
6921                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6922                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6923                     Trunc.isSignMask())
6924                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6925                                            UTy);
6926               }
6927       }
6928       break;
6929 
6930     case Instruction::Shl:
6931       // Turn shift left of a constant amount into a multiply.
6932       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6933         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6934 
6935         // If the shift count is not less than the bitwidth, the result of
6936         // the shift is undefined. Don't try to analyze it, because the
6937         // resolution chosen here may differ from the resolution chosen in
6938         // other parts of the compiler.
6939         if (SA->getValue().uge(BitWidth))
6940           break;
6941 
6942         // We can safely preserve the nuw flag in all cases. It's also safe to
6943         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6944         // requires special handling. It can be preserved as long as we're not
6945         // left shifting by bitwidth - 1.
6946         auto Flags = SCEV::FlagAnyWrap;
6947         if (BO->Op) {
6948           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6949           if ((MulFlags & SCEV::FlagNSW) &&
6950               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6951             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6952           if (MulFlags & SCEV::FlagNUW)
6953             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6954         }
6955 
6956         Constant *X = ConstantInt::get(
6957             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6958         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6959       }
6960       break;
6961 
6962     case Instruction::AShr: {
6963       // AShr X, C, where C is a constant.
6964       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6965       if (!CI)
6966         break;
6967 
6968       Type *OuterTy = BO->LHS->getType();
6969       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6970       // If the shift count is not less than the bitwidth, the result of
6971       // the shift is undefined. Don't try to analyze it, because the
6972       // resolution chosen here may differ from the resolution chosen in
6973       // other parts of the compiler.
6974       if (CI->getValue().uge(BitWidth))
6975         break;
6976 
6977       if (CI->isZero())
6978         return getSCEV(BO->LHS); // shift by zero --> noop
6979 
6980       uint64_t AShrAmt = CI->getZExtValue();
6981       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6982 
6983       Operator *L = dyn_cast<Operator>(BO->LHS);
6984       if (L && L->getOpcode() == Instruction::Shl) {
6985         // X = Shl A, n
6986         // Y = AShr X, m
6987         // Both n and m are constant.
6988 
6989         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6990         if (L->getOperand(1) == BO->RHS)
6991           // For a two-shift sext-inreg, i.e. n = m,
6992           // use sext(trunc(x)) as the SCEV expression.
6993           return getSignExtendExpr(
6994               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6995 
6996         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6997         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6998           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6999           if (ShlAmt > AShrAmt) {
7000             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7001             // expression. We already checked that ShlAmt < BitWidth, so
7002             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7003             // ShlAmt - AShrAmt < Amt.
7004             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7005                                             ShlAmt - AShrAmt);
7006             return getSignExtendExpr(
7007                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7008                 getConstant(Mul)), OuterTy);
7009           }
7010         }
7011       }
7012       break;
7013     }
7014     }
7015   }
7016 
7017   switch (U->getOpcode()) {
7018   case Instruction::Trunc:
7019     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7020 
7021   case Instruction::ZExt:
7022     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7023 
7024   case Instruction::SExt:
7025     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7026       // The NSW flag of a subtract does not always survive the conversion to
7027       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7028       // more likely to preserve NSW and allow later AddRec optimisations.
7029       //
7030       // NOTE: This is effectively duplicating this logic from getSignExtend:
7031       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7032       // but by that point the NSW information has potentially been lost.
7033       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7034         Type *Ty = U->getType();
7035         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7036         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7037         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7038       }
7039     }
7040     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7041 
7042   case Instruction::BitCast:
7043     // BitCasts are no-op casts so we just eliminate the cast.
7044     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7045       return getSCEV(U->getOperand(0));
7046     break;
7047 
7048   case Instruction::PtrToInt: {
7049     // Pointer to integer cast is straight-forward, so do model it.
7050     const SCEV *Op = getSCEV(U->getOperand(0));
7051     Type *DstIntTy = U->getType();
7052     // But only if effective SCEV (integer) type is wide enough to represent
7053     // all possible pointer values.
7054     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7055     if (isa<SCEVCouldNotCompute>(IntOp))
7056       return getUnknown(V);
7057     return IntOp;
7058   }
7059   case Instruction::IntToPtr:
7060     // Just don't deal with inttoptr casts.
7061     return getUnknown(V);
7062 
7063   case Instruction::SDiv:
7064     // If both operands are non-negative, this is just an udiv.
7065     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7066         isKnownNonNegative(getSCEV(U->getOperand(1))))
7067       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7068     break;
7069 
7070   case Instruction::SRem:
7071     // If both operands are non-negative, this is just an urem.
7072     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7073         isKnownNonNegative(getSCEV(U->getOperand(1))))
7074       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7075     break;
7076 
7077   case Instruction::GetElementPtr:
7078     return createNodeForGEP(cast<GEPOperator>(U));
7079 
7080   case Instruction::PHI:
7081     return createNodeForPHI(cast<PHINode>(U));
7082 
7083   case Instruction::Select:
7084     // U can also be a select constant expr, which let fall through.  Since
7085     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7086     // constant expressions cannot have instructions as operands, we'd have
7087     // returned getUnknown for a select constant expressions anyway.
7088     if (isa<Instruction>(U))
7089       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7090                                       U->getOperand(1), U->getOperand(2));
7091     break;
7092 
7093   case Instruction::Call:
7094   case Instruction::Invoke:
7095     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7096       return getSCEV(RV);
7097 
7098     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7099       switch (II->getIntrinsicID()) {
7100       case Intrinsic::abs:
7101         return getAbsExpr(
7102             getSCEV(II->getArgOperand(0)),
7103             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7104       case Intrinsic::umax:
7105         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7106                            getSCEV(II->getArgOperand(1)));
7107       case Intrinsic::umin:
7108         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7109                            getSCEV(II->getArgOperand(1)));
7110       case Intrinsic::smax:
7111         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7112                            getSCEV(II->getArgOperand(1)));
7113       case Intrinsic::smin:
7114         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7115                            getSCEV(II->getArgOperand(1)));
7116       case Intrinsic::usub_sat: {
7117         const SCEV *X = getSCEV(II->getArgOperand(0));
7118         const SCEV *Y = getSCEV(II->getArgOperand(1));
7119         const SCEV *ClampedY = getUMinExpr(X, Y);
7120         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7121       }
7122       case Intrinsic::uadd_sat: {
7123         const SCEV *X = getSCEV(II->getArgOperand(0));
7124         const SCEV *Y = getSCEV(II->getArgOperand(1));
7125         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7126         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7127       }
7128       case Intrinsic::start_loop_iterations:
7129         // A start_loop_iterations is just equivalent to the first operand for
7130         // SCEV purposes.
7131         return getSCEV(II->getArgOperand(0));
7132       default:
7133         break;
7134       }
7135     }
7136     break;
7137   }
7138 
7139   return getUnknown(V);
7140 }
7141 
7142 //===----------------------------------------------------------------------===//
7143 //                   Iteration Count Computation Code
7144 //
7145 
7146 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
7147   // Get the trip count from the BE count by adding 1.  Overflow, results
7148   // in zero which means "unknown".
7149   return getAddExpr(ExitCount, getOne(ExitCount->getType()));
7150 }
7151 
7152 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7153   if (!ExitCount)
7154     return 0;
7155 
7156   ConstantInt *ExitConst = ExitCount->getValue();
7157 
7158   // Guard against huge trip counts.
7159   if (ExitConst->getValue().getActiveBits() > 32)
7160     return 0;
7161 
7162   // In case of integer overflow, this returns 0, which is correct.
7163   return ((unsigned)ExitConst->getZExtValue()) + 1;
7164 }
7165 
7166 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7167   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7168   return getConstantTripCount(ExitCount);
7169 }
7170 
7171 unsigned
7172 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7173                                            const BasicBlock *ExitingBlock) {
7174   assert(ExitingBlock && "Must pass a non-null exiting block!");
7175   assert(L->isLoopExiting(ExitingBlock) &&
7176          "Exiting block must actually branch out of the loop!");
7177   const SCEVConstant *ExitCount =
7178       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7179   return getConstantTripCount(ExitCount);
7180 }
7181 
7182 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7183   const auto *MaxExitCount =
7184       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7185   return getConstantTripCount(MaxExitCount);
7186 }
7187 
7188 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7189   SmallVector<BasicBlock *, 8> ExitingBlocks;
7190   L->getExitingBlocks(ExitingBlocks);
7191 
7192   Optional<unsigned> Res = None;
7193   for (auto *ExitingBB : ExitingBlocks) {
7194     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7195     if (!Res)
7196       Res = Multiple;
7197     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7198   }
7199   return Res.getValueOr(1);
7200 }
7201 
7202 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7203                                                        const SCEV *ExitCount) {
7204   if (ExitCount == getCouldNotCompute())
7205     return 1;
7206 
7207   // Get the trip count
7208   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7209 
7210   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7211   if (!TC)
7212     // Attempt to factor more general cases. Returns the greatest power of
7213     // two divisor. If overflow happens, the trip count expression is still
7214     // divisible by the greatest power of 2 divisor returned.
7215     return 1U << std::min((uint32_t)31,
7216                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7217 
7218   ConstantInt *Result = TC->getValue();
7219 
7220   // Guard against huge trip counts (this requires checking
7221   // for zero to handle the case where the trip count == -1 and the
7222   // addition wraps).
7223   if (!Result || Result->getValue().getActiveBits() > 32 ||
7224       Result->getValue().getActiveBits() == 0)
7225     return 1;
7226 
7227   return (unsigned)Result->getZExtValue();
7228 }
7229 
7230 /// Returns the largest constant divisor of the trip count of this loop as a
7231 /// normal unsigned value, if possible. This means that the actual trip count is
7232 /// always a multiple of the returned value (don't forget the trip count could
7233 /// very well be zero as well!).
7234 ///
7235 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7236 /// multiple of a constant (which is also the case if the trip count is simply
7237 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7238 /// if the trip count is very large (>= 2^32).
7239 ///
7240 /// As explained in the comments for getSmallConstantTripCount, this assumes
7241 /// that control exits the loop via ExitingBlock.
7242 unsigned
7243 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7244                                               const BasicBlock *ExitingBlock) {
7245   assert(ExitingBlock && "Must pass a non-null exiting block!");
7246   assert(L->isLoopExiting(ExitingBlock) &&
7247          "Exiting block must actually branch out of the loop!");
7248   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7249   return getSmallConstantTripMultiple(L, ExitCount);
7250 }
7251 
7252 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7253                                           const BasicBlock *ExitingBlock,
7254                                           ExitCountKind Kind) {
7255   switch (Kind) {
7256   case Exact:
7257   case SymbolicMaximum:
7258     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7259   case ConstantMaximum:
7260     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7261   };
7262   llvm_unreachable("Invalid ExitCountKind!");
7263 }
7264 
7265 const SCEV *
7266 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7267                                                  SCEVUnionPredicate &Preds) {
7268   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7269 }
7270 
7271 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7272                                                    ExitCountKind Kind) {
7273   switch (Kind) {
7274   case Exact:
7275     return getBackedgeTakenInfo(L).getExact(L, this);
7276   case ConstantMaximum:
7277     return getBackedgeTakenInfo(L).getConstantMax(this);
7278   case SymbolicMaximum:
7279     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7280   };
7281   llvm_unreachable("Invalid ExitCountKind!");
7282 }
7283 
7284 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7285   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7286 }
7287 
7288 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7289 static void
7290 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
7291   BasicBlock *Header = L->getHeader();
7292 
7293   // Push all Loop-header PHIs onto the Worklist stack.
7294   for (PHINode &PN : Header->phis())
7295     Worklist.push_back(&PN);
7296 }
7297 
7298 const ScalarEvolution::BackedgeTakenInfo &
7299 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7300   auto &BTI = getBackedgeTakenInfo(L);
7301   if (BTI.hasFullInfo())
7302     return BTI;
7303 
7304   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7305 
7306   if (!Pair.second)
7307     return Pair.first->second;
7308 
7309   BackedgeTakenInfo Result =
7310       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7311 
7312   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7313 }
7314 
7315 ScalarEvolution::BackedgeTakenInfo &
7316 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7317   // Initially insert an invalid entry for this loop. If the insertion
7318   // succeeds, proceed to actually compute a backedge-taken count and
7319   // update the value. The temporary CouldNotCompute value tells SCEV
7320   // code elsewhere that it shouldn't attempt to request a new
7321   // backedge-taken count, which could result in infinite recursion.
7322   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7323       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7324   if (!Pair.second)
7325     return Pair.first->second;
7326 
7327   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7328   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7329   // must be cleared in this scope.
7330   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7331 
7332   // In product build, there are no usage of statistic.
7333   (void)NumTripCountsComputed;
7334   (void)NumTripCountsNotComputed;
7335 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7336   const SCEV *BEExact = Result.getExact(L, this);
7337   if (BEExact != getCouldNotCompute()) {
7338     assert(isLoopInvariant(BEExact, L) &&
7339            isLoopInvariant(Result.getConstantMax(this), L) &&
7340            "Computed backedge-taken count isn't loop invariant for loop!");
7341     ++NumTripCountsComputed;
7342   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7343              isa<PHINode>(L->getHeader()->begin())) {
7344     // Only count loops that have phi nodes as not being computable.
7345     ++NumTripCountsNotComputed;
7346   }
7347 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7348 
7349   // Now that we know more about the trip count for this loop, forget any
7350   // existing SCEV values for PHI nodes in this loop since they are only
7351   // conservative estimates made without the benefit of trip count
7352   // information. This is similar to the code in forgetLoop, except that
7353   // it handles SCEVUnknown PHI nodes specially.
7354   if (Result.hasAnyInfo()) {
7355     SmallVector<Instruction *, 16> Worklist;
7356     PushLoopPHIs(L, Worklist);
7357 
7358     SmallPtrSet<Instruction *, 8> Discovered;
7359     while (!Worklist.empty()) {
7360       Instruction *I = Worklist.pop_back_val();
7361 
7362       ValueExprMapType::iterator It =
7363         ValueExprMap.find_as(static_cast<Value *>(I));
7364       if (It != ValueExprMap.end()) {
7365         const SCEV *Old = It->second;
7366 
7367         // SCEVUnknown for a PHI either means that it has an unrecognized
7368         // structure, or it's a PHI that's in the progress of being computed
7369         // by createNodeForPHI.  In the former case, additional loop trip
7370         // count information isn't going to change anything. In the later
7371         // case, createNodeForPHI will perform the necessary updates on its
7372         // own when it gets to that point.
7373         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7374           eraseValueFromMap(It->first);
7375           forgetMemoizedResults(Old);
7376         }
7377         if (PHINode *PN = dyn_cast<PHINode>(I))
7378           ConstantEvolutionLoopExitValue.erase(PN);
7379       }
7380 
7381       // Since we don't need to invalidate anything for correctness and we're
7382       // only invalidating to make SCEV's results more precise, we get to stop
7383       // early to avoid invalidating too much.  This is especially important in
7384       // cases like:
7385       //
7386       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7387       // loop0:
7388       //   %pn0 = phi
7389       //   ...
7390       // loop1:
7391       //   %pn1 = phi
7392       //   ...
7393       //
7394       // where both loop0 and loop1's backedge taken count uses the SCEV
7395       // expression for %v.  If we don't have the early stop below then in cases
7396       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7397       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7398       // count for loop1, effectively nullifying SCEV's trip count cache.
7399       for (auto *U : I->users())
7400         if (auto *I = dyn_cast<Instruction>(U)) {
7401           auto *LoopForUser = LI.getLoopFor(I->getParent());
7402           if (LoopForUser && L->contains(LoopForUser) &&
7403               Discovered.insert(I).second)
7404             Worklist.push_back(I);
7405         }
7406     }
7407   }
7408 
7409   // Re-lookup the insert position, since the call to
7410   // computeBackedgeTakenCount above could result in a
7411   // recusive call to getBackedgeTakenInfo (on a different
7412   // loop), which would invalidate the iterator computed
7413   // earlier.
7414   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7415 }
7416 
7417 void ScalarEvolution::forgetAllLoops() {
7418   // This method is intended to forget all info about loops. It should
7419   // invalidate caches as if the following happened:
7420   // - The trip counts of all loops have changed arbitrarily
7421   // - Every llvm::Value has been updated in place to produce a different
7422   // result.
7423   BackedgeTakenCounts.clear();
7424   PredicatedBackedgeTakenCounts.clear();
7425   LoopPropertiesCache.clear();
7426   ConstantEvolutionLoopExitValue.clear();
7427   ValueExprMap.clear();
7428   ValuesAtScopes.clear();
7429   LoopDispositions.clear();
7430   BlockDispositions.clear();
7431   UnsignedRanges.clear();
7432   SignedRanges.clear();
7433   ExprValueMap.clear();
7434   HasRecMap.clear();
7435   MinTrailingZerosCache.clear();
7436   PredicatedSCEVRewrites.clear();
7437 }
7438 
7439 void ScalarEvolution::forgetLoop(const Loop *L) {
7440   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7441   SmallVector<Instruction *, 32> Worklist;
7442   SmallPtrSet<Instruction *, 16> Visited;
7443 
7444   // Iterate over all the loops and sub-loops to drop SCEV information.
7445   while (!LoopWorklist.empty()) {
7446     auto *CurrL = LoopWorklist.pop_back_val();
7447 
7448     // Drop any stored trip count value.
7449     BackedgeTakenCounts.erase(CurrL);
7450     PredicatedBackedgeTakenCounts.erase(CurrL);
7451 
7452     // Drop information about predicated SCEV rewrites for this loop.
7453     for (auto I = PredicatedSCEVRewrites.begin();
7454          I != PredicatedSCEVRewrites.end();) {
7455       std::pair<const SCEV *, const Loop *> Entry = I->first;
7456       if (Entry.second == CurrL)
7457         PredicatedSCEVRewrites.erase(I++);
7458       else
7459         ++I;
7460     }
7461 
7462     auto LoopUsersItr = LoopUsers.find(CurrL);
7463     if (LoopUsersItr != LoopUsers.end()) {
7464       for (auto *S : LoopUsersItr->second)
7465         forgetMemoizedResults(S);
7466       LoopUsers.erase(LoopUsersItr);
7467     }
7468 
7469     // Drop information about expressions based on loop-header PHIs.
7470     PushLoopPHIs(CurrL, Worklist);
7471 
7472     while (!Worklist.empty()) {
7473       Instruction *I = Worklist.pop_back_val();
7474       if (!Visited.insert(I).second)
7475         continue;
7476 
7477       ValueExprMapType::iterator It =
7478           ValueExprMap.find_as(static_cast<Value *>(I));
7479       if (It != ValueExprMap.end()) {
7480         eraseValueFromMap(It->first);
7481         forgetMemoizedResults(It->second);
7482         if (PHINode *PN = dyn_cast<PHINode>(I))
7483           ConstantEvolutionLoopExitValue.erase(PN);
7484       }
7485 
7486       PushDefUseChildren(I, Worklist);
7487     }
7488 
7489     LoopPropertiesCache.erase(CurrL);
7490     // Forget all contained loops too, to avoid dangling entries in the
7491     // ValuesAtScopes map.
7492     LoopWorklist.append(CurrL->begin(), CurrL->end());
7493   }
7494 }
7495 
7496 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7497   while (Loop *Parent = L->getParentLoop())
7498     L = Parent;
7499   forgetLoop(L);
7500 }
7501 
7502 void ScalarEvolution::forgetValue(Value *V) {
7503   Instruction *I = dyn_cast<Instruction>(V);
7504   if (!I) return;
7505 
7506   // Drop information about expressions based on loop-header PHIs.
7507   SmallVector<Instruction *, 16> Worklist;
7508   Worklist.push_back(I);
7509 
7510   SmallPtrSet<Instruction *, 8> Visited;
7511   while (!Worklist.empty()) {
7512     I = Worklist.pop_back_val();
7513     if (!Visited.insert(I).second)
7514       continue;
7515 
7516     ValueExprMapType::iterator It =
7517       ValueExprMap.find_as(static_cast<Value *>(I));
7518     if (It != ValueExprMap.end()) {
7519       eraseValueFromMap(It->first);
7520       forgetMemoizedResults(It->second);
7521       if (PHINode *PN = dyn_cast<PHINode>(I))
7522         ConstantEvolutionLoopExitValue.erase(PN);
7523     }
7524 
7525     PushDefUseChildren(I, Worklist);
7526   }
7527 }
7528 
7529 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7530   LoopDispositions.clear();
7531 }
7532 
7533 /// Get the exact loop backedge taken count considering all loop exits. A
7534 /// computable result can only be returned for loops with all exiting blocks
7535 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7536 /// is never skipped. This is a valid assumption as long as the loop exits via
7537 /// that test. For precise results, it is the caller's responsibility to specify
7538 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7539 const SCEV *
7540 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7541                                              SCEVUnionPredicate *Preds) const {
7542   // If any exits were not computable, the loop is not computable.
7543   if (!isComplete() || ExitNotTaken.empty())
7544     return SE->getCouldNotCompute();
7545 
7546   const BasicBlock *Latch = L->getLoopLatch();
7547   // All exiting blocks we have collected must dominate the only backedge.
7548   if (!Latch)
7549     return SE->getCouldNotCompute();
7550 
7551   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7552   // count is simply a minimum out of all these calculated exit counts.
7553   SmallVector<const SCEV *, 2> Ops;
7554   for (auto &ENT : ExitNotTaken) {
7555     const SCEV *BECount = ENT.ExactNotTaken;
7556     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7557     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7558            "We should only have known counts for exiting blocks that dominate "
7559            "latch!");
7560 
7561     Ops.push_back(BECount);
7562 
7563     if (Preds && !ENT.hasAlwaysTruePredicate())
7564       Preds->add(ENT.Predicate.get());
7565 
7566     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7567            "Predicate should be always true!");
7568   }
7569 
7570   return SE->getUMinFromMismatchedTypes(Ops);
7571 }
7572 
7573 /// Get the exact not taken count for this loop exit.
7574 const SCEV *
7575 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7576                                              ScalarEvolution *SE) const {
7577   for (auto &ENT : ExitNotTaken)
7578     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7579       return ENT.ExactNotTaken;
7580 
7581   return SE->getCouldNotCompute();
7582 }
7583 
7584 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7585     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7586   for (auto &ENT : ExitNotTaken)
7587     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7588       return ENT.MaxNotTaken;
7589 
7590   return SE->getCouldNotCompute();
7591 }
7592 
7593 /// getConstantMax - Get the constant max backedge taken count for the loop.
7594 const SCEV *
7595 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7596   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7597     return !ENT.hasAlwaysTruePredicate();
7598   };
7599 
7600   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7601     return SE->getCouldNotCompute();
7602 
7603   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7604           isa<SCEVConstant>(getConstantMax())) &&
7605          "No point in having a non-constant max backedge taken count!");
7606   return getConstantMax();
7607 }
7608 
7609 const SCEV *
7610 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7611                                                    ScalarEvolution *SE) {
7612   if (!SymbolicMax)
7613     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7614   return SymbolicMax;
7615 }
7616 
7617 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7618     ScalarEvolution *SE) const {
7619   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7620     return !ENT.hasAlwaysTruePredicate();
7621   };
7622   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7623 }
7624 
7625 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const {
7626   return Operands.contains(S);
7627 }
7628 
7629 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7630     : ExitLimit(E, E, false, None) {
7631 }
7632 
7633 ScalarEvolution::ExitLimit::ExitLimit(
7634     const SCEV *E, const SCEV *M, bool MaxOrZero,
7635     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7636     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7637   // If we prove the max count is zero, so is the symbolic bound.  This happens
7638   // in practice due to differences in a) how context sensitive we've chosen
7639   // to be and b) how we reason about bounds impied by UB.
7640   if (MaxNotTaken->isZero())
7641     ExactNotTaken = MaxNotTaken;
7642 
7643   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7644           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7645          "Exact is not allowed to be less precise than Max");
7646   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7647           isa<SCEVConstant>(MaxNotTaken)) &&
7648          "No point in having a non-constant max backedge taken count!");
7649   for (auto *PredSet : PredSetList)
7650     for (auto *P : *PredSet)
7651       addPredicate(P);
7652   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
7653          "Backedge count should be int");
7654   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
7655          "Max backedge count should be int");
7656 }
7657 
7658 ScalarEvolution::ExitLimit::ExitLimit(
7659     const SCEV *E, const SCEV *M, bool MaxOrZero,
7660     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7661     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7662 }
7663 
7664 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7665                                       bool MaxOrZero)
7666     : ExitLimit(E, M, MaxOrZero, None) {
7667 }
7668 
7669 class SCEVRecordOperands {
7670   SmallPtrSetImpl<const SCEV *> &Operands;
7671 
7672 public:
7673   SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands)
7674     : Operands(Operands) {}
7675   bool follow(const SCEV *S) {
7676     Operands.insert(S);
7677     return true;
7678   }
7679   bool isDone() { return false; }
7680 };
7681 
7682 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7683 /// computable exit into a persistent ExitNotTakenInfo array.
7684 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7685     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7686     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7687     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7688   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7689 
7690   ExitNotTaken.reserve(ExitCounts.size());
7691   std::transform(
7692       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7693       [&](const EdgeExitInfo &EEI) {
7694         BasicBlock *ExitBB = EEI.first;
7695         const ExitLimit &EL = EEI.second;
7696         if (EL.Predicates.empty())
7697           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7698                                   nullptr);
7699 
7700         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7701         for (auto *Pred : EL.Predicates)
7702           Predicate->add(Pred);
7703 
7704         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7705                                 std::move(Predicate));
7706       });
7707   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7708           isa<SCEVConstant>(ConstantMax)) &&
7709          "No point in having a non-constant max backedge taken count!");
7710 
7711   SCEVRecordOperands RecordOperands(Operands);
7712   SCEVTraversal<SCEVRecordOperands> ST(RecordOperands);
7713   if (!isa<SCEVCouldNotCompute>(ConstantMax))
7714     ST.visitAll(ConstantMax);
7715   for (auto &ENT : ExitNotTaken)
7716     if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken))
7717       ST.visitAll(ENT.ExactNotTaken);
7718 }
7719 
7720 /// Compute the number of times the backedge of the specified loop will execute.
