1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::ZeroOrMore, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 159 static cl::opt<bool> VerifySCEV( 160 "verify-scev", cl::Hidden, 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 static cl::opt<bool> UseExpensiveRangeSharpening( 230 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 231 cl::init(false), 232 cl::desc("Use more powerful methods of sharpening expression ranges. May " 233 "be costly in terms of compile time")); 234 235 //===----------------------------------------------------------------------===// 236 // SCEV class definitions 237 //===----------------------------------------------------------------------===// 238 239 //===----------------------------------------------------------------------===// 240 // Implementation of the SCEV class. 241 // 242 243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 244 LLVM_DUMP_METHOD void SCEV::dump() const { 245 print(dbgs()); 246 dbgs() << '\n'; 247 } 248 #endif 249 250 void SCEV::print(raw_ostream &OS) const { 251 switch (getSCEVType()) { 252 case scConstant: 253 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 254 return; 255 case scPtrToInt: { 256 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 257 const SCEV *Op = PtrToInt->getOperand(); 258 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 259 << *PtrToInt->getType() << ")"; 260 return; 261 } 262 case scTruncate: { 263 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 264 const SCEV *Op = Trunc->getOperand(); 265 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 266 << *Trunc->getType() << ")"; 267 return; 268 } 269 case scZeroExtend: { 270 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 271 const SCEV *Op = ZExt->getOperand(); 272 OS << "(zext " << *Op->getType() << " " << *Op << " to " 273 << *ZExt->getType() << ")"; 274 return; 275 } 276 case scSignExtend: { 277 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 278 const SCEV *Op = SExt->getOperand(); 279 OS << "(sext " << *Op->getType() << " " << *Op << " to " 280 << *SExt->getType() << ")"; 281 return; 282 } 283 case scAddRecExpr: { 284 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 285 OS << "{" << *AR->getOperand(0); 286 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 287 OS << ",+," << *AR->getOperand(i); 288 OS << "}<"; 289 if (AR->hasNoUnsignedWrap()) 290 OS << "nuw><"; 291 if (AR->hasNoSignedWrap()) 292 OS << "nsw><"; 293 if (AR->hasNoSelfWrap() && 294 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 295 OS << "nw><"; 296 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 297 OS << ">"; 298 return; 299 } 300 case scAddExpr: 301 case scMulExpr: 302 case scUMaxExpr: 303 case scSMaxExpr: 304 case scUMinExpr: 305 case scSMinExpr: { 306 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 307 const char *OpStr = nullptr; 308 switch (NAry->getSCEVType()) { 309 case scAddExpr: OpStr = " + "; break; 310 case scMulExpr: OpStr = " * "; break; 311 case scUMaxExpr: OpStr = " umax "; break; 312 case scSMaxExpr: OpStr = " smax "; break; 313 case scUMinExpr: 314 OpStr = " umin "; 315 break; 316 case scSMinExpr: 317 OpStr = " smin "; 318 break; 319 default: 320 llvm_unreachable("There are no other nary expression types."); 321 } 322 OS << "("; 323 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 324 I != E; ++I) { 325 OS << **I; 326 if (std::next(I) != E) 327 OS << OpStr; 328 } 329 OS << ")"; 330 switch (NAry->getSCEVType()) { 331 case scAddExpr: 332 case scMulExpr: 333 if (NAry->hasNoUnsignedWrap()) 334 OS << "<nuw>"; 335 if (NAry->hasNoSignedWrap()) 336 OS << "<nsw>"; 337 break; 338 default: 339 // Nothing to print for other nary expressions. 340 break; 341 } 342 return; 343 } 344 case scUDivExpr: { 345 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 346 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 347 return; 348 } 349 case scUnknown: { 350 const SCEVUnknown *U = cast<SCEVUnknown>(this); 351 Type *AllocTy; 352 if (U->isSizeOf(AllocTy)) { 353 OS << "sizeof(" << *AllocTy << ")"; 354 return; 355 } 356 if (U->isAlignOf(AllocTy)) { 357 OS << "alignof(" << *AllocTy << ")"; 358 return; 359 } 360 361 Type *CTy; 362 Constant *FieldNo; 363 if (U->isOffsetOf(CTy, FieldNo)) { 364 OS << "offsetof(" << *CTy << ", "; 365 FieldNo->printAsOperand(OS, false); 366 OS << ")"; 367 return; 368 } 369 370 // Otherwise just print it normally. 371 U->getValue()->printAsOperand(OS, false); 372 return; 373 } 374 case scCouldNotCompute: 375 OS << "***COULDNOTCOMPUTE***"; 376 return; 377 } 378 llvm_unreachable("Unknown SCEV kind!"); 379 } 380 381 Type *SCEV::getType() const { 382 switch (getSCEVType()) { 383 case scConstant: 384 return cast<SCEVConstant>(this)->getType(); 385 case scPtrToInt: 386 case scTruncate: 387 case scZeroExtend: 388 case scSignExtend: 389 return cast<SCEVCastExpr>(this)->getType(); 390 case scAddRecExpr: 391 case scMulExpr: 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVNAryExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 537 ->getElementType(); 538 return true; 539 } 540 541 return false; 542 } 543 544 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 546 if (VCE->getOpcode() == Instruction::PtrToInt) 547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 548 if (CE->getOpcode() == Instruction::GetElementPtr && 549 CE->getOperand(0)->isNullValue()) { 550 Type *Ty = 551 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 552 if (StructType *STy = dyn_cast<StructType>(Ty)) 553 if (!STy->isPacked() && 554 CE->getNumOperands() == 3 && 555 CE->getOperand(1)->isNullValue()) { 556 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 557 if (CI->isOne() && 558 STy->getNumElements() == 2 && 559 STy->getElementType(0)->isIntegerTy(1)) { 560 AllocTy = STy->getElementType(1); 561 return true; 562 } 563 } 564 } 565 566 return false; 567 } 568 569 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 570 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 571 if (VCE->getOpcode() == Instruction::PtrToInt) 572 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 573 if (CE->getOpcode() == Instruction::GetElementPtr && 574 CE->getNumOperands() == 3 && 575 CE->getOperand(0)->isNullValue() && 576 CE->getOperand(1)->isNullValue()) { 577 Type *Ty = 578 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 579 // Ignore vector types here so that ScalarEvolutionExpander doesn't 580 // emit getelementptrs that index into vectors. 581 if (Ty->isStructTy() || Ty->isArrayTy()) { 582 CTy = Ty; 583 FieldNo = CE->getOperand(2); 584 return true; 585 } 586 } 587 588 return false; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SCEV Utilities 593 //===----------------------------------------------------------------------===// 594 595 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 596 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 597 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 598 /// have been previously deemed to be "equally complex" by this routine. It is 599 /// intended to avoid exponential time complexity in cases like: 600 /// 601 /// %a = f(%x, %y) 602 /// %b = f(%a, %a) 603 /// %c = f(%b, %b) 604 /// 605 /// %d = f(%x, %y) 606 /// %e = f(%d, %d) 607 /// %f = f(%e, %e) 608 /// 609 /// CompareValueComplexity(%f, %c) 610 /// 611 /// Since we do not continue running this routine on expression trees once we 612 /// have seen unequal values, there is no need to track them in the cache. 613 static int 614 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 615 const LoopInfo *const LI, Value *LV, Value *RV, 616 unsigned Depth) { 617 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 618 return 0; 619 620 // Order pointer values after integer values. This helps SCEVExpander form 621 // GEPs. 622 bool LIsPointer = LV->getType()->isPointerTy(), 623 RIsPointer = RV->getType()->isPointerTy(); 624 if (LIsPointer != RIsPointer) 625 return (int)LIsPointer - (int)RIsPointer; 626 627 // Compare getValueID values. 628 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 629 if (LID != RID) 630 return (int)LID - (int)RID; 631 632 // Sort arguments by their position. 633 if (const auto *LA = dyn_cast<Argument>(LV)) { 634 const auto *RA = cast<Argument>(RV); 635 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 636 return (int)LArgNo - (int)RArgNo; 637 } 638 639 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 640 const auto *RGV = cast<GlobalValue>(RV); 641 642 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 643 auto LT = GV->getLinkage(); 644 return !(GlobalValue::isPrivateLinkage(LT) || 645 GlobalValue::isInternalLinkage(LT)); 646 }; 647 648 // Use the names to distinguish the two values, but only if the 649 // names are semantically important. 650 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 651 return LGV->getName().compare(RGV->getName()); 652 } 653 654 // For instructions, compare their loop depth, and their operand count. This 655 // is pretty loose. 656 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 657 const auto *RInst = cast<Instruction>(RV); 658 659 // Compare loop depths. 660 const BasicBlock *LParent = LInst->getParent(), 661 *RParent = RInst->getParent(); 662 if (LParent != RParent) { 663 unsigned LDepth = LI->getLoopDepth(LParent), 664 RDepth = LI->getLoopDepth(RParent); 665 if (LDepth != RDepth) 666 return (int)LDepth - (int)RDepth; 667 } 668 669 // Compare the number of operands. 670 unsigned LNumOps = LInst->getNumOperands(), 671 RNumOps = RInst->getNumOperands(); 672 if (LNumOps != RNumOps) 673 return (int)LNumOps - (int)RNumOps; 674 675 for (unsigned Idx : seq(0u, LNumOps)) { 676 int Result = 677 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 678 RInst->getOperand(Idx), Depth + 1); 679 if (Result != 0) 680 return Result; 681 } 682 } 683 684 EqCacheValue.unionSets(LV, RV); 685 return 0; 686 } 687 688 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 689 // than RHS, respectively. A three-way result allows recursive comparisons to be 690 // more efficient. 691 static int CompareSCEVComplexity( 692 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 693 EquivalenceClasses<const Value *> &EqCacheValue, 694 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 695 DominatorTree &DT, unsigned Depth = 0) { 696 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 697 if (LHS == RHS) 698 return 0; 699 700 // Primarily, sort the SCEVs by their getSCEVType(). 701 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 702 if (LType != RType) 703 return (int)LType - (int)RType; 704 705 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 706 return 0; 707 // Aside from the getSCEVType() ordering, the particular ordering 708 // isn't very important except that it's beneficial to be consistent, 709 // so that (a + b) and (b + a) don't end up as different expressions. 710 switch (LType) { 711 case scUnknown: { 712 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 713 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 714 715 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 716 RU->getValue(), Depth + 1); 717 if (X == 0) 718 EqCacheSCEV.unionSets(LHS, RHS); 719 return X; 720 } 721 722 case scConstant: { 723 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 724 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 725 726 // Compare constant values. 727 const APInt &LA = LC->getAPInt(); 728 const APInt &RA = RC->getAPInt(); 729 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 730 if (LBitWidth != RBitWidth) 731 return (int)LBitWidth - (int)RBitWidth; 732 return LA.ult(RA) ? -1 : 1; 733 } 734 735 case scAddRecExpr: { 736 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 737 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 738 739 // There is always a dominance between two recs that are used by one SCEV, 740 // so we can safely sort recs by loop header dominance. We require such 741 // order in getAddExpr. 742 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 743 if (LLoop != RLoop) { 744 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 745 assert(LHead != RHead && "Two loops share the same header?"); 746 if (DT.dominates(LHead, RHead)) 747 return 1; 748 else 749 assert(DT.dominates(RHead, LHead) && 750 "No dominance between recurrences used by one SCEV?"); 751 return -1; 752 } 753 754 // Addrec complexity grows with operand count. 755 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 756 if (LNumOps != RNumOps) 757 return (int)LNumOps - (int)RNumOps; 758 759 // Lexicographically compare. 760 for (unsigned i = 0; i != LNumOps; ++i) { 761 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 762 LA->getOperand(i), RA->getOperand(i), DT, 763 Depth + 1); 764 if (X != 0) 765 return X; 766 } 767 EqCacheSCEV.unionSets(LHS, RHS); 768 return 0; 769 } 770 771 case scAddExpr: 772 case scMulExpr: 773 case scSMaxExpr: 774 case scUMaxExpr: 775 case scSMinExpr: 776 case scUMinExpr: { 777 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 778 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 779 780 // Lexicographically compare n-ary expressions. 781 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 782 if (LNumOps != RNumOps) 783 return (int)LNumOps - (int)RNumOps; 784 785 for (unsigned i = 0; i != LNumOps; ++i) { 786 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 787 LC->getOperand(i), RC->getOperand(i), DT, 788 Depth + 1); 789 if (X != 0) 790 return X; 791 } 792 EqCacheSCEV.unionSets(LHS, RHS); 793 return 0; 794 } 795 796 case scUDivExpr: { 797 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 798 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 799 800 // Lexicographically compare udiv expressions. 801 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 802 RC->getLHS(), DT, Depth + 1); 803 if (X != 0) 804 return X; 805 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 806 RC->getRHS(), DT, Depth + 1); 807 if (X == 0) 808 EqCacheSCEV.unionSets(LHS, RHS); 809 return X; 810 } 811 812 case scPtrToInt: 813 case scTruncate: 814 case scZeroExtend: 815 case scSignExtend: { 816 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 817 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 818 819 // Compare cast expressions by operand. 820 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 821 LC->getOperand(), RC->getOperand(), DT, 822 Depth + 1); 823 if (X == 0) 824 EqCacheSCEV.unionSets(LHS, RHS); 825 return X; 826 } 827 828 case scCouldNotCompute: 829 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 830 } 831 llvm_unreachable("Unknown SCEV kind!"); 832 } 833 834 /// Given a list of SCEV objects, order them by their complexity, and group 835 /// objects of the same complexity together by value. When this routine is 836 /// finished, we know that any duplicates in the vector are consecutive and that 837 /// complexity is monotonically increasing. 838 /// 839 /// Note that we go take special precautions to ensure that we get deterministic 840 /// results from this routine. In other words, we don't want the results of 841 /// this to depend on where the addresses of various SCEV objects happened to 842 /// land in memory. 843 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 844 LoopInfo *LI, DominatorTree &DT) { 845 if (Ops.size() < 2) return; // Noop 846 847 EquivalenceClasses<const SCEV *> EqCacheSCEV; 848 EquivalenceClasses<const Value *> EqCacheValue; 849 if (Ops.size() == 2) { 850 // This is the common case, which also happens to be trivially simple. 851 // Special case it. 852 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 853 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 854 std::swap(LHS, RHS); 855 return; 856 } 857 858 // Do the rough sort by complexity. 859 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 860 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < 861 0; 862 }); 863 864 // Now that we are sorted by complexity, group elements of the same 865 // complexity. Note that this is, at worst, N^2, but the vector is likely to 866 // be extremely short in practice. Note that we take this approach because we 867 // do not want to depend on the addresses of the objects we are grouping. 868 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 869 const SCEV *S = Ops[i]; 870 unsigned Complexity = S->getSCEVType(); 871 872 // If there are any objects of the same complexity and same value as this 873 // one, group them. 874 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 875 if (Ops[j] == S) { // Found a duplicate. 876 // Move it to immediately after i'th element. 877 std::swap(Ops[i+1], Ops[j]); 878 ++i; // no need to rescan it. 879 if (i == e-2) return; // Done! 880 } 881 } 882 } 883 } 884 885 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 886 /// least HugeExprThreshold nodes). 887 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 888 return any_of(Ops, [](const SCEV *S) { 889 return S->getExpressionSize() >= HugeExprThreshold; 890 }); 891 } 892 893 //===----------------------------------------------------------------------===// 894 // Simple SCEV method implementations 895 //===----------------------------------------------------------------------===// 896 897 /// Compute BC(It, K). The result has width W. Assume, K > 0. 898 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 899 ScalarEvolution &SE, 900 Type *ResultTy) { 901 // Handle the simplest case efficiently. 902 if (K == 1) 903 return SE.getTruncateOrZeroExtend(It, ResultTy); 904 905 // We are using the following formula for BC(It, K): 906 // 907 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 908 // 909 // Suppose, W is the bitwidth of the return value. We must be prepared for 910 // overflow. Hence, we must assure that the result of our computation is 911 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 912 // safe in modular arithmetic. 913 // 914 // However, this code doesn't use exactly that formula; the formula it uses 915 // is something like the following, where T is the number of factors of 2 in 916 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 917 // exponentiation: 918 // 919 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 920 // 921 // This formula is trivially equivalent to the previous formula. However, 922 // this formula can be implemented much more efficiently. The trick is that 923 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 924 // arithmetic. To do exact division in modular arithmetic, all we have 925 // to do is multiply by the inverse. Therefore, this step can be done at 926 // width W. 927 // 928 // The next issue is how to safely do the division by 2^T. The way this 929 // is done is by doing the multiplication step at a width of at least W + T 930 // bits. This way, the bottom W+T bits of the product are accurate. Then, 931 // when we perform the division by 2^T (which is equivalent to a right shift 932 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 933 // truncated out after the division by 2^T. 934 // 935 // In comparison to just directly using the first formula, this technique 936 // is much more efficient; using the first formula requires W * K bits, 937 // but this formula less than W + K bits. Also, the first formula requires 938 // a division step, whereas this formula only requires multiplies and shifts. 939 // 940 // It doesn't matter whether the subtraction step is done in the calculation 941 // width or the input iteration count's width; if the subtraction overflows, 942 // the result must be zero anyway. We prefer here to do it in the width of 943 // the induction variable because it helps a lot for certain cases; CodeGen 944 // isn't smart enough to ignore the overflow, which leads to much less 945 // efficient code if the width of the subtraction is wider than the native 946 // register width. 947 // 948 // (It's possible to not widen at all by pulling out factors of 2 before 949 // the multiplication; for example, K=2 can be calculated as 950 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 951 // extra arithmetic, so it's not an obvious win, and it gets 952 // much more complicated for K > 3.) 953 954 // Protection from insane SCEVs; this bound is conservative, 955 // but it probably doesn't matter. 956 if (K > 1000) 957 return SE.getCouldNotCompute(); 958 959 unsigned W = SE.getTypeSizeInBits(ResultTy); 960 961 // Calculate K! / 2^T and T; we divide out the factors of two before 962 // multiplying for calculating K! / 2^T to avoid overflow. 963 // Other overflow doesn't matter because we only care about the bottom 964 // W bits of the result. 965 APInt OddFactorial(W, 1); 966 unsigned T = 1; 967 for (unsigned i = 3; i <= K; ++i) { 968 APInt Mult(W, i); 969 unsigned TwoFactors = Mult.countTrailingZeros(); 970 T += TwoFactors; 971 Mult.lshrInPlace(TwoFactors); 972 OddFactorial *= Mult; 973 } 974 975 // We need at least W + T bits for the multiplication step 976 unsigned CalculationBits = W + T; 977 978 // Calculate 2^T, at width T+W. 979 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 980 981 // Calculate the multiplicative inverse of K! / 2^T; 982 // this multiplication factor will perform the exact division by 983 // K! / 2^T. 984 APInt Mod = APInt::getSignedMinValue(W+1); 985 APInt MultiplyFactor = OddFactorial.zext(W+1); 986 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 987 MultiplyFactor = MultiplyFactor.trunc(W); 988 989 // Calculate the product, at width T+W 990 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 991 CalculationBits); 992 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 993 for (unsigned i = 1; i != K; ++i) { 994 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 995 Dividend = SE.getMulExpr(Dividend, 996 SE.getTruncateOrZeroExtend(S, CalculationTy)); 997 } 998 999 // Divide by 2^T 1000 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1001 1002 // Truncate the result, and divide by K! / 2^T. 1003 1004 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1005 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1006 } 1007 1008 /// Return the value of this chain of recurrences at the specified iteration 1009 /// number. We can evaluate this recurrence by multiplying each element in the 1010 /// chain by the binomial coefficient corresponding to it. In other words, we 1011 /// can evaluate {A,+,B,+,C,+,D} as: 1012 /// 1013 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1014 /// 1015 /// where BC(It, k) stands for binomial coefficient. 1016 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1017 ScalarEvolution &SE) const { 1018 const SCEV *Result = getStart(); 1019 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1020 // The computation is correct in the face of overflow provided that the 1021 // multiplication is performed _after_ the evaluation of the binomial 1022 // coefficient. 1023 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1024 if (isa<SCEVCouldNotCompute>(Coeff)) 1025 return Coeff; 1026 1027 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1028 } 1029 return Result; 1030 } 1031 1032 //===----------------------------------------------------------------------===// 1033 // SCEV Expression folder implementations 1034 //===----------------------------------------------------------------------===// 1035 1036 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty, 1037 unsigned Depth) { 1038 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1039 assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once."); 1040 1041 // We could be called with an integer-typed operands during SCEV rewrites. 1042 // Since the operand is an integer already, just perform zext/trunc/self cast. 1043 if (!Op->getType()->isPointerTy()) 1044 return getTruncateOrZeroExtend(Op, Ty); 1045 1046 // What would be an ID for such a SCEV cast expression? 1047 FoldingSetNodeID ID; 1048 ID.AddInteger(scPtrToInt); 1049 ID.AddPointer(Op); 1050 1051 void *IP = nullptr; 1052 1053 // Is there already an expression for such a cast? 1054 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1055 return getTruncateOrZeroExtend(S, Ty); 1056 1057 // If not, is this expression something we can't reduce any further? 1058 if (isa<SCEVUnknown>(Op)) { 1059 // Create an explicit cast node. 1060 // We can reuse the existing insert position since if we get here, 1061 // we won't have made any changes which would invalidate it. 1062 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1063 assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType( 1064 Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) && 1065 "We can only model ptrtoint if SCEV's effective (integer) type is " 1066 "sufficiently wide to represent all possible pointer values."); 1067 SCEV *S = new (SCEVAllocator) 1068 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1069 UniqueSCEVs.InsertNode(S, IP); 1070 addToLoopUseLists(S); 1071 return getTruncateOrZeroExtend(S, Ty); 1072 } 1073 1074 assert(Depth == 0 && 1075 "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's."); 1076 1077 // Otherwise, we've got some expression that is more complex than just a 1078 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1079 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1080 // only, and the expressions must otherwise be integer-typed. 1081 // So sink the cast down to the SCEVUnknown's. 1082 1083 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1084 /// which computes a pointer-typed value, and rewrites the whole expression 1085 /// tree so that *all* the computations are done on integers, and the only 1086 /// pointer-typed operands in the expression are SCEVUnknown. 1087 class SCEVPtrToIntSinkingRewriter 1088 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1089 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1090 1091 public: 1092 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1093 1094 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1095 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1096 return Rewriter.visit(Scev); 1097 } 1098 1099 const SCEV *visit(const SCEV *S) { 1100 Type *STy = S->getType(); 1101 // If the expression is not pointer-typed, just keep it as-is. 1102 if (!STy->isPointerTy()) 1103 return S; 1104 // Else, recursively sink the cast down into it. 1105 return Base::visit(S); 1106 } 1107 1108 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1109 SmallVector<const SCEV *, 2> Operands; 1110 bool Changed = false; 1111 for (auto *Op : Expr->operands()) { 1112 Operands.push_back(visit(Op)); 1113 Changed |= Op != Operands.back(); 1114 } 1115 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1116 } 1117 1118 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1119 SmallVector<const SCEV *, 2> Operands; 1120 bool Changed = false; 1121 for (auto *Op : Expr->operands()) { 1122 Operands.push_back(visit(Op)); 1123 Changed |= Op != Operands.back(); 1124 } 1125 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1126 } 1127 1128 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1129 Type *ExprPtrTy = Expr->getType(); 1130 assert(ExprPtrTy->isPointerTy() && 1131 "Should only reach pointer-typed SCEVUnknown's."); 1132 Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy); 1133 return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1); 1134 } 1135 }; 1136 1137 // And actually perform the cast sinking. 1138 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1139 assert(IntOp->getType()->isIntegerTy() && 1140 "We must have succeeded in sinking the cast, " 1141 "and ending up with an integer-typed expression!"); 1142 return getTruncateOrZeroExtend(IntOp, Ty); 1143 } 1144 1145 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1146 unsigned Depth) { 1147 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1148 "This is not a truncating conversion!"); 1149 assert(isSCEVable(Ty) && 1150 "This is not a conversion to a SCEVable type!"); 1151 Ty = getEffectiveSCEVType(Ty); 1152 1153 FoldingSetNodeID ID; 1154 ID.AddInteger(scTruncate); 1155 ID.AddPointer(Op); 1156 ID.AddPointer(Ty); 1157 void *IP = nullptr; 1158 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1159 1160 // Fold if the operand is constant. 1161 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1162 return getConstant( 1163 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1164 1165 // trunc(trunc(x)) --> trunc(x) 1166 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1167 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1168 1169 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1170 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1171 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1172 1173 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1174 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1175 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1176 1177 if (Depth > MaxCastDepth) { 1178 SCEV *S = 1179 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1180 UniqueSCEVs.InsertNode(S, IP); 1181 addToLoopUseLists(S); 1182 return S; 1183 } 1184 1185 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1186 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1187 // if after transforming we have at most one truncate, not counting truncates 1188 // that replace other casts. 1189 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1190 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1191 SmallVector<const SCEV *, 4> Operands; 1192 unsigned numTruncs = 0; 1193 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1194 ++i) { 1195 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1196 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1197 isa<SCEVTruncateExpr>(S)) 1198 numTruncs++; 1199 Operands.push_back(S); 1200 } 1201 if (numTruncs < 2) { 1202 if (isa<SCEVAddExpr>(Op)) 1203 return getAddExpr(Operands); 1204 else if (isa<SCEVMulExpr>(Op)) 1205 return getMulExpr(Operands); 1206 else 1207 llvm_unreachable("Unexpected SCEV type for Op."); 1208 } 1209 // Although we checked in the beginning that ID is not in the cache, it is 1210 // possible that during recursion and different modification ID was inserted 1211 // into the cache. So if we find it, just return it. 1212 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1213 return S; 1214 } 1215 1216 // If the input value is a chrec scev, truncate the chrec's operands. 1217 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1218 SmallVector<const SCEV *, 4> Operands; 1219 for (const SCEV *Op : AddRec->operands()) 1220 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1221 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1222 } 1223 1224 // The cast wasn't folded; create an explicit cast node. We can reuse 1225 // the existing insert position since if we get here, we won't have 1226 // made any changes which would invalidate it. 1227 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1228 Op, Ty); 1229 UniqueSCEVs.InsertNode(S, IP); 1230 addToLoopUseLists(S); 1231 return S; 1232 } 1233 1234 // Get the limit of a recurrence such that incrementing by Step cannot cause 1235 // signed overflow as long as the value of the recurrence within the 1236 // loop does not exceed this limit before incrementing. 1237 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1238 ICmpInst::Predicate *Pred, 1239 ScalarEvolution *SE) { 1240 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1241 if (SE->isKnownPositive(Step)) { 1242 *Pred = ICmpInst::ICMP_SLT; 1243 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1244 SE->getSignedRangeMax(Step)); 1245 } 1246 if (SE->isKnownNegative(Step)) { 1247 *Pred = ICmpInst::ICMP_SGT; 1248 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1249 SE->getSignedRangeMin(Step)); 1250 } 1251 return nullptr; 1252 } 1253 1254 // Get the limit of a recurrence such that incrementing by Step cannot cause 1255 // unsigned overflow as long as the value of the recurrence within the loop does 1256 // not exceed this limit before incrementing. 1257 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1258 ICmpInst::Predicate *Pred, 1259 ScalarEvolution *SE) { 1260 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1261 *Pred = ICmpInst::ICMP_ULT; 1262 1263 return SE->getConstant(APInt::getMinValue(BitWidth) - 1264 SE->getUnsignedRangeMax(Step)); 1265 } 1266 1267 namespace { 1268 1269 struct ExtendOpTraitsBase { 1270 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1271 unsigned); 1272 }; 1273 1274 // Used to make code generic over signed and unsigned overflow. 1275 template <typename ExtendOp> struct ExtendOpTraits { 1276 // Members present: 1277 // 1278 // static const SCEV::NoWrapFlags WrapType; 1279 // 1280 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1281 // 1282 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1283 // ICmpInst::Predicate *Pred, 1284 // ScalarEvolution *SE); 1285 }; 1286 1287 template <> 1288 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1289 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1290 1291 static const GetExtendExprTy GetExtendExpr; 1292 1293 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1294 ICmpInst::Predicate *Pred, 1295 ScalarEvolution *SE) { 1296 return getSignedOverflowLimitForStep(Step, Pred, SE); 1297 } 1298 }; 1299 1300 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1301 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1302 1303 template <> 1304 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1305 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1306 1307 static const GetExtendExprTy GetExtendExpr; 1308 1309 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1310 ICmpInst::Predicate *Pred, 1311 ScalarEvolution *SE) { 1312 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1313 } 1314 }; 1315 1316 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1317 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1318 1319 } // end anonymous namespace 1320 1321 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1322 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1323 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1324 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1325 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1326 // expression "Step + sext/zext(PreIncAR)" is congruent with 1327 // "sext/zext(PostIncAR)" 1328 template <typename ExtendOpTy> 1329 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1330 ScalarEvolution *SE, unsigned Depth) { 1331 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1332 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1333 1334 const Loop *L = AR->getLoop(); 1335 const SCEV *Start = AR->getStart(); 1336 const SCEV *Step = AR->getStepRecurrence(*SE); 1337 1338 // Check for a simple looking step prior to loop entry. 1339 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1340 if (!SA) 1341 return nullptr; 1342 1343 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1344 // subtraction is expensive. For this purpose, perform a quick and dirty 1345 // difference, by checking for Step in the operand list. 1346 SmallVector<const SCEV *, 4> DiffOps; 1347 for (const SCEV *Op : SA->operands()) 1348 if (Op != Step) 1349 DiffOps.push_back(Op); 1350 1351 if (DiffOps.size() == SA->getNumOperands()) 1352 return nullptr; 1353 1354 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1355 // `Step`: 1356 1357 // 1. NSW/NUW flags on the step increment. 1358 auto PreStartFlags = 1359 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1360 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1361 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1362 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1363 1364 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1365 // "S+X does not sign/unsign-overflow". 1366 // 1367 1368 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1369 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1370 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1371 return PreStart; 1372 1373 // 2. Direct overflow check on the step operation's expression. 1374 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1375 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1376 const SCEV *OperandExtendedStart = 1377 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1378 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1379 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1380 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1381 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1382 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1383 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1384 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1385 } 1386 return PreStart; 1387 } 1388 1389 // 3. Loop precondition. 1390 ICmpInst::Predicate Pred; 1391 const SCEV *OverflowLimit = 1392 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1393 1394 if (OverflowLimit && 1395 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1396 return PreStart; 1397 1398 return nullptr; 1399 } 1400 1401 // Get the normalized zero or sign extended expression for this AddRec's Start. 1402 template <typename ExtendOpTy> 1403 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1404 ScalarEvolution *SE, 1405 unsigned Depth) { 1406 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1407 1408 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1409 if (!PreStart) 1410 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1411 1412 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1413 Depth), 1414 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1415 } 1416 1417 // Try to prove away overflow by looking at "nearby" add recurrences. A 1418 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1419 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1420 // 1421 // Formally: 1422 // 1423 // {S,+,X} == {S-T,+,X} + T 1424 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1425 // 1426 // If ({S-T,+,X} + T) does not overflow ... (1) 1427 // 1428 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1429 // 1430 // If {S-T,+,X} does not overflow ... (2) 1431 // 1432 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1433 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1434 // 1435 // If (S-T)+T does not overflow ... (3) 1436 // 1437 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1438 // == {Ext(S),+,Ext(X)} == LHS 1439 // 1440 // Thus, if (1), (2) and (3) are true for some T, then 1441 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1442 // 1443 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1444 // does not overflow" restricted to the 0th iteration. Therefore we only need 1445 // to check for (1) and (2). 1446 // 1447 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1448 // is `Delta` (defined below). 1449 template <typename ExtendOpTy> 1450 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1451 const SCEV *Step, 1452 const Loop *L) { 1453 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1454 1455 // We restrict `Start` to a constant to prevent SCEV from spending too much 1456 // time here. It is correct (but more expensive) to continue with a 1457 // non-constant `Start` and do a general SCEV subtraction to compute 1458 // `PreStart` below. 1459 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1460 if (!StartC) 1461 return false; 1462 1463 APInt StartAI = StartC->getAPInt(); 1464 1465 for (unsigned Delta : {-2, -1, 1, 2}) { 1466 const SCEV *PreStart = getConstant(StartAI - Delta); 1467 1468 FoldingSetNodeID ID; 1469 ID.AddInteger(scAddRecExpr); 1470 ID.AddPointer(PreStart); 1471 ID.AddPointer(Step); 1472 ID.AddPointer(L); 1473 void *IP = nullptr; 1474 const auto *PreAR = 1475 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1476 1477 // Give up if we don't already have the add recurrence we need because 1478 // actually constructing an add recurrence is relatively expensive. 1479 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1480 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1481 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1482 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1483 DeltaS, &Pred, this); 1484 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1485 return true; 1486 } 1487 } 1488 1489 return false; 1490 } 1491 1492 // Finds an integer D for an expression (C + x + y + ...) such that the top 1493 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1494 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1495 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1496 // the (C + x + y + ...) expression is \p WholeAddExpr. 1497 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1498 const SCEVConstant *ConstantTerm, 1499 const SCEVAddExpr *WholeAddExpr) { 1500 const APInt &C = ConstantTerm->getAPInt(); 1501 const unsigned BitWidth = C.getBitWidth(); 1502 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1503 uint32_t TZ = BitWidth; 1504 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1505 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1506 if (TZ) { 1507 // Set D to be as many least significant bits of C as possible while still 1508 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1509 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1510 } 1511 return APInt(BitWidth, 0); 1512 } 1513 1514 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1515 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1516 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1517 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1518 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1519 const APInt &ConstantStart, 1520 const SCEV *Step) { 1521 const unsigned BitWidth = ConstantStart.getBitWidth(); 1522 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1523 if (TZ) 1524 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1525 : ConstantStart; 1526 return APInt(BitWidth, 0); 1527 } 1528 1529 const SCEV * 1530 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1531 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1532 "This is not an extending conversion!"); 1533 assert(isSCEVable(Ty) && 1534 "This is not a conversion to a SCEVable type!"); 1535 Ty = getEffectiveSCEVType(Ty); 1536 1537 // Fold if the operand is constant. 1538 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1539 return getConstant( 1540 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1541 1542 // zext(zext(x)) --> zext(x) 1543 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1544 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1545 1546 // Before doing any expensive analysis, check to see if we've already 1547 // computed a SCEV for this Op and Ty. 1548 FoldingSetNodeID ID; 1549 ID.AddInteger(scZeroExtend); 1550 ID.AddPointer(Op); 1551 ID.AddPointer(Ty); 1552 void *IP = nullptr; 1553 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1554 if (Depth > MaxCastDepth) { 1555 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1556 Op, Ty); 1557 UniqueSCEVs.InsertNode(S, IP); 1558 addToLoopUseLists(S); 1559 return S; 1560 } 1561 1562 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1563 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1564 // It's possible the bits taken off by the truncate were all zero bits. If 1565 // so, we should be able to simplify this further. 1566 const SCEV *X = ST->getOperand(); 1567 ConstantRange CR = getUnsignedRange(X); 1568 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1569 unsigned NewBits = getTypeSizeInBits(Ty); 1570 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1571 CR.zextOrTrunc(NewBits))) 1572 return getTruncateOrZeroExtend(X, Ty, Depth); 1573 } 1574 1575 // If the input value is a chrec scev, and we can prove that the value 1576 // did not overflow the old, smaller, value, we can zero extend all of the 1577 // operands (often constants). This allows analysis of something like 1578 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1579 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1580 if (AR->isAffine()) { 1581 const SCEV *Start = AR->getStart(); 1582 const SCEV *Step = AR->getStepRecurrence(*this); 1583 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1584 const Loop *L = AR->getLoop(); 1585 1586 if (!AR->hasNoUnsignedWrap()) { 1587 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1588 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1589 } 1590 1591 // If we have special knowledge that this addrec won't overflow, 1592 // we don't need to do any further analysis. 1593 if (AR->hasNoUnsignedWrap()) 1594 return getAddRecExpr( 1595 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1596 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1597 1598 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1599 // Note that this serves two purposes: It filters out loops that are 1600 // simply not analyzable, and it covers the case where this code is 1601 // being called from within backedge-taken count analysis, such that 1602 // attempting to ask for the backedge-taken count would likely result 1603 // in infinite recursion. In the later case, the analysis code will 1604 // cope with a conservative value, and it will take care to purge 1605 // that value once it has finished. 1606 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1607 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1608 // Manually compute the final value for AR, checking for overflow. 1609 1610 // Check whether the backedge-taken count can be losslessly casted to 1611 // the addrec's type. The count is always unsigned. 1612 const SCEV *CastedMaxBECount = 1613 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1614 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1615 CastedMaxBECount, MaxBECount->getType(), Depth); 1616 if (MaxBECount == RecastedMaxBECount) { 1617 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1618 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1619 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1620 SCEV::FlagAnyWrap, Depth + 1); 1621 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1622 SCEV::FlagAnyWrap, 1623 Depth + 1), 1624 WideTy, Depth + 1); 1625 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1626 const SCEV *WideMaxBECount = 1627 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1628 const SCEV *OperandExtendedAdd = 1629 getAddExpr(WideStart, 1630 getMulExpr(WideMaxBECount, 1631 getZeroExtendExpr(Step, WideTy, Depth + 1), 1632 SCEV::FlagAnyWrap, Depth + 1), 1633 SCEV::FlagAnyWrap, Depth + 1); 1634 if (ZAdd == OperandExtendedAdd) { 1635 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1636 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1637 // Return the expression with the addrec on the outside. 1638 return getAddRecExpr( 1639 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1640 Depth + 1), 1641 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1642 AR->getNoWrapFlags()); 1643 } 1644 // Similar to above, only this time treat the step value as signed. 1645 // This covers loops that count down. 1646 OperandExtendedAdd = 1647 getAddExpr(WideStart, 1648 getMulExpr(WideMaxBECount, 1649 getSignExtendExpr(Step, WideTy, Depth + 1), 1650 SCEV::FlagAnyWrap, Depth + 1), 1651 SCEV::FlagAnyWrap, Depth + 1); 1652 if (ZAdd == OperandExtendedAdd) { 1653 // Cache knowledge of AR NW, which is propagated to this AddRec. 1654 // Negative step causes unsigned wrap, but it still can't self-wrap. 1655 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1656 // Return the expression with the addrec on the outside. 1657 return getAddRecExpr( 1658 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1659 Depth + 1), 1660 getSignExtendExpr(Step, Ty, Depth + 1), L, 1661 AR->getNoWrapFlags()); 1662 } 1663 } 1664 } 1665 1666 // Normally, in the cases we can prove no-overflow via a 1667 // backedge guarding condition, we can also compute a backedge 1668 // taken count for the loop. The exceptions are assumptions and 1669 // guards present in the loop -- SCEV is not great at exploiting 1670 // these to compute max backedge taken counts, but can still use 1671 // these to prove lack of overflow. Use this fact to avoid 1672 // doing extra work that may not pay off. 1673 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1674 !AC.assumptions().empty()) { 1675 1676 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1677 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1678 if (AR->hasNoUnsignedWrap()) { 1679 // Same as nuw case above - duplicated here to avoid a compile time 1680 // issue. It's not clear that the order of checks does matter, but 1681 // it's one of two issue possible causes for a change which was 1682 // reverted. Be conservative for the moment. 1683 return getAddRecExpr( 1684 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1685 Depth + 1), 1686 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1687 AR->getNoWrapFlags()); 1688 } 1689 1690 // For a negative step, we can extend the operands iff doing so only 1691 // traverses values in the range zext([0,UINT_MAX]). 1692 if (isKnownNegative(Step)) { 1693 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1694 getSignedRangeMin(Step)); 1695 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1696 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1697 // Cache knowledge of AR NW, which is propagated to this 1698 // AddRec. Negative step causes unsigned wrap, but it 1699 // still can't self-wrap. 1700 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1701 // Return the expression with the addrec on the outside. 1702 return getAddRecExpr( 1703 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1704 Depth + 1), 1705 getSignExtendExpr(Step, Ty, Depth + 1), L, 1706 AR->getNoWrapFlags()); 1707 } 1708 } 1709 } 1710 1711 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1712 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1713 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1714 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1715 const APInt &C = SC->getAPInt(); 1716 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1717 if (D != 0) { 1718 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1719 const SCEV *SResidual = 1720 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1721 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1722 return getAddExpr(SZExtD, SZExtR, 1723 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1724 Depth + 1); 1725 } 1726 } 1727 1728 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1729 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1730 return getAddRecExpr( 1731 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1732 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1733 } 1734 } 1735 1736 // zext(A % B) --> zext(A) % zext(B) 1737 { 1738 const SCEV *LHS; 1739 const SCEV *RHS; 1740 if (matchURem(Op, LHS, RHS)) 1741 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1742 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1743 } 1744 1745 // zext(A / B) --> zext(A) / zext(B). 1746 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1747 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1748 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1749 1750 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1751 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1752 if (SA->hasNoUnsignedWrap()) { 1753 // If the addition does not unsign overflow then we can, by definition, 1754 // commute the zero extension with the addition operation. 1755 SmallVector<const SCEV *, 4> Ops; 1756 for (const auto *Op : SA->operands()) 1757 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1758 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1759 } 1760 1761 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1762 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1763 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1764 // 1765 // Often address arithmetics contain expressions like 1766 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1767 // This transformation is useful while proving that such expressions are 1768 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1769 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1770 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1771 if (D != 0) { 1772 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1773 const SCEV *SResidual = 1774 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1775 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1776 return getAddExpr(SZExtD, SZExtR, 1777 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1778 Depth + 1); 1779 } 1780 } 1781 } 1782 1783 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1784 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1785 if (SM->hasNoUnsignedWrap()) { 1786 // If the multiply does not unsign overflow then we can, by definition, 1787 // commute the zero extension with the multiply operation. 1788 SmallVector<const SCEV *, 4> Ops; 1789 for (const auto *Op : SM->operands()) 1790 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1791 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1792 } 1793 1794 // zext(2^K * (trunc X to iN)) to iM -> 1795 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1796 // 1797 // Proof: 1798 // 1799 // zext(2^K * (trunc X to iN)) to iM 1800 // = zext((trunc X to iN) << K) to iM 1801 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1802 // (because shl removes the top K bits) 1803 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1804 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1805 // 1806 if (SM->getNumOperands() == 2) 1807 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1808 if (MulLHS->getAPInt().isPowerOf2()) 1809 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1810 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1811 MulLHS->getAPInt().logBase2(); 1812 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1813 return getMulExpr( 1814 getZeroExtendExpr(MulLHS, Ty), 1815 getZeroExtendExpr( 1816 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1817 SCEV::FlagNUW, Depth + 1); 1818 } 1819 } 1820 1821 // The cast wasn't folded; create an explicit cast node. 1822 // Recompute the insert position, as it may have been invalidated. 1823 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1824 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1825 Op, Ty); 1826 UniqueSCEVs.InsertNode(S, IP); 1827 addToLoopUseLists(S); 1828 return S; 1829 } 1830 1831 const SCEV * 1832 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1833 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1834 "This is not an extending conversion!"); 1835 assert(isSCEVable(Ty) && 1836 "This is not a conversion to a SCEVable type!"); 1837 Ty = getEffectiveSCEVType(Ty); 1838 1839 // Fold if the operand is constant. 1840 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1841 return getConstant( 1842 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1843 1844 // sext(sext(x)) --> sext(x) 1845 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1846 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1847 1848 // sext(zext(x)) --> zext(x) 1849 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1850 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1851 1852 // Before doing any expensive analysis, check to see if we've already 1853 // computed a SCEV for this Op and Ty. 1854 FoldingSetNodeID ID; 1855 ID.AddInteger(scSignExtend); 1856 ID.AddPointer(Op); 1857 ID.AddPointer(Ty); 1858 void *IP = nullptr; 1859 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1860 // Limit recursion depth. 1861 if (Depth > MaxCastDepth) { 1862 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1863 Op, Ty); 1864 UniqueSCEVs.InsertNode(S, IP); 1865 addToLoopUseLists(S); 1866 return S; 1867 } 1868 1869 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1870 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1871 // It's possible the bits taken off by the truncate were all sign bits. If 1872 // so, we should be able to simplify this further. 1873 const SCEV *X = ST->getOperand(); 1874 ConstantRange CR = getSignedRange(X); 1875 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1876 unsigned NewBits = getTypeSizeInBits(Ty); 1877 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1878 CR.sextOrTrunc(NewBits))) 1879 return getTruncateOrSignExtend(X, Ty, Depth); 1880 } 1881 1882 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1883 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1884 if (SA->hasNoSignedWrap()) { 1885 // If the addition does not sign overflow then we can, by definition, 1886 // commute the sign extension with the addition operation. 1887 SmallVector<const SCEV *, 4> Ops; 1888 for (const auto *Op : SA->operands()) 1889 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1890 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1891 } 1892 1893 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1894 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1895 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1896 // 1897 // For instance, this will bring two seemingly different expressions: 1898 // 1 + sext(5 + 20 * %x + 24 * %y) and 1899 // sext(6 + 20 * %x + 24 * %y) 1900 // to the same form: 1901 // 2 + sext(4 + 20 * %x + 24 * %y) 1902 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1903 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1904 if (D != 0) { 1905 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1906 const SCEV *SResidual = 1907 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1908 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1909 return getAddExpr(SSExtD, SSExtR, 1910 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1911 Depth + 1); 1912 } 1913 } 1914 } 1915 // If the input value is a chrec scev, and we can prove that the value 1916 // did not overflow the old, smaller, value, we can sign extend all of the 1917 // operands (often constants). This allows analysis of something like 1918 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1919 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1920 if (AR->isAffine()) { 1921 const SCEV *Start = AR->getStart(); 1922 const SCEV *Step = AR->getStepRecurrence(*this); 1923 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1924 const Loop *L = AR->getLoop(); 1925 1926 if (!AR->hasNoSignedWrap()) { 1927 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1928 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1929 } 1930 1931 // If we have special knowledge that this addrec won't overflow, 1932 // we don't need to do any further analysis. 1933 if (AR->hasNoSignedWrap()) 1934 return getAddRecExpr( 1935 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1936 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1937 1938 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1939 // Note that this serves two purposes: It filters out loops that are 1940 // simply not analyzable, and it covers the case where this code is 1941 // being called from within backedge-taken count analysis, such that 1942 // attempting to ask for the backedge-taken count would likely result 1943 // in infinite recursion. In the later case, the analysis code will 1944 // cope with a conservative value, and it will take care to purge 1945 // that value once it has finished. 1946 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1947 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1948 // Manually compute the final value for AR, checking for 1949 // overflow. 1950 1951 // Check whether the backedge-taken count can be losslessly casted to 1952 // the addrec's type. The count is always unsigned. 1953 const SCEV *CastedMaxBECount = 1954 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1955 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1956 CastedMaxBECount, MaxBECount->getType(), Depth); 1957 if (MaxBECount == RecastedMaxBECount) { 1958 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1959 // Check whether Start+Step*MaxBECount has no signed overflow. 