1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumArrayLenItCounts, 143 "Number of trip counts computed with array length"); 144 STATISTIC(NumTripCountsComputed, 145 "Number of loops with predictable loop counts"); 146 STATISTIC(NumTripCountsNotComputed, 147 "Number of loops without predictable loop counts"); 148 STATISTIC(NumBruteForceTripCountsComputed, 149 "Number of loops with trip counts computed by force"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 //===----------------------------------------------------------------------===// 237 // SCEV class definitions 238 //===----------------------------------------------------------------------===// 239 240 //===----------------------------------------------------------------------===// 241 // Implementation of the SCEV class. 242 // 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void SCEV::dump() const { 246 print(dbgs()); 247 dbgs() << '\n'; 248 } 249 #endif 250 251 void SCEV::print(raw_ostream &OS) const { 252 switch (getSCEVType()) { 253 case scConstant: 254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 255 return; 256 case scPtrToInt: { 257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 258 const SCEV *Op = PtrToInt->getOperand(); 259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 260 << *PtrToInt->getType() << ")"; 261 return; 262 } 263 case scTruncate: { 264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 265 const SCEV *Op = Trunc->getOperand(); 266 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 267 << *Trunc->getType() << ")"; 268 return; 269 } 270 case scZeroExtend: { 271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 272 const SCEV *Op = ZExt->getOperand(); 273 OS << "(zext " << *Op->getType() << " " << *Op << " to " 274 << *ZExt->getType() << ")"; 275 return; 276 } 277 case scSignExtend: { 278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 279 const SCEV *Op = SExt->getOperand(); 280 OS << "(sext " << *Op->getType() << " " << *Op << " to " 281 << *SExt->getType() << ")"; 282 return; 283 } 284 case scAddRecExpr: { 285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 286 OS << "{" << *AR->getOperand(0); 287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 288 OS << ",+," << *AR->getOperand(i); 289 OS << "}<"; 290 if (AR->hasNoUnsignedWrap()) 291 OS << "nuw><"; 292 if (AR->hasNoSignedWrap()) 293 OS << "nsw><"; 294 if (AR->hasNoSelfWrap() && 295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 296 OS << "nw><"; 297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 298 OS << ">"; 299 return; 300 } 301 case scAddExpr: 302 case scMulExpr: 303 case scUMaxExpr: 304 case scSMaxExpr: 305 case scUMinExpr: 306 case scSMinExpr: { 307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 308 const char *OpStr = nullptr; 309 switch (NAry->getSCEVType()) { 310 case scAddExpr: OpStr = " + "; break; 311 case scMulExpr: OpStr = " * "; break; 312 case scUMaxExpr: OpStr = " umax "; break; 313 case scSMaxExpr: OpStr = " smax "; break; 314 case scUMinExpr: 315 OpStr = " umin "; 316 break; 317 case scSMinExpr: 318 OpStr = " smin "; 319 break; 320 default: 321 llvm_unreachable("There are no other nary expression types."); 322 } 323 OS << "("; 324 ListSeparator LS(OpStr); 325 for (const SCEV *Op : NAry->operands()) 326 OS << LS << *Op; 327 OS << ")"; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: 330 case scMulExpr: 331 if (NAry->hasNoUnsignedWrap()) 332 OS << "<nuw>"; 333 if (NAry->hasNoSignedWrap()) 334 OS << "<nsw>"; 335 break; 336 default: 337 // Nothing to print for other nary expressions. 338 break; 339 } 340 return; 341 } 342 case scUDivExpr: { 343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 345 return; 346 } 347 case scUnknown: { 348 const SCEVUnknown *U = cast<SCEVUnknown>(this); 349 Type *AllocTy; 350 if (U->isSizeOf(AllocTy)) { 351 OS << "sizeof(" << *AllocTy << ")"; 352 return; 353 } 354 if (U->isAlignOf(AllocTy)) { 355 OS << "alignof(" << *AllocTy << ")"; 356 return; 357 } 358 359 Type *CTy; 360 Constant *FieldNo; 361 if (U->isOffsetOf(CTy, FieldNo)) { 362 OS << "offsetof(" << *CTy << ", "; 363 FieldNo->printAsOperand(OS, false); 364 OS << ")"; 365 return; 366 } 367 368 // Otherwise just print it normally. 369 U->getValue()->printAsOperand(OS, false); 370 return; 371 } 372 case scCouldNotCompute: 373 OS << "***COULDNOTCOMPUTE***"; 374 return; 375 } 376 llvm_unreachable("Unknown SCEV kind!"); 377 } 378 379 Type *SCEV::getType() const { 380 switch (getSCEVType()) { 381 case scConstant: 382 return cast<SCEVConstant>(this)->getType(); 383 case scPtrToInt: 384 case scTruncate: 385 case scZeroExtend: 386 case scSignExtend: 387 return cast<SCEVCastExpr>(this)->getType(); 388 case scAddRecExpr: 389 return cast<SCEVAddRecExpr>(this)->getType(); 390 case scMulExpr: 391 return cast<SCEVMulExpr>(this)->getType(); 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVMinMaxExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 537 ->getElementType(); 538 return true; 539 } 540 541 return false; 542 } 543 544 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 546 if (VCE->getOpcode() == Instruction::PtrToInt) 547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 548 if (CE->getOpcode() == Instruction::GetElementPtr && 549 CE->getOperand(0)->isNullValue()) { 550 Type *Ty = 551 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 552 if (StructType *STy = dyn_cast<StructType>(Ty)) 553 if (!STy->isPacked() && 554 CE->getNumOperands() == 3 && 555 CE->getOperand(1)->isNullValue()) { 556 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 557 if (CI->isOne() && 558 STy->getNumElements() == 2 && 559 STy->getElementType(0)->isIntegerTy(1)) { 560 AllocTy = STy->getElementType(1); 561 return true; 562 } 563 } 564 } 565 566 return false; 567 } 568 569 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 570 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 571 if (VCE->getOpcode() == Instruction::PtrToInt) 572 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 573 if (CE->getOpcode() == Instruction::GetElementPtr && 574 CE->getNumOperands() == 3 && 575 CE->getOperand(0)->isNullValue() && 576 CE->getOperand(1)->isNullValue()) { 577 Type *Ty = 578 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 579 // Ignore vector types here so that ScalarEvolutionExpander doesn't 580 // emit getelementptrs that index into vectors. 