7721 ScalarEvolution::BackedgeTakenInfo
7722 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7723                                            bool AllowPredicates) {
7724   SmallVector<BasicBlock *, 8> ExitingBlocks;
7725   L->getExitingBlocks(ExitingBlocks);
7726 
7727   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7728 
7729   SmallVector<EdgeExitInfo, 4> ExitCounts;
7730   bool CouldComputeBECount = true;
7731   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7732   const SCEV *MustExitMaxBECount = nullptr;
7733   const SCEV *MayExitMaxBECount = nullptr;
7734   bool MustExitMaxOrZero = false;
7735 
7736   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7737   // and compute maxBECount.
7738   // Do a union of all the predicates here.
7739   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7740     BasicBlock *ExitBB = ExitingBlocks[i];
7741 
7742     // We canonicalize untaken exits to br (constant), ignore them so that
7743     // proving an exit untaken doesn't negatively impact our ability to reason
7744     // about the loop as whole.
7745     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7746       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7747         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7748         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7749           continue;
7750       }
7751 
7752     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7753 
7754     assert((AllowPredicates || EL.Predicates.empty()) &&
7755            "Predicated exit limit when predicates are not allowed!");
7756 
7757     // 1. For each exit that can be computed, add an entry to ExitCounts.
7758     // CouldComputeBECount is true only if all exits can be computed.
7759     if (EL.ExactNotTaken == getCouldNotCompute())
7760       // We couldn't compute an exact value for this exit, so
7761       // we won't be able to compute an exact value for the loop.
7762       CouldComputeBECount = false;
7763     else
7764       ExitCounts.emplace_back(ExitBB, EL);
7765 
7766     // 2. Derive the loop's MaxBECount from each exit's max number of
7767     // non-exiting iterations. Partition the loop exits into two kinds:
7768     // LoopMustExits and LoopMayExits.
7769     //
7770     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7771     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7772     // MaxBECount is the minimum EL.MaxNotTaken of computable
7773     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7774     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7775     // computable EL.MaxNotTaken.
7776     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7777         DT.dominates(ExitBB, Latch)) {
7778       if (!MustExitMaxBECount) {
7779         MustExitMaxBECount = EL.MaxNotTaken;
7780         MustExitMaxOrZero = EL.MaxOrZero;
7781       } else {
7782         MustExitMaxBECount =
7783             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7784       }
7785     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7786       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7787         MayExitMaxBECount = EL.MaxNotTaken;
7788       else {
7789         MayExitMaxBECount =
7790             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7791       }
7792     }
7793   }
7794   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7795     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7796   // The loop backedge will be taken the maximum or zero times if there's
7797   // a single exit that must be taken the maximum or zero times.
7798   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7799   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7800                            MaxBECount, MaxOrZero);
7801 }
7802 
7803 ScalarEvolution::ExitLimit
7804 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7805                                       bool AllowPredicates) {
7806   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7807   // If our exiting block does not dominate the latch, then its connection with
7808   // loop's exit limit may be far from trivial.
7809   const BasicBlock *Latch = L->getLoopLatch();
7810   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7811     return getCouldNotCompute();
7812 
7813   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7814   Instruction *Term = ExitingBlock->getTerminator();
7815   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7816     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7817     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7818     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7819            "It should have one successor in loop and one exit block!");
7820     // Proceed to the next level to examine the exit condition expression.
7821     return computeExitLimitFromCond(
7822         L, BI->getCondition(), ExitIfTrue,
7823         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7824   }
7825 
7826   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7827     // For switch, make sure that there is a single exit from the loop.
7828     BasicBlock *Exit = nullptr;
7829     for (auto *SBB : successors(ExitingBlock))
7830       if (!L->contains(SBB)) {
7831         if (Exit) // Multiple exit successors.
7832           return getCouldNotCompute();
7833         Exit = SBB;
7834       }
7835     assert(Exit && "Exiting block must have at least one exit");
7836     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7837                                                 /*ControlsExit=*/IsOnlyExit);
7838   }
7839 
7840   return getCouldNotCompute();
7841 }
7842 
7843 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7844     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7845     bool ControlsExit, bool AllowPredicates) {
7846   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7847   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7848                                         ControlsExit, AllowPredicates);
7849 }
7850 
7851 Optional<ScalarEvolution::ExitLimit>
7852 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7853                                       bool ExitIfTrue, bool ControlsExit,
7854                                       bool AllowPredicates) {
7855   (void)this->L;
7856   (void)this->ExitIfTrue;
7857   (void)this->AllowPredicates;
7858 
7859   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7860          this->AllowPredicates == AllowPredicates &&
7861          "Variance in assumed invariant key components!");
7862   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7863   if (Itr == TripCountMap.end())
7864     return None;
7865   return Itr->second;
7866 }
7867 
7868 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7869                                              bool ExitIfTrue,
7870                                              bool ControlsExit,
7871                                              bool AllowPredicates,
7872                                              const ExitLimit &EL) {
7873   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7874          this->AllowPredicates == AllowPredicates &&
7875          "Variance in assumed invariant key components!");
7876 
7877   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7878   assert(InsertResult.second && "Expected successful insertion!");
7879   (void)InsertResult;
7880   (void)ExitIfTrue;
7881 }
7882 
7883 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7884     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7885     bool ControlsExit, bool AllowPredicates) {
7886 
7887   if (auto MaybeEL =
7888           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7889     return *MaybeEL;
7890 
7891   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7892                                               ControlsExit, AllowPredicates);
7893   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7894   return EL;
7895 }
7896 
7897 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7898     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7899     bool ControlsExit, bool AllowPredicates) {
7900   // Handle BinOp conditions (And, Or).
7901   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7902           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7903     return *LimitFromBinOp;
7904 
7905   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7906   // Proceed to the next level to examine the icmp.
7907   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7908     ExitLimit EL =
7909         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7910     if (EL.hasFullInfo() || !AllowPredicates)
7911       return EL;
7912 
7913     // Try again, but use SCEV predicates this time.
7914     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7915                                     /*AllowPredicates=*/true);
7916   }
7917 
7918   // Check for a constant condition. These are normally stripped out by
7919   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7920   // preserve the CFG and is temporarily leaving constant conditions
7921   // in place.
7922   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7923     if (ExitIfTrue == !CI->getZExtValue())
7924       // The backedge is always taken.
7925       return getCouldNotCompute();
7926     else
7927       // The backedge is never taken.
7928       return getZero(CI->getType());
7929   }
7930 
7931   // If it's not an integer or pointer comparison then compute it the hard way.
7932   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7933 }
7934 
7935 Optional<ScalarEvolution::ExitLimit>
7936 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7937     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7938     bool ControlsExit, bool AllowPredicates) {
7939   // Check if the controlling expression for this loop is an And or Or.
7940   Value *Op0, *Op1;
7941   bool IsAnd = false;
7942   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7943     IsAnd = true;
7944   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7945     IsAnd = false;
7946   else
7947     return None;
7948 
7949   // EitherMayExit is true in these two cases:
7950   //   br (and Op0 Op1), loop, exit
7951   //   br (or  Op0 Op1), exit, loop
7952   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7953   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7954                                                  ControlsExit && !EitherMayExit,
7955                                                  AllowPredicates);
7956   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7957                                                  ControlsExit && !EitherMayExit,
7958                                                  AllowPredicates);
7959 
7960   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7961   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7962   if (isa<ConstantInt>(Op1))
7963     return Op1 == NeutralElement ? EL0 : EL1;
7964   if (isa<ConstantInt>(Op0))
7965     return Op0 == NeutralElement ? EL1 : EL0;
7966 
7967   const SCEV *BECount = getCouldNotCompute();
7968   const SCEV *MaxBECount = getCouldNotCompute();
7969   if (EitherMayExit) {
7970     // Both conditions must be same for the loop to continue executing.
7971     // Choose the less conservative count.
7972     // If ExitCond is a short-circuit form (select), using
7973     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7974     // To see the detailed examples, please see
7975     // test/Analysis/ScalarEvolution/exit-count-select.ll
7976     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7977     if (!PoisonSafe)
7978       // Even if ExitCond is select, we can safely derive BECount using both
7979       // EL0 and EL1 in these cases:
7980       // (1) EL0.ExactNotTaken is non-zero
7981       // (2) EL1.ExactNotTaken is non-poison
7982       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7983       //     it cannot be umin(0, ..))
7984       // The PoisonSafe assignment below is simplified and the assertion after
7985       // BECount calculation fully guarantees the condition (3).
7986       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
7987                    isa<SCEVConstant>(EL1.ExactNotTaken);
7988     if (EL0.ExactNotTaken != getCouldNotCompute() &&
7989         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
7990       BECount =
7991           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7992 
7993       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
7994       // it should have been simplified to zero (see the condition (3) above)
7995       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
7996              BECount->isZero());
7997     }
7998     if (EL0.MaxNotTaken == getCouldNotCompute())
7999       MaxBECount = EL1.MaxNotTaken;
8000     else if (EL1.MaxNotTaken == getCouldNotCompute())
8001       MaxBECount = EL0.MaxNotTaken;
8002     else
8003       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8004   } else {
8005     // Both conditions must be same at the same time for the loop to exit.
8006     // For now, be conservative.
8007     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8008       BECount = EL0.ExactNotTaken;
8009   }
8010 
8011   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8012   // to be more aggressive when computing BECount than when computing
8013   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8014   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8015   // to not.
8016   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8017       !isa<SCEVCouldNotCompute>(BECount))
8018     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8019 
8020   return ExitLimit(BECount, MaxBECount, false,
8021                    { &EL0.Predicates, &EL1.Predicates });
8022 }
8023 
8024 ScalarEvolution::ExitLimit
8025 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8026                                           ICmpInst *ExitCond,
8027                                           bool ExitIfTrue,
8028                                           bool ControlsExit,
8029                                           bool AllowPredicates) {
8030   // If the condition was exit on true, convert the condition to exit on false
8031   ICmpInst::Predicate Pred;
8032   if (!ExitIfTrue)
8033     Pred = ExitCond->getPredicate();
8034   else
8035     Pred = ExitCond->getInversePredicate();
8036   const ICmpInst::Predicate OriginalPred = Pred;
8037 
8038   // Handle common loops like: for (X = "string"; *X; ++X)
8039   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
8040     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
8041       ExitLimit ItCnt =
8042         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
8043       if (ItCnt.hasAnyInfo())
8044         return ItCnt;
8045     }
8046 
8047   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8048   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8049 
8050   // Try to evaluate any dependencies out of the loop.
8051   LHS = getSCEVAtScope(LHS, L);
8052   RHS = getSCEVAtScope(RHS, L);
8053 
8054   // At this point, we would like to compute how many iterations of the
8055   // loop the predicate will return true for these inputs.
8056   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8057     // If there is a loop-invariant, force it into the RHS.
8058     std::swap(LHS, RHS);
8059     Pred = ICmpInst::getSwappedPredicate(Pred);
8060   }
8061 
8062   // Simplify the operands before analyzing them.
8063   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8064 
8065   // If we have a comparison of a chrec against a constant, try to use value
8066   // ranges to answer this query.
8067   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8068     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8069       if (AddRec->getLoop() == L) {
8070         // Form the constant range.
8071         ConstantRange CompRange =
8072             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8073 
8074         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8075         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8076       }
8077 
8078   switch (Pred) {
8079   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8080     // Convert to: while (X-Y != 0)
8081     if (LHS->getType()->isPointerTy()) {
8082       LHS = getLosslessPtrToIntExpr(LHS);
8083       if (isa<SCEVCouldNotCompute>(LHS))
8084         return LHS;
8085     }
8086     if (RHS->getType()->isPointerTy()) {
8087       RHS = getLosslessPtrToIntExpr(RHS);
8088       if (isa<SCEVCouldNotCompute>(RHS))
8089         return RHS;
8090     }
8091     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8092                                 AllowPredicates);
8093     if (EL.hasAnyInfo()) return EL;
8094     break;
8095   }
8096   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8097     // Convert to: while (X-Y == 0)
8098     if (LHS->getType()->isPointerTy()) {
8099       LHS = getLosslessPtrToIntExpr(LHS);
8100       if (isa<SCEVCouldNotCompute>(LHS))
8101         return LHS;
8102     }
8103     if (RHS->getType()->isPointerTy()) {
8104       RHS = getLosslessPtrToIntExpr(RHS);
8105       if (isa<SCEVCouldNotCompute>(RHS))
8106         return RHS;
8107     }
8108     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8109     if (EL.hasAnyInfo()) return EL;
8110     break;
8111   }
8112   case ICmpInst::ICMP_SLT:
8113   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8114     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8115     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8116                                     AllowPredicates);
8117     if (EL.hasAnyInfo()) return EL;
8118     break;
8119   }
8120   case ICmpInst::ICMP_SGT:
8121   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8122     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8123     ExitLimit EL =
8124         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8125                             AllowPredicates);
8126     if (EL.hasAnyInfo()) return EL;
8127     break;
8128   }
8129   default:
8130     break;
8131   }
8132 
8133   auto *ExhaustiveCount =
8134       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8135 
8136   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8137     return ExhaustiveCount;
8138 
8139   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8140                                       ExitCond->getOperand(1), L, OriginalPred);
8141 }
8142 
8143 ScalarEvolution::ExitLimit
8144 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8145                                                       SwitchInst *Switch,
8146                                                       BasicBlock *ExitingBlock,
8147                                                       bool ControlsExit) {
8148   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8149 
8150   // Give up if the exit is the default dest of a switch.
8151   if (Switch->getDefaultDest() == ExitingBlock)
8152     return getCouldNotCompute();
8153 
8154   assert(L->contains(Switch->getDefaultDest()) &&
8155          "Default case must not exit the loop!");
8156   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8157   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8158 
8159   // while (X != Y) --> while (X-Y != 0)
8160   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8161   if (EL.hasAnyInfo())
8162     return EL;
8163 
8164   return getCouldNotCompute();
8165 }
8166 
8167 static ConstantInt *
8168 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8169                                 ScalarEvolution &SE) {
8170   const SCEV *InVal = SE.getConstant(C);
8171   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8172   assert(isa<SCEVConstant>(Val) &&
8173          "Evaluation of SCEV at constant didn't fold correctly?");
8174   return cast<SCEVConstant>(Val)->getValue();
8175 }
8176 
8177 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
8178 /// compute the backedge execution count.
8179 ScalarEvolution::ExitLimit
8180 ScalarEvolution::computeLoadConstantCompareExitLimit(
8181   LoadInst *LI,
8182   Constant *RHS,
8183   const Loop *L,
8184   ICmpInst::Predicate predicate) {
8185   if (LI->isVolatile()) return getCouldNotCompute();
8186 
8187   // Check to see if the loaded pointer is a getelementptr of a global.
8188   // TODO: Use SCEV instead of manually grubbing with GEPs.
8189   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
8190   if (!GEP) return getCouldNotCompute();
8191 
8192   // Make sure that it is really a constant global we are gepping, with an
8193   // initializer, and make sure the first IDX is really 0.
8194   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
8195   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
8196       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
8197       !cast<Constant>(GEP->getOperand(1))->isNullValue())
8198     return getCouldNotCompute();
8199 
8200   // Okay, we allow one non-constant index into the GEP instruction.
8201   Value *VarIdx = nullptr;
8202   std::vector<Constant*> Indexes;
8203   unsigned VarIdxNum = 0;
8204   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
8205     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
8206       Indexes.push_back(CI);
8207     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
8208       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
8209       VarIdx = GEP->getOperand(i);
8210       VarIdxNum = i-2;
8211       Indexes.push_back(nullptr);
8212     }
8213 
8214   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
8215   if (!VarIdx)
8216     return getCouldNotCompute();
8217 
8218   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
8219   // Check to see if X is a loop variant variable value now.
8220   const SCEV *Idx = getSCEV(VarIdx);
8221   Idx = getSCEVAtScope(Idx, L);
8222 
8223   // We can only recognize very limited forms of loop index expressions, in
8224   // particular, only affine AddRec's like {C1,+,C2}<L>.
8225   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
8226   if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
8227       isLoopInvariant(IdxExpr, L) ||
8228       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
8229       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
8230     return getCouldNotCompute();
8231 
8232   unsigned MaxSteps = MaxBruteForceIterations;
8233   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
8234     ConstantInt *ItCst = ConstantInt::get(
8235                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
8236     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
8237 
8238     // Form the GEP offset.
8239     Indexes[VarIdxNum] = Val;
8240 
8241     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
8242                                                          Indexes);
8243     if (!Result) break;  // Cannot compute!
8244 
8245     // Evaluate the condition for this iteration.
8246     Result = ConstantExpr::getICmp(predicate, Result, RHS);
8247     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
8248     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
8249       ++NumArrayLenItCounts;
8250       return getConstant(ItCst);   // Found terminating iteration!
8251     }
8252   }
8253   return getCouldNotCompute();
8254 }
8255 
8256 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8257     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8258   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8259   if (!RHS)
8260     return getCouldNotCompute();
8261 
8262   const BasicBlock *Latch = L->getLoopLatch();
8263   if (!Latch)
8264     return getCouldNotCompute();
8265 
8266   const BasicBlock *Predecessor = L->getLoopPredecessor();
8267   if (!Predecessor)
8268     return getCouldNotCompute();
8269 
8270   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8271   // Return LHS in OutLHS and shift_opt in OutOpCode.
8272   auto MatchPositiveShift =
8273       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8274 
8275     using namespace PatternMatch;
8276 
8277     ConstantInt *ShiftAmt;
8278     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8279       OutOpCode = Instruction::LShr;
8280     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8281       OutOpCode = Instruction::AShr;
8282     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8283       OutOpCode = Instruction::Shl;
8284     else
8285       return false;
8286 
8287     return ShiftAmt->getValue().isStrictlyPositive();
8288   };
8289 
8290   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8291   //
8292   // loop:
8293   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8294   //   %iv.shifted = lshr i32 %iv, <positive constant>
8295   //
8296   // Return true on a successful match.  Return the corresponding PHI node (%iv
8297   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8298   auto MatchShiftRecurrence =
8299       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8300     Optional<Instruction::BinaryOps> PostShiftOpCode;
8301 
8302     {
8303       Instruction::BinaryOps OpC;
8304       Value *V;
8305 
8306       // If we encounter a shift instruction, "peel off" the shift operation,
8307       // and remember that we did so.  Later when we inspect %iv's backedge
8308       // value, we will make sure that the backedge value uses the same
8309       // operation.
8310       //
8311       // Note: the peeled shift operation does not have to be the same
8312       // instruction as the one feeding into the PHI's backedge value.  We only
8313       // really care about it being the same *kind* of shift instruction --
8314       // that's all that is required for our later inferences to hold.
8315       if (MatchPositiveShift(LHS, V, OpC)) {
8316         PostShiftOpCode = OpC;
8317         LHS = V;
8318       }
8319     }
8320 
8321     PNOut = dyn_cast<PHINode>(LHS);
8322     if (!PNOut || PNOut->getParent() != L->getHeader())
8323       return false;
8324 
8325     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8326     Value *OpLHS;
8327 
8328     return
8329         // The backedge value for the PHI node must be a shift by a positive
8330         // amount
8331         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8332 
8333         // of the PHI node itself
8334         OpLHS == PNOut &&
8335 
8336         // and the kind of shift should be match the kind of shift we peeled
8337         // off, if any.
8338         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8339   };
8340 
8341   PHINode *PN;
8342   Instruction::BinaryOps OpCode;
8343   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8344     return getCouldNotCompute();
8345 
8346   const DataLayout &DL = getDataLayout();
8347 
8348   // The key rationale for this optimization is that for some kinds of shift
8349   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8350   // within a finite number of iterations.  If the condition guarding the
8351   // backedge (in the sense that the backedge is taken if the condition is true)
8352   // is false for the value the shift recurrence stabilizes to, then we know
8353   // that the backedge is taken only a finite number of times.
8354 
8355   ConstantInt *StableValue = nullptr;
8356   switch (OpCode) {
8357   default:
8358     llvm_unreachable("Impossible case!");
8359 
8360   case Instruction::AShr: {
8361     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8362     // bitwidth(K) iterations.
8363     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8364     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8365                                        Predecessor->getTerminator(), &DT);
8366     auto *Ty = cast<IntegerType>(RHS->getType());
8367     if (Known.isNonNegative())
8368       StableValue = ConstantInt::get(Ty, 0);
8369     else if (Known.isNegative())
8370       StableValue = ConstantInt::get(Ty, -1, true);
8371     else
8372       return getCouldNotCompute();
8373 
8374     break;
8375   }
8376   case Instruction::LShr:
8377   case Instruction::Shl:
8378     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8379     // stabilize to 0 in at most bitwidth(K) iterations.
8380     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8381     break;
8382   }
8383 
8384   auto *Result =
8385       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8386   assert(Result->getType()->isIntegerTy(1) &&
8387          "Otherwise cannot be an operand to a branch instruction");
8388 
8389   if (Result->isZeroValue()) {
8390     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8391     const SCEV *UpperBound =
8392         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8393     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8394   }
8395 
8396   return getCouldNotCompute();
8397 }
8398 
8399 /// Return true if we can constant fold an instruction of the specified type,
8400 /// assuming that all operands were constants.
8401 static bool CanConstantFold(const Instruction *I) {
8402   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8403       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8404       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8405     return true;
8406 
8407   if (const CallInst *CI = dyn_cast<CallInst>(I))
8408     if (const Function *F = CI->getCalledFunction())
8409       return canConstantFoldCallTo(CI, F);
8410   return false;
8411 }
8412 
8413 /// Determine whether this instruction can constant evolve within this loop
8414 /// assuming its operands can all constant evolve.
8415 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8416   // An instruction outside of the loop can't be derived from a loop PHI.
8417   if (!L->contains(I)) return false;
8418 
8419   if (isa<PHINode>(I)) {
8420     // We don't currently keep track of the control flow needed to evaluate
8421     // PHIs, so we cannot handle PHIs inside of loops.
8422     return L->getHeader() == I->getParent();
8423   }
8424 
8425   // If we won't be able to constant fold this expression even if the operands
8426   // are constants, bail early.
8427   return CanConstantFold(I);
8428 }
8429 
8430 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8431 /// recursing through each instruction operand until reaching a loop header phi.
8432 static PHINode *
8433 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8434                                DenseMap<Instruction *, PHINode *> &PHIMap,
8435                                unsigned Depth) {
8436   if (Depth > MaxConstantEvolvingDepth)
8437     return nullptr;
8438 
8439   // Otherwise, we can evaluate this instruction if all of its operands are
8440   // constant or derived from a PHI node themselves.
8441   PHINode *PHI = nullptr;
8442   for (Value *Op : UseInst->operands()) {
8443     if (isa<Constant>(Op)) continue;
8444 
8445     Instruction *OpInst = dyn_cast<Instruction>(Op);
8446     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8447 
8448     PHINode *P = dyn_cast<PHINode>(OpInst);
8449     if (!P)
8450       // If this operand is already visited, reuse the prior result.
8451       // We may have P != PHI if this is the deepest point at which the
8452       // inconsistent paths meet.
8453       P = PHIMap.lookup(OpInst);
8454     if (!P) {
8455       // Recurse and memoize the results, whether a phi is found or not.
8456       // This recursive call invalidates pointers into PHIMap.
8457       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8458       PHIMap[OpInst] = P;
8459     }
8460     if (!P)
8461       return nullptr;  // Not evolving from PHI
8462     if (PHI && PHI != P)
8463       return nullptr;  // Evolving from multiple different PHIs.
8464     PHI = P;
8465   }
8466   // This is a expression evolving from a constant PHI!
8467   return PHI;
8468 }
8469 
8470 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8471 /// in the loop that V is derived from.  We allow arbitrary operations along the
8472 /// way, but the operands of an operation must either be constants or a value
8473 /// derived from a constant PHI.  If this expression does not fit with these
8474 /// constraints, return null.
8475 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8476   Instruction *I = dyn_cast<Instruction>(V);
8477   if (!I || !canConstantEvolve(I, L)) return nullptr;
8478 
8479   if (PHINode *PN = dyn_cast<PHINode>(I))
8480     return PN;
8481 
8482   // Record non-constant instructions contained by the loop.
8483   DenseMap<Instruction *, PHINode *> PHIMap;
8484   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8485 }
8486 
8487 /// EvaluateExpression - Given an expression that passes the
8488 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8489 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8490 /// reason, return null.
8491 static Constant *EvaluateExpression(Value *V, const Loop *L,
8492                                     DenseMap<Instruction *, Constant *> &Vals,
8493                                     const DataLayout &DL,
8494                                     const TargetLibraryInfo *TLI) {
8495   // Convenient constant check, but redundant for recursive calls.
8496   if (Constant *C = dyn_cast<Constant>(V)) return C;
8497   Instruction *I = dyn_cast<Instruction>(V);
8498   if (!I) return nullptr;
8499 
8500   if (Constant *C = Vals.lookup(I)) return C;
8501 
8502   // An instruction inside the loop depends on a value outside the loop that we
8503   // weren't given a mapping for, or a value such as a call inside the loop.
8504   if (!canConstantEvolve(I, L)) return nullptr;
8505 
8506   // An unmapped PHI can be due to a branch or another loop inside this loop,
8507   // or due to this not being the initial iteration through a loop where we
8508   // couldn't compute the evolution of this particular PHI last time.
8509   if (isa<PHINode>(I)) return nullptr;
8510 
8511   std::vector<Constant*> Operands(I->getNumOperands());
8512 
8513   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8514     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8515     if (!Operand) {
8516       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8517       if (!Operands[i]) return nullptr;
8518       continue;
8519     }
8520     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8521     Vals[Operand] = C;
8522     if (!C) return nullptr;
8523     Operands[i] = C;
8524   }
8525 
8526   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8527     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8528                                            Operands[1], DL, TLI);
8529   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8530     if (!LI->isVolatile())
8531       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8532   }
8533   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8534 }
8535 
8536 
8537 // If every incoming value to PN except the one for BB is a specific Constant,
8538 // return that, else return nullptr.