1960 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1961 SCEV::FlagAnyWrap, Depth + 1); 1962 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1963 SCEV::FlagAnyWrap, 1964 Depth + 1), 1965 WideTy, Depth + 1); 1966 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1967 const SCEV *WideMaxBECount = 1968 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1969 const SCEV *OperandExtendedAdd = 1970 getAddExpr(WideStart, 1971 getMulExpr(WideMaxBECount, 1972 getSignExtendExpr(Step, WideTy, Depth + 1), 1973 SCEV::FlagAnyWrap, Depth + 1), 1974 SCEV::FlagAnyWrap, Depth + 1); 1975 if (SAdd == OperandExtendedAdd) { 1976 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1977 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 1978 // Return the expression with the addrec on the outside. 1979 return getAddRecExpr( 1980 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1981 Depth + 1), 1982 getSignExtendExpr(Step, Ty, Depth + 1), L, 1983 AR->getNoWrapFlags()); 1984 } 1985 // Similar to above, only this time treat the step value as unsigned. 1986 // This covers loops that count up with an unsigned step. 1987 OperandExtendedAdd = 1988 getAddExpr(WideStart, 1989 getMulExpr(WideMaxBECount, 1990 getZeroExtendExpr(Step, WideTy, Depth + 1), 1991 SCEV::FlagAnyWrap, Depth + 1), 1992 SCEV::FlagAnyWrap, Depth + 1); 1993 if (SAdd == OperandExtendedAdd) { 1994 // If AR wraps around then 1995 // 1996 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1997 // => SAdd != OperandExtendedAdd 1998 // 1999 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2000 // (SAdd == OperandExtendedAdd => AR is NW) 2001 2002 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2003 2004 // Return the expression with the addrec on the outside. 2005 return getAddRecExpr( 2006 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2007 Depth + 1), 2008 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2009 AR->getNoWrapFlags()); 2010 } 2011 } 2012 } 2013 2014 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2015 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2016 if (AR->hasNoSignedWrap()) { 2017 // Same as nsw case above - duplicated here to avoid a compile time 2018 // issue. It's not clear that the order of checks does matter, but 2019 // it's one of two issue possible causes for a change which was 2020 // reverted. Be conservative for the moment. 2021 return getAddRecExpr( 2022 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2023 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2024 } 2025 2026 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2027 // if D + (C - D + Step * n) could be proven to not signed wrap 2028 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2029 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2030 const APInt &C = SC->getAPInt(); 2031 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2032 if (D != 0) { 2033 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2034 const SCEV *SResidual = 2035 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2036 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2037 return getAddExpr(SSExtD, SSExtR, 2038 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2039 Depth + 1); 2040 } 2041 } 2042 2043 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2044 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2045 return getAddRecExpr( 2046 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2047 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2048 } 2049 } 2050 2051 // If the input value is provably positive and we could not simplify 2052 // away the sext build a zext instead. 2053 if (isKnownNonNegative(Op)) 2054 return getZeroExtendExpr(Op, Ty, Depth + 1); 2055 2056 // The cast wasn't folded; create an explicit cast node. 2057 // Recompute the insert position, as it may have been invalidated. 2058 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2059 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2060 Op, Ty); 2061 UniqueSCEVs.InsertNode(S, IP); 2062 addToLoopUseLists(S); 2063 return S; 2064 } 2065 2066 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2067 /// unspecified bits out to the given type. 2068 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2069 Type *Ty) { 2070 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2071 "This is not an extending conversion!"); 2072 assert(isSCEVable(Ty) && 2073 "This is not a conversion to a SCEVable type!"); 2074 Ty = getEffectiveSCEVType(Ty); 2075 2076 // Sign-extend negative constants. 2077 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2078 if (SC->getAPInt().isNegative()) 2079 return getSignExtendExpr(Op, Ty); 2080 2081 // Peel off a truncate cast. 2082 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2083 const SCEV *NewOp = T->getOperand(); 2084 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2085 return getAnyExtendExpr(NewOp, Ty); 2086 return getTruncateOrNoop(NewOp, Ty); 2087 } 2088 2089 // Next try a zext cast. If the cast is folded, use it. 2090 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2091 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2092 return ZExt; 2093 2094 // Next try a sext cast. If the cast is folded, use it. 2095 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2096 if (!isa<SCEVSignExtendExpr>(SExt)) 2097 return SExt; 2098 2099 // Force the cast to be folded into the operands of an addrec. 2100 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2101 SmallVector<const SCEV *, 4> Ops; 2102 for (const SCEV *Op : AR->operands()) 2103 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2104 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2105 } 2106 2107 // If the expression is obviously signed, use the sext cast value. 2108 if (isa<SCEVSMaxExpr>(Op)) 2109 return SExt; 2110 2111 // Absent any other information, use the zext cast value. 2112 return ZExt; 2113 } 2114 2115 /// Process the given Ops list, which is a list of operands to be added under 2116 /// the given scale, update the given map. This is a helper function for 2117 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2118 /// that would form an add expression like this: 2119 /// 2120 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2121 /// 2122 /// where A and B are constants, update the map with these values: 2123 /// 2124 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2125 /// 2126 /// and add 13 + A*B*29 to AccumulatedConstant. 2127 /// This will allow getAddRecExpr to produce this: 2128 /// 2129 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2130 /// 2131 /// This form often exposes folding opportunities that are hidden in 2132 /// the original operand list. 2133 /// 2134 /// Return true iff it appears that any interesting folding opportunities 2135 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2136 /// the common case where no interesting opportunities are present, and 2137 /// is also used as a check to avoid infinite recursion. 2138 static bool 2139 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2140 SmallVectorImpl<const SCEV *> &NewOps, 2141 APInt &AccumulatedConstant, 2142 const SCEV *const *Ops, size_t NumOperands, 2143 const APInt &Scale, 2144 ScalarEvolution &SE) { 2145 bool Interesting = false; 2146 2147 // Iterate over the add operands. They are sorted, with constants first. 2148 unsigned i = 0; 2149 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2150 ++i; 2151 // Pull a buried constant out to the outside. 2152 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2153 Interesting = true; 2154 AccumulatedConstant += Scale * C->getAPInt(); 2155 } 2156 2157 // Next comes everything else. We're especially interested in multiplies 2158 // here, but they're in the middle, so just visit the rest with one loop. 2159 for (; i != NumOperands; ++i) { 2160 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2161 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2162 APInt NewScale = 2163 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2164 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2165 // A multiplication of a constant with another add; recurse. 2166 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2167 Interesting |= 2168 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2169 Add->op_begin(), Add->getNumOperands(), 2170 NewScale, SE); 2171 } else { 2172 // A multiplication of a constant with some other value. Update 2173 // the map. 2174 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2175 const SCEV *Key = SE.getMulExpr(MulOps); 2176 auto Pair = M.insert({Key, NewScale}); 2177 if (Pair.second) { 2178 NewOps.push_back(Pair.first->first); 2179 } else { 2180 Pair.first->second += NewScale; 2181 // The map already had an entry for this value, which may indicate 2182 // a folding opportunity. 2183 Interesting = true; 2184 } 2185 } 2186 } else { 2187 // An ordinary operand. Update the map. 2188 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2189 M.insert({Ops[i], Scale}); 2190 if (Pair.second) { 2191 NewOps.push_back(Pair.first->first); 2192 } else { 2193 Pair.first->second += Scale; 2194 // The map already had an entry for this value, which may indicate 2195 // a folding opportunity. 2196 Interesting = true; 2197 } 2198 } 2199 } 2200 2201 return Interesting; 2202 } 2203 2204 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2205 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2206 // can't-overflow flags for the operation if possible. 2207 static SCEV::NoWrapFlags 2208 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2209 const ArrayRef<const SCEV *> Ops, 2210 SCEV::NoWrapFlags Flags) { 2211 using namespace std::placeholders; 2212 2213 using OBO = OverflowingBinaryOperator; 2214 2215 bool CanAnalyze = 2216 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2217 (void)CanAnalyze; 2218 assert(CanAnalyze && "don't call from other places!"); 2219 2220 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2221 SCEV::NoWrapFlags SignOrUnsignWrap = 2222 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2223 2224 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2225 auto IsKnownNonNegative = [&](const SCEV *S) { 2226 return SE->isKnownNonNegative(S); 2227 }; 2228 2229 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2230 Flags = 2231 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2232 2233 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2234 2235 if (SignOrUnsignWrap != SignOrUnsignMask && 2236 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2237 isa<SCEVConstant>(Ops[0])) { 2238 2239 auto Opcode = [&] { 2240 switch (Type) { 2241 case scAddExpr: 2242 return Instruction::Add; 2243 case scMulExpr: 2244 return Instruction::Mul; 2245 default: 2246 llvm_unreachable("Unexpected SCEV op."); 2247 } 2248 }(); 2249 2250 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2251 2252 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2253 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2254 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2255 Opcode, C, OBO::NoSignedWrap); 2256 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2257 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2258 } 2259 2260 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2261 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2262 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2263 Opcode, C, OBO::NoUnsignedWrap); 2264 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2265 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2266 } 2267 } 2268 2269 return Flags; 2270 } 2271 2272 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2273 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2274 } 2275 2276 /// Get a canonical add expression, or something simpler if possible. 2277 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2278 SCEV::NoWrapFlags OrigFlags, 2279 unsigned Depth) { 2280 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2281 "only nuw or nsw allowed"); 2282 assert(!Ops.empty() && "Cannot get empty add!"); 2283 if (Ops.size() == 1) return Ops[0]; 2284 #ifndef NDEBUG 2285 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2286 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2287 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2288 "SCEVAddExpr operand types don't match!"); 2289 #endif 2290 2291 // Sort by complexity, this groups all similar expression types together. 2292 GroupByComplexity(Ops, &LI, DT); 2293 2294 // If there are any constants, fold them together. 2295 unsigned Idx = 0; 2296 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2297 ++Idx; 2298 assert(Idx < Ops.size()); 2299 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2300 // We found two constants, fold them together! 2301 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2302 if (Ops.size() == 2) return Ops[0]; 2303 Ops.erase(Ops.begin()+1); // Erase the folded element 2304 LHSC = cast<SCEVConstant>(Ops[0]); 2305 } 2306 2307 // If we are left with a constant zero being added, strip it off. 2308 if (LHSC->getValue()->isZero()) { 2309 Ops.erase(Ops.begin()); 2310 --Idx; 2311 } 2312 2313 if (Ops.size() == 1) return Ops[0]; 2314 } 2315 2316 // Delay expensive flag strengthening until necessary. 2317 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2318 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2319 }; 2320 2321 // Limit recursion calls depth. 2322 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2323 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2324 2325 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2326 // Don't strengthen flags if we have no new information. 2327 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2328 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2329 Add->setNoWrapFlags(ComputeFlags(Ops)); 2330 return S; 2331 } 2332 2333 // Okay, check to see if the same value occurs in the operand list more than 2334 // once. If so, merge them together into an multiply expression. Since we 2335 // sorted the list, these values are required to be adjacent. 2336 Type *Ty = Ops[0]->getType(); 2337 bool FoundMatch = false; 2338 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2339 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2340 // Scan ahead to count how many equal operands there are. 2341 unsigned Count = 2; 2342 while (i+Count != e && Ops[i+Count] == Ops[i]) 2343 ++Count; 2344 // Merge the values into a multiply. 2345 const SCEV *Scale = getConstant(Ty, Count); 2346 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2347 if (Ops.size() == Count) 2348 return Mul; 2349 Ops[i] = Mul; 2350 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2351 --i; e -= Count - 1; 2352 FoundMatch = true; 2353 } 2354 if (FoundMatch) 2355 return getAddExpr(Ops, OrigFlags, Depth + 1); 2356 2357 // Check for truncates. If all the operands are truncated from the same 2358 // type, see if factoring out the truncate would permit the result to be 2359 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2360 // if the contents of the resulting outer trunc fold to something simple. 2361 auto FindTruncSrcType = [&]() -> Type * { 2362 // We're ultimately looking to fold an addrec of truncs and muls of only 2363 // constants and truncs, so if we find any other types of SCEV 2364 // as operands of the addrec then we bail and return nullptr here. 2365 // Otherwise, we return the type of the operand of a trunc that we find. 2366 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2367 return T->getOperand()->getType(); 2368 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2369 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2370 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2371 return T->getOperand()->getType(); 2372 } 2373 return nullptr; 2374 }; 2375 if (auto *SrcType = FindTruncSrcType()) { 2376 SmallVector<const SCEV *, 8> LargeOps; 2377 bool Ok = true; 2378 // Check all the operands to see if they can be represented in the 2379 // source type of the truncate. 2380 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2381 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2382 if (T->getOperand()->getType() != SrcType) { 2383 Ok = false; 2384 break; 2385 } 2386 LargeOps.push_back(T->getOperand()); 2387 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2388 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2389 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2390 SmallVector<const SCEV *, 8> LargeMulOps; 2391 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2392 if (const SCEVTruncateExpr *T = 2393 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2394 if (T->getOperand()->getType() != SrcType) { 2395 Ok = false; 2396 break; 2397 } 2398 LargeMulOps.push_back(T->getOperand()); 2399 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2400 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2401 } else { 2402 Ok = false; 2403 break; 2404 } 2405 } 2406 if (Ok) 2407 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2408 } else { 2409 Ok = false; 2410 break; 2411 } 2412 } 2413 if (Ok) { 2414 // Evaluate the expression in the larger type. 2415 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2416 // If it folds to something simple, use it. Otherwise, don't. 2417 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2418 return getTruncateExpr(Fold, Ty); 2419 } 2420 } 2421 2422 // Skip past any other cast SCEVs. 2423 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2424 ++Idx; 2425 2426 // If there are add operands they would be next. 2427 if (Idx < Ops.size()) { 2428 bool DeletedAdd = false; 2429 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2430 if (Ops.size() > AddOpsInlineThreshold || 2431 Add->getNumOperands() > AddOpsInlineThreshold) 2432 break; 2433 // If we have an add, expand the add operands onto the end of the operands 2434 // list. 2435 Ops.erase(Ops.begin()+Idx); 2436 Ops.append(Add->op_begin(), Add->op_end()); 2437 DeletedAdd = true; 2438 } 2439 2440 // If we deleted at least one add, we added operands to the end of the list, 2441 // and they are not necessarily sorted. Recurse to resort and resimplify 2442 // any operands we just acquired. 2443 if (DeletedAdd) 2444 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2445 } 2446 2447 // Skip over the add expression until we get to a multiply. 2448 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2449 ++Idx; 2450 2451 // Check to see if there are any folding opportunities present with 2452 // operands multiplied by constant values. 2453 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2454 uint64_t BitWidth = getTypeSizeInBits(Ty); 2455 DenseMap<const SCEV *, APInt> M; 2456 SmallVector<const SCEV *, 8> NewOps; 2457 APInt AccumulatedConstant(BitWidth, 0); 2458 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2459 Ops.data(), Ops.size(), 2460 APInt(BitWidth, 1), *this)) { 2461 struct APIntCompare { 2462 bool operator()(const APInt &LHS, const APInt &RHS) const { 2463 return LHS.ult(RHS); 2464 } 2465 }; 2466 2467 // Some interesting folding opportunity is present, so its worthwhile to 2468 // re-generate the operands list. Group the operands by constant scale, 2469 // to avoid multiplying by the same constant scale multiple times. 2470 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2471 for (const SCEV *NewOp : NewOps) 2472 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2473 // Re-generate the operands list. 2474 Ops.clear(); 2475 if (AccumulatedConstant != 0) 2476 Ops.push_back(getConstant(AccumulatedConstant)); 2477 for (auto &MulOp : MulOpLists) 2478 if (MulOp.first != 0) 2479 Ops.push_back(getMulExpr( 2480 getConstant(MulOp.first), 2481 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2482 SCEV::FlagAnyWrap, Depth + 1)); 2483 if (Ops.empty()) 2484 return getZero(Ty); 2485 if (Ops.size() == 1) 2486 return Ops[0]; 2487 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2488 } 2489 } 2490 2491 // If we are adding something to a multiply expression, make sure the 2492 // something is not already an operand of the multiply. If so, merge it into 2493 // the multiply. 2494 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2495 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2496 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2497 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2498 if (isa<SCEVConstant>(MulOpSCEV)) 2499 continue; 2500 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2501 if (MulOpSCEV == Ops[AddOp]) { 2502 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2503 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2504 if (Mul->getNumOperands() != 2) { 2505 // If the multiply has more than two operands, we must get the 2506 // Y*Z term. 2507 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2508 Mul->op_begin()+MulOp); 2509 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2510 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2511 } 2512 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2513 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2514 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2515 SCEV::FlagAnyWrap, Depth + 1); 2516 if (Ops.size() == 2) return OuterMul; 2517 if (AddOp < Idx) { 2518 Ops.erase(Ops.begin()+AddOp); 2519 Ops.erase(Ops.begin()+Idx-1); 2520 } else { 2521 Ops.erase(Ops.begin()+Idx); 2522 Ops.erase(Ops.begin()+AddOp-1); 2523 } 2524 Ops.push_back(OuterMul); 2525 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2526 } 2527 2528 // Check this multiply against other multiplies being added together. 2529 for (unsigned OtherMulIdx = Idx+1; 2530 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2531 ++OtherMulIdx) { 2532 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2533 // If MulOp occurs in OtherMul, we can fold the two multiplies 2534 // together. 2535 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2536 OMulOp != e; ++OMulOp) 2537 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2538 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2539 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2540 if (Mul->getNumOperands() != 2) { 2541 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2542 Mul->op_begin()+MulOp); 2543 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2544 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2545 } 2546 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2547 if (OtherMul->getNumOperands() != 2) { 2548 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2549 OtherMul->op_begin()+OMulOp); 2550 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2551 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2552 } 2553 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2554 const SCEV *InnerMulSum = 2555 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2556 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2557 SCEV::FlagAnyWrap, Depth + 1); 2558 if (Ops.size() == 2) return OuterMul; 2559 Ops.erase(Ops.begin()+Idx); 2560 Ops.erase(Ops.begin()+OtherMulIdx-1); 2561 Ops.push_back(OuterMul); 2562 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2563 } 2564 } 2565 } 2566 } 2567 2568 // If there are any add recurrences in the operands list, see if any other 2569 // added values are loop invariant. If so, we can fold them into the 2570 // recurrence. 2571 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2572 ++Idx; 2573 2574 // Scan over all recurrences, trying to fold loop invariants into them. 2575 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2576 // Scan all of the other operands to this add and add them to the vector if 2577 // they are loop invariant w.r.t. the recurrence. 2578 SmallVector<const SCEV *, 8> LIOps; 2579 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2580 const Loop *AddRecLoop = AddRec->getLoop(); 2581 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2582 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2583 LIOps.push_back(Ops[i]); 2584 Ops.erase(Ops.begin()+i); 2585 --i; --e; 2586 } 2587 2588 // If we found some loop invariants, fold them into the recurrence. 2589 if (!LIOps.empty()) { 2590 // Compute nowrap flags for the addition of the loop-invariant ops and 2591 // the addrec. Temporarily push it as an operand for that purpose. 2592 LIOps.push_back(AddRec); 2593 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2594 LIOps.pop_back(); 2595 2596 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2597 LIOps.push_back(AddRec->getStart()); 2598 2599 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2600 AddRec->op_end()); 2601 // This follows from the fact that the no-wrap flags on the outer add 2602 // expression are applicable on the 0th iteration, when the add recurrence 2603 // will be equal to its start value. 2604 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2605 2606 // Build the new addrec. Propagate the NUW and NSW flags if both the 2607 // outer add and the inner addrec are guaranteed to have no overflow. 2608 // Always propagate NW. 2609 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2610 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2611 2612 // If all of the other operands were loop invariant, we are done. 2613 if (Ops.size() == 1) return NewRec; 2614 2615 // Otherwise, add the folded AddRec by the non-invariant parts. 2616 for (unsigned i = 0;; ++i) 2617 if (Ops[i] == AddRec) { 2618 Ops[i] = NewRec; 2619 break; 2620 } 2621 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2622 } 2623 2624 // Okay, if there weren't any loop invariants to be folded, check to see if 2625 // there are multiple AddRec's with the same loop induction variable being 2626 // added together. If so, we can fold them. 2627 for (unsigned OtherIdx = Idx+1; 2628 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2629 ++OtherIdx) { 2630 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2631 // so that the 1st found AddRecExpr is dominated by all others. 2632 assert(DT.dominates( 2633 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2634 AddRec->getLoop()->getHeader()) && 2635 "AddRecExprs are not sorted in reverse dominance order?"); 2636 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2637 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2638 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2639 AddRec->op_end()); 2640 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2641 ++OtherIdx) { 2642 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2643 if (OtherAddRec->getLoop() == AddRecLoop) { 2644 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2645 i != e; ++i) { 2646 if (i >= AddRecOps.size()) { 2647 AddRecOps.append(OtherAddRec->op_begin()+i, 2648 OtherAddRec->op_end()); 2649 break; 2650 } 2651 SmallVector<const SCEV *, 2> TwoOps = { 2652 AddRecOps[i], OtherAddRec->getOperand(i)}; 2653 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2654 } 2655 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2656 } 2657 } 2658 // Step size has changed, so we cannot guarantee no self-wraparound. 2659 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2660 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2661 } 2662 } 2663 2664 // Otherwise couldn't fold anything into this recurrence. Move onto the 2665 // next one. 2666 } 2667 2668 // Okay, it looks like we really DO need an add expr. Check to see if we 2669 // already have one, otherwise create a new one. 2670 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2671 } 2672 2673 const SCEV * 2674 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2675 SCEV::NoWrapFlags Flags) { 2676 FoldingSetNodeID ID; 2677 ID.AddInteger(scAddExpr); 2678 for (const SCEV *Op : Ops) 2679 ID.AddPointer(Op); 2680 void *IP = nullptr; 2681 SCEVAddExpr *S = 2682 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2683 if (!S) { 2684 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2685 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2686 S = new (SCEVAllocator) 2687 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2688 UniqueSCEVs.InsertNode(S, IP); 2689 addToLoopUseLists(S); 2690 } 2691 S->setNoWrapFlags(Flags); 2692 return S; 2693 } 2694 2695 const SCEV * 2696 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2697 const Loop *L, SCEV::NoWrapFlags Flags) { 2698 FoldingSetNodeID ID; 2699 ID.AddInteger(scAddRecExpr); 2700 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2701 ID.AddPointer(Ops[i]); 2702 ID.AddPointer(L); 2703 void *IP = nullptr; 2704 SCEVAddRecExpr *S = 2705 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2706 if (!S) { 2707 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2708 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2709 S = new (SCEVAllocator) 2710 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2711 UniqueSCEVs.InsertNode(S, IP); 2712 addToLoopUseLists(S); 2713 } 2714 setNoWrapFlags(S, Flags); 2715 return S; 2716 } 2717 2718 const SCEV * 2719 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2720 SCEV::NoWrapFlags Flags) { 2721 FoldingSetNodeID ID; 2722 ID.AddInteger(scMulExpr); 2723 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2724 ID.AddPointer(Ops[i]); 2725 void *IP = nullptr; 2726 SCEVMulExpr *S = 2727 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2728 if (!S) { 2729 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2730 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2731 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2732 O, Ops.size()); 2733 UniqueSCEVs.InsertNode(S, IP); 2734 addToLoopUseLists(S); 2735 } 2736 S->setNoWrapFlags(Flags); 2737 return S; 2738 } 2739 2740 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2741 uint64_t k = i*j; 2742 if (j > 1 && k / j != i) Overflow = true; 2743 return k; 2744 } 2745 2746 /// Compute the result of "n choose k", the binomial coefficient. If an 2747 /// intermediate computation overflows, Overflow will be set and the return will 2748 /// be garbage. Overflow is not cleared on absence of overflow. 2749 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2750 // We use the multiplicative formula: 2751 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2752 // At each iteration, we take the n-th term of the numeral and divide by the 2753 // (k-n)th term of the denominator. This division will always produce an 2754 // integral result, and helps reduce the chance of overflow in the 2755 // intermediate computations. However, we can still overflow even when the 2756 // final result would fit. 2757 2758 if (n == 0 || n == k) return 1; 2759 if (k > n) return 0; 2760 2761 if (k > n/2) 2762 k = n-k; 2763 2764 uint64_t r = 1; 2765 for (uint64_t i = 1; i <= k; ++i) { 2766 r = umul_ov(r, n-(i-1), Overflow); 2767 r /= i; 2768 } 2769 return r; 2770 } 2771 2772 /// Determine if any of the operands in this SCEV are a constant or if 2773 /// any of the add or multiply expressions in this SCEV contain a constant. 2774 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2775 struct FindConstantInAddMulChain { 2776 bool FoundConstant = false; 2777 2778 bool follow(const SCEV *S) { 2779 FoundConstant |= isa<SCEVConstant>(S); 2780 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2781 } 2782 2783 bool isDone() const { 2784 return FoundConstant; 2785 } 2786 }; 2787 2788 FindConstantInAddMulChain F; 2789 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2790 ST.visitAll(StartExpr); 2791 return F.FoundConstant; 2792 } 2793 2794 /// Get a canonical multiply expression, or something simpler if possible. 2795 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2796 SCEV::NoWrapFlags OrigFlags, 2797 unsigned Depth) { 2798 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2799 "only nuw or nsw allowed"); 2800 assert(!Ops.empty() && "Cannot get empty mul!"); 2801 if (Ops.size() == 1) return Ops[0]; 2802 #ifndef NDEBUG 2803 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2804 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2805 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2806 "SCEVMulExpr operand types don't match!"); 2807 #endif 2808 2809 // Sort by complexity, this groups all similar expression types together. 2810 GroupByComplexity(Ops, &LI, DT); 2811 2812 // If there are any constants, fold them together. 2813 unsigned Idx = 0; 2814 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2815 ++Idx; 2816 assert(Idx < Ops.size()); 2817 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2818 // We found two constants, fold them together! 2819 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 2820 if (Ops.size() == 2) return Ops[0]; 2821 Ops.erase(Ops.begin()+1); // Erase the folded element 2822 LHSC = cast<SCEVConstant>(Ops[0]); 2823 } 2824 2825 // If we have a multiply of zero, it will always be zero. 2826 if (LHSC->getValue()->isZero()) 2827 return LHSC; 2828 2829 // If we are left with a constant one being multiplied, strip it off. 2830 if (LHSC->getValue()->isOne()) { 2831 Ops.erase(Ops.begin()); 2832 --Idx; 2833 } 2834 2835 if (Ops.size() == 1) 2836 return Ops[0]; 2837 } 2838 2839 // Delay expensive flag strengthening until necessary. 2840 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2841 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 2842 }; 2843 2844 // Limit recursion calls depth. 2845 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2846 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 2847 2848 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2849 // Don't strengthen flags if we have no new information. 2850 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 2851 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 2852 Mul->setNoWrapFlags(ComputeFlags(Ops)); 2853 return S; 2854 } 2855 2856 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2857 if (Ops.size() == 2) { 2858 // C1*(C2+V) -> C1*C2 + C1*V 2859 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2860 // If any of Add's ops are Adds or Muls with a constant, apply this 2861 // transformation as well. 2862 // 2863 // TODO: There are some cases where this transformation is not 2864 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2865 // this transformation should be narrowed down. 2866 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2867 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2868 SCEV::FlagAnyWrap, Depth + 1), 2869 getMulExpr(LHSC, Add->getOperand(1), 2870 SCEV::FlagAnyWrap, Depth + 1), 2871 SCEV::FlagAnyWrap, Depth + 1); 2872 2873 if (Ops[0]->isAllOnesValue()) { 2874 // If we have a mul by -1 of an add, try distributing the -1 among the 2875 // add operands. 2876 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2877 SmallVector<const SCEV *, 4> NewOps; 2878 bool AnyFolded = false; 2879 for (const SCEV *AddOp : Add->operands()) { 2880 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2881 Depth + 1); 2882 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2883 NewOps.push_back(Mul); 2884 } 2885 if (AnyFolded) 2886 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2887 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2888 // Negation preserves a recurrence's no self-wrap property. 2889 SmallVector<const SCEV *, 4> Operands; 2890 for (const SCEV *AddRecOp : AddRec->operands()) 2891 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2892 Depth + 1)); 2893 2894 return getAddRecExpr(Operands, AddRec->getLoop(), 2895 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2896 } 2897 } 2898 } 2899 } 2900 2901 // Skip over the add expression until we get to a multiply. 2902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2903 ++Idx; 2904 2905 // If there are mul operands inline them all into this expression. 2906 if (Idx < Ops.size()) { 2907 bool DeletedMul = false; 2908 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2909 if (Ops.size() > MulOpsInlineThreshold) 2910 break; 2911 // If we have an mul, expand the mul operands onto the end of the 2912 // operands list. 2913 Ops.erase(Ops.begin()+Idx); 2914 Ops.append(Mul->op_begin(), Mul->op_end()); 2915 DeletedMul = true; 2916 } 2917 2918 // If we deleted at least one mul, we added operands to the end of the 2919 // list, and they are not necessarily sorted. Recurse to resort and 2920 // resimplify any operands we just acquired. 2921 if (DeletedMul) 2922 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2923 } 2924 2925 // If there are any add recurrences in the operands list, see if any other 2926 // added values are loop invariant. If so, we can fold them into the 2927 // recurrence. 2928 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2929 ++Idx; 2930 2931 // Scan over all recurrences, trying to fold loop invariants into them. 2932 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2933 // Scan all of the other operands to this mul and add them to the vector 2934 // if they are loop invariant w.r.t. the recurrence. 2935 SmallVector<const SCEV *, 8> LIOps; 2936 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2937 const Loop *AddRecLoop = AddRec->getLoop(); 2938 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2939 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2940 LIOps.push_back(Ops[i]); 2941 Ops.erase(Ops.begin()+i); 2942 --i; --e; 2943 } 2944 2945 // If we found some loop invariants, fold them into the recurrence. 2946 if (!LIOps.empty()) { 2947 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2948 SmallVector<const SCEV *, 4> NewOps; 2949 NewOps.reserve(AddRec->getNumOperands()); 2950 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2951 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2952 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2953 SCEV::FlagAnyWrap, Depth + 1)); 2954 2955 // Build the new addrec. Propagate the NUW and NSW flags if both the 2956 // outer mul and the inner addrec are guaranteed to have no overflow. 2957 // 2958 // No self-wrap cannot be guaranteed after changing the step size, but 2959 // will be inferred if either NUW or NSW is true. 2960 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 2961 const SCEV *NewRec = getAddRecExpr( 2962 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 2963 2964 // If all of the other operands were loop invariant, we are done. 2965 if (Ops.size() == 1) return NewRec; 2966 2967 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2968 for (unsigned i = 0;; ++i) 2969 if (Ops[i] == AddRec) { 2970 Ops[i] = NewRec; 2971 break; 2972 } 2973 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2974 } 2975 2976 // Okay, if there weren't any loop invariants to be folded, check to see 2977 // if there are multiple AddRec's with the same loop induction variable 2978 // being multiplied together. If so, we can fold them. 2979 2980 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2981 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2982 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2983 // ]]],+,...up to x=2n}. 2984 // Note that the arguments to choose() are always integers with values 2985 // known at compile time, never SCEV objects. 2986 // 2987 // The implementation avoids pointless extra computations when the two 2988 // addrec's are of different length (mathematically, it's equivalent to 2989 // an infinite stream of zeros on the right). 2990 bool OpsModified = false; 2991 for (unsigned OtherIdx = Idx+1; 2992 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2993 ++OtherIdx) { 2994 const SCEVAddRecExpr *OtherAddRec = 2995 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2996 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2997 continue; 2998 2999 // Limit max number of arguments to avoid creation of unreasonably big 3000 // SCEVAddRecs with very complex operands. 3001 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3002 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3003 continue; 3004 3005 bool Overflow = false; 3006 Type *Ty = AddRec->getType(); 3007 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3008 SmallVector<const SCEV*, 7> AddRecOps; 3009 for (int x = 0, xe = AddRec->getNumOperands() + 3010 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3011 SmallVector <const SCEV *, 7> SumOps; 3012 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3013 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3014 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3015 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3016 z < ze && !Overflow; ++z) { 3017 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3018 uint64_t Coeff; 3019 if (LargerThan64Bits) 3020 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3021 else 3022 Coeff = Coeff1*Coeff2; 3023 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3024 const SCEV *Term1 = AddRec->getOperand(y-z); 3025 const SCEV *Term2 = OtherAddRec->getOperand(z); 3026 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3027 SCEV::FlagAnyWrap, Depth + 1)); 3028 } 3029 } 3030 if (SumOps.empty()) 3031 SumOps.push_back(getZero(Ty)); 3032 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3033 } 3034 if (!Overflow) { 3035 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3036 SCEV::FlagAnyWrap); 3037 if (Ops.size() == 2) return NewAddRec; 3038 Ops[Idx] = NewAddRec; 3039 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3040 OpsModified = true; 3041 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3042 if (!AddRec) 3043 break; 3044 } 3045 } 3046 if (OpsModified) 3047 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3048 3049 // Otherwise couldn't fold anything into this recurrence. Move onto the 3050 // next one. 3051 } 3052 3053 // Okay, it looks like we really DO need an mul expr. Check to see if we 3054 // already have one, otherwise create a new one. 3055 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3056 } 3057 3058 /// Represents an unsigned remainder expression based on unsigned division. 3059 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3060 const SCEV *RHS) { 3061 assert(getEffectiveSCEVType(LHS->getType()) == 3062 getEffectiveSCEVType(RHS->getType()) && 3063 "SCEVURemExpr operand types don't match!"); 3064 3065 // Short-circuit easy cases 3066 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3067 // If constant is one, the result is trivial 3068 if (RHSC->getValue()->isOne()) 3069 return getZero(LHS->getType()); // X urem 1 --> 0 3070 3071 // If constant is a power of two, fold into a zext(trunc(LHS)). 3072 if (RHSC->getAPInt().isPowerOf2()) { 3073 Type *FullTy = LHS->getType(); 3074 Type *TruncTy = 3075 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3076 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3077 } 3078 } 3079 3080 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3081 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3082 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3083 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3084 } 3085 3086 /// Get a canonical unsigned division expression, or something simpler if 3087 /// possible. 3088 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3089 const SCEV *RHS) { 3090 assert(getEffectiveSCEVType(LHS->getType()) == 3091 getEffectiveSCEVType(RHS->getType()) && 3092 "SCEVUDivExpr operand types don't match!"); 3093 3094 FoldingSetNodeID ID; 3095 ID.AddInteger(scUDivExpr); 3096 ID.AddPointer(LHS); 3097 ID.AddPointer(RHS); 3098 void *IP = nullptr; 3099 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3100 return S; 3101 3102 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3103 if (RHSC->getValue()->isOne()) 3104 return LHS; // X udiv 1 --> x 3105 // If the denominator is zero, the result of the udiv is undefined. Don't 3106 // try to analyze it, because the resolution chosen here may differ from 3107 // the resolution chosen in other parts of the compiler. 3108 if (!RHSC->getValue()->isZero()) { 3109 // Determine if the division can be folded into the operands of 3110 // its operands. 3111 // TODO: Generalize this to non-constants by using known-bits information. 3112 Type *Ty = LHS->getType(); 3113 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3114 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3115 // For non-power-of-two values, effectively round the value up to the 3116 // nearest power of two. 3117 if (!RHSC->getAPInt().isPowerOf2()) 3118 ++MaxShiftAmt; 3119 IntegerType *ExtTy = 3120 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3121 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3122 if (const SCEVConstant *Step = 3123 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3124 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3125 const APInt &StepInt = Step->getAPInt(); 3126 const APInt &DivInt = RHSC->getAPInt(); 3127 if (!StepInt.urem(DivInt) && 3128 getZeroExtendExpr(AR, ExtTy) == 3129 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3130 getZeroExtendExpr(Step, ExtTy), 3131 AR->getLoop(), SCEV::FlagAnyWrap)) { 3132 SmallVector<const SCEV *, 4> Operands; 3133 for (const SCEV *Op : AR->operands()) 3134 Operands.push_back(getUDivExpr(Op, RHS)); 3135 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3136 } 3137 /// Get a canonical UDivExpr for a recurrence. 3138 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3139 // We can currently only fold X%N if X is constant. 3140 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3141 if (StartC && !DivInt.urem(StepInt) && 3142 getZeroExtendExpr(AR, ExtTy) == 3143 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3144 getZeroExtendExpr(Step, ExtTy), 3145 AR->getLoop(), SCEV::FlagAnyWrap)) { 3146 const APInt &StartInt = StartC->getAPInt(); 3147 const APInt &StartRem = StartInt.urem(StepInt); 3148 if (StartRem != 0) { 3149 const SCEV *NewLHS = 3150 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3151 AR->getLoop(), SCEV::FlagNW); 3152 if (LHS != NewLHS) { 3153 LHS = NewLHS; 3154 3155 // Reset the ID to include the new LHS, and check if it is 3156 // already cached. 3157 ID.clear(); 3158 ID.AddInteger(scUDivExpr); 3159 ID.AddPointer(LHS); 3160 ID.AddPointer(RHS); 3161 IP = nullptr; 3162 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3163 return S; 3164 } 3165 } 3166 } 3167 } 3168 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3169 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3170 SmallVector<const SCEV *, 4> Operands; 3171 for (const SCEV *Op : M->operands()) 3172 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3173 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3174 // Find an operand that's safely divisible. 3175 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3176 const SCEV *Op = M->getOperand(i); 3177 const SCEV *Div = getUDivExpr(Op, RHSC); 3178 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3179 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3180 M->op_end()); 3181 Operands[i] = Div; 3182 return getMulExpr(Operands); 3183 } 3184 } 3185 } 3186 3187 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3188 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3189 if (auto *DivisorConstant = 3190 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3191 bool Overflow = false; 3192 APInt NewRHS = 3193 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3194 if (Overflow) { 3195 return getConstant(RHSC->getType(), 0, false); 3196 } 3197 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3198 } 3199 } 3200 3201 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3202 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3203 SmallVector<const SCEV *, 4> Operands; 3204 for (const SCEV *Op : A->operands()) 3205 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3206 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3207 Operands.clear(); 3208 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3209 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3210 if (isa<SCEVUDivExpr>(Op) || 3211 getMulExpr(Op, RHS) != A->getOperand(i)) 3212 break; 3213 Operands.push_back(Op); 3214 } 3215 if (Operands.size() == A->getNumOperands()) 3216 return getAddExpr(Operands); 3217 } 3218 } 3219 3220 // Fold if both operands are constant. 3221 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3222 Constant *LHSCV = LHSC->getValue(); 3223 Constant *RHSCV = RHSC->getValue(); 3224 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3225 RHSCV))); 3226 } 3227 } 3228 } 3229 3230 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3231 // changes). Make sure we get a new one. 3232 IP = nullptr; 3233 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3234 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3235 LHS, RHS); 3236 UniqueSCEVs.InsertNode(S, IP); 3237 addToLoopUseLists(S); 3238 return S; 3239 } 3240 3241 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3242 APInt A = C1->getAPInt().abs(); 3243 APInt B = C2->getAPInt().abs(); 3244 uint32_t ABW = A.getBitWidth(); 3245 uint32_t BBW = B.getBitWidth(); 3246 3247 if (ABW > BBW) 3248 B = B.zext(ABW); 3249 else if (ABW < BBW) 3250 A = A.zext(BBW); 3251 3252 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3253 } 3254 3255 /// Get a canonical unsigned division expression, or something simpler if 3256 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3257 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3258 /// it's not exact because the udiv may be clearing bits. 3259 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3260 const SCEV *RHS) { 3261 // TODO: we could try to find factors in all sorts of things, but for now we 3262 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3263 // end of this file for inspiration. 3264 3265 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3266 if (!Mul || !Mul->hasNoUnsignedWrap()) 3267 return getUDivExpr(LHS, RHS); 3268 3269 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3270 // If the mulexpr multiplies by a constant, then that constant must be the 3271 // first element of the mulexpr. 3272 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3273 if (LHSCst == RHSCst) { 3274 SmallVector<const SCEV *, 2> Operands; 3275 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3276 return getMulExpr(Operands); 3277 } 3278 3279 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3280 // that there's a factor provided by one of the other terms. We need to 3281 // check. 3282 APInt Factor = gcd(LHSCst, RHSCst); 3283 if (!Factor.isIntN(1)) { 3284 LHSCst = 3285 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3286 RHSCst = 3287 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3288 SmallVector<const SCEV *, 2> Operands; 3289 Operands.push_back(LHSCst); 3290 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3291 LHS = getMulExpr(Operands); 3292 RHS = RHSCst; 3293 Mul = dyn_cast<SCEVMulExpr>(LHS); 3294 if (!Mul) 3295 return getUDivExactExpr(LHS, RHS); 3296 } 3297 } 3298 } 3299 3300 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3301 if (Mul->getOperand(i) == RHS) { 3302 SmallVector<const SCEV *, 2> Operands; 3303 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3304 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3305 return getMulExpr(Operands); 3306 } 3307 } 3308 3309 return getUDivExpr(LHS, RHS); 3310 } 3311 3312 /// Get an add recurrence expression for the specified loop. Simplify the 3313 /// expression as much as possible. 3314 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3315 const Loop *L, 3316 SCEV::NoWrapFlags Flags) { 3317 SmallVector<const SCEV *, 4> Operands; 3318 Operands.push_back(Start); 3319 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3320 if (StepChrec->getLoop() == L) { 3321 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3322 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3323 } 3324 3325 Operands.push_back(Step); 3326 return getAddRecExpr(Operands, L, Flags); 3327 } 3328 3329 /// Get an add recurrence expression for the specified loop. Simplify the 3330 /// expression as much as possible. 3331 const SCEV * 3332 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3333 const Loop *L, SCEV::NoWrapFlags Flags) { 3334 if (Operands.size() == 1) return Operands[0]; 3335 #ifndef NDEBUG 3336 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3337 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3338 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3339 "SCEVAddRecExpr operand types don't match!"); 3340 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3341 assert(isLoopInvariant(Operands[i], L) && 3342 "SCEVAddRecExpr operand is not loop-invariant!"); 3343 #endif 3344 3345 if (Operands.back()->isZero()) { 3346 Operands.pop_back(); 3347 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3348 } 3349 3350 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3351 // use that information to infer NUW and NSW flags. However, computing a 3352 // BE count requires calling getAddRecExpr, so we may not yet have a 3353 // meaningful BE count at this point (and if we don't, we'd be stuck 3354 // with a SCEVCouldNotCompute as the cached BE count). 3355 3356 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3357 3358 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3359 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3360 const Loop *NestedLoop = NestedAR->getLoop(); 3361 if (L->contains(NestedLoop) 3362 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3363 : (!NestedLoop->contains(L) && 3364 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3365 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3366 NestedAR->op_end()); 3367 Operands[0] = NestedAR->getStart(); 3368 // AddRecs require their operands be loop-invariant with respect to their 3369 // loops. Don't perform this transformation if it would break this 3370 // requirement. 3371 bool AllInvariant = all_of( 3372 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3373 3374 if (AllInvariant) { 3375 // Create a recurrence for the outer loop with the same step size. 3376 // 3377 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3378 // inner recurrence has the same property. 3379 SCEV::NoWrapFlags OuterFlags = 3380 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3381 3382 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3383 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3384 return isLoopInvariant(Op, NestedLoop); 3385 }); 3386 3387 if (AllInvariant) { 3388 // Ok, both add recurrences are valid after the transformation. 3389 // 3390 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3391 // the outer recurrence has the same property. 3392 SCEV::NoWrapFlags InnerFlags = 3393 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3394 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3395 } 3396 } 3397 // Reset Operands to its original state. 3398 Operands[0] = NestedAR; 3399 } 3400 } 3401 3402 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3403 // already have one, otherwise create a new one. 3404 return getOrCreateAddRecExpr(Operands, L, Flags); 3405 } 3406 3407 const SCEV * 3408 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3409 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3410 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3411 // getSCEV(Base)->getType() has the same address space as Base->getType() 3412 // because SCEV::getType() preserves the address space. 3413 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3414 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3415 // instruction to its SCEV, because the Instruction may be guarded by control 3416 // flow and the no-overflow bits may not be valid for the expression in any 3417 // context. This can be fixed similarly to how these flags are handled for 3418 // adds. 3419 SCEV::NoWrapFlags OffsetWrap = 3420 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3421 3422 Type *CurTy = GEP->getType(); 3423 bool FirstIter = true; 3424 SmallVector<const SCEV *, 4> Offsets; 3425 for (const SCEV *IndexExpr : IndexExprs) { 3426 // Compute the (potentially symbolic) offset in bytes for this index. 3427 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3428 // For a struct, add the member offset. 3429 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3430 unsigned FieldNo = Index->getZExtValue(); 3431 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3432 Offsets.push_back(FieldOffset); 3433 3434 // Update CurTy to the type of the field at Index. 3435 CurTy = STy->getTypeAtIndex(Index); 3436 } else { 3437 // Update CurTy to its element type. 3438 if (FirstIter) { 3439 assert(isa<PointerType>(CurTy) && 3440 "The first index of a GEP indexes a pointer"); 3441 CurTy = GEP->getSourceElementType(); 3442 FirstIter = false; 3443 } else { 3444 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3445 } 3446 // For an array, add the element offset, explicitly scaled. 3447 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3448 // Getelementptr indices are signed. 3449 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3450 3451 // Multiply the index by the element size to compute the element offset. 3452 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3453 Offsets.push_back(LocalOffset); 3454 } 3455 } 3456 3457 // Handle degenerate case of GEP without offsets. 3458 if (Offsets.empty()) 3459 return BaseExpr; 3460 3461 // Add the offsets together, assuming nsw if inbounds. 3462 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3463 // Add the base address and the offset. We cannot use the nsw flag, as the 3464 // base address is unsigned. However, if we know that the offset is 3465 // non-negative, we can use nuw. 3466 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3467 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3468 return getAddExpr(BaseExpr, Offset, BaseWrap); 3469 } 3470 3471 std::tuple<SCEV *, FoldingSetNodeID, void *> 3472 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3473 ArrayRef<const SCEV *> Ops) { 3474 FoldingSetNodeID ID; 3475 void *IP = nullptr; 3476 ID.AddInteger(SCEVType); 3477 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3478 ID.AddPointer(Ops[i]); 3479 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3480 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3481 } 3482 3483 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3484 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3485 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3486 } 3487 3488 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) { 3489 Type *Ty = Op->getType(); 3490 return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty)); 3491 } 3492 3493 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3494 SmallVectorImpl<const SCEV *> &Ops) { 3495 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3496 if (Ops.size() == 1) return Ops[0]; 3497 #ifndef NDEBUG 3498 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3499 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3500 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3501 "Operand types don't match!"); 3502 #endif 3503 3504 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3505 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3506 3507 // Sort by complexity, this groups all similar expression types together. 3508 GroupByComplexity(Ops, &LI, DT); 3509 3510 // Check if we have created the same expression before. 3511 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3512 return S; 3513 } 3514 3515 // If there are any constants, fold them together. 3516 unsigned Idx = 0; 3517 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3518 ++Idx; 3519 assert(Idx < Ops.size()); 3520 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3521 if (Kind == scSMaxExpr) 3522 return APIntOps::smax(LHS, RHS); 3523 else if (Kind == scSMinExpr) 3524 return APIntOps::smin(LHS, RHS); 3525 else if (Kind == scUMaxExpr) 3526 return APIntOps::umax(LHS, RHS); 3527 else if (Kind == scUMinExpr) 3528 return APIntOps::umin(LHS, RHS); 3529 llvm_unreachable("Unknown SCEV min/max opcode"); 3530 }; 3531 3532 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3533 // We found two constants, fold them together! 3534 ConstantInt *Fold = ConstantInt::get( 3535 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3536 Ops[0] = getConstant(Fold); 3537 Ops.erase(Ops.begin()+1); // Erase the folded element 3538 if (Ops.size() == 1) return Ops[0]; 3539 LHSC = cast<SCEVConstant>(Ops[0]); 3540 } 3541 3542 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3543 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3544 3545 if (IsMax ? IsMinV : IsMaxV) { 3546 // If we are left with a constant minimum(/maximum)-int, strip it off. 3547 Ops.erase(Ops.begin()); 3548 --Idx; 3549 } else if (IsMax ? IsMaxV : IsMinV) { 3550 // If we have a max(/min) with a constant maximum(/minimum)-int, 3551 // it will always be the extremum. 