581 if (Ty->isStructTy() || Ty->isArrayTy()) { 582 CTy = Ty; 583 FieldNo = CE->getOperand(2); 584 return true; 585 } 586 } 587 588 return false; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SCEV Utilities 593 //===----------------------------------------------------------------------===// 594 595 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 596 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 597 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 598 /// have been previously deemed to be "equally complex" by this routine. It is 599 /// intended to avoid exponential time complexity in cases like: 600 /// 601 /// %a = f(%x, %y) 602 /// %b = f(%a, %a) 603 /// %c = f(%b, %b) 604 /// 605 /// %d = f(%x, %y) 606 /// %e = f(%d, %d) 607 /// %f = f(%e, %e) 608 /// 609 /// CompareValueComplexity(%f, %c) 610 /// 611 /// Since we do not continue running this routine on expression trees once we 612 /// have seen unequal values, there is no need to track them in the cache. 613 static int 614 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 615 const LoopInfo *const LI, Value *LV, Value *RV, 616 unsigned Depth) { 617 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 618 return 0; 619 620 // Order pointer values after integer values. This helps SCEVExpander form 621 // GEPs. 622 bool LIsPointer = LV->getType()->isPointerTy(), 623 RIsPointer = RV->getType()->isPointerTy(); 624 if (LIsPointer != RIsPointer) 625 return (int)LIsPointer - (int)RIsPointer; 626 627 // Compare getValueID values. 628 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 629 if (LID != RID) 630 return (int)LID - (int)RID; 631 632 // Sort arguments by their position. 633 if (const auto *LA = dyn_cast<Argument>(LV)) { 634 const auto *RA = cast<Argument>(RV); 635 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 636 return (int)LArgNo - (int)RArgNo; 637 } 638 639 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 640 const auto *RGV = cast<GlobalValue>(RV); 641 642 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 643 auto LT = GV->getLinkage(); 644 return !(GlobalValue::isPrivateLinkage(LT) || 645 GlobalValue::isInternalLinkage(LT)); 646 }; 647 648 // Use the names to distinguish the two values, but only if the 649 // names are semantically important. 650 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 651 return LGV->getName().compare(RGV->getName()); 652 } 653 654 // For instructions, compare their loop depth, and their operand count. This 655 // is pretty loose. 656 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 657 const auto *RInst = cast<Instruction>(RV); 658 659 // Compare loop depths. 660 const BasicBlock *LParent = LInst->getParent(), 661 *RParent = RInst->getParent(); 662 if (LParent != RParent) { 663 unsigned LDepth = LI->getLoopDepth(LParent), 664 RDepth = LI->getLoopDepth(RParent); 665 if (LDepth != RDepth) 666 return (int)LDepth - (int)RDepth; 667 } 668 669 // Compare the number of operands. 670 unsigned LNumOps = LInst->getNumOperands(), 671 RNumOps = RInst->getNumOperands(); 672 if (LNumOps != RNumOps) 673 return (int)LNumOps - (int)RNumOps; 674 675 for (unsigned Idx : seq(0u, LNumOps)) { 676 int Result = 677 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 678 RInst->getOperand(Idx), Depth + 1); 679 if (Result != 0) 680 return Result; 681 } 682 } 683 684 EqCacheValue.unionSets(LV, RV); 685 return 0; 686 } 687 688 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 689 // than RHS, respectively. A three-way result allows recursive comparisons to be 690 // more efficient. 691 // If the max analysis depth was reached, return None, assuming we do not know 692 // if they are equivalent for sure. 693 static Optional<int> 694 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 695 EquivalenceClasses<const Value *> &EqCacheValue, 696 const LoopInfo *const LI, const SCEV *LHS, 697 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 698 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 699 if (LHS == RHS) 700 return 0; 701 702 // Primarily, sort the SCEVs by their getSCEVType(). 703 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 704 if (LType != RType) 705 return (int)LType - (int)RType; 706 707 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 708 return 0; 709 710 if (Depth > MaxSCEVCompareDepth) 711 return None; 712 713 // Aside from the getSCEVType() ordering, the particular ordering 714 // isn't very important except that it's beneficial to be consistent, 715 // so that (a + b) and (b + a) don't end up as different expressions. 716 switch (LType) { 717 case scUnknown: { 718 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 719 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 720 721 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 722 RU->getValue(), Depth + 1); 723 if (X == 0) 724 EqCacheSCEV.unionSets(LHS, RHS); 725 return X; 726 } 727 728 case scConstant: { 729 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 730 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 731 732 // Compare constant values. 733 const APInt &LA = LC->getAPInt(); 734 const APInt &RA = RC->getAPInt(); 735 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 736 if (LBitWidth != RBitWidth) 737 return (int)LBitWidth - (int)RBitWidth; 738 return LA.ult(RA) ? -1 : 1; 739 } 740 741 case scAddRecExpr: { 742 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 743 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 744 745 // There is always a dominance between two recs that are used by one SCEV, 746 // so we can safely sort recs by loop header dominance. We require such 747 // order in getAddExpr. 748 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 749 if (LLoop != RLoop) { 750 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 751 assert(LHead != RHead && "Two loops share the same header?"); 752 if (DT.dominates(LHead, RHead)) 753 return 1; 754 else 755 assert(DT.dominates(RHead, LHead) && 756 "No dominance between recurrences used by one SCEV?"); 757 return -1; 758 } 759 760 // Addrec complexity grows with operand count. 761 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 762 if (LNumOps != RNumOps) 763 return (int)LNumOps - (int)RNumOps; 764 765 // Lexicographically compare. 