8539 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8540   Constant *IncomingVal = nullptr;
8541 
8542   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8543     if (PN->getIncomingBlock(i) == BB)
8544       continue;
8545 
8546     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8547     if (!CurrentVal)
8548       return nullptr;
8549 
8550     if (IncomingVal != CurrentVal) {
8551       if (IncomingVal)
8552         return nullptr;
8553       IncomingVal = CurrentVal;
8554     }
8555   }
8556 
8557   return IncomingVal;
8558 }
8559 
8560 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8561 /// in the header of its containing loop, we know the loop executes a
8562 /// constant number of times, and the PHI node is just a recurrence
8563 /// involving constants, fold it.
8564 Constant *
8565 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8566                                                    const APInt &BEs,
8567                                                    const Loop *L) {
8568   auto I = ConstantEvolutionLoopExitValue.find(PN);
8569   if (I != ConstantEvolutionLoopExitValue.end())
8570     return I->second;
8571 
8572   if (BEs.ugt(MaxBruteForceIterations))
8573     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8574 
8575   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8576 
8577   DenseMap<Instruction *, Constant *> CurrentIterVals;
8578   BasicBlock *Header = L->getHeader();
8579   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8580 
8581   BasicBlock *Latch = L->getLoopLatch();
8582   if (!Latch)
8583     return nullptr;
8584 
8585   for (PHINode &PHI : Header->phis()) {
8586     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8587       CurrentIterVals[&PHI] = StartCST;
8588   }
8589   if (!CurrentIterVals.count(PN))
8590     return RetVal = nullptr;
8591 
8592   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8593 
8594   // Execute the loop symbolically to determine the exit value.
8595   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8596          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8597 
8598   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8599   unsigned IterationNum = 0;
8600   const DataLayout &DL = getDataLayout();
8601   for (; ; ++IterationNum) {
8602     if (IterationNum == NumIterations)
8603       return RetVal = CurrentIterVals[PN];  // Got exit value!
8604 
8605     // Compute the value of the PHIs for the next iteration.
8606     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8607     DenseMap<Instruction *, Constant *> NextIterVals;
8608     Constant *NextPHI =
8609         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8610     if (!NextPHI)
8611       return nullptr;        // Couldn't evaluate!
8612     NextIterVals[PN] = NextPHI;
8613 
8614     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8615 
8616     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8617     // cease to be able to evaluate one of them or if they stop evolving,
8618     // because that doesn't necessarily prevent us from computing PN.
8619     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8620     for (const auto &I : CurrentIterVals) {
8621       PHINode *PHI = dyn_cast<PHINode>(I.first);
8622       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8623       PHIsToCompute.emplace_back(PHI, I.second);
8624     }
8625     // We use two distinct loops because EvaluateExpression may invalidate any
8626     // iterators into CurrentIterVals.
8627     for (const auto &I : PHIsToCompute) {
8628       PHINode *PHI = I.first;
8629       Constant *&NextPHI = NextIterVals[PHI];
8630       if (!NextPHI) {   // Not already computed.
8631         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8632         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8633       }
8634       if (NextPHI != I.second)
8635         StoppedEvolving = false;
8636     }
8637 
8638     // If all entries in CurrentIterVals == NextIterVals then we can stop
8639     // iterating, the loop can't continue to change.
8640     if (StoppedEvolving)
8641       return RetVal = CurrentIterVals[PN];
8642 
8643     CurrentIterVals.swap(NextIterVals);
8644   }
8645 }
8646 
8647 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8648                                                           Value *Cond,
8649                                                           bool ExitWhen) {
8650   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8651   if (!PN) return getCouldNotCompute();
8652 
8653   // If the loop is canonicalized, the PHI will have exactly two entries.
8654   // That's the only form we support here.
8655   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8656 
8657   DenseMap<Instruction *, Constant *> CurrentIterVals;
8658   BasicBlock *Header = L->getHeader();
8659   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8660 
8661   BasicBlock *Latch = L->getLoopLatch();
8662   assert(Latch && "Should follow from NumIncomingValues == 2!");
8663 
8664   for (PHINode &PHI : Header->phis()) {
8665     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8666       CurrentIterVals[&PHI] = StartCST;
8667   }
8668   if (!CurrentIterVals.count(PN))
8669     return getCouldNotCompute();
8670 
8671   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8672   // the loop symbolically to determine when the condition gets a value of
8673   // "ExitWhen".
8674   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8675   const DataLayout &DL = getDataLayout();
8676   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8677     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8678         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8679 
8680     // Couldn't symbolically evaluate.
8681     if (!CondVal) return getCouldNotCompute();
8682 
8683     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8684       ++NumBruteForceTripCountsComputed;
8685       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8686     }
8687 
8688     // Update all the PHI nodes for the next iteration.
8689     DenseMap<Instruction *, Constant *> NextIterVals;
8690 
8691     // Create a list of which PHIs we need to compute. We want to do this before
8692     // calling EvaluateExpression on them because that may invalidate iterators
8693     // into CurrentIterVals.
8694     SmallVector<PHINode *, 8> PHIsToCompute;
8695     for (const auto &I : CurrentIterVals) {
8696       PHINode *PHI = dyn_cast<PHINode>(I.first);
8697       if (!PHI || PHI->getParent() != Header) continue;
8698       PHIsToCompute.push_back(PHI);
8699     }
8700     for (PHINode *PHI : PHIsToCompute) {
8701       Constant *&NextPHI = NextIterVals[PHI];
8702       if (NextPHI) continue;    // Already computed!
8703 
8704       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8705       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8706     }
8707     CurrentIterVals.swap(NextIterVals);
8708   }
8709 
8710   // Too many iterations were needed to evaluate.
8711   return getCouldNotCompute();
8712 }
8713 
8714 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8715   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8716       ValuesAtScopes[V];
8717   // Check to see if we've folded this expression at this loop before.
8718   for (auto &LS : Values)
8719     if (LS.first == L)
8720       return LS.second ? LS.second : V;
8721 
8722   Values.emplace_back(L, nullptr);
8723 
8724   // Otherwise compute it.
8725   const SCEV *C = computeSCEVAtScope(V, L);
8726   for (auto &LS : reverse(ValuesAtScopes[V]))
8727     if (LS.first == L) {
8728       LS.second = C;
8729       break;
8730     }
8731   return C;
8732 }
8733 
8734 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8735 /// will return Constants for objects which aren't represented by a
8736 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8737 /// Returns NULL if the SCEV isn't representable as a Constant.
8738 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8739   switch (V->getSCEVType()) {
8740   case scCouldNotCompute:
8741   case scAddRecExpr:
8742     return nullptr;
8743   case scConstant:
8744     return cast<SCEVConstant>(V)->getValue();
8745   case scUnknown:
8746     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8747   case scSignExtend: {
8748     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8749     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8750       return ConstantExpr::getSExt(CastOp, SS->getType());
8751     return nullptr;
8752   }
8753   case scZeroExtend: {
8754     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8755     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8756       return ConstantExpr::getZExt(CastOp, SZ->getType());
8757     return nullptr;
8758   }
8759   case scPtrToInt: {
8760     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8761     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8762       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8763 
8764     return nullptr;
8765   }
8766   case scTruncate: {
8767     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8768     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8769       return ConstantExpr::getTrunc(CastOp, ST->getType());
8770     return nullptr;
8771   }
8772   case scAddExpr: {
8773     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8774     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8775       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8776         unsigned AS = PTy->getAddressSpace();
8777         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8778         C = ConstantExpr::getBitCast(C, DestPtrTy);
8779       }
8780       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8781         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8782         if (!C2)
8783           return nullptr;
8784 
8785         // First pointer!
8786         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8787           unsigned AS = C2->getType()->getPointerAddressSpace();
8788           std::swap(C, C2);
8789           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8790           // The offsets have been converted to bytes.  We can add bytes to an
8791           // i8* by GEP with the byte count in the first index.
8792           C = ConstantExpr::getBitCast(C, DestPtrTy);
8793         }
8794 
8795         // Don't bother trying to sum two pointers. We probably can't
8796         // statically compute a load that results from it anyway.
8797         if (C2->getType()->isPointerTy())
8798           return nullptr;
8799 
8800         if (C->getType()->isPointerTy()) {
8801           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
8802                                              C, C2);
8803         } else {
8804           C = ConstantExpr::getAdd(C, C2);
8805         }
8806       }
8807       return C;
8808     }
8809     return nullptr;
8810   }
8811   case scMulExpr: {
8812     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8813     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8814       // Don't bother with pointers at all.
8815       if (C->getType()->isPointerTy())
8816         return nullptr;
8817       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8818         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8819         if (!C2 || C2->getType()->isPointerTy())
8820           return nullptr;
8821         C = ConstantExpr::getMul(C, C2);
8822       }
8823       return C;
8824     }
8825     return nullptr;
8826   }
8827   case scUDivExpr: {
8828     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8829     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8830       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8831         if (LHS->getType() == RHS->getType())
8832           return ConstantExpr::getUDiv(LHS, RHS);
8833     return nullptr;
8834   }
8835   case scSMaxExpr:
8836   case scUMaxExpr:
8837   case scSMinExpr:
8838   case scUMinExpr:
8839     return nullptr; // TODO: smax, umax, smin, umax.
8840   }
8841   llvm_unreachable("Unknown SCEV kind!");
8842 }
8843 
8844 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8845   if (isa<SCEVConstant>(V)) return V;
8846 
8847   // If this instruction is evolved from a constant-evolving PHI, compute the
8848   // exit value from the loop without using SCEVs.
8849   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8850     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8851       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8852         const Loop *CurrLoop = this->LI[I->getParent()];
8853         // Looking for loop exit value.
8854         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8855             PN->getParent() == CurrLoop->getHeader()) {
8856           // Okay, there is no closed form solution for the PHI node.  Check
8857           // to see if the loop that contains it has a known backedge-taken
8858           // count.  If so, we may be able to force computation of the exit
8859           // value.
8860           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8861           // This trivial case can show up in some degenerate cases where
8862           // the incoming IR has not yet been fully simplified.
8863           if (BackedgeTakenCount->isZero()) {
8864             Value *InitValue = nullptr;
8865             bool MultipleInitValues = false;
8866             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8867               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8868                 if (!InitValue)
8869                   InitValue = PN->getIncomingValue(i);
8870                 else if (InitValue != PN->getIncomingValue(i)) {
8871                   MultipleInitValues = true;
8872                   break;
8873                 }
8874               }
8875             }
8876             if (!MultipleInitValues && InitValue)
8877               return getSCEV(InitValue);
8878           }
8879           // Do we have a loop invariant value flowing around the backedge
8880           // for a loop which must execute the backedge?
8881           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8882               isKnownPositive(BackedgeTakenCount) &&
8883               PN->getNumIncomingValues() == 2) {
8884 
8885             unsigned InLoopPred =
8886                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8887             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8888             if (CurrLoop->isLoopInvariant(BackedgeVal))
8889               return getSCEV(BackedgeVal);
8890           }
8891           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8892             // Okay, we know how many times the containing loop executes.  If
8893             // this is a constant evolving PHI node, get the final value at
8894             // the specified iteration number.
8895             Constant *RV = getConstantEvolutionLoopExitValue(
8896                 PN, BTCC->getAPInt(), CurrLoop);
8897             if (RV) return getSCEV(RV);
8898           }
8899         }
8900 
8901         // If there is a single-input Phi, evaluate it at our scope. If we can
8902         // prove that this replacement does not break LCSSA form, use new value.
8903         if (PN->getNumOperands() == 1) {
8904           const SCEV *Input = getSCEV(PN->getOperand(0));
8905           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8906           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8907           // for the simplest case just support constants.
8908           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8909         }
8910       }
8911 
8912       // Okay, this is an expression that we cannot symbolically evaluate
8913       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8914       // the arguments into constants, and if so, try to constant propagate the
8915       // result.  This is particularly useful for computing loop exit values.
8916       if (CanConstantFold(I)) {
8917         SmallVector<Constant *, 4> Operands;
8918         bool MadeImprovement = false;
8919         for (Value *Op : I->operands()) {
8920           if (Constant *C = dyn_cast<Constant>(Op)) {
8921             Operands.push_back(C);
8922             continue;
8923           }
8924 
8925           // If any of the operands is non-constant and if they are
8926           // non-integer and non-pointer, don't even try to analyze them
8927           // with scev techniques.
8928           if (!isSCEVable(Op->getType()))
8929             return V;
8930 
8931           const SCEV *OrigV = getSCEV(Op);
8932           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8933           MadeImprovement |= OrigV != OpV;
8934 
8935           Constant *C = BuildConstantFromSCEV(OpV);
8936           if (!C) return V;
8937           if (C->getType() != Op->getType())
8938             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8939                                                               Op->getType(),
8940                                                               false),
8941                                       C, Op->getType());
8942           Operands.push_back(C);
8943         }
8944 
8945         // Check to see if getSCEVAtScope actually made an improvement.
8946         if (MadeImprovement) {
8947           Constant *C = nullptr;
8948           const DataLayout &DL = getDataLayout();
8949           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8950             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8951                                                 Operands[1], DL, &TLI);
8952           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8953             if (!Load->isVolatile())
8954               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8955                                                DL);
8956           } else
8957             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8958           if (!C) return V;
8959           return getSCEV(C);
8960         }
8961       }
8962     }
8963 
8964     // This is some other type of SCEVUnknown, just return it.
8965     return V;
8966   }
8967 
8968   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8969     // Avoid performing the look-up in the common case where the specified
8970     // expression has no loop-variant portions.
8971     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8972       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8973       if (OpAtScope != Comm->getOperand(i)) {
8974         // Okay, at least one of these operands is loop variant but might be
8975         // foldable.  Build a new instance of the folded commutative expression.
8976         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8977                                             Comm->op_begin()+i);
8978         NewOps.push_back(OpAtScope);
8979 
8980         for (++i; i != e; ++i) {
8981           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8982           NewOps.push_back(OpAtScope);
8983         }
8984         if (isa<SCEVAddExpr>(Comm))
8985           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8986         if (isa<SCEVMulExpr>(Comm))
8987           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8988         if (isa<SCEVMinMaxExpr>(Comm))
8989           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8990         llvm_unreachable("Unknown commutative SCEV type!");
8991       }
8992     }
8993     // If we got here, all operands are loop invariant.
8994     return Comm;
8995   }
8996 
8997   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8998     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8999     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9000     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9001       return Div;   // must be loop invariant
9002     return getUDivExpr(LHS, RHS);
9003   }
9004 
9005   // If this is a loop recurrence for a loop that does not contain L, then we
9006   // are dealing with the final value computed by the loop.
9007   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9008     // First, attempt to evaluate each operand.
9009     // Avoid performing the look-up in the common case where the specified
9010     // expression has no loop-variant portions.
9011     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9012       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9013       if (OpAtScope == AddRec->getOperand(i))
9014         continue;
9015 
9016       // Okay, at least one of these operands is loop variant but might be
9017       // foldable.  Build a new instance of the folded commutative expression.
9018       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9019                                           AddRec->op_begin()+i);
9020       NewOps.push_back(OpAtScope);
9021       for (++i; i != e; ++i)
9022         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9023 
9024       const SCEV *FoldedRec =
9025         getAddRecExpr(NewOps, AddRec->getLoop(),
9026                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9027       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9028       // The addrec may be folded to a nonrecurrence, for example, if the
9029       // induction variable is multiplied by zero after constant folding. Go
9030       // ahead and return the folded value.
9031       if (!AddRec)
9032         return FoldedRec;
9033       break;
9034     }
9035 
9036     // If the scope is outside the addrec's loop, evaluate it by using the
9037     // loop exit value of the addrec.
9038     if (!AddRec->getLoop()->contains(L)) {
9039       // To evaluate this recurrence, we need to know how many times the AddRec
9040       // loop iterates.  Compute this now.
9041       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9042       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9043 
9044       // Then, evaluate the AddRec.
9045       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9046     }
9047 
9048     return AddRec;
9049   }
9050 
9051   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
9052     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9053     if (Op == Cast->getOperand())
9054       return Cast;  // must be loop invariant
9055     return getZeroExtendExpr(Op, Cast->getType());
9056   }
9057 
9058   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
9059     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9060     if (Op == Cast->getOperand())
9061       return Cast;  // must be loop invariant
9062     return getSignExtendExpr(Op, Cast->getType());
9063   }
9064 
9065   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
9066     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9067     if (Op == Cast->getOperand())
9068       return Cast;  // must be loop invariant
9069     return getTruncateExpr(Op, Cast->getType());
9070   }
9071 
9072   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
9073     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9074     if (Op == Cast->getOperand())
9075       return Cast; // must be loop invariant
9076     return getPtrToIntExpr(Op, Cast->getType());
9077   }
9078 
9079   llvm_unreachable("Unknown SCEV type!");
9080 }
9081 
9082 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9083   return getSCEVAtScope(getSCEV(V), L);
9084 }
9085 
9086 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9087   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9088     return stripInjectiveFunctions(ZExt->getOperand());
9089   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9090     return stripInjectiveFunctions(SExt->getOperand());
9091   return S;
9092 }
9093 
9094 /// Finds the minimum unsigned root of the following equation:
9095 ///
9096 ///     A * X = B (mod N)
9097 ///
9098 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9099 /// A and B isn't important.
9100 ///
9101 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9102 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9103                                                ScalarEvolution &SE) {
9104   uint32_t BW = A.getBitWidth();
9105   assert(BW == SE.getTypeSizeInBits(B->getType()));
9106   assert(A != 0 && "A must be non-zero.");
9107 
9108   // 1. D = gcd(A, N)
9109   //
9110   // The gcd of A and N may have only one prime factor: 2. The number of
9111   // trailing zeros in A is its multiplicity
9112   uint32_t Mult2 = A.countTrailingZeros();
9113   // D = 2^Mult2
9114 
9115   // 2. Check if B is divisible by D.
9116   //
9117   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9118   // is not less than multiplicity of this prime factor for D.
9119   if (SE.GetMinTrailingZeros(B) < Mult2)
9120     return SE.getCouldNotCompute();
9121 
9122   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9123   // modulo (N / D).
9124   //
9125   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9126   // (N / D) in general. The inverse itself always fits into BW bits, though,
9127   // so we immediately truncate it.
9128   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9129   APInt Mod(BW + 1, 0);
9130   Mod.setBit(BW - Mult2);  // Mod = N / D
9131   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9132 
9133   // 4. Compute the minimum unsigned root of the equation:
9134   // I * (B / D) mod (N / D)
9135   // To simplify the computation, we factor out the divide by D:
9136   // (I * B mod N) / D
9137   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9138   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9139 }
9140 
9141 /// For a given quadratic addrec, generate coefficients of the corresponding
9142 /// quadratic equation, multiplied by a common value to ensure that they are
9143 /// integers.
9144 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9145 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9146 /// were multiplied by, and BitWidth is the bit width of the original addrec
9147 /// coefficients.
9148 /// This function returns None if the addrec coefficients are not compile-
9149 /// time constants.
9150 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9151 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9152   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9153   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9154   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9155   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9156   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9157                     << *AddRec << '\n');
9158 
9159   // We currently can only solve this if the coefficients are constants.
9160   if (!LC || !MC || !NC) {
9161     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9162     return None;
9163   }
9164 
9165   APInt L = LC->getAPInt();
9166   APInt M = MC->getAPInt();
9167   APInt N = NC->getAPInt();
9168   assert(!N.isNullValue() && "This is not a quadratic addrec");
9169 
9170   unsigned BitWidth = LC->getAPInt().getBitWidth();
9171   unsigned NewWidth = BitWidth + 1;
9172   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9173                     << BitWidth << '\n');
9174   // The sign-extension (as opposed to a zero-extension) here matches the
9175   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9176   N = N.sext(NewWidth);
9177   M = M.sext(NewWidth);
9178   L = L.sext(NewWidth);
9179 
9180   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9181   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9182   //   L+M, L+2M+N, L+3M+3N, ...
9183   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9184   //
9185   // The equation Acc = 0 is then
9186   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9187   // In a quadratic form it becomes:
9188   //   N n^2 + (2M-N) n + 2L = 0.
9189 
9190   APInt A = N;
9191   APInt B = 2 * M - A;
9192   APInt C = 2 * L;
9193   APInt T = APInt(NewWidth, 2);
9194   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9195                     << "x + " << C << ", coeff bw: " << NewWidth
9196                     << ", multiplied by " << T << '\n');
9197   return std::make_tuple(A, B, C, T, BitWidth);
9198 }
9199 
9200 /// Helper function to compare optional APInts:
9201 /// (a) if X and Y both exist, return min(X, Y),
9202 /// (b) if neither X nor Y exist, return None,
9203 /// (c) if exactly one of X and Y exists, return that value.
9204 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9205   if (X.hasValue() && Y.hasValue()) {
9206     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9207     APInt XW = X->sextOrSelf(W);
9208     APInt YW = Y->sextOrSelf(W);
9209     return XW.slt(YW) ? *X : *Y;
9210   }
9211   if (!X.hasValue() && !Y.hasValue())
9212     return None;
9213   return X.hasValue() ? *X : *Y;
9214 }
9215 
9216 /// Helper function to truncate an optional APInt to a given BitWidth.
9217 /// When solving addrec-related equations, it is preferable to return a value
9218 /// that has the same bit width as the original addrec's coefficients. If the
9219 /// solution fits in the original bit width, truncate it (except for i1).
9220 /// Returning a value of a different bit width may inhibit some optimizations.
9221 ///
9222 /// In general, a solution to a quadratic equation generated from an addrec
9223 /// may require BW+1 bits, where BW is the bit width of the addrec's
9224 /// coefficients. The reason is that the coefficients of the quadratic
9225 /// equation are BW+1 bits wide (to avoid truncation when converting from
9226 /// the addrec to the equation).
9227 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9228   if (!X.hasValue())
9229     return None;
9230   unsigned W = X->getBitWidth();
9231   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9232     return X->trunc(BitWidth);
9233   return X;
9234 }
9235 
9236 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9237 /// iterations. The values L, M, N are assumed to be signed, and they
9238 /// should all have the same bit widths.
9239 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9240 /// where BW is the bit width of the addrec's coefficients.
9241 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9242 /// returned as such, otherwise the bit width of the returned value may
9243 /// be greater than BW.
9244 ///
9245 /// This function returns None if
9246 /// (a) the addrec coefficients are not constant, or
9247 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9248 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9249 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9250 static Optional<APInt>
9251 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9252   APInt A, B, C, M;
9253   unsigned BitWidth;
9254   auto T = GetQuadraticEquation(AddRec);
9255   if (!T.hasValue())
9256     return None;
9257 
9258   std::tie(A, B, C, M, BitWidth) = *T;
9259   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9260   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9261   if (!X.hasValue())
9262     return None;
9263 
9264   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9265   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9266   if (!V->isZero())
9267     return None;
9268 
9269   return TruncIfPossible(X, BitWidth);
9270 }
9271 
9272 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9273 /// iterations. The values M, N are assumed to be signed, and they
9274 /// should all have the same bit widths.
9275 /// Find the least n such that c(n) does not belong to the given range,
9276 /// while c(n-1) does.
9277 ///
9278 /// This function returns None if
9279 /// (a) the addrec coefficients are not constant, or
9280 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9281 ///     bounds of the range.
9282 static Optional<APInt>
9283 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9284                           const ConstantRange &Range, ScalarEvolution &SE) {
9285   assert(AddRec->getOperand(0)->isZero() &&
9286          "Starting value of addrec should be 0");
9287   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9288                     << Range << ", addrec " << *AddRec << '\n');
9289   // This case is handled in getNumIterationsInRange. Here we can assume that
9290   // we start in the range.
9291   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9292          "Addrec's initial value should be in range");
9293 
9294   APInt A, B, C, M;
9295   unsigned BitWidth;
9296   auto T = GetQuadraticEquation(AddRec);
9297   if (!T.hasValue())
9298     return None;
9299 
9300   // Be careful about the return value: there can be two reasons for not
9301   // returning an actual number. First, if no solutions to the equations
9302   // were found, and second, if the solutions don't leave the given range.
9303   // The first case means that the actual solution is "unknown", the second
9304   // means that it's known, but not valid. If the solution is unknown, we
9305   // cannot make any conclusions.
9306   // Return a pair: the optional solution and a flag indicating if the
9307   // solution was found.
9308   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9309     // Solve for signed overflow and unsigned overflow, pick the lower
9310     // solution.
9311     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9312                       << Bound << " (before multiplying by " << M << ")\n");
9313     Bound *= M; // The quadratic equation multiplier.
9314 
9315     Optional<APInt> SO = None;
9316     if (BitWidth > 1) {
9317       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9318                            "signed overflow\n");
9319       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9320     }
9321     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9322                          "unsigned overflow\n");
9323     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9324                                                               BitWidth+1);
9325 
9326     auto LeavesRange = [&] (const APInt &X) {
9327       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9328       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9329       if (Range.contains(V0->getValue()))
9330         return false;
9331       // X should be at least 1, so X-1 is non-negative.
9332       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9333       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9334       if (Range.contains(V1->getValue()))
9335         return true;
9336       return false;
9337     };
9338 
9339     // If SolveQuadraticEquationWrap returns None, it means that there can
9340     // be a solution, but the function failed to find it. We cannot treat it
9341     // as "no solution".
9342     if (!SO.hasValue() || !UO.hasValue())
9343       return { None, false };
9344 
9345     // Check the smaller value first to see if it leaves the range.
9346     // At this point, both SO and UO must have values.
9347     Optional<APInt> Min = MinOptional(SO, UO);
9348     if (LeavesRange(*Min))
9349       return { Min, true };
9350     Optional<APInt> Max = Min == SO ? UO : SO;
9351     if (LeavesRange(*Max))
9352       return { Max, true };
9353 
9354     // Solutions were found, but were eliminated, hence the "true".