3552 return LHSC; 3553 } 3554 3555 if (Ops.size() == 1) return Ops[0]; 3556 } 3557 3558 // Find the first operation of the same kind 3559 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3560 ++Idx; 3561 3562 // Check to see if one of the operands is of the same kind. If so, expand its 3563 // operands onto our operand list, and recurse to simplify. 3564 if (Idx < Ops.size()) { 3565 bool DeletedAny = false; 3566 while (Ops[Idx]->getSCEVType() == Kind) { 3567 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3568 Ops.erase(Ops.begin()+Idx); 3569 Ops.append(SMME->op_begin(), SMME->op_end()); 3570 DeletedAny = true; 3571 } 3572 3573 if (DeletedAny) 3574 return getMinMaxExpr(Kind, Ops); 3575 } 3576 3577 // Okay, check to see if the same value occurs in the operand list twice. If 3578 // so, delete one. Since we sorted the list, these values are required to 3579 // be adjacent. 3580 llvm::CmpInst::Predicate GEPred = 3581 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3582 llvm::CmpInst::Predicate LEPred = 3583 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3584 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3585 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3586 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3587 if (Ops[i] == Ops[i + 1] || 3588 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3589 // X op Y op Y --> X op Y 3590 // X op Y --> X, if we know X, Y are ordered appropriately 3591 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3592 --i; 3593 --e; 3594 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3595 Ops[i + 1])) { 3596 // X op Y --> Y, if we know X, Y are ordered appropriately 3597 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3598 --i; 3599 --e; 3600 } 3601 } 3602 3603 if (Ops.size() == 1) return Ops[0]; 3604 3605 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3606 3607 // Okay, it looks like we really DO need an expr. Check to see if we 3608 // already have one, otherwise create a new one. 3609 const SCEV *ExistingSCEV; 3610 FoldingSetNodeID ID; 3611 void *IP; 3612 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3613 if (ExistingSCEV) 3614 return ExistingSCEV; 3615 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3616 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3617 SCEV *S = new (SCEVAllocator) 3618 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3619 3620 UniqueSCEVs.InsertNode(S, IP); 3621 addToLoopUseLists(S); 3622 return S; 3623 } 3624 3625 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3626 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3627 return getSMaxExpr(Ops); 3628 } 3629 3630 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3631 return getMinMaxExpr(scSMaxExpr, Ops); 3632 } 3633 3634 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3635 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3636 return getUMaxExpr(Ops); 3637 } 3638 3639 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3640 return getMinMaxExpr(scUMaxExpr, Ops); 3641 } 3642 3643 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3644 const SCEV *RHS) { 3645 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3646 return getSMinExpr(Ops); 3647 } 3648 3649 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3650 return getMinMaxExpr(scSMinExpr, Ops); 3651 } 3652 3653 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3654 const SCEV *RHS) { 3655 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3656 return getUMinExpr(Ops); 3657 } 3658 3659 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3660 return getMinMaxExpr(scUMinExpr, Ops); 3661 } 3662 3663 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3664 if (isa<ScalableVectorType>(AllocTy)) { 3665 Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo()); 3666 Constant *One = ConstantInt::get(IntTy, 1); 3667 Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One); 3668 // Note that the expression we created is the final expression, we don't 3669 // want to simplify it any further Also, if we call a normal getSCEV(), 3670 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3671 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3672 } 3673 // We can bypass creating a target-independent 3674 // constant expression and then folding it back into a ConstantInt. 3675 // This is just a compile-time optimization. 3676 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3677 } 3678 3679 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3680 StructType *STy, 3681 unsigned FieldNo) { 3682 // We can bypass creating a target-independent 3683 // constant expression and then folding it back into a ConstantInt. 3684 // This is just a compile-time optimization. 3685 return getConstant( 3686 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3687 } 3688 3689 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3690 // Don't attempt to do anything other than create a SCEVUnknown object 3691 // here. createSCEV only calls getUnknown after checking for all other 3692 // interesting possibilities, and any other code that calls getUnknown 3693 // is doing so in order to hide a value from SCEV canonicalization. 3694 3695 FoldingSetNodeID ID; 3696 ID.AddInteger(scUnknown); 3697 ID.AddPointer(V); 3698 void *IP = nullptr; 3699 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3700 assert(cast<SCEVUnknown>(S)->getValue() == V && 3701 "Stale SCEVUnknown in uniquing map!"); 3702 return S; 3703 } 3704 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3705 FirstUnknown); 3706 FirstUnknown = cast<SCEVUnknown>(S); 3707 UniqueSCEVs.InsertNode(S, IP); 3708 return S; 3709 } 3710 3711 //===----------------------------------------------------------------------===// 3712 // Basic SCEV Analysis and PHI Idiom Recognition Code 3713 // 3714 3715 /// Test if values of the given type are analyzable within the SCEV 3716 /// framework. This primarily includes integer types, and it can optionally 3717 /// include pointer types if the ScalarEvolution class has access to 3718 /// target-specific information. 3719 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3720 // Integers and pointers are always SCEVable. 3721 return Ty->isIntOrPtrTy(); 3722 } 3723 3724 /// Return the size in bits of the specified type, for which isSCEVable must 3725 /// return true. 3726 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3727 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3728 if (Ty->isPointerTy()) 3729 return getDataLayout().getIndexTypeSizeInBits(Ty); 3730 return getDataLayout().getTypeSizeInBits(Ty); 3731 } 3732 3733 /// Return a type with the same bitwidth as the given type and which represents 3734 /// how SCEV will treat the given type, for which isSCEVable must return 3735 /// true. For pointer types, this is the pointer index sized integer type. 3736 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3737 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3738 3739 if (Ty->isIntegerTy()) 3740 return Ty; 3741 3742 // The only other support type is pointer. 3743 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3744 return getDataLayout().getIndexType(Ty); 3745 } 3746 3747 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3748 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3749 } 3750 3751 const SCEV *ScalarEvolution::getCouldNotCompute() { 3752 return CouldNotCompute.get(); 3753 } 3754 3755 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3756 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3757 auto *SU = dyn_cast<SCEVUnknown>(S); 3758 return SU && SU->getValue() == nullptr; 3759 }); 3760 3761 return !ContainsNulls; 3762 } 3763 3764 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3765 HasRecMapType::iterator I = HasRecMap.find(S); 3766 if (I != HasRecMap.end()) 3767 return I->second; 3768 3769 bool FoundAddRec = 3770 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3771 HasRecMap.insert({S, FoundAddRec}); 3772 return FoundAddRec; 3773 } 3774 3775 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3776 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3777 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3778 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3779 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3780 if (!Add) 3781 return {S, nullptr}; 3782 3783 if (Add->getNumOperands() != 2) 3784 return {S, nullptr}; 3785 3786 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3787 if (!ConstOp) 3788 return {S, nullptr}; 3789 3790 return {Add->getOperand(1), ConstOp->getValue()}; 3791 } 3792 3793 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3794 /// by the value and offset from any ValueOffsetPair in the set. 3795 SetVector<ScalarEvolution::ValueOffsetPair> * 3796 ScalarEvolution::getSCEVValues(const SCEV *S) { 3797 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3798 if (SI == ExprValueMap.end()) 3799 return nullptr; 3800 #ifndef NDEBUG 3801 if (VerifySCEVMap) { 3802 // Check there is no dangling Value in the set returned. 3803 for (const auto &VE : SI->second) 3804 assert(ValueExprMap.count(VE.first)); 3805 } 3806 #endif 3807 return &SI->second; 3808 } 3809 3810 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3811 /// cannot be used separately. eraseValueFromMap should be used to remove 3812 /// V from ValueExprMap and ExprValueMap at the same time. 3813 void ScalarEvolution::eraseValueFromMap(Value *V) { 3814 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3815 if (I != ValueExprMap.end()) { 3816 const SCEV *S = I->second; 3817 // Remove {V, 0} from the set of ExprValueMap[S] 3818 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3819 SV->remove({V, nullptr}); 3820 3821 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3822 const SCEV *Stripped; 3823 ConstantInt *Offset; 3824 std::tie(Stripped, Offset) = splitAddExpr(S); 3825 if (Offset != nullptr) { 3826 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3827 SV->remove({V, Offset}); 3828 } 3829 ValueExprMap.erase(V); 3830 } 3831 } 3832 3833 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3834 /// TODO: In reality it is better to check the poison recursively 3835 /// but this is better than nothing. 3836 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3837 if (auto *I = dyn_cast<Instruction>(V)) { 3838 if (isa<OverflowingBinaryOperator>(I)) { 3839 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3840 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3841 return true; 3842 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3843 return true; 3844 } 3845 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3846 return true; 3847 } 3848 return false; 3849 } 3850 3851 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3852 /// create a new one. 3853 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3854 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3855 3856 const SCEV *S = getExistingSCEV(V); 3857 if (S == nullptr) { 3858 S = createSCEV(V); 3859 // During PHI resolution, it is possible to create two SCEVs for the same 3860 // V, so it is needed to double check whether V->S is inserted into 3861 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3862 std::pair<ValueExprMapType::iterator, bool> Pair = 3863 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3864 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3865 ExprValueMap[S].insert({V, nullptr}); 3866 3867 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3868 // ExprValueMap. 3869 const SCEV *Stripped = S; 3870 ConstantInt *Offset = nullptr; 3871 std::tie(Stripped, Offset) = splitAddExpr(S); 3872 // If stripped is SCEVUnknown, don't bother to save 3873 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3874 // increase the complexity of the expansion code. 3875 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3876 // because it may generate add/sub instead of GEP in SCEV expansion. 3877 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3878 !isa<GetElementPtrInst>(V)) 3879 ExprValueMap[Stripped].insert({V, Offset}); 3880 } 3881 } 3882 return S; 3883 } 3884 3885 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3886 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3887 3888 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3889 if (I != ValueExprMap.end()) { 3890 const SCEV *S = I->second; 3891 if (checkValidity(S)) 3892 return S; 3893 eraseValueFromMap(V); 3894 forgetMemoizedResults(S); 3895 } 3896 return nullptr; 3897 } 3898 3899 /// Return a SCEV corresponding to -V = -1*V 3900 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3901 SCEV::NoWrapFlags Flags) { 3902 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3903 return getConstant( 3904 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3905 3906 Type *Ty = V->getType(); 3907 Ty = getEffectiveSCEVType(Ty); 3908 return getMulExpr(V, getMinusOne(Ty), Flags); 3909 } 3910 3911 /// If Expr computes ~A, return A else return nullptr 3912 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3913 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3914 if (!Add || Add->getNumOperands() != 2 || 3915 !Add->getOperand(0)->isAllOnesValue()) 3916 return nullptr; 3917 3918 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3919 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3920 !AddRHS->getOperand(0)->isAllOnesValue()) 3921 return nullptr; 3922 3923 return AddRHS->getOperand(1); 3924 } 3925 3926 /// Return a SCEV corresponding to ~V = -1-V 3927 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3928 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3929 return getConstant( 3930 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3931 3932 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3933 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3934 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3935 SmallVector<const SCEV *, 2> MatchedOperands; 3936 for (const SCEV *Operand : MME->operands()) { 3937 const SCEV *Matched = MatchNotExpr(Operand); 3938 if (!Matched) 3939 return (const SCEV *)nullptr; 3940 MatchedOperands.push_back(Matched); 3941 } 3942 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 3943 MatchedOperands); 3944 }; 3945 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3946 return Replaced; 3947 } 3948 3949 Type *Ty = V->getType(); 3950 Ty = getEffectiveSCEVType(Ty); 3951 return getMinusSCEV(getMinusOne(Ty), V); 3952 } 3953 3954 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3955 SCEV::NoWrapFlags Flags, 3956 unsigned Depth) { 3957 // Fast path: X - X --> 0. 3958 if (LHS == RHS) 3959 return getZero(LHS->getType()); 3960 3961 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3962 // makes it so that we cannot make much use of NUW. 3963 auto AddFlags = SCEV::FlagAnyWrap; 3964 const bool RHSIsNotMinSigned = 3965 !getSignedRangeMin(RHS).isMinSignedValue(); 3966 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3967 // Let M be the minimum representable signed value. Then (-1)*RHS 3968 // signed-wraps if and only if RHS is M. That can happen even for 3969 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3970 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3971 // (-1)*RHS, we need to prove that RHS != M. 3972 // 3973 // If LHS is non-negative and we know that LHS - RHS does not 3974 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3975 // either by proving that RHS > M or that LHS >= 0. 3976 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3977 AddFlags = SCEV::FlagNSW; 3978 } 3979 } 3980 3981 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3982 // RHS is NSW and LHS >= 0. 3983 // 3984 // The difficulty here is that the NSW flag may have been proven 3985 // relative to a loop that is to be found in a recurrence in LHS and 3986 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3987 // larger scope than intended. 3988 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3989 3990 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3991 } 3992 3993 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 3994 unsigned Depth) { 3995 Type *SrcTy = V->getType(); 3996 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3997 "Cannot truncate or zero extend with non-integer arguments!"); 3998 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3999 return V; // No conversion 4000 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4001 return getTruncateExpr(V, Ty, Depth); 4002 return getZeroExtendExpr(V, Ty, Depth); 4003 } 4004 4005 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4006 unsigned Depth) { 4007 Type *SrcTy = V->getType(); 4008 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4009 "Cannot truncate or zero extend with non-integer arguments!"); 4010 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4011 return V; // No conversion 4012 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4013 return getTruncateExpr(V, Ty, Depth); 4014 return getSignExtendExpr(V, Ty, Depth); 4015 } 4016 4017 const SCEV * 4018 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4019 Type *SrcTy = V->getType(); 4020 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4021 "Cannot noop or zero extend with non-integer arguments!"); 4022 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4023 "getNoopOrZeroExtend cannot truncate!"); 4024 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4025 return V; // No conversion 4026 return getZeroExtendExpr(V, Ty); 4027 } 4028 4029 const SCEV * 4030 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4031 Type *SrcTy = V->getType(); 4032 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4033 "Cannot noop or sign extend with non-integer arguments!"); 4034 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4035 "getNoopOrSignExtend cannot truncate!"); 4036 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4037 return V; // No conversion 4038 return getSignExtendExpr(V, Ty); 4039 } 4040 4041 const SCEV * 4042 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4043 Type *SrcTy = V->getType(); 4044 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4045 "Cannot noop or any extend with non-integer arguments!"); 4046 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4047 "getNoopOrAnyExtend cannot truncate!"); 4048 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4049 return V; // No conversion 4050 return getAnyExtendExpr(V, Ty); 4051 } 4052 4053 const SCEV * 4054 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4055 Type *SrcTy = V->getType(); 4056 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4057 "Cannot truncate or noop with non-integer arguments!"); 4058 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4059 "getTruncateOrNoop cannot extend!"); 4060 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4061 return V; // No conversion 4062 return getTruncateExpr(V, Ty); 4063 } 4064 4065 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4066 const SCEV *RHS) { 4067 const SCEV *PromotedLHS = LHS; 4068 const SCEV *PromotedRHS = RHS; 4069 4070 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4071 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4072 else 4073 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4074 4075 return getUMaxExpr(PromotedLHS, PromotedRHS); 4076 } 4077 4078 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4079 const SCEV *RHS) { 4080 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4081 return getUMinFromMismatchedTypes(Ops); 4082 } 4083 4084 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4085 SmallVectorImpl<const SCEV *> &Ops) { 4086 assert(!Ops.empty() && "At least one operand must be!"); 4087 // Trivial case. 4088 if (Ops.size() == 1) 4089 return Ops[0]; 4090 4091 // Find the max type first. 4092 Type *MaxType = nullptr; 4093 for (auto *S : Ops) 4094 if (MaxType) 4095 MaxType = getWiderType(MaxType, S->getType()); 4096 else 4097 MaxType = S->getType(); 4098 assert(MaxType && "Failed to find maximum type!"); 4099 4100 // Extend all ops to max type. 4101 SmallVector<const SCEV *, 2> PromotedOps; 4102 for (auto *S : Ops) 4103 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4104 4105 // Generate umin. 4106 return getUMinExpr(PromotedOps); 4107 } 4108 4109 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4110 // A pointer operand may evaluate to a nonpointer expression, such as null. 4111 if (!V->getType()->isPointerTy()) 4112 return V; 4113 4114 while (true) { 4115 if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) { 4116 V = Cast->getOperand(); 4117 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4118 const SCEV *PtrOp = nullptr; 4119 for (const SCEV *NAryOp : NAry->operands()) { 4120 if (NAryOp->getType()->isPointerTy()) { 4121 // Cannot find the base of an expression with multiple pointer ops. 4122 if (PtrOp) 4123 return V; 4124 PtrOp = NAryOp; 4125 } 4126 } 4127 if (!PtrOp) // All operands were non-pointer. 4128 return V; 4129 V = PtrOp; 4130 } else // Not something we can look further into. 4131 return V; 4132 } 4133 } 4134 4135 /// Push users of the given Instruction onto the given Worklist. 4136 static void 4137 PushDefUseChildren(Instruction *I, 4138 SmallVectorImpl<Instruction *> &Worklist) { 4139 // Push the def-use children onto the Worklist stack. 4140 for (User *U : I->users()) 4141 Worklist.push_back(cast<Instruction>(U)); 4142 } 4143 4144 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4145 SmallVector<Instruction *, 16> Worklist; 4146 PushDefUseChildren(PN, Worklist); 4147 4148 SmallPtrSet<Instruction *, 8> Visited; 4149 Visited.insert(PN); 4150 while (!Worklist.empty()) { 4151 Instruction *I = Worklist.pop_back_val(); 4152 if (!Visited.insert(I).second) 4153 continue; 4154 4155 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4156 if (It != ValueExprMap.end()) { 4157 const SCEV *Old = It->second; 4158 4159 // Short-circuit the def-use traversal if the symbolic name 4160 // ceases to appear in expressions. 4161 if (Old != SymName && !hasOperand(Old, SymName)) 4162 continue; 4163 4164 // SCEVUnknown for a PHI either means that it has an unrecognized 4165 // structure, it's a PHI that's in the progress of being computed 4166 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4167 // additional loop trip count information isn't going to change anything. 4168 // In the second case, createNodeForPHI will perform the necessary 4169 // updates on its own when it gets to that point. In the third, we do 4170 // want to forget the SCEVUnknown. 4171 if (!isa<PHINode>(I) || 4172 !isa<SCEVUnknown>(Old) || 4173 (I != PN && Old == SymName)) { 4174 eraseValueFromMap(It->first); 4175 forgetMemoizedResults(Old); 4176 } 4177 } 4178 4179 PushDefUseChildren(I, Worklist); 4180 } 4181 } 4182 4183 namespace { 4184 4185 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4186 /// expression in case its Loop is L. If it is not L then 4187 /// if IgnoreOtherLoops is true then use AddRec itself 4188 /// otherwise rewrite cannot be done. 4189 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4190 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4191 public: 4192 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4193 bool IgnoreOtherLoops = true) { 4194 SCEVInitRewriter Rewriter(L, SE); 4195 const SCEV *Result = Rewriter.visit(S); 4196 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4197 return SE.getCouldNotCompute(); 4198 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4199 ? SE.getCouldNotCompute() 4200 : Result; 4201 } 4202 4203 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4204 if (!SE.isLoopInvariant(Expr, L)) 4205 SeenLoopVariantSCEVUnknown = true; 4206 return Expr; 4207 } 4208 4209 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4210 // Only re-write AddRecExprs for this loop. 4211 if (Expr->getLoop() == L) 4212 return Expr->getStart(); 4213 SeenOtherLoops = true; 4214 return Expr; 4215 } 4216 4217 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4218 4219 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4220 4221 private: 4222 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4223 : SCEVRewriteVisitor(SE), L(L) {} 4224 4225 const Loop *L; 4226 bool SeenLoopVariantSCEVUnknown = false; 4227 bool SeenOtherLoops = false; 4228 }; 4229 4230 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4231 /// increment expression in case its Loop is L. If it is not L then 4232 /// use AddRec itself. 4233 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4234 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4235 public: 4236 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4237 SCEVPostIncRewriter Rewriter(L, SE); 4238 const SCEV *Result = Rewriter.visit(S); 4239 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4240 ? SE.getCouldNotCompute() 4241 : Result; 4242 } 4243 4244 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4245 if (!SE.isLoopInvariant(Expr, L)) 4246 SeenLoopVariantSCEVUnknown = true; 4247 return Expr; 4248 } 4249 4250 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4251 // Only re-write AddRecExprs for this loop. 4252 if (Expr->getLoop() == L) 4253 return Expr->getPostIncExpr(SE); 4254 SeenOtherLoops = true; 4255 return Expr; 4256 } 4257 4258 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4259 4260 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4261 4262 private: 4263 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4264 : SCEVRewriteVisitor(SE), L(L) {} 4265 4266 const Loop *L; 4267 bool SeenLoopVariantSCEVUnknown = false; 4268 bool SeenOtherLoops = false; 4269 }; 4270 4271 /// This class evaluates the compare condition by matching it against the 4272 /// condition of loop latch. If there is a match we assume a true value 4273 /// for the condition while building SCEV nodes. 4274 class SCEVBackedgeConditionFolder 4275 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4276 public: 4277 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4278 ScalarEvolution &SE) { 4279 bool IsPosBECond = false; 4280 Value *BECond = nullptr; 4281 if (BasicBlock *Latch = L->getLoopLatch()) { 4282 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4283 if (BI && BI->isConditional()) { 4284 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4285 "Both outgoing branches should not target same header!"); 4286 BECond = BI->getCondition(); 4287 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4288 } else { 4289 return S; 4290 } 4291 } 4292 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4293 return Rewriter.visit(S); 4294 } 4295 4296 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4297 const SCEV *Result = Expr; 4298 bool InvariantF = SE.isLoopInvariant(Expr, L); 4299 4300 if (!InvariantF) { 4301 Instruction *I = cast<Instruction>(Expr->getValue()); 4302 switch (I->getOpcode()) { 4303 case Instruction::Select: { 4304 SelectInst *SI = cast<SelectInst>(I); 4305 Optional<const SCEV *> Res = 4306 compareWithBackedgeCondition(SI->getCondition()); 4307 if (Res.hasValue()) { 4308 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4309 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4310 } 4311 break; 4312 } 4313 default: { 4314 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4315 if (Res.hasValue()) 4316 Result = Res.getValue(); 4317 break; 4318 } 4319 } 4320 } 4321 return Result; 4322 } 4323 4324 private: 4325 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4326 bool IsPosBECond, ScalarEvolution &SE) 4327 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4328 IsPositiveBECond(IsPosBECond) {} 4329 4330 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4331 4332 const Loop *L; 4333 /// Loop back condition. 4334 Value *BackedgeCond = nullptr; 4335 /// Set to true if loop back is on positive branch condition. 4336 bool IsPositiveBECond; 4337 }; 4338 4339 Optional<const SCEV *> 4340 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4341 4342 // If value matches the backedge condition for loop latch, 4343 // then return a constant evolution node based on loopback 4344 // branch taken. 4345 if (BackedgeCond == IC) 4346 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4347 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4348 return None; 4349 } 4350 4351 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4352 public: 4353 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4354 ScalarEvolution &SE) { 4355 SCEVShiftRewriter Rewriter(L, SE); 4356 const SCEV *Result = Rewriter.visit(S); 4357 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4358 } 4359 4360 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4361 // Only allow AddRecExprs for this loop. 4362 if (!SE.isLoopInvariant(Expr, L)) 4363 Valid = false; 4364 return Expr; 4365 } 4366 4367 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4368 if (Expr->getLoop() == L && Expr->isAffine()) 4369 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4370 Valid = false; 4371 return Expr; 4372 } 4373 4374 bool isValid() { return Valid; } 4375 4376 private: 4377 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4378 : SCEVRewriteVisitor(SE), L(L) {} 4379 4380 const Loop *L; 4381 bool Valid = true; 4382 }; 4383 4384 } // end anonymous namespace 4385 4386 SCEV::NoWrapFlags 4387 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4388 if (!AR->isAffine()) 4389 return SCEV::FlagAnyWrap; 4390 4391 using OBO = OverflowingBinaryOperator; 4392 4393 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4394 4395 if (!AR->hasNoSignedWrap()) { 4396 ConstantRange AddRecRange = getSignedRange(AR); 4397 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4398 4399 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4400 Instruction::Add, IncRange, OBO::NoSignedWrap); 4401 if (NSWRegion.contains(AddRecRange)) 4402 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4403 } 4404 4405 if (!AR->hasNoUnsignedWrap()) { 4406 ConstantRange AddRecRange = getUnsignedRange(AR); 4407 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4408 4409 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4410 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4411 if (NUWRegion.contains(AddRecRange)) 4412 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4413 } 4414 4415 return Result; 4416 } 4417 4418 SCEV::NoWrapFlags 4419 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4420 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4421 4422 if (AR->hasNoSignedWrap()) 4423 return Result; 4424 4425 if (!AR->isAffine()) 4426 return Result; 4427 4428 const SCEV *Step = AR->getStepRecurrence(*this); 4429 const Loop *L = AR->getLoop(); 4430 4431 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4432 // Note that this serves two purposes: It filters out loops that are 4433 // simply not analyzable, and it covers the case where this code is 4434 // being called from within backedge-taken count analysis, such that 4435 // attempting to ask for the backedge-taken count would likely result 4436 // in infinite recursion. In the later case, the analysis code will 4437 // cope with a conservative value, and it will take care to purge 4438 // that value once it has finished. 4439 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4440 4441 // Normally, in the cases we can prove no-overflow via a 4442 // backedge guarding condition, we can also compute a backedge 4443 // taken count for the loop. The exceptions are assumptions and 4444 // guards present in the loop -- SCEV is not great at exploiting 4445 // these to compute max backedge taken counts, but can still use 4446 // these to prove lack of overflow. Use this fact to avoid 4447 // doing extra work that may not pay off. 4448 4449 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4450 AC.assumptions().empty()) 4451 return Result; 4452 4453 // If the backedge is guarded by a comparison with the pre-inc value the 4454 // addrec is safe. Also, if the entry is guarded by a comparison with the 4455 // start value and the backedge is guarded by a comparison with the post-inc 4456 // value, the addrec is safe. 4457 ICmpInst::Predicate Pred; 4458 const SCEV *OverflowLimit = 4459 getSignedOverflowLimitForStep(Step, &Pred, this); 4460 if (OverflowLimit && 4461 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4462 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4463 Result = setFlags(Result, SCEV::FlagNSW); 4464 } 4465 return Result; 4466 } 4467 SCEV::NoWrapFlags 4468 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4469 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4470 4471 if (AR->hasNoUnsignedWrap()) 4472 return Result; 4473 4474 if (!AR->isAffine()) 4475 return Result; 4476 4477 const SCEV *Step = AR->getStepRecurrence(*this); 4478 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4479 const Loop *L = AR->getLoop(); 4480 4481 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4482 // Note that this serves two purposes: It filters out loops that are 4483 // simply not analyzable, and it covers the case where this code is 4484 // being called from within backedge-taken count analysis, such that 4485 // attempting to ask for the backedge-taken count would likely result 4486 // in infinite recursion. In the later case, the analysis code will 4487 // cope with a conservative value, and it will take care to purge 4488 // that value once it has finished. 4489 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4490 4491 // Normally, in the cases we can prove no-overflow via a 4492 // backedge guarding condition, we can also compute a backedge 4493 // taken count for the loop. The exceptions are assumptions and 4494 // guards present in the loop -- SCEV is not great at exploiting 4495 // these to compute max backedge taken counts, but can still use 4496 // these to prove lack of overflow. Use this fact to avoid 4497 // doing extra work that may not pay off. 4498 4499 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4500 AC.assumptions().empty()) 4501 return Result; 4502 4503 // If the backedge is guarded by a comparison with the pre-inc value the 4504 // addrec is safe. Also, if the entry is guarded by a comparison with the 4505 // start value and the backedge is guarded by a comparison with the post-inc 4506 // value, the addrec is safe. 4507 if (isKnownPositive(Step)) { 4508 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4509 getUnsignedRangeMax(Step)); 4510 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4511 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4512 Result = setFlags(Result, SCEV::FlagNUW); 4513 } 4514 } 4515 4516 return Result; 4517 } 4518 4519 namespace { 4520 4521 /// Represents an abstract binary operation. This may exist as a 4522 /// normal instruction or constant expression, or may have been 4523 /// derived from an expression tree. 4524 struct BinaryOp { 4525 unsigned Opcode; 4526 Value *LHS; 4527 Value *RHS; 4528 bool IsNSW = false; 4529 bool IsNUW = false; 4530 bool IsExact = false; 4531 4532 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4533 /// constant expression. 4534 Operator *Op = nullptr; 4535 4536 explicit BinaryOp(Operator *Op) 4537 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4538 Op(Op) { 4539 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4540 IsNSW = OBO->hasNoSignedWrap(); 4541 IsNUW = OBO->hasNoUnsignedWrap(); 4542 } 4543 if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op)) 4544 IsExact = PEO->isExact(); 4545 } 4546 4547 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4548 bool IsNUW = false, bool IsExact = false) 4549 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 4550 IsExact(IsExact) {} 4551 }; 4552 4553 } // end anonymous namespace 4554 4555 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4556 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4557 auto *Op = dyn_cast<Operator>(V); 4558 if (!Op) 4559 return None; 4560 4561 // Implementation detail: all the cleverness here should happen without 4562 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4563 // SCEV expressions when possible, and we should not break that. 4564 4565 switch (Op->getOpcode()) { 4566 case Instruction::Add: 4567 case Instruction::Sub: 4568 case Instruction::Mul: 4569 case Instruction::UDiv: 4570 case Instruction::URem: 4571 case Instruction::And: 4572 case Instruction::Or: 4573 case Instruction::AShr: 4574 case Instruction::Shl: 4575 return BinaryOp(Op); 4576 4577 case Instruction::Xor: 4578 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4579 // If the RHS of the xor is a signmask, then this is just an add. 4580 // Instcombine turns add of signmask into xor as a strength reduction step. 4581 if (RHSC->getValue().isSignMask()) 4582 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4583 return BinaryOp(Op); 4584 4585 case Instruction::LShr: 4586 // Turn logical shift right of a constant into a unsigned divide. 4587 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4588 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4589 4590 // If the shift count is not less than the bitwidth, the result of 4591 // the shift is undefined. Don't try to analyze it, because the 4592 // resolution chosen here may differ from the resolution chosen in 4593 // other parts of the compiler. 4594 if (SA->getValue().ult(BitWidth)) { 4595 Constant *X = 4596 ConstantInt::get(SA->getContext(), 4597 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4598 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4599 } 4600 } 4601 return BinaryOp(Op); 4602 4603 case Instruction::ExtractValue: { 4604 auto *EVI = cast<ExtractValueInst>(Op); 4605 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4606 break; 4607 4608 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4609 if (!WO) 4610 break; 4611 4612 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4613 bool Signed = WO->isSigned(); 4614 // TODO: Should add nuw/nsw flags for mul as well. 4615 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4616 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4617 4618 // Now that we know that all uses of the arithmetic-result component of 4619 // CI are guarded by the overflow check, we can go ahead and pretend 4620 // that the arithmetic is non-overflowing. 4621 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4622 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4623 } 4624 4625 default: 4626 break; 4627 } 4628 4629 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4630 // semantics as a Sub, return a binary sub expression. 4631 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4632 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4633 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4634 4635 return None; 4636 } 4637 4638 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4639 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4640 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4641 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4642 /// follows one of the following patterns: 4643 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4644 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4645 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4646 /// we return the type of the truncation operation, and indicate whether the 4647 /// truncated type should be treated as signed/unsigned by setting 4648 /// \p Signed to true/false, respectively. 4649 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4650 bool &Signed, ScalarEvolution &SE) { 4651 // The case where Op == SymbolicPHI (that is, with no type conversions on 4652 // the way) is handled by the regular add recurrence creating logic and 4653 // would have already been triggered in createAddRecForPHI. Reaching it here 4654 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4655 // because one of the other operands of the SCEVAddExpr updating this PHI is 4656 // not invariant). 4657 // 4658 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4659 // this case predicates that allow us to prove that Op == SymbolicPHI will 4660 // be added. 4661 if (Op == SymbolicPHI) 4662 return nullptr; 4663 4664 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4665 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4666 if (SourceBits != NewBits) 4667 return nullptr; 4668 4669 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4670 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4671 if (!SExt && !ZExt) 4672 return nullptr; 4673 const SCEVTruncateExpr *Trunc = 4674 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4675 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4676 if (!Trunc) 4677 return nullptr; 4678 const SCEV *X = Trunc->getOperand(); 4679 if (X != SymbolicPHI) 4680 return nullptr; 4681 Signed = SExt != nullptr; 4682 return Trunc->getType(); 4683 } 4684 4685 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4686 if (!PN->getType()->isIntegerTy()) 4687 return nullptr; 4688 const Loop *L = LI.getLoopFor(PN->getParent()); 4689 if (!L || L->getHeader() != PN->getParent()) 4690 return nullptr; 4691 return L; 4692 } 4693 4694 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4695 // computation that updates the phi follows the following pattern: 4696 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4697 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4698 // If so, try to see if it can be rewritten as an AddRecExpr under some 4699 // Predicates. If successful, return them as a pair. Also cache the results 4700 // of the analysis. 4701 // 4702 // Example usage scenario: 4703 // Say the Rewriter is called for the following SCEV: 4704 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4705 // where: 4706 // %X = phi i64 (%Start, %BEValue) 4707 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4708 // and call this function with %SymbolicPHI = %X. 4709 // 4710 // The analysis will find that the value coming around the backedge has 4711 // the following SCEV: 4712 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4713 // Upon concluding that this matches the desired pattern, the function 4714 // will return the pair {NewAddRec, SmallPredsVec} where: 4715 // NewAddRec = {%Start,+,%Step} 4716 // SmallPredsVec = {P1, P2, P3} as follows: 4717 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4718 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4719 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4720 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4721 // under the predicates {P1,P2,P3}. 4722 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4723 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4724 // 4725 // TODO's: 4726 // 4727 // 1) Extend the Induction descriptor to also support inductions that involve 4728 // casts: When needed (namely, when we are called in the context of the 4729 // vectorizer induction analysis), a Set of cast instructions will be 4730 // populated by this method, and provided back to isInductionPHI. This is 4731 // needed to allow the vectorizer to properly record them to be ignored by 4732 // the cost model and to avoid vectorizing them (otherwise these casts, 4733 // which are redundant under the runtime overflow checks, will be 4734 // vectorized, which can be costly). 4735 // 4736 // 2) Support additional induction/PHISCEV patterns: We also want to support 4737 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4738 // after the induction update operation (the induction increment): 4739 // 4740 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4741 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4742 // 4743 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4744 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4745 // 4746 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4747 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4748 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4749 SmallVector<const SCEVPredicate *, 3> Predicates; 4750 4751 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4752 // return an AddRec expression under some predicate. 4753 4754 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4755 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4756 assert(L && "Expecting an integer loop header phi"); 4757 4758 // The loop may have multiple entrances or multiple exits; we can analyze 4759 // this phi as an addrec if it has a unique entry value and a unique 4760 // backedge value. 4761 Value *BEValueV = nullptr, *StartValueV = nullptr; 4762 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4763 Value *V = PN->getIncomingValue(i); 4764 if (L->contains(PN->getIncomingBlock(i))) { 4765 if (!BEValueV) { 4766 BEValueV = V; 4767 } else if (BEValueV != V) { 4768 BEValueV = nullptr; 4769 break; 4770 } 4771 } else if (!StartValueV) { 4772 StartValueV = V; 4773 } else if (StartValueV != V) { 4774 StartValueV = nullptr; 4775 break; 4776 } 4777 } 4778 if (!BEValueV || !StartValueV) 4779 return None; 4780 4781 const SCEV *BEValue = getSCEV(BEValueV); 4782 4783 // If the value coming around the backedge is an add with the symbolic 4784 // value we just inserted, possibly with casts that we can ignore under 4785 // an appropriate runtime guard, then we found a simple induction variable! 4786 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4787 if (!Add) 4788 return None; 4789 4790 // If there is a single occurrence of the symbolic value, possibly 4791 // casted, replace it with a recurrence. 4792 unsigned FoundIndex = Add->getNumOperands(); 4793 Type *TruncTy = nullptr; 4794 bool Signed; 4795 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4796 if ((TruncTy = 4797 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4798 if (FoundIndex == e) { 4799 FoundIndex = i; 4800 break; 4801 } 4802 4803 if (FoundIndex == Add->getNumOperands()) 4804 return None; 4805 4806 // Create an add with everything but the specified operand. 4807 SmallVector<const SCEV *, 8> Ops; 4808 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4809 if (i != FoundIndex) 4810 Ops.push_back(Add->getOperand(i)); 4811 const SCEV *Accum = getAddExpr(Ops); 4812 4813 // The runtime checks will not be valid if the step amount is 4814 // varying inside the loop. 4815 if (!isLoopInvariant(Accum, L)) 4816 return None; 4817 4818 // *** Part2: Create the predicates 4819 4820 // Analysis was successful: we have a phi-with-cast pattern for which we 4821 // can return an AddRec expression under the following predicates: 4822 // 4823 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4824 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4825 // P2: An Equal predicate that guarantees that 4826 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4827 // P3: An Equal predicate that guarantees that 4828 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4829 // 4830 // As we next prove, the above predicates guarantee that: 4831 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4832 // 4833 // 4834 // More formally, we want to prove that: 4835 // Expr(i+1) = Start + (i+1) * Accum 4836 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4837 // 4838 // Given that: 4839 // 1) Expr(0) = Start 4840 // 2) Expr(1) = Start + Accum 4841 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4842 // 3) Induction hypothesis (step i): 4843 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4844 // 4845 // Proof: 4846 // Expr(i+1) = 4847 // = Start + (i+1)*Accum 4848 // = (Start + i*Accum) + Accum 4849 // = Expr(i) + Accum 4850 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4851 // :: from step i 4852 // 4853 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4854 // 4855 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4856 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4857 // + Accum :: from P3 4858 // 4859 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4860 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4861 // 4862 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4863 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4864 // 4865 // By induction, the same applies to all iterations 1<=i<n: 4866 // 4867 4868 // Create a truncated addrec for which we will add a no overflow check (P1). 4869 const SCEV *StartVal = getSCEV(StartValueV); 4870 const SCEV *PHISCEV = 4871 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4872 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4873 4874 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4875 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4876 // will be constant. 4877 // 4878 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4879 // add P1. 4880 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4881 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4882 Signed ? SCEVWrapPredicate::IncrementNSSW 4883 : SCEVWrapPredicate::IncrementNUSW; 4884 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4885 Predicates.push_back(AddRecPred); 4886 } 4887 4888 // Create the Equal Predicates P2,P3: 4889 4890 // It is possible that the predicates P2 and/or P3 are computable at 4891 // compile time due to StartVal and/or Accum being constants. 4892 // If either one is, then we can check that now and escape if either P2 4893 // or P3 is false. 4894 4895 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4896 // for each of StartVal and Accum 4897 auto getExtendedExpr = [&](const SCEV *Expr, 4898 bool CreateSignExtend) -> const SCEV * { 4899 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4900 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4901 const SCEV *ExtendedExpr = 4902 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4903 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4904 return ExtendedExpr; 4905 }; 4906 4907 // Given: 4908 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4909 // = getExtendedExpr(Expr) 4910 // Determine whether the predicate P: Expr == ExtendedExpr 4911 // is known to be false at compile time 4912 auto PredIsKnownFalse = [&](const SCEV *Expr, 4913 const SCEV *ExtendedExpr) -> bool { 4914 return Expr != ExtendedExpr && 4915 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4916 }; 4917 4918 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4919 if (PredIsKnownFalse(StartVal, StartExtended)) { 4920 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4921 return None; 4922 } 4923 4924 // The Step is always Signed (because the overflow checks are either 4925 // NSSW or NUSW) 4926 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4927 if (PredIsKnownFalse(Accum, AccumExtended)) { 4928 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4929 return None; 4930 } 4931 4932 auto AppendPredicate = [&](const SCEV *Expr, 4933 const SCEV *ExtendedExpr) -> void { 4934 if (Expr != ExtendedExpr && 4935 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4936 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4937 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4938 Predicates.push_back(Pred); 4939 } 4940 }; 4941 4942 AppendPredicate(StartVal, StartExtended); 4943 AppendPredicate(Accum, AccumExtended); 4944 4945 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4946 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4947 // into NewAR if it will also add the runtime overflow checks specified in 4948 // Predicates. 4949 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4950 4951 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4952 std::make_pair(NewAR, Predicates); 4953 // Remember the result of the analysis for this SCEV at this locayyytion. 4954 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4955 return PredRewrite; 4956 } 4957 4958 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4959 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4960 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4961 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4962 if (!L) 4963 return None; 4964 4965 // Check to see if we already analyzed this PHI. 4966 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4967 if (I != PredicatedSCEVRewrites.end()) { 4968 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4969 I->second; 4970 // Analysis was done before and failed to create an AddRec: 4971 if (Rewrite.first == SymbolicPHI) 4972 return None; 4973 // Analysis was done before and succeeded to create an AddRec under 4974 // a predicate: 4975 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4976 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4977 return Rewrite; 4978 } 4979 4980 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4981 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4982 4983 // Record in the cache that the analysis failed 4984 if (!Rewrite) { 4985 SmallVector<const SCEVPredicate *, 3> Predicates; 4986 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4987 return None; 4988 } 4989 4990 return Rewrite; 4991 } 4992 4993 // FIXME: This utility is currently required because the Rewriter currently 4994 // does not rewrite this expression: 4995 // {0, +, (sext ix (trunc iy to ix) to iy)} 4996 // into {0, +, %step}, 4997 // even when the following Equal predicate exists: 4998 // "%step == (sext ix (trunc iy to ix) to iy)". 4999 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5000 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5001 if (AR1 == AR2) 5002 return true; 5003 5004 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5005 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5006 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5007 return false; 5008 return true; 5009 }; 5010 5011 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5012 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5013 return false; 5014 return true; 5015 } 5016 5017 /// A helper function for createAddRecFromPHI to handle simple cases. 5018 /// 5019 /// This function tries to find an AddRec expression for the simplest (yet most 5020 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5021 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5022 /// technique for finding the AddRec expression. 5023 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5024 Value *BEValueV, 5025 Value *StartValueV) { 5026 const Loop *L = LI.getLoopFor(PN->getParent()); 5027 assert(L && L->getHeader() == PN->getParent()); 5028 assert(BEValueV && StartValueV); 5029 5030 auto BO = MatchBinaryOp(BEValueV, DT); 5031 if (!BO) 5032 return nullptr; 5033 5034 if (BO->Opcode != Instruction::Add) 5035 return nullptr; 5036 5037 const SCEV *Accum = nullptr; 5038 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5039 Accum = getSCEV(BO->RHS); 5040 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5041 Accum = getSCEV(BO->LHS); 5042 5043 if (!Accum) 5044 return nullptr; 5045 5046 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5047 if (BO->IsNUW) 5048 Flags = setFlags(Flags, SCEV::FlagNUW); 5049 if (BO->IsNSW) 5050 Flags = setFlags(Flags, SCEV::FlagNSW); 5051 5052 const SCEV *StartVal = getSCEV(StartValueV); 5053 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5054 5055 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5056 5057 // We can add Flags to the post-inc expression only if we 5058 // know that it is *undefined behavior* for BEValueV to 5059 // overflow. 5060 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5061 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5062 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5063 5064 return PHISCEV; 5065 } 5066 5067 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5068 const Loop *L = LI.getLoopFor(PN->getParent()); 5069 if (!L || L->getHeader() != PN->getParent()) 5070 return nullptr; 5071 5072 // The loop may have multiple entrances or multiple exits; we can analyze 5073 // this phi as an addrec if it has a unique entry value and a unique 5074 // backedge value. 5075 Value *BEValueV = nullptr, *StartValueV = nullptr; 5076 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5077 Value *V = PN->getIncomingValue(i); 5078 if (L->contains(PN->getIncomingBlock(i))) { 5079 if (!BEValueV) { 5080 BEValueV = V; 5081 } else if (BEValueV != V) { 5082 BEValueV = nullptr; 5083 break; 5084 } 5085 } else if (!StartValueV) { 5086 StartValueV = V; 5087 } else if (StartValueV != V) { 5088 StartValueV = nullptr; 5089 break; 5090 } 5091 } 5092 if (!BEValueV || !StartValueV) 5093 return nullptr; 5094 5095 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5096 "PHI node already processed?"); 5097 5098 // First, try to find AddRec expression without creating a fictituos symbolic 5099 // value for PN. 5100 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5101 return S; 5102 5103 // Handle PHI node value symbolically. 5104 const SCEV *SymbolicName = getUnknown(PN); 5105 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5106 5107 // Using this symbolic name for the PHI, analyze the value coming around 5108 // the back-edge. 5109 const SCEV *BEValue = getSCEV(BEValueV); 5110 5111 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5112 // has a special value for the first iteration of the loop. 5113 5114 // If the value coming around the backedge is an add with the symbolic 5115 // value we just inserted, then we found a simple induction variable! 5116 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5117 // If there is a single occurrence of the symbolic value, replace it 5118 // with a recurrence. 5119 unsigned FoundIndex = Add->getNumOperands(); 5120 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5121 if (Add->getOperand(i) == SymbolicName) 5122 if (FoundIndex == e) { 5123 FoundIndex = i; 5124 break; 5125 } 5126 5127 if (FoundIndex != Add->getNumOperands()) { 5128 // Create an add with everything but the specified operand. 5129 SmallVector<const SCEV *, 8> Ops; 5130 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5131 if (i != FoundIndex) 5132 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5133 L, *this)); 5134 const SCEV *Accum = getAddExpr(Ops); 5135 5136 // This is not a valid addrec if the step amount is varying each 5137 // loop iteration, but is not itself an addrec in this loop. 5138 if (isLoopInvariant(Accum, L) || 5139 (isa<SCEVAddRecExpr>(Accum) && 5140 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5141 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5142 5143 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5144 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5145 if (BO->IsNUW) 5146 Flags = setFlags(Flags, SCEV::FlagNUW); 5147 if (BO->IsNSW) 5148 Flags = setFlags(Flags, SCEV::FlagNSW); 5149 } 5150 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5151 // If the increment is an inbounds GEP, then we know the address 5152 // space cannot be wrapped around. We cannot make any guarantee 5153 // about signed or unsigned overflow because pointers are 5154 // unsigned but we may have a negative index from the base 5155 // pointer. We can guarantee that no unsigned wrap occurs if the 5156 // indices form a positive value. 5157 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5158 Flags = setFlags(Flags, SCEV::FlagNW); 5159 5160 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5161 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5162 Flags = setFlags(Flags, SCEV::FlagNUW); 5163 } 5164 5165 // We cannot transfer nuw and nsw flags from subtraction 5166 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5167 // for instance. 5168 } 5169 5170 const SCEV *StartVal = getSCEV(StartValueV); 5171 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5172 5173 // Okay, for the entire analysis of this edge we assumed the PHI 5174 // to be symbolic. We now need to go back and purge all of the 5175 // entries for the scalars that use the symbolic expression. 5176 forgetSymbolicName(PN, SymbolicName); 5177 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5178 5179 // We can add Flags to the post-inc expression only if we 5180 // know that it is *undefined behavior* for BEValueV to 5181 // overflow. 5182 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5183 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5184 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5185 5186 return PHISCEV; 5187 } 5188 } 5189 } else { 5190 // Otherwise, this could be a loop like this: 5191 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5192 // In this case, j = {1,+,1} and BEValue is j. 5193 // Because the other in-value of i (0) fits the evolution of BEValue 5194 // i really is an addrec evolution. 