766 for (unsigned i = 0; i != LNumOps; ++i) { 767 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 768 LA->getOperand(i), RA->getOperand(i), DT, 769 Depth + 1); 770 if (X != 0) 771 return X; 772 } 773 EqCacheSCEV.unionSets(LHS, RHS); 774 return 0; 775 } 776 777 case scAddExpr: 778 case scMulExpr: 779 case scSMaxExpr: 780 case scUMaxExpr: 781 case scSMinExpr: 782 case scUMinExpr: { 783 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 784 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 785 786 // Lexicographically compare n-ary expressions. 787 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 788 if (LNumOps != RNumOps) 789 return (int)LNumOps - (int)RNumOps; 790 791 for (unsigned i = 0; i != LNumOps; ++i) { 792 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 793 LC->getOperand(i), RC->getOperand(i), DT, 794 Depth + 1); 795 if (X != 0) 796 return X; 797 } 798 EqCacheSCEV.unionSets(LHS, RHS); 799 return 0; 800 } 801 802 case scUDivExpr: { 803 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 804 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 805 806 // Lexicographically compare udiv expressions. 807 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 808 RC->getLHS(), DT, Depth + 1); 809 if (X != 0) 810 return X; 811 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 812 RC->getRHS(), DT, Depth + 1); 813 if (X == 0) 814 EqCacheSCEV.unionSets(LHS, RHS); 815 return X; 816 } 817 818 case scPtrToInt: 819 case scTruncate: 820 case scZeroExtend: 821 case scSignExtend: { 822 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 823 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 824 825 // Compare cast expressions by operand. 826 auto X = 827 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 828 RC->getOperand(), DT, Depth + 1); 829 if (X == 0) 830 EqCacheSCEV.unionSets(LHS, RHS); 831 return X; 832 } 833 834 case scCouldNotCompute: 835 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 836 } 837 llvm_unreachable("Unknown SCEV kind!"); 838 } 839 840 /// Given a list of SCEV objects, order them by their complexity, and group 841 /// objects of the same complexity together by value. When this routine is 842 /// finished, we know that any duplicates in the vector are consecutive and that 843 /// complexity is monotonically increasing. 844 /// 845 /// Note that we go take special precautions to ensure that we get deterministic 846 /// results from this routine. In other words, we don't want the results of 847 /// this to depend on where the addresses of various SCEV objects happened to 848 /// land in memory. 849 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 850 LoopInfo *LI, DominatorTree &DT) { 851 if (Ops.size() < 2) return; // Noop 852 853 EquivalenceClasses<const SCEV *> EqCacheSCEV; 854 EquivalenceClasses<const Value *> EqCacheValue; 855 856 // Whether LHS has provably less complexity than RHS. 857 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 858 auto Complexity = 859 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 860 return Complexity && *Complexity < 0; 861 }; 862 if (Ops.size() == 2) { 863 // This is the common case, which also happens to be trivially simple. 864 // Special case it. 865 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 866 if (IsLessComplex(RHS, LHS)) 867 std::swap(LHS, RHS); 868 return; 869 } 870 871 // Do the rough sort by complexity. 872 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 873 return IsLessComplex(LHS, RHS); 874 }); 875 876 // Now that we are sorted by complexity, group elements of the same 877 // complexity. Note that this is, at worst, N^2, but the vector is likely to 878 // be extremely short in practice. Note that we take this approach because we 879 // do not want to depend on the addresses of the objects we are grouping. 880 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 881 const SCEV *S = Ops[i]; 882 unsigned Complexity = S->getSCEVType(); 883 884 // If there are any objects of the same complexity and same value as this 885 // one, group them. 886 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 887 if (Ops[j] == S) { // Found a duplicate. 888 // Move it to immediately after i'th element. 889 std::swap(Ops[i+1], Ops[j]); 890 ++i; // no need to rescan it. 891 if (i == e-2) return; // Done! 892 } 893 } 894 } 895 } 896 897 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 898 /// least HugeExprThreshold nodes). 899 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 900 return any_of(Ops, [](const SCEV *S) { 901 return S->getExpressionSize() >= HugeExprThreshold; 902 }); 903 } 904 905 //===----------------------------------------------------------------------===// 906 // Simple SCEV method implementations 907 //===----------------------------------------------------------------------===// 908 909 /// Compute BC(It, K). The result has width W. Assume, K > 0. 910 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 911 ScalarEvolution &SE, 912 Type *ResultTy) { 913 // Handle the simplest case efficiently. 914 if (K == 1) 915 return SE.getTruncateOrZeroExtend(It, ResultTy); 916 917 // We are using the following formula for BC(It, K): 918 // 919 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 920 // 921 // Suppose, W is the bitwidth of the return value. We must be prepared for 922 // overflow. Hence, we must assure that the result of our computation is 923 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 924 // safe in modular arithmetic. 925 // 926 // However, this code doesn't use exactly that formula; the formula it uses 927 // is something like the following, where T is the number of factors of 2 in 928 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 929 // exponentiation: 930 // 931 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 932 // 933 // This formula is trivially equivalent to the previous formula. However, 934 // this formula can be implemented much more efficiently. The trick is that 935 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 936 // arithmetic. To do exact division in modular arithmetic, all we have 937 // to do is multiply by the inverse. Therefore, this step can be done at 938 // width W. 939 // 940 // The next issue is how to safely do the division by 2^T. The way this 941 // is done is by doing the multiplication step at a width of at least W + T 942 // bits. This way, the bottom W+T bits of the product are accurate. Then, 943 // when we perform the division by 2^T (which is equivalent to a right shift 944 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 945 // truncated out after the division by 2^T. 946 // 947 // In comparison to just directly using the first formula, this technique 948 // is much more efficient; using the first formula requires W * K bits, 949 // but this formula less than W + K bits. Also, the first formula requires 950 // a division step, whereas this formula only requires multiplies and shifts. 