9355     return { None, true };
9356   };
9357 
9358   std::tie(A, B, C, M, BitWidth) = *T;
9359   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9360   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9361   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9362   auto SL = SolveForBoundary(Lower);
9363   auto SU = SolveForBoundary(Upper);
9364   // If any of the solutions was unknown, no meaninigful conclusions can
9365   // be made.
9366   if (!SL.second || !SU.second)
9367     return None;
9368 
9369   // Claim: The correct solution is not some value between Min and Max.
9370   //
9371   // Justification: Assuming that Min and Max are different values, one of
9372   // them is when the first signed overflow happens, the other is when the
9373   // first unsigned overflow happens. Crossing the range boundary is only
9374   // possible via an overflow (treating 0 as a special case of it, modeling
9375   // an overflow as crossing k*2^W for some k).
9376   //
9377   // The interesting case here is when Min was eliminated as an invalid
9378   // solution, but Max was not. The argument is that if there was another
9379   // overflow between Min and Max, it would also have been eliminated if
9380   // it was considered.
9381   //
9382   // For a given boundary, it is possible to have two overflows of the same
9383   // type (signed/unsigned) without having the other type in between: this
9384   // can happen when the vertex of the parabola is between the iterations
9385   // corresponding to the overflows. This is only possible when the two
9386   // overflows cross k*2^W for the same k. In such case, if the second one
9387   // left the range (and was the first one to do so), the first overflow
9388   // would have to enter the range, which would mean that either we had left
9389   // the range before or that we started outside of it. Both of these cases
9390   // are contradictions.
9391   //
9392   // Claim: In the case where SolveForBoundary returns None, the correct
9393   // solution is not some value between the Max for this boundary and the
9394   // Min of the other boundary.
9395   //
9396   // Justification: Assume that we had such Max_A and Min_B corresponding
9397   // to range boundaries A and B and such that Max_A < Min_B. If there was
9398   // a solution between Max_A and Min_B, it would have to be caused by an
9399   // overflow corresponding to either A or B. It cannot correspond to B,
9400   // since Min_B is the first occurrence of such an overflow. If it
9401   // corresponded to A, it would have to be either a signed or an unsigned
9402   // overflow that is larger than both eliminated overflows for A. But
9403   // between the eliminated overflows and this overflow, the values would
9404   // cover the entire value space, thus crossing the other boundary, which
9405   // is a contradiction.
9406 
9407   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9408 }
9409 
9410 ScalarEvolution::ExitLimit
9411 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9412                               bool AllowPredicates) {
9413 
9414   // This is only used for loops with a "x != y" exit test. The exit condition
9415   // is now expressed as a single expression, V = x-y. So the exit test is
9416   // effectively V != 0.  We know and take advantage of the fact that this
9417   // expression only being used in a comparison by zero context.
9418 
9419   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9420   // If the value is a constant
9421   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9422     // If the value is already zero, the branch will execute zero times.
9423     if (C->getValue()->isZero()) return C;
9424     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9425   }
9426 
9427   const SCEVAddRecExpr *AddRec =
9428       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9429 
9430   if (!AddRec && AllowPredicates)
9431     // Try to make this an AddRec using runtime tests, in the first X
9432     // iterations of this loop, where X is the SCEV expression found by the
9433     // algorithm below.
9434     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9435 
9436   if (!AddRec || AddRec->getLoop() != L)
9437     return getCouldNotCompute();
9438 
9439   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9440   // the quadratic equation to solve it.
9441   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9442     // We can only use this value if the chrec ends up with an exact zero
9443     // value at this index.  When solving for "X*X != 5", for example, we
9444     // should not accept a root of 2.
9445     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9446       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9447       return ExitLimit(R, R, false, Predicates);
9448     }
9449     return getCouldNotCompute();
9450   }
9451 
9452   // Otherwise we can only handle this if it is affine.
9453   if (!AddRec->isAffine())
9454     return getCouldNotCompute();
9455 
9456   // If this is an affine expression, the execution count of this branch is
9457   // the minimum unsigned root of the following equation:
9458   //
9459   //     Start + Step*N = 0 (mod 2^BW)
9460   //
9461   // equivalent to:
9462   //
9463   //             Step*N = -Start (mod 2^BW)
9464   //
9465   // where BW is the common bit width of Start and Step.
9466 
9467   // Get the initial value for the loop.
9468   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9469   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9470 
9471   // For now we handle only constant steps.
9472   //
9473   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9474   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9475   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9476   // We have not yet seen any such cases.
9477   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9478   if (!StepC || StepC->getValue()->isZero())
9479     return getCouldNotCompute();
9480 
9481   // For positive steps (counting up until unsigned overflow):
9482   //   N = -Start/Step (as unsigned)
9483   // For negative steps (counting down to zero):
9484   //   N = Start/-Step
9485   // First compute the unsigned distance from zero in the direction of Step.
9486   bool CountDown = StepC->getAPInt().isNegative();
9487   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9488 
9489   // Handle unitary steps, which cannot wraparound.
9490   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9491   //   N = Distance (as unsigned)
9492   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9493     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9494     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9495     if (MaxBECountBase.ult(MaxBECount))
9496       MaxBECount = MaxBECountBase;
9497 
9498     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9499     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9500     // case, and see if we can improve the bound.
9501     //
9502     // Explicitly handling this here is necessary because getUnsignedRange
9503     // isn't context-sensitive; it doesn't know that we only care about the
9504     // range inside the loop.
9505     const SCEV *Zero = getZero(Distance->getType());
9506     const SCEV *One = getOne(Distance->getType());
9507     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9508     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9509       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9510       // as "unsigned_max(Distance + 1) - 1".
9511       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9512       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9513     }
9514     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9515   }
9516 
9517   // If the condition controls loop exit (the loop exits only if the expression
9518   // is true) and the addition is no-wrap we can use unsigned divide to
9519   // compute the backedge count.  In this case, the step may not divide the
9520   // distance, but we don't care because if the condition is "missed" the loop
9521   // will have undefined behavior due to wrapping.
9522   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9523       loopHasNoAbnormalExits(AddRec->getLoop())) {
9524     const SCEV *Exact =
9525         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9526     const SCEV *Max = getCouldNotCompute();
9527     if (Exact != getCouldNotCompute()) {
9528       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9529       APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9530       if (BaseMaxInt.ult(MaxInt))
9531         Max = getConstant(BaseMaxInt);
9532       else
9533         Max = getConstant(MaxInt);
9534     }
9535     return ExitLimit(Exact, Max, false, Predicates);
9536   }
9537 
9538   // Solve the general equation.
9539   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9540                                                getNegativeSCEV(Start), *this);
9541   const SCEV *M = E == getCouldNotCompute()
9542                       ? E
9543                       : getConstant(getUnsignedRangeMax(E));
9544   return ExitLimit(E, M, false, Predicates);
9545 }
9546 
9547 ScalarEvolution::ExitLimit
9548 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9549   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9550   // handle them yet except for the trivial case.  This could be expanded in the
9551   // future as needed.
9552 
9553   // If the value is a constant, check to see if it is known to be non-zero
9554   // already.  If so, the backedge will execute zero times.
9555   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9556     if (!C->getValue()->isZero())
9557       return getZero(C->getType());
9558     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9559   }
9560 
9561   // We could implement others, but I really doubt anyone writes loops like
9562   // this, and if they did, they would already be constant folded.
9563   return getCouldNotCompute();
9564 }
9565 
9566 std::pair<const BasicBlock *, const BasicBlock *>
9567 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9568     const {
9569   // If the block has a unique predecessor, then there is no path from the
9570   // predecessor to the block that does not go through the direct edge
9571   // from the predecessor to the block.
9572   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9573     return {Pred, BB};
9574 
9575   // A loop's header is defined to be a block that dominates the loop.
9576   // If the header has a unique predecessor outside the loop, it must be
9577   // a block that has exactly one successor that can reach the loop.
9578   if (const Loop *L = LI.getLoopFor(BB))
9579     return {L->getLoopPredecessor(), L->getHeader()};
9580 
9581   return {nullptr, nullptr};
9582 }
9583 
9584 /// SCEV structural equivalence is usually sufficient for testing whether two
9585 /// expressions are equal, however for the purposes of looking for a condition
9586 /// guarding a loop, it can be useful to be a little more general, since a
9587 /// front-end may have replicated the controlling expression.
9588 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9589   // Quick check to see if they are the same SCEV.
9590   if (A == B) return true;
9591 
9592   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9593     // Not all instructions that are "identical" compute the same value.  For
9594     // instance, two distinct alloca instructions allocating the same type are
9595     // identical and do not read memory; but compute distinct values.
9596     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9597   };
9598 
9599   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9600   // two different instructions with the same value. Check for this case.
9601   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9602     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9603       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9604         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9605           if (ComputesEqualValues(AI, BI))
9606             return true;
9607 
9608   // Otherwise assume they may have a different value.
9609   return false;
9610 }
9611 
9612 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9613                                            const SCEV *&LHS, const SCEV *&RHS,
9614                                            unsigned Depth) {
9615   bool Changed = false;
9616   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9617   // '0 != 0'.
9618   auto TrivialCase = [&](bool TriviallyTrue) {
9619     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9620     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9621     return true;
9622   };
9623   // If we hit the max recursion limit bail out.
9624   if (Depth >= 3)
9625     return false;
9626 
9627   // Canonicalize a constant to the right side.
9628   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9629     // Check for both operands constant.
9630     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9631       if (ConstantExpr::getICmp(Pred,
9632                                 LHSC->getValue(),
9633                                 RHSC->getValue())->isNullValue())
9634         return TrivialCase(false);
9635       else
9636         return TrivialCase(true);
9637     }
9638     // Otherwise swap the operands to put the constant on the right.
9639     std::swap(LHS, RHS);
9640     Pred = ICmpInst::getSwappedPredicate(Pred);
9641     Changed = true;
9642   }
9643 
9644   // If we're comparing an addrec with a value which is loop-invariant in the
9645   // addrec's loop, put the addrec on the left. Also make a dominance check,
9646   // as both operands could be addrecs loop-invariant in each other's loop.
9647   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9648     const Loop *L = AR->getLoop();
9649     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9650       std::swap(LHS, RHS);
9651       Pred = ICmpInst::getSwappedPredicate(Pred);
9652       Changed = true;
9653     }
9654   }
9655 
9656   // If there's a constant operand, canonicalize comparisons with boundary
9657   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9658   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9659     const APInt &RA = RC->getAPInt();
9660 
9661     bool SimplifiedByConstantRange = false;
9662 
9663     if (!ICmpInst::isEquality(Pred)) {
9664       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9665       if (ExactCR.isFullSet())
9666         return TrivialCase(true);
9667       else if (ExactCR.isEmptySet())
9668         return TrivialCase(false);
9669 
9670       APInt NewRHS;
9671       CmpInst::Predicate NewPred;
9672       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9673           ICmpInst::isEquality(NewPred)) {
9674         // We were able to convert an inequality to an equality.
9675         Pred = NewPred;
9676         RHS = getConstant(NewRHS);
9677         Changed = SimplifiedByConstantRange = true;
9678       }
9679     }
9680 
9681     if (!SimplifiedByConstantRange) {
9682       switch (Pred) {
9683       default:
9684         break;
9685       case ICmpInst::ICMP_EQ:
9686       case ICmpInst::ICMP_NE:
9687         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9688         if (!RA)
9689           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9690             if (const SCEVMulExpr *ME =
9691                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9692               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9693                   ME->getOperand(0)->isAllOnesValue()) {
9694                 RHS = AE->getOperand(1);
9695                 LHS = ME->getOperand(1);
9696                 Changed = true;
9697               }
9698         break;
9699 
9700 
9701         // The "Should have been caught earlier!" messages refer to the fact
9702         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9703         // should have fired on the corresponding cases, and canonicalized the
9704         // check to trivial case.
9705 
9706       case ICmpInst::ICMP_UGE:
9707         assert(!RA.isMinValue() && "Should have been caught earlier!");
9708         Pred = ICmpInst::ICMP_UGT;
9709         RHS = getConstant(RA - 1);
9710         Changed = true;
9711         break;
9712       case ICmpInst::ICMP_ULE:
9713         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9714         Pred = ICmpInst::ICMP_ULT;
9715         RHS = getConstant(RA + 1);
9716         Changed = true;
9717         break;
9718       case ICmpInst::ICMP_SGE:
9719         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9720         Pred = ICmpInst::ICMP_SGT;
9721         RHS = getConstant(RA - 1);
9722         Changed = true;
9723         break;
9724       case ICmpInst::ICMP_SLE:
9725         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9726         Pred = ICmpInst::ICMP_SLT;
9727         RHS = getConstant(RA + 1);
9728         Changed = true;
9729         break;
9730       }
9731     }
9732   }
9733 
9734   // Check for obvious equality.
9735   if (HasSameValue(LHS, RHS)) {
9736     if (ICmpInst::isTrueWhenEqual(Pred))
9737       return TrivialCase(true);
9738     if (ICmpInst::isFalseWhenEqual(Pred))
9739       return TrivialCase(false);
9740   }
9741 
9742   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9743   // adding or subtracting 1 from one of the operands.
9744   switch (Pred) {
9745   case ICmpInst::ICMP_SLE:
9746     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9747       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9748                        SCEV::FlagNSW);
9749       Pred = ICmpInst::ICMP_SLT;
9750       Changed = true;
9751     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9752       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9753                        SCEV::FlagNSW);
9754       Pred = ICmpInst::ICMP_SLT;
9755       Changed = true;
9756     }
9757     break;
9758   case ICmpInst::ICMP_SGE:
9759     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9760       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9761                        SCEV::FlagNSW);
9762       Pred = ICmpInst::ICMP_SGT;
9763       Changed = true;
9764     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9765       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9766                        SCEV::FlagNSW);
9767       Pred = ICmpInst::ICMP_SGT;
9768       Changed = true;
9769     }
9770     break;
9771   case ICmpInst::ICMP_ULE:
9772     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9773       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9774                        SCEV::FlagNUW);
9775       Pred = ICmpInst::ICMP_ULT;
9776       Changed = true;
9777     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9778       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9779       Pred = ICmpInst::ICMP_ULT;
9780       Changed = true;
9781     }
9782     break;
9783   case ICmpInst::ICMP_UGE:
9784     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9785       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9786       Pred = ICmpInst::ICMP_UGT;
9787       Changed = true;
9788     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9789       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9790                        SCEV::FlagNUW);
9791       Pred = ICmpInst::ICMP_UGT;
9792       Changed = true;
9793     }
9794     break;
9795   default:
9796     break;
9797   }
9798 
9799   // TODO: More simplifications are possible here.
9800 
9801   // Recursively simplify until we either hit a recursion limit or nothing
9802   // changes.
9803   if (Changed)
9804     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9805 
9806   return Changed;
9807 }
9808 
9809 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9810   return getSignedRangeMax(S).isNegative();
9811 }
9812 
9813 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9814   return getSignedRangeMin(S).isStrictlyPositive();
9815 }
9816 
9817 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9818   return !getSignedRangeMin(S).isNegative();
9819 }
9820 
9821 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9822   return !getSignedRangeMax(S).isStrictlyPositive();
9823 }
9824 
9825 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9826   return getUnsignedRangeMin(S) != 0;
9827 }
9828 
9829 std::pair<const SCEV *, const SCEV *>
9830 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9831   // Compute SCEV on entry of loop L.
9832   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9833   if (Start == getCouldNotCompute())
9834     return { Start, Start };
9835   // Compute post increment SCEV for loop L.
9836   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9837   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9838   return { Start, PostInc };
9839 }
9840 
9841 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9842                                           const SCEV *LHS, const SCEV *RHS) {
9843   // First collect all loops.
9844   SmallPtrSet<const Loop *, 8> LoopsUsed;
9845   getUsedLoops(LHS, LoopsUsed);
9846   getUsedLoops(RHS, LoopsUsed);
9847 
9848   if (LoopsUsed.empty())
9849     return false;
9850 
9851   // Domination relationship must be a linear order on collected loops.
9852 #ifndef NDEBUG
9853   for (auto *L1 : LoopsUsed)
9854     for (auto *L2 : LoopsUsed)
9855       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9856               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9857              "Domination relationship is not a linear order");
9858 #endif
9859 
9860   const Loop *MDL =
9861       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9862                         [&](const Loop *L1, const Loop *L2) {
9863          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9864        });
9865 
9866   // Get init and post increment value for LHS.
9867   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9868   // if LHS contains unknown non-invariant SCEV then bail out.
9869   if (SplitLHS.first == getCouldNotCompute())
9870     return false;
9871   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9872   // Get init and post increment value for RHS.
9873   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9874   // if RHS contains unknown non-invariant SCEV then bail out.
9875   if (SplitRHS.first == getCouldNotCompute())
9876     return false;
9877   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9878   // It is possible that init SCEV contains an invariant load but it does
9879   // not dominate MDL and is not available at MDL loop entry, so we should
9880   // check it here.
9881   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9882       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9883     return false;
9884 
9885   // It seems backedge guard check is faster than entry one so in some cases
9886   // it can speed up whole estimation by short circuit
9887   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9888                                      SplitRHS.second) &&
9889          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9890 }
9891 
9892 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9893                                        const SCEV *LHS, const SCEV *RHS) {
9894   // Canonicalize the inputs first.
9895   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9896 
9897   if (isKnownViaInduction(Pred, LHS, RHS))
9898     return true;
9899 
9900   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9901     return true;
9902 
9903   // Otherwise see what can be done with some simple reasoning.
9904   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9905 }
9906 
9907 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9908                                                   const SCEV *LHS,
9909                                                   const SCEV *RHS) {
9910   if (isKnownPredicate(Pred, LHS, RHS))
9911     return true;
9912   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9913     return false;
9914   return None;
9915 }
9916 
9917 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9918                                          const SCEV *LHS, const SCEV *RHS,
9919                                          const Instruction *Context) {
9920   // TODO: Analyze guards and assumes from Context's block.
9921   return isKnownPredicate(Pred, LHS, RHS) ||
9922          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9923 }
9924 
9925 Optional<bool>
9926 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
9927                                      const SCEV *RHS,
9928                                      const Instruction *Context) {
9929   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
9930   if (KnownWithoutContext)
9931     return KnownWithoutContext;
9932 
9933   if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS))
9934     return true;
9935   else if (isBasicBlockEntryGuardedByCond(Context->getParent(),
9936                                           ICmpInst::getInversePredicate(Pred),
9937                                           LHS, RHS))
9938     return false;
9939   return None;
9940 }
9941 
9942 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9943                                               const SCEVAddRecExpr *LHS,
9944                                               const SCEV *RHS) {
9945   const Loop *L = LHS->getLoop();
9946   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9947          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9948 }
9949 
9950 Optional<ScalarEvolution::MonotonicPredicateType>
9951 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9952                                            ICmpInst::Predicate Pred) {
9953   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9954 
9955 #ifndef NDEBUG
9956   // Verify an invariant: inverting the predicate should turn a monotonically
9957   // increasing change to a monotonically decreasing one, and vice versa.
9958   if (Result) {
9959     auto ResultSwapped =
9960         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9961 
9962     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9963     assert(ResultSwapped.getValue() != Result.getValue() &&
9964            "monotonicity should flip as we flip the predicate");
9965   }
9966 #endif
9967 
9968   return Result;
9969 }
9970 
9971 Optional<ScalarEvolution::MonotonicPredicateType>
9972 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9973                                                ICmpInst::Predicate Pred) {
9974   // A zero step value for LHS means the induction variable is essentially a
9975   // loop invariant value. We don't really depend on the predicate actually
9976   // flipping from false to true (for increasing predicates, and the other way
9977   // around for decreasing predicates), all we care about is that *if* the
9978   // predicate changes then it only changes from false to true.
9979   //
9980   // A zero step value in itself is not very useful, but there may be places
9981   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9982   // as general as possible.
9983 
9984   // Only handle LE/LT/GE/GT predicates.
9985   if (!ICmpInst::isRelational(Pred))
9986     return None;
9987 
9988   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9989   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9990          "Should be greater or less!");
9991 
9992   // Check that AR does not wrap.
9993   if (ICmpInst::isUnsigned(Pred)) {
9994     if (!LHS->hasNoUnsignedWrap())
9995       return None;
9996     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9997   } else {
9998     assert(ICmpInst::isSigned(Pred) &&
9999            "Relational predicate is either signed or unsigned!");
10000     if (!LHS->hasNoSignedWrap())
10001       return None;
10002 
10003     const SCEV *Step = LHS->getStepRecurrence(*this);
10004 
10005     if (isKnownNonNegative(Step))
10006       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10007 
10008     if (isKnownNonPositive(Step))
10009       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10010 
10011     return None;
10012   }
10013 }
10014 
10015 Optional<ScalarEvolution::LoopInvariantPredicate>
10016 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10017                                            const SCEV *LHS, const SCEV *RHS,
10018                                            const Loop *L) {
10019 
10020   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10021   if (!isLoopInvariant(RHS, L)) {
10022     if (!isLoopInvariant(LHS, L))
10023       return None;
10024 
10025     std::swap(LHS, RHS);
10026     Pred = ICmpInst::getSwappedPredicate(Pred);
10027   }
10028 
10029   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10030   if (!ArLHS || ArLHS->getLoop() != L)
10031     return None;
10032 
10033   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10034   if (!MonotonicType)
10035     return None;
10036   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10037   // true as the loop iterates, and the backedge is control dependent on
10038   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10039   //
10040   //   * if the predicate was false in the first iteration then the predicate
10041   //     is never evaluated again, since the loop exits without taking the
10042   //     backedge.
10043   //   * if the predicate was true in the first iteration then it will
10044   //     continue to be true for all future iterations since it is
10045   //     monotonically increasing.
10046   //
10047   // For both the above possibilities, we can replace the loop varying
10048   // predicate with its value on the first iteration of the loop (which is
10049   // loop invariant).
10050   //
10051   // A similar reasoning applies for a monotonically decreasing predicate, by
10052   // replacing true with false and false with true in the above two bullets.
10053   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10054   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10055 
10056   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10057     return None;
10058 
10059   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10060 }
10061 
10062 Optional<ScalarEvolution::LoopInvariantPredicate>
10063 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10064     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10065     const Instruction *Context, const SCEV *MaxIter) {
10066   // Try to prove the following set of facts:
10067   // - The predicate is monotonic in the iteration space.
10068   // - If the check does not fail on the 1st iteration:
10069   //   - No overflow will happen during first MaxIter iterations;
10070   //   - It will not fail on the MaxIter'th iteration.
10071   // If the check does fail on the 1st iteration, we leave the loop and no
10072   // other checks matter.
10073 
10074   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10075   if (!isLoopInvariant(RHS, L)) {
10076     if (!isLoopInvariant(LHS, L))
10077       return None;
10078 
10079     std::swap(LHS, RHS);
10080     Pred = ICmpInst::getSwappedPredicate(Pred);
10081   }
10082 
10083   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10084   if (!AR || AR->getLoop() != L)
10085     return None;
10086 
10087   // The predicate must be relational (i.e. <, <=, >=, >).
10088   if (!ICmpInst::isRelational(Pred))
10089     return None;
10090 
10091   // TODO: Support steps other than +/- 1.
10092   const SCEV *Step = AR->getStepRecurrence(*this);
10093   auto *One = getOne(Step->getType());
10094   auto *MinusOne = getNegativeSCEV(One);
10095   if (Step != One && Step != MinusOne)
10096     return None;
10097 
10098   // Type mismatch here means that MaxIter is potentially larger than max
10099   // unsigned value in start type, which mean we cannot prove no wrap for the
10100   // indvar.
10101   if (AR->getType() != MaxIter->getType())
10102     return None;
10103 
10104   // Value of IV on suggested last iteration.
10105   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10106   // Does it still meet the requirement?
10107   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10108     return None;
10109   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10110   // not exceed max unsigned value of this type), this effectively proves
10111   // that there is no wrap during the iteration. To prove that there is no
10112   // signed/unsigned wrap, we need to check that
10113   // Start <= Last for step = 1 or Start >= Last for step = -1.
10114   ICmpInst::Predicate NoOverflowPred =
10115       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10116   if (Step == MinusOne)
10117     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10118   const SCEV *Start = AR->getStart();
10119   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
10120     return None;
10121 
10122   // Everything is fine.
10123   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10124 }
10125 
10126 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10127     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10128   if (HasSameValue(LHS, RHS))
10129     return ICmpInst::isTrueWhenEqual(Pred);
10130 
10131   // This code is split out from isKnownPredicate because it is called from
10132   // within isLoopEntryGuardedByCond.
10133 
10134   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10135                          const ConstantRange &RangeRHS) {
10136     return RangeLHS.icmp(Pred, RangeRHS);
10137   };
10138 
10139   // The check at the top of the function catches the case where the values are
10140   // known to be equal.
10141   if (Pred == CmpInst::ICMP_EQ)
10142     return false;
10143 
10144   if (Pred == CmpInst::ICMP_NE) {
10145     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10146         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10147       return true;
10148     auto *Diff = getMinusSCEV(LHS, RHS);
10149     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10150   }
10151 
10152   if (CmpInst::isSigned(Pred))
10153     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10154 
10155   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10156 }
10157 
10158 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10159                                                     const SCEV *LHS,
10160                                                     const SCEV *RHS) {
10161   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10162   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10163   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10164   // OutC1 and OutC2.