5195 // 5196 // We can generalize this saying that i is the shifted value of BEValue 5197 // by one iteration: 5198 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5199 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5200 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5201 if (Shifted != getCouldNotCompute() && 5202 Start != getCouldNotCompute()) { 5203 const SCEV *StartVal = getSCEV(StartValueV); 5204 if (Start == StartVal) { 5205 // Okay, for the entire analysis of this edge we assumed the PHI 5206 // to be symbolic. We now need to go back and purge all of the 5207 // entries for the scalars that use the symbolic expression. 5208 forgetSymbolicName(PN, SymbolicName); 5209 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5210 return Shifted; 5211 } 5212 } 5213 } 5214 5215 // Remove the temporary PHI node SCEV that has been inserted while intending 5216 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5217 // as it will prevent later (possibly simpler) SCEV expressions to be added 5218 // to the ValueExprMap. 5219 eraseValueFromMap(PN); 5220 5221 return nullptr; 5222 } 5223 5224 // Checks if the SCEV S is available at BB. S is considered available at BB 5225 // if S can be materialized at BB without introducing a fault. 5226 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5227 BasicBlock *BB) { 5228 struct CheckAvailable { 5229 bool TraversalDone = false; 5230 bool Available = true; 5231 5232 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5233 BasicBlock *BB = nullptr; 5234 DominatorTree &DT; 5235 5236 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5237 : L(L), BB(BB), DT(DT) {} 5238 5239 bool setUnavailable() { 5240 TraversalDone = true; 5241 Available = false; 5242 return false; 5243 } 5244 5245 bool follow(const SCEV *S) { 5246 switch (S->getSCEVType()) { 5247 case scConstant: 5248 case scPtrToInt: 5249 case scTruncate: 5250 case scZeroExtend: 5251 case scSignExtend: 5252 case scAddExpr: 5253 case scMulExpr: 5254 case scUMaxExpr: 5255 case scSMaxExpr: 5256 case scUMinExpr: 5257 case scSMinExpr: 5258 // These expressions are available if their operand(s) is/are. 5259 return true; 5260 5261 case scAddRecExpr: { 5262 // We allow add recurrences that are on the loop BB is in, or some 5263 // outer loop. This guarantees availability because the value of the 5264 // add recurrence at BB is simply the "current" value of the induction 5265 // variable. We can relax this in the future; for instance an add 5266 // recurrence on a sibling dominating loop is also available at BB. 5267 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5268 if (L && (ARLoop == L || ARLoop->contains(L))) 5269 return true; 5270 5271 return setUnavailable(); 5272 } 5273 5274 case scUnknown: { 5275 // For SCEVUnknown, we check for simple dominance. 5276 const auto *SU = cast<SCEVUnknown>(S); 5277 Value *V = SU->getValue(); 5278 5279 if (isa<Argument>(V)) 5280 return false; 5281 5282 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5283 return false; 5284 5285 return setUnavailable(); 5286 } 5287 5288 case scUDivExpr: 5289 case scCouldNotCompute: 5290 // We do not try to smart about these at all. 5291 return setUnavailable(); 5292 } 5293 llvm_unreachable("Unknown SCEV kind!"); 5294 } 5295 5296 bool isDone() { return TraversalDone; } 5297 }; 5298 5299 CheckAvailable CA(L, BB, DT); 5300 SCEVTraversal<CheckAvailable> ST(CA); 5301 5302 ST.visitAll(S); 5303 return CA.Available; 5304 } 5305 5306 // Try to match a control flow sequence that branches out at BI and merges back 5307 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5308 // match. 5309 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5310 Value *&C, Value *&LHS, Value *&RHS) { 5311 C = BI->getCondition(); 5312 5313 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5314 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5315 5316 if (!LeftEdge.isSingleEdge()) 5317 return false; 5318 5319 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5320 5321 Use &LeftUse = Merge->getOperandUse(0); 5322 Use &RightUse = Merge->getOperandUse(1); 5323 5324 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5325 LHS = LeftUse; 5326 RHS = RightUse; 5327 return true; 5328 } 5329 5330 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5331 LHS = RightUse; 5332 RHS = LeftUse; 5333 return true; 5334 } 5335 5336 return false; 5337 } 5338 5339 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5340 auto IsReachable = 5341 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5342 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5343 const Loop *L = LI.getLoopFor(PN->getParent()); 5344 5345 // We don't want to break LCSSA, even in a SCEV expression tree. 5346 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5347 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5348 return nullptr; 5349 5350 // Try to match 5351 // 5352 // br %cond, label %left, label %right 5353 // left: 5354 // br label %merge 5355 // right: 5356 // br label %merge 5357 // merge: 5358 // V = phi [ %x, %left ], [ %y, %right ] 5359 // 5360 // as "select %cond, %x, %y" 5361 5362 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5363 assert(IDom && "At least the entry block should dominate PN"); 5364 5365 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5366 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5367 5368 if (BI && BI->isConditional() && 5369 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5370 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5371 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5372 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5373 } 5374 5375 return nullptr; 5376 } 5377 5378 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5379 if (const SCEV *S = createAddRecFromPHI(PN)) 5380 return S; 5381 5382 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5383 return S; 5384 5385 // If the PHI has a single incoming value, follow that value, unless the 5386 // PHI's incoming blocks are in a different loop, in which case doing so 5387 // risks breaking LCSSA form. Instcombine would normally zap these, but 5388 // it doesn't have DominatorTree information, so it may miss cases. 5389 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5390 if (LI.replacementPreservesLCSSAForm(PN, V)) 5391 return getSCEV(V); 5392 5393 // If it's not a loop phi, we can't handle it yet. 5394 return getUnknown(PN); 5395 } 5396 5397 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5398 Value *Cond, 5399 Value *TrueVal, 5400 Value *FalseVal) { 5401 // Handle "constant" branch or select. This can occur for instance when a 5402 // loop pass transforms an inner loop and moves on to process the outer loop. 5403 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5404 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5405 5406 // Try to match some simple smax or umax patterns. 5407 auto *ICI = dyn_cast<ICmpInst>(Cond); 5408 if (!ICI) 5409 return getUnknown(I); 5410 5411 Value *LHS = ICI->getOperand(0); 5412 Value *RHS = ICI->getOperand(1); 5413 5414 switch (ICI->getPredicate()) { 5415 case ICmpInst::ICMP_SLT: 5416 case ICmpInst::ICMP_SLE: 5417 std::swap(LHS, RHS); 5418 LLVM_FALLTHROUGH; 5419 case ICmpInst::ICMP_SGT: 5420 case ICmpInst::ICMP_SGE: 5421 // a >s b ? a+x : b+x -> smax(a, b)+x 5422 // a >s b ? b+x : a+x -> smin(a, b)+x 5423 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5424 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5425 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5426 const SCEV *LA = getSCEV(TrueVal); 5427 const SCEV *RA = getSCEV(FalseVal); 5428 const SCEV *LDiff = getMinusSCEV(LA, LS); 5429 const SCEV *RDiff = getMinusSCEV(RA, RS); 5430 if (LDiff == RDiff) 5431 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5432 LDiff = getMinusSCEV(LA, RS); 5433 RDiff = getMinusSCEV(RA, LS); 5434 if (LDiff == RDiff) 5435 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5436 } 5437 break; 5438 case ICmpInst::ICMP_ULT: 5439 case ICmpInst::ICMP_ULE: 5440 std::swap(LHS, RHS); 5441 LLVM_FALLTHROUGH; 5442 case ICmpInst::ICMP_UGT: 5443 case ICmpInst::ICMP_UGE: 5444 // a >u b ? a+x : b+x -> umax(a, b)+x 5445 // a >u b ? b+x : a+x -> umin(a, b)+x 5446 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5447 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5448 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5449 const SCEV *LA = getSCEV(TrueVal); 5450 const SCEV *RA = getSCEV(FalseVal); 5451 const SCEV *LDiff = getMinusSCEV(LA, LS); 5452 const SCEV *RDiff = getMinusSCEV(RA, RS); 5453 if (LDiff == RDiff) 5454 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5455 LDiff = getMinusSCEV(LA, RS); 5456 RDiff = getMinusSCEV(RA, LS); 5457 if (LDiff == RDiff) 5458 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5459 } 5460 break; 5461 case ICmpInst::ICMP_NE: 5462 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5463 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5464 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5465 const SCEV *One = getOne(I->getType()); 5466 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5467 const SCEV *LA = getSCEV(TrueVal); 5468 const SCEV *RA = getSCEV(FalseVal); 5469 const SCEV *LDiff = getMinusSCEV(LA, LS); 5470 const SCEV *RDiff = getMinusSCEV(RA, One); 5471 if (LDiff == RDiff) 5472 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5473 } 5474 break; 5475 case ICmpInst::ICMP_EQ: 5476 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5477 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5478 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5479 const SCEV *One = getOne(I->getType()); 5480 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5481 const SCEV *LA = getSCEV(TrueVal); 5482 const SCEV *RA = getSCEV(FalseVal); 5483 const SCEV *LDiff = getMinusSCEV(LA, One); 5484 const SCEV *RDiff = getMinusSCEV(RA, LS); 5485 if (LDiff == RDiff) 5486 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5487 } 5488 break; 5489 default: 5490 break; 5491 } 5492 5493 return getUnknown(I); 5494 } 5495 5496 /// Expand GEP instructions into add and multiply operations. This allows them 5497 /// to be analyzed by regular SCEV code. 5498 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5499 // Don't attempt to analyze GEPs over unsized objects. 5500 if (!GEP->getSourceElementType()->isSized()) 5501 return getUnknown(GEP); 5502 5503 SmallVector<const SCEV *, 4> IndexExprs; 5504 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5505 IndexExprs.push_back(getSCEV(*Index)); 5506 return getGEPExpr(GEP, IndexExprs); 5507 } 5508 5509 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5510 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5511 return C->getAPInt().countTrailingZeros(); 5512 5513 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5514 return GetMinTrailingZeros(I->getOperand()); 5515 5516 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5517 return std::min(GetMinTrailingZeros(T->getOperand()), 5518 (uint32_t)getTypeSizeInBits(T->getType())); 5519 5520 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5521 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5522 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5523 ? getTypeSizeInBits(E->getType()) 5524 : OpRes; 5525 } 5526 5527 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5528 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5529 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5530 ? getTypeSizeInBits(E->getType()) 5531 : OpRes; 5532 } 5533 5534 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5535 // The result is the min of all operands results. 5536 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5537 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5538 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5539 return MinOpRes; 5540 } 5541 5542 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5543 // The result is the sum of all operands results. 5544 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5545 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5546 for (unsigned i = 1, e = M->getNumOperands(); 5547 SumOpRes != BitWidth && i != e; ++i) 5548 SumOpRes = 5549 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5550 return SumOpRes; 5551 } 5552 5553 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5554 // The result is the min of all operands results. 5555 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5556 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5557 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5558 return MinOpRes; 5559 } 5560 5561 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5562 // The result is the min of all operands results. 5563 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5564 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5565 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5566 return MinOpRes; 5567 } 5568 5569 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5570 // The result is the min of all operands results. 5571 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5572 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5573 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5574 return MinOpRes; 5575 } 5576 5577 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5578 // For a SCEVUnknown, ask ValueTracking. 5579 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5580 return Known.countMinTrailingZeros(); 5581 } 5582 5583 // SCEVUDivExpr 5584 return 0; 5585 } 5586 5587 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5588 auto I = MinTrailingZerosCache.find(S); 5589 if (I != MinTrailingZerosCache.end()) 5590 return I->second; 5591 5592 uint32_t Result = GetMinTrailingZerosImpl(S); 5593 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5594 assert(InsertPair.second && "Should insert a new key"); 5595 return InsertPair.first->second; 5596 } 5597 5598 /// Helper method to assign a range to V from metadata present in the IR. 5599 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5600 if (Instruction *I = dyn_cast<Instruction>(V)) 5601 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5602 return getConstantRangeFromMetadata(*MD); 5603 5604 return None; 5605 } 5606 5607 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5608 SCEV::NoWrapFlags Flags) { 5609 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5610 AddRec->setNoWrapFlags(Flags); 5611 UnsignedRanges.erase(AddRec); 5612 SignedRanges.erase(AddRec); 5613 } 5614 } 5615 5616 /// Determine the range for a particular SCEV. If SignHint is 5617 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5618 /// with a "cleaner" unsigned (resp. signed) representation. 5619 const ConstantRange & 5620 ScalarEvolution::getRangeRef(const SCEV *S, 5621 ScalarEvolution::RangeSignHint SignHint) { 5622 DenseMap<const SCEV *, ConstantRange> &Cache = 5623 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5624 : SignedRanges; 5625 ConstantRange::PreferredRangeType RangeType = 5626 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5627 ? ConstantRange::Unsigned : ConstantRange::Signed; 5628 5629 // See if we've computed this range already. 5630 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5631 if (I != Cache.end()) 5632 return I->second; 5633 5634 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5635 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5636 5637 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5638 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5639 using OBO = OverflowingBinaryOperator; 5640 5641 // If the value has known zeros, the maximum value will have those known zeros 5642 // as well. 5643 uint32_t TZ = GetMinTrailingZeros(S); 5644 if (TZ != 0) { 5645 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5646 ConservativeResult = 5647 ConstantRange(APInt::getMinValue(BitWidth), 5648 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5649 else 5650 ConservativeResult = ConstantRange( 5651 APInt::getSignedMinValue(BitWidth), 5652 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5653 } 5654 5655 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5656 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5657 unsigned WrapType = OBO::AnyWrap; 5658 if (Add->hasNoSignedWrap()) 5659 WrapType |= OBO::NoSignedWrap; 5660 if (Add->hasNoUnsignedWrap()) 5661 WrapType |= OBO::NoUnsignedWrap; 5662 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5663 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5664 WrapType, RangeType); 5665 return setRange(Add, SignHint, 5666 ConservativeResult.intersectWith(X, RangeType)); 5667 } 5668 5669 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5670 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5671 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5672 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5673 return setRange(Mul, SignHint, 5674 ConservativeResult.intersectWith(X, RangeType)); 5675 } 5676 5677 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5678 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5679 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5680 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5681 return setRange(SMax, SignHint, 5682 ConservativeResult.intersectWith(X, RangeType)); 5683 } 5684 5685 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5686 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5687 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5688 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5689 return setRange(UMax, SignHint, 5690 ConservativeResult.intersectWith(X, RangeType)); 5691 } 5692 5693 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5694 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5695 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5696 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5697 return setRange(SMin, SignHint, 5698 ConservativeResult.intersectWith(X, RangeType)); 5699 } 5700 5701 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5702 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5703 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5704 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5705 return setRange(UMin, SignHint, 5706 ConservativeResult.intersectWith(X, RangeType)); 5707 } 5708 5709 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5710 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5711 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5712 return setRange(UDiv, SignHint, 5713 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5714 } 5715 5716 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5717 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5718 return setRange(ZExt, SignHint, 5719 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5720 RangeType)); 5721 } 5722 5723 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5724 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5725 return setRange(SExt, SignHint, 5726 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5727 RangeType)); 5728 } 5729 5730 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 5731 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 5732 return setRange(PtrToInt, SignHint, X); 5733 } 5734 5735 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5736 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5737 return setRange(Trunc, SignHint, 5738 ConservativeResult.intersectWith(X.truncate(BitWidth), 5739 RangeType)); 5740 } 5741 5742 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5743 // If there's no unsigned wrap, the value will never be less than its 5744 // initial value. 5745 if (AddRec->hasNoUnsignedWrap()) { 5746 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5747 if (!UnsignedMinValue.isNullValue()) 5748 ConservativeResult = ConservativeResult.intersectWith( 5749 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5750 } 5751 5752 // If there's no signed wrap, and all the operands except initial value have 5753 // the same sign or zero, the value won't ever be: 5754 // 1: smaller than initial value if operands are non negative, 5755 // 2: bigger than initial value if operands are non positive. 5756 // For both cases, value can not cross signed min/max boundary. 5757 if (AddRec->hasNoSignedWrap()) { 5758 bool AllNonNeg = true; 5759 bool AllNonPos = true; 5760 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5761 if (!isKnownNonNegative(AddRec->getOperand(i))) 5762 AllNonNeg = false; 5763 if (!isKnownNonPositive(AddRec->getOperand(i))) 5764 AllNonPos = false; 5765 } 5766 if (AllNonNeg) 5767 ConservativeResult = ConservativeResult.intersectWith( 5768 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5769 APInt::getSignedMinValue(BitWidth)), 5770 RangeType); 5771 else if (AllNonPos) 5772 ConservativeResult = ConservativeResult.intersectWith( 5773 ConstantRange::getNonEmpty( 5774 APInt::getSignedMinValue(BitWidth), 5775 getSignedRangeMax(AddRec->getStart()) + 1), 5776 RangeType); 5777 } 5778 5779 // TODO: non-affine addrec 5780 if (AddRec->isAffine()) { 5781 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5782 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5783 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5784 auto RangeFromAffine = getRangeForAffineAR( 5785 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5786 BitWidth); 5787 ConservativeResult = 5788 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5789 5790 auto RangeFromFactoring = getRangeViaFactoring( 5791 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5792 BitWidth); 5793 ConservativeResult = 5794 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5795 } 5796 5797 // Now try symbolic BE count and more powerful methods. 5798 if (UseExpensiveRangeSharpening) { 5799 const SCEV *SymbolicMaxBECount = 5800 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 5801 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 5802 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5803 AddRec->hasNoSelfWrap()) { 5804 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 5805 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 5806 ConservativeResult = 5807 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 5808 } 5809 } 5810 } 5811 5812 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5813 } 5814 5815 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5816 // Check if the IR explicitly contains !range metadata. 5817 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5818 if (MDRange.hasValue()) 5819 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5820 RangeType); 5821 5822 // Split here to avoid paying the compile-time cost of calling both 5823 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5824 // if needed. 5825 const DataLayout &DL = getDataLayout(); 5826 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5827 // For a SCEVUnknown, ask ValueTracking. 5828 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5829 if (Known.getBitWidth() != BitWidth) 5830 Known = Known.zextOrTrunc(BitWidth); 5831 // If Known does not result in full-set, intersect with it. 5832 if (Known.getMinValue() != Known.getMaxValue() + 1) 5833 ConservativeResult = ConservativeResult.intersectWith( 5834 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5835 RangeType); 5836 } else { 5837 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5838 "generalize as needed!"); 5839 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5840 // If the pointer size is larger than the index size type, this can cause 5841 // NS to be larger than BitWidth. So compensate for this. 5842 if (U->getType()->isPointerTy()) { 5843 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5844 int ptrIdxDiff = ptrSize - BitWidth; 5845 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5846 NS -= ptrIdxDiff; 5847 } 5848 5849 if (NS > 1) 5850 ConservativeResult = ConservativeResult.intersectWith( 5851 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5852 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5853 RangeType); 5854 } 5855 5856 // A range of Phi is a subset of union of all ranges of its input. 5857 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5858 // Make sure that we do not run over cycled Phis. 5859 if (PendingPhiRanges.insert(Phi).second) { 5860 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5861 for (auto &Op : Phi->operands()) { 5862 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5863 RangeFromOps = RangeFromOps.unionWith(OpRange); 5864 // No point to continue if we already have a full set. 5865 if (RangeFromOps.isFullSet()) 5866 break; 5867 } 5868 ConservativeResult = 5869 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5870 bool Erased = PendingPhiRanges.erase(Phi); 5871 assert(Erased && "Failed to erase Phi properly?"); 5872 (void) Erased; 5873 } 5874 } 5875 5876 return setRange(U, SignHint, std::move(ConservativeResult)); 5877 } 5878 5879 return setRange(S, SignHint, std::move(ConservativeResult)); 5880 } 5881 5882 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5883 // values that the expression can take. Initially, the expression has a value 5884 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5885 // argument defines if we treat Step as signed or unsigned. 5886 static ConstantRange getRangeForAffineARHelper(APInt Step, 5887 const ConstantRange &StartRange, 5888 const APInt &MaxBECount, 5889 unsigned BitWidth, bool Signed) { 5890 // If either Step or MaxBECount is 0, then the expression won't change, and we 5891 // just need to return the initial range. 5892 if (Step == 0 || MaxBECount == 0) 5893 return StartRange; 5894 5895 // If we don't know anything about the initial value (i.e. StartRange is 5896 // FullRange), then we don't know anything about the final range either. 5897 // Return FullRange. 5898 if (StartRange.isFullSet()) 5899 return ConstantRange::getFull(BitWidth); 5900 5901 // If Step is signed and negative, then we use its absolute value, but we also 5902 // note that we're moving in the opposite direction. 5903 bool Descending = Signed && Step.isNegative(); 5904 5905 if (Signed) 5906 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5907 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5908 // This equations hold true due to the well-defined wrap-around behavior of 5909 // APInt. 5910 Step = Step.abs(); 5911 5912 // Check if Offset is more than full span of BitWidth. If it is, the 5913 // expression is guaranteed to overflow. 5914 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5915 return ConstantRange::getFull(BitWidth); 5916 5917 // Offset is by how much the expression can change. Checks above guarantee no 5918 // overflow here. 5919 APInt Offset = Step * MaxBECount; 5920 5921 // Minimum value of the final range will match the minimal value of StartRange 5922 // if the expression is increasing and will be decreased by Offset otherwise. 5923 // Maximum value of the final range will match the maximal value of StartRange 5924 // if the expression is decreasing and will be increased by Offset otherwise. 5925 APInt StartLower = StartRange.getLower(); 5926 APInt StartUpper = StartRange.getUpper() - 1; 5927 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5928 : (StartUpper + std::move(Offset)); 5929 5930 // It's possible that the new minimum/maximum value will fall into the initial 5931 // range (due to wrap around). This means that the expression can take any 5932 // value in this bitwidth, and we have to return full range. 5933 if (StartRange.contains(MovedBoundary)) 5934 return ConstantRange::getFull(BitWidth); 5935 5936 APInt NewLower = 5937 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5938 APInt NewUpper = 5939 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5940 NewUpper += 1; 5941 5942 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5943 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5944 } 5945 5946 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5947 const SCEV *Step, 5948 const SCEV *MaxBECount, 5949 unsigned BitWidth) { 5950 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5951 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5952 "Precondition!"); 5953 5954 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5955 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5956 5957 // First, consider step signed. 5958 ConstantRange StartSRange = getSignedRange(Start); 5959 ConstantRange StepSRange = getSignedRange(Step); 5960 5961 // If Step can be both positive and negative, we need to find ranges for the 5962 // maximum absolute step values in both directions and union them. 5963 ConstantRange SR = 5964 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5965 MaxBECountValue, BitWidth, /* Signed = */ true); 5966 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5967 StartSRange, MaxBECountValue, 5968 BitWidth, /* Signed = */ true)); 5969 5970 // Next, consider step unsigned. 5971 ConstantRange UR = getRangeForAffineARHelper( 5972 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5973 MaxBECountValue, BitWidth, /* Signed = */ false); 5974 5975 // Finally, intersect signed and unsigned ranges. 5976 return SR.intersectWith(UR, ConstantRange::Smallest); 5977 } 5978 5979 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 5980 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 5981 ScalarEvolution::RangeSignHint SignHint) { 5982 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 5983 assert(AddRec->hasNoSelfWrap() && 5984 "This only works for non-self-wrapping AddRecs!"); 5985 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 5986 const SCEV *Step = AddRec->getStepRecurrence(*this); 5987 // Only deal with constant step to save compile time. 5988 if (!isa<SCEVConstant>(Step)) 5989 return ConstantRange::getFull(BitWidth); 5990 // Let's make sure that we can prove that we do not self-wrap during 5991 // MaxBECount iterations. We need this because MaxBECount is a maximum 5992 // iteration count estimate, and we might infer nw from some exit for which we 5993 // do not know max exit count (or any other side reasoning). 5994 // TODO: Turn into assert at some point. 5995 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 5996 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 5997 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 5998 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 5999 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6000 MaxItersWithoutWrap)) 6001 return ConstantRange::getFull(BitWidth); 6002 6003 ICmpInst::Predicate LEPred = 6004 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6005 ICmpInst::Predicate GEPred = 6006 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6007 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6008 6009 // We know that there is no self-wrap. Let's take Start and End values and 6010 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6011 // the iteration. They either lie inside the range [Min(Start, End), 6012 // Max(Start, End)] or outside it: 6013 // 6014 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6015 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6016 // 6017 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6018 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6019 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6020 // Start <= End and step is positive, or Start >= End and step is negative. 6021 const SCEV *Start = AddRec->getStart(); 6022 ConstantRange StartRange = getRangeRef(Start, SignHint); 6023 ConstantRange EndRange = getRangeRef(End, SignHint); 6024 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6025 // If they already cover full iteration space, we will know nothing useful 6026 // even if we prove what we want to prove. 6027 if (RangeBetween.isFullSet()) 6028 return RangeBetween; 6029 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6030 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6031 : RangeBetween.isWrappedSet(); 6032 if (IsWrappedSet) 6033 return ConstantRange::getFull(BitWidth); 6034 6035 if (isKnownPositive(Step) && 6036 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6037 return RangeBetween; 6038 else if (isKnownNegative(Step) && 6039 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6040 return RangeBetween; 6041 return ConstantRange::getFull(BitWidth); 6042 } 6043 6044 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6045 const SCEV *Step, 6046 const SCEV *MaxBECount, 6047 unsigned BitWidth) { 6048 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6049 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6050 6051 struct SelectPattern { 6052 Value *Condition = nullptr; 6053 APInt TrueValue; 6054 APInt FalseValue; 6055 6056 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6057 const SCEV *S) { 6058 Optional<unsigned> CastOp; 6059 APInt Offset(BitWidth, 0); 6060 6061 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6062 "Should be!"); 6063 6064 // Peel off a constant offset: 6065 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6066 // In the future we could consider being smarter here and handle 6067 // {Start+Step,+,Step} too. 6068 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6069 return; 6070 6071 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6072 S = SA->getOperand(1); 6073 } 6074 6075 // Peel off a cast operation 6076 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6077 CastOp = SCast->getSCEVType(); 6078 S = SCast->getOperand(); 6079 } 6080 6081 using namespace llvm::PatternMatch; 6082 6083 auto *SU = dyn_cast<SCEVUnknown>(S); 6084 const APInt *TrueVal, *FalseVal; 6085 if (!SU || 6086 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6087 m_APInt(FalseVal)))) { 6088 Condition = nullptr; 6089 return; 6090 } 6091 6092 TrueValue = *TrueVal; 6093 FalseValue = *FalseVal; 6094 6095 // Re-apply the cast we peeled off earlier 6096 if (CastOp.hasValue()) 6097 switch (*CastOp) { 6098 default: 6099 llvm_unreachable("Unknown SCEV cast type!"); 6100 6101 case scTruncate: 6102 TrueValue = TrueValue.trunc(BitWidth); 6103 FalseValue = FalseValue.trunc(BitWidth); 6104 break; 6105 case scZeroExtend: 6106 TrueValue = TrueValue.zext(BitWidth); 6107 FalseValue = FalseValue.zext(BitWidth); 6108 break; 6109 case scSignExtend: 6110 TrueValue = TrueValue.sext(BitWidth); 6111 FalseValue = FalseValue.sext(BitWidth); 6112 break; 6113 } 6114 6115 // Re-apply the constant offset we peeled off earlier 6116 TrueValue += Offset; 6117 FalseValue += Offset; 6118 } 6119 6120 bool isRecognized() { return Condition != nullptr; } 6121 }; 6122 6123 SelectPattern StartPattern(*this, BitWidth, Start); 6124 if (!StartPattern.isRecognized()) 6125 return ConstantRange::getFull(BitWidth); 6126 6127 SelectPattern StepPattern(*this, BitWidth, Step); 6128 if (!StepPattern.isRecognized()) 6129 return ConstantRange::getFull(BitWidth); 6130 6131 if (StartPattern.Condition != StepPattern.Condition) { 6132 // We don't handle this case today; but we could, by considering four 6133 // possibilities below instead of two. I'm not sure if there are cases where 6134 // that will help over what getRange already does, though. 6135 return ConstantRange::getFull(BitWidth); 6136 } 6137 6138 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6139 // construct arbitrary general SCEV expressions here. This function is called 6140 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6141 // say) can end up caching a suboptimal value. 6142 6143 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6144 // C2352 and C2512 (otherwise it isn't needed). 6145 6146 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6147 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6148 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6149 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6150 6151 ConstantRange TrueRange = 6152 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6153 ConstantRange FalseRange = 6154 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6155 6156 return TrueRange.unionWith(FalseRange); 6157 } 6158 6159 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6160 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6161 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6162 6163 // Return early if there are no flags to propagate to the SCEV. 6164 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6165 if (BinOp->hasNoUnsignedWrap()) 6166 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6167 if (BinOp->hasNoSignedWrap()) 6168 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6169 if (Flags == SCEV::FlagAnyWrap) 6170 return SCEV::FlagAnyWrap; 6171 6172 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6173 } 6174 6175 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6176 // Here we check that I is in the header of the innermost loop containing I, 6177 // since we only deal with instructions in the loop header. The actual loop we 6178 // need to check later will come from an add recurrence, but getting that 6179 // requires computing the SCEV of the operands, which can be expensive. This 6180 // check we can do cheaply to rule out some cases early. 6181 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6182 if (InnermostContainingLoop == nullptr || 6183 InnermostContainingLoop->getHeader() != I->getParent()) 6184 return false; 6185 6186 // Only proceed if we can prove that I does not yield poison. 6187 if (!programUndefinedIfPoison(I)) 6188 return false; 6189 6190 // At this point we know that if I is executed, then it does not wrap 6191 // according to at least one of NSW or NUW. If I is not executed, then we do 6192 // not know if the calculation that I represents would wrap. Multiple 6193 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6194 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6195 // derived from other instructions that map to the same SCEV. We cannot make 6196 // that guarantee for cases where I is not executed. So we need to find the 6197 // loop that I is considered in relation to and prove that I is executed for 6198 // every iteration of that loop. That implies that the value that I 6199 // calculates does not wrap anywhere in the loop, so then we can apply the 6200 // flags to the SCEV. 6201 // 6202 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6203 // from different loops, so that we know which loop to prove that I is 6204 // executed in. 6205 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6206 // I could be an extractvalue from a call to an overflow intrinsic. 6207 // TODO: We can do better here in some cases. 6208 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6209 return false; 6210 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6211 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6212 bool AllOtherOpsLoopInvariant = true; 6213 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6214 ++OtherOpIndex) { 6215 if (OtherOpIndex != OpIndex) { 6216 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6217 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6218 AllOtherOpsLoopInvariant = false; 6219 break; 6220 } 6221 } 6222 } 6223 if (AllOtherOpsLoopInvariant && 6224 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6225 return true; 6226 } 6227 } 6228 return false; 6229 } 6230 6231 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6232 // If we know that \c I can never be poison period, then that's enough. 6233 if (isSCEVExprNeverPoison(I)) 6234 return true; 6235 6236 // For an add recurrence specifically, we assume that infinite loops without 6237 // side effects are undefined behavior, and then reason as follows: 6238 // 6239 // If the add recurrence is poison in any iteration, it is poison on all 6240 // future iterations (since incrementing poison yields poison). If the result 6241 // of the add recurrence is fed into the loop latch condition and the loop 6242 // does not contain any throws or exiting blocks other than the latch, we now 6243 // have the ability to "choose" whether the backedge is taken or not (by 6244 // choosing a sufficiently evil value for the poison feeding into the branch) 6245 // for every iteration including and after the one in which \p I first became 6246 // poison. There are two possibilities (let's call the iteration in which \p 6247 // I first became poison as K): 6248 // 6249 // 1. In the set of iterations including and after K, the loop body executes 6250 // no side effects. In this case executing the backege an infinte number 6251 // of times will yield undefined behavior. 6252 // 6253 // 2. In the set of iterations including and after K, the loop body executes 6254 // at least one side effect. In this case, that specific instance of side 6255 // effect is control dependent on poison, which also yields undefined 6256 // behavior. 6257 6258 auto *ExitingBB = L->getExitingBlock(); 6259 auto *LatchBB = L->getLoopLatch(); 6260 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6261 return false; 6262 6263 SmallPtrSet<const Instruction *, 16> Pushed; 6264 SmallVector<const Instruction *, 8> PoisonStack; 6265 6266 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6267 // things that are known to be poison under that assumption go on the 6268 // PoisonStack. 6269 Pushed.insert(I); 6270 PoisonStack.push_back(I); 6271 6272 bool LatchControlDependentOnPoison = false; 6273 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6274 const Instruction *Poison = PoisonStack.pop_back_val(); 6275 6276 for (auto *PoisonUser : Poison->users()) { 6277 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6278 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6279 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6280 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6281 assert(BI->isConditional() && "Only possibility!"); 6282 if (BI->getParent() == LatchBB) { 6283 LatchControlDependentOnPoison = true; 6284 break; 6285 } 6286 } 6287 } 6288 } 6289 6290 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6291 } 6292 6293 ScalarEvolution::LoopProperties 6294 ScalarEvolution::getLoopProperties(const Loop *L) { 6295 using LoopProperties = ScalarEvolution::LoopProperties; 6296 6297 auto Itr = LoopPropertiesCache.find(L); 6298 if (Itr == LoopPropertiesCache.end()) { 6299 auto HasSideEffects = [](Instruction *I) { 6300 if (auto *SI = dyn_cast<StoreInst>(I)) 6301 return !SI->isSimple(); 6302 6303 return I->mayHaveSideEffects(); 6304 }; 6305 6306 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6307 /*HasNoSideEffects*/ true}; 6308 6309 for (auto *BB : L->getBlocks()) 6310 for (auto &I : *BB) { 6311 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6312 LP.HasNoAbnormalExits = false; 6313 if (HasSideEffects(&I)) 6314 LP.HasNoSideEffects = false; 6315 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6316 break; // We're already as pessimistic as we can get. 6317 } 6318 6319 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6320 assert(InsertPair.second && "We just checked!"); 6321 Itr = InsertPair.first; 6322 } 6323 6324 return Itr->second; 6325 } 6326 6327 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6328 if (!isSCEVable(V->getType())) 6329 return getUnknown(V); 6330 6331 if (Instruction *I = dyn_cast<Instruction>(V)) { 6332 // Don't attempt to analyze instructions in blocks that aren't 6333 // reachable. Such instructions don't matter, and they aren't required 6334 // to obey basic rules for definitions dominating uses which this 6335 // analysis depends on. 6336 if (!DT.isReachableFromEntry(I->getParent())) 6337 return getUnknown(UndefValue::get(V->getType())); 6338 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6339 return getConstant(CI); 6340 else if (isa<ConstantPointerNull>(V)) 6341 // FIXME: we shouldn't special-case null pointer constant. 6342 return getZero(V->getType()); 6343 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6344 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6345 else if (!isa<ConstantExpr>(V)) 6346 return getUnknown(V); 6347 6348 Operator *U = cast<Operator>(V); 6349 if (auto BO = MatchBinaryOp(U, DT)) { 6350 switch (BO->Opcode) { 6351 case Instruction::Add: { 6352 // The simple thing to do would be to just call getSCEV on both operands 6353 // and call getAddExpr with the result. However if we're looking at a 6354 // bunch of things all added together, this can be quite inefficient, 6355 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6356 // Instead, gather up all the operands and make a single getAddExpr call. 6357 // LLVM IR canonical form means we need only traverse the left operands. 6358 SmallVector<const SCEV *, 4> AddOps; 6359 do { 6360 if (BO->Op) { 6361 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6362 AddOps.push_back(OpSCEV); 6363 break; 6364 } 6365 6366 // If a NUW or NSW flag can be applied to the SCEV for this 6367 // addition, then compute the SCEV for this addition by itself 6368 // with a separate call to getAddExpr. We need to do that 6369 // instead of pushing the operands of the addition onto AddOps, 6370 // since the flags are only known to apply to this particular 6371 // addition - they may not apply to other additions that can be 6372 // formed with operands from AddOps. 6373 const SCEV *RHS = getSCEV(BO->RHS); 6374 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6375 if (Flags != SCEV::FlagAnyWrap) { 6376 const SCEV *LHS = getSCEV(BO->LHS); 6377 if (BO->Opcode == Instruction::Sub) 6378 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6379 else 6380 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6381 break; 6382 } 6383 } 6384 6385 if (BO->Opcode == Instruction::Sub) 6386 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6387 else 6388 AddOps.push_back(getSCEV(BO->RHS)); 6389 6390 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6391 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6392 NewBO->Opcode != Instruction::Sub)) { 6393 AddOps.push_back(getSCEV(BO->LHS)); 6394 break; 6395 } 6396 BO = NewBO; 6397 } while (true); 6398 6399 return getAddExpr(AddOps); 6400 } 6401 6402 case Instruction::Mul: { 6403 SmallVector<const SCEV *, 4> MulOps; 6404 do { 6405 if (BO->Op) { 6406 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6407 MulOps.push_back(OpSCEV); 6408 break; 6409 } 6410 6411 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6412 if (Flags != SCEV::FlagAnyWrap) { 6413 MulOps.push_back( 6414 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6415 break; 6416 } 6417 } 6418 6419 MulOps.push_back(getSCEV(BO->RHS)); 6420 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6421 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6422 MulOps.push_back(getSCEV(BO->LHS)); 6423 break; 6424 } 6425 BO = NewBO; 6426 } while (true); 6427 6428 return getMulExpr(MulOps); 6429 } 6430 case Instruction::UDiv: 6431 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6432 case Instruction::URem: 6433 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6434 case Instruction::Sub: { 6435 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6436 if (BO->Op) 6437 Flags = getNoWrapFlagsFromUB(BO->Op); 6438 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6439 } 6440 case Instruction::And: 6441 // For an expression like x&255 that merely masks off the high bits, 6442 // use zext(trunc(x)) as the SCEV expression. 6443 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6444 if (CI->isZero()) 6445 return getSCEV(BO->RHS); 6446 if (CI->isMinusOne()) 6447 return getSCEV(BO->LHS); 6448 const APInt &A = CI->getValue(); 6449 6450 // Instcombine's ShrinkDemandedConstant may strip bits out of 6451 // constants, obscuring what would otherwise be a low-bits mask. 6452 // Use computeKnownBits to compute what ShrinkDemandedConstant 6453 // knew about to reconstruct a low-bits mask value. 6454 unsigned LZ = A.countLeadingZeros(); 6455 unsigned TZ = A.countTrailingZeros(); 6456 unsigned BitWidth = A.getBitWidth(); 6457 KnownBits Known(BitWidth); 6458 computeKnownBits(BO->LHS, Known, getDataLayout(), 6459 0, &AC, nullptr, &DT); 6460 6461 APInt EffectiveMask = 6462 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6463 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6464 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6465 const SCEV *LHS = getSCEV(BO->LHS); 6466 const SCEV *ShiftedLHS = nullptr; 6467 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6468 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6469 // For an expression like (x * 8) & 8, simplify the multiply. 6470 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6471 unsigned GCD = std::min(MulZeros, TZ); 6472 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6473 SmallVector<const SCEV*, 4> MulOps; 6474 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6475 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6476 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6477 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6478 } 6479 } 6480 if (!ShiftedLHS) 6481 ShiftedLHS = getUDivExpr(LHS, MulCount); 6482 return getMulExpr( 6483 getZeroExtendExpr( 6484 getTruncateExpr(ShiftedLHS, 6485 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6486 BO->LHS->getType()), 6487 MulCount); 6488 } 6489 } 6490 break; 6491 6492 case Instruction::Or: 6493 // If the RHS of the Or is a constant, we may have something like: 6494 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6495 // optimizations will transparently handle this case. 6496 // 6497 // In order for this transformation to be safe, the LHS must be of the 6498 // form X*(2^n) and the Or constant must be less than 2^n. 6499 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6500 const SCEV *LHS = getSCEV(BO->LHS); 6501 const APInt &CIVal = CI->getValue(); 6502 if (GetMinTrailingZeros(LHS) >= 6503 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6504 // Build a plain add SCEV. 6505 return getAddExpr(LHS, getSCEV(CI), 6506 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6507 } 6508 } 6509 break; 6510 6511 case Instruction::Xor: 6512 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6513 // If the RHS of xor is -1, then this is a not operation. 6514 if (CI->isMinusOne()) 6515 return getNotSCEV(getSCEV(BO->LHS)); 6516 6517 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6518 // This is a variant of the check for xor with -1, and it handles 6519 // the case where instcombine has trimmed non-demanded bits out 6520 // of an xor with -1. 6521 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6522 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6523 if (LBO->getOpcode() == Instruction::And && 6524 LCI->getValue() == CI->getValue()) 6525 if (const SCEVZeroExtendExpr *Z = 6526 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6527 Type *UTy = BO->LHS->getType(); 6528 const SCEV *Z0 = Z->getOperand(); 6529 Type *Z0Ty = Z0->getType(); 6530 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6531 6532 // If C is a low-bits mask, the zero extend is serving to 6533 // mask off the high bits. Complement the operand and 6534 // re-apply the zext. 6535 if (CI->getValue().isMask(Z0TySize)) 6536 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6537 6538 // If C is a single bit, it may be in the sign-bit position 6539 // before the zero-extend. In this case, represent the xor 6540 // using an add, which is equivalent, and re-apply the zext. 6541 APInt Trunc = CI->getValue().trunc(Z0TySize); 6542 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6543 Trunc.isSignMask()) 6544 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6545 UTy); 6546 } 6547 } 6548 break; 6549 6550 case Instruction::Shl: 6551 // Turn shift left of a constant amount into a multiply. 6552 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6553 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6554 6555 // If the shift count is not less than the bitwidth, the result of 6556 // the shift is undefined. Don't try to analyze it, because the 6557 // resolution chosen here may differ from the resolution chosen in 6558 // other parts of the compiler. 6559 if (SA->getValue().uge(BitWidth)) 6560 break; 6561 6562 // We can safely preserve the nuw flag in all cases. It's also safe to 6563 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6564 // requires special handling. It can be preserved as long as we're not 6565 // left shifting by bitwidth - 1. 6566 auto Flags = SCEV::FlagAnyWrap; 6567 if (BO->Op) { 6568 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6569 if ((MulFlags & SCEV::FlagNSW) && 6570 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6571 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6572 if (MulFlags & SCEV::FlagNUW) 6573 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6574 } 6575 6576 Constant *X = ConstantInt::get( 6577 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6578 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6579 } 6580 break; 6581 6582 case Instruction::AShr: { 6583 // AShr X, C, where C is a constant. 6584 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6585 if (!CI) 6586 break; 6587 6588 Type *OuterTy = BO->LHS->getType(); 6589 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6590 // If the shift count is not less than the bitwidth, the result of 6591 // the shift is undefined. Don't try to analyze it, because the 6592 // resolution chosen here may differ from the resolution chosen in 6593 // other parts of the compiler. 6594 if (CI->getValue().uge(BitWidth)) 6595 break; 6596 6597 if (CI->isZero()) 6598 return getSCEV(BO->LHS); // shift by zero --> noop 6599 6600 uint64_t AShrAmt = CI->getZExtValue(); 6601 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6602 6603 Operator *L = dyn_cast<Operator>(BO->LHS); 6604 if (L && L->getOpcode() == Instruction::Shl) { 6605 // X = Shl A, n 6606 // Y = AShr X, m 6607 // Both n and m are constant. 6608 6609 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6610 if (L->getOperand(1) == BO->RHS) 6611 // For a two-shift sext-inreg, i.e. n = m, 6612 // use sext(trunc(x)) as the SCEV expression. 6613 return getSignExtendExpr( 6614 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6615 6616 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6617 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6618 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6619 if (ShlAmt > AShrAmt) { 6620 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6621 // expression. We already checked that ShlAmt < BitWidth, so 6622 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6623 // ShlAmt - AShrAmt < Amt. 6624 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6625 ShlAmt - AShrAmt); 6626 return getSignExtendExpr( 6627 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6628 getConstant(Mul)), OuterTy); 6629 } 6630 } 6631 } 6632 if (BO->IsExact) { 6633 // Given exact arithmetic in-bounds right-shift by a constant, 6634 // we can lower it into: (abs(x) EXACT/u (1<<C)) * signum(x) 6635 const SCEV *X = getSCEV(BO->LHS); 6636 const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false); 6637 APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt); 6638 const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult)); 6639 return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW); 6640 } 6641 break; 6642 } 6643 } 6644 } 6645 6646 switch (U->getOpcode()) { 6647 case Instruction::Trunc: 6648 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6649 6650 case Instruction::ZExt: 6651 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6652 6653 case Instruction::SExt: 6654 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6655 // The NSW flag of a subtract does not always survive the conversion to 6656 // A + (-1)*B. By pushing sign extension onto its operands we are much 6657 // more likely to preserve NSW and allow later AddRec optimisations. 6658 // 6659 // NOTE: This is effectively duplicating this logic from getSignExtend: 6660 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6661 // but by that point the NSW information has potentially been lost. 6662 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6663 Type *Ty = U->getType(); 6664 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6665 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6666 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6667 } 6668 } 6669 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6670 6671 case Instruction::BitCast: 6672 // BitCasts are no-op casts so we just eliminate the cast. 6673 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6674 return getSCEV(U->getOperand(0)); 6675 break; 6676 6677 case Instruction::PtrToInt: { 6678 // Pointer to integer cast is straight-forward, so do model it. 6679 Value *Ptr = U->getOperand(0); 6680 const SCEV *Op = getSCEV(Ptr); 6681 Type *DstIntTy = U->getType(); 6682 // SCEV doesn't have constant pointer expression type, but it supports 6683 // nullptr constant (and only that one), which is modelled in SCEV as a 6684 // zero integer constant. So just skip the ptrtoint cast for constants. 6685 if (isa<SCEVConstant>(Op)) 6686 return getTruncateOrZeroExtend(Op, DstIntTy); 6687 Type *PtrTy = Ptr->getType(); 6688 Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy); 6689 // But only if effective SCEV (integer) type is wide enough to represent 6690 // all possible pointer values. 6691 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) != 6692 getDataLayout().getTypeSizeInBits(IntPtrTy)) 6693 return getUnknown(V); 6694 return getPtrToIntExpr(Op, DstIntTy); 6695 } 6696 case Instruction::IntToPtr: 6697 // Just don't deal with inttoptr casts. 6698 return getUnknown(V); 6699 6700 case Instruction::SDiv: 6701 // If both operands are non-negative, this is just an udiv. 6702 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6703 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6704 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6705 break; 6706 6707 case Instruction::SRem: 6708 // If both operands are non-negative, this is just an urem. 6709 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6710 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6711 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6712 break; 6713 6714 case Instruction::GetElementPtr: 6715 return createNodeForGEP(cast<GEPOperator>(U)); 6716 6717 case Instruction::PHI: 6718 return createNodeForPHI(cast<PHINode>(U)); 6719 6720 case Instruction::Select: 6721 // U can also be a select constant expr, which let fall through. Since 6722 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6723 // constant expressions cannot have instructions as operands, we'd have 6724 // returned getUnknown for a select constant expressions anyway. 6725 if (isa<Instruction>(U)) 6726 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6727 U->getOperand(1), U->getOperand(2)); 6728 break; 6729 6730 case Instruction::Call: 6731 case Instruction::Invoke: 6732 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6733 return getSCEV(RV); 6734 6735 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 6736 switch (II->getIntrinsicID()) { 6737 case Intrinsic::abs: 6738 return getAbsExpr( 6739 getSCEV(II->getArgOperand(0)), 6740 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 6741 case Intrinsic::umax: 6742 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 6743 getSCEV(II->getArgOperand(1))); 6744 case Intrinsic::umin: 6745 return getUMinExpr(getSCEV(II->getArgOperand(0)), 6746 getSCEV(II->getArgOperand(1))); 6747 case Intrinsic::smax: 6748 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 6749 getSCEV(II->getArgOperand(1))); 6750 case Intrinsic::smin: 6751 return getSMinExpr(getSCEV(II->getArgOperand(0)), 6752 getSCEV(II->getArgOperand(1))); 6753 case Intrinsic::usub_sat: { 6754 const SCEV *X = getSCEV(II->getArgOperand(0)); 6755 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6756 const SCEV *ClampedY = getUMinExpr(X, Y); 6757 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 6758 } 6759 case Intrinsic::uadd_sat: { 6760 const SCEV *X = getSCEV(II->getArgOperand(0)); 6761 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6762 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 6763 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 6764 } 6765 case Intrinsic::start_loop_iterations: 6766 // A start_loop_iterations is just equivalent to the first operand for 6767 // SCEV purposes. 