951 // 952 // It doesn't matter whether the subtraction step is done in the calculation 953 // width or the input iteration count's width; if the subtraction overflows, 954 // the result must be zero anyway. We prefer here to do it in the width of 955 // the induction variable because it helps a lot for certain cases; CodeGen 956 // isn't smart enough to ignore the overflow, which leads to much less 957 // efficient code if the width of the subtraction is wider than the native 958 // register width. 959 // 960 // (It's possible to not widen at all by pulling out factors of 2 before 961 // the multiplication; for example, K=2 can be calculated as 962 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 963 // extra arithmetic, so it's not an obvious win, and it gets 964 // much more complicated for K > 3.) 965 966 // Protection from insane SCEVs; this bound is conservative, 967 // but it probably doesn't matter. 968 if (K > 1000) 969 return SE.getCouldNotCompute(); 970 971 unsigned W = SE.getTypeSizeInBits(ResultTy); 972 973 // Calculate K! / 2^T and T; we divide out the factors of two before 974 // multiplying for calculating K! / 2^T to avoid overflow. 975 // Other overflow doesn't matter because we only care about the bottom 976 // W bits of the result. 977 APInt OddFactorial(W, 1); 978 unsigned T = 1; 979 for (unsigned i = 3; i <= K; ++i) { 980 APInt Mult(W, i); 981 unsigned TwoFactors = Mult.countTrailingZeros(); 982 T += TwoFactors; 983 Mult.lshrInPlace(TwoFactors); 984 OddFactorial *= Mult; 985 } 986 987 // We need at least W + T bits for the multiplication step 988 unsigned CalculationBits = W + T; 989 990 // Calculate 2^T, at width T+W. 991 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 992 993 // Calculate the multiplicative inverse of K! / 2^T; 994 // this multiplication factor will perform the exact division by 995 // K! / 2^T. 996 APInt Mod = APInt::getSignedMinValue(W+1); 997 APInt MultiplyFactor = OddFactorial.zext(W+1); 998 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 999 MultiplyFactor = MultiplyFactor.trunc(W); 1000 1001 // Calculate the product, at width T+W 1002 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1003 CalculationBits); 1004 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1005 for (unsigned i = 1; i != K; ++i) { 1006 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1007 Dividend = SE.getMulExpr(Dividend, 1008 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1009 } 1010 1011 // Divide by 2^T 1012 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1013 1014 // Truncate the result, and divide by K! / 2^T. 1015 1016 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1017 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1018 } 1019 1020 /// Return the value of this chain of recurrences at the specified iteration 1021 /// number. We can evaluate this recurrence by multiplying each element in the 1022 /// chain by the binomial coefficient corresponding to it. In other words, we 1023 /// can evaluate {A,+,B,+,C,+,D} as: 1024 /// 1025 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1026 /// 1027 /// where BC(It, k) stands for binomial coefficient. 1028 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1029 ScalarEvolution &SE) const { 1030 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1031 } 1032 1033 const SCEV * 1034 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1035 const SCEV *It, ScalarEvolution &SE) { 1036 assert(Operands.size() > 0); 1037 const SCEV *Result = Operands[0]; 1038 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1039 // The computation is correct in the face of overflow provided that the 1040 // multiplication is performed _after_ the evaluation of the binomial 1041 // coefficient. 1042 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1043 if (isa<SCEVCouldNotCompute>(Coeff)) 1044 return Coeff; 1045 1046 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1047 } 1048 return Result; 1049 } 1050 1051 //===----------------------------------------------------------------------===// 1052 // SCEV Expression folder implementations 1053 //===----------------------------------------------------------------------===// 1054 1055 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1056 unsigned Depth) { 1057 assert(Depth <= 1 && 1058 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1059 1060 // We could be called with an integer-typed operands during SCEV rewrites. 1061 // Since the operand is an integer already, just perform zext/trunc/self cast. 1062 if (!Op->getType()->isPointerTy()) 1063 return Op; 1064 1065 // What would be an ID for such a SCEV cast expression? 1066 FoldingSetNodeID ID; 1067 ID.AddInteger(scPtrToInt); 1068 ID.AddPointer(Op); 1069 1070 void *IP = nullptr; 1071 1072 // Is there already an expression for such a cast? 1073 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1074 return S; 1075 1076 // It isn't legal for optimizations to construct new ptrtoint expressions 1077 // for non-integral pointers. 1078 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1079 return getCouldNotCompute(); 1080 1081 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1082 1083 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1084 // is sufficiently wide to represent all possible pointer values. 1085 // We could theoretically teach SCEV to truncate wider pointers, but 1086 // that isn't implemented for now. 1087 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1088 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1089 return getCouldNotCompute(); 1090 1091 // If not, is this expression something we can't reduce any further? 