10165   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10166                                       APInt &OutC1, APInt &OutC2,
10167                                       SCEV::NoWrapFlags ExpectedFlags) {
10168     const SCEV *XNonConstOp, *XConstOp;
10169     const SCEV *YNonConstOp, *YConstOp;
10170     SCEV::NoWrapFlags XFlagsPresent;
10171     SCEV::NoWrapFlags YFlagsPresent;
10172 
10173     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10174       XConstOp = getZero(X->getType());
10175       XNonConstOp = X;
10176       XFlagsPresent = ExpectedFlags;
10177     }
10178     if (!isa<SCEVConstant>(XConstOp) ||
10179         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10180       return false;
10181 
10182     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10183       YConstOp = getZero(Y->getType());
10184       YNonConstOp = Y;
10185       YFlagsPresent = ExpectedFlags;
10186     }
10187 
10188     if (!isa<SCEVConstant>(YConstOp) ||
10189         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10190       return false;
10191 
10192     if (YNonConstOp != XNonConstOp)
10193       return false;
10194 
10195     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10196     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10197 
10198     return true;
10199   };
10200 
10201   APInt C1;
10202   APInt C2;
10203 
10204   switch (Pred) {
10205   default:
10206     break;
10207 
10208   case ICmpInst::ICMP_SGE:
10209     std::swap(LHS, RHS);
10210     LLVM_FALLTHROUGH;
10211   case ICmpInst::ICMP_SLE:
10212     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10213     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10214       return true;
10215 
10216     break;
10217 
10218   case ICmpInst::ICMP_SGT:
10219     std::swap(LHS, RHS);
10220     LLVM_FALLTHROUGH;
10221   case ICmpInst::ICMP_SLT:
10222     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10223     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10224       return true;
10225 
10226     break;
10227 
10228   case ICmpInst::ICMP_UGE:
10229     std::swap(LHS, RHS);
10230     LLVM_FALLTHROUGH;
10231   case ICmpInst::ICMP_ULE:
10232     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10233     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10234       return true;
10235 
10236     break;
10237 
10238   case ICmpInst::ICMP_UGT:
10239     std::swap(LHS, RHS);
10240     LLVM_FALLTHROUGH;
10241   case ICmpInst::ICMP_ULT:
10242     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10243     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10244       return true;
10245     break;
10246   }
10247 
10248   return false;
10249 }
10250 
10251 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10252                                                    const SCEV *LHS,
10253                                                    const SCEV *RHS) {
10254   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10255     return false;
10256 
10257   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10258   // the stack can result in exponential time complexity.
10259   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10260 
10261   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10262   //
10263   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10264   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10265   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10266   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10267   // use isKnownPredicate later if needed.
10268   return isKnownNonNegative(RHS) &&
10269          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10270          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10271 }
10272 
10273 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10274                                         ICmpInst::Predicate Pred,
10275                                         const SCEV *LHS, const SCEV *RHS) {
10276   // No need to even try if we know the module has no guards.
10277   if (!HasGuards)
10278     return false;
10279 
10280   return any_of(*BB, [&](const Instruction &I) {
10281     using namespace llvm::PatternMatch;
10282 
10283     Value *Condition;
10284     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10285                          m_Value(Condition))) &&
10286            isImpliedCond(Pred, LHS, RHS, Condition, false);
10287   });
10288 }
10289 
10290 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10291 /// protected by a conditional between LHS and RHS.  This is used to
10292 /// to eliminate casts.
10293 bool
10294 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10295                                              ICmpInst::Predicate Pred,
10296                                              const SCEV *LHS, const SCEV *RHS) {
10297   // Interpret a null as meaning no loop, where there is obviously no guard
10298   // (interprocedural conditions notwithstanding).
10299   if (!L) return true;
10300 
10301   if (VerifyIR)
10302     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10303            "This cannot be done on broken IR!");
10304 
10305 
10306   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10307     return true;
10308 
10309   BasicBlock *Latch = L->getLoopLatch();
10310   if (!Latch)
10311     return false;
10312 
10313   BranchInst *LoopContinuePredicate =
10314     dyn_cast<BranchInst>(Latch->getTerminator());
10315   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10316       isImpliedCond(Pred, LHS, RHS,
10317                     LoopContinuePredicate->getCondition(),
10318                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10319     return true;
10320 
10321   // We don't want more than one activation of the following loops on the stack
10322   // -- that can lead to O(n!) time complexity.
10323   if (WalkingBEDominatingConds)
10324     return false;
10325 
10326   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10327 
10328   // See if we can exploit a trip count to prove the predicate.
10329   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10330   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10331   if (LatchBECount != getCouldNotCompute()) {
10332     // We know that Latch branches back to the loop header exactly
10333     // LatchBECount times.  This means the backdege condition at Latch is
10334     // equivalent to  "{0,+,1} u< LatchBECount".
10335     Type *Ty = LatchBECount->getType();
10336     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10337     const SCEV *LoopCounter =
10338       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10339     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10340                       LatchBECount))
10341       return true;
10342   }
10343 
10344   // Check conditions due to any @llvm.assume intrinsics.
10345   for (auto &AssumeVH : AC.assumptions()) {
10346     if (!AssumeVH)
10347       continue;
10348     auto *CI = cast<CallInst>(AssumeVH);
10349     if (!DT.dominates(CI, Latch->getTerminator()))
10350       continue;
10351 
10352     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10353       return true;
10354   }
10355 
10356   // If the loop is not reachable from the entry block, we risk running into an
10357   // infinite loop as we walk up into the dom tree.  These loops do not matter
10358   // anyway, so we just return a conservative answer when we see them.
10359   if (!DT.isReachableFromEntry(L->getHeader()))
10360     return false;
10361 
10362   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10363     return true;
10364 
10365   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10366        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10367     assert(DTN && "should reach the loop header before reaching the root!");
10368 
10369     BasicBlock *BB = DTN->getBlock();
10370     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10371       return true;
10372 
10373     BasicBlock *PBB = BB->getSinglePredecessor();
10374     if (!PBB)
10375       continue;
10376 
10377     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10378     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10379       continue;
10380 
10381     Value *Condition = ContinuePredicate->getCondition();
10382 
10383     // If we have an edge `E` within the loop body that dominates the only
10384     // latch, the condition guarding `E` also guards the backedge.  This
10385     // reasoning works only for loops with a single latch.
10386 
10387     BasicBlockEdge DominatingEdge(PBB, BB);
10388     if (DominatingEdge.isSingleEdge()) {
10389       // We're constructively (and conservatively) enumerating edges within the
10390       // loop body that dominate the latch.  The dominator tree better agree
10391       // with us on this:
10392       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10393 
10394       if (isImpliedCond(Pred, LHS, RHS, Condition,
10395                         BB != ContinuePredicate->getSuccessor(0)))
10396         return true;
10397     }
10398   }
10399 
10400   return false;
10401 }
10402 
10403 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10404                                                      ICmpInst::Predicate Pred,
10405                                                      const SCEV *LHS,
10406                                                      const SCEV *RHS) {
10407   if (VerifyIR)
10408     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10409            "This cannot be done on broken IR!");
10410 
10411   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10412   // the facts (a >= b && a != b) separately. A typical situation is when the
10413   // non-strict comparison is known from ranges and non-equality is known from
10414   // dominating predicates. If we are proving strict comparison, we always try
10415   // to prove non-equality and non-strict comparison separately.
10416   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10417   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10418   bool ProvedNonStrictComparison = false;
10419   bool ProvedNonEquality = false;
10420 
10421   auto SplitAndProve =
10422     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10423     if (!ProvedNonStrictComparison)
10424       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10425     if (!ProvedNonEquality)
10426       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10427     if (ProvedNonStrictComparison && ProvedNonEquality)
10428       return true;
10429     return false;
10430   };
10431 
10432   if (ProvingStrictComparison) {
10433     auto ProofFn = [&](ICmpInst::Predicate P) {
10434       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10435     };
10436     if (SplitAndProve(ProofFn))
10437       return true;
10438   }
10439 
10440   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10441   auto ProveViaGuard = [&](const BasicBlock *Block) {
10442     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10443       return true;
10444     if (ProvingStrictComparison) {
10445       auto ProofFn = [&](ICmpInst::Predicate P) {
10446         return isImpliedViaGuard(Block, P, LHS, RHS);
10447       };
10448       if (SplitAndProve(ProofFn))
10449         return true;
10450     }
10451     return false;
10452   };
10453 
10454   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10455   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10456     const Instruction *Context = &BB->front();
10457     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
10458       return true;
10459     if (ProvingStrictComparison) {
10460       auto ProofFn = [&](ICmpInst::Predicate P) {
10461         return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context);
10462       };
10463       if (SplitAndProve(ProofFn))
10464         return true;
10465     }
10466     return false;
10467   };
10468 
10469   // Starting at the block's predecessor, climb up the predecessor chain, as long
10470   // as there are predecessors that can be found that have unique successors
10471   // leading to the original block.
10472   const Loop *ContainingLoop = LI.getLoopFor(BB);
10473   const BasicBlock *PredBB;
10474   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10475     PredBB = ContainingLoop->getLoopPredecessor();
10476   else
10477     PredBB = BB->getSinglePredecessor();
10478   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10479        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10480     if (ProveViaGuard(Pair.first))
10481       return true;
10482 
10483     const BranchInst *LoopEntryPredicate =
10484         dyn_cast<BranchInst>(Pair.first->getTerminator());
10485     if (!LoopEntryPredicate ||
10486         LoopEntryPredicate->isUnconditional())
10487       continue;
10488 
10489     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10490                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10491       return true;
10492   }
10493 
10494   // Check conditions due to any @llvm.assume intrinsics.
10495   for (auto &AssumeVH : AC.assumptions()) {
10496     if (!AssumeVH)
10497       continue;
10498     auto *CI = cast<CallInst>(AssumeVH);
10499     if (!DT.dominates(CI, BB))
10500       continue;
10501 
10502     if (ProveViaCond(CI->getArgOperand(0), false))
10503       return true;
10504   }
10505 
10506   return false;
10507 }
10508 
10509 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10510                                                ICmpInst::Predicate Pred,
10511                                                const SCEV *LHS,
10512                                                const SCEV *RHS) {
10513   // Interpret a null as meaning no loop, where there is obviously no guard
10514   // (interprocedural conditions notwithstanding).
10515   if (!L)
10516     return false;
10517 
10518   // Both LHS and RHS must be available at loop entry.
10519   assert(isAvailableAtLoopEntry(LHS, L) &&
10520          "LHS is not available at Loop Entry");
10521   assert(isAvailableAtLoopEntry(RHS, L) &&
10522          "RHS is not available at Loop Entry");
10523 
10524   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10525     return true;
10526 
10527   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10528 }
10529 
10530 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10531                                     const SCEV *RHS,
10532                                     const Value *FoundCondValue, bool Inverse,
10533                                     const Instruction *Context) {
10534   // False conditions implies anything. Do not bother analyzing it further.
10535   if (FoundCondValue ==
10536       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10537     return true;
10538 
10539   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10540     return false;
10541 
10542   auto ClearOnExit =
10543       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10544 
10545   // Recursively handle And and Or conditions.
10546   const Value *Op0, *Op1;
10547   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10548     if (!Inverse)
10549       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10550               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10551   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10552     if (Inverse)
10553       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10554               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10555   }
10556 
10557   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10558   if (!ICI) return false;
10559 
10560   // Now that we found a conditional branch that dominates the loop or controls
10561   // the loop latch. Check to see if it is the comparison we are looking for.
10562   ICmpInst::Predicate FoundPred;
10563   if (Inverse)
10564     FoundPred = ICI->getInversePredicate();
10565   else
10566     FoundPred = ICI->getPredicate();
10567 
10568   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10569   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10570 
10571   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10572 }
10573 
10574 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10575                                     const SCEV *RHS,
10576                                     ICmpInst::Predicate FoundPred,
10577                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10578                                     const Instruction *Context) {
10579   // Balance the types.
10580   if (getTypeSizeInBits(LHS->getType()) <
10581       getTypeSizeInBits(FoundLHS->getType())) {
10582     // For unsigned and equality predicates, try to prove that both found
10583     // operands fit into narrow unsigned range. If so, try to prove facts in
10584     // narrow types.
10585     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10586       auto *NarrowType = LHS->getType();
10587       auto *WideType = FoundLHS->getType();
10588       auto BitWidth = getTypeSizeInBits(NarrowType);
10589       const SCEV *MaxValue = getZeroExtendExpr(
10590           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10591       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10592           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10593         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10594         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10595         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10596                                        TruncFoundRHS, Context))
10597           return true;
10598       }
10599     }
10600 
10601     if (LHS->getType()->isPointerTy())
10602       return false;
10603     if (CmpInst::isSigned(Pred)) {
10604       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10605       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10606     } else {
10607       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10608       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10609     }
10610   } else if (getTypeSizeInBits(LHS->getType()) >
10611       getTypeSizeInBits(FoundLHS->getType())) {
10612     if (FoundLHS->getType()->isPointerTy())
10613       return false;
10614     if (CmpInst::isSigned(FoundPred)) {
10615       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10616       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10617     } else {
10618       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10619       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10620     }
10621   }
10622   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10623                                     FoundRHS, Context);
10624 }
10625 
10626 bool ScalarEvolution::isImpliedCondBalancedTypes(
10627     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10628     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10629     const Instruction *Context) {
10630   assert(getTypeSizeInBits(LHS->getType()) ==
10631              getTypeSizeInBits(FoundLHS->getType()) &&
10632          "Types should be balanced!");
10633   // Canonicalize the query to match the way instcombine will have
10634   // canonicalized the comparison.
10635   if (SimplifyICmpOperands(Pred, LHS, RHS))
10636     if (LHS == RHS)
10637       return CmpInst::isTrueWhenEqual(Pred);
10638   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10639     if (FoundLHS == FoundRHS)
10640       return CmpInst::isFalseWhenEqual(FoundPred);
10641 
10642   // Check to see if we can make the LHS or RHS match.
10643   if (LHS == FoundRHS || RHS == FoundLHS) {
10644     if (isa<SCEVConstant>(RHS)) {
10645       std::swap(FoundLHS, FoundRHS);
10646       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10647     } else {
10648       std::swap(LHS, RHS);
10649       Pred = ICmpInst::getSwappedPredicate(Pred);
10650     }
10651   }
10652 
10653   // Check whether the found predicate is the same as the desired predicate.
10654   if (FoundPred == Pred)
10655     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10656 
10657   // Check whether swapping the found predicate makes it the same as the
10658   // desired predicate.
10659   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10660     // We can write the implication
10661     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10662     // using one of the following ways:
10663     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10664     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10665     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10666     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10667     // Forms 1. and 2. require swapping the operands of one condition. Don't
10668     // do this if it would break canonical constant/addrec ordering.
10669     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10670       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10671                                    Context);
10672     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10673       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10674 
10675     // Don't try to getNotSCEV pointers.
10676     if (LHS->getType()->isPointerTy() || FoundLHS->getType()->isPointerTy())
10677       return false;
10678 
10679     // There's no clear preference between forms 3. and 4., try both.
10680     return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10681                                  FoundLHS, FoundRHS, Context) ||
10682            isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10683                                  getNotSCEV(FoundRHS), Context);
10684   }
10685 
10686   // Unsigned comparison is the same as signed comparison when both the operands
10687   // are non-negative.
10688   if (CmpInst::isUnsigned(FoundPred) &&
10689       CmpInst::getSignedPredicate(FoundPred) == Pred &&
10690       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10691     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10692 
10693   // Check if we can make progress by sharpening ranges.
10694   if (FoundPred == ICmpInst::ICMP_NE &&
10695       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10696 
10697     const SCEVConstant *C = nullptr;
10698     const SCEV *V = nullptr;
10699 
10700     if (isa<SCEVConstant>(FoundLHS)) {
10701       C = cast<SCEVConstant>(FoundLHS);
10702       V = FoundRHS;
10703     } else {
10704       C = cast<SCEVConstant>(FoundRHS);
10705       V = FoundLHS;
10706     }
10707 
10708     // The guarding predicate tells us that C != V. If the known range
10709     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10710     // range we consider has to correspond to same signedness as the
10711     // predicate we're interested in folding.
10712 
10713     APInt Min = ICmpInst::isSigned(Pred) ?
10714         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10715 
10716     if (Min == C->getAPInt()) {
10717       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10718       // This is true even if (Min + 1) wraps around -- in case of
10719       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10720 
10721       APInt SharperMin = Min + 1;
10722 
10723       switch (Pred) {
10724         case ICmpInst::ICMP_SGE:
10725         case ICmpInst::ICMP_UGE:
10726           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10727           // RHS, we're done.
10728           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10729                                     Context))
10730             return true;
10731           LLVM_FALLTHROUGH;
10732 
10733         case ICmpInst::ICMP_SGT:
10734         case ICmpInst::ICMP_UGT:
10735           // We know from the range information that (V `Pred` Min ||
10736           // V == Min).  We know from the guarding condition that !(V
10737           // == Min).  This gives us
10738           //
10739           //       V `Pred` Min || V == Min && !(V == Min)
10740           //   =>  V `Pred` Min
10741           //
10742           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10743 
10744           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10745                                     Context))
10746             return true;
10747           break;
10748 
10749         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10750         case ICmpInst::ICMP_SLE:
10751         case ICmpInst::ICMP_ULE:
10752           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10753                                     LHS, V, getConstant(SharperMin), Context))
10754             return true;
10755           LLVM_FALLTHROUGH;
10756 
10757         case ICmpInst::ICMP_SLT:
10758         case ICmpInst::ICMP_ULT:
10759           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10760                                     LHS, V, getConstant(Min), Context))
10761             return true;
10762           break;
10763 
10764         default:
10765           // No change
10766           break;
10767       }
10768     }
10769   }
10770 
10771   // Check whether the actual condition is beyond sufficient.
10772   if (FoundPred == ICmpInst::ICMP_EQ)
10773     if (ICmpInst::isTrueWhenEqual(Pred))
10774       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10775         return true;
10776   if (Pred == ICmpInst::ICMP_NE)
10777     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10778       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10779                                 Context))
10780         return true;
10781 
10782   // Otherwise assume the worst.
10783   return false;
10784 }
10785 
10786 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10787                                      const SCEV *&L, const SCEV *&R,
10788                                      SCEV::NoWrapFlags &Flags) {
10789   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10790   if (!AE || AE->getNumOperands() != 2)
10791     return false;
10792 
10793   L = AE->getOperand(0);
10794   R = AE->getOperand(1);
10795   Flags = AE->getNoWrapFlags();
10796   return true;
10797 }
10798 
10799 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10800                                                            const SCEV *Less) {
10801   // We avoid subtracting expressions here because this function is usually
10802   // fairly deep in the call stack (i.e. is called many times).
10803 
10804   // X - X = 0.
10805   if (More == Less)
10806     return APInt(getTypeSizeInBits(More->getType()), 0);
10807 
10808   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10809     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10810     const auto *MAR = cast<SCEVAddRecExpr>(More);
10811 
10812     if (LAR->getLoop() != MAR->getLoop())
10813       return None;
10814 
10815     // We look at affine expressions only; not for correctness but to keep
10816     // getStepRecurrence cheap.
10817     if (!LAR->isAffine() || !MAR->isAffine())
10818       return None;
10819 
10820     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10821       return None;
10822 
10823     Less = LAR->getStart();
10824     More = MAR->getStart();
10825 
10826     // fall through
10827   }
10828 
10829   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10830     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10831     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10832     return M - L;
10833   }
10834 
10835   SCEV::NoWrapFlags Flags;
10836   const SCEV *LLess = nullptr, *RLess = nullptr;
10837   const SCEV *LMore = nullptr, *RMore = nullptr;
10838   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10839   // Compare (X + C1) vs X.
10840   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10841     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10842       if (RLess == More)
10843         return -(C1->getAPInt());
10844 
10845   // Compare X vs (X + C2).
10846   if (splitBinaryAdd(More, LMore, RMore, Flags))
10847     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10848       if (RMore == Less)
10849         return C2->getAPInt();
10850 
10851   // Compare (X + C1) vs (X + C2).
10852   if (C1 && C2 && RLess == RMore)
10853     return C2->getAPInt() - C1->getAPInt();
10854 
10855   return None;
10856 }
10857 
10858 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10859     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10860     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10861   // Try to recognize the following pattern:
10862   //
10863   //   FoundRHS = ...
10864   // ...
10865   // loop:
10866   //   FoundLHS = {Start,+,W}
10867   // context_bb: // Basic block from the same loop
10868   //   known(Pred, FoundLHS, FoundRHS)
10869   //
10870   // If some predicate is known in the context of a loop, it is also known on
10871   // each iteration of this loop, including the first iteration. Therefore, in
10872   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10873   // prove the original pred using this fact.
10874   if (!Context)
10875     return false;
10876   const BasicBlock *ContextBB = Context->getParent();
10877   // Make sure AR varies in the context block.
10878   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10879     const Loop *L = AR->getLoop();
10880     // Make sure that context belongs to the loop and executes on 1st iteration
10881     // (if it ever executes at all).
10882     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10883       return false;
10884     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10885       return false;
10886     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10887   }
10888 
10889   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10890     const Loop *L = AR->getLoop();
10891     // Make sure that context belongs to the loop and executes on 1st iteration
10892     // (if it ever executes at all).
10893     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10894       return false;
10895     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10896       return false;
10897     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10898   }
10899 
10900   return false;
10901 }
10902 
10903 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10904     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10905     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10906   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10907     return false;
10908 
10909   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10910   if (!AddRecLHS)
10911     return false;
10912 
10913   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10914   if (!AddRecFoundLHS)
10915     return false;
10916 
10917   // We'd like to let SCEV reason about control dependencies, so we constrain
10918   // both the inequalities to be about add recurrences on the same loop.  This
10919   // way we can use isLoopEntryGuardedByCond later.
10920 
10921   const Loop *L = AddRecFoundLHS->getLoop();
10922   if (L != AddRecLHS->getLoop())
10923     return false;
10924 
10925   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10926   //
10927   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10928   //                                                                  ... (2)
10929   //
10930   // Informal proof for (2), assuming (1) [*]:
10931   //
10932   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10933   //
10934   // Then
10935   //
10936   //       FoundLHS s< FoundRHS s< INT_MIN - C
10937   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10938   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10939   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10940   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10941   // <=>  FoundLHS + C s< FoundRHS + C
10942   //
10943   // [*]: (1) can be proved by ruling out overflow.
10944   //
10945   // [**]: This can be proved by analyzing all the four possibilities:
10946   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10947   //    (A s>= 0, B s>= 0).
10948   //
10949   // Note:
10950   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10951   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10952   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10953   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10954   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10955   // C)".
10956 
10957   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10958   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10959   if (!LDiff || !RDiff || *LDiff != *RDiff)
10960     return false;
10961 
10962   if (LDiff->isMinValue())
10963     return true;
10964 
10965   APInt FoundRHSLimit;
10966 
10967   if (Pred == CmpInst::ICMP_ULT) {
10968     FoundRHSLimit = -(*RDiff);
10969   } else {
10970     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10971     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10972   }
10973 
10974   // Try to prove (1) or (2), as needed.
10975   return isAvailableAtLoopEntry(FoundRHS, L) &&
10976          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10977                                   getConstant(FoundRHSLimit));
10978 }
10979 
10980 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10981                                         const SCEV *LHS, const SCEV *RHS,
10982                                         const SCEV *FoundLHS,
10983                                         const SCEV *FoundRHS, unsigned Depth) {
10984   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10985 
10986   auto ClearOnExit = make_scope_exit([&]() {
10987     if (LPhi) {
10988       bool Erased = PendingMerges.erase(LPhi);
10989       assert(Erased && "Failed to erase LPhi!");
10990       (void)Erased;
10991     }
10992     if (RPhi) {
10993       bool Erased = PendingMerges.erase(RPhi);
10994       assert(Erased && "Failed to erase RPhi!");
10995       (void)Erased;
10996     }
10997   });
10998 
10999   // Find respective Phis and check that they are not being pending.
11000   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11001     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11002       if (!PendingMerges.insert(Phi).second)
11003         return false;
11004       LPhi = Phi;
11005     }
11006   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11007     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11008       // If we detect a loop of Phi nodes being processed by this method, for
11009       // example:
11010       //
11011       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11012       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11013       //
11014       // we don't want to deal with a case that complex, so return conservative
11015       // answer false.
11016       if (!PendingMerges.insert(Phi).second)
11017         return false;
11018       RPhi = Phi;
11019     }
11020 
11021   // If none of LHS, RHS is a Phi, nothing to do here.
11022   if (!LPhi && !RPhi)
11023     return false;
11024 
11025   // If there is a SCEVUnknown Phi we are interested in, make it left.
11026   if (!LPhi) {
11027     std::swap(LHS, RHS);
11028     std::swap(FoundLHS, FoundRHS);
11029     std::swap(LPhi, RPhi);
11030     Pred = ICmpInst::getSwappedPredicate(Pred);
11031   }
11032 
11033   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11034   const BasicBlock *LBB = LPhi->getParent();
11035   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11036 
11037   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11038     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11039            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11040            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11041   };
11042 
11043   if (RPhi && RPhi->getParent() == LBB) {
11044     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11045     // If we compare two Phis from the same block, and for each entry block
11046     // the predicate is true for incoming values from this block, then the
11047     // predicate is also true for the Phis.
11048     for (const BasicBlock *IncBB : predecessors(LBB)) {
11049       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11050       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11051       if (!ProvedEasily(L, R))
11052         return false;
11053     }
11054   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11055     // Case two: RHS is also a Phi from the same basic block, and it is an
11056     // AddRec. It means that there is a loop which has both AddRec and Unknown
11057     // PHIs, for it we can compare incoming values of AddRec from above the loop
11058     // and latch with their respective incoming values of LPhi.
11059     // TODO: Generalize to handle loops with many inputs in a header.
11060     if (LPhi->getNumIncomingValues() != 2) return false;
11061 
11062     auto *RLoop = RAR->getLoop();
11063     auto *Predecessor = RLoop->getLoopPredecessor();
11064     assert(Predecessor && "Loop with AddRec with no predecessor?");
11065     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11066     if (!ProvedEasily(L1, RAR->getStart()))
11067       return false;
11068     auto *Latch = RLoop->getLoopLatch();
11069     assert(Latch && "Loop with AddRec with no latch?");
11070     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11071     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11072       return false;
11073   } else {
11074     // In all other cases go over inputs of LHS and compare each of them to RHS,
11075     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11076     // At this point RHS is either a non-Phi, or it is a Phi from some block
11077     // different from LBB.