6768 return getSCEV(II->getArgOperand(0)); 6769 default: 6770 break; 6771 } 6772 } 6773 break; 6774 } 6775 6776 return getUnknown(V); 6777 } 6778 6779 //===----------------------------------------------------------------------===// 6780 // Iteration Count Computation Code 6781 // 6782 6783 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6784 if (!ExitCount) 6785 return 0; 6786 6787 ConstantInt *ExitConst = ExitCount->getValue(); 6788 6789 // Guard against huge trip counts. 6790 if (ExitConst->getValue().getActiveBits() > 32) 6791 return 0; 6792 6793 // In case of integer overflow, this returns 0, which is correct. 6794 return ((unsigned)ExitConst->getZExtValue()) + 1; 6795 } 6796 6797 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6798 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6799 return getSmallConstantTripCount(L, ExitingBB); 6800 6801 // No trip count information for multiple exits. 6802 return 0; 6803 } 6804 6805 unsigned 6806 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6807 const BasicBlock *ExitingBlock) { 6808 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6809 assert(L->isLoopExiting(ExitingBlock) && 6810 "Exiting block must actually branch out of the loop!"); 6811 const SCEVConstant *ExitCount = 6812 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6813 return getConstantTripCount(ExitCount); 6814 } 6815 6816 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6817 const auto *MaxExitCount = 6818 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6819 return getConstantTripCount(MaxExitCount); 6820 } 6821 6822 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6823 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6824 return getSmallConstantTripMultiple(L, ExitingBB); 6825 6826 // No trip multiple information for multiple exits. 6827 return 0; 6828 } 6829 6830 /// Returns the largest constant divisor of the trip count of this loop as a 6831 /// normal unsigned value, if possible. This means that the actual trip count is 6832 /// always a multiple of the returned value (don't forget the trip count could 6833 /// very well be zero as well!). 6834 /// 6835 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6836 /// multiple of a constant (which is also the case if the trip count is simply 6837 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6838 /// if the trip count is very large (>= 2^32). 6839 /// 6840 /// As explained in the comments for getSmallConstantTripCount, this assumes 6841 /// that control exits the loop via ExitingBlock. 6842 unsigned 6843 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6844 const BasicBlock *ExitingBlock) { 6845 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6846 assert(L->isLoopExiting(ExitingBlock) && 6847 "Exiting block must actually branch out of the loop!"); 6848 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6849 if (ExitCount == getCouldNotCompute()) 6850 return 1; 6851 6852 // Get the trip count from the BE count by adding 1. 6853 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6854 6855 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6856 if (!TC) 6857 // Attempt to factor more general cases. Returns the greatest power of 6858 // two divisor. If overflow happens, the trip count expression is still 6859 // divisible by the greatest power of 2 divisor returned. 6860 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6861 6862 ConstantInt *Result = TC->getValue(); 6863 6864 // Guard against huge trip counts (this requires checking 6865 // for zero to handle the case where the trip count == -1 and the 6866 // addition wraps). 6867 if (!Result || Result->getValue().getActiveBits() > 32 || 6868 Result->getValue().getActiveBits() == 0) 6869 return 1; 6870 6871 return (unsigned)Result->getZExtValue(); 6872 } 6873 6874 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6875 const BasicBlock *ExitingBlock, 6876 ExitCountKind Kind) { 6877 switch (Kind) { 6878 case Exact: 6879 case SymbolicMaximum: 6880 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6881 case ConstantMaximum: 6882 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 6883 }; 6884 llvm_unreachable("Invalid ExitCountKind!"); 6885 } 6886 6887 const SCEV * 6888 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6889 SCEVUnionPredicate &Preds) { 6890 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6891 } 6892 6893 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6894 ExitCountKind Kind) { 6895 switch (Kind) { 6896 case Exact: 6897 return getBackedgeTakenInfo(L).getExact(L, this); 6898 case ConstantMaximum: 6899 return getBackedgeTakenInfo(L).getConstantMax(this); 6900 case SymbolicMaximum: 6901 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 6902 }; 6903 llvm_unreachable("Invalid ExitCountKind!"); 6904 } 6905 6906 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6907 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 6908 } 6909 6910 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6911 static void 6912 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6913 BasicBlock *Header = L->getHeader(); 6914 6915 // Push all Loop-header PHIs onto the Worklist stack. 6916 for (PHINode &PN : Header->phis()) 6917 Worklist.push_back(&PN); 6918 } 6919 6920 const ScalarEvolution::BackedgeTakenInfo & 6921 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6922 auto &BTI = getBackedgeTakenInfo(L); 6923 if (BTI.hasFullInfo()) 6924 return BTI; 6925 6926 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6927 6928 if (!Pair.second) 6929 return Pair.first->second; 6930 6931 BackedgeTakenInfo Result = 6932 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6933 6934 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6935 } 6936 6937 ScalarEvolution::BackedgeTakenInfo & 6938 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6939 // Initially insert an invalid entry for this loop. If the insertion 6940 // succeeds, proceed to actually compute a backedge-taken count and 6941 // update the value. The temporary CouldNotCompute value tells SCEV 6942 // code elsewhere that it shouldn't attempt to request a new 6943 // backedge-taken count, which could result in infinite recursion. 6944 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6945 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6946 if (!Pair.second) 6947 return Pair.first->second; 6948 6949 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6950 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6951 // must be cleared in this scope. 6952 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6953 6954 // In product build, there are no usage of statistic. 6955 (void)NumTripCountsComputed; 6956 (void)NumTripCountsNotComputed; 6957 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6958 const SCEV *BEExact = Result.getExact(L, this); 6959 if (BEExact != getCouldNotCompute()) { 6960 assert(isLoopInvariant(BEExact, L) && 6961 isLoopInvariant(Result.getConstantMax(this), L) && 6962 "Computed backedge-taken count isn't loop invariant for loop!"); 6963 ++NumTripCountsComputed; 6964 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 6965 isa<PHINode>(L->getHeader()->begin())) { 6966 // Only count loops that have phi nodes as not being computable. 6967 ++NumTripCountsNotComputed; 6968 } 6969 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6970 6971 // Now that we know more about the trip count for this loop, forget any 6972 // existing SCEV values for PHI nodes in this loop since they are only 6973 // conservative estimates made without the benefit of trip count 6974 // information. This is similar to the code in forgetLoop, except that 6975 // it handles SCEVUnknown PHI nodes specially. 6976 if (Result.hasAnyInfo()) { 6977 SmallVector<Instruction *, 16> Worklist; 6978 PushLoopPHIs(L, Worklist); 6979 6980 SmallPtrSet<Instruction *, 8> Discovered; 6981 while (!Worklist.empty()) { 6982 Instruction *I = Worklist.pop_back_val(); 6983 6984 ValueExprMapType::iterator It = 6985 ValueExprMap.find_as(static_cast<Value *>(I)); 6986 if (It != ValueExprMap.end()) { 6987 const SCEV *Old = It->second; 6988 6989 // SCEVUnknown for a PHI either means that it has an unrecognized 6990 // structure, or it's a PHI that's in the progress of being computed 6991 // by createNodeForPHI. In the former case, additional loop trip 6992 // count information isn't going to change anything. In the later 6993 // case, createNodeForPHI will perform the necessary updates on its 6994 // own when it gets to that point. 6995 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6996 eraseValueFromMap(It->first); 6997 forgetMemoizedResults(Old); 6998 } 6999 if (PHINode *PN = dyn_cast<PHINode>(I)) 7000 ConstantEvolutionLoopExitValue.erase(PN); 7001 } 7002 7003 // Since we don't need to invalidate anything for correctness and we're 7004 // only invalidating to make SCEV's results more precise, we get to stop 7005 // early to avoid invalidating too much. This is especially important in 7006 // cases like: 7007 // 7008 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7009 // loop0: 7010 // %pn0 = phi 7011 // ... 7012 // loop1: 7013 // %pn1 = phi 7014 // ... 7015 // 7016 // where both loop0 and loop1's backedge taken count uses the SCEV 7017 // expression for %v. If we don't have the early stop below then in cases 7018 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7019 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7020 // count for loop1, effectively nullifying SCEV's trip count cache. 7021 for (auto *U : I->users()) 7022 if (auto *I = dyn_cast<Instruction>(U)) { 7023 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7024 if (LoopForUser && L->contains(LoopForUser) && 7025 Discovered.insert(I).second) 7026 Worklist.push_back(I); 7027 } 7028 } 7029 } 7030 7031 // Re-lookup the insert position, since the call to 7032 // computeBackedgeTakenCount above could result in a 7033 // recusive call to getBackedgeTakenInfo (on a different 7034 // loop), which would invalidate the iterator computed 7035 // earlier. 7036 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7037 } 7038 7039 void ScalarEvolution::forgetAllLoops() { 7040 // This method is intended to forget all info about loops. It should 7041 // invalidate caches as if the following happened: 7042 // - The trip counts of all loops have changed arbitrarily 7043 // - Every llvm::Value has been updated in place to produce a different 7044 // result. 7045 BackedgeTakenCounts.clear(); 7046 PredicatedBackedgeTakenCounts.clear(); 7047 LoopPropertiesCache.clear(); 7048 ConstantEvolutionLoopExitValue.clear(); 7049 ValueExprMap.clear(); 7050 ValuesAtScopes.clear(); 7051 LoopDispositions.clear(); 7052 BlockDispositions.clear(); 7053 UnsignedRanges.clear(); 7054 SignedRanges.clear(); 7055 ExprValueMap.clear(); 7056 HasRecMap.clear(); 7057 MinTrailingZerosCache.clear(); 7058 PredicatedSCEVRewrites.clear(); 7059 } 7060 7061 void ScalarEvolution::forgetLoop(const Loop *L) { 7062 // Drop any stored trip count value. 7063 auto RemoveLoopFromBackedgeMap = 7064 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 7065 auto BTCPos = Map.find(L); 7066 if (BTCPos != Map.end()) { 7067 BTCPos->second.clear(); 7068 Map.erase(BTCPos); 7069 } 7070 }; 7071 7072 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7073 SmallVector<Instruction *, 32> Worklist; 7074 SmallPtrSet<Instruction *, 16> Visited; 7075 7076 // Iterate over all the loops and sub-loops to drop SCEV information. 7077 while (!LoopWorklist.empty()) { 7078 auto *CurrL = LoopWorklist.pop_back_val(); 7079 7080 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 7081 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 7082 7083 // Drop information about predicated SCEV rewrites for this loop. 7084 for (auto I = PredicatedSCEVRewrites.begin(); 7085 I != PredicatedSCEVRewrites.end();) { 7086 std::pair<const SCEV *, const Loop *> Entry = I->first; 7087 if (Entry.second == CurrL) 7088 PredicatedSCEVRewrites.erase(I++); 7089 else 7090 ++I; 7091 } 7092 7093 auto LoopUsersItr = LoopUsers.find(CurrL); 7094 if (LoopUsersItr != LoopUsers.end()) { 7095 for (auto *S : LoopUsersItr->second) 7096 forgetMemoizedResults(S); 7097 LoopUsers.erase(LoopUsersItr); 7098 } 7099 7100 // Drop information about expressions based on loop-header PHIs. 7101 PushLoopPHIs(CurrL, Worklist); 7102 7103 while (!Worklist.empty()) { 7104 Instruction *I = Worklist.pop_back_val(); 7105 if (!Visited.insert(I).second) 7106 continue; 7107 7108 ValueExprMapType::iterator It = 7109 ValueExprMap.find_as(static_cast<Value *>(I)); 7110 if (It != ValueExprMap.end()) { 7111 eraseValueFromMap(It->first); 7112 forgetMemoizedResults(It->second); 7113 if (PHINode *PN = dyn_cast<PHINode>(I)) 7114 ConstantEvolutionLoopExitValue.erase(PN); 7115 } 7116 7117 PushDefUseChildren(I, Worklist); 7118 } 7119 7120 LoopPropertiesCache.erase(CurrL); 7121 // Forget all contained loops too, to avoid dangling entries in the 7122 // ValuesAtScopes map. 7123 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7124 } 7125 } 7126 7127 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7128 while (Loop *Parent = L->getParentLoop()) 7129 L = Parent; 7130 forgetLoop(L); 7131 } 7132 7133 void ScalarEvolution::forgetValue(Value *V) { 7134 Instruction *I = dyn_cast<Instruction>(V); 7135 if (!I) return; 7136 7137 // Drop information about expressions based on loop-header PHIs. 7138 SmallVector<Instruction *, 16> Worklist; 7139 Worklist.push_back(I); 7140 7141 SmallPtrSet<Instruction *, 8> Visited; 7142 while (!Worklist.empty()) { 7143 I = Worklist.pop_back_val(); 7144 if (!Visited.insert(I).second) 7145 continue; 7146 7147 ValueExprMapType::iterator It = 7148 ValueExprMap.find_as(static_cast<Value *>(I)); 7149 if (It != ValueExprMap.end()) { 7150 eraseValueFromMap(It->first); 7151 forgetMemoizedResults(It->second); 7152 if (PHINode *PN = dyn_cast<PHINode>(I)) 7153 ConstantEvolutionLoopExitValue.erase(PN); 7154 } 7155 7156 PushDefUseChildren(I, Worklist); 7157 } 7158 } 7159 7160 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7161 LoopDispositions.clear(); 7162 } 7163 7164 /// Get the exact loop backedge taken count considering all loop exits. A 7165 /// computable result can only be returned for loops with all exiting blocks 7166 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7167 /// is never skipped. This is a valid assumption as long as the loop exits via 7168 /// that test. For precise results, it is the caller's responsibility to specify 7169 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7170 const SCEV * 7171 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7172 SCEVUnionPredicate *Preds) const { 7173 // If any exits were not computable, the loop is not computable. 7174 if (!isComplete() || ExitNotTaken.empty()) 7175 return SE->getCouldNotCompute(); 7176 7177 const BasicBlock *Latch = L->getLoopLatch(); 7178 // All exiting blocks we have collected must dominate the only backedge. 7179 if (!Latch) 7180 return SE->getCouldNotCompute(); 7181 7182 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7183 // count is simply a minimum out of all these calculated exit counts. 7184 SmallVector<const SCEV *, 2> Ops; 7185 for (auto &ENT : ExitNotTaken) { 7186 const SCEV *BECount = ENT.ExactNotTaken; 7187 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7188 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7189 "We should only have known counts for exiting blocks that dominate " 7190 "latch!"); 7191 7192 Ops.push_back(BECount); 7193 7194 if (Preds && !ENT.hasAlwaysTruePredicate()) 7195 Preds->add(ENT.Predicate.get()); 7196 7197 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7198 "Predicate should be always true!"); 7199 } 7200 7201 return SE->getUMinFromMismatchedTypes(Ops); 7202 } 7203 7204 /// Get the exact not taken count for this loop exit. 7205 const SCEV * 7206 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7207 ScalarEvolution *SE) const { 7208 for (auto &ENT : ExitNotTaken) 7209 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7210 return ENT.ExactNotTaken; 7211 7212 return SE->getCouldNotCompute(); 7213 } 7214 7215 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7216 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7217 for (auto &ENT : ExitNotTaken) 7218 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7219 return ENT.MaxNotTaken; 7220 7221 return SE->getCouldNotCompute(); 7222 } 7223 7224 /// getConstantMax - Get the constant max backedge taken count for the loop. 7225 const SCEV * 7226 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7227 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7228 return !ENT.hasAlwaysTruePredicate(); 7229 }; 7230 7231 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7232 return SE->getCouldNotCompute(); 7233 7234 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7235 isa<SCEVConstant>(getConstantMax())) && 7236 "No point in having a non-constant max backedge taken count!"); 7237 return getConstantMax(); 7238 } 7239 7240 const SCEV * 7241 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7242 ScalarEvolution *SE) { 7243 if (!SymbolicMax) 7244 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7245 return SymbolicMax; 7246 } 7247 7248 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7249 ScalarEvolution *SE) const { 7250 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7251 return !ENT.hasAlwaysTruePredicate(); 7252 }; 7253 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7254 } 7255 7256 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 7257 ScalarEvolution *SE) const { 7258 if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() && 7259 SE->hasOperand(getConstantMax(), S)) 7260 return true; 7261 7262 for (auto &ENT : ExitNotTaken) 7263 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 7264 SE->hasOperand(ENT.ExactNotTaken, S)) 7265 return true; 7266 7267 return false; 7268 } 7269 7270 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7271 : ExactNotTaken(E), MaxNotTaken(E) { 7272 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7273 isa<SCEVConstant>(MaxNotTaken)) && 7274 "No point in having a non-constant max backedge taken count!"); 7275 } 7276 7277 ScalarEvolution::ExitLimit::ExitLimit( 7278 const SCEV *E, const SCEV *M, bool MaxOrZero, 7279 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7280 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7281 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7282 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7283 "Exact is not allowed to be less precise than Max"); 7284 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7285 isa<SCEVConstant>(MaxNotTaken)) && 7286 "No point in having a non-constant max backedge taken count!"); 7287 for (auto *PredSet : PredSetList) 7288 for (auto *P : *PredSet) 7289 addPredicate(P); 7290 } 7291 7292 ScalarEvolution::ExitLimit::ExitLimit( 7293 const SCEV *E, const SCEV *M, bool MaxOrZero, 7294 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7295 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7296 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7297 isa<SCEVConstant>(MaxNotTaken)) && 7298 "No point in having a non-constant max backedge taken count!"); 7299 } 7300 7301 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7302 bool MaxOrZero) 7303 : ExitLimit(E, M, MaxOrZero, None) { 7304 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7305 isa<SCEVConstant>(MaxNotTaken)) && 7306 "No point in having a non-constant max backedge taken count!"); 7307 } 7308 7309 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7310 /// computable exit into a persistent ExitNotTakenInfo array. 7311 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7312 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7313 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7314 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7315 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7316 7317 ExitNotTaken.reserve(ExitCounts.size()); 7318 std::transform( 7319 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7320 [&](const EdgeExitInfo &EEI) { 7321 BasicBlock *ExitBB = EEI.first; 7322 const ExitLimit &EL = EEI.second; 7323 if (EL.Predicates.empty()) 7324 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7325 nullptr); 7326 7327 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7328 for (auto *Pred : EL.Predicates) 7329 Predicate->add(Pred); 7330 7331 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7332 std::move(Predicate)); 7333 }); 7334 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7335 isa<SCEVConstant>(ConstantMax)) && 7336 "No point in having a non-constant max backedge taken count!"); 7337 } 7338 7339 /// Invalidate this result and free the ExitNotTakenInfo array. 7340 void ScalarEvolution::BackedgeTakenInfo::clear() { 7341 ExitNotTaken.clear(); 7342 } 7343 7344 /// Compute the number of times the backedge of the specified loop will execute. 7345 ScalarEvolution::BackedgeTakenInfo 7346 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7347 bool AllowPredicates) { 7348 SmallVector<BasicBlock *, 8> ExitingBlocks; 7349 L->getExitingBlocks(ExitingBlocks); 7350 7351 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7352 7353 SmallVector<EdgeExitInfo, 4> ExitCounts; 7354 bool CouldComputeBECount = true; 7355 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7356 const SCEV *MustExitMaxBECount = nullptr; 7357 const SCEV *MayExitMaxBECount = nullptr; 7358 bool MustExitMaxOrZero = false; 7359 7360 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7361 // and compute maxBECount. 7362 // Do a union of all the predicates here. 7363 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7364 BasicBlock *ExitBB = ExitingBlocks[i]; 7365 7366 // We canonicalize untaken exits to br (constant), ignore them so that 7367 // proving an exit untaken doesn't negatively impact our ability to reason 7368 // about the loop as whole. 7369 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7370 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7371 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7372 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7373 continue; 7374 } 7375 7376 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7377 7378 assert((AllowPredicates || EL.Predicates.empty()) && 7379 "Predicated exit limit when predicates are not allowed!"); 7380 7381 // 1. For each exit that can be computed, add an entry to ExitCounts. 7382 // CouldComputeBECount is true only if all exits can be computed. 7383 if (EL.ExactNotTaken == getCouldNotCompute()) 7384 // We couldn't compute an exact value for this exit, so 7385 // we won't be able to compute an exact value for the loop. 7386 CouldComputeBECount = false; 7387 else 7388 ExitCounts.emplace_back(ExitBB, EL); 7389 7390 // 2. Derive the loop's MaxBECount from each exit's max number of 7391 // non-exiting iterations. Partition the loop exits into two kinds: 7392 // LoopMustExits and LoopMayExits. 7393 // 7394 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7395 // is a LoopMayExit. If any computable LoopMustExit is found, then 7396 // MaxBECount is the minimum EL.MaxNotTaken of computable 7397 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7398 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7399 // computable EL.MaxNotTaken. 7400 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7401 DT.dominates(ExitBB, Latch)) { 7402 if (!MustExitMaxBECount) { 7403 MustExitMaxBECount = EL.MaxNotTaken; 7404 MustExitMaxOrZero = EL.MaxOrZero; 7405 } else { 7406 MustExitMaxBECount = 7407 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7408 } 7409 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7410 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7411 MayExitMaxBECount = EL.MaxNotTaken; 7412 else { 7413 MayExitMaxBECount = 7414 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7415 } 7416 } 7417 } 7418 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7419 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7420 // The loop backedge will be taken the maximum or zero times if there's 7421 // a single exit that must be taken the maximum or zero times. 7422 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7423 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7424 MaxBECount, MaxOrZero); 7425 } 7426 7427 ScalarEvolution::ExitLimit 7428 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7429 bool AllowPredicates) { 7430 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7431 // If our exiting block does not dominate the latch, then its connection with 7432 // loop's exit limit may be far from trivial. 7433 const BasicBlock *Latch = L->getLoopLatch(); 7434 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7435 return getCouldNotCompute(); 7436 7437 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7438 Instruction *Term = ExitingBlock->getTerminator(); 7439 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7440 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7441 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7442 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7443 "It should have one successor in loop and one exit block!"); 7444 // Proceed to the next level to examine the exit condition expression. 7445 return computeExitLimitFromCond( 7446 L, BI->getCondition(), ExitIfTrue, 7447 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7448 } 7449 7450 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7451 // For switch, make sure that there is a single exit from the loop. 7452 BasicBlock *Exit = nullptr; 7453 for (auto *SBB : successors(ExitingBlock)) 7454 if (!L->contains(SBB)) { 7455 if (Exit) // Multiple exit successors. 7456 return getCouldNotCompute(); 7457 Exit = SBB; 7458 } 7459 assert(Exit && "Exiting block must have at least one exit"); 7460 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7461 /*ControlsExit=*/IsOnlyExit); 7462 } 7463 7464 return getCouldNotCompute(); 7465 } 7466 7467 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7468 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7469 bool ControlsExit, bool AllowPredicates) { 7470 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7471 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7472 ControlsExit, AllowPredicates); 7473 } 7474 7475 Optional<ScalarEvolution::ExitLimit> 7476 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7477 bool ExitIfTrue, bool ControlsExit, 7478 bool AllowPredicates) { 7479 (void)this->L; 7480 (void)this->ExitIfTrue; 7481 (void)this->AllowPredicates; 7482 7483 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7484 this->AllowPredicates == AllowPredicates && 7485 "Variance in assumed invariant key components!"); 7486 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7487 if (Itr == TripCountMap.end()) 7488 return None; 7489 return Itr->second; 7490 } 7491 7492 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7493 bool ExitIfTrue, 7494 bool ControlsExit, 7495 bool AllowPredicates, 7496 const ExitLimit &EL) { 7497 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7498 this->AllowPredicates == AllowPredicates && 7499 "Variance in assumed invariant key components!"); 7500 7501 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7502 assert(InsertResult.second && "Expected successful insertion!"); 7503 (void)InsertResult; 7504 (void)ExitIfTrue; 7505 } 7506 7507 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7508 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7509 bool ControlsExit, bool AllowPredicates) { 7510 7511 if (auto MaybeEL = 7512 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7513 return *MaybeEL; 7514 7515 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7516 ControlsExit, AllowPredicates); 7517 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7518 return EL; 7519 } 7520 7521 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7522 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7523 bool ControlsExit, bool AllowPredicates) { 7524 // Handle BinOp conditions (And, Or). 7525 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7526 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7527 return *LimitFromBinOp; 7528 7529 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7530 // Proceed to the next level to examine the icmp. 7531 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7532 ExitLimit EL = 7533 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7534 if (EL.hasFullInfo() || !AllowPredicates) 7535 return EL; 7536 7537 // Try again, but use SCEV predicates this time. 7538 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7539 /*AllowPredicates=*/true); 7540 } 7541 7542 // Check for a constant condition. These are normally stripped out by 7543 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7544 // preserve the CFG and is temporarily leaving constant conditions 7545 // in place. 7546 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7547 if (ExitIfTrue == !CI->getZExtValue()) 7548 // The backedge is always taken. 7549 return getCouldNotCompute(); 7550 else 7551 // The backedge is never taken. 7552 return getZero(CI->getType()); 7553 } 7554 7555 // If it's not an integer or pointer comparison then compute it the hard way. 7556 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7557 } 7558 7559 Optional<ScalarEvolution::ExitLimit> 7560 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7561 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7562 bool ControlsExit, bool AllowPredicates) { 7563 // Check if the controlling expression for this loop is an And or Or. 7564 if (auto *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7565 if (BO->getOpcode() == Instruction::And) 7566 return computeExitLimitFromCondFromBinOpHelper( 7567 Cache, L, BO, !ExitIfTrue, ExitIfTrue, ControlsExit, AllowPredicates, 7568 ConstantInt::get(BO->getType(), 1)); 7569 if (BO->getOpcode() == Instruction::Or) 7570 return computeExitLimitFromCondFromBinOpHelper( 7571 Cache, L, BO, ExitIfTrue, ExitIfTrue, ControlsExit, AllowPredicates, 7572 ConstantInt::get(BO->getType(), 0)); 7573 } 7574 return None; 7575 } 7576 7577 ScalarEvolution::ExitLimit 7578 ScalarEvolution::computeExitLimitFromCondFromBinOpHelper( 7579 ExitLimitCacheTy &Cache, const Loop *L, BinaryOperator *BO, 7580 bool EitherMayExit, bool ExitIfTrue, bool ControlsExit, 7581 bool AllowPredicates, const Constant *NeutralElement) { 7582 ExitLimit EL0 = computeExitLimitFromCondCached( 7583 Cache, L, BO->getOperand(0), ExitIfTrue, ControlsExit && !EitherMayExit, 7584 AllowPredicates); 7585 ExitLimit EL1 = computeExitLimitFromCondCached( 7586 Cache, L, BO->getOperand(1), ExitIfTrue, ControlsExit && !EitherMayExit, 7587 AllowPredicates); 7588 // Be robust against unsimplified IR for the form "op i1 X, 7589 // NeutralElement" 7590 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7591 return CI == NeutralElement ? EL0 : EL1; 7592 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7593 return CI == NeutralElement ? EL1 : EL0; 7594 const SCEV *BECount = getCouldNotCompute(); 7595 const SCEV *MaxBECount = getCouldNotCompute(); 7596 if (EitherMayExit) { 7597 // Both conditions must be same for the loop to continue executing. 7598 // Choose the less conservative count. 7599 if (EL0.ExactNotTaken == getCouldNotCompute() || 7600 EL1.ExactNotTaken == getCouldNotCompute()) 7601 BECount = getCouldNotCompute(); 7602 else 7603 BECount = 7604 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7605 if (EL0.MaxNotTaken == getCouldNotCompute()) 7606 MaxBECount = EL1.MaxNotTaken; 7607 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7608 MaxBECount = EL0.MaxNotTaken; 7609 else 7610 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7611 } else { 7612 // Both conditions must be same at the same time for the loop to exit. 7613 // For now, be conservative. 7614 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7615 BECount = EL0.ExactNotTaken; 7616 } 7617 7618 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7619 // to be more aggressive when computing BECount than when computing 7620 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7621 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7622 // to not. 7623 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7624 !isa<SCEVCouldNotCompute>(BECount)) 7625 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7626 7627 return ExitLimit(BECount, MaxBECount, false, 7628 { &EL0.Predicates, &EL1.Predicates }); 7629 } 7630 7631 ScalarEvolution::ExitLimit 7632 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7633 ICmpInst *ExitCond, 7634 bool ExitIfTrue, 7635 bool ControlsExit, 7636 bool AllowPredicates) { 7637 // If the condition was exit on true, convert the condition to exit on false 7638 ICmpInst::Predicate Pred; 7639 if (!ExitIfTrue) 7640 Pred = ExitCond->getPredicate(); 7641 else 7642 Pred = ExitCond->getInversePredicate(); 7643 const ICmpInst::Predicate OriginalPred = Pred; 7644 7645 // Handle common loops like: for (X = "string"; *X; ++X) 7646 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7647 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7648 ExitLimit ItCnt = 7649 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7650 if (ItCnt.hasAnyInfo()) 7651 return ItCnt; 7652 } 7653 7654 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7655 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7656 7657 // Try to evaluate any dependencies out of the loop. 7658 LHS = getSCEVAtScope(LHS, L); 7659 RHS = getSCEVAtScope(RHS, L); 7660 7661 // At this point, we would like to compute how many iterations of the 7662 // loop the predicate will return true for these inputs. 7663 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7664 // If there is a loop-invariant, force it into the RHS. 7665 std::swap(LHS, RHS); 7666 Pred = ICmpInst::getSwappedPredicate(Pred); 7667 } 7668 7669 // Simplify the operands before analyzing them. 7670 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7671 7672 // If we have a comparison of a chrec against a constant, try to use value 7673 // ranges to answer this query. 7674 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7675 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7676 if (AddRec->getLoop() == L) { 7677 // Form the constant range. 7678 ConstantRange CompRange = 7679 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7680 7681 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7682 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7683 } 7684 7685 switch (Pred) { 7686 case ICmpInst::ICMP_NE: { // while (X != Y) 7687 // Convert to: while (X-Y != 0) 7688 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7689 AllowPredicates); 7690 if (EL.hasAnyInfo()) return EL; 7691 break; 7692 } 7693 case ICmpInst::ICMP_EQ: { // while (X == Y) 7694 // Convert to: while (X-Y == 0) 7695 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7696 if (EL.hasAnyInfo()) return EL; 7697 break; 7698 } 7699 case ICmpInst::ICMP_SLT: 7700 case ICmpInst::ICMP_ULT: { // while (X < Y) 7701 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7702 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7703 AllowPredicates); 7704 if (EL.hasAnyInfo()) return EL; 7705 break; 7706 } 7707 case ICmpInst::ICMP_SGT: 7708 case ICmpInst::ICMP_UGT: { // while (X > Y) 7709 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7710 ExitLimit EL = 7711 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7712 AllowPredicates); 7713 if (EL.hasAnyInfo()) return EL; 7714 break; 7715 } 7716 default: 7717 break; 7718 } 7719 7720 auto *ExhaustiveCount = 7721 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7722 7723 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7724 return ExhaustiveCount; 7725 7726 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7727 ExitCond->getOperand(1), L, OriginalPred); 7728 } 7729 7730 ScalarEvolution::ExitLimit 7731 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7732 SwitchInst *Switch, 7733 BasicBlock *ExitingBlock, 7734 bool ControlsExit) { 7735 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7736 7737 // Give up if the exit is the default dest of a switch. 7738 if (Switch->getDefaultDest() == ExitingBlock) 7739 return getCouldNotCompute(); 7740 7741 assert(L->contains(Switch->getDefaultDest()) && 7742 "Default case must not exit the loop!"); 7743 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7744 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7745 7746 // while (X != Y) --> while (X-Y != 0) 7747 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7748 if (EL.hasAnyInfo()) 7749 return EL; 7750 7751 return getCouldNotCompute(); 7752 } 7753 7754 static ConstantInt * 7755 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7756 ScalarEvolution &SE) { 7757 const SCEV *InVal = SE.getConstant(C); 7758 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7759 assert(isa<SCEVConstant>(Val) && 7760 "Evaluation of SCEV at constant didn't fold correctly?"); 7761 return cast<SCEVConstant>(Val)->getValue(); 7762 } 7763 7764 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7765 /// compute the backedge execution count. 7766 ScalarEvolution::ExitLimit 7767 ScalarEvolution::computeLoadConstantCompareExitLimit( 7768 LoadInst *LI, 7769 Constant *RHS, 7770 const Loop *L, 7771 ICmpInst::Predicate predicate) { 7772 if (LI->isVolatile()) return getCouldNotCompute(); 7773 7774 // Check to see if the loaded pointer is a getelementptr of a global. 7775 // TODO: Use SCEV instead of manually grubbing with GEPs. 7776 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7777 if (!GEP) return getCouldNotCompute(); 7778 7779 // Make sure that it is really a constant global we are gepping, with an 7780 // initializer, and make sure the first IDX is really 0. 7781 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7782 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7783 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7784 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7785 return getCouldNotCompute(); 7786 7787 // Okay, we allow one non-constant index into the GEP instruction. 7788 Value *VarIdx = nullptr; 7789 std::vector<Constant*> Indexes; 7790 unsigned VarIdxNum = 0; 7791 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7792 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7793 Indexes.push_back(CI); 7794 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7795 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7796 VarIdx = GEP->getOperand(i); 7797 VarIdxNum = i-2; 7798 Indexes.push_back(nullptr); 7799 } 7800 7801 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7802 if (!VarIdx) 7803 return getCouldNotCompute(); 7804 7805 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7806 // Check to see if X is a loop variant variable value now. 7807 const SCEV *Idx = getSCEV(VarIdx); 7808 Idx = getSCEVAtScope(Idx, L); 7809 7810 // We can only recognize very limited forms of loop index expressions, in 7811 // particular, only affine AddRec's like {C1,+,C2}. 7812 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7813 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7814 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7815 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7816 return getCouldNotCompute(); 7817 7818 unsigned MaxSteps = MaxBruteForceIterations; 7819 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7820 ConstantInt *ItCst = ConstantInt::get( 7821 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7822 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7823 7824 // Form the GEP offset. 7825 Indexes[VarIdxNum] = Val; 7826 7827 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7828 Indexes); 7829 if (!Result) break; // Cannot compute! 7830 7831 // Evaluate the condition for this iteration. 7832 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7833 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7834 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7835 ++NumArrayLenItCounts; 7836 return getConstant(ItCst); // Found terminating iteration! 7837 } 7838 } 7839 return getCouldNotCompute(); 7840 } 7841 7842 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7843 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7844 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7845 if (!RHS) 7846 return getCouldNotCompute(); 7847 7848 const BasicBlock *Latch = L->getLoopLatch(); 7849 if (!Latch) 7850 return getCouldNotCompute(); 7851 7852 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7853 if (!Predecessor) 7854 return getCouldNotCompute(); 7855 7856 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7857 // Return LHS in OutLHS and shift_opt in OutOpCode. 7858 auto MatchPositiveShift = 7859 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7860 7861 using namespace PatternMatch; 7862 7863 ConstantInt *ShiftAmt; 7864 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7865 OutOpCode = Instruction::LShr; 7866 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7867 OutOpCode = Instruction::AShr; 7868 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7869 OutOpCode = Instruction::Shl; 7870 else 7871 return false; 7872 7873 return ShiftAmt->getValue().isStrictlyPositive(); 7874 }; 7875 7876 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7877 // 7878 // loop: 7879 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7880 // %iv.shifted = lshr i32 %iv, <positive constant> 7881 // 7882 // Return true on a successful match. Return the corresponding PHI node (%iv 7883 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7884 auto MatchShiftRecurrence = 7885 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7886 Optional<Instruction::BinaryOps> PostShiftOpCode; 7887 7888 { 7889 Instruction::BinaryOps OpC; 7890 Value *V; 7891 7892 // If we encounter a shift instruction, "peel off" the shift operation, 7893 // and remember that we did so. Later when we inspect %iv's backedge 7894 // value, we will make sure that the backedge value uses the same 7895 // operation. 7896 // 7897 // Note: the peeled shift operation does not have to be the same 7898 // instruction as the one feeding into the PHI's backedge value. We only 7899 // really care about it being the same *kind* of shift instruction -- 7900 // that's all that is required for our later inferences to hold. 7901 if (MatchPositiveShift(LHS, V, OpC)) { 7902 PostShiftOpCode = OpC; 7903 LHS = V; 7904 } 7905 } 7906 7907 PNOut = dyn_cast<PHINode>(LHS); 7908 if (!PNOut || PNOut->getParent() != L->getHeader()) 7909 return false; 7910 7911 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7912 Value *OpLHS; 7913 7914 return 7915 // The backedge value for the PHI node must be a shift by a positive 7916 // amount 7917 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7918 7919 // of the PHI node itself 7920 OpLHS == PNOut && 7921 7922 // and the kind of shift should be match the kind of shift we peeled 7923 // off, if any. 7924 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7925 }; 7926 7927 PHINode *PN; 7928 Instruction::BinaryOps OpCode; 7929 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7930 return getCouldNotCompute(); 7931 7932 const DataLayout &DL = getDataLayout(); 7933 7934 // The key rationale for this optimization is that for some kinds of shift 7935 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7936 // within a finite number of iterations. If the condition guarding the 7937 // backedge (in the sense that the backedge is taken if the condition is true) 7938 // is false for the value the shift recurrence stabilizes to, then we know 7939 // that the backedge is taken only a finite number of times. 7940 7941 ConstantInt *StableValue = nullptr; 7942 switch (OpCode) { 7943 default: 7944 llvm_unreachable("Impossible case!"); 7945 7946 case Instruction::AShr: { 7947 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7948 // bitwidth(K) iterations. 7949 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7950 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7951 Predecessor->getTerminator(), &DT); 7952 auto *Ty = cast<IntegerType>(RHS->getType()); 7953 if (Known.isNonNegative()) 7954 StableValue = ConstantInt::get(Ty, 0); 7955 else if (Known.isNegative()) 7956 StableValue = ConstantInt::get(Ty, -1, true); 7957 else 7958 return getCouldNotCompute(); 7959 7960 break; 7961 } 7962 case Instruction::LShr: 7963 case Instruction::Shl: 7964 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7965 // stabilize to 0 in at most bitwidth(K) iterations. 7966 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7967 break; 7968 } 7969 7970 auto *Result = 7971 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7972 assert(Result->getType()->isIntegerTy(1) && 7973 "Otherwise cannot be an operand to a branch instruction"); 7974 7975 if (Result->isZeroValue()) { 7976 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7977 const SCEV *UpperBound = 7978 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7979 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7980 } 7981 7982 return getCouldNotCompute(); 7983 } 7984 7985 /// Return true if we can constant fold an instruction of the specified type, 7986 /// assuming that all operands were constants. 7987 static bool CanConstantFold(const Instruction *I) { 7988 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7989 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7990 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 7991 return true; 7992 7993 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7994 if (const Function *F = CI->getCalledFunction()) 7995 return canConstantFoldCallTo(CI, F); 7996 return false; 7997 } 7998 7999 /// Determine whether this instruction can constant evolve within this loop 8000 /// assuming its operands can all constant evolve. 8001 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8002 // An instruction outside of the loop can't be derived from a loop PHI. 8003 if (!L->contains(I)) return false; 8004 8005 if (isa<PHINode>(I)) { 8006 // We don't currently keep track of the control flow needed to evaluate 8007 // PHIs, so we cannot handle PHIs inside of loops. 8008 return L->getHeader() == I->getParent(); 8009 } 8010 8011 // If we won't be able to constant fold this expression even if the operands 8012 // are constants, bail early. 8013 return CanConstantFold(I); 8014 } 8015 8016 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8017 /// recursing through each instruction operand until reaching a loop header phi. 8018 static PHINode * 8019 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8020 DenseMap<Instruction *, PHINode *> &PHIMap, 8021 unsigned Depth) { 8022 if (Depth > MaxConstantEvolvingDepth) 8023 return nullptr; 8024 8025 // Otherwise, we can evaluate this instruction if all of its operands are 8026 // constant or derived from a PHI node themselves. 8027 PHINode *PHI = nullptr; 8028 for (Value *Op : UseInst->operands()) { 8029 if (isa<Constant>(Op)) continue; 8030 8031 Instruction *OpInst = dyn_cast<Instruction>(Op); 8032 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8033 8034 PHINode *P = dyn_cast<PHINode>(OpInst); 8035 if (!P) 8036 // If this operand is already visited, reuse the prior result. 8037 // We may have P != PHI if this is the deepest point at which the 8038 // inconsistent paths meet. 8039 P = PHIMap.lookup(OpInst); 8040 if (!P) { 8041 // Recurse and memoize the results, whether a phi is found or not. 8042 // This recursive call invalidates pointers into PHIMap. 8043 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8044 PHIMap[OpInst] = P; 8045 } 8046 if (!P) 8047 return nullptr; // Not evolving from PHI 8048 if (PHI && PHI != P) 8049 return nullptr; // Evolving from multiple different PHIs. 8050 PHI = P; 8051 } 8052 // This is a expression evolving from a constant PHI! 8053 return PHI; 8054 } 8055 8056 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8057 /// in the loop that V is derived from. We allow arbitrary operations along the 8058 /// way, but the operands of an operation must either be constants or a value 8059 /// derived from a constant PHI. If this expression does not fit with these 8060 /// constraints, return null. 8061 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8062 Instruction *I = dyn_cast<Instruction>(V); 8063 if (!I || !canConstantEvolve(I, L)) return nullptr; 8064 8065 if (PHINode *PN = dyn_cast<PHINode>(I)) 8066 return PN; 8067 8068 // Record non-constant instructions contained by the loop. 8069 DenseMap<Instruction *, PHINode *> PHIMap; 8070 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8071 } 8072 8073 /// EvaluateExpression - Given an expression that passes the 8074 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8075 /// in the loop has the value PHIVal. If we can't fold this expression for some 8076 /// reason, return null. 8077 static Constant *EvaluateExpression(Value *V, const Loop *L, 8078 DenseMap<Instruction *, Constant *> &Vals, 8079 const DataLayout &DL, 8080 const TargetLibraryInfo *TLI) { 8081 // Convenient constant check, but redundant for recursive calls. 8082 if (Constant *C = dyn_cast<Constant>(V)) return C; 8083 Instruction *I = dyn_cast<Instruction>(V); 8084 if (!I) return nullptr; 8085 8086 if (Constant *C = Vals.lookup(I)) return C; 8087 8088 // An instruction inside the loop depends on a value outside the loop that we 8089 // weren't given a mapping for, or a value such as a call inside the loop. 8090 if (!canConstantEvolve(I, L)) return nullptr; 8091 8092 // An unmapped PHI can be due to a branch or another loop inside this loop, 8093 // or due to this not being the initial iteration through a loop where we 8094 // couldn't compute the evolution of this particular PHI last time. 8095 if (isa<PHINode>(I)) return nullptr; 8096 8097 std::vector<Constant*> Operands(I->getNumOperands()); 8098 8099 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8100 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8101 if (!Operand) { 8102 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8103 if (!Operands[i]) return nullptr; 8104 continue; 8105 } 8106 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8107 Vals[Operand] = C; 8108 if (!C) return nullptr; 8109 Operands[i] = C; 8110 } 8111 8112 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8113 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8114 Operands[1], DL, TLI); 8115 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8116 if (!LI->isVolatile()) 8117 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8118 } 8119 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8120 } 8121 8122 8123 // If every incoming value to PN except the one for BB is a specific Constant, 8124 // return that, else return nullptr. 8125 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8126 Constant *IncomingVal = nullptr; 8127 8128 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8129 if (PN->getIncomingBlock(i) == BB) 8130 continue; 8131 8132 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8133 if (!CurrentVal) 8134 return nullptr; 8135 8136 if (IncomingVal != CurrentVal) { 8137 if (IncomingVal) 8138 return nullptr; 8139 IncomingVal = CurrentVal; 8140 } 8141 } 8142 8143 return IncomingVal; 8144 } 8145 8146 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8147 /// in the header of its containing loop, we know the loop executes a 8148 /// constant number of times, and the PHI node is just a recurrence 8149 /// involving constants, fold it. 8150 Constant * 8151 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8152 const APInt &BEs, 8153 const Loop *L) { 8154 auto I = ConstantEvolutionLoopExitValue.find(PN); 8155 if (I != ConstantEvolutionLoopExitValue.end()) 8156 return I->second; 8157 8158 if (BEs.ugt(MaxBruteForceIterations)) 8159 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8160 8161 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8162 8163 DenseMap<Instruction *, Constant *> CurrentIterVals; 8164 BasicBlock *Header = L->getHeader(); 8165 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8166 8167 BasicBlock *Latch = L->getLoopLatch(); 8168 if (!Latch) 8169 return nullptr; 8170 8171 for (PHINode &PHI : Header->phis()) { 8172 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8173 CurrentIterVals[&PHI] = StartCST; 8174 } 8175 if (!CurrentIterVals.count(PN)) 8176 return RetVal = nullptr; 8177 8178 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8179 8180 // Execute the loop symbolically to determine the exit value. 8181 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8182 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8183 8184 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8185 unsigned IterationNum = 0; 8186 const DataLayout &DL = getDataLayout(); 8187 for (; ; ++IterationNum) { 8188 if (IterationNum == NumIterations) 8189 return RetVal = CurrentIterVals[PN]; // Got exit value! 8190 8191 // Compute the value of the PHIs for the next iteration. 8192 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8193 DenseMap<Instruction *, Constant *> NextIterVals; 8194 Constant *NextPHI = 8195 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8196 if (!NextPHI) 8197 return nullptr; // Couldn't evaluate! 8198 NextIterVals[PN] = NextPHI; 8199 8200 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8201 8202 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8203 // cease to be able to evaluate one of them or if they stop evolving, 8204 // because that doesn't necessarily prevent us from computing PN. 8205 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8206 for (const auto &I : CurrentIterVals) { 8207 PHINode *PHI = dyn_cast<PHINode>(I.first); 8208 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8209 PHIsToCompute.emplace_back(PHI, I.second); 8210 } 8211 // We use two distinct loops because EvaluateExpression may invalidate any 8212 // iterators into CurrentIterVals. 8213 for (const auto &I : PHIsToCompute) { 8214 PHINode *PHI = I.first; 8215 Constant *&NextPHI = NextIterVals[PHI]; 8216 if (!NextPHI) { // Not already computed. 8217 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8218 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8219 } 8220 if (NextPHI != I.second) 8221 StoppedEvolving = false; 8222 } 8223 8224 // If all entries in CurrentIterVals == NextIterVals then we can stop 8225 // iterating, the loop can't continue to change. 8226 if (StoppedEvolving) 8227 return RetVal = CurrentIterVals[PN]; 8228 8229 CurrentIterVals.swap(NextIterVals); 8230 } 8231 } 8232 8233 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8234 Value *Cond, 8235 bool ExitWhen) { 8236 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8237 if (!PN) return getCouldNotCompute(); 8238 8239 // If the loop is canonicalized, the PHI will have exactly two entries. 8240 // That's the only form we support here. 8241 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8242 8243 DenseMap<Instruction *, Constant *> CurrentIterVals; 8244 BasicBlock *Header = L->getHeader(); 8245 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8246 8247 BasicBlock *Latch = L->getLoopLatch(); 8248 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8249 8250 for (PHINode &PHI : Header->phis()) { 8251 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8252 CurrentIterVals[&PHI] = StartCST; 8253 } 8254 if (!CurrentIterVals.count(PN)) 8255 return getCouldNotCompute(); 8256 8257 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8258 // the loop symbolically to determine when the condition gets a value of 8259 // "ExitWhen". 8260 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8261 const DataLayout &DL = getDataLayout(); 8262 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8263 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8264 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8265 8266 // Couldn't symbolically evaluate. 8267 if (!CondVal) return getCouldNotCompute(); 8268 8269 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8270 ++NumBruteForceTripCountsComputed; 8271 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8272 } 8273 8274 // Update all the PHI nodes for the next iteration. 8275 DenseMap<Instruction *, Constant *> NextIterVals; 8276 8277 // Create a list of which PHIs we need to compute. We want to do this before 8278 // calling EvaluateExpression on them because that may invalidate iterators 8279 // into CurrentIterVals. 8280 SmallVector<PHINode *, 8> PHIsToCompute; 8281 for (const auto &I : CurrentIterVals) { 8282 PHINode *PHI = dyn_cast<PHINode>(I.first); 8283 if (!PHI || PHI->getParent() != Header) continue; 8284 PHIsToCompute.push_back(PHI); 8285 } 8286 for (PHINode *PHI : PHIsToCompute) { 8287 Constant *&NextPHI = NextIterVals[PHI]; 8288 if (NextPHI) continue; // Already computed! 8289 8290 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8291 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8292 } 8293 CurrentIterVals.swap(NextIterVals); 8294 } 8295 8296 // Too many iterations were needed to evaluate. 8297 return getCouldNotCompute(); 8298 } 8299 8300 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8301 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8302 ValuesAtScopes[V]; 8303 // Check to see if we've folded this expression at this loop before. 8304 for (auto &LS : Values) 8305 if (LS.first == L) 8306 return LS.second ? LS.second : V; 8307 8308 Values.emplace_back(L, nullptr); 8309 8310 // Otherwise compute it. 8311 const SCEV *C = computeSCEVAtScope(V, L); 8312 for (auto &LS : reverse(ValuesAtScopes[V])) 8313 if (LS.first == L) { 8314 LS.second = C; 8315 break; 8316 } 8317 return C; 8318 } 8319 8320 /// This builds up a Constant using the ConstantExpr interface. That way, we 8321 /// will return Constants for objects which aren't represented by a 8322 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8323 /// Returns NULL if the SCEV isn't representable as a Constant. 8324 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8325 switch (V->getSCEVType()) { 8326 case scCouldNotCompute: 8327 case scAddRecExpr: 8328 return nullptr; 8329 case scConstant: 8330 return cast<SCEVConstant>(V)->getValue(); 8331 case scUnknown: 8332 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8333 case scSignExtend: { 8334 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8335 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8336 return ConstantExpr::getSExt(CastOp, SS->getType()); 8337 return nullptr; 8338 } 8339 case scZeroExtend: { 8340 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8341 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8342 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8343 return nullptr; 8344 } 8345 case scPtrToInt: { 8346 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8347 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8348 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8349 8350 return nullptr; 8351 } 8352 case scTruncate: { 8353 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8354 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8355 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8356 return nullptr; 8357 } 8358 case scAddExpr: { 8359 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8360 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8361 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8362 unsigned AS = PTy->getAddressSpace(); 8363 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8364 C = ConstantExpr::getBitCast(C, DestPtrTy); 8365 } 8366 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8367 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8368 if (!C2) 8369 return nullptr; 8370 8371 // First pointer! 