1092 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1093 // Perform some basic constant folding. If the operand of the ptr2int cast 1094 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1095 // left as-is), but produce a zero constant. 1096 // NOTE: We could handle a more general case, but lack motivational cases. 1097 if (isa<ConstantPointerNull>(U->getValue())) 1098 return getZero(IntPtrTy); 1099 1100 // Create an explicit cast node. 1101 // We can reuse the existing insert position since if we get here, 1102 // we won't have made any changes which would invalidate it. 1103 SCEV *S = new (SCEVAllocator) 1104 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1105 UniqueSCEVs.InsertNode(S, IP); 1106 addToLoopUseLists(S); 1107 return S; 1108 } 1109 1110 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1111 "non-SCEVUnknown's."); 1112 1113 // Otherwise, we've got some expression that is more complex than just a 1114 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1115 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1116 // only, and the expressions must otherwise be integer-typed. 1117 // So sink the cast down to the SCEVUnknown's. 1118 1119 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1120 /// which computes a pointer-typed value, and rewrites the whole expression 1121 /// tree so that *all* the computations are done on integers, and the only 1122 /// pointer-typed operands in the expression are SCEVUnknown. 1123 class SCEVPtrToIntSinkingRewriter 1124 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1125 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1126 1127 public: 1128 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1129 1130 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1131 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1132 return Rewriter.visit(Scev); 1133 } 1134 1135 const SCEV *visit(const SCEV *S) { 1136 Type *STy = S->getType(); 1137 // If the expression is not pointer-typed, just keep it as-is. 1138 if (!STy->isPointerTy()) 1139 return S; 1140 // Else, recursively sink the cast down into it. 1141 return Base::visit(S); 1142 } 1143 1144 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1145 SmallVector<const SCEV *, 2> Operands; 1146 bool Changed = false; 1147 for (auto *Op : Expr->operands()) { 1148 Operands.push_back(visit(Op)); 1149 Changed |= Op != Operands.back(); 1150 } 1151 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1152 } 1153 1154 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1155 SmallVector<const SCEV *, 2> Operands; 1156 bool Changed = false; 1157 for (auto *Op : Expr->operands()) { 1158 Operands.push_back(visit(Op)); 1159 Changed |= Op != Operands.back(); 1160 } 1161 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1162 } 1163 1164 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1165 assert(Expr->getType()->isPointerTy() && 1166 "Should only reach pointer-typed SCEVUnknown's."); 1167 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1168 } 1169 }; 1170 1171 // And actually perform the cast sinking. 1172 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1173 assert(IntOp->getType()->isIntegerTy() && 1174 "We must have succeeded in sinking the cast, " 1175 "and ending up with an integer-typed expression!"); 1176 return IntOp; 1177 } 1178 1179 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1180 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1181 1182 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1183 if (isa<SCEVCouldNotCompute>(IntOp)) 1184 return IntOp; 1185 1186 return getTruncateOrZeroExtend(IntOp, Ty); 1187 } 1188 1189 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1190 unsigned Depth) { 1191 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1192 "This is not a truncating conversion!"); 1193 assert(isSCEVable(Ty) && 1194 "This is not a conversion to a SCEVable type!"); 1195 Ty = getEffectiveSCEVType(Ty); 1196 1197 FoldingSetNodeID ID; 1198 ID.AddInteger(scTruncate); 1199 ID.AddPointer(Op); 1200 ID.AddPointer(Ty); 1201 void *IP = nullptr; 1202 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1203 1204 // Fold if the operand is constant. 1205 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1206 return getConstant( 1207 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1208 1209 // trunc(trunc(x)) --> trunc(x) 1210 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1211 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1212 1213 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1214 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1215 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1216 1217 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1218 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1219 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1220 1221 if (Depth > MaxCastDepth) { 1222 SCEV *S = 1223 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1224 UniqueSCEVs.InsertNode(S, IP); 1225 addToLoopUseLists(S); 1226 return S; 1227 } 1228 1229 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1230 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1231 // if after transforming we have at most one truncate, not counting truncates 1232 // that replace other casts. 1233 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1234 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1235 SmallVector<const SCEV *, 4> Operands; 1236 unsigned numTruncs = 0; 1237 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1238 ++i) { 1239 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1240 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1241 isa<SCEVTruncateExpr>(S)) 1242 numTruncs++; 1243 Operands.push_back(S); 1244 } 1245 if (numTruncs < 2) { 1246 if (isa<SCEVAddExpr>(Op)) 1247 return getAddExpr(Operands); 1248 else if (isa<SCEVMulExpr>(Op)) 1249 return getMulExpr(Operands); 1250 else 1251 llvm_unreachable("Unexpected SCEV type for Op."); 1252 } 1253 // Although we checked in the beginning that ID is not in the cache, it is 1254 // possible that during recursion and different modification ID was inserted 1255 // into the cache. So if we find it, just return it. 1256 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1257 return S; 1258 } 1259 1260 // If the input value is a chrec scev, truncate the chrec's operands. 