11078     for (const BasicBlock *IncBB : predecessors(LBB)) {
11079       // Check that RHS is available in this block.
11080       if (!dominates(RHS, IncBB))
11081         return false;
11082       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11083       // Make sure L does not refer to a value from a potentially previous
11084       // iteration of a loop.
11085       if (!properlyDominates(L, IncBB))
11086         return false;
11087       if (!ProvedEasily(L, RHS))
11088         return false;
11089     }
11090   }
11091   return true;
11092 }
11093 
11094 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11095                                             const SCEV *LHS, const SCEV *RHS,
11096                                             const SCEV *FoundLHS,
11097                                             const SCEV *FoundRHS,
11098                                             const Instruction *Context) {
11099   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11100     return true;
11101 
11102   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11103     return true;
11104 
11105   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11106                                           Context))
11107     return true;
11108 
11109   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11110                                      FoundLHS, FoundRHS);
11111 }
11112 
11113 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11114 template <typename MinMaxExprType>
11115 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11116                                  const SCEV *Candidate) {
11117   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11118   if (!MinMaxExpr)
11119     return false;
11120 
11121   return is_contained(MinMaxExpr->operands(), Candidate);
11122 }
11123 
11124 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11125                                            ICmpInst::Predicate Pred,
11126                                            const SCEV *LHS, const SCEV *RHS) {
11127   // If both sides are affine addrecs for the same loop, with equal
11128   // steps, and we know the recurrences don't wrap, then we only
11129   // need to check the predicate on the starting values.
11130 
11131   if (!ICmpInst::isRelational(Pred))
11132     return false;
11133 
11134   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11135   if (!LAR)
11136     return false;
11137   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11138   if (!RAR)
11139     return false;
11140   if (LAR->getLoop() != RAR->getLoop())
11141     return false;
11142   if (!LAR->isAffine() || !RAR->isAffine())
11143     return false;
11144 
11145   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11146     return false;
11147 
11148   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11149                          SCEV::FlagNSW : SCEV::FlagNUW;
11150   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11151     return false;
11152 
11153   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11154 }
11155 
11156 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11157 /// expression?
11158 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11159                                         ICmpInst::Predicate Pred,
11160                                         const SCEV *LHS, const SCEV *RHS) {
11161   switch (Pred) {
11162   default:
11163     return false;
11164 
11165   case ICmpInst::ICMP_SGE:
11166     std::swap(LHS, RHS);
11167     LLVM_FALLTHROUGH;
11168   case ICmpInst::ICMP_SLE:
11169     return
11170         // min(A, ...) <= A
11171         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11172         // A <= max(A, ...)
11173         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11174 
11175   case ICmpInst::ICMP_UGE:
11176     std::swap(LHS, RHS);
11177     LLVM_FALLTHROUGH;
11178   case ICmpInst::ICMP_ULE:
11179     return
11180         // min(A, ...) <= A
11181         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11182         // A <= max(A, ...)
11183         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11184   }
11185 
11186   llvm_unreachable("covered switch fell through?!");
11187 }
11188 
11189 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11190                                              const SCEV *LHS, const SCEV *RHS,
11191                                              const SCEV *FoundLHS,
11192                                              const SCEV *FoundRHS,
11193                                              unsigned Depth) {
11194   assert(getTypeSizeInBits(LHS->getType()) ==
11195              getTypeSizeInBits(RHS->getType()) &&
11196          "LHS and RHS have different sizes?");
11197   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11198              getTypeSizeInBits(FoundRHS->getType()) &&
11199          "FoundLHS and FoundRHS have different sizes?");
11200   // We want to avoid hurting the compile time with analysis of too big trees.
11201   if (Depth > MaxSCEVOperationsImplicationDepth)
11202     return false;
11203 
11204   // We only want to work with GT comparison so far.
11205   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11206     Pred = CmpInst::getSwappedPredicate(Pred);
11207     std::swap(LHS, RHS);
11208     std::swap(FoundLHS, FoundRHS);
11209   }
11210 
11211   // For unsigned, try to reduce it to corresponding signed comparison.
11212   if (Pred == ICmpInst::ICMP_UGT)
11213     // We can replace unsigned predicate with its signed counterpart if all
11214     // involved values are non-negative.
11215     // TODO: We could have better support for unsigned.
11216     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11217       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11218       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11219       // use this fact to prove that LHS and RHS are non-negative.
11220       const SCEV *MinusOne = getMinusOne(LHS->getType());
11221       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11222                                 FoundRHS) &&
11223           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11224                                 FoundRHS))
11225         Pred = ICmpInst::ICMP_SGT;
11226     }
11227 
11228   if (Pred != ICmpInst::ICMP_SGT)
11229     return false;
11230 
11231   auto GetOpFromSExt = [&](const SCEV *S) {
11232     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11233       return Ext->getOperand();
11234     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11235     // the constant in some cases.
11236     return S;
11237   };
11238 
11239   // Acquire values from extensions.
11240   auto *OrigLHS = LHS;
11241   auto *OrigFoundLHS = FoundLHS;
11242   LHS = GetOpFromSExt(LHS);
11243   FoundLHS = GetOpFromSExt(FoundLHS);
11244 
11245   // Is the SGT predicate can be proved trivially or using the found context.
11246   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11247     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11248            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11249                                   FoundRHS, Depth + 1);
11250   };
11251 
11252   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11253     // We want to avoid creation of any new non-constant SCEV. Since we are
11254     // going to compare the operands to RHS, we should be certain that we don't
11255     // need any size extensions for this. So let's decline all cases when the
11256     // sizes of types of LHS and RHS do not match.
11257     // TODO: Maybe try to get RHS from sext to catch more cases?
11258     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11259       return false;
11260 
11261     // Should not overflow.
11262     if (!LHSAddExpr->hasNoSignedWrap())
11263       return false;
11264 
11265     auto *LL = LHSAddExpr->getOperand(0);
11266     auto *LR = LHSAddExpr->getOperand(1);
11267     auto *MinusOne = getMinusOne(RHS->getType());
11268 
11269     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11270     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11271       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11272     };
11273     // Try to prove the following rule:
11274     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11275     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11276     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11277       return true;
11278   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11279     Value *LL, *LR;
11280     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11281 
11282     using namespace llvm::PatternMatch;
11283 
11284     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11285       // Rules for division.
11286       // We are going to perform some comparisons with Denominator and its
11287       // derivative expressions. In general case, creating a SCEV for it may
11288       // lead to a complex analysis of the entire graph, and in particular it
11289       // can request trip count recalculation for the same loop. This would
11290       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11291       // this, we only want to create SCEVs that are constants in this section.
11292       // So we bail if Denominator is not a constant.
11293       if (!isa<ConstantInt>(LR))
11294         return false;
11295 
11296       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11297 
11298       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11299       // then a SCEV for the numerator already exists and matches with FoundLHS.
11300       auto *Numerator = getExistingSCEV(LL);
11301       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11302         return false;
11303 
11304       // Make sure that the numerator matches with FoundLHS and the denominator
11305       // is positive.
11306       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11307         return false;
11308 
11309       auto *DTy = Denominator->getType();
11310       auto *FRHSTy = FoundRHS->getType();
11311       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11312         // One of types is a pointer and another one is not. We cannot extend
11313         // them properly to a wider type, so let us just reject this case.
11314         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11315         // to avoid this check.
11316         return false;
11317 
11318       // Given that:
11319       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11320       auto *WTy = getWiderType(DTy, FRHSTy);
11321       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11322       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11323 
11324       // Try to prove the following rule:
11325       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11326       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11327       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11328       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11329       if (isKnownNonPositive(RHS) &&
11330           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11331         return true;
11332 
11333       // Try to prove the following rule:
11334       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11335       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11336       // If we divide it by Denominator > 2, then:
11337       // 1. If FoundLHS is negative, then the result is 0.
11338       // 2. If FoundLHS is non-negative, then the result is non-negative.
11339       // Anyways, the result is non-negative.
11340       auto *MinusOne = getMinusOne(WTy);
11341       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11342       if (isKnownNegative(RHS) &&
11343           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11344         return true;
11345     }
11346   }
11347 
11348   // If our expression contained SCEVUnknown Phis, and we split it down and now
11349   // need to prove something for them, try to prove the predicate for every
11350   // possible incoming values of those Phis.
11351   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11352     return true;
11353 
11354   return false;
11355 }
11356 
11357 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11358                                         const SCEV *LHS, const SCEV *RHS) {
11359   // zext x u<= sext x, sext x s<= zext x
11360   switch (Pred) {
11361   case ICmpInst::ICMP_SGE:
11362     std::swap(LHS, RHS);
11363     LLVM_FALLTHROUGH;
11364   case ICmpInst::ICMP_SLE: {
11365     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11366     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11367     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11368     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11369       return true;
11370     break;
11371   }
11372   case ICmpInst::ICMP_UGE:
11373     std::swap(LHS, RHS);
11374     LLVM_FALLTHROUGH;
11375   case ICmpInst::ICMP_ULE: {
11376     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11377     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11378     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11379     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11380       return true;
11381     break;
11382   }
11383   default:
11384     break;
11385   };
11386   return false;
11387 }
11388 
11389 bool
11390 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11391                                            const SCEV *LHS, const SCEV *RHS) {
11392   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11393          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11394          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11395          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11396          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11397 }
11398 
11399 bool
11400 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11401                                              const SCEV *LHS, const SCEV *RHS,
11402                                              const SCEV *FoundLHS,
11403                                              const SCEV *FoundRHS) {
11404   switch (Pred) {
11405   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11406   case ICmpInst::ICMP_EQ:
11407   case ICmpInst::ICMP_NE:
11408     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11409       return true;
11410     break;
11411   case ICmpInst::ICMP_SLT:
11412   case ICmpInst::ICMP_SLE:
11413     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11414         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11415       return true;
11416     break;
11417   case ICmpInst::ICMP_SGT:
11418   case ICmpInst::ICMP_SGE:
11419     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11420         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11421       return true;
11422     break;
11423   case ICmpInst::ICMP_ULT:
11424   case ICmpInst::ICMP_ULE:
11425     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11426         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11427       return true;
11428     break;
11429   case ICmpInst::ICMP_UGT:
11430   case ICmpInst::ICMP_UGE:
11431     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11432         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11433       return true;
11434     break;
11435   }
11436 
11437   // Maybe it can be proved via operations?
11438   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11439     return true;
11440 
11441   return false;
11442 }
11443 
11444 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11445                                                      const SCEV *LHS,
11446                                                      const SCEV *RHS,
11447                                                      const SCEV *FoundLHS,
11448                                                      const SCEV *FoundRHS) {
11449   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11450     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11451     // reduce the compile time impact of this optimization.
11452     return false;
11453 
11454   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11455   if (!Addend)
11456     return false;
11457 
11458   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11459 
11460   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11461   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11462   ConstantRange FoundLHSRange =
11463       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11464 
11465   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11466   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11467 
11468   // We can also compute the range of values for `LHS` that satisfy the
11469   // consequent, "`LHS` `Pred` `RHS`":
11470   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11471   // The antecedent implies the consequent if every value of `LHS` that
11472   // satisfies the antecedent also satisfies the consequent.
11473   return LHSRange.icmp(Pred, ConstRHS);
11474 }
11475 
11476 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11477                                         bool IsSigned) {
11478   assert(isKnownPositive(Stride) && "Positive stride expected!");
11479 
11480   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11481   const SCEV *One = getOne(Stride->getType());
11482 
11483   if (IsSigned) {
11484     APInt MaxRHS = getSignedRangeMax(RHS);
11485     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11486     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11487 
11488     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11489     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11490   }
11491 
11492   APInt MaxRHS = getUnsignedRangeMax(RHS);
11493   APInt MaxValue = APInt::getMaxValue(BitWidth);
11494   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11495 
11496   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11497   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11498 }
11499 
11500 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11501                                         bool IsSigned) {
11502 
11503   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11504   const SCEV *One = getOne(Stride->getType());
11505 
11506   if (IsSigned) {
11507     APInt MinRHS = getSignedRangeMin(RHS);
11508     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11509     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11510 
11511     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11512     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11513   }
11514 
11515   APInt MinRHS = getUnsignedRangeMin(RHS);
11516   APInt MinValue = APInt::getMinValue(BitWidth);
11517   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11518 
11519   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11520   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11521 }
11522 
11523 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11524   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11525   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11526   // expression fixes the case of N=0.
11527   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11528   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11529   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11530 }
11531 
11532 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11533                                                     const SCEV *Stride,
11534                                                     const SCEV *End,
11535                                                     unsigned BitWidth,
11536                                                     bool IsSigned) {
11537   // The logic in this function assumes we can represent a positive stride.
11538   // If we can't, the backedge-taken count must be zero.
11539   if (IsSigned && BitWidth == 1)
11540     return getZero(Stride->getType());
11541 
11542   // Calculate the maximum backedge count based on the range of values
11543   // permitted by Start, End, and Stride.
11544   APInt MinStart =
11545       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11546 
11547   APInt MinStride =
11548       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11549 
11550   // We assume either the stride is positive, or the backedge-taken count
11551   // is zero. So force StrideForMaxBECount to be at least one.
11552   APInt One(BitWidth, 1);
11553   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11554                                        : APIntOps::umax(One, MinStride);
11555 
11556   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11557                             : APInt::getMaxValue(BitWidth);
11558   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11559 
11560   // Although End can be a MAX expression we estimate MaxEnd considering only
11561   // the case End = RHS of the loop termination condition. This is safe because
11562   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11563   // taken count.
11564   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11565                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11566 
11567   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11568   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11569                     : APIntOps::umax(MaxEnd, MinStart);
11570 
11571   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11572                          getConstant(StrideForMaxBECount) /* Step */);
11573 }
11574 
11575 ScalarEvolution::ExitLimit
11576 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11577                                   const Loop *L, bool IsSigned,
11578                                   bool ControlsExit, bool AllowPredicates) {
11579   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11580 
11581   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11582   bool PredicatedIV = false;
11583 
11584   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
11585     // Can we prove this loop *must* be UB if overflow of IV occurs?
11586     // Reasoning goes as follows:
11587     // * Suppose the IV did self wrap.
11588     // * If Stride evenly divides the iteration space, then once wrap
11589     //   occurs, the loop must revisit the same values.
11590     // * We know that RHS is invariant, and that none of those values
11591     //   caused this exit to be taken previously.  Thus, this exit is
11592     //   dynamically dead.
11593     // * If this is the sole exit, then a dead exit implies the loop
11594     //   must be infinite if there are no abnormal exits.
11595     // * If the loop were infinite, then it must either not be mustprogress
11596     //   or have side effects. Otherwise, it must be UB.
11597     // * It can't (by assumption), be UB so we have contradicted our
11598     //   premise and can conclude the IV did not in fact self-wrap.
11599     if (!isLoopInvariant(RHS, L))
11600       return false;
11601 
11602     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
11603     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11604       return false;
11605 
11606     if (!ControlsExit || !loopHasNoAbnormalExits(L))
11607       return false;
11608 
11609     return loopIsFiniteByAssumption(L);
11610   };
11611 
11612   if (!IV) {
11613     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
11614       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
11615       if (AR && AR->getLoop() == L && AR->isAffine()) {
11616         auto Flags = AR->getNoWrapFlags();
11617         if (!hasFlags(Flags, SCEV::FlagNW) && canAssumeNoSelfWrap(AR)) {
11618           Flags = setFlags(Flags, SCEV::FlagNW);
11619 
11620           SmallVector<const SCEV*> Operands{AR->operands()};
11621           Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
11622 
11623           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
11624         }
11625         if (AR->hasNoUnsignedWrap()) {
11626           // Emulate what getZeroExtendExpr would have done during construction
11627           // if we'd been able to infer the fact just above at that time.
11628           const SCEV *Step = AR->getStepRecurrence(*this);
11629           Type *Ty = ZExt->getType();
11630           auto *S = getAddRecExpr(
11631             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
11632             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
11633           IV = dyn_cast<SCEVAddRecExpr>(S);
11634         }
11635       }
11636     }
11637   }
11638 
11639 
11640   if (!IV && AllowPredicates) {
11641     // Try to make this an AddRec using runtime tests, in the first X
11642     // iterations of this loop, where X is the SCEV expression found by the
11643     // algorithm below.
11644     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11645     PredicatedIV = true;
11646   }
11647 
11648   // Avoid weird loops
11649   if (!IV || IV->getLoop() != L || !IV->isAffine())
11650     return getCouldNotCompute();
11651 
11652   // A precondition of this method is that the condition being analyzed
11653   // reaches an exiting branch which dominates the latch.  Given that, we can
11654   // assume that an increment which violates the nowrap specification and
11655   // produces poison must cause undefined behavior when the resulting poison
11656   // value is branched upon and thus we can conclude that the backedge is
11657   // taken no more often than would be required to produce that poison value.
11658   // Note that a well defined loop can exit on the iteration which violates
11659   // the nowrap specification if there is another exit (either explicit or
11660   // implicit/exceptional) which causes the loop to execute before the
11661   // exiting instruction we're analyzing would trigger UB.
11662   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11663   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11664   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11665 
11666   const SCEV *Stride = IV->getStepRecurrence(*this);
11667 
11668   bool PositiveStride = isKnownPositive(Stride);
11669 
11670   // Avoid negative or zero stride values.
11671   if (!PositiveStride) {
11672     // We can compute the correct backedge taken count for loops with unknown
11673     // strides if we can prove that the loop is not an infinite loop with side
11674     // effects. Here's the loop structure we are trying to handle -
11675     //
11676     // i = start
11677     // do {
11678     //   A[i] = i;
11679     //   i += s;
11680     // } while (i < end);
11681     //
11682     // The backedge taken count for such loops is evaluated as -
11683     // (max(end, start + stride) - start - 1) /u stride
11684     //
11685     // The additional preconditions that we need to check to prove correctness
11686     // of the above formula is as follows -
11687     //
11688     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11689     //    NoWrap flag).
11690     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
11691     //    no side effects within the loop)
11692     // c) loop has a single static exit (with no abnormal exits)
11693     //
11694     // Precondition a) implies that if the stride is negative, this is a single
11695     // trip loop. The backedge taken count formula reduces to zero in this case.
11696     //
11697     // Precondition b) and c) combine to imply that if rhs is invariant in L,
11698     // then a zero stride means the backedge can't be taken without executing
11699     // undefined behavior.
11700     //
11701     // The positive stride case is the same as isKnownPositive(Stride) returning
11702     // true (original behavior of the function).
11703     //
11704     // We want to make sure that the stride is truly unknown as there are edge
11705     // cases where ScalarEvolution propagates no wrap flags to the
11706     // post-increment/decrement IV even though the increment/decrement operation
11707     // itself is wrapping. The computed backedge taken count may be wrong in
11708     // such cases. This is prevented by checking that the stride is not known to
11709     // be either positive or non-positive. For example, no wrap flags are
11710     // propagated to the post-increment IV of this loop with a trip count of 2 -
11711     //
11712     // unsigned char i;
11713     // for(i=127; i<128; i+=129)
11714     //   A[i] = i;
11715     //
11716     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11717         !loopIsFiniteByAssumption(L) || !loopHasNoAbnormalExits(L))
11718       return getCouldNotCompute();
11719 
11720     if (!isKnownNonZero(Stride)) {
11721       // If we have a step of zero, and RHS isn't invariant in L, we don't know
11722       // if it might eventually be greater than start and if so, on which
11723       // iteration.  We can't even produce a useful upper bound.
11724       if (!isLoopInvariant(RHS, L))
11725         return getCouldNotCompute();
11726 
11727       // We allow a potentially zero stride, but we need to divide by stride
11728       // below.  Since the loop can't be infinite and this check must control
11729       // the sole exit, we can infer the exit must be taken on the first
11730       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
11731       // we know the numerator in the divides below must be zero, so we can
11732       // pick an arbitrary non-zero value for the denominator (e.g. stride)
11733       // and produce the right result.
11734       // FIXME: Handle the case where Stride is poison?
11735       auto wouldZeroStrideBeUB = [&]() {
11736         // Proof by contradiction.  Suppose the stride were zero.  If we can
11737         // prove that the backedge *is* taken on the first iteration, then since
11738         // we know this condition controls the sole exit, we must have an
11739         // infinite loop.  We can't have a (well defined) infinite loop per
11740         // check just above.
11741         // Note: The (Start - Stride) term is used to get the start' term from
11742         // (start' + stride,+,stride). Remember that we only care about the
11743         // result of this expression when stride == 0 at runtime.
11744         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
11745         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
11746       };
11747       if (!wouldZeroStrideBeUB()) {
11748         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
11749       }
11750     }
11751   } else if (!Stride->isOne() && !NoWrap) {
11752     auto isUBOnWrap = [&]() {
11753       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11754       // follows trivially from the fact that every (un)signed-wrapped, but
11755       // not self-wrapped value must be LT than the last value before
11756       // (un)signed wrap.  Since we know that last value didn't exit, nor
11757       // will any smaller one.
11758       return canAssumeNoSelfWrap(IV);
11759     };
11760 
11761     // Avoid proven overflow cases: this will ensure that the backedge taken
11762     // count will not generate any unsigned overflow. Relaxed no-overflow
11763     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11764     // undefined behaviors like the case of C language.
11765     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11766       return getCouldNotCompute();
11767   }
11768 
11769   // On all paths just preceeding, we established the following invariant:
11770   //   IV can be assumed not to overflow up to and including the exiting
11771   //   iteration.  We proved this in one of two ways:
11772   //   1) We can show overflow doesn't occur before the exiting iteration
11773   //      1a) canIVOverflowOnLT, and b) step of one
11774   //   2) We can show that if overflow occurs, the loop must execute UB
11775   //      before any possible exit.
11776   // Note that we have not yet proved RHS invariant (in general).
11777 
11778   const SCEV *Start = IV->getStart();
11779 
11780   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11781   // Use integer-typed versions for actual computation.
11782   const SCEV *OrigStart = Start;
11783   const SCEV *OrigRHS = RHS;
11784   if (Start->getType()->isPointerTy()) {
11785     Start = getLosslessPtrToIntExpr(Start);
11786     if (isa<SCEVCouldNotCompute>(Start))
11787       return Start;
11788   }
11789   if (RHS->getType()->isPointerTy()) {
11790     RHS = getLosslessPtrToIntExpr(RHS);
11791     if (isa<SCEVCouldNotCompute>(RHS))
11792       return RHS;
11793   }
11794 
11795   // When the RHS is not invariant, we do not know the end bound of the loop and
11796   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11797   // calculate the MaxBECount, given the start, stride and max value for the end
11798   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11799   // checked above).
11800   if (!isLoopInvariant(RHS, L)) {
11801     const SCEV *MaxBECount = computeMaxBECountForLT(
11802         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11803     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11804                      false /*MaxOrZero*/, Predicates);
11805   }
11806 
11807   // We use the expression (max(End,Start)-Start)/Stride to describe the
11808   // backedge count, as if the backedge is taken at least once max(End,Start)
11809   // is End and so the result is as above, and if not max(End,Start) is Start
11810   // so we get a backedge count of zero.
11811   const SCEV *BECount = nullptr;
11812   auto *StartMinusStride = getMinusSCEV(OrigStart, Stride);
11813   // Can we prove (max(RHS,Start) > Start - Stride?
11814   if (isLoopEntryGuardedByCond(L, Cond, StartMinusStride, Start) &&
11815       isLoopEntryGuardedByCond(L, Cond, StartMinusStride, RHS)) {
11816     // In this case, we can use a refined formula for computing backedge taken
11817     // count.  The general formula remains:
11818     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
11819     // We want to use the alternate formula:
11820     //   "((End - 1) - (Start - Stride)) /u Stride"
11821     // Let's do a quick case analysis to show these are equivalent under
11822     // our precondition that max(RHS,Start) > Start - Stride.
11823     // * For RHS <= Start, the backedge-taken count must be zero.
11824     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11825     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
11826     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
11827     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
11828     //     this to the stride of 1 case.
11829     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
11830     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11831     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
11832     //   "((RHS - (Start - Stride) - 1) /u Stride".
11833     //   Our preconditions trivially imply no overflow in that form.
11834     const SCEV *MinusOne = getMinusOne(Stride->getType());
11835     const SCEV *Numerator =
11836         getMinusSCEV(getAddExpr(RHS, MinusOne), StartMinusStride);
11837     if (!isa<SCEVCouldNotCompute>(Numerator)) {
11838       BECount = getUDivExpr(Numerator, Stride);
11839     }
11840   }
11841 
11842   const SCEV *BECountIfBackedgeTaken = nullptr;
11843   if (!BECount) {
11844     auto canProveRHSGreaterThanEqualStart = [&]() {
11845       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11846       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
11847         return true;
11848 
11849       // (RHS > Start - 1) implies RHS >= Start.
11850       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
11851       //   "Start - 1" doesn't overflow.
11852       // * For signed comparison, if Start - 1 does overflow, it's equal
11853       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
11854       // * For unsigned comparison, if Start - 1 does overflow, it's equal
11855       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
11856       //
11857       // FIXME: Should isLoopEntryGuardedByCond do this for us?
11858       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11859       auto *StartMinusOne = getAddExpr(OrigStart,
11860                                        getMinusOne(OrigStart->getType()));
11861       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
11862     };
11863 
11864     // If we know that RHS >= Start in the context of loop, then we know that
11865     // max(RHS, Start) = RHS at this point.
11866     const SCEV *End;
11867     if (canProveRHSGreaterThanEqualStart()) {
11868       End = RHS;
11869     } else {
11870       // If RHS < Start, the backedge will be taken zero times.  So in
11871       // general, we can write the backedge-taken count as:
11872       //
11873       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
11874       //
11875       // We convert it to the following to make it more convenient for SCEV:
11876       //
11877       //     ceil(max(RHS, Start) - Start) / Stride
11878       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11879 
11880       // See what would happen if we assume the backedge is taken. This is
11881       // used to compute MaxBECount.