8372 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8373 unsigned AS = C2->getType()->getPointerAddressSpace(); 8374 std::swap(C, C2); 8375 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8376 // The offsets have been converted to bytes. We can add bytes to an 8377 // i8* by GEP with the byte count in the first index. 8378 C = ConstantExpr::getBitCast(C, DestPtrTy); 8379 } 8380 8381 // Don't bother trying to sum two pointers. We probably can't 8382 // statically compute a load that results from it anyway. 8383 if (C2->getType()->isPointerTy()) 8384 return nullptr; 8385 8386 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8387 if (PTy->getElementType()->isStructTy()) 8388 C2 = ConstantExpr::getIntegerCast( 8389 C2, Type::getInt32Ty(C->getContext()), true); 8390 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8391 } else 8392 C = ConstantExpr::getAdd(C, C2); 8393 } 8394 return C; 8395 } 8396 return nullptr; 8397 } 8398 case scMulExpr: { 8399 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8400 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8401 // Don't bother with pointers at all. 8402 if (C->getType()->isPointerTy()) 8403 return nullptr; 8404 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8405 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8406 if (!C2 || C2->getType()->isPointerTy()) 8407 return nullptr; 8408 C = ConstantExpr::getMul(C, C2); 8409 } 8410 return C; 8411 } 8412 return nullptr; 8413 } 8414 case scUDivExpr: { 8415 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8416 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8417 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8418 if (LHS->getType() == RHS->getType()) 8419 return ConstantExpr::getUDiv(LHS, RHS); 8420 return nullptr; 8421 } 8422 case scSMaxExpr: 8423 case scUMaxExpr: 8424 case scSMinExpr: 8425 case scUMinExpr: 8426 return nullptr; // TODO: smax, umax, smin, umax. 8427 } 8428 llvm_unreachable("Unknown SCEV kind!"); 8429 } 8430 8431 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8432 if (isa<SCEVConstant>(V)) return V; 8433 8434 // If this instruction is evolved from a constant-evolving PHI, compute the 8435 // exit value from the loop without using SCEVs. 8436 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8437 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8438 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8439 const Loop *CurrLoop = this->LI[I->getParent()]; 8440 // Looking for loop exit value. 8441 if (CurrLoop && CurrLoop->getParentLoop() == L && 8442 PN->getParent() == CurrLoop->getHeader()) { 8443 // Okay, there is no closed form solution for the PHI node. Check 8444 // to see if the loop that contains it has a known backedge-taken 8445 // count. If so, we may be able to force computation of the exit 8446 // value. 8447 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8448 // This trivial case can show up in some degenerate cases where 8449 // the incoming IR has not yet been fully simplified. 8450 if (BackedgeTakenCount->isZero()) { 8451 Value *InitValue = nullptr; 8452 bool MultipleInitValues = false; 8453 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8454 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8455 if (!InitValue) 8456 InitValue = PN->getIncomingValue(i); 8457 else if (InitValue != PN->getIncomingValue(i)) { 8458 MultipleInitValues = true; 8459 break; 8460 } 8461 } 8462 } 8463 if (!MultipleInitValues && InitValue) 8464 return getSCEV(InitValue); 8465 } 8466 // Do we have a loop invariant value flowing around the backedge 8467 // for a loop which must execute the backedge? 8468 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8469 isKnownPositive(BackedgeTakenCount) && 8470 PN->getNumIncomingValues() == 2) { 8471 8472 unsigned InLoopPred = 8473 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8474 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8475 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8476 return getSCEV(BackedgeVal); 8477 } 8478 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8479 // Okay, we know how many times the containing loop executes. If 8480 // this is a constant evolving PHI node, get the final value at 8481 // the specified iteration number. 8482 Constant *RV = getConstantEvolutionLoopExitValue( 8483 PN, BTCC->getAPInt(), CurrLoop); 8484 if (RV) return getSCEV(RV); 8485 } 8486 } 8487 8488 // If there is a single-input Phi, evaluate it at our scope. If we can 8489 // prove that this replacement does not break LCSSA form, use new value. 8490 if (PN->getNumOperands() == 1) { 8491 const SCEV *Input = getSCEV(PN->getOperand(0)); 8492 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8493 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8494 // for the simplest case just support constants. 8495 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8496 } 8497 } 8498 8499 // Okay, this is an expression that we cannot symbolically evaluate 8500 // into a SCEV. Check to see if it's possible to symbolically evaluate 8501 // the arguments into constants, and if so, try to constant propagate the 8502 // result. This is particularly useful for computing loop exit values. 8503 if (CanConstantFold(I)) { 8504 SmallVector<Constant *, 4> Operands; 8505 bool MadeImprovement = false; 8506 for (Value *Op : I->operands()) { 8507 if (Constant *C = dyn_cast<Constant>(Op)) { 8508 Operands.push_back(C); 8509 continue; 8510 } 8511 8512 // If any of the operands is non-constant and if they are 8513 // non-integer and non-pointer, don't even try to analyze them 8514 // with scev techniques. 8515 if (!isSCEVable(Op->getType())) 8516 return V; 8517 8518 const SCEV *OrigV = getSCEV(Op); 8519 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8520 MadeImprovement |= OrigV != OpV; 8521 8522 Constant *C = BuildConstantFromSCEV(OpV); 8523 if (!C) return V; 8524 if (C->getType() != Op->getType()) 8525 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8526 Op->getType(), 8527 false), 8528 C, Op->getType()); 8529 Operands.push_back(C); 8530 } 8531 8532 // Check to see if getSCEVAtScope actually made an improvement. 8533 if (MadeImprovement) { 8534 Constant *C = nullptr; 8535 const DataLayout &DL = getDataLayout(); 8536 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8537 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8538 Operands[1], DL, &TLI); 8539 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8540 if (!Load->isVolatile()) 8541 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8542 DL); 8543 } else 8544 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8545 if (!C) return V; 8546 return getSCEV(C); 8547 } 8548 } 8549 } 8550 8551 // This is some other type of SCEVUnknown, just return it. 8552 return V; 8553 } 8554 8555 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8556 // Avoid performing the look-up in the common case where the specified 8557 // expression has no loop-variant portions. 8558 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8559 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8560 if (OpAtScope != Comm->getOperand(i)) { 8561 // Okay, at least one of these operands is loop variant but might be 8562 // foldable. Build a new instance of the folded commutative expression. 8563 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8564 Comm->op_begin()+i); 8565 NewOps.push_back(OpAtScope); 8566 8567 for (++i; i != e; ++i) { 8568 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8569 NewOps.push_back(OpAtScope); 8570 } 8571 if (isa<SCEVAddExpr>(Comm)) 8572 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8573 if (isa<SCEVMulExpr>(Comm)) 8574 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8575 if (isa<SCEVMinMaxExpr>(Comm)) 8576 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8577 llvm_unreachable("Unknown commutative SCEV type!"); 8578 } 8579 } 8580 // If we got here, all operands are loop invariant. 8581 return Comm; 8582 } 8583 8584 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8585 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8586 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8587 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8588 return Div; // must be loop invariant 8589 return getUDivExpr(LHS, RHS); 8590 } 8591 8592 // If this is a loop recurrence for a loop that does not contain L, then we 8593 // are dealing with the final value computed by the loop. 8594 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8595 // First, attempt to evaluate each operand. 8596 // Avoid performing the look-up in the common case where the specified 8597 // expression has no loop-variant portions. 8598 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8599 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8600 if (OpAtScope == AddRec->getOperand(i)) 8601 continue; 8602 8603 // Okay, at least one of these operands is loop variant but might be 8604 // foldable. Build a new instance of the folded commutative expression. 8605 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8606 AddRec->op_begin()+i); 8607 NewOps.push_back(OpAtScope); 8608 for (++i; i != e; ++i) 8609 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8610 8611 const SCEV *FoldedRec = 8612 getAddRecExpr(NewOps, AddRec->getLoop(), 8613 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8614 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8615 // The addrec may be folded to a nonrecurrence, for example, if the 8616 // induction variable is multiplied by zero after constant folding. Go 8617 // ahead and return the folded value. 8618 if (!AddRec) 8619 return FoldedRec; 8620 break; 8621 } 8622 8623 // If the scope is outside the addrec's loop, evaluate it by using the 8624 // loop exit value of the addrec. 8625 if (!AddRec->getLoop()->contains(L)) { 8626 // To evaluate this recurrence, we need to know how many times the AddRec 8627 // loop iterates. Compute this now. 8628 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8629 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8630 8631 // Then, evaluate the AddRec. 8632 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8633 } 8634 8635 return AddRec; 8636 } 8637 8638 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8639 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8640 if (Op == Cast->getOperand()) 8641 return Cast; // must be loop invariant 8642 return getZeroExtendExpr(Op, Cast->getType()); 8643 } 8644 8645 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8646 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8647 if (Op == Cast->getOperand()) 8648 return Cast; // must be loop invariant 8649 return getSignExtendExpr(Op, Cast->getType()); 8650 } 8651 8652 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8653 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8654 if (Op == Cast->getOperand()) 8655 return Cast; // must be loop invariant 8656 return getTruncateExpr(Op, Cast->getType()); 8657 } 8658 8659 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 8660 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8661 if (Op == Cast->getOperand()) 8662 return Cast; // must be loop invariant 8663 return getPtrToIntExpr(Op, Cast->getType()); 8664 } 8665 8666 llvm_unreachable("Unknown SCEV type!"); 8667 } 8668 8669 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8670 return getSCEVAtScope(getSCEV(V), L); 8671 } 8672 8673 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8674 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8675 return stripInjectiveFunctions(ZExt->getOperand()); 8676 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8677 return stripInjectiveFunctions(SExt->getOperand()); 8678 return S; 8679 } 8680 8681 /// Finds the minimum unsigned root of the following equation: 8682 /// 8683 /// A * X = B (mod N) 8684 /// 8685 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8686 /// A and B isn't important. 8687 /// 8688 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8689 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8690 ScalarEvolution &SE) { 8691 uint32_t BW = A.getBitWidth(); 8692 assert(BW == SE.getTypeSizeInBits(B->getType())); 8693 assert(A != 0 && "A must be non-zero."); 8694 8695 // 1. D = gcd(A, N) 8696 // 8697 // The gcd of A and N may have only one prime factor: 2. The number of 8698 // trailing zeros in A is its multiplicity 8699 uint32_t Mult2 = A.countTrailingZeros(); 8700 // D = 2^Mult2 8701 8702 // 2. Check if B is divisible by D. 8703 // 8704 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8705 // is not less than multiplicity of this prime factor for D. 8706 if (SE.GetMinTrailingZeros(B) < Mult2) 8707 return SE.getCouldNotCompute(); 8708 8709 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8710 // modulo (N / D). 8711 // 8712 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8713 // (N / D) in general. The inverse itself always fits into BW bits, though, 8714 // so we immediately truncate it. 8715 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8716 APInt Mod(BW + 1, 0); 8717 Mod.setBit(BW - Mult2); // Mod = N / D 8718 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8719 8720 // 4. Compute the minimum unsigned root of the equation: 8721 // I * (B / D) mod (N / D) 8722 // To simplify the computation, we factor out the divide by D: 8723 // (I * B mod N) / D 8724 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8725 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8726 } 8727 8728 /// For a given quadratic addrec, generate coefficients of the corresponding 8729 /// quadratic equation, multiplied by a common value to ensure that they are 8730 /// integers. 8731 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8732 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8733 /// were multiplied by, and BitWidth is the bit width of the original addrec 8734 /// coefficients. 8735 /// This function returns None if the addrec coefficients are not compile- 8736 /// time constants. 8737 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8738 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8739 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8740 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8741 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8742 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8743 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8744 << *AddRec << '\n'); 8745 8746 // We currently can only solve this if the coefficients are constants. 8747 if (!LC || !MC || !NC) { 8748 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8749 return None; 8750 } 8751 8752 APInt L = LC->getAPInt(); 8753 APInt M = MC->getAPInt(); 8754 APInt N = NC->getAPInt(); 8755 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8756 8757 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8758 unsigned NewWidth = BitWidth + 1; 8759 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8760 << BitWidth << '\n'); 8761 // The sign-extension (as opposed to a zero-extension) here matches the 8762 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8763 N = N.sext(NewWidth); 8764 M = M.sext(NewWidth); 8765 L = L.sext(NewWidth); 8766 8767 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8768 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8769 // L+M, L+2M+N, L+3M+3N, ... 8770 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8771 // 8772 // The equation Acc = 0 is then 8773 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8774 // In a quadratic form it becomes: 8775 // N n^2 + (2M-N) n + 2L = 0. 8776 8777 APInt A = N; 8778 APInt B = 2 * M - A; 8779 APInt C = 2 * L; 8780 APInt T = APInt(NewWidth, 2); 8781 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8782 << "x + " << C << ", coeff bw: " << NewWidth 8783 << ", multiplied by " << T << '\n'); 8784 return std::make_tuple(A, B, C, T, BitWidth); 8785 } 8786 8787 /// Helper function to compare optional APInts: 8788 /// (a) if X and Y both exist, return min(X, Y), 8789 /// (b) if neither X nor Y exist, return None, 8790 /// (c) if exactly one of X and Y exists, return that value. 8791 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8792 if (X.hasValue() && Y.hasValue()) { 8793 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8794 APInt XW = X->sextOrSelf(W); 8795 APInt YW = Y->sextOrSelf(W); 8796 return XW.slt(YW) ? *X : *Y; 8797 } 8798 if (!X.hasValue() && !Y.hasValue()) 8799 return None; 8800 return X.hasValue() ? *X : *Y; 8801 } 8802 8803 /// Helper function to truncate an optional APInt to a given BitWidth. 8804 /// When solving addrec-related equations, it is preferable to return a value 8805 /// that has the same bit width as the original addrec's coefficients. If the 8806 /// solution fits in the original bit width, truncate it (except for i1). 8807 /// Returning a value of a different bit width may inhibit some optimizations. 8808 /// 8809 /// In general, a solution to a quadratic equation generated from an addrec 8810 /// may require BW+1 bits, where BW is the bit width of the addrec's 8811 /// coefficients. The reason is that the coefficients of the quadratic 8812 /// equation are BW+1 bits wide (to avoid truncation when converting from 8813 /// the addrec to the equation). 8814 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8815 if (!X.hasValue()) 8816 return None; 8817 unsigned W = X->getBitWidth(); 8818 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8819 return X->trunc(BitWidth); 8820 return X; 8821 } 8822 8823 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8824 /// iterations. The values L, M, N are assumed to be signed, and they 8825 /// should all have the same bit widths. 8826 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8827 /// where BW is the bit width of the addrec's coefficients. 8828 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8829 /// returned as such, otherwise the bit width of the returned value may 8830 /// be greater than BW. 8831 /// 8832 /// This function returns None if 8833 /// (a) the addrec coefficients are not constant, or 8834 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8835 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8836 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8837 static Optional<APInt> 8838 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8839 APInt A, B, C, M; 8840 unsigned BitWidth; 8841 auto T = GetQuadraticEquation(AddRec); 8842 if (!T.hasValue()) 8843 return None; 8844 8845 std::tie(A, B, C, M, BitWidth) = *T; 8846 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8847 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8848 if (!X.hasValue()) 8849 return None; 8850 8851 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8852 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8853 if (!V->isZero()) 8854 return None; 8855 8856 return TruncIfPossible(X, BitWidth); 8857 } 8858 8859 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8860 /// iterations. The values M, N are assumed to be signed, and they 8861 /// should all have the same bit widths. 8862 /// Find the least n such that c(n) does not belong to the given range, 8863 /// while c(n-1) does. 8864 /// 8865 /// This function returns None if 8866 /// (a) the addrec coefficients are not constant, or 8867 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8868 /// bounds of the range. 8869 static Optional<APInt> 8870 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8871 const ConstantRange &Range, ScalarEvolution &SE) { 8872 assert(AddRec->getOperand(0)->isZero() && 8873 "Starting value of addrec should be 0"); 8874 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8875 << Range << ", addrec " << *AddRec << '\n'); 8876 // This case is handled in getNumIterationsInRange. Here we can assume that 8877 // we start in the range. 8878 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8879 "Addrec's initial value should be in range"); 8880 8881 APInt A, B, C, M; 8882 unsigned BitWidth; 8883 auto T = GetQuadraticEquation(AddRec); 8884 if (!T.hasValue()) 8885 return None; 8886 8887 // Be careful about the return value: there can be two reasons for not 8888 // returning an actual number. First, if no solutions to the equations 8889 // were found, and second, if the solutions don't leave the given range. 8890 // The first case means that the actual solution is "unknown", the second 8891 // means that it's known, but not valid. If the solution is unknown, we 8892 // cannot make any conclusions. 8893 // Return a pair: the optional solution and a flag indicating if the 8894 // solution was found. 8895 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8896 // Solve for signed overflow and unsigned overflow, pick the lower 8897 // solution. 8898 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8899 << Bound << " (before multiplying by " << M << ")\n"); 8900 Bound *= M; // The quadratic equation multiplier. 8901 8902 Optional<APInt> SO = None; 8903 if (BitWidth > 1) { 8904 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8905 "signed overflow\n"); 8906 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8907 } 8908 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8909 "unsigned overflow\n"); 8910 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8911 BitWidth+1); 8912 8913 auto LeavesRange = [&] (const APInt &X) { 8914 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8915 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8916 if (Range.contains(V0->getValue())) 8917 return false; 8918 // X should be at least 1, so X-1 is non-negative. 8919 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8920 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8921 if (Range.contains(V1->getValue())) 8922 return true; 8923 return false; 8924 }; 8925 8926 // If SolveQuadraticEquationWrap returns None, it means that there can 8927 // be a solution, but the function failed to find it. We cannot treat it 8928 // as "no solution". 8929 if (!SO.hasValue() || !UO.hasValue()) 8930 return { None, false }; 8931 8932 // Check the smaller value first to see if it leaves the range. 8933 // At this point, both SO and UO must have values. 8934 Optional<APInt> Min = MinOptional(SO, UO); 8935 if (LeavesRange(*Min)) 8936 return { Min, true }; 8937 Optional<APInt> Max = Min == SO ? UO : SO; 8938 if (LeavesRange(*Max)) 8939 return { Max, true }; 8940 8941 // Solutions were found, but were eliminated, hence the "true". 8942 return { None, true }; 8943 }; 8944 8945 std::tie(A, B, C, M, BitWidth) = *T; 8946 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8947 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8948 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8949 auto SL = SolveForBoundary(Lower); 8950 auto SU = SolveForBoundary(Upper); 8951 // If any of the solutions was unknown, no meaninigful conclusions can 8952 // be made. 8953 if (!SL.second || !SU.second) 8954 return None; 8955 8956 // Claim: The correct solution is not some value between Min and Max. 8957 // 8958 // Justification: Assuming that Min and Max are different values, one of 8959 // them is when the first signed overflow happens, the other is when the 8960 // first unsigned overflow happens. Crossing the range boundary is only 8961 // possible via an overflow (treating 0 as a special case of it, modeling 8962 // an overflow as crossing k*2^W for some k). 8963 // 8964 // The interesting case here is when Min was eliminated as an invalid 8965 // solution, but Max was not. The argument is that if there was another 8966 // overflow between Min and Max, it would also have been eliminated if 8967 // it was considered. 8968 // 8969 // For a given boundary, it is possible to have two overflows of the same 8970 // type (signed/unsigned) without having the other type in between: this 8971 // can happen when the vertex of the parabola is between the iterations 8972 // corresponding to the overflows. This is only possible when the two 8973 // overflows cross k*2^W for the same k. In such case, if the second one 8974 // left the range (and was the first one to do so), the first overflow 8975 // would have to enter the range, which would mean that either we had left 8976 // the range before or that we started outside of it. Both of these cases 8977 // are contradictions. 8978 // 8979 // Claim: In the case where SolveForBoundary returns None, the correct 8980 // solution is not some value between the Max for this boundary and the 8981 // Min of the other boundary. 8982 // 8983 // Justification: Assume that we had such Max_A and Min_B corresponding 8984 // to range boundaries A and B and such that Max_A < Min_B. If there was 8985 // a solution between Max_A and Min_B, it would have to be caused by an 8986 // overflow corresponding to either A or B. It cannot correspond to B, 8987 // since Min_B is the first occurrence of such an overflow. If it 8988 // corresponded to A, it would have to be either a signed or an unsigned 8989 // overflow that is larger than both eliminated overflows for A. But 8990 // between the eliminated overflows and this overflow, the values would 8991 // cover the entire value space, thus crossing the other boundary, which 8992 // is a contradiction. 8993 8994 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8995 } 8996 8997 ScalarEvolution::ExitLimit 8998 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8999 bool AllowPredicates) { 9000 9001 // This is only used for loops with a "x != y" exit test. The exit condition 9002 // is now expressed as a single expression, V = x-y. So the exit test is 9003 // effectively V != 0. We know and take advantage of the fact that this 9004 // expression only being used in a comparison by zero context. 9005 9006 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9007 // If the value is a constant 9008 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9009 // If the value is already zero, the branch will execute zero times. 9010 if (C->getValue()->isZero()) return C; 9011 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9012 } 9013 9014 const SCEVAddRecExpr *AddRec = 9015 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9016 9017 if (!AddRec && AllowPredicates) 9018 // Try to make this an AddRec using runtime tests, in the first X 9019 // iterations of this loop, where X is the SCEV expression found by the 9020 // algorithm below. 9021 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9022 9023 if (!AddRec || AddRec->getLoop() != L) 9024 return getCouldNotCompute(); 9025 9026 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9027 // the quadratic equation to solve it. 9028 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9029 // We can only use this value if the chrec ends up with an exact zero 9030 // value at this index. When solving for "X*X != 5", for example, we 9031 // should not accept a root of 2. 9032 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9033 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9034 return ExitLimit(R, R, false, Predicates); 9035 } 9036 return getCouldNotCompute(); 9037 } 9038 9039 // Otherwise we can only handle this if it is affine. 9040 if (!AddRec->isAffine()) 9041 return getCouldNotCompute(); 9042 9043 // If this is an affine expression, the execution count of this branch is 9044 // the minimum unsigned root of the following equation: 9045 // 9046 // Start + Step*N = 0 (mod 2^BW) 9047 // 9048 // equivalent to: 9049 // 9050 // Step*N = -Start (mod 2^BW) 9051 // 9052 // where BW is the common bit width of Start and Step. 9053 9054 // Get the initial value for the loop. 9055 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9056 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9057 9058 // For now we handle only constant steps. 9059 // 9060 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9061 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9062 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9063 // We have not yet seen any such cases. 9064 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9065 if (!StepC || StepC->getValue()->isZero()) 9066 return getCouldNotCompute(); 9067 9068 // For positive steps (counting up until unsigned overflow): 9069 // N = -Start/Step (as unsigned) 9070 // For negative steps (counting down to zero): 9071 // N = Start/-Step 9072 // First compute the unsigned distance from zero in the direction of Step. 9073 bool CountDown = StepC->getAPInt().isNegative(); 9074 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9075 9076 // Handle unitary steps, which cannot wraparound. 9077 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9078 // N = Distance (as unsigned) 9079 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9080 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9081 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9082 if (MaxBECountBase.ult(MaxBECount)) 9083 MaxBECount = MaxBECountBase; 9084 9085 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9086 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9087 // case, and see if we can improve the bound. 9088 // 9089 // Explicitly handling this here is necessary because getUnsignedRange 9090 // isn't context-sensitive; it doesn't know that we only care about the 9091 // range inside the loop. 9092 const SCEV *Zero = getZero(Distance->getType()); 9093 const SCEV *One = getOne(Distance->getType()); 9094 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9095 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9096 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9097 // as "unsigned_max(Distance + 1) - 1". 9098 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9099 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9100 } 9101 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9102 } 9103 9104 // If the condition controls loop exit (the loop exits only if the expression 9105 // is true) and the addition is no-wrap we can use unsigned divide to 9106 // compute the backedge count. In this case, the step may not divide the 9107 // distance, but we don't care because if the condition is "missed" the loop 9108 // will have undefined behavior due to wrapping. 9109 if (ControlsExit && AddRec->hasNoSelfWrap() && 9110 loopHasNoAbnormalExits(AddRec->getLoop())) { 9111 const SCEV *Exact = 9112 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9113 const SCEV *Max = 9114 Exact == getCouldNotCompute() 9115 ? Exact 9116 : getConstant(getUnsignedRangeMax(Exact)); 9117 return ExitLimit(Exact, Max, false, Predicates); 9118 } 9119 9120 // Solve the general equation. 9121 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9122 getNegativeSCEV(Start), *this); 9123 const SCEV *M = E == getCouldNotCompute() 9124 ? E 9125 : getConstant(getUnsignedRangeMax(E)); 9126 return ExitLimit(E, M, false, Predicates); 9127 } 9128 9129 ScalarEvolution::ExitLimit 9130 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9131 // Loops that look like: while (X == 0) are very strange indeed. We don't 9132 // handle them yet except for the trivial case. This could be expanded in the 9133 // future as needed. 9134 9135 // If the value is a constant, check to see if it is known to be non-zero 9136 // already. If so, the backedge will execute zero times. 9137 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9138 if (!C->getValue()->isZero()) 9139 return getZero(C->getType()); 9140 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9141 } 9142 9143 // We could implement others, but I really doubt anyone writes loops like 9144 // this, and if they did, they would already be constant folded. 9145 return getCouldNotCompute(); 9146 } 9147 9148 std::pair<const BasicBlock *, const BasicBlock *> 9149 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9150 const { 9151 // If the block has a unique predecessor, then there is no path from the 9152 // predecessor to the block that does not go through the direct edge 9153 // from the predecessor to the block. 9154 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9155 return {Pred, BB}; 9156 9157 // A loop's header is defined to be a block that dominates the loop. 9158 // If the header has a unique predecessor outside the loop, it must be 9159 // a block that has exactly one successor that can reach the loop. 9160 if (const Loop *L = LI.getLoopFor(BB)) 9161 return {L->getLoopPredecessor(), L->getHeader()}; 9162 9163 return {nullptr, nullptr}; 9164 } 9165 9166 /// SCEV structural equivalence is usually sufficient for testing whether two 9167 /// expressions are equal, however for the purposes of looking for a condition 9168 /// guarding a loop, it can be useful to be a little more general, since a 9169 /// front-end may have replicated the controlling expression. 9170 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9171 // Quick check to see if they are the same SCEV. 9172 if (A == B) return true; 9173 9174 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9175 // Not all instructions that are "identical" compute the same value. For 9176 // instance, two distinct alloca instructions allocating the same type are 9177 // identical and do not read memory; but compute distinct values. 9178 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9179 }; 9180 9181 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9182 // two different instructions with the same value. Check for this case. 9183 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9184 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9185 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9186 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9187 if (ComputesEqualValues(AI, BI)) 9188 return true; 9189 9190 // Otherwise assume they may have a different value. 9191 return false; 9192 } 9193 9194 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9195 const SCEV *&LHS, const SCEV *&RHS, 9196 unsigned Depth) { 9197 bool Changed = false; 9198 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9199 // '0 != 0'. 9200 auto TrivialCase = [&](bool TriviallyTrue) { 9201 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9202 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9203 return true; 9204 }; 9205 // If we hit the max recursion limit bail out. 9206 if (Depth >= 3) 9207 return false; 9208 9209 // Canonicalize a constant to the right side. 9210 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9211 // Check for both operands constant. 9212 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9213 if (ConstantExpr::getICmp(Pred, 9214 LHSC->getValue(), 9215 RHSC->getValue())->isNullValue()) 9216 return TrivialCase(false); 9217 else 9218 return TrivialCase(true); 9219 } 9220 // Otherwise swap the operands to put the constant on the right. 9221 std::swap(LHS, RHS); 9222 Pred = ICmpInst::getSwappedPredicate(Pred); 9223 Changed = true; 9224 } 9225 9226 // If we're comparing an addrec with a value which is loop-invariant in the 9227 // addrec's loop, put the addrec on the left. Also make a dominance check, 9228 // as both operands could be addrecs loop-invariant in each other's loop. 9229 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9230 const Loop *L = AR->getLoop(); 9231 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9232 std::swap(LHS, RHS); 9233 Pred = ICmpInst::getSwappedPredicate(Pred); 9234 Changed = true; 9235 } 9236 } 9237 9238 // If there's a constant operand, canonicalize comparisons with boundary 9239 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9240 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9241 const APInt &RA = RC->getAPInt(); 9242 9243 bool SimplifiedByConstantRange = false; 9244 9245 if (!ICmpInst::isEquality(Pred)) { 9246 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9247 if (ExactCR.isFullSet()) 9248 return TrivialCase(true); 9249 else if (ExactCR.isEmptySet()) 9250 return TrivialCase(false); 9251 9252 APInt NewRHS; 9253 CmpInst::Predicate NewPred; 9254 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9255 ICmpInst::isEquality(NewPred)) { 9256 // We were able to convert an inequality to an equality. 9257 Pred = NewPred; 9258 RHS = getConstant(NewRHS); 9259 Changed = SimplifiedByConstantRange = true; 9260 } 9261 } 9262 9263 if (!SimplifiedByConstantRange) { 9264 switch (Pred) { 9265 default: 9266 break; 9267 case ICmpInst::ICMP_EQ: 9268 case ICmpInst::ICMP_NE: 9269 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9270 if (!RA) 9271 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9272 if (const SCEVMulExpr *ME = 9273 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9274 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9275 ME->getOperand(0)->isAllOnesValue()) { 9276 RHS = AE->getOperand(1); 9277 LHS = ME->getOperand(1); 9278 Changed = true; 9279 } 9280 break; 9281 9282 9283 // The "Should have been caught earlier!" messages refer to the fact 9284 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9285 // should have fired on the corresponding cases, and canonicalized the 9286 // check to trivial case. 9287 9288 case ICmpInst::ICMP_UGE: 9289 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9290 Pred = ICmpInst::ICMP_UGT; 9291 RHS = getConstant(RA - 1); 9292 Changed = true; 9293 break; 9294 case ICmpInst::ICMP_ULE: 9295 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9296 Pred = ICmpInst::ICMP_ULT; 9297 RHS = getConstant(RA + 1); 9298 Changed = true; 9299 break; 9300 case ICmpInst::ICMP_SGE: 9301 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9302 Pred = ICmpInst::ICMP_SGT; 9303 RHS = getConstant(RA - 1); 9304 Changed = true; 9305 break; 9306 case ICmpInst::ICMP_SLE: 9307 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9308 Pred = ICmpInst::ICMP_SLT; 9309 RHS = getConstant(RA + 1); 9310 Changed = true; 9311 break; 9312 } 9313 } 9314 } 9315 9316 // Check for obvious equality. 9317 if (HasSameValue(LHS, RHS)) { 9318 if (ICmpInst::isTrueWhenEqual(Pred)) 9319 return TrivialCase(true); 9320 if (ICmpInst::isFalseWhenEqual(Pred)) 9321 return TrivialCase(false); 9322 } 9323 9324 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9325 // adding or subtracting 1 from one of the operands. 9326 switch (Pred) { 9327 case ICmpInst::ICMP_SLE: 9328 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9329 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9330 SCEV::FlagNSW); 9331 Pred = ICmpInst::ICMP_SLT; 9332 Changed = true; 9333 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9334 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9335 SCEV::FlagNSW); 9336 Pred = ICmpInst::ICMP_SLT; 9337 Changed = true; 9338 } 9339 break; 9340 case ICmpInst::ICMP_SGE: 9341 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9342 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9343 SCEV::FlagNSW); 9344 Pred = ICmpInst::ICMP_SGT; 9345 Changed = true; 9346 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9347 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9348 SCEV::FlagNSW); 9349 Pred = ICmpInst::ICMP_SGT; 9350 Changed = true; 9351 } 9352 break; 9353 case ICmpInst::ICMP_ULE: 9354 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9355 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9356 SCEV::FlagNUW); 9357 Pred = ICmpInst::ICMP_ULT; 9358 Changed = true; 9359 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9360 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9361 Pred = ICmpInst::ICMP_ULT; 9362 Changed = true; 9363 } 9364 break; 9365 case ICmpInst::ICMP_UGE: 9366 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9367 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9368 Pred = ICmpInst::ICMP_UGT; 9369 Changed = true; 9370 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9371 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9372 SCEV::FlagNUW); 9373 Pred = ICmpInst::ICMP_UGT; 9374 Changed = true; 9375 } 9376 break; 9377 default: 9378 break; 9379 } 9380 9381 // TODO: More simplifications are possible here. 9382 9383 // Recursively simplify until we either hit a recursion limit or nothing 9384 // changes. 9385 if (Changed) 9386 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9387 9388 return Changed; 9389 } 9390 9391 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9392 return getSignedRangeMax(S).isNegative(); 9393 } 9394 9395 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9396 return getSignedRangeMin(S).isStrictlyPositive(); 9397 } 9398 9399 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9400 return !getSignedRangeMin(S).isNegative(); 9401 } 9402 9403 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9404 return !getSignedRangeMax(S).isStrictlyPositive(); 9405 } 9406 9407 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9408 return isKnownNegative(S) || isKnownPositive(S); 9409 } 9410 9411 std::pair<const SCEV *, const SCEV *> 9412 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9413 // Compute SCEV on entry of loop L. 9414 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9415 if (Start == getCouldNotCompute()) 9416 return { Start, Start }; 9417 // Compute post increment SCEV for loop L. 9418 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9419 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9420 return { Start, PostInc }; 9421 } 9422 9423 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9424 const SCEV *LHS, const SCEV *RHS) { 9425 // First collect all loops. 9426 SmallPtrSet<const Loop *, 8> LoopsUsed; 9427 getUsedLoops(LHS, LoopsUsed); 9428 getUsedLoops(RHS, LoopsUsed); 9429 9430 if (LoopsUsed.empty()) 9431 return false; 9432 9433 // Domination relationship must be a linear order on collected loops. 9434 #ifndef NDEBUG 9435 for (auto *L1 : LoopsUsed) 9436 for (auto *L2 : LoopsUsed) 9437 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9438 DT.dominates(L2->getHeader(), L1->getHeader())) && 9439 "Domination relationship is not a linear order"); 9440 #endif 9441 9442 const Loop *MDL = 9443 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9444 [&](const Loop *L1, const Loop *L2) { 9445 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9446 }); 9447 9448 // Get init and post increment value for LHS. 9449 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9450 // if LHS contains unknown non-invariant SCEV then bail out. 9451 if (SplitLHS.first == getCouldNotCompute()) 9452 return false; 9453 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9454 // Get init and post increment value for RHS. 9455 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9456 // if RHS contains unknown non-invariant SCEV then bail out. 9457 if (SplitRHS.first == getCouldNotCompute()) 9458 return false; 9459 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9460 // It is possible that init SCEV contains an invariant load but it does 9461 // not dominate MDL and is not available at MDL loop entry, so we should 9462 // check it here. 9463 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9464 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9465 return false; 9466 9467 // It seems backedge guard check is faster than entry one so in some cases 9468 // it can speed up whole estimation by short circuit 9469 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9470 SplitRHS.second) && 9471 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9472 } 9473 9474 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9475 const SCEV *LHS, const SCEV *RHS) { 9476 // Canonicalize the inputs first. 9477 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9478 9479 if (isKnownViaInduction(Pred, LHS, RHS)) 9480 return true; 9481 9482 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9483 return true; 9484 9485 // Otherwise see what can be done with some simple reasoning. 9486 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9487 } 9488 9489 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9490 const SCEV *LHS, const SCEV *RHS, 9491 const Instruction *Context) { 9492 // TODO: Analyze guards and assumes from Context's block. 9493 return isKnownPredicate(Pred, LHS, RHS) || 9494 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9495 } 9496 9497 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9498 const SCEVAddRecExpr *LHS, 9499 const SCEV *RHS) { 9500 const Loop *L = LHS->getLoop(); 9501 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9502 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9503 } 9504 9505 Optional<ScalarEvolution::MonotonicPredicateType> 9506 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9507 ICmpInst::Predicate Pred) { 9508 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9509 9510 #ifndef NDEBUG 9511 // Verify an invariant: inverting the predicate should turn a monotonically 9512 // increasing change to a monotonically decreasing one, and vice versa. 9513 if (Result) { 9514 auto ResultSwapped = 9515 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9516 9517 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9518 assert(ResultSwapped.getValue() != Result.getValue() && 9519 "monotonicity should flip as we flip the predicate"); 9520 } 9521 #endif 9522 9523 return Result; 9524 } 9525 9526 Optional<ScalarEvolution::MonotonicPredicateType> 9527 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9528 ICmpInst::Predicate Pred) { 9529 // A zero step value for LHS means the induction variable is essentially a 9530 // loop invariant value. We don't really depend on the predicate actually 9531 // flipping from false to true (for increasing predicates, and the other way 9532 // around for decreasing predicates), all we care about is that *if* the 9533 // predicate changes then it only changes from false to true. 9534 // 9535 // A zero step value in itself is not very useful, but there may be places 9536 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9537 // as general as possible. 9538 9539 // Only handle LE/LT/GE/GT predicates. 9540 if (!ICmpInst::isRelational(Pred)) 9541 return None; 9542 9543 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9544 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9545 "Should be greater or less!"); 9546 9547 // Check that AR does not wrap. 9548 if (ICmpInst::isUnsigned(Pred)) { 9549 if (!LHS->hasNoUnsignedWrap()) 9550 return None; 9551 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9552 } else { 9553 assert(ICmpInst::isSigned(Pred) && 9554 "Relational predicate is either signed or unsigned!"); 9555 if (!LHS->hasNoSignedWrap()) 9556 return None; 9557 9558 const SCEV *Step = LHS->getStepRecurrence(*this); 9559 9560 if (isKnownNonNegative(Step)) 9561 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9562 9563 if (isKnownNonPositive(Step)) 9564 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9565 9566 return None; 9567 } 9568 } 9569 9570 Optional<ScalarEvolution::LoopInvariantPredicate> 9571 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 9572 const SCEV *LHS, const SCEV *RHS, 9573 const Loop *L) { 9574 9575 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9576 if (!isLoopInvariant(RHS, L)) { 9577 if (!isLoopInvariant(LHS, L)) 9578 return None; 9579 9580 std::swap(LHS, RHS); 9581 Pred = ICmpInst::getSwappedPredicate(Pred); 9582 } 9583 9584 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9585 if (!ArLHS || ArLHS->getLoop() != L) 9586 return None; 9587 9588 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 9589 if (!MonotonicType) 9590 return None; 9591 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9592 // true as the loop iterates, and the backedge is control dependent on 9593 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9594 // 9595 // * if the predicate was false in the first iteration then the predicate 9596 // is never evaluated again, since the loop exits without taking the 9597 // backedge. 9598 // * if the predicate was true in the first iteration then it will 9599 // continue to be true for all future iterations since it is 9600 // monotonically increasing. 9601 // 9602 // For both the above possibilities, we can replace the loop varying 9603 // predicate with its value on the first iteration of the loop (which is 9604 // loop invariant). 9605 // 9606 // A similar reasoning applies for a monotonically decreasing predicate, by 9607 // replacing true with false and false with true in the above two bullets. 9608 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 9609 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9610 9611 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9612 return None; 9613 9614 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 9615 } 9616 9617 Optional<ScalarEvolution::LoopInvariantPredicate> 9618 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 9619 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9620 const Instruction *Context, const SCEV *MaxIter) { 9621 // Try to prove the following set of facts: 9622 // - The predicate is monotonic in the iteration space. 9623 // - If the check does not fail on the 1st iteration: 9624 // - No overflow will happen during first MaxIter iterations; 9625 // - It will not fail on the MaxIter'th iteration. 9626 // If the check does fail on the 1st iteration, we leave the loop and no 9627 // other checks matter. 9628 9629 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9630 if (!isLoopInvariant(RHS, L)) { 9631 if (!isLoopInvariant(LHS, L)) 9632 return None; 9633 9634 std::swap(LHS, RHS); 9635 Pred = ICmpInst::getSwappedPredicate(Pred); 9636 } 9637 9638 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 9639 if (!AR || AR->getLoop() != L) 9640 return None; 9641 9642 // The predicate must be relational (i.e. <, <=, >=, >). 9643 if (!ICmpInst::isRelational(Pred)) 9644 return None; 9645 9646 const SCEV *Step = AR->getStepRecurrence(*this); 9647 bool IsStepNonPositive = isKnownNonPositive(Step); 9648 if (!IsStepNonPositive && !isKnownNonNegative(Step)) 9649 return None; 9650 bool HasNoSelfWrap = AR->hasNoSelfWrap(); 9651 if (!HasNoSelfWrap) 9652 // If num iter has same type as the AddRec, and step is +/- 1, even max 9653 // possible number of iterations is not enough to self-wrap. 9654 if (MaxIter->getType() == AR->getType()) 9655 if (Step == getOne(AR->getType()) || Step == getMinusOne(AR->getType())) 9656 HasNoSelfWrap = true; 9657 // Only proceed with non-self-wrapping ARs. 9658 if (!HasNoSelfWrap) 9659 return None; 9660 9661 // Value of IV on suggested last iteration. 9662 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 9663 // Does it still meet the requirement? 9664 if (!isKnownPredicateAt(Pred, Last, RHS, Context)) 9665 return None; 9666 // We know that the addrec does not have a self-wrap. To prove that there is 9667 // no signed/unsigned wrap, we need to check that 9668 // Start <= Last for positive step or Start >= Last for negative step. Either 9669 // works for zero step. 9670 ICmpInst::Predicate NoOverflowPred = 9671 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 9672 if (IsStepNonPositive) 9673 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 9674 const SCEV *Start = AR->getStart(); 9675 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 9676 return None; 9677 9678 // Everything is fine. 9679 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 9680 } 9681 9682 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9683 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9684 if (HasSameValue(LHS, RHS)) 9685 return ICmpInst::isTrueWhenEqual(Pred); 9686 9687 // This code is split out from isKnownPredicate because it is called from 9688 // within isLoopEntryGuardedByCond. 9689 9690 auto CheckRanges = 9691 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9692 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9693 .contains(RangeLHS); 9694 }; 9695 9696 // The check at the top of the function catches the case where the values are 9697 // known to be equal. 9698 if (Pred == CmpInst::ICMP_EQ) 9699 return false; 9700 9701 if (Pred == CmpInst::ICMP_NE) 9702 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9703 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9704 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9705 9706 if (CmpInst::isSigned(Pred)) 9707 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9708 9709 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9710 } 9711 9712 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9713 const SCEV *LHS, 9714 const SCEV *RHS) { 9715 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9716 // Return Y via OutY. 9717 auto MatchBinaryAddToConst = 9718 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9719 SCEV::NoWrapFlags ExpectedFlags) { 9720 const SCEV *NonConstOp, *ConstOp; 9721 SCEV::NoWrapFlags FlagsPresent; 9722 9723 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9724 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9725 return false; 9726 9727 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9728 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9729 }; 9730 9731 APInt C; 9732 9733 switch (Pred) { 9734 default: 9735 break; 9736 9737 case ICmpInst::ICMP_SGE: 9738 std::swap(LHS, RHS); 9739 LLVM_FALLTHROUGH; 9740 case ICmpInst::ICMP_SLE: 9741 // X s<= (X + C)<nsw> if C >= 0 9742 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9743 return true; 9744 9745 // (X + C)<nsw> s<= X if C <= 0 9746 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9747 !C.isStrictlyPositive()) 9748 return true; 9749 break; 9750 9751 case ICmpInst::ICMP_SGT: 9752 std::swap(LHS, RHS); 9753 LLVM_FALLTHROUGH; 9754 case ICmpInst::ICMP_SLT: 9755 // X s< (X + C)<nsw> if C > 0 9756 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9757 C.isStrictlyPositive()) 9758 return true; 9759 9760 // (X + C)<nsw> s< X if C < 0 9761 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9762 return true; 9763 break; 9764 9765 case ICmpInst::ICMP_UGE: 9766 std::swap(LHS, RHS); 9767 LLVM_FALLTHROUGH; 9768 case ICmpInst::ICMP_ULE: 9769 // X u<= (X + C)<nuw> for any C 9770 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW)) 9771 return true; 9772 break; 9773 9774 case ICmpInst::ICMP_UGT: 9775 std::swap(LHS, RHS); 9776 LLVM_FALLTHROUGH; 9777 case ICmpInst::ICMP_ULT: 9778 // X u< (X + C)<nuw> if C != 0 9779 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue()) 9780 return true; 9781 break; 9782 } 9783 9784 return false; 9785 } 9786 9787 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9788 const SCEV *LHS, 9789 const SCEV *RHS) { 9790 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9791 return false; 9792 9793 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9794 // the stack can result in exponential time complexity. 9795 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9796 9797 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9798 // 9799 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9800 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9801 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9802 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9803 // use isKnownPredicate later if needed. 9804 return isKnownNonNegative(RHS) && 9805 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9806 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9807 } 9808 9809 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 9810 ICmpInst::Predicate Pred, 9811 const SCEV *LHS, const SCEV *RHS) { 9812 // No need to even try if we know the module has no guards. 9813 if (!HasGuards) 9814 return false; 9815 9816 return any_of(*BB, [&](const Instruction &I) { 9817 using namespace llvm::PatternMatch; 9818 9819 Value *Condition; 9820 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9821 m_Value(Condition))) && 9822 isImpliedCond(Pred, LHS, RHS, Condition, false); 9823 }); 9824 } 9825 9826 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9827 /// protected by a conditional between LHS and RHS. This is used to 9828 /// to eliminate casts. 9829 bool 9830 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9831 ICmpInst::Predicate Pred, 9832 const SCEV *LHS, const SCEV *RHS) { 9833 // Interpret a null as meaning no loop, where there is obviously no guard 9834 // (interprocedural conditions notwithstanding). 9835 if (!L) return true; 9836 9837 if (VerifyIR) 9838 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9839 "This cannot be done on broken IR!"); 9840 9841 9842 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9843 return true; 9844 9845 BasicBlock *Latch = L->getLoopLatch(); 9846 if (!Latch) 9847 return false; 9848 9849 BranchInst *LoopContinuePredicate = 9850 dyn_cast<BranchInst>(Latch->getTerminator()); 9851 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9852 isImpliedCond(Pred, LHS, RHS, 9853 LoopContinuePredicate->getCondition(), 9854 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9855 return true; 9856 9857 // We don't want more than one activation of the following loops on the stack 9858 // -- that can lead to O(n!) time complexity. 9859 if (WalkingBEDominatingConds) 9860 return false; 9861 9862 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9863 9864 // See if we can exploit a trip count to prove the predicate. 9865 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9866 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9867 if (LatchBECount != getCouldNotCompute()) { 9868 // We know that Latch branches back to the loop header exactly 9869 // LatchBECount times. This means the backdege condition at Latch is 9870 // equivalent to "{0,+,1} u< LatchBECount". 9871 Type *Ty = LatchBECount->getType(); 9872 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9873 const SCEV *LoopCounter = 9874 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9875 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9876 LatchBECount)) 9877 return true; 9878 } 9879 9880 // Check conditions due to any @llvm.assume intrinsics. 9881 for (auto &AssumeVH : AC.assumptions()) { 9882 if (!AssumeVH) 9883 continue; 9884 auto *CI = cast<CallInst>(AssumeVH); 9885 if (!DT.dominates(CI, Latch->getTerminator())) 9886 continue; 9887 9888 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9889 return true; 9890 } 9891 9892 // If the loop is not reachable from the entry block, we risk running into an 9893 // infinite loop as we walk up into the dom tree. These loops do not matter 9894 // anyway, so we just return a conservative answer when we see them. 9895 if (!DT.isReachableFromEntry(L->getHeader())) 9896 return false; 9897 9898 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9899 return true; 9900 9901 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9902 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9903 assert(DTN && "should reach the loop header before reaching the root!"); 9904 9905 BasicBlock *BB = DTN->getBlock(); 9906 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9907 return true; 9908 9909 BasicBlock *PBB = BB->getSinglePredecessor(); 9910 if (!PBB) 9911 continue; 9912 9913 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9914 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9915 continue; 9916 9917 Value *Condition = ContinuePredicate->getCondition(); 9918 9919 // If we have an edge `E` within the loop body that dominates the only 9920 // latch, the condition guarding `E` also guards the backedge. This 9921 // reasoning works only for loops with a single latch. 9922 9923 BasicBlockEdge DominatingEdge(PBB, BB); 9924 if (DominatingEdge.isSingleEdge()) { 9925 // We're constructively (and conservatively) enumerating edges within the 9926 // loop body that dominate the latch. The dominator tree better agree 9927 // with us on this: 9928 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9929 9930 if (isImpliedCond(Pred, LHS, RHS, Condition, 9931 BB != ContinuePredicate->getSuccessor(0))) 9932 return true; 9933 } 9934 } 9935 9936 return false; 9937 } 9938 9939 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 9940 ICmpInst::Predicate Pred, 9941 const SCEV *LHS, 9942 const SCEV *RHS) { 9943 if (VerifyIR) 9944 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 9945 "This cannot be done on broken IR!"); 9946 9947 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9948 return true; 9949 9950 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9951 // the facts (a >= b && a != b) separately. A typical situation is when the 9952 // non-strict comparison is known from ranges and non-equality is known from 9953 // dominating predicates. If we are proving strict comparison, we always try 9954 // to prove non-equality and non-strict comparison separately. 