1261 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1262 SmallVector<const SCEV *, 4> Operands; 1263 for (const SCEV *Op : AddRec->operands()) 1264 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1265 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1266 } 1267 1268 // Return zero if truncating to known zeros. 1269 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1270 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1271 return getZero(Ty); 1272 1273 // The cast wasn't folded; create an explicit cast node. We can reuse 1274 // the existing insert position since if we get here, we won't have 1275 // made any changes which would invalidate it. 1276 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1277 Op, Ty); 1278 UniqueSCEVs.InsertNode(S, IP); 1279 addToLoopUseLists(S); 1280 return S; 1281 } 1282 1283 // Get the limit of a recurrence such that incrementing by Step cannot cause 1284 // signed overflow as long as the value of the recurrence within the 1285 // loop does not exceed this limit before incrementing. 1286 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1287 ICmpInst::Predicate *Pred, 1288 ScalarEvolution *SE) { 1289 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1290 if (SE->isKnownPositive(Step)) { 1291 *Pred = ICmpInst::ICMP_SLT; 1292 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1293 SE->getSignedRangeMax(Step)); 1294 } 1295 if (SE->isKnownNegative(Step)) { 1296 *Pred = ICmpInst::ICMP_SGT; 1297 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1298 SE->getSignedRangeMin(Step)); 1299 } 1300 return nullptr; 1301 } 1302 1303 // Get the limit of a recurrence such that incrementing by Step cannot cause 1304 // unsigned overflow as long as the value of the recurrence within the loop does 1305 // not exceed this limit before incrementing. 1306 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1307 ICmpInst::Predicate *Pred, 1308 ScalarEvolution *SE) { 1309 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1310 *Pred = ICmpInst::ICMP_ULT; 1311 1312 return SE->getConstant(APInt::getMinValue(BitWidth) - 1313 SE->getUnsignedRangeMax(Step)); 1314 } 1315 1316 namespace { 1317 1318 struct ExtendOpTraitsBase { 1319 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1320 unsigned); 1321 }; 1322 1323 // Used to make code generic over signed and unsigned overflow. 1324 template <typename ExtendOp> struct ExtendOpTraits { 1325 // Members present: 1326 // 1327 // static const SCEV::NoWrapFlags WrapType; 1328 // 1329 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1330 // 1331 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1332 // ICmpInst::Predicate *Pred, 1333 // ScalarEvolution *SE); 1334 }; 1335 1336 template <> 1337 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1338 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1339 1340 static const GetExtendExprTy GetExtendExpr; 1341 1342 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1343 ICmpInst::Predicate *Pred, 1344 ScalarEvolution *SE) { 1345 return getSignedOverflowLimitForStep(Step, Pred, SE); 1346 } 1347 }; 1348 1349 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1350 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1351 1352 template <> 1353 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1354 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1355 1356 static const GetExtendExprTy GetExtendExpr; 1357 1358 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1359 ICmpInst::Predicate *Pred, 1360 ScalarEvolution *SE) { 1361 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1362 } 1363 }; 1364 1365 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1366 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1367 1368 } // end anonymous namespace 1369 1370 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1371 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1372 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1373 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1374 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1375 // expression "Step + sext/zext(PreIncAR)" is congruent with 1376 // "sext/zext(PostIncAR)" 1377 template <typename ExtendOpTy> 1378 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1379 ScalarEvolution *SE, unsigned Depth) { 1380 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1381 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1382 1383 const Loop *L = AR->getLoop(); 1384 const SCEV *Start = AR->getStart(); 1385 const SCEV *Step = AR->getStepRecurrence(*SE); 1386 1387 // Check for a simple looking step prior to loop entry. 1388 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1389 if (!SA) 1390 return nullptr; 1391 1392 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1393 // subtraction is expensive. For this purpose, perform a quick and dirty 1394 // difference, by checking for Step in the operand list. 1395 SmallVector<const SCEV *, 4> DiffOps; 1396 for (const SCEV *Op : SA->operands()) 1397 if (Op != Step) 1398 DiffOps.push_back(Op); 1399 1400 if (DiffOps.size() == SA->getNumOperands()) 1401 return nullptr; 1402 1403 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1404 // `Step`: 1405 1406 // 1. NSW/NUW flags on the step increment. 1407 auto PreStartFlags = 1408 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1409 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1410 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1411 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1412 1413 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1414 // "S+X does not sign/unsign-overflow". 1415 // 1416 1417 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1418 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1419 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1420 return PreStart; 1421 1422 // 2. Direct overflow check on the step operation's expression. 