11882       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
11883     }
11884 
11885     // At this point, we know:
11886     //
11887     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
11888     // 2. The index variable doesn't overflow.
11889     //
11890     // Therefore, we know N exists such that
11891     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
11892     // doesn't overflow.
11893     //
11894     // Using this information, try to prove whether the addition in
11895     // "(Start - End) + (Stride - 1)" has unsigned overflow.
11896     const SCEV *One = getOne(Stride->getType());
11897     bool MayAddOverflow = [&] {
11898       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
11899         if (StrideC->getAPInt().isPowerOf2()) {
11900           // Suppose Stride is a power of two, and Start/End are unsigned
11901           // integers.  Let UMAX be the largest representable unsigned
11902           // integer.
11903           //
11904           // By the preconditions of this function, we know
11905           // "(Start + Stride * N) >= End", and this doesn't overflow.
11906           // As a formula:
11907           //
11908           //   End <= (Start + Stride * N) <= UMAX
11909           //
11910           // Subtracting Start from all the terms:
11911           //
11912           //   End - Start <= Stride * N <= UMAX - Start
11913           //
11914           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
11915           //
11916           //   End - Start <= Stride * N <= UMAX
11917           //
11918           // Stride * N is a multiple of Stride. Therefore,
11919           //
11920           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
11921           //
11922           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
11923           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
11924           //
11925           //   End - Start <= Stride * N <= UMAX - Stride - 1
11926           //
11927           // Dropping the middle term:
11928           //
11929           //   End - Start <= UMAX - Stride - 1
11930           //
11931           // Adding Stride - 1 to both sides:
11932           //
11933           //   (End - Start) + (Stride - 1) <= UMAX
11934           //
11935           // In other words, the addition doesn't have unsigned overflow.
11936           //
11937           // A similar proof works if we treat Start/End as signed values.
11938           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
11939           // use signed max instead of unsigned max. Note that we're trying
11940           // to prove a lack of unsigned overflow in either case.
11941           return false;
11942         }
11943       }
11944       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
11945         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
11946         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
11947         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
11948         //
11949         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
11950         return false;
11951       }
11952       return true;
11953     }();
11954 
11955     const SCEV *Delta = getMinusSCEV(End, Start);
11956     if (!MayAddOverflow) {
11957       // floor((D + (S - 1)) / S)
11958       // We prefer this formulation if it's legal because it's fewer operations.
11959       BECount =
11960           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
11961     } else {
11962       BECount = getUDivCeilSCEV(Delta, Stride);
11963     }
11964   }
11965 
11966   const SCEV *MaxBECount;
11967   bool MaxOrZero = false;
11968   if (isa<SCEVConstant>(BECount)) {
11969     MaxBECount = BECount;
11970   } else if (BECountIfBackedgeTaken &&
11971              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11972     // If we know exactly how many times the backedge will be taken if it's
11973     // taken at least once, then the backedge count will either be that or
11974     // zero.
11975     MaxBECount = BECountIfBackedgeTaken;
11976     MaxOrZero = true;
11977   } else {
11978     MaxBECount = computeMaxBECountForLT(
11979         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11980   }
11981 
11982   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11983       !isa<SCEVCouldNotCompute>(BECount))
11984     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11985 
11986   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11987 }
11988 
11989 ScalarEvolution::ExitLimit
11990 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11991                                      const Loop *L, bool IsSigned,
11992                                      bool ControlsExit, bool AllowPredicates) {
11993   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11994   // We handle only IV > Invariant
11995   if (!isLoopInvariant(RHS, L))
11996     return getCouldNotCompute();
11997 
11998   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11999   if (!IV && AllowPredicates)
12000     // Try to make this an AddRec using runtime tests, in the first X
12001     // iterations of this loop, where X is the SCEV expression found by the
12002     // algorithm below.
12003     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12004 
12005   // Avoid weird loops
12006   if (!IV || IV->getLoop() != L || !IV->isAffine())
12007     return getCouldNotCompute();
12008 
12009   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12010   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12011   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12012 
12013   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12014 
12015   // Avoid negative or zero stride values
12016   if (!isKnownPositive(Stride))
12017     return getCouldNotCompute();
12018 
12019   // Avoid proven overflow cases: this will ensure that the backedge taken count
12020   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12021   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12022   // behaviors like the case of C language.
12023   if (!Stride->isOne() && !NoWrap)
12024     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12025       return getCouldNotCompute();
12026 
12027   const SCEV *Start = IV->getStart();
12028   const SCEV *End = RHS;
12029   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12030     // If we know that Start >= RHS in the context of loop, then we know that
12031     // min(RHS, Start) = RHS at this point.
12032     if (isLoopEntryGuardedByCond(
12033             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12034       End = RHS;
12035     else
12036       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12037   }
12038 
12039   if (Start->getType()->isPointerTy()) {
12040     Start = getLosslessPtrToIntExpr(Start);
12041     if (isa<SCEVCouldNotCompute>(Start))
12042       return Start;
12043   }
12044   if (End->getType()->isPointerTy()) {
12045     End = getLosslessPtrToIntExpr(End);
12046     if (isa<SCEVCouldNotCompute>(End))
12047       return End;
12048   }
12049 
12050   // Compute ((Start - End) + (Stride - 1)) / Stride.
12051   // FIXME: This can overflow. Holding off on fixing this for now;
12052   // howManyGreaterThans will hopefully be gone soon.
12053   const SCEV *One = getOne(Stride->getType());
12054   const SCEV *BECount = getUDivExpr(
12055       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12056 
12057   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12058                             : getUnsignedRangeMax(Start);
12059 
12060   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12061                              : getUnsignedRangeMin(Stride);
12062 
12063   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12064   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12065                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12066 
12067   // Although End can be a MIN expression we estimate MinEnd considering only
12068   // the case End = RHS. This is safe because in the other case (Start - End)
12069   // is zero, leading to a zero maximum backedge taken count.
12070   APInt MinEnd =
12071     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12072              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12073 
12074   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12075                                ? BECount
12076                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12077                                                  getConstant(MinStride));
12078 
12079   if (isa<SCEVCouldNotCompute>(MaxBECount))
12080     MaxBECount = BECount;
12081 
12082   return ExitLimit(BECount, MaxBECount, false, Predicates);
12083 }
12084 
12085 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12086                                                     ScalarEvolution &SE) const {
12087   if (Range.isFullSet())  // Infinite loop.
12088     return SE.getCouldNotCompute();
12089 
12090   // If the start is a non-zero constant, shift the range to simplify things.
12091   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12092     if (!SC->getValue()->isZero()) {
12093       SmallVector<const SCEV *, 4> Operands(operands());
12094       Operands[0] = SE.getZero(SC->getType());
12095       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12096                                              getNoWrapFlags(FlagNW));
12097       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12098         return ShiftedAddRec->getNumIterationsInRange(
12099             Range.subtract(SC->getAPInt()), SE);
12100       // This is strange and shouldn't happen.
12101       return SE.getCouldNotCompute();
12102     }
12103 
12104   // The only time we can solve this is when we have all constant indices.
12105   // Otherwise, we cannot determine the overflow conditions.
12106   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12107     return SE.getCouldNotCompute();
12108 
12109   // Okay at this point we know that all elements of the chrec are constants and
12110   // that the start element is zero.
12111 
12112   // First check to see if the range contains zero.  If not, the first
12113   // iteration exits.
12114   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12115   if (!Range.contains(APInt(BitWidth, 0)))
12116     return SE.getZero(getType());
12117 
12118   if (isAffine()) {
12119     // If this is an affine expression then we have this situation:
12120     //   Solve {0,+,A} in Range  ===  Ax in Range
12121 
12122     // We know that zero is in the range.  If A is positive then we know that
12123     // the upper value of the range must be the first possible exit value.
12124     // If A is negative then the lower of the range is the last possible loop
12125     // value.  Also note that we already checked for a full range.
12126     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12127     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12128 
12129     // The exit value should be (End+A)/A.
12130     APInt ExitVal = (End + A).udiv(A);
12131     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12132 
12133     // Evaluate at the exit value.  If we really did fall out of the valid
12134     // range, then we computed our trip count, otherwise wrap around or other
12135     // things must have happened.
12136     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12137     if (Range.contains(Val->getValue()))
12138       return SE.getCouldNotCompute();  // Something strange happened
12139 
12140     // Ensure that the previous value is in the range.  This is a sanity check.
12141     assert(Range.contains(
12142            EvaluateConstantChrecAtConstant(this,
12143            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12144            "Linear scev computation is off in a bad way!");
12145     return SE.getConstant(ExitValue);
12146   }
12147 
12148   if (isQuadratic()) {
12149     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12150       return SE.getConstant(S.getValue());
12151   }
12152 
12153   return SE.getCouldNotCompute();
12154 }
12155 
12156 const SCEVAddRecExpr *
12157 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12158   assert(getNumOperands() > 1 && "AddRec with zero step?");
12159   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12160   // but in this case we cannot guarantee that the value returned will be an
12161   // AddRec because SCEV does not have a fixed point where it stops
12162   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12163   // may happen if we reach arithmetic depth limit while simplifying. So we
12164   // construct the returned value explicitly.
12165   SmallVector<const SCEV *, 3> Ops;
12166   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12167   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12168   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12169     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12170   // We know that the last operand is not a constant zero (otherwise it would
12171   // have been popped out earlier). This guarantees us that if the result has
12172   // the same last operand, then it will also not be popped out, meaning that
12173   // the returned value will be an AddRec.
12174   const SCEV *Last = getOperand(getNumOperands() - 1);
12175   assert(!Last->isZero() && "Recurrency with zero step?");
12176   Ops.push_back(Last);
12177   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12178                                                SCEV::FlagAnyWrap));
12179 }
12180 
12181 // Return true when S contains at least an undef value.
12182 static inline bool containsUndefs(const SCEV *S) {
12183   return SCEVExprContains(S, [](const SCEV *S) {
12184     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12185       return isa<UndefValue>(SU->getValue());
12186     return false;
12187   });
12188 }
12189 
12190 /// Return the size of an element read or written by Inst.
12191 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12192   Type *Ty;
12193   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12194     Ty = Store->getValueOperand()->getType();
12195   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12196     Ty = Load->getType();
12197   else
12198     return nullptr;
12199 
12200   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12201   return getSizeOfExpr(ETy, Ty);
12202 }
12203 
12204 //===----------------------------------------------------------------------===//
12205 //                   SCEVCallbackVH Class Implementation
12206 //===----------------------------------------------------------------------===//
12207 
12208 void ScalarEvolution::SCEVCallbackVH::deleted() {
12209   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12210   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12211     SE->ConstantEvolutionLoopExitValue.erase(PN);
12212   SE->eraseValueFromMap(getValPtr());
12213   // this now dangles!
12214 }
12215 
12216 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12217   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12218 
12219   // Forget all the expressions associated with users of the old value,
12220   // so that future queries will recompute the expressions using the new
12221   // value.
12222   Value *Old = getValPtr();
12223   SmallVector<User *, 16> Worklist(Old->users());
12224   SmallPtrSet<User *, 8> Visited;
12225   while (!Worklist.empty()) {
12226     User *U = Worklist.pop_back_val();
12227     // Deleting the Old value will cause this to dangle. Postpone
12228     // that until everything else is done.
12229     if (U == Old)
12230       continue;
12231     if (!Visited.insert(U).second)
12232       continue;
12233     if (PHINode *PN = dyn_cast<PHINode>(U))
12234       SE->ConstantEvolutionLoopExitValue.erase(PN);
12235     SE->eraseValueFromMap(U);
12236     llvm::append_range(Worklist, U->users());
12237   }
12238   // Delete the Old value.
12239   if (PHINode *PN = dyn_cast<PHINode>(Old))
12240     SE->ConstantEvolutionLoopExitValue.erase(PN);
12241   SE->eraseValueFromMap(Old);
12242   // this now dangles!
12243 }
12244 
12245 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12246   : CallbackVH(V), SE(se) {}
12247 
12248 //===----------------------------------------------------------------------===//
12249 //                   ScalarEvolution Class Implementation
12250 //===----------------------------------------------------------------------===//
12251 
12252 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12253                                  AssumptionCache &AC, DominatorTree &DT,
12254                                  LoopInfo &LI)
12255     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12256       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12257       LoopDispositions(64), BlockDispositions(64) {
12258   // To use guards for proving predicates, we need to scan every instruction in
12259   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12260   // time if the IR does not actually contain any calls to
12261   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12262   //
12263   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12264   // to _add_ guards to the module when there weren't any before, and wants
12265   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12266   // efficient in lieu of being smart in that rather obscure case.
12267 
12268   auto *GuardDecl = F.getParent()->getFunction(
12269       Intrinsic::getName(Intrinsic::experimental_guard));
12270   HasGuards = GuardDecl && !GuardDecl->use_empty();
12271 }
12272 
12273 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12274     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12275       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12276       ValueExprMap(std::move(Arg.ValueExprMap)),
12277       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12278       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12279       PendingMerges(std::move(Arg.PendingMerges)),
12280       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12281       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12282       PredicatedBackedgeTakenCounts(
12283           std::move(Arg.PredicatedBackedgeTakenCounts)),
12284       ConstantEvolutionLoopExitValue(
12285           std::move(Arg.ConstantEvolutionLoopExitValue)),
12286       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12287       LoopDispositions(std::move(Arg.LoopDispositions)),
12288       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12289       BlockDispositions(std::move(Arg.BlockDispositions)),
12290       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12291       SignedRanges(std::move(Arg.SignedRanges)),
12292       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12293       UniquePreds(std::move(Arg.UniquePreds)),
12294       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12295       LoopUsers(std::move(Arg.LoopUsers)),
12296       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12297       FirstUnknown(Arg.FirstUnknown) {
12298   Arg.FirstUnknown = nullptr;
12299 }
12300 
12301 ScalarEvolution::~ScalarEvolution() {
12302   // Iterate through all the SCEVUnknown instances and call their
12303   // destructors, so that they release their references to their values.
12304   for (SCEVUnknown *U = FirstUnknown; U;) {
12305     SCEVUnknown *Tmp = U;
12306     U = U->Next;
12307     Tmp->~SCEVUnknown();
12308   }
12309   FirstUnknown = nullptr;
12310 
12311   ExprValueMap.clear();
12312   ValueExprMap.clear();
12313   HasRecMap.clear();
12314   BackedgeTakenCounts.clear();
12315   PredicatedBackedgeTakenCounts.clear();
12316 
12317   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12318   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12319   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12320   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12321   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12322 }
12323 
12324 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12325   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12326 }
12327 
12328 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12329                           const Loop *L) {
12330   // Print all inner loops first
12331   for (Loop *I : *L)
12332     PrintLoopInfo(OS, SE, I);
12333 
12334   OS << "Loop ";
12335   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12336   OS << ": ";
12337 
12338   SmallVector<BasicBlock *, 8> ExitingBlocks;
12339   L->getExitingBlocks(ExitingBlocks);
12340   if (ExitingBlocks.size() != 1)
12341     OS << "<multiple exits> ";
12342 
12343   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12344     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12345   else
12346     OS << "Unpredictable backedge-taken count.\n";
12347 
12348   if (ExitingBlocks.size() > 1)
12349     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12350       OS << "  exit count for " << ExitingBlock->getName() << ": "
12351          << *SE->getExitCount(L, ExitingBlock) << "\n";
12352     }
12353 
12354   OS << "Loop ";
12355   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12356   OS << ": ";
12357 
12358   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12359     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12360     if (SE->isBackedgeTakenCountMaxOrZero(L))
12361       OS << ", actual taken count either this or zero.";
12362   } else {
12363     OS << "Unpredictable max backedge-taken count. ";
12364   }
12365 
12366   OS << "\n"
12367         "Loop ";
12368   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12369   OS << ": ";
12370 
12371   SCEVUnionPredicate Pred;
12372   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12373   if (!isa<SCEVCouldNotCompute>(PBT)) {
12374     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12375     OS << " Predicates:\n";
12376     Pred.print(OS, 4);
12377   } else {
12378     OS << "Unpredictable predicated backedge-taken count. ";
12379   }
12380   OS << "\n";
12381 
12382   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12383     OS << "Loop ";
12384     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12385     OS << ": ";
12386     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12387   }
12388 }
12389 
12390 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12391   switch (LD) {
12392   case ScalarEvolution::LoopVariant:
12393     return "Variant";
12394   case ScalarEvolution::LoopInvariant:
12395     return "Invariant";
12396   case ScalarEvolution::LoopComputable:
12397     return "Computable";
12398   }
12399   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12400 }
12401 
12402 void ScalarEvolution::print(raw_ostream &OS) const {
12403   // ScalarEvolution's implementation of the print method is to print
12404   // out SCEV values of all instructions that are interesting. Doing
12405   // this potentially causes it to create new SCEV objects though,
12406   // which technically conflicts with the const qualifier. This isn't
12407   // observable from outside the class though, so casting away the
12408   // const isn't dangerous.
12409   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12410 
12411   if (ClassifyExpressions) {
12412     OS << "Classifying expressions for: ";
12413     F.printAsOperand(OS, /*PrintType=*/false);
12414     OS << "\n";
12415     for (Instruction &I : instructions(F))
12416       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12417         OS << I << '\n';
12418         OS << "  -->  ";
12419         const SCEV *SV = SE.getSCEV(&I);
12420         SV->print(OS);
12421         if (!isa<SCEVCouldNotCompute>(SV)) {
12422           OS << " U: ";
12423           SE.getUnsignedRange(SV).print(OS);
12424           OS << " S: ";
12425           SE.getSignedRange(SV).print(OS);
12426         }
12427 
12428         const Loop *L = LI.getLoopFor(I.getParent());
12429 
12430         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12431         if (AtUse != SV) {
12432           OS << "  -->  ";
12433           AtUse->print(OS);
12434           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12435             OS << " U: ";
12436             SE.getUnsignedRange(AtUse).print(OS);
12437             OS << " S: ";
12438             SE.getSignedRange(AtUse).print(OS);
12439           }
12440         }
12441 
12442         if (L) {
12443           OS << "\t\t" "Exits: ";
12444           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12445           if (!SE.isLoopInvariant(ExitValue, L)) {
12446             OS << "<<Unknown>>";
12447           } else {
12448             OS << *ExitValue;
12449           }
12450 
12451           bool First = true;
12452           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12453             if (First) {
12454               OS << "\t\t" "LoopDispositions: { ";
12455               First = false;
12456             } else {
12457               OS << ", ";
12458             }
12459 
12460             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12461             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12462           }
12463 
12464           for (auto *InnerL : depth_first(L)) {
12465             if (InnerL == L)
12466               continue;
12467             if (First) {
12468               OS << "\t\t" "LoopDispositions: { ";
12469               First = false;
12470             } else {
12471               OS << ", ";
12472             }
12473 
12474             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12475             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12476           }
12477 
12478           OS << " }";
12479         }
12480 
12481         OS << "\n";
12482       }
12483   }
12484 
12485   OS << "Determining loop execution counts for: ";
12486   F.printAsOperand(OS, /*PrintType=*/false);
12487   OS << "\n";
12488   for (Loop *I : LI)
12489     PrintLoopInfo(OS, &SE, I);
12490 }
12491 
12492 ScalarEvolution::LoopDisposition
12493 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12494   auto &Values = LoopDispositions[S];
12495   for (auto &V : Values) {
12496     if (V.getPointer() == L)
12497       return V.getInt();
12498   }
12499   Values.emplace_back(L, LoopVariant);
12500   LoopDisposition D = computeLoopDisposition(S, L);
12501   auto &Values2 = LoopDispositions[S];
12502   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12503     if (V.getPointer() == L) {
12504       V.setInt(D);
12505       break;
12506     }
12507   }
12508   return D;
12509 }
12510 
12511 ScalarEvolution::LoopDisposition
12512 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12513   switch (S->getSCEVType()) {
12514   case scConstant:
12515     return LoopInvariant;
12516   case scPtrToInt:
12517   case scTruncate:
12518   case scZeroExtend:
12519   case scSignExtend:
12520     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12521   case scAddRecExpr: {
12522     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12523 
12524     // If L is the addrec's loop, it's computable.
12525     if (AR->getLoop() == L)
12526       return LoopComputable;
12527 
12528     // Add recurrences are never invariant in the function-body (null loop).
12529     if (!L)
12530       return LoopVariant;
12531 
12532     // Everything that is not defined at loop entry is variant.
12533     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12534       return LoopVariant;
12535     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12536            " dominate the contained loop's header?");
12537 
12538     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12539     if (AR->getLoop()->contains(L))
12540       return LoopInvariant;
12541 
12542     // This recurrence is variant w.r.t. L if any of its operands
12543     // are variant.
12544     for (auto *Op : AR->operands())
12545       if (!isLoopInvariant(Op, L))
12546         return LoopVariant;
12547 
12548     // Otherwise it's loop-invariant.
12549     return LoopInvariant;
12550   }
12551   case scAddExpr:
12552   case scMulExpr:
12553   case scUMaxExpr:
12554   case scSMaxExpr:
12555   case scUMinExpr:
12556   case scSMinExpr: {
12557     bool HasVarying = false;
12558     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12559       LoopDisposition D = getLoopDisposition(Op, L);
12560       if (D == LoopVariant)
12561         return LoopVariant;
12562       if (D == LoopComputable)
12563         HasVarying = true;
12564     }
12565     return HasVarying ? LoopComputable : LoopInvariant;
12566   }
12567   case scUDivExpr: {
12568     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12569     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12570     if (LD == LoopVariant)
12571       return LoopVariant;
12572     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12573     if (RD == LoopVariant)
12574       return LoopVariant;
12575     return (LD == LoopInvariant && RD == LoopInvariant) ?
12576            LoopInvariant : LoopComputable;
12577   }
12578   case scUnknown:
12579     // All non-instruction values are loop invariant.  All instructions are loop
12580     // invariant if they are not contained in the specified loop.
12581     // Instructions are never considered invariant in the function body
12582     // (null loop) because they are defined within the "loop".
12583     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12584       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12585     return LoopInvariant;
12586   case scCouldNotCompute:
12587     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12588   }
12589   llvm_unreachable("Unknown SCEV kind!");
12590 }
12591 
12592 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12593   return getLoopDisposition(S, L) == LoopInvariant;
12594 }
12595 
12596 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12597   return getLoopDisposition(S, L) == LoopComputable;
12598 }
12599 
12600 ScalarEvolution::BlockDisposition
12601 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12602   auto &Values = BlockDispositions[S];
12603   for (auto &V : Values) {
12604     if (V.getPointer() == BB)
12605       return V.getInt();
12606   }
12607   Values.emplace_back(BB, DoesNotDominateBlock);
12608   BlockDisposition D = computeBlockDisposition(S, BB);
12609   auto &Values2 = BlockDispositions[S];
12610   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12611     if (V.getPointer() == BB) {
12612       V.setInt(D);
12613       break;
12614     }
12615   }
12616   return D;
12617 }
12618 
12619 ScalarEvolution::BlockDisposition
12620 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12621   switch (S->getSCEVType()) {
12622   case scConstant:
12623     return ProperlyDominatesBlock;
12624   case scPtrToInt:
12625   case scTruncate:
12626   case scZeroExtend:
12627   case scSignExtend:
12628     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12629   case scAddRecExpr: {
12630     // This uses a "dominates" query instead of "properly dominates" query
12631     // to test for proper dominance too, because the instruction which
12632     // produces the addrec's value is a PHI, and a PHI effectively properly
12633     // dominates its entire containing block.
12634     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12635     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12636       return DoesNotDominateBlock;
12637 
12638     // Fall through into SCEVNAryExpr handling.