9955 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9956 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9957 bool ProvedNonStrictComparison = false; 9958 bool ProvedNonEquality = false; 9959 9960 if (ProvingStrictComparison) { 9961 ProvedNonStrictComparison = 9962 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9963 ProvedNonEquality = 9964 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9965 if (ProvedNonStrictComparison && ProvedNonEquality) 9966 return true; 9967 } 9968 9969 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9970 auto ProveViaGuard = [&](const BasicBlock *Block) { 9971 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9972 return true; 9973 if (ProvingStrictComparison) { 9974 if (!ProvedNonStrictComparison) 9975 ProvedNonStrictComparison = 9976 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9977 if (!ProvedNonEquality) 9978 ProvedNonEquality = 9979 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9980 if (ProvedNonStrictComparison && ProvedNonEquality) 9981 return true; 9982 } 9983 return false; 9984 }; 9985 9986 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9987 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 9988 const Instruction *Context = &BB->front(); 9989 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 9990 return true; 9991 if (ProvingStrictComparison) { 9992 if (!ProvedNonStrictComparison) 9993 ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS, 9994 Condition, Inverse, Context); 9995 if (!ProvedNonEquality) 9996 ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, 9997 Condition, Inverse, Context); 9998 if (ProvedNonStrictComparison && ProvedNonEquality) 9999 return true; 10000 } 10001 return false; 10002 }; 10003 10004 // Starting at the block's predecessor, climb up the predecessor chain, as long 10005 // as there are predecessors that can be found that have unique successors 10006 // leading to the original block. 10007 const Loop *ContainingLoop = LI.getLoopFor(BB); 10008 const BasicBlock *PredBB; 10009 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10010 PredBB = ContainingLoop->getLoopPredecessor(); 10011 else 10012 PredBB = BB->getSinglePredecessor(); 10013 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10014 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10015 if (ProveViaGuard(Pair.first)) 10016 return true; 10017 10018 const BranchInst *LoopEntryPredicate = 10019 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10020 if (!LoopEntryPredicate || 10021 LoopEntryPredicate->isUnconditional()) 10022 continue; 10023 10024 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10025 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10026 return true; 10027 } 10028 10029 // Check conditions due to any @llvm.assume intrinsics. 10030 for (auto &AssumeVH : AC.assumptions()) { 10031 if (!AssumeVH) 10032 continue; 10033 auto *CI = cast<CallInst>(AssumeVH); 10034 if (!DT.dominates(CI, BB)) 10035 continue; 10036 10037 if (ProveViaCond(CI->getArgOperand(0), false)) 10038 return true; 10039 } 10040 10041 return false; 10042 } 10043 10044 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10045 ICmpInst::Predicate Pred, 10046 const SCEV *LHS, 10047 const SCEV *RHS) { 10048 // Interpret a null as meaning no loop, where there is obviously no guard 10049 // (interprocedural conditions notwithstanding). 10050 if (!L) 10051 return false; 10052 10053 // Both LHS and RHS must be available at loop entry. 10054 assert(isAvailableAtLoopEntry(LHS, L) && 10055 "LHS is not available at Loop Entry"); 10056 assert(isAvailableAtLoopEntry(RHS, L) && 10057 "RHS is not available at Loop Entry"); 10058 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10059 } 10060 10061 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10062 const SCEV *RHS, 10063 const Value *FoundCondValue, bool Inverse, 10064 const Instruction *Context) { 10065 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10066 return false; 10067 10068 auto ClearOnExit = 10069 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10070 10071 // Recursively handle And and Or conditions. 10072 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 10073 if (BO->getOpcode() == Instruction::And) { 10074 if (!Inverse) 10075 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 10076 Context) || 10077 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 10078 Context); 10079 } else if (BO->getOpcode() == Instruction::Or) { 10080 if (Inverse) 10081 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 10082 Context) || 10083 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 10084 Context); 10085 } 10086 } 10087 10088 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10089 if (!ICI) return false; 10090 10091 // Now that we found a conditional branch that dominates the loop or controls 10092 // the loop latch. Check to see if it is the comparison we are looking for. 10093 ICmpInst::Predicate FoundPred; 10094 if (Inverse) 10095 FoundPred = ICI->getInversePredicate(); 10096 else 10097 FoundPred = ICI->getPredicate(); 10098 10099 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10100 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10101 10102 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 10103 } 10104 10105 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10106 const SCEV *RHS, 10107 ICmpInst::Predicate FoundPred, 10108 const SCEV *FoundLHS, const SCEV *FoundRHS, 10109 const Instruction *Context) { 10110 // Balance the types. 10111 if (getTypeSizeInBits(LHS->getType()) < 10112 getTypeSizeInBits(FoundLHS->getType())) { 10113 // For unsigned and equality predicates, try to prove that both found 10114 // operands fit into narrow unsigned range. If so, try to prove facts in 10115 // narrow types. 10116 if (!CmpInst::isSigned(FoundPred)) { 10117 auto *NarrowType = LHS->getType(); 10118 auto *WideType = FoundLHS->getType(); 10119 auto BitWidth = getTypeSizeInBits(NarrowType); 10120 const SCEV *MaxValue = getZeroExtendExpr( 10121 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10122 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10123 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10124 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10125 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10126 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10127 TruncFoundRHS, Context)) 10128 return true; 10129 } 10130 } 10131 10132 if (CmpInst::isSigned(Pred)) { 10133 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10134 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10135 } else { 10136 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10137 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10138 } 10139 } else if (getTypeSizeInBits(LHS->getType()) > 10140 getTypeSizeInBits(FoundLHS->getType())) { 10141 if (CmpInst::isSigned(FoundPred)) { 10142 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10143 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10144 } else { 10145 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10146 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10147 } 10148 } 10149 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10150 FoundRHS, Context); 10151 } 10152 10153 bool ScalarEvolution::isImpliedCondBalancedTypes( 10154 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10155 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10156 const Instruction *Context) { 10157 assert(getTypeSizeInBits(LHS->getType()) == 10158 getTypeSizeInBits(FoundLHS->getType()) && 10159 "Types should be balanced!"); 10160 // Canonicalize the query to match the way instcombine will have 10161 // canonicalized the comparison. 10162 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10163 if (LHS == RHS) 10164 return CmpInst::isTrueWhenEqual(Pred); 10165 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10166 if (FoundLHS == FoundRHS) 10167 return CmpInst::isFalseWhenEqual(FoundPred); 10168 10169 // Check to see if we can make the LHS or RHS match. 10170 if (LHS == FoundRHS || RHS == FoundLHS) { 10171 if (isa<SCEVConstant>(RHS)) { 10172 std::swap(FoundLHS, FoundRHS); 10173 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10174 } else { 10175 std::swap(LHS, RHS); 10176 Pred = ICmpInst::getSwappedPredicate(Pred); 10177 } 10178 } 10179 10180 // Check whether the found predicate is the same as the desired predicate. 10181 if (FoundPred == Pred) 10182 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10183 10184 // Check whether swapping the found predicate makes it the same as the 10185 // desired predicate. 10186 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10187 if (isa<SCEVConstant>(RHS)) 10188 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10189 else 10190 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS, 10191 LHS, FoundLHS, FoundRHS, Context); 10192 } 10193 10194 // Unsigned comparison is the same as signed comparison when both the operands 10195 // are non-negative. 10196 if (CmpInst::isUnsigned(FoundPred) && 10197 CmpInst::getSignedPredicate(FoundPred) == Pred && 10198 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10199 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10200 10201 // Check if we can make progress by sharpening ranges. 10202 if (FoundPred == ICmpInst::ICMP_NE && 10203 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10204 10205 const SCEVConstant *C = nullptr; 10206 const SCEV *V = nullptr; 10207 10208 if (isa<SCEVConstant>(FoundLHS)) { 10209 C = cast<SCEVConstant>(FoundLHS); 10210 V = FoundRHS; 10211 } else { 10212 C = cast<SCEVConstant>(FoundRHS); 10213 V = FoundLHS; 10214 } 10215 10216 // The guarding predicate tells us that C != V. If the known range 10217 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10218 // range we consider has to correspond to same signedness as the 10219 // predicate we're interested in folding. 10220 10221 APInt Min = ICmpInst::isSigned(Pred) ? 10222 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10223 10224 if (Min == C->getAPInt()) { 10225 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10226 // This is true even if (Min + 1) wraps around -- in case of 10227 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10228 10229 APInt SharperMin = Min + 1; 10230 10231 switch (Pred) { 10232 case ICmpInst::ICMP_SGE: 10233 case ICmpInst::ICMP_UGE: 10234 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10235 // RHS, we're done. 10236 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10237 Context)) 10238 return true; 10239 LLVM_FALLTHROUGH; 10240 10241 case ICmpInst::ICMP_SGT: 10242 case ICmpInst::ICMP_UGT: 10243 // We know from the range information that (V `Pred` Min || 10244 // V == Min). We know from the guarding condition that !(V 10245 // == Min). This gives us 10246 // 10247 // V `Pred` Min || V == Min && !(V == Min) 10248 // => V `Pred` Min 10249 // 10250 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10251 10252 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10253 Context)) 10254 return true; 10255 break; 10256 10257 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10258 case ICmpInst::ICMP_SLE: 10259 case ICmpInst::ICMP_ULE: 10260 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10261 LHS, V, getConstant(SharperMin), Context)) 10262 return true; 10263 LLVM_FALLTHROUGH; 10264 10265 case ICmpInst::ICMP_SLT: 10266 case ICmpInst::ICMP_ULT: 10267 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10268 LHS, V, getConstant(Min), Context)) 10269 return true; 10270 break; 10271 10272 default: 10273 // No change 10274 break; 10275 } 10276 } 10277 } 10278 10279 // Check whether the actual condition is beyond sufficient. 10280 if (FoundPred == ICmpInst::ICMP_EQ) 10281 if (ICmpInst::isTrueWhenEqual(Pred)) 10282 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10283 return true; 10284 if (Pred == ICmpInst::ICMP_NE) 10285 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10286 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10287 Context)) 10288 return true; 10289 10290 // Otherwise assume the worst. 10291 return false; 10292 } 10293 10294 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10295 const SCEV *&L, const SCEV *&R, 10296 SCEV::NoWrapFlags &Flags) { 10297 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10298 if (!AE || AE->getNumOperands() != 2) 10299 return false; 10300 10301 L = AE->getOperand(0); 10302 R = AE->getOperand(1); 10303 Flags = AE->getNoWrapFlags(); 10304 return true; 10305 } 10306 10307 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10308 const SCEV *Less) { 10309 // We avoid subtracting expressions here because this function is usually 10310 // fairly deep in the call stack (i.e. is called many times). 10311 10312 // X - X = 0. 10313 if (More == Less) 10314 return APInt(getTypeSizeInBits(More->getType()), 0); 10315 10316 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10317 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10318 const auto *MAR = cast<SCEVAddRecExpr>(More); 10319 10320 if (LAR->getLoop() != MAR->getLoop()) 10321 return None; 10322 10323 // We look at affine expressions only; not for correctness but to keep 10324 // getStepRecurrence cheap. 10325 if (!LAR->isAffine() || !MAR->isAffine()) 10326 return None; 10327 10328 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10329 return None; 10330 10331 Less = LAR->getStart(); 10332 More = MAR->getStart(); 10333 10334 // fall through 10335 } 10336 10337 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10338 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10339 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10340 return M - L; 10341 } 10342 10343 SCEV::NoWrapFlags Flags; 10344 const SCEV *LLess = nullptr, *RLess = nullptr; 10345 const SCEV *LMore = nullptr, *RMore = nullptr; 10346 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10347 // Compare (X + C1) vs X. 10348 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10349 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10350 if (RLess == More) 10351 return -(C1->getAPInt()); 10352 10353 // Compare X vs (X + C2). 10354 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10355 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10356 if (RMore == Less) 10357 return C2->getAPInt(); 10358 10359 // Compare (X + C1) vs (X + C2). 10360 if (C1 && C2 && RLess == RMore) 10361 return C2->getAPInt() - C1->getAPInt(); 10362 10363 return None; 10364 } 10365 10366 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10367 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10368 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10369 // Try to recognize the following pattern: 10370 // 10371 // FoundRHS = ... 10372 // ... 10373 // loop: 10374 // FoundLHS = {Start,+,W} 10375 // context_bb: // Basic block from the same loop 10376 // known(Pred, FoundLHS, FoundRHS) 10377 // 10378 // If some predicate is known in the context of a loop, it is also known on 10379 // each iteration of this loop, including the first iteration. Therefore, in 10380 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10381 // prove the original pred using this fact. 10382 if (!Context) 10383 return false; 10384 const BasicBlock *ContextBB = Context->getParent(); 10385 // Make sure AR varies in the context block. 10386 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10387 const Loop *L = AR->getLoop(); 10388 // Make sure that context belongs to the loop and executes on 1st iteration 10389 // (if it ever executes at all). 10390 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10391 return false; 10392 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10393 return false; 10394 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10395 } 10396 10397 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10398 const Loop *L = AR->getLoop(); 10399 // Make sure that context belongs to the loop and executes on 1st iteration 10400 // (if it ever executes at all). 10401 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10402 return false; 10403 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10404 return false; 10405 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10406 } 10407 10408 return false; 10409 } 10410 10411 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10412 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10413 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10414 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10415 return false; 10416 10417 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10418 if (!AddRecLHS) 10419 return false; 10420 10421 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10422 if (!AddRecFoundLHS) 10423 return false; 10424 10425 // We'd like to let SCEV reason about control dependencies, so we constrain 10426 // both the inequalities to be about add recurrences on the same loop. This 10427 // way we can use isLoopEntryGuardedByCond later. 10428 10429 const Loop *L = AddRecFoundLHS->getLoop(); 10430 if (L != AddRecLHS->getLoop()) 10431 return false; 10432 10433 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10434 // 10435 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10436 // ... (2) 10437 // 10438 // Informal proof for (2), assuming (1) [*]: 10439 // 10440 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10441 // 10442 // Then 10443 // 10444 // FoundLHS s< FoundRHS s< INT_MIN - C 10445 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10446 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10447 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10448 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10449 // <=> FoundLHS + C s< FoundRHS + C 10450 // 10451 // [*]: (1) can be proved by ruling out overflow. 10452 // 10453 // [**]: This can be proved by analyzing all the four possibilities: 10454 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10455 // (A s>= 0, B s>= 0). 10456 // 10457 // Note: 10458 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10459 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10460 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10461 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10462 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10463 // C)". 10464 10465 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10466 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10467 if (!LDiff || !RDiff || *LDiff != *RDiff) 10468 return false; 10469 10470 if (LDiff->isMinValue()) 10471 return true; 10472 10473 APInt FoundRHSLimit; 10474 10475 if (Pred == CmpInst::ICMP_ULT) { 10476 FoundRHSLimit = -(*RDiff); 10477 } else { 10478 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10479 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10480 } 10481 10482 // Try to prove (1) or (2), as needed. 10483 return isAvailableAtLoopEntry(FoundRHS, L) && 10484 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10485 getConstant(FoundRHSLimit)); 10486 } 10487 10488 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10489 const SCEV *LHS, const SCEV *RHS, 10490 const SCEV *FoundLHS, 10491 const SCEV *FoundRHS, unsigned Depth) { 10492 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10493 10494 auto ClearOnExit = make_scope_exit([&]() { 10495 if (LPhi) { 10496 bool Erased = PendingMerges.erase(LPhi); 10497 assert(Erased && "Failed to erase LPhi!"); 10498 (void)Erased; 10499 } 10500 if (RPhi) { 10501 bool Erased = PendingMerges.erase(RPhi); 10502 assert(Erased && "Failed to erase RPhi!"); 10503 (void)Erased; 10504 } 10505 }); 10506 10507 // Find respective Phis and check that they are not being pending. 10508 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10509 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10510 if (!PendingMerges.insert(Phi).second) 10511 return false; 10512 LPhi = Phi; 10513 } 10514 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10515 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10516 // If we detect a loop of Phi nodes being processed by this method, for 10517 // example: 10518 // 10519 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10520 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10521 // 10522 // we don't want to deal with a case that complex, so return conservative 10523 // answer false. 10524 if (!PendingMerges.insert(Phi).second) 10525 return false; 10526 RPhi = Phi; 10527 } 10528 10529 // If none of LHS, RHS is a Phi, nothing to do here. 10530 if (!LPhi && !RPhi) 10531 return false; 10532 10533 // If there is a SCEVUnknown Phi we are interested in, make it left. 10534 if (!LPhi) { 10535 std::swap(LHS, RHS); 10536 std::swap(FoundLHS, FoundRHS); 10537 std::swap(LPhi, RPhi); 10538 Pred = ICmpInst::getSwappedPredicate(Pred); 10539 } 10540 10541 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10542 const BasicBlock *LBB = LPhi->getParent(); 10543 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10544 10545 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10546 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10547 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10548 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10549 }; 10550 10551 if (RPhi && RPhi->getParent() == LBB) { 10552 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10553 // If we compare two Phis from the same block, and for each entry block 10554 // the predicate is true for incoming values from this block, then the 10555 // predicate is also true for the Phis. 10556 for (const BasicBlock *IncBB : predecessors(LBB)) { 10557 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10558 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10559 if (!ProvedEasily(L, R)) 10560 return false; 10561 } 10562 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10563 // Case two: RHS is also a Phi from the same basic block, and it is an 10564 // AddRec. It means that there is a loop which has both AddRec and Unknown 10565 // PHIs, for it we can compare incoming values of AddRec from above the loop 10566 // and latch with their respective incoming values of LPhi. 10567 // TODO: Generalize to handle loops with many inputs in a header. 10568 if (LPhi->getNumIncomingValues() != 2) return false; 10569 10570 auto *RLoop = RAR->getLoop(); 10571 auto *Predecessor = RLoop->getLoopPredecessor(); 10572 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10573 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10574 if (!ProvedEasily(L1, RAR->getStart())) 10575 return false; 10576 auto *Latch = RLoop->getLoopLatch(); 10577 assert(Latch && "Loop with AddRec with no latch?"); 10578 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10579 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10580 return false; 10581 } else { 10582 // In all other cases go over inputs of LHS and compare each of them to RHS, 10583 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10584 // At this point RHS is either a non-Phi, or it is a Phi from some block 10585 // different from LBB. 10586 for (const BasicBlock *IncBB : predecessors(LBB)) { 10587 // Check that RHS is available in this block. 10588 if (!dominates(RHS, IncBB)) 10589 return false; 10590 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10591 if (!ProvedEasily(L, RHS)) 10592 return false; 10593 } 10594 } 10595 return true; 10596 } 10597 10598 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10599 const SCEV *LHS, const SCEV *RHS, 10600 const SCEV *FoundLHS, 10601 const SCEV *FoundRHS, 10602 const Instruction *Context) { 10603 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10604 return true; 10605 10606 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10607 return true; 10608 10609 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 10610 Context)) 10611 return true; 10612 10613 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10614 FoundLHS, FoundRHS) || 10615 // ~x < ~y --> x > y 10616 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10617 getNotSCEV(FoundRHS), 10618 getNotSCEV(FoundLHS)); 10619 } 10620 10621 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10622 template <typename MinMaxExprType> 10623 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10624 const SCEV *Candidate) { 10625 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10626 if (!MinMaxExpr) 10627 return false; 10628 10629 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); 10630 } 10631 10632 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10633 ICmpInst::Predicate Pred, 10634 const SCEV *LHS, const SCEV *RHS) { 10635 // If both sides are affine addrecs for the same loop, with equal 10636 // steps, and we know the recurrences don't wrap, then we only 10637 // need to check the predicate on the starting values. 10638 10639 if (!ICmpInst::isRelational(Pred)) 10640 return false; 10641 10642 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10643 if (!LAR) 10644 return false; 10645 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10646 if (!RAR) 10647 return false; 10648 if (LAR->getLoop() != RAR->getLoop()) 10649 return false; 10650 if (!LAR->isAffine() || !RAR->isAffine()) 10651 return false; 10652 10653 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10654 return false; 10655 10656 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10657 SCEV::FlagNSW : SCEV::FlagNUW; 10658 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10659 return false; 10660 10661 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10662 } 10663 10664 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10665 /// expression? 10666 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10667 ICmpInst::Predicate Pred, 10668 const SCEV *LHS, const SCEV *RHS) { 10669 switch (Pred) { 10670 default: 10671 return false; 10672 10673 case ICmpInst::ICMP_SGE: 10674 std::swap(LHS, RHS); 10675 LLVM_FALLTHROUGH; 10676 case ICmpInst::ICMP_SLE: 10677 return 10678 // min(A, ...) <= A 10679 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10680 // A <= max(A, ...) 10681 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10682 10683 case ICmpInst::ICMP_UGE: 10684 std::swap(LHS, RHS); 10685 LLVM_FALLTHROUGH; 10686 case ICmpInst::ICMP_ULE: 10687 return 10688 // min(A, ...) <= A 10689 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10690 // A <= max(A, ...) 10691 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10692 } 10693 10694 llvm_unreachable("covered switch fell through?!"); 10695 } 10696 10697 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10698 const SCEV *LHS, const SCEV *RHS, 10699 const SCEV *FoundLHS, 10700 const SCEV *FoundRHS, 10701 unsigned Depth) { 10702 assert(getTypeSizeInBits(LHS->getType()) == 10703 getTypeSizeInBits(RHS->getType()) && 10704 "LHS and RHS have different sizes?"); 10705 assert(getTypeSizeInBits(FoundLHS->getType()) == 10706 getTypeSizeInBits(FoundRHS->getType()) && 10707 "FoundLHS and FoundRHS have different sizes?"); 10708 // We want to avoid hurting the compile time with analysis of too big trees. 10709 if (Depth > MaxSCEVOperationsImplicationDepth) 10710 return false; 10711 10712 // We only want to work with GT comparison so far. 10713 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 10714 Pred = CmpInst::getSwappedPredicate(Pred); 10715 std::swap(LHS, RHS); 10716 std::swap(FoundLHS, FoundRHS); 10717 } 10718 10719 // For unsigned, try to reduce it to corresponding signed comparison. 10720 if (Pred == ICmpInst::ICMP_UGT) 10721 // We can replace unsigned predicate with its signed counterpart if all 10722 // involved values are non-negative. 10723 // TODO: We could have better support for unsigned. 10724 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 10725 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 10726 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 10727 // use this fact to prove that LHS and RHS are non-negative. 10728 const SCEV *MinusOne = getMinusOne(LHS->getType()); 10729 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 10730 FoundRHS) && 10731 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 10732 FoundRHS)) 10733 Pred = ICmpInst::ICMP_SGT; 10734 } 10735 10736 if (Pred != ICmpInst::ICMP_SGT) 10737 return false; 10738 10739 auto GetOpFromSExt = [&](const SCEV *S) { 10740 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10741 return Ext->getOperand(); 10742 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10743 // the constant in some cases. 10744 return S; 10745 }; 10746 10747 // Acquire values from extensions. 10748 auto *OrigLHS = LHS; 10749 auto *OrigFoundLHS = FoundLHS; 10750 LHS = GetOpFromSExt(LHS); 10751 FoundLHS = GetOpFromSExt(FoundLHS); 10752 10753 // Is the SGT predicate can be proved trivially or using the found context. 10754 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10755 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10756 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10757 FoundRHS, Depth + 1); 10758 }; 10759 10760 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10761 // We want to avoid creation of any new non-constant SCEV. Since we are 10762 // going to compare the operands to RHS, we should be certain that we don't 10763 // need any size extensions for this. So let's decline all cases when the 10764 // sizes of types of LHS and RHS do not match. 10765 // TODO: Maybe try to get RHS from sext to catch more cases? 10766 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10767 return false; 10768 10769 // Should not overflow. 10770 if (!LHSAddExpr->hasNoSignedWrap()) 10771 return false; 10772 10773 auto *LL = LHSAddExpr->getOperand(0); 10774 auto *LR = LHSAddExpr->getOperand(1); 10775 auto *MinusOne = getMinusOne(RHS->getType()); 10776 10777 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10778 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10779 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10780 }; 10781 // Try to prove the following rule: 10782 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10783 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10784 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10785 return true; 10786 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10787 Value *LL, *LR; 10788 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10789 10790 using namespace llvm::PatternMatch; 10791 10792 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10793 // Rules for division. 10794 // We are going to perform some comparisons with Denominator and its 10795 // derivative expressions. In general case, creating a SCEV for it may 10796 // lead to a complex analysis of the entire graph, and in particular it 10797 // can request trip count recalculation for the same loop. This would 10798 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10799 // this, we only want to create SCEVs that are constants in this section. 10800 // So we bail if Denominator is not a constant. 10801 if (!isa<ConstantInt>(LR)) 10802 return false; 10803 10804 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10805 10806 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10807 // then a SCEV for the numerator already exists and matches with FoundLHS. 10808 auto *Numerator = getExistingSCEV(LL); 10809 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10810 return false; 10811 10812 // Make sure that the numerator matches with FoundLHS and the denominator 10813 // is positive. 10814 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10815 return false; 10816 10817 auto *DTy = Denominator->getType(); 10818 auto *FRHSTy = FoundRHS->getType(); 10819 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10820 // One of types is a pointer and another one is not. We cannot extend 10821 // them properly to a wider type, so let us just reject this case. 10822 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10823 // to avoid this check. 10824 return false; 10825 10826 // Given that: 10827 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10828 auto *WTy = getWiderType(DTy, FRHSTy); 10829 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10830 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10831 10832 // Try to prove the following rule: 10833 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10834 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10835 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10836 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10837 if (isKnownNonPositive(RHS) && 10838 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10839 return true; 10840 10841 // Try to prove the following rule: 10842 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10843 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10844 // If we divide it by Denominator > 2, then: 10845 // 1. If FoundLHS is negative, then the result is 0. 10846 // 2. If FoundLHS is non-negative, then the result is non-negative. 10847 // Anyways, the result is non-negative. 10848 auto *MinusOne = getMinusOne(WTy); 10849 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10850 if (isKnownNegative(RHS) && 10851 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10852 return true; 10853 } 10854 } 10855 10856 // If our expression contained SCEVUnknown Phis, and we split it down and now 10857 // need to prove something for them, try to prove the predicate for every 10858 // possible incoming values of those Phis. 10859 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10860 return true; 10861 10862 return false; 10863 } 10864 10865 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10866 const SCEV *LHS, const SCEV *RHS) { 10867 // zext x u<= sext x, sext x s<= zext x 10868 switch (Pred) { 10869 case ICmpInst::ICMP_SGE: 10870 std::swap(LHS, RHS); 10871 LLVM_FALLTHROUGH; 10872 case ICmpInst::ICMP_SLE: { 10873 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10874 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10875 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10876 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10877 return true; 10878 break; 10879 } 10880 case ICmpInst::ICMP_UGE: 10881 std::swap(LHS, RHS); 10882 LLVM_FALLTHROUGH; 10883 case ICmpInst::ICMP_ULE: { 10884 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10885 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10886 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10887 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10888 return true; 10889 break; 10890 } 10891 default: 10892 break; 10893 }; 10894 return false; 10895 } 10896 10897 bool 10898 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10899 const SCEV *LHS, const SCEV *RHS) { 10900 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10901 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10902 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10903 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10904 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10905 } 10906 10907 bool 10908 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10909 const SCEV *LHS, const SCEV *RHS, 10910 const SCEV *FoundLHS, 10911 const SCEV *FoundRHS) { 10912 switch (Pred) { 10913 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10914 case ICmpInst::ICMP_EQ: 10915 case ICmpInst::ICMP_NE: 10916 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10917 return true; 10918 break; 10919 case ICmpInst::ICMP_SLT: 10920 case ICmpInst::ICMP_SLE: 10921 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10922 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10923 return true; 10924 break; 10925 case ICmpInst::ICMP_SGT: 10926 case ICmpInst::ICMP_SGE: 10927 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10928 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10929 return true; 10930 break; 10931 case ICmpInst::ICMP_ULT: 10932 case ICmpInst::ICMP_ULE: 10933 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10934 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10935 return true; 10936 break; 10937 case ICmpInst::ICMP_UGT: 10938 case ICmpInst::ICMP_UGE: 10939 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10940 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10941 return true; 10942 break; 10943 } 10944 10945 // Maybe it can be proved via operations? 10946 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10947 return true; 10948 10949 return false; 10950 } 10951 10952 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10953 const SCEV *LHS, 10954 const SCEV *RHS, 10955 const SCEV *FoundLHS, 10956 const SCEV *FoundRHS) { 10957 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10958 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10959 // reduce the compile time impact of this optimization. 10960 return false; 10961 10962 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10963 if (!Addend) 10964 return false; 10965 10966 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10967 10968 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10969 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10970 ConstantRange FoundLHSRange = 10971 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10972 10973 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10974 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10975 10976 // We can also compute the range of values for `LHS` that satisfy the 10977 // consequent, "`LHS` `Pred` `RHS`": 10978 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10979 ConstantRange SatisfyingLHSRange = 10980 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10981 10982 // The antecedent implies the consequent if every value of `LHS` that 10983 // satisfies the antecedent also satisfies the consequent. 10984 return SatisfyingLHSRange.contains(LHSRange); 10985 } 10986 10987 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10988 bool IsSigned, bool NoWrap) { 10989 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10990 10991 if (NoWrap) return false; 10992 10993 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10994 const SCEV *One = getOne(Stride->getType()); 10995 10996 if (IsSigned) { 10997 APInt MaxRHS = getSignedRangeMax(RHS); 10998 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10999 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11000 11001 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11002 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11003 } 11004 11005 APInt MaxRHS = getUnsignedRangeMax(RHS); 11006 APInt MaxValue = APInt::getMaxValue(BitWidth); 11007 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11008 11009 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11010 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11011 } 11012 11013 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11014 bool IsSigned, bool NoWrap) { 11015 if (NoWrap) return false; 11016 11017 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11018 const SCEV *One = getOne(Stride->getType()); 11019 11020 if (IsSigned) { 11021 APInt MinRHS = getSignedRangeMin(RHS); 11022 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11023 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11024 11025 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11026 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11027 } 11028 11029 APInt MinRHS = getUnsignedRangeMin(RHS); 11030 APInt MinValue = APInt::getMinValue(BitWidth); 11031 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11032 11033 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11034 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11035 } 11036 11037 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 11038 bool Equality) { 11039 const SCEV *One = getOne(Step->getType()); 11040 Delta = Equality ? getAddExpr(Delta, Step) 11041 : getAddExpr(Delta, getMinusSCEV(Step, One)); 11042 return getUDivExpr(Delta, Step); 11043 } 11044 11045 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11046 const SCEV *Stride, 11047 const SCEV *End, 11048 unsigned BitWidth, 11049 bool IsSigned) { 11050 11051 assert(!isKnownNonPositive(Stride) && 11052 "Stride is expected strictly positive!"); 11053 // Calculate the maximum backedge count based on the range of values 11054 // permitted by Start, End, and Stride. 11055 const SCEV *MaxBECount; 11056 APInt MinStart = 11057 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11058 11059 APInt StrideForMaxBECount = 11060 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11061 11062 // We already know that the stride is positive, so we paper over conservatism 11063 // in our range computation by forcing StrideForMaxBECount to be at least one. 11064 // In theory this is unnecessary, but we expect MaxBECount to be a 11065 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 11066 // is nothing to constant fold it to). 11067 APInt One(BitWidth, 1, IsSigned); 11068 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 11069 11070 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11071 : APInt::getMaxValue(BitWidth); 11072 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11073 11074 // Although End can be a MAX expression we estimate MaxEnd considering only 11075 // the case End = RHS of the loop termination condition. This is safe because 11076 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11077 // taken count. 11078 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11079 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11080 11081 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 11082 getConstant(StrideForMaxBECount) /* Step */, 11083 false /* Equality */); 11084 11085 return MaxBECount; 11086 } 11087 11088 ScalarEvolution::ExitLimit 11089 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11090 const Loop *L, bool IsSigned, 11091 bool ControlsExit, bool AllowPredicates) { 11092 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11093 11094 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11095 bool PredicatedIV = false; 11096 11097 if (!IV && AllowPredicates) { 11098 // Try to make this an AddRec using runtime tests, in the first X 11099 // iterations of this loop, where X is the SCEV expression found by the 11100 // algorithm below. 11101 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11102 PredicatedIV = true; 11103 } 11104 11105 // Avoid weird loops 11106 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11107 return getCouldNotCompute(); 11108 11109 bool NoWrap = ControlsExit && 11110 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11111 11112 const SCEV *Stride = IV->getStepRecurrence(*this); 11113 11114 bool PositiveStride = isKnownPositive(Stride); 11115 11116 // Avoid negative or zero stride values. 11117 if (!PositiveStride) { 11118 // We can compute the correct backedge taken count for loops with unknown 11119 // strides if we can prove that the loop is not an infinite loop with side 11120 // effects. Here's the loop structure we are trying to handle - 11121 // 11122 // i = start 11123 // do { 11124 // A[i] = i; 11125 // i += s; 11126 // } while (i < end); 11127 // 11128 // The backedge taken count for such loops is evaluated as - 11129 // (max(end, start + stride) - start - 1) /u stride 11130 // 11131 // The additional preconditions that we need to check to prove correctness 11132 // of the above formula is as follows - 11133 // 11134 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11135 // NoWrap flag). 11136 // b) loop is single exit with no side effects. 11137 // 11138 // 11139 // Precondition a) implies that if the stride is negative, this is a single 11140 // trip loop. The backedge taken count formula reduces to zero in this case. 11141 // 11142 // Precondition b) implies that the unknown stride cannot be zero otherwise 11143 // we have UB. 11144 // 11145 // The positive stride case is the same as isKnownPositive(Stride) returning 11146 // true (original behavior of the function). 11147 // 11148 // We want to make sure that the stride is truly unknown as there are edge 11149 // cases where ScalarEvolution propagates no wrap flags to the 11150 // post-increment/decrement IV even though the increment/decrement operation 11151 // itself is wrapping. The computed backedge taken count may be wrong in 11152 // such cases. This is prevented by checking that the stride is not known to 11153 // be either positive or non-positive. For example, no wrap flags are 11154 // propagated to the post-increment IV of this loop with a trip count of 2 - 11155 // 11156 // unsigned char i; 11157 // for(i=127; i<128; i+=129) 11158 // A[i] = i; 11159 // 11160 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11161 !loopHasNoSideEffects(L)) 11162 return getCouldNotCompute(); 11163 } else if (!Stride->isOne() && 11164 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 11165 // Avoid proven overflow cases: this will ensure that the backedge taken 11166 // count will not generate any unsigned overflow. Relaxed no-overflow 11167 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11168 // undefined behaviors like the case of C language. 11169 return getCouldNotCompute(); 11170 11171 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 11172 : ICmpInst::ICMP_ULT; 11173 const SCEV *Start = IV->getStart(); 11174 const SCEV *End = RHS; 11175 // When the RHS is not invariant, we do not know the end bound of the loop and 11176 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11177 // calculate the MaxBECount, given the start, stride and max value for the end 11178 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11179 // checked above). 11180 if (!isLoopInvariant(RHS, L)) { 11181 const SCEV *MaxBECount = computeMaxBECountForLT( 11182 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11183 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11184 false /*MaxOrZero*/, Predicates); 11185 } 11186 // If the backedge is taken at least once, then it will be taken 11187 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 11188 // is the LHS value of the less-than comparison the first time it is evaluated 11189 // and End is the RHS. 11190 const SCEV *BECountIfBackedgeTaken = 11191 computeBECount(getMinusSCEV(End, Start), Stride, false); 11192 // If the loop entry is guarded by the result of the backedge test of the 11193 // first loop iteration, then we know the backedge will be taken at least 11194 // once and so the backedge taken count is as above. If not then we use the 11195 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 11196 // as if the backedge is taken at least once max(End,Start) is End and so the 11197 // result is as above, and if not max(End,Start) is Start so we get a backedge 11198 // count of zero. 11199 const SCEV *BECount; 11200 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 11201 BECount = BECountIfBackedgeTaken; 11202 else { 11203 // If we know that RHS >= Start in the context of loop, then we know that 11204 // max(RHS, Start) = RHS at this point. 11205 if (isLoopEntryGuardedByCond( 11206 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start)) 11207 End = RHS; 11208 else 11209 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11210 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 11211 } 11212 11213 const SCEV *MaxBECount; 11214 bool MaxOrZero = false; 11215 if (isa<SCEVConstant>(BECount)) 11216 MaxBECount = BECount; 11217 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11218 // If we know exactly how many times the backedge will be taken if it's 11219 // taken at least once, then the backedge count will either be that or 11220 // zero. 11221 MaxBECount = BECountIfBackedgeTaken; 11222 MaxOrZero = true; 11223 } else { 11224 MaxBECount = computeMaxBECountForLT( 11225 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11226 } 11227 11228 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11229 !isa<SCEVCouldNotCompute>(BECount)) 11230 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11231 11232 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11233 } 11234 11235 ScalarEvolution::ExitLimit 11236 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11237 const Loop *L, bool IsSigned, 11238 bool ControlsExit, bool AllowPredicates) { 11239 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11240 // We handle only IV > Invariant 11241 if (!isLoopInvariant(RHS, L)) 11242 return getCouldNotCompute(); 11243 11244 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11245 if (!IV && AllowPredicates) 11246 // Try to make this an AddRec using runtime tests, in the first X 11247 // iterations of this loop, where X is the SCEV expression found by the 11248 // algorithm below. 11249 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11250 11251 // Avoid weird loops 11252 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11253 return getCouldNotCompute(); 11254 11255 bool NoWrap = ControlsExit && 11256 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11257 11258 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11259 11260 // Avoid negative or zero stride values 11261 if (!isKnownPositive(Stride)) 11262 return getCouldNotCompute(); 11263 11264 // Avoid proven overflow cases: this will ensure that the backedge taken count 11265 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11266 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11267 // behaviors like the case of C language. 11268 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 11269 return getCouldNotCompute(); 11270 11271 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 11272 : ICmpInst::ICMP_UGT; 11273 11274 const SCEV *Start = IV->getStart(); 11275 const SCEV *End = RHS; 11276 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 11277 // If we know that Start >= RHS in the context of loop, then we know that 11278 // min(RHS, Start) = RHS at this point. 11279 if (isLoopEntryGuardedByCond( 11280 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 11281 End = RHS; 11282 else 11283 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 11284 } 11285 11286 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 11287 11288 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 11289 : getUnsignedRangeMax(Start); 11290 11291 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 11292 : getUnsignedRangeMin(Stride); 11293 11294 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 11295 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 11296 : APInt::getMinValue(BitWidth) + (MinStride - 1); 11297 11298 // Although End can be a MIN expression we estimate MinEnd considering only 11299 // the case End = RHS. This is safe because in the other case (Start - End) 11300 // is zero, leading to a zero maximum backedge taken count. 11301 APInt MinEnd = 11302 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 11303 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 11304 11305 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 11306 ? BECount 11307 : computeBECount(getConstant(MaxStart - MinEnd), 11308 getConstant(MinStride), false); 11309 11310 if (isa<SCEVCouldNotCompute>(MaxBECount)) 11311 MaxBECount = BECount; 11312 11313 return ExitLimit(BECount, MaxBECount, false, Predicates); 11314 } 11315 11316 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 11317 ScalarEvolution &SE) const { 11318 if (Range.isFullSet()) // Infinite loop. 11319 return SE.getCouldNotCompute(); 11320 11321 // If the start is a non-zero constant, shift the range to simplify things. 11322 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 11323 if (!SC->getValue()->isZero()) { 11324 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 11325 Operands[0] = SE.getZero(SC->getType()); 11326 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 11327 getNoWrapFlags(FlagNW)); 11328 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 11329 return ShiftedAddRec->getNumIterationsInRange( 11330 Range.subtract(SC->getAPInt()), SE); 11331 // This is strange and shouldn't happen. 11332 return SE.getCouldNotCompute(); 11333 } 11334 11335 // The only time we can solve this is when we have all constant indices. 11336 // Otherwise, we cannot determine the overflow conditions. 11337 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 11338 return SE.getCouldNotCompute(); 11339 11340 // Okay at this point we know that all elements of the chrec are constants and 11341 // that the start element is zero. 11342 11343 // First check to see if the range contains zero. If not, the first 11344 // iteration exits. 11345 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 11346 if (!Range.contains(APInt(BitWidth, 0))) 11347 return SE.getZero(getType()); 11348 11349 if (isAffine()) { 11350 // If this is an affine expression then we have this situation: 11351 // Solve {0,+,A} in Range === Ax in Range 11352 11353 // We know that zero is in the range. If A is positive then we know that 11354 // the upper value of the range must be the first possible exit value. 11355 // If A is negative then the lower of the range is the last possible loop 11356 // value. Also note that we already checked for a full range. 11357 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 11358 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 11359 11360 // The exit value should be (End+A)/A. 11361 APInt ExitVal = (End + A).udiv(A); 11362 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 11363 11364 // Evaluate at the exit value. If we really did fall out of the valid 11365 // range, then we computed our trip count, otherwise wrap around or other 11366 // things must have happened. 11367 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 11368 if (Range.contains(Val->getValue())) 11369 return SE.getCouldNotCompute(); // Something strange happened 11370 11371 // Ensure that the previous value is in the range. This is a sanity check. 11372 assert(Range.contains( 11373 EvaluateConstantChrecAtConstant(this, 11374 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 11375 "Linear scev computation is off in a bad way!"); 11376 return SE.getConstant(ExitValue); 11377 } 11378 11379 if (isQuadratic()) { 11380 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 11381 return SE.getConstant(S.getValue()); 11382 } 11383 11384 return SE.getCouldNotCompute(); 11385 } 11386 11387 const SCEVAddRecExpr * 11388 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 11389 assert(getNumOperands() > 1 && "AddRec with zero step?"); 11390 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 11391 // but in this case we cannot guarantee that the value returned will be an 11392 // AddRec because SCEV does not have a fixed point where it stops 11393 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 11394 // may happen if we reach arithmetic depth limit while simplifying. So we 11395 // construct the returned value explicitly. 11396 SmallVector<const SCEV *, 3> Ops; 11397 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 11398 // (this + Step) is {A+B,+,B+C,+...,+,N}. 11399 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 11400 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 11401 // We know that the last operand is not a constant zero (otherwise it would 11402 // have been popped out earlier). This guarantees us that if the result has 11403 // the same last operand, then it will also not be popped out, meaning that 11404 // the returned value will be an AddRec. 11405 const SCEV *Last = getOperand(getNumOperands() - 1); 11406 assert(!Last->isZero() && "Recurrency with zero step?"); 11407 Ops.push_back(Last); 11408 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 11409 SCEV::FlagAnyWrap)); 11410 } 11411 11412 // Return true when S contains at least an undef value. 11413 static inline bool containsUndefs(const SCEV *S) { 11414 return SCEVExprContains(S, [](const SCEV *S) { 11415 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 11416 return isa<UndefValue>(SU->getValue()); 11417 return false; 11418 }); 11419 } 11420 11421 namespace { 11422 11423 // Collect all steps of SCEV expressions. 11424 struct SCEVCollectStrides { 11425 ScalarEvolution &SE; 11426 SmallVectorImpl<const SCEV *> &Strides; 11427 11428 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 11429 : SE(SE), Strides(S) {} 11430 11431 bool follow(const SCEV *S) { 11432 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 11433 Strides.push_back(AR->getStepRecurrence(SE)); 11434 return true; 11435 } 11436 11437 bool isDone() const { return false; } 11438 }; 11439 11440 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11441 struct SCEVCollectTerms { 11442 SmallVectorImpl<const SCEV *> &Terms; 11443 11444 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11445 11446 bool follow(const SCEV *S) { 11447 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11448 isa<SCEVSignExtendExpr>(S)) { 11449 if (!containsUndefs(S)) 11450 Terms.push_back(S); 11451 11452 // Stop recursion: once we collected a term, do not walk its operands. 11453 return false; 11454 } 11455 11456 // Keep looking. 11457 return true; 11458 } 11459 11460 bool isDone() const { return false; } 11461 }; 11462 11463 // Check if a SCEV contains an AddRecExpr. 11464 struct SCEVHasAddRec { 11465 bool &ContainsAddRec; 11466 11467 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11468 ContainsAddRec = false; 11469 } 11470 11471 bool follow(const SCEV *S) { 11472 if (isa<SCEVAddRecExpr>(S)) { 11473 ContainsAddRec = true; 11474 11475 // Stop recursion: once we collected a term, do not walk its operands. 11476 return false; 11477 } 11478 11479 // Keep looking. 11480 return true; 11481 } 11482 11483 bool isDone() const { return false; } 11484 }; 11485 11486 // Find factors that are multiplied with an expression that (possibly as a 11487 // subexpression) contains an AddRecExpr. In the expression: 11488 // 11489 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 11490 // 11491 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 11492 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 11493 // parameters as they form a product with an induction variable. 11494 // 11495 // This collector expects all array size parameters to be in the same MulExpr. 11496 // It might be necessary to later add support for collecting parameters that are 11497 // spread over different nested MulExpr. 11498 struct SCEVCollectAddRecMultiplies { 11499 SmallVectorImpl<const SCEV *> &Terms; 11500 ScalarEvolution &SE; 11501 11502 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 11503 : Terms(T), SE(SE) {} 11504 11505 bool follow(const SCEV *S) { 11506 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 11507 bool HasAddRec = false; 11508 SmallVector<const SCEV *, 0> Operands; 11509 for (auto Op : Mul->operands()) { 11510 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11511 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11512 Operands.push_back(Op); 11513 } else if (Unknown) { 11514 HasAddRec = true; 11515 } else { 11516 bool ContainsAddRec = false; 11517 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11518 visitAll(Op, ContiansAddRec); 11519 HasAddRec |= ContainsAddRec; 11520 } 11521 } 11522 if (Operands.size() == 0) 11523 return true; 11524 11525 if (!HasAddRec) 11526 return false; 11527 11528 Terms.push_back(SE.getMulExpr(Operands)); 11529 // Stop recursion: once we collected a term, do not walk its operands. 11530 return false; 11531 } 11532 11533 // Keep looking. 11534 return true; 11535 } 11536 11537 bool isDone() const { return false; } 11538 }; 11539 11540 } // end anonymous namespace 11541 11542 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 11543 /// two places: 11544 /// 1) The strides of AddRec expressions. 11545 /// 2) Unknowns that are multiplied with AddRec expressions. 11546 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 11547 SmallVectorImpl<const SCEV *> &Terms) { 11548 SmallVector<const SCEV *, 4> Strides; 11549 SCEVCollectStrides StrideCollector(*this, Strides); 11550 visitAll(Expr, StrideCollector); 11551 11552 LLVM_DEBUG({ 11553 dbgs() << "Strides:\n"; 11554 for (const SCEV *S : Strides) 11555 dbgs() << *S << "\n"; 11556 }); 11557 11558 for (const SCEV *S : Strides) { 11559 SCEVCollectTerms TermCollector(Terms); 11560 visitAll(S, TermCollector); 11561 } 11562 11563 LLVM_DEBUG({ 11564 dbgs() << "Terms:\n"; 11565 for (const SCEV *T : Terms) 11566 dbgs() << *T << "\n"; 11567 }); 11568 11569 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 11570 visitAll(Expr, MulCollector); 11571 } 11572 11573 static bool findArrayDimensionsRec(ScalarEvolution &SE, 11574 SmallVectorImpl<const SCEV *> &Terms, 11575 SmallVectorImpl<const SCEV *> &Sizes) { 11576 int Last = Terms.size() - 1; 11577 const SCEV *Step = Terms[Last]; 11578 11579 // End of recursion. 