1423 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1424 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1425 const SCEV *OperandExtendedStart = 1426 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1427 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1428 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1429 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1430 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1431 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1432 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1433 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1434 } 1435 return PreStart; 1436 } 1437 1438 // 3. Loop precondition. 1439 ICmpInst::Predicate Pred; 1440 const SCEV *OverflowLimit = 1441 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1442 1443 if (OverflowLimit && 1444 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1445 return PreStart; 1446 1447 return nullptr; 1448 } 1449 1450 // Get the normalized zero or sign extended expression for this AddRec's Start. 1451 template <typename ExtendOpTy> 1452 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1453 ScalarEvolution *SE, 1454 unsigned Depth) { 1455 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1456 1457 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1458 if (!PreStart) 1459 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1460 1461 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1462 Depth), 1463 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1464 } 1465 1466 // Try to prove away overflow by looking at "nearby" add recurrences. A 1467 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1468 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1469 // 1470 // Formally: 1471 // 1472 // {S,+,X} == {S-T,+,X} + T 1473 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1474 // 1475 // If ({S-T,+,X} + T) does not overflow ... (1) 1476 // 1477 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1478 // 1479 // If {S-T,+,X} does not overflow ... (2) 1480 // 1481 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1482 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1483 // 1484 // If (S-T)+T does not overflow ... (3) 1485 // 1486 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1487 // == {Ext(S),+,Ext(X)} == LHS 1488 // 1489 // Thus, if (1), (2) and (3) are true for some T, then 1490 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1491 // 1492 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1493 // does not overflow" restricted to the 0th iteration. Therefore we only need 1494 // to check for (1) and (2). 1495 // 1496 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1497 // is `Delta` (defined below). 1498 template <typename ExtendOpTy> 1499 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1500 const SCEV *Step, 1501 const Loop *L) { 1502 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1503 1504 // We restrict `Start` to a constant to prevent SCEV from spending too much 1505 // time here. It is correct (but more expensive) to continue with a 1506 // non-constant `Start` and do a general SCEV subtraction to compute 1507 // `PreStart` below. 1508 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1509 if (!StartC) 1510 return false; 1511 1512 APInt StartAI = StartC->getAPInt(); 1513 1514 for (unsigned Delta : {-2, -1, 1, 2}) { 1515 const SCEV *PreStart = getConstant(StartAI - Delta); 1516 1517 FoldingSetNodeID ID; 1518 ID.AddInteger(scAddRecExpr); 1519 ID.AddPointer(PreStart); 1520 ID.AddPointer(Step); 1521 ID.AddPointer(L); 1522 void *IP = nullptr; 1523 const auto *PreAR = 1524 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1525 1526 // Give up if we don't already have the add recurrence we need because 1527 // actually constructing an add recurrence is relatively expensive. 1528 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1529 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1530 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1531 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1532 DeltaS, &Pred, this); 1533 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1534 return true; 1535 } 1536 } 1537 1538 return false; 1539 } 1540 1541 // Finds an integer D for an expression (C + x + y + ...) such that the top 1542 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1543 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1544 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1545 // the (C + x + y + ...) expression is \p WholeAddExpr. 1546 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1547 const SCEVConstant *ConstantTerm, 1548 const SCEVAddExpr *WholeAddExpr) { 1549 const APInt &C = ConstantTerm->getAPInt(); 1550 const unsigned BitWidth = C.getBitWidth(); 1551 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1552 uint32_t TZ = BitWidth; 1553 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1554 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1555 if (TZ) { 1556 // Set D to be as many least significant bits of C as possible while still 1557 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1558 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1559 } 1560 return APInt(BitWidth, 0); 1561 } 1562 1563 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1564 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1565 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1566 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1567 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1568 const APInt &ConstantStart, 1569 const SCEV *Step) { 1570 const unsigned BitWidth = ConstantStart.getBitWidth(); 1571 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1572 if (TZ) 1573 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1574 : ConstantStart; 1575 return APInt(BitWidth, 0); 1576 } 1577 1578 const SCEV * 1579 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1580 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1581 "This is not an extending conversion!"); 1582 assert(isSCEVable(Ty) && 1583 "This is not a conversion to a SCEVable type!"); 1584 Ty = getEffectiveSCEVType(Ty); 1585 1586 // Fold if the operand is constant. 