12639     LLVM_FALLTHROUGH;
12640   }
12641   case scAddExpr:
12642   case scMulExpr:
12643   case scUMaxExpr:
12644   case scSMaxExpr:
12645   case scUMinExpr:
12646   case scSMinExpr: {
12647     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12648     bool Proper = true;
12649     for (const SCEV *NAryOp : NAry->operands()) {
12650       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12651       if (D == DoesNotDominateBlock)
12652         return DoesNotDominateBlock;
12653       if (D == DominatesBlock)
12654         Proper = false;
12655     }
12656     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12657   }
12658   case scUDivExpr: {
12659     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12660     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12661     BlockDisposition LD = getBlockDisposition(LHS, BB);
12662     if (LD == DoesNotDominateBlock)
12663       return DoesNotDominateBlock;
12664     BlockDisposition RD = getBlockDisposition(RHS, BB);
12665     if (RD == DoesNotDominateBlock)
12666       return DoesNotDominateBlock;
12667     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12668       ProperlyDominatesBlock : DominatesBlock;
12669   }
12670   case scUnknown:
12671     if (Instruction *I =
12672           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12673       if (I->getParent() == BB)
12674         return DominatesBlock;
12675       if (DT.properlyDominates(I->getParent(), BB))
12676         return ProperlyDominatesBlock;
12677       return DoesNotDominateBlock;
12678     }
12679     return ProperlyDominatesBlock;
12680   case scCouldNotCompute:
12681     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12682   }
12683   llvm_unreachable("Unknown SCEV kind!");
12684 }
12685 
12686 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12687   return getBlockDisposition(S, BB) >= DominatesBlock;
12688 }
12689 
12690 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12691   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12692 }
12693 
12694 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12695   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12696 }
12697 
12698 void
12699 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12700   ValuesAtScopes.erase(S);
12701   LoopDispositions.erase(S);
12702   BlockDispositions.erase(S);
12703   UnsignedRanges.erase(S);
12704   SignedRanges.erase(S);
12705   ExprValueMap.erase(S);
12706   HasRecMap.erase(S);
12707   MinTrailingZerosCache.erase(S);
12708 
12709   for (auto I = PredicatedSCEVRewrites.begin();
12710        I != PredicatedSCEVRewrites.end();) {
12711     std::pair<const SCEV *, const Loop *> Entry = I->first;
12712     if (Entry.first == S)
12713       PredicatedSCEVRewrites.erase(I++);
12714     else
12715       ++I;
12716   }
12717 
12718   auto RemoveSCEVFromBackedgeMap =
12719       [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12720         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12721           BackedgeTakenInfo &BEInfo = I->second;
12722           if (BEInfo.hasOperand(S))
12723             Map.erase(I++);
12724           else
12725             ++I;
12726         }
12727       };
12728 
12729   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12730   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12731 }
12732 
12733 void
12734 ScalarEvolution::getUsedLoops(const SCEV *S,
12735                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12736   struct FindUsedLoops {
12737     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12738         : LoopsUsed(LoopsUsed) {}
12739     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12740     bool follow(const SCEV *S) {
12741       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12742         LoopsUsed.insert(AR->getLoop());
12743       return true;
12744     }
12745 
12746     bool isDone() const { return false; }
12747   };
12748 
12749   FindUsedLoops F(LoopsUsed);
12750   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12751 }
12752 
12753 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12754   SmallPtrSet<const Loop *, 8> LoopsUsed;
12755   getUsedLoops(S, LoopsUsed);
12756   for (auto *L : LoopsUsed)
12757     LoopUsers[L].push_back(S);
12758 }
12759 
12760 void ScalarEvolution::verify() const {
12761   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12762   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12763 
12764   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12765 
12766   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12767   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12768     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12769 
12770     const SCEV *visitConstant(const SCEVConstant *Constant) {
12771       return SE.getConstant(Constant->getAPInt());
12772     }
12773 
12774     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12775       return SE.getUnknown(Expr->getValue());
12776     }
12777 
12778     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12779       return SE.getCouldNotCompute();
12780     }
12781   };
12782 
12783   SCEVMapper SCM(SE2);
12784 
12785   while (!LoopStack.empty()) {
12786     auto *L = LoopStack.pop_back_val();
12787     llvm::append_range(LoopStack, *L);
12788 
12789     auto *CurBECount = SCM.visit(
12790         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12791     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12792 
12793     if (CurBECount == SE2.getCouldNotCompute() ||
12794         NewBECount == SE2.getCouldNotCompute()) {
12795       // NB! This situation is legal, but is very suspicious -- whatever pass
12796       // change the loop to make a trip count go from could not compute to
12797       // computable or vice-versa *should have* invalidated SCEV.  However, we
12798       // choose not to assert here (for now) since we don't want false
12799       // positives.
12800       continue;
12801     }
12802 
12803     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12804       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12805       // not propagate undef aggressively).  This means we can (and do) fail
12806       // verification in cases where a transform makes the trip count of a loop
12807       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12808       // both cases the loop iterates "undef" times, but SCEV thinks we
12809       // increased the trip count of the loop by 1 incorrectly.
12810       continue;
12811     }
12812 
12813     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12814         SE.getTypeSizeInBits(NewBECount->getType()))
12815       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12816     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12817              SE.getTypeSizeInBits(NewBECount->getType()))
12818       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12819 
12820     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12821 
12822     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12823     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12824       dbgs() << "Trip Count for " << *L << " Changed!\n";
12825       dbgs() << "Old: " << *CurBECount << "\n";
12826       dbgs() << "New: " << *NewBECount << "\n";
12827       dbgs() << "Delta: " << *Delta << "\n";
12828       std::abort();
12829     }
12830   }
12831 
12832   // Collect all valid loops currently in LoopInfo.
12833   SmallPtrSet<Loop *, 32> ValidLoops;
12834   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12835   while (!Worklist.empty()) {
12836     Loop *L = Worklist.pop_back_val();
12837     if (ValidLoops.contains(L))
12838       continue;
12839     ValidLoops.insert(L);
12840     Worklist.append(L->begin(), L->end());
12841   }
12842   // Check for SCEV expressions referencing invalid/deleted loops.
12843   for (auto &KV : ValueExprMap) {
12844     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12845     if (!AR)
12846       continue;
12847     assert(ValidLoops.contains(AR->getLoop()) &&
12848            "AddRec references invalid loop");
12849   }
12850 }
12851 
12852 bool ScalarEvolution::invalidate(
12853     Function &F, const PreservedAnalyses &PA,
12854     FunctionAnalysisManager::Invalidator &Inv) {
12855   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12856   // of its dependencies is invalidated.
12857   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12858   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12859          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12860          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12861          Inv.invalidate<LoopAnalysis>(F, PA);
12862 }
12863 
12864 AnalysisKey ScalarEvolutionAnalysis::Key;
12865 
12866 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12867                                              FunctionAnalysisManager &AM) {
12868   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12869                          AM.getResult<AssumptionAnalysis>(F),
12870                          AM.getResult<DominatorTreeAnalysis>(F),
12871                          AM.getResult<LoopAnalysis>(F));
12872 }
12873 
12874 PreservedAnalyses
12875 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12876   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12877   return PreservedAnalyses::all();
12878 }
12879 
12880 PreservedAnalyses
12881 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12882   // For compatibility with opt's -analyze feature under legacy pass manager
12883   // which was not ported to NPM. This keeps tests using
12884   // update_analyze_test_checks.py working.
12885   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12886      << F.getName() << "':\n";
12887   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12888   return PreservedAnalyses::all();
12889 }
12890 
12891 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12892                       "Scalar Evolution Analysis", false, true)
12893 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12894 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12895 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12896 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12897 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12898                     "Scalar Evolution Analysis", false, true)
12899 
12900 char ScalarEvolutionWrapperPass::ID = 0;
12901 
12902 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12903   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12904 }
12905 
12906 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12907   SE.reset(new ScalarEvolution(
12908       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12909       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12910       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12911       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12912   return false;
12913 }
12914 
12915 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12916 
12917 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12918   SE->print(OS);
12919 }
12920 
12921 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12922   if (!VerifySCEV)
12923     return;
12924 
12925   SE->verify();
12926 }
12927 
12928 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12929   AU.setPreservesAll();
12930   AU.addRequiredTransitive<AssumptionCacheTracker>();
12931   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12932   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12933   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12934 }
12935 
12936 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12937                                                         const SCEV *RHS) {
12938   FoldingSetNodeID ID;
12939   assert(LHS->getType() == RHS->getType() &&
12940          "Type mismatch between LHS and RHS");
12941   // Unique this node based on the arguments
12942   ID.AddInteger(SCEVPredicate::P_Equal);
12943   ID.AddPointer(LHS);
12944   ID.AddPointer(RHS);
12945   void *IP = nullptr;
12946   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12947     return S;
12948   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12949       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12950   UniquePreds.InsertNode(Eq, IP);
12951   return Eq;
12952 }
12953 
12954 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12955     const SCEVAddRecExpr *AR,
12956     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12957   FoldingSetNodeID ID;
12958   // Unique this node based on the arguments
12959   ID.AddInteger(SCEVPredicate::P_Wrap);
12960   ID.AddPointer(AR);
12961   ID.AddInteger(AddedFlags);
12962   void *IP = nullptr;
12963   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12964     return S;
12965   auto *OF = new (SCEVAllocator)
12966       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12967   UniquePreds.InsertNode(OF, IP);
12968   return OF;
12969 }
12970 
12971 namespace {
12972 
12973 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12974 public:
12975 
12976   /// Rewrites \p S in the context of a loop L and the SCEV predication
12977   /// infrastructure.
12978   ///
12979   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12980   /// equivalences present in \p Pred.
12981   ///
12982   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12983   /// \p NewPreds such that the result will be an AddRecExpr.
12984   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12985                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12986                              SCEVUnionPredicate *Pred) {
12987     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12988     return Rewriter.visit(S);
12989   }
12990 
12991   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12992     if (Pred) {
12993       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12994       for (auto *Pred : ExprPreds)
12995         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12996           if (IPred->getLHS() == Expr)
12997             return IPred->getRHS();
12998     }
12999     return convertToAddRecWithPreds(Expr);
13000   }
13001 
13002   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13003     const SCEV *Operand = visit(Expr->getOperand());
13004     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13005     if (AR && AR->getLoop() == L && AR->isAffine()) {
13006       // This couldn't be folded because the operand didn't have the nuw
13007       // flag. Add the nusw flag as an assumption that we could make.
13008       const SCEV *Step = AR->getStepRecurrence(SE);
13009       Type *Ty = Expr->getType();
13010       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13011         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13012                                 SE.getSignExtendExpr(Step, Ty), L,
13013                                 AR->getNoWrapFlags());
13014     }
13015     return SE.getZeroExtendExpr(Operand, Expr->getType());
13016   }
13017 
13018   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13019     const SCEV *Operand = visit(Expr->getOperand());
13020     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13021     if (AR && AR->getLoop() == L && AR->isAffine()) {
13022       // This couldn't be folded because the operand didn't have the nsw
13023       // flag. Add the nssw flag as an assumption that we could make.
13024       const SCEV *Step = AR->getStepRecurrence(SE);
13025       Type *Ty = Expr->getType();
13026       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13027         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13028                                 SE.getSignExtendExpr(Step, Ty), L,
13029                                 AR->getNoWrapFlags());
13030     }
13031     return SE.getSignExtendExpr(Operand, Expr->getType());
13032   }
13033 
13034 private:
13035   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13036                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13037                         SCEVUnionPredicate *Pred)
13038       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13039 
13040   bool addOverflowAssumption(const SCEVPredicate *P) {
13041     if (!NewPreds) {
13042       // Check if we've already made this assumption.
13043       return Pred && Pred->implies(P);
13044     }
13045     NewPreds->insert(P);
13046     return true;
13047   }
13048 
13049   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13050                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13051     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13052     return addOverflowAssumption(A);
13053   }
13054 
13055   // If \p Expr represents a PHINode, we try to see if it can be represented
13056   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13057   // to add this predicate as a runtime overflow check, we return the AddRec.
13058   // If \p Expr does not meet these conditions (is not a PHI node, or we
13059   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13060   // return \p Expr.
13061   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13062     if (!isa<PHINode>(Expr->getValue()))
13063       return Expr;
13064     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13065     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13066     if (!PredicatedRewrite)
13067       return Expr;
13068     for (auto *P : PredicatedRewrite->second){
13069       // Wrap predicates from outer loops are not supported.
13070       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13071         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13072         if (L != AR->getLoop())
13073           return Expr;
13074       }
13075       if (!addOverflowAssumption(P))
13076         return Expr;
13077     }
13078     return PredicatedRewrite->first;
13079   }
13080 
13081   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13082   SCEVUnionPredicate *Pred;
13083   const Loop *L;
13084 };
13085 
13086 } // end anonymous namespace
13087 
13088 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13089                                                    SCEVUnionPredicate &Preds) {
13090   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13091 }
13092 
13093 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13094     const SCEV *S, const Loop *L,
13095     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13096   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13097   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13098   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13099 
13100   if (!AddRec)
13101     return nullptr;
13102 
13103   // Since the transformation was successful, we can now transfer the SCEV
13104   // predicates.
13105   for (auto *P : TransformPreds)
13106     Preds.insert(P);
13107 
13108   return AddRec;
13109 }
13110 
13111 /// SCEV predicates
13112 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13113                              SCEVPredicateKind Kind)
13114     : FastID(ID), Kind(Kind) {}
13115 
13116 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13117                                        const SCEV *LHS, const SCEV *RHS)
13118     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13119   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13120   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13121 }
13122 
13123 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13124   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13125 
13126   if (!Op)
13127     return false;
13128 
13129   return Op->LHS == LHS && Op->RHS == RHS;
13130 }
13131 
13132 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13133 
13134 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13135 
13136 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13137   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13138 }
13139 
13140 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13141                                      const SCEVAddRecExpr *AR,
13142                                      IncrementWrapFlags Flags)
13143     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13144 
13145 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13146 
13147 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13148   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13149 
13150   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13151 }
13152 
13153 bool SCEVWrapPredicate::isAlwaysTrue() const {
13154   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13155   IncrementWrapFlags IFlags = Flags;
13156 
13157   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13158     IFlags = clearFlags(IFlags, IncrementNSSW);
13159 
13160   return IFlags == IncrementAnyWrap;
13161 }
13162 
13163 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13164   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13165   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13166     OS << "<nusw>";
13167   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13168     OS << "<nssw>";
13169   OS << "\n";
13170 }
13171 
13172 SCEVWrapPredicate::IncrementWrapFlags
13173 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13174                                    ScalarEvolution &SE) {
13175   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13176   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13177 
13178   // We can safely transfer the NSW flag as NSSW.
13179   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13180     ImpliedFlags = IncrementNSSW;
13181 
13182   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13183     // If the increment is positive, the SCEV NUW flag will also imply the
13184     // WrapPredicate NUSW flag.
13185     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13186       if (Step->getValue()->getValue().isNonNegative())
13187         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13188   }
13189 
13190   return ImpliedFlags;
13191 }
13192 
13193 /// Union predicates don't get cached so create a dummy set ID for it.
13194 SCEVUnionPredicate::SCEVUnionPredicate()
13195     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13196 
13197 bool SCEVUnionPredicate::isAlwaysTrue() const {
13198   return all_of(Preds,
13199                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13200 }
13201 
13202 ArrayRef<const SCEVPredicate *>
13203 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13204   auto I = SCEVToPreds.find(Expr);
13205   if (I == SCEVToPreds.end())
13206     return ArrayRef<const SCEVPredicate *>();
13207   return I->second;
13208 }
13209 
13210 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13211   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13212     return all_of(Set->Preds,
13213                   [this](const SCEVPredicate *I) { return this->implies(I); });
13214 
13215   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13216   if (ScevPredsIt == SCEVToPreds.end())
13217     return false;
13218   auto &SCEVPreds = ScevPredsIt->second;
13219 
13220   return any_of(SCEVPreds,
13221                 [N](const SCEVPredicate *I) { return I->implies(N); });
13222 }
13223 
13224 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13225 
13226 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13227   for (auto Pred : Preds)
13228     Pred->print(OS, Depth);
13229 }
13230 
13231 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13232   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13233     for (auto Pred : Set->Preds)
13234       add(Pred);
13235     return;
13236   }
13237 
13238   if (implies(N))
13239     return;
13240 
13241   const SCEV *Key = N->getExpr();
13242   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13243                 " associated expression!");
13244 
13245   SCEVToPreds[Key].push_back(N);
13246   Preds.push_back(N);
13247 }
13248 
13249 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13250                                                      Loop &L)
13251     : SE(SE), L(L) {}
13252 
13253 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13254   const SCEV *Expr = SE.getSCEV(V);
13255   RewriteEntry &Entry = RewriteMap[Expr];
13256 
13257   // If we already have an entry and the version matches, return it.
13258   if (Entry.second && Generation == Entry.first)
13259     return Entry.second;
13260 
13261   // We found an entry but it's stale. Rewrite the stale entry
13262   // according to the current predicate.
13263   if (Entry.second)
13264     Expr = Entry.second;
13265 
13266   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13267   Entry = {Generation, NewSCEV};
13268 
13269   return NewSCEV;
13270 }
13271 
13272 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13273   if (!BackedgeCount) {
13274     SCEVUnionPredicate BackedgePred;
13275     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13276     addPredicate(BackedgePred);
13277   }
13278   return BackedgeCount;
13279 }
13280 
13281 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13282   if (Preds.implies(&Pred))
13283     return;
13284   Preds.add(&Pred);
13285   updateGeneration();
13286 }
13287 
13288 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13289   return Preds;
13290 }
13291 
13292 void PredicatedScalarEvolution::updateGeneration() {
13293   // If the generation number wrapped recompute everything.
13294   if (++Generation == 0) {
13295     for (auto &II : RewriteMap) {
13296       const SCEV *Rewritten = II.second.second;
13297       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13298     }
13299   }
13300 }
13301 
13302 void PredicatedScalarEvolution::setNoOverflow(
13303     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13304   const SCEV *Expr = getSCEV(V);
13305   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13306 
13307   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13308 
13309   // Clear the statically implied flags.
13310   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13311   addPredicate(*SE.getWrapPredicate(AR, Flags));
13312 
13313   auto II = FlagsMap.insert({V, Flags});
13314   if (!II.second)
13315     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13316 }
13317 
13318 bool PredicatedScalarEvolution::hasNoOverflow(
13319     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13320   const SCEV *Expr = getSCEV(V);
13321   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13322 
13323   Flags = SCEVWrapPredicate::clearFlags(
13324       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13325 
13326   auto II = FlagsMap.find(V);
13327 
13328   if (II != FlagsMap.end())
13329     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13330 
13331   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13332 }
13333 
13334 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13335   const SCEV *Expr = this->getSCEV(V);
13336   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13337   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13338 
13339   if (!New)
13340     return nullptr;
13341 
13342   for (auto *P : NewPreds)
13343     Preds.add(P);
13344 
13345   updateGeneration();
13346   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13347   return New;
13348 }
13349 
13350 PredicatedScalarEvolution::PredicatedScalarEvolution(
13351     const PredicatedScalarEvolution &Init)
13352     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13353       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13354   for (auto I : Init.FlagsMap)
13355     FlagsMap.insert(I);
13356 }
13357 
13358 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13359   // For each block.
13360   for (auto *BB : L.getBlocks())
13361     for (auto &I : *BB) {
13362       if (!SE.isSCEVable(I.getType()))
13363         continue;
13364 
13365       auto *Expr = SE.getSCEV(&I);
13366       auto II = RewriteMap.find(Expr);
13367 
13368       if (II == RewriteMap.end())
13369         continue;
13370 
13371       // Don't print things that are not interesting.
13372       if (II->second.second == Expr)
13373         continue;
13374 
13375       OS.indent(Depth) << "[PSE]" << I << ":\n";
13376       OS.indent(Depth + 2) << *Expr << "\n";
13377       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13378     }
13379 }
13380 
13381 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13382 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13383 // for URem with constant power-of-2 second operands.
13384 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13385 // 4, A / B becomes X / 8).
13386 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13387                                 const SCEV *&RHS) {
13388   // Try to match 'zext (trunc A to iB) to iY', which is used
13389   // for URem with constant power-of-2 second operands. Make sure the size of
13390   // the operand A matches the size of the whole expressions.
13391   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13392     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13393       LHS = Trunc->getOperand();
13394       // Bail out if the type of the LHS is larger than the type of the
13395       // expression for now.
13396       if (getTypeSizeInBits(LHS->getType()) >
13397           getTypeSizeInBits(Expr->getType()))
13398         return false;
13399       if (LHS->getType() != Expr->getType())
13400         LHS = getZeroExtendExpr(LHS, Expr->getType());
13401       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13402                         << getTypeSizeInBits(Trunc->getType()));
13403       return true;
13404     }
13405   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13406   if (Add == nullptr || Add->getNumOperands() != 2)
13407     return false;
13408 
13409   const SCEV *A = Add->getOperand(1);
13410   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13411 
13412   if (Mul == nullptr)
13413     return false;
13414 
13415   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13416     // (SomeExpr + (-(SomeExpr / B) * B)).
13417     if (Expr == getURemExpr(A, B)) {
13418       LHS = A;
13419       RHS = B;
13420       return true;
13421     }
13422     return false;
13423   };
13424 
13425   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13426   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13427     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13428            MatchURemWithDivisor(Mul->getOperand(2));
13429 
13430   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13431   if (Mul->getNumOperands() == 2)
13432     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13433            MatchURemWithDivisor(Mul->getOperand(0)) ||
13434            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13435            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13436   return false;
13437 }
13438 
13439 const SCEV *
13440 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13441   SmallVector<BasicBlock*, 16> ExitingBlocks;
13442   L->getExitingBlocks(ExitingBlocks);
13443 
13444   // Form an expression for the maximum exit count possible for this loop. We
13445   // merge the max and exact information to approximate a version of
13446   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13447   SmallVector<const SCEV*, 4> ExitCounts;
13448   for (BasicBlock *ExitingBB : ExitingBlocks) {
13449     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13450     if (isa<SCEVCouldNotCompute>(ExitCount))
13451       ExitCount = getExitCount(L, ExitingBB,
13452                                   ScalarEvolution::ConstantMaximum);
13453     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13454       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13455              "We should only have known counts for exiting blocks that "
13456              "dominate latch!");
13457       ExitCounts.push_back(ExitCount);
13458     }
13459   }
13460   if (ExitCounts.empty())
13461     return getCouldNotCompute();
13462   return getUMinFromMismatchedTypes(ExitCounts);
13463 }
13464 
13465 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13466 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13467 /// we cannot guarantee that the replacement is loop invariant in the loop of
13468 /// the AddRec.
13469 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13470   ValueToSCEVMapTy &Map;
13471 
13472 public:
13473   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13474       : SCEVRewriteVisitor(SE), Map(M) {}
13475 
13476   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13477 
13478   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13479     auto I = Map.find(Expr->getValue());
13480     if (I == Map.end())
13481       return Expr;
13482     return I->second;
13483   }
13484 };
13485 
13486 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13487   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13488                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13489     // If we have LHS == 0, check if LHS is computing a property of some unknown
13490     // SCEV %v which we can rewrite %v to express explicitly.
13491     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13492     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13493         RHSC->getValue()->isNullValue()) {
13494       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13495       // explicitly express that.
13496       const SCEV *URemLHS = nullptr;
13497       const SCEV *URemRHS = nullptr;
13498       if (matchURem(LHS, URemLHS, URemRHS)) {
13499         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13500           Value *V = LHSUnknown->getValue();
13501           auto Multiple =
13502               getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS,
13503                          (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
13504           RewriteMap[V] = Multiple;
13505           return;
13506         }
13507       }
13508     }
13509 
13510     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
13511       std::swap(LHS, RHS);
13512       Predicate = CmpInst::getSwappedPredicate(Predicate);
13513     }
13514 
13515     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
13516     // create this form when combining two checks of the form (X u< C2 + C1) and
13517     // (X >=u C1).
13518     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() {
13519       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
13520       if (!AddExpr || AddExpr->getNumOperands() != 2)
13521         return false;
13522 
13523       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
13524       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
13525       auto *C2 = dyn_cast<SCEVConstant>(RHS);
13526       if (!C1 || !C2 || !LHSUnknown)
13527         return false;
13528 
13529       auto ExactRegion =
13530           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
13531               .sub(C1->getAPInt());
13532 
13533       // Bail out, unless we have a non-wrapping, monotonic range.
13534       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
13535         return false;
13536       auto I = RewriteMap.find(LHSUnknown->getValue());
13537       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
13538       RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(
13539           getConstant(ExactRegion.getUnsignedMin()),
13540           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
13541       return true;
13542     };
13543     if (MatchRangeCheckIdiom())
13544       return;
13545 
13546     // For now, limit to conditions that provide information about unknown
13547     // expressions. RHS also cannot contain add recurrences.
13548     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13549     if (!LHSUnknown || containsAddRecurrence(RHS))
13550       return;
13551 
13552     // Check whether LHS has already been rewritten. In that case we want to
13553     // chain further rewrites onto the already rewritten value.
13554     auto I = RewriteMap.find(LHSUnknown->getValue());
13555     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13556     const SCEV *RewrittenRHS = nullptr;
13557     switch (Predicate) {
13558     case CmpInst::ICMP_ULT:
13559       RewrittenRHS =
13560           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13561       break;
13562     case CmpInst::ICMP_SLT:
13563       RewrittenRHS =
13564           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13565       break;
13566     case CmpInst::ICMP_ULE:
13567       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
13568       break;
13569     case CmpInst::ICMP_SLE:
13570       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
13571       break;
13572     case CmpInst::ICMP_UGT:
13573       RewrittenRHS =
13574           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13575       break;
13576     case CmpInst::ICMP_SGT:
13577       RewrittenRHS =
13578           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13579       break;
13580     case CmpInst::ICMP_UGE:
13581       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
13582       break;
13583     case CmpInst::ICMP_SGE:
13584       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
13585       break;
13586     case CmpInst::ICMP_EQ:
13587       if (isa<SCEVConstant>(RHS))
13588         RewrittenRHS = RHS;
13589       break;
13590     case CmpInst::ICMP_NE:
13591       if (isa<SCEVConstant>(RHS) &&
13592           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13593         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
13594       break;
13595     default:
13596       break;
13597     }
13598 
13599     if (RewrittenRHS)
13600       RewriteMap[LHSUnknown->getValue()] = RewrittenRHS;
13601   };
13602   // Starting at the loop predecessor, climb up the predecessor chain, as long
13603   // as there are predecessors that can be found that have unique successors
13604   // leading to the original header.
13605   // TODO: share this logic with isLoopEntryGuardedByCond.
13606   ValueToSCEVMapTy RewriteMap;
13607   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13608            L->getLoopPredecessor(), L->getHeader());
13609        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13610 
13611     const BranchInst *LoopEntryPredicate =
13612         dyn_cast<BranchInst>(Pair.first->getTerminator());
13613     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13614       continue;
13615 
13616     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
13617     SmallVector<Value *, 8> Worklist;
13618     SmallPtrSet<Value *, 8> Visited;
13619     Worklist.push_back(LoopEntryPredicate->getCondition());
13620     while (!Worklist.empty()) {
13621       Value *Cond = Worklist.pop_back_val();
13622       if (!Visited.insert(Cond).second)
13623         continue;
13624 
13625       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13626         auto Predicate =
13627             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
13628         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13629                          getSCEV(Cmp->getOperand(1)), RewriteMap);
13630         continue;
13631       }
13632 
13633       Value *L, *R;
13634       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
13635                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
13636         Worklist.push_back(L);
13637         Worklist.push_back(R);
13638       }
13639     }
13640   }
13641 
13642   // Also collect information from assumptions dominating the loop.
13643   for (auto &AssumeVH : AC.assumptions()) {
13644     if (!AssumeVH)
13645       continue;
13646     auto *AssumeI = cast<CallInst>(AssumeVH);
13647     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13648     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13649       continue;
13650     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13651                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13652   }
13653 
13654   if (RewriteMap.empty())
13655     return Expr;
13656   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13657   return Rewriter.visit(Expr);
13658 }
13659