11580 if (Last == 0) { 11581 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11582 SmallVector<const SCEV *, 2> Qs; 11583 for (const SCEV *Op : M->operands()) 11584 if (!isa<SCEVConstant>(Op)) 11585 Qs.push_back(Op); 11586 11587 Step = SE.getMulExpr(Qs); 11588 } 11589 11590 Sizes.push_back(Step); 11591 return true; 11592 } 11593 11594 for (const SCEV *&Term : Terms) { 11595 // Normalize the terms before the next call to findArrayDimensionsRec. 11596 const SCEV *Q, *R; 11597 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11598 11599 // Bail out when GCD does not evenly divide one of the terms. 11600 if (!R->isZero()) 11601 return false; 11602 11603 Term = Q; 11604 } 11605 11606 // Remove all SCEVConstants. 11607 Terms.erase( 11608 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 11609 Terms.end()); 11610 11611 if (Terms.size() > 0) 11612 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11613 return false; 11614 11615 Sizes.push_back(Step); 11616 return true; 11617 } 11618 11619 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11620 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11621 for (const SCEV *T : Terms) 11622 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 11623 return true; 11624 11625 return false; 11626 } 11627 11628 // Return the number of product terms in S. 11629 static inline int numberOfTerms(const SCEV *S) { 11630 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11631 return Expr->getNumOperands(); 11632 return 1; 11633 } 11634 11635 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11636 if (isa<SCEVConstant>(T)) 11637 return nullptr; 11638 11639 if (isa<SCEVUnknown>(T)) 11640 return T; 11641 11642 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11643 SmallVector<const SCEV *, 2> Factors; 11644 for (const SCEV *Op : M->operands()) 11645 if (!isa<SCEVConstant>(Op)) 11646 Factors.push_back(Op); 11647 11648 return SE.getMulExpr(Factors); 11649 } 11650 11651 return T; 11652 } 11653 11654 /// Return the size of an element read or written by Inst. 11655 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11656 Type *Ty; 11657 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11658 Ty = Store->getValueOperand()->getType(); 11659 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11660 Ty = Load->getType(); 11661 else 11662 return nullptr; 11663 11664 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11665 return getSizeOfExpr(ETy, Ty); 11666 } 11667 11668 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11669 SmallVectorImpl<const SCEV *> &Sizes, 11670 const SCEV *ElementSize) { 11671 if (Terms.size() < 1 || !ElementSize) 11672 return; 11673 11674 // Early return when Terms do not contain parameters: we do not delinearize 11675 // non parametric SCEVs. 11676 if (!containsParameters(Terms)) 11677 return; 11678 11679 LLVM_DEBUG({ 11680 dbgs() << "Terms:\n"; 11681 for (const SCEV *T : Terms) 11682 dbgs() << *T << "\n"; 11683 }); 11684 11685 // Remove duplicates. 11686 array_pod_sort(Terms.begin(), Terms.end()); 11687 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11688 11689 // Put larger terms first. 11690 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11691 return numberOfTerms(LHS) > numberOfTerms(RHS); 11692 }); 11693 11694 // Try to divide all terms by the element size. If term is not divisible by 11695 // element size, proceed with the original term. 11696 for (const SCEV *&Term : Terms) { 11697 const SCEV *Q, *R; 11698 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11699 if (!Q->isZero()) 11700 Term = Q; 11701 } 11702 11703 SmallVector<const SCEV *, 4> NewTerms; 11704 11705 // Remove constant factors. 11706 for (const SCEV *T : Terms) 11707 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11708 NewTerms.push_back(NewT); 11709 11710 LLVM_DEBUG({ 11711 dbgs() << "Terms after sorting:\n"; 11712 for (const SCEV *T : NewTerms) 11713 dbgs() << *T << "\n"; 11714 }); 11715 11716 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11717 Sizes.clear(); 11718 return; 11719 } 11720 11721 // The last element to be pushed into Sizes is the size of an element. 11722 Sizes.push_back(ElementSize); 11723 11724 LLVM_DEBUG({ 11725 dbgs() << "Sizes:\n"; 11726 for (const SCEV *S : Sizes) 11727 dbgs() << *S << "\n"; 11728 }); 11729 } 11730 11731 void ScalarEvolution::computeAccessFunctions( 11732 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11733 SmallVectorImpl<const SCEV *> &Sizes) { 11734 // Early exit in case this SCEV is not an affine multivariate function. 11735 if (Sizes.empty()) 11736 return; 11737 11738 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11739 if (!AR->isAffine()) 11740 return; 11741 11742 const SCEV *Res = Expr; 11743 int Last = Sizes.size() - 1; 11744 for (int i = Last; i >= 0; i--) { 11745 const SCEV *Q, *R; 11746 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11747 11748 LLVM_DEBUG({ 11749 dbgs() << "Res: " << *Res << "\n"; 11750 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11751 dbgs() << "Res divided by Sizes[i]:\n"; 11752 dbgs() << "Quotient: " << *Q << "\n"; 11753 dbgs() << "Remainder: " << *R << "\n"; 11754 }); 11755 11756 Res = Q; 11757 11758 // Do not record the last subscript corresponding to the size of elements in 11759 // the array. 11760 if (i == Last) { 11761 11762 // Bail out if the remainder is too complex. 11763 if (isa<SCEVAddRecExpr>(R)) { 11764 Subscripts.clear(); 11765 Sizes.clear(); 11766 return; 11767 } 11768 11769 continue; 11770 } 11771 11772 // Record the access function for the current subscript. 11773 Subscripts.push_back(R); 11774 } 11775 11776 // Also push in last position the remainder of the last division: it will be 11777 // the access function of the innermost dimension. 11778 Subscripts.push_back(Res); 11779 11780 std::reverse(Subscripts.begin(), Subscripts.end()); 11781 11782 LLVM_DEBUG({ 11783 dbgs() << "Subscripts:\n"; 11784 for (const SCEV *S : Subscripts) 11785 dbgs() << *S << "\n"; 11786 }); 11787 } 11788 11789 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11790 /// sizes of an array access. Returns the remainder of the delinearization that 11791 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11792 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11793 /// expressions in the stride and base of a SCEV corresponding to the 11794 /// computation of a GCD (greatest common divisor) of base and stride. When 11795 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11796 /// 11797 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11798 /// 11799 /// void foo(long n, long m, long o, double A[n][m][o]) { 11800 /// 11801 /// for (long i = 0; i < n; i++) 11802 /// for (long j = 0; j < m; j++) 11803 /// for (long k = 0; k < o; k++) 11804 /// A[i][j][k] = 1.0; 11805 /// } 11806 /// 11807 /// the delinearization input is the following AddRec SCEV: 11808 /// 11809 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11810 /// 11811 /// From this SCEV, we are able to say that the base offset of the access is %A 11812 /// because it appears as an offset that does not divide any of the strides in 11813 /// the loops: 11814 /// 11815 /// CHECK: Base offset: %A 11816 /// 11817 /// and then SCEV->delinearize determines the size of some of the dimensions of 11818 /// the array as these are the multiples by which the strides are happening: 11819 /// 11820 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11821 /// 11822 /// Note that the outermost dimension remains of UnknownSize because there are 11823 /// no strides that would help identifying the size of the last dimension: when 11824 /// the array has been statically allocated, one could compute the size of that 11825 /// dimension by dividing the overall size of the array by the size of the known 11826 /// dimensions: %m * %o * 8. 11827 /// 11828 /// Finally delinearize provides the access functions for the array reference 11829 /// that does correspond to A[i][j][k] of the above C testcase: 11830 /// 11831 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11832 /// 11833 /// The testcases are checking the output of a function pass: 11834 /// DelinearizationPass that walks through all loads and stores of a function 11835 /// asking for the SCEV of the memory access with respect to all enclosing 11836 /// loops, calling SCEV->delinearize on that and printing the results. 11837 void ScalarEvolution::delinearize(const SCEV *Expr, 11838 SmallVectorImpl<const SCEV *> &Subscripts, 11839 SmallVectorImpl<const SCEV *> &Sizes, 11840 const SCEV *ElementSize) { 11841 // First step: collect parametric terms. 11842 SmallVector<const SCEV *, 4> Terms; 11843 collectParametricTerms(Expr, Terms); 11844 11845 if (Terms.empty()) 11846 return; 11847 11848 // Second step: find subscript sizes. 11849 findArrayDimensions(Terms, Sizes, ElementSize); 11850 11851 if (Sizes.empty()) 11852 return; 11853 11854 // Third step: compute the access functions for each subscript. 11855 computeAccessFunctions(Expr, Subscripts, Sizes); 11856 11857 if (Subscripts.empty()) 11858 return; 11859 11860 LLVM_DEBUG({ 11861 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11862 dbgs() << "ArrayDecl[UnknownSize]"; 11863 for (const SCEV *S : Sizes) 11864 dbgs() << "[" << *S << "]"; 11865 11866 dbgs() << "\nArrayRef"; 11867 for (const SCEV *S : Subscripts) 11868 dbgs() << "[" << *S << "]"; 11869 dbgs() << "\n"; 11870 }); 11871 } 11872 11873 bool ScalarEvolution::getIndexExpressionsFromGEP( 11874 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 11875 SmallVectorImpl<int> &Sizes) { 11876 assert(Subscripts.empty() && Sizes.empty() && 11877 "Expected output lists to be empty on entry to this function."); 11878 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 11879 Type *Ty = GEP->getPointerOperandType(); 11880 bool DroppedFirstDim = false; 11881 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 11882 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 11883 if (i == 1) { 11884 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 11885 Ty = PtrTy->getElementType(); 11886 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 11887 Ty = ArrayTy->getElementType(); 11888 } else { 11889 Subscripts.clear(); 11890 Sizes.clear(); 11891 return false; 11892 } 11893 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 11894 if (Const->getValue()->isZero()) { 11895 DroppedFirstDim = true; 11896 continue; 11897 } 11898 Subscripts.push_back(Expr); 11899 continue; 11900 } 11901 11902 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 11903 if (!ArrayTy) { 11904 Subscripts.clear(); 11905 Sizes.clear(); 11906 return false; 11907 } 11908 11909 Subscripts.push_back(Expr); 11910 if (!(DroppedFirstDim && i == 2)) 11911 Sizes.push_back(ArrayTy->getNumElements()); 11912 11913 Ty = ArrayTy->getElementType(); 11914 } 11915 return !Subscripts.empty(); 11916 } 11917 11918 //===----------------------------------------------------------------------===// 11919 // SCEVCallbackVH Class Implementation 11920 //===----------------------------------------------------------------------===// 11921 11922 void ScalarEvolution::SCEVCallbackVH::deleted() { 11923 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11924 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11925 SE->ConstantEvolutionLoopExitValue.erase(PN); 11926 SE->eraseValueFromMap(getValPtr()); 11927 // this now dangles! 11928 } 11929 11930 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11931 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11932 11933 // Forget all the expressions associated with users of the old value, 11934 // so that future queries will recompute the expressions using the new 11935 // value. 11936 Value *Old = getValPtr(); 11937 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11938 SmallPtrSet<User *, 8> Visited; 11939 while (!Worklist.empty()) { 11940 User *U = Worklist.pop_back_val(); 11941 // Deleting the Old value will cause this to dangle. Postpone 11942 // that until everything else is done. 11943 if (U == Old) 11944 continue; 11945 if (!Visited.insert(U).second) 11946 continue; 11947 if (PHINode *PN = dyn_cast<PHINode>(U)) 11948 SE->ConstantEvolutionLoopExitValue.erase(PN); 11949 SE->eraseValueFromMap(U); 11950 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11951 } 11952 // Delete the Old value. 11953 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11954 SE->ConstantEvolutionLoopExitValue.erase(PN); 11955 SE->eraseValueFromMap(Old); 11956 // this now dangles! 11957 } 11958 11959 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11960 : CallbackVH(V), SE(se) {} 11961 11962 //===----------------------------------------------------------------------===// 11963 // ScalarEvolution Class Implementation 11964 //===----------------------------------------------------------------------===// 11965 11966 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11967 AssumptionCache &AC, DominatorTree &DT, 11968 LoopInfo &LI) 11969 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11970 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11971 LoopDispositions(64), BlockDispositions(64) { 11972 // To use guards for proving predicates, we need to scan every instruction in 11973 // relevant basic blocks, and not just terminators. Doing this is a waste of 11974 // time if the IR does not actually contain any calls to 11975 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11976 // 11977 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11978 // to _add_ guards to the module when there weren't any before, and wants 11979 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11980 // efficient in lieu of being smart in that rather obscure case. 11981 11982 auto *GuardDecl = F.getParent()->getFunction( 11983 Intrinsic::getName(Intrinsic::experimental_guard)); 11984 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11985 } 11986 11987 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11988 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11989 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11990 ValueExprMap(std::move(Arg.ValueExprMap)), 11991 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11992 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11993 PendingMerges(std::move(Arg.PendingMerges)), 11994 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11995 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11996 PredicatedBackedgeTakenCounts( 11997 std::move(Arg.PredicatedBackedgeTakenCounts)), 11998 ConstantEvolutionLoopExitValue( 11999 std::move(Arg.ConstantEvolutionLoopExitValue)), 12000 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12001 LoopDispositions(std::move(Arg.LoopDispositions)), 12002 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12003 BlockDispositions(std::move(Arg.BlockDispositions)), 12004 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12005 SignedRanges(std::move(Arg.SignedRanges)), 12006 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12007 UniquePreds(std::move(Arg.UniquePreds)), 12008 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12009 LoopUsers(std::move(Arg.LoopUsers)), 12010 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12011 FirstUnknown(Arg.FirstUnknown) { 12012 Arg.FirstUnknown = nullptr; 12013 } 12014 12015 ScalarEvolution::~ScalarEvolution() { 12016 // Iterate through all the SCEVUnknown instances and call their 12017 // destructors, so that they release their references to their values. 12018 for (SCEVUnknown *U = FirstUnknown; U;) { 12019 SCEVUnknown *Tmp = U; 12020 U = U->Next; 12021 Tmp->~SCEVUnknown(); 12022 } 12023 FirstUnknown = nullptr; 12024 12025 ExprValueMap.clear(); 12026 ValueExprMap.clear(); 12027 HasRecMap.clear(); 12028 12029 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 12030 // that a loop had multiple computable exits. 12031 for (auto &BTCI : BackedgeTakenCounts) 12032 BTCI.second.clear(); 12033 for (auto &BTCI : PredicatedBackedgeTakenCounts) 12034 BTCI.second.clear(); 12035 12036 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12037 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12038 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12039 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12040 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12041 } 12042 12043 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12044 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12045 } 12046 12047 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12048 const Loop *L) { 12049 // Print all inner loops first 12050 for (Loop *I : *L) 12051 PrintLoopInfo(OS, SE, I); 12052 12053 OS << "Loop "; 12054 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12055 OS << ": "; 12056 12057 SmallVector<BasicBlock *, 8> ExitingBlocks; 12058 L->getExitingBlocks(ExitingBlocks); 12059 if (ExitingBlocks.size() != 1) 12060 OS << "<multiple exits> "; 12061 12062 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12063 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12064 else 12065 OS << "Unpredictable backedge-taken count.\n"; 12066 12067 if (ExitingBlocks.size() > 1) 12068 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12069 OS << " exit count for " << ExitingBlock->getName() << ": " 12070 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12071 } 12072 12073 OS << "Loop "; 12074 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12075 OS << ": "; 12076 12077 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12078 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12079 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12080 OS << ", actual taken count either this or zero."; 12081 } else { 12082 OS << "Unpredictable max backedge-taken count. "; 12083 } 12084 12085 OS << "\n" 12086 "Loop "; 12087 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12088 OS << ": "; 12089 12090 SCEVUnionPredicate Pred; 12091 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12092 if (!isa<SCEVCouldNotCompute>(PBT)) { 12093 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12094 OS << " Predicates:\n"; 12095 Pred.print(OS, 4); 12096 } else { 12097 OS << "Unpredictable predicated backedge-taken count. "; 12098 } 12099 OS << "\n"; 12100 12101 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12102 OS << "Loop "; 12103 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12104 OS << ": "; 12105 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12106 } 12107 } 12108 12109 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12110 switch (LD) { 12111 case ScalarEvolution::LoopVariant: 12112 return "Variant"; 12113 case ScalarEvolution::LoopInvariant: 12114 return "Invariant"; 12115 case ScalarEvolution::LoopComputable: 12116 return "Computable"; 12117 } 12118 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12119 } 12120 12121 void ScalarEvolution::print(raw_ostream &OS) const { 12122 // ScalarEvolution's implementation of the print method is to print 12123 // out SCEV values of all instructions that are interesting. Doing 12124 // this potentially causes it to create new SCEV objects though, 12125 // which technically conflicts with the const qualifier. This isn't 12126 // observable from outside the class though, so casting away the 12127 // const isn't dangerous. 12128 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12129 12130 if (ClassifyExpressions) { 12131 OS << "Classifying expressions for: "; 12132 F.printAsOperand(OS, /*PrintType=*/false); 12133 OS << "\n"; 12134 for (Instruction &I : instructions(F)) 12135 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12136 OS << I << '\n'; 12137 OS << " --> "; 12138 const SCEV *SV = SE.getSCEV(&I); 12139 SV->print(OS); 12140 if (!isa<SCEVCouldNotCompute>(SV)) { 12141 OS << " U: "; 12142 SE.getUnsignedRange(SV).print(OS); 12143 OS << " S: "; 12144 SE.getSignedRange(SV).print(OS); 12145 } 12146 12147 const Loop *L = LI.getLoopFor(I.getParent()); 12148 12149 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12150 if (AtUse != SV) { 12151 OS << " --> "; 12152 AtUse->print(OS); 12153 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12154 OS << " U: "; 12155 SE.getUnsignedRange(AtUse).print(OS); 12156 OS << " S: "; 12157 SE.getSignedRange(AtUse).print(OS); 12158 } 12159 } 12160 12161 if (L) { 12162 OS << "\t\t" "Exits: "; 12163 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12164 if (!SE.isLoopInvariant(ExitValue, L)) { 12165 OS << "<<Unknown>>"; 12166 } else { 12167 OS << *ExitValue; 12168 } 12169 12170 bool First = true; 12171 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12172 if (First) { 12173 OS << "\t\t" "LoopDispositions: { "; 12174 First = false; 12175 } else { 12176 OS << ", "; 12177 } 12178 12179 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12180 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12181 } 12182 12183 for (auto *InnerL : depth_first(L)) { 12184 if (InnerL == L) 12185 continue; 12186 if (First) { 12187 OS << "\t\t" "LoopDispositions: { "; 12188 First = false; 12189 } else { 12190 OS << ", "; 12191 } 12192 12193 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12194 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12195 } 12196 12197 OS << " }"; 12198 } 12199 12200 OS << "\n"; 12201 } 12202 } 12203 12204 OS << "Determining loop execution counts for: "; 12205 F.printAsOperand(OS, /*PrintType=*/false); 12206 OS << "\n"; 12207 for (Loop *I : LI) 12208 PrintLoopInfo(OS, &SE, I); 12209 } 12210 12211 ScalarEvolution::LoopDisposition 12212 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12213 auto &Values = LoopDispositions[S]; 12214 for (auto &V : Values) { 12215 if (V.getPointer() == L) 12216 return V.getInt(); 12217 } 12218 Values.emplace_back(L, LoopVariant); 12219 LoopDisposition D = computeLoopDisposition(S, L); 12220 auto &Values2 = LoopDispositions[S]; 12221 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12222 if (V.getPointer() == L) { 12223 V.setInt(D); 12224 break; 12225 } 12226 } 12227 return D; 12228 } 12229 12230 ScalarEvolution::LoopDisposition 12231 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12232 switch (S->getSCEVType()) { 12233 case scConstant: 12234 return LoopInvariant; 12235 case scPtrToInt: 12236 case scTruncate: 12237 case scZeroExtend: 12238 case scSignExtend: 12239 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12240 case scAddRecExpr: { 12241 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12242 12243 // If L is the addrec's loop, it's computable. 12244 if (AR->getLoop() == L) 12245 return LoopComputable; 12246 12247 // Add recurrences are never invariant in the function-body (null loop). 12248 if (!L) 12249 return LoopVariant; 12250 12251 // Everything that is not defined at loop entry is variant. 12252 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12253 return LoopVariant; 12254 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12255 " dominate the contained loop's header?"); 12256 12257 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12258 if (AR->getLoop()->contains(L)) 12259 return LoopInvariant; 12260 12261 // This recurrence is variant w.r.t. L if any of its operands 12262 // are variant. 12263 for (auto *Op : AR->operands()) 12264 if (!isLoopInvariant(Op, L)) 12265 return LoopVariant; 12266 12267 // Otherwise it's loop-invariant. 12268 return LoopInvariant; 12269 } 12270 case scAddExpr: 12271 case scMulExpr: 12272 case scUMaxExpr: 12273 case scSMaxExpr: 12274 case scUMinExpr: 12275 case scSMinExpr: { 12276 bool HasVarying = false; 12277 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12278 LoopDisposition D = getLoopDisposition(Op, L); 12279 if (D == LoopVariant) 12280 return LoopVariant; 12281 if (D == LoopComputable) 12282 HasVarying = true; 12283 } 12284 return HasVarying ? LoopComputable : LoopInvariant; 12285 } 12286 case scUDivExpr: { 12287 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12288 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12289 if (LD == LoopVariant) 12290 return LoopVariant; 12291 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12292 if (RD == LoopVariant) 12293 return LoopVariant; 12294 return (LD == LoopInvariant && RD == LoopInvariant) ? 12295 LoopInvariant : LoopComputable; 12296 } 12297 case scUnknown: 12298 // All non-instruction values are loop invariant. All instructions are loop 12299 // invariant if they are not contained in the specified loop. 12300 // Instructions are never considered invariant in the function body 12301 // (null loop) because they are defined within the "loop". 12302 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12303 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12304 return LoopInvariant; 12305 case scCouldNotCompute: 12306 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12307 } 12308 llvm_unreachable("Unknown SCEV kind!"); 12309 } 12310 12311 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12312 return getLoopDisposition(S, L) == LoopInvariant; 12313 } 12314 12315 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12316 return getLoopDisposition(S, L) == LoopComputable; 12317 } 12318 12319 ScalarEvolution::BlockDisposition 12320 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12321 auto &Values = BlockDispositions[S]; 12322 for (auto &V : Values) { 12323 if (V.getPointer() == BB) 12324 return V.getInt(); 12325 } 12326 Values.emplace_back(BB, DoesNotDominateBlock); 12327 BlockDisposition D = computeBlockDisposition(S, BB); 12328 auto &Values2 = BlockDispositions[S]; 12329 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12330 if (V.getPointer() == BB) { 12331 V.setInt(D); 12332 break; 12333 } 12334 } 12335 return D; 12336 } 12337 12338 ScalarEvolution::BlockDisposition 12339 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12340 switch (S->getSCEVType()) { 12341 case scConstant: 12342 return ProperlyDominatesBlock; 12343 case scPtrToInt: 12344 case scTruncate: 12345 case scZeroExtend: 12346 case scSignExtend: 12347 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12348 case scAddRecExpr: { 12349 // This uses a "dominates" query instead of "properly dominates" query 12350 // to test for proper dominance too, because the instruction which 12351 // produces the addrec's value is a PHI, and a PHI effectively properly 12352 // dominates its entire containing block. 12353 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12354 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12355 return DoesNotDominateBlock; 12356 12357 // Fall through into SCEVNAryExpr handling. 12358 LLVM_FALLTHROUGH; 12359 } 12360 case scAddExpr: 12361 case scMulExpr: 12362 case scUMaxExpr: 12363 case scSMaxExpr: 12364 case scUMinExpr: 12365 case scSMinExpr: { 12366 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12367 bool Proper = true; 12368 for (const SCEV *NAryOp : NAry->operands()) { 12369 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12370 if (D == DoesNotDominateBlock) 12371 return DoesNotDominateBlock; 12372 if (D == DominatesBlock) 12373 Proper = false; 12374 } 12375 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12376 } 12377 case scUDivExpr: { 12378 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12379 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12380 BlockDisposition LD = getBlockDisposition(LHS, BB); 12381 if (LD == DoesNotDominateBlock) 12382 return DoesNotDominateBlock; 12383 BlockDisposition RD = getBlockDisposition(RHS, BB); 12384 if (RD == DoesNotDominateBlock) 12385 return DoesNotDominateBlock; 12386 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12387 ProperlyDominatesBlock : DominatesBlock; 12388 } 12389 case scUnknown: 12390 if (Instruction *I = 12391 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12392 if (I->getParent() == BB) 12393 return DominatesBlock; 12394 if (DT.properlyDominates(I->getParent(), BB)) 12395 return ProperlyDominatesBlock; 12396 return DoesNotDominateBlock; 12397 } 12398 return ProperlyDominatesBlock; 12399 case scCouldNotCompute: 12400 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12401 } 12402 llvm_unreachable("Unknown SCEV kind!"); 12403 } 12404 12405 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12406 return getBlockDisposition(S, BB) >= DominatesBlock; 12407 } 12408 12409 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12410 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12411 } 12412 12413 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12414 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12415 } 12416 12417 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 12418 auto IsS = [&](const SCEV *X) { return S == X; }; 12419 auto ContainsS = [&](const SCEV *X) { 12420 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 12421 }; 12422 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 12423 } 12424 12425 void 12426 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12427 ValuesAtScopes.erase(S); 12428 LoopDispositions.erase(S); 12429 BlockDispositions.erase(S); 12430 UnsignedRanges.erase(S); 12431 SignedRanges.erase(S); 12432 ExprValueMap.erase(S); 12433 HasRecMap.erase(S); 12434 MinTrailingZerosCache.erase(S); 12435 12436 for (auto I = PredicatedSCEVRewrites.begin(); 12437 I != PredicatedSCEVRewrites.end();) { 12438 std::pair<const SCEV *, const Loop *> Entry = I->first; 12439 if (Entry.first == S) 12440 PredicatedSCEVRewrites.erase(I++); 12441 else 12442 ++I; 12443 } 12444 12445 auto RemoveSCEVFromBackedgeMap = 12446 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12447 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12448 BackedgeTakenInfo &BEInfo = I->second; 12449 if (BEInfo.hasOperand(S, this)) { 12450 BEInfo.clear(); 12451 Map.erase(I++); 12452 } else 12453 ++I; 12454 } 12455 }; 12456 12457 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12458 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12459 } 12460 12461 void 12462 ScalarEvolution::getUsedLoops(const SCEV *S, 12463 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12464 struct FindUsedLoops { 12465 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12466 : LoopsUsed(LoopsUsed) {} 12467 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12468 bool follow(const SCEV *S) { 12469 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12470 LoopsUsed.insert(AR->getLoop()); 12471 return true; 12472 } 12473 12474 bool isDone() const { return false; } 12475 }; 12476 12477 FindUsedLoops F(LoopsUsed); 12478 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12479 } 12480 12481 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12482 SmallPtrSet<const Loop *, 8> LoopsUsed; 12483 getUsedLoops(S, LoopsUsed); 12484 for (auto *L : LoopsUsed) 12485 LoopUsers[L].push_back(S); 12486 } 12487 12488 void ScalarEvolution::verify() const { 12489 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12490 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12491 12492 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12493 12494 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12495 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12496 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12497 12498 const SCEV *visitConstant(const SCEVConstant *Constant) { 12499 return SE.getConstant(Constant->getAPInt()); 12500 } 12501 12502 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12503 return SE.getUnknown(Expr->getValue()); 12504 } 12505 12506 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12507 return SE.getCouldNotCompute(); 12508 } 12509 }; 12510 12511 SCEVMapper SCM(SE2); 12512 12513 while (!LoopStack.empty()) { 12514 auto *L = LoopStack.pop_back_val(); 12515 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 12516 12517 auto *CurBECount = SCM.visit( 12518 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12519 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12520 12521 if (CurBECount == SE2.getCouldNotCompute() || 12522 NewBECount == SE2.getCouldNotCompute()) { 12523 // NB! This situation is legal, but is very suspicious -- whatever pass 12524 // change the loop to make a trip count go from could not compute to 12525 // computable or vice-versa *should have* invalidated SCEV. However, we 12526 // choose not to assert here (for now) since we don't want false 12527 // positives. 12528 continue; 12529 } 12530 12531 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12532 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12533 // not propagate undef aggressively). This means we can (and do) fail 12534 // verification in cases where a transform makes the trip count of a loop 12535 // go from "undef" to "undef+1" (say). The transform is fine, since in 12536 // both cases the loop iterates "undef" times, but SCEV thinks we 12537 // increased the trip count of the loop by 1 incorrectly. 12538 continue; 12539 } 12540 12541 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12542 SE.getTypeSizeInBits(NewBECount->getType())) 12543 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12544 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12545 SE.getTypeSizeInBits(NewBECount->getType())) 12546 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12547 12548 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12549 12550 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12551 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12552 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12553 dbgs() << "Old: " << *CurBECount << "\n"; 12554 dbgs() << "New: " << *NewBECount << "\n"; 12555 dbgs() << "Delta: " << *Delta << "\n"; 12556 std::abort(); 12557 } 12558 } 12559 12560 // Collect all valid loops currently in LoopInfo. 12561 SmallPtrSet<Loop *, 32> ValidLoops; 12562 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12563 while (!Worklist.empty()) { 12564 Loop *L = Worklist.pop_back_val(); 12565 if (ValidLoops.contains(L)) 12566 continue; 12567 ValidLoops.insert(L); 12568 Worklist.append(L->begin(), L->end()); 12569 } 12570 // Check for SCEV expressions referencing invalid/deleted loops. 12571 for (auto &KV : ValueExprMap) { 12572 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12573 if (!AR) 12574 continue; 12575 assert(ValidLoops.contains(AR->getLoop()) && 12576 "AddRec references invalid loop"); 12577 } 12578 } 12579 12580 bool ScalarEvolution::invalidate( 12581 Function &F, const PreservedAnalyses &PA, 12582 FunctionAnalysisManager::Invalidator &Inv) { 12583 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12584 // of its dependencies is invalidated. 12585 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12586 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12587 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12588 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12589 Inv.invalidate<LoopAnalysis>(F, PA); 12590 } 12591 12592 AnalysisKey ScalarEvolutionAnalysis::Key; 12593 12594 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12595 FunctionAnalysisManager &AM) { 12596 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12597 AM.getResult<AssumptionAnalysis>(F), 12598 AM.getResult<DominatorTreeAnalysis>(F), 12599 AM.getResult<LoopAnalysis>(F)); 12600 } 12601 12602 PreservedAnalyses 12603 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12604 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12605 return PreservedAnalyses::all(); 12606 } 12607 12608 PreservedAnalyses 12609 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12610 // For compatibility with opt's -analyze feature under legacy pass manager 12611 // which was not ported to NPM. This keeps tests using 12612 // update_analyze_test_checks.py working. 12613 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 12614 << F.getName() << "':\n"; 12615 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12616 return PreservedAnalyses::all(); 12617 } 12618 12619 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12620 "Scalar Evolution Analysis", false, true) 12621 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12622 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12623 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12624 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12625 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12626 "Scalar Evolution Analysis", false, true) 12627 12628 char ScalarEvolutionWrapperPass::ID = 0; 12629 12630 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12631 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12632 } 12633 12634 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12635 SE.reset(new ScalarEvolution( 12636 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12637 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12638 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12639 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12640 return false; 12641 } 12642 12643 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12644 12645 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12646 SE->print(OS); 12647 } 12648 12649 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12650 if (!VerifySCEV) 12651 return; 12652 12653 SE->verify(); 12654 } 12655 12656 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12657 AU.setPreservesAll(); 12658 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12659 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12660 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12661 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12662 } 12663 12664 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12665 const SCEV *RHS) { 12666 FoldingSetNodeID ID; 12667 assert(LHS->getType() == RHS->getType() && 12668 "Type mismatch between LHS and RHS"); 12669 // Unique this node based on the arguments 12670 ID.AddInteger(SCEVPredicate::P_Equal); 12671 ID.AddPointer(LHS); 12672 ID.AddPointer(RHS); 12673 void *IP = nullptr; 12674 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12675 return S; 12676 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12677 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12678 UniquePreds.InsertNode(Eq, IP); 12679 return Eq; 12680 } 12681 12682 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12683 const SCEVAddRecExpr *AR, 12684 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12685 FoldingSetNodeID ID; 12686 // Unique this node based on the arguments 12687 ID.AddInteger(SCEVPredicate::P_Wrap); 12688 ID.AddPointer(AR); 12689 ID.AddInteger(AddedFlags); 12690 void *IP = nullptr; 12691 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12692 return S; 12693 auto *OF = new (SCEVAllocator) 12694 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12695 UniquePreds.InsertNode(OF, IP); 12696 return OF; 12697 } 12698 12699 namespace { 12700 12701 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12702 public: 12703 12704 /// Rewrites \p S in the context of a loop L and the SCEV predication 12705 /// infrastructure. 12706 /// 12707 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12708 /// equivalences present in \p Pred. 12709 /// 12710 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12711 /// \p NewPreds such that the result will be an AddRecExpr. 12712 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12713 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12714 SCEVUnionPredicate *Pred) { 12715 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12716 return Rewriter.visit(S); 12717 } 12718 12719 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12720 if (Pred) { 12721 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12722 for (auto *Pred : ExprPreds) 12723 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12724 if (IPred->getLHS() == Expr) 12725 return IPred->getRHS(); 12726 } 12727 return convertToAddRecWithPreds(Expr); 12728 } 12729 12730 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12731 const SCEV *Operand = visit(Expr->getOperand()); 12732 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12733 if (AR && AR->getLoop() == L && AR->isAffine()) { 12734 // This couldn't be folded because the operand didn't have the nuw 12735 // flag. Add the nusw flag as an assumption that we could make. 12736 const SCEV *Step = AR->getStepRecurrence(SE); 12737 Type *Ty = Expr->getType(); 12738 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12739 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12740 SE.getSignExtendExpr(Step, Ty), L, 12741 AR->getNoWrapFlags()); 12742 } 12743 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12744 } 12745 12746 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12747 const SCEV *Operand = visit(Expr->getOperand()); 12748 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12749 if (AR && AR->getLoop() == L && AR->isAffine()) { 12750 // This couldn't be folded because the operand didn't have the nsw 12751 // flag. Add the nssw flag as an assumption that we could make. 12752 const SCEV *Step = AR->getStepRecurrence(SE); 12753 Type *Ty = Expr->getType(); 12754 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12755 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12756 SE.getSignExtendExpr(Step, Ty), L, 12757 AR->getNoWrapFlags()); 12758 } 12759 return SE.getSignExtendExpr(Operand, Expr->getType()); 12760 } 12761 12762 private: 12763 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12764 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12765 SCEVUnionPredicate *Pred) 12766 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12767 12768 bool addOverflowAssumption(const SCEVPredicate *P) { 12769 if (!NewPreds) { 12770 // Check if we've already made this assumption. 12771 return Pred && Pred->implies(P); 12772 } 12773 NewPreds->insert(P); 12774 return true; 12775 } 12776 12777 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12778 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12779 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12780 return addOverflowAssumption(A); 12781 } 12782 12783 // If \p Expr represents a PHINode, we try to see if it can be represented 12784 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12785 // to add this predicate as a runtime overflow check, we return the AddRec. 12786 // If \p Expr does not meet these conditions (is not a PHI node, or we 12787 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12788 // return \p Expr. 12789 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12790 if (!isa<PHINode>(Expr->getValue())) 12791 return Expr; 12792 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12793 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12794 if (!PredicatedRewrite) 12795 return Expr; 12796 for (auto *P : PredicatedRewrite->second){ 12797 // Wrap predicates from outer loops are not supported. 12798 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12799 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12800 if (L != AR->getLoop()) 12801 return Expr; 12802 } 12803 if (!addOverflowAssumption(P)) 12804 return Expr; 12805 } 12806 return PredicatedRewrite->first; 12807 } 12808 12809 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12810 SCEVUnionPredicate *Pred; 12811 const Loop *L; 12812 }; 12813 12814 } // end anonymous namespace 12815 12816 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12817 SCEVUnionPredicate &Preds) { 12818 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12819 } 12820 12821 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12822 const SCEV *S, const Loop *L, 12823 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12824 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12825 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12826 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12827 12828 if (!AddRec) 12829 return nullptr; 12830 12831 // Since the transformation was successful, we can now transfer the SCEV 12832 // predicates. 12833 for (auto *P : TransformPreds) 12834 Preds.insert(P); 12835 12836 return AddRec; 12837 } 12838 12839 /// SCEV predicates 12840 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12841 SCEVPredicateKind Kind) 12842 : FastID(ID), Kind(Kind) {} 12843 12844 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12845 const SCEV *LHS, const SCEV *RHS) 12846 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12847 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12848 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12849 } 12850 12851 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12852 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12853 12854 if (!Op) 12855 return false; 12856 12857 return Op->LHS == LHS && Op->RHS == RHS; 12858 } 12859 12860 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12861 12862 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12863 12864 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12865 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12866 } 12867 12868 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12869 const SCEVAddRecExpr *AR, 12870 IncrementWrapFlags Flags) 12871 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12872 12873 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12874 12875 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12876 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12877 12878 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12879 } 12880 12881 bool SCEVWrapPredicate::isAlwaysTrue() const { 12882 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12883 IncrementWrapFlags IFlags = Flags; 12884 12885 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12886 IFlags = clearFlags(IFlags, IncrementNSSW); 12887 12888 return IFlags == IncrementAnyWrap; 12889 } 12890 12891 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12892 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12893 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12894 OS << "<nusw>"; 12895 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12896 OS << "<nssw>"; 12897 OS << "\n"; 12898 } 12899 12900 SCEVWrapPredicate::IncrementWrapFlags 12901 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12902 ScalarEvolution &SE) { 12903 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12904 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12905 12906 // We can safely transfer the NSW flag as NSSW. 12907 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12908 ImpliedFlags = IncrementNSSW; 12909 12910 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12911 // If the increment is positive, the SCEV NUW flag will also imply the 12912 // WrapPredicate NUSW flag. 12913 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12914 if (Step->getValue()->getValue().isNonNegative()) 12915 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12916 } 12917 12918 return ImpliedFlags; 12919 } 12920 12921 /// Union predicates don't get cached so create a dummy set ID for it. 12922 SCEVUnionPredicate::SCEVUnionPredicate() 12923 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12924 12925 bool SCEVUnionPredicate::isAlwaysTrue() const { 12926 return all_of(Preds, 12927 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12928 } 12929 12930 ArrayRef<const SCEVPredicate *> 12931 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12932 auto I = SCEVToPreds.find(Expr); 12933 if (I == SCEVToPreds.end()) 12934 return ArrayRef<const SCEVPredicate *>(); 12935 return I->second; 12936 } 12937 12938 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12939 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12940 return all_of(Set->Preds, 12941 [this](const SCEVPredicate *I) { return this->implies(I); }); 12942 12943 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12944 if (ScevPredsIt == SCEVToPreds.end()) 12945 return false; 12946 auto &SCEVPreds = ScevPredsIt->second; 12947 12948 return any_of(SCEVPreds, 12949 [N](const SCEVPredicate *I) { return I->implies(N); }); 12950 } 12951 12952 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12953 12954 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12955 for (auto Pred : Preds) 12956 Pred->print(OS, Depth); 12957 } 12958 12959 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12960 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12961 for (auto Pred : Set->Preds) 12962 add(Pred); 12963 return; 12964 } 12965 12966 if (implies(N)) 12967 return; 12968 12969 const SCEV *Key = N->getExpr(); 12970 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12971 " associated expression!"); 12972 12973 SCEVToPreds[Key].push_back(N); 12974 Preds.push_back(N); 12975 } 12976 12977 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12978 Loop &L) 12979 : SE(SE), L(L) {} 12980 12981 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12982 const SCEV *Expr = SE.getSCEV(V); 12983 RewriteEntry &Entry = RewriteMap[Expr]; 12984 12985 // If we already have an entry and the version matches, return it. 12986 if (Entry.second && Generation == Entry.first) 12987 return Entry.second; 12988 12989 // We found an entry but it's stale. Rewrite the stale entry 12990 // according to the current predicate. 12991 if (Entry.second) 12992 Expr = Entry.second; 12993 12994 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12995 Entry = {Generation, NewSCEV}; 12996 12997 return NewSCEV; 12998 } 12999 13000 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13001 if (!BackedgeCount) { 13002 SCEVUnionPredicate BackedgePred; 13003 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13004 addPredicate(BackedgePred); 13005 } 13006 return BackedgeCount; 13007 } 13008 13009 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13010 if (Preds.implies(&Pred)) 13011 return; 13012 Preds.add(&Pred); 13013 updateGeneration(); 13014 } 13015 13016 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13017 return Preds; 13018 } 13019 13020 void PredicatedScalarEvolution::updateGeneration() { 13021 // If the generation number wrapped recompute everything. 13022 if (++Generation == 0) { 13023 for (auto &II : RewriteMap) { 13024 const SCEV *Rewritten = II.second.second; 13025 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13026 } 13027 } 13028 } 13029 13030 void PredicatedScalarEvolution::setNoOverflow( 13031 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13032 const SCEV *Expr = getSCEV(V); 13033 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13034 13035 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13036 13037 // Clear the statically implied flags. 13038 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13039 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13040 13041 auto II = FlagsMap.insert({V, Flags}); 13042 if (!II.second) 13043 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13044 } 13045 13046 bool PredicatedScalarEvolution::hasNoOverflow( 13047 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13048 const SCEV *Expr = getSCEV(V); 13049 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13050 13051 Flags = SCEVWrapPredicate::clearFlags( 13052 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13053 13054 auto II = FlagsMap.find(V); 13055 13056 if (II != FlagsMap.end()) 13057 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13058 13059 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13060 } 13061 13062 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13063 const SCEV *Expr = this->getSCEV(V); 13064 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13065 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13066 13067 if (!New) 13068 return nullptr; 13069 13070 for (auto *P : NewPreds) 13071 Preds.add(P); 13072 13073 updateGeneration(); 13074 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13075 return New; 13076 } 13077 13078 PredicatedScalarEvolution::PredicatedScalarEvolution( 13079 const PredicatedScalarEvolution &Init) 13080 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13081 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13082 for (auto I : Init.FlagsMap) 13083 FlagsMap.insert(I); 13084 } 13085 13086 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13087 // For each block. 13088 for (auto *BB : L.getBlocks()) 13089 for (auto &I : *BB) { 13090 if (!SE.isSCEVable(I.getType())) 13091 continue; 13092 13093 auto *Expr = SE.getSCEV(&I); 13094 auto II = RewriteMap.find(Expr); 13095 13096 if (II == RewriteMap.end()) 13097 continue; 13098 13099 // Don't print things that are not interesting. 13100 if (II->second.second == Expr) 13101 continue; 13102 13103 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13104 OS.indent(Depth + 2) << *Expr << "\n"; 13105 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13106 } 13107 } 13108 13109 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13110 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13111 // for URem with constant power-of-2 second operands. 13112 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13113 // 4, A / B becomes X / 8). 13114 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13115 const SCEV *&RHS) { 13116 // Try to match 'zext (trunc A to iB) to iY', which is used 13117 // for URem with constant power-of-2 second operands. Make sure the size of 13118 // the operand A matches the size of the whole expressions. 13119 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13120 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13121 LHS = Trunc->getOperand(); 13122 if (LHS->getType() != Expr->getType()) 13123 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13124 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13125 << getTypeSizeInBits(Trunc->getType())); 13126 return true; 13127 } 13128 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13129 if (Add == nullptr || Add->getNumOperands() != 2) 13130 return false; 13131 13132 const SCEV *A = Add->getOperand(1); 13133 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13134 13135 if (Mul == nullptr) 13136 return false; 13137 13138 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13139 // (SomeExpr + (-(SomeExpr / B) * B)). 13140 if (Expr == getURemExpr(A, B)) { 13141 LHS = A; 13142 RHS = B; 13143 return true; 13144 } 13145 return false; 13146 }; 13147 13148 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13149 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13150 return MatchURemWithDivisor(Mul->getOperand(1)) || 13151 MatchURemWithDivisor(Mul->getOperand(2)); 13152 13153 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13154 if (Mul->getNumOperands() == 2) 13155 return MatchURemWithDivisor(Mul->getOperand(1)) || 13156 MatchURemWithDivisor(Mul->getOperand(0)) || 13157 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13158 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13159 return false; 13160 } 13161 13162 const SCEV * 13163 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13164 SmallVector<BasicBlock*, 16> ExitingBlocks; 13165 L->getExitingBlocks(ExitingBlocks); 13166 13167 // Form an expression for the maximum exit count possible for this loop. We 13168 // merge the max and exact information to approximate a version of 13169 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13170 SmallVector<const SCEV*, 4> ExitCounts; 13171 for (BasicBlock *ExitingBB : ExitingBlocks) { 13172 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13173 if (isa<SCEVCouldNotCompute>(ExitCount)) 13174 ExitCount = getExitCount(L, ExitingBB, 13175 ScalarEvolution::ConstantMaximum); 13176 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13177 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13178 "We should only have known counts for exiting blocks that " 13179 "dominate latch!"); 13180 ExitCounts.push_back(ExitCount); 13181 } 13182 } 13183 if (ExitCounts.empty()) 13184 return getCouldNotCompute(); 13185 return getUMinFromMismatchedTypes(ExitCounts); 13186 } 13187 13188 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13189 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13190 /// we cannot guarantee that the replacement is loop invariant in the loop of 13191 /// the AddRec. 13192 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13193 ValueToSCEVMapTy ⤅ 13194 13195 public: 13196 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13197 : SCEVRewriteVisitor(SE), Map(M) {} 13198 13199 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13200 13201 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13202 auto I = Map.find(Expr->getValue()); 13203 if (I == Map.end()) 13204 return Expr; 13205 return I->second; 13206 } 13207 }; 13208 13209 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13210 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13211 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13212 if (!isa<SCEVUnknown>(LHS)) { 13213 std::swap(LHS, RHS); 13214 Predicate = CmpInst::getSwappedPredicate(Predicate); 13215 } 13216 13217 // For now, limit to conditions that provide information about unknown 13218 // expressions. 13219 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13220 if (!LHSUnknown) 13221 return; 13222 13223 // TODO: use information from more predicates. 13224 switch (Predicate) { 13225 case CmpInst::ICMP_ULT: { 13226 if (!containsAddRecurrence(RHS)) { 13227 const SCEV *Base = LHS; 13228 auto I = RewriteMap.find(LHSUnknown->getValue()); 13229 if (I != RewriteMap.end()) 13230 Base = I->second; 13231 13232 RewriteMap[LHSUnknown->getValue()] = 13233 getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType()))); 13234 } 13235 break; 13236 } 13237 case CmpInst::ICMP_ULE: { 13238 if (!containsAddRecurrence(RHS)) { 13239 const SCEV *Base = LHS; 13240 auto I = RewriteMap.find(LHSUnknown->getValue()); 13241 if (I != RewriteMap.end()) 13242 Base = I->second; 13243 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS); 13244 } 13245 break; 13246 } 13247 case CmpInst::ICMP_EQ: 13248 if (isa<SCEVConstant>(RHS)) 13249 RewriteMap[LHSUnknown->getValue()] = RHS; 13250 break; 13251 case CmpInst::ICMP_NE: 13252 if (isa<SCEVConstant>(RHS) && 13253 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13254 RewriteMap[LHSUnknown->getValue()] = 13255 getUMaxExpr(LHS, getOne(RHS->getType())); 13256 break; 13257 default: 13258 break; 13259 } 13260 }; 13261 // Starting at the loop predecessor, climb up the predecessor chain, as long 13262 // as there are predecessors that can be found that have unique successors 13263 // leading to the original header. 13264 // TODO: share this logic with isLoopEntryGuardedByCond. 13265 ValueToSCEVMapTy RewriteMap; 13266 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13267 L->getLoopPredecessor(), L->getHeader()); 13268 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13269 13270 const BranchInst *LoopEntryPredicate = 13271 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13272 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13273 continue; 13274 13275 // TODO: use information from more complex conditions, e.g. AND expressions. 13276 auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 13277 if (!Cmp) 13278 continue; 13279 13280 auto Predicate = Cmp->getPredicate(); 13281 if (LoopEntryPredicate->getSuccessor(1) == Pair.second) 13282 Predicate = CmpInst::getInversePredicate(Predicate); 13283 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13284 getSCEV(Cmp->getOperand(1)), RewriteMap); 13285 } 13286 13287 // Also collect information from assumptions dominating the loop. 13288 for (auto &AssumeVH : AC.assumptions()) { 13289 if (!AssumeVH) 13290 continue; 13291 auto *AssumeI = cast<CallInst>(AssumeVH); 13292 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13293 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13294 continue; 13295 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13296 getSCEV(Cmp->getOperand(1)), RewriteMap); 13297 } 13298 13299 if (RewriteMap.empty()) 13300 return Expr; 13301 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13302 return Rewriter.visit(Expr); 13303 } 13304