1587 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1588 return getConstant( 1589 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1590 1591 // zext(zext(x)) --> zext(x) 1592 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1593 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1594 1595 // Before doing any expensive analysis, check to see if we've already 1596 // computed a SCEV for this Op and Ty. 1597 FoldingSetNodeID ID; 1598 ID.AddInteger(scZeroExtend); 1599 ID.AddPointer(Op); 1600 ID.AddPointer(Ty); 1601 void *IP = nullptr; 1602 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1603 if (Depth > MaxCastDepth) { 1604 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1605 Op, Ty); 1606 UniqueSCEVs.InsertNode(S, IP); 1607 addToLoopUseLists(S); 1608 return S; 1609 } 1610 1611 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1612 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1613 // It's possible the bits taken off by the truncate were all zero bits. If 1614 // so, we should be able to simplify this further. 1615 const SCEV *X = ST->getOperand(); 1616 ConstantRange CR = getUnsignedRange(X); 1617 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1618 unsigned NewBits = getTypeSizeInBits(Ty); 1619 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1620 CR.zextOrTrunc(NewBits))) 1621 return getTruncateOrZeroExtend(X, Ty, Depth); 1622 } 1623 1624 // If the input value is a chrec scev, and we can prove that the value 1625 // did not overflow the old, smaller, value, we can zero extend all of the 1626 // operands (often constants). This allows analysis of something like 1627 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1628 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1629 if (AR->isAffine()) { 1630 const SCEV *Start = AR->getStart(); 1631 const SCEV *Step = AR->getStepRecurrence(*this); 1632 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1633 const Loop *L = AR->getLoop(); 1634 1635 if (!AR->hasNoUnsignedWrap()) { 1636 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1637 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1638 } 1639 1640 // If we have special knowledge that this addrec won't overflow, 1641 // we don't need to do any further analysis. 1642 if (AR->hasNoUnsignedWrap()) 1643 return getAddRecExpr( 1644 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1645 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1646 1647 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1648 // Note that this serves two purposes: It filters out loops that are 1649 // simply not analyzable, and it covers the case where this code is 1650 // being called from within backedge-taken count analysis, such that 1651 // attempting to ask for the backedge-taken count would likely result 1652 // in infinite recursion. In the later case, the analysis code will 1653 // cope with a conservative value, and it will take care to purge 1654 // that value once it has finished. 1655 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1656 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1657 // Manually compute the final value for AR, checking for overflow. 1658 1659 // Check whether the backedge-taken count can be losslessly casted to 1660 // the addrec's type. The count is always unsigned. 1661 const SCEV *CastedMaxBECount = 1662 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1663 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1664 CastedMaxBECount, MaxBECount->getType(), Depth); 1665 if (MaxBECount == RecastedMaxBECount) { 1666 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1667 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1668 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1669 SCEV::FlagAnyWrap, Depth + 1); 1670 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1671 SCEV::FlagAnyWrap, 1672 Depth + 1), 1673 WideTy, Depth + 1); 1674 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1675 const SCEV *WideMaxBECount = 1676 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1677 const SCEV *OperandExtendedAdd = 1678 getAddExpr(WideStart, 1679 getMulExpr(WideMaxBECount, 1680 getZeroExtendExpr(Step, WideTy, Depth + 1), 1681 SCEV::FlagAnyWrap, Depth + 1), 1682 SCEV::FlagAnyWrap, Depth + 1); 1683 if (ZAdd == OperandExtendedAdd) { 1684 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1685 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1686 // Return the expression with the addrec on the outside. 1687 return getAddRecExpr( 1688 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1689 Depth + 1), 1690 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1691 AR->getNoWrapFlags()); 1692 } 1693 // Similar to above, only this time treat the step value as signed. 1694 // This covers loops that count down. 1695 OperandExtendedAdd = 1696 getAddExpr(WideStart, 1697 getMulExpr(WideMaxBECount, 1698 getSignExtendExpr(Step, WideTy, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1), 1700 SCEV::FlagAnyWrap, Depth + 1); 1701 if (ZAdd == OperandExtendedAdd) { 1702 // Cache knowledge of AR NW, which is propagated to this AddRec. 1703 // Negative step causes unsigned wrap, but it still can't self-wrap. 1704 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1705 // Return the expression with the addrec on the outside. 1706 return getAddRecExpr( 1707 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1708 Depth + 1), 1709 getSignExtendExpr(Step, Ty, Depth + 1), L, 1710 AR->getNoWrapFlags()); 1711 } 1712 } 1713 } 1714 1715 // Normally, in the cases we can prove no-overflow via a 1716 // backedge guarding condition, we can also compute a backedge 1717 // taken count for the loop. The exceptions are assumptions and 1718 // guards present in the loop -- SCEV is not great at exploiting 1719 // these to compute max backedge taken counts, but can still use 1720 // these to prove lack of overflow. Use this fact to avoid 1721 // doing extra work that may not pay off. 1722 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1723 !AC.assumptions().empty()) { 1724 1725 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1726 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1727 if (AR->hasNoUnsignedWrap()) { 1728 // Same as nuw case above - duplicated here to avoid a compile time 1729 // issue. It's not clear that the order of checks does matter, but 1730 // it's one of two issue possible causes for a change which was 1731 // reverted. Be conservative for the moment. 1732 return getAddRecExpr( 1733 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1734 Depth + 1), 1735 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1736 AR->getNoWrapFlags()); 1737 } 1738 1739 // For a negative step, we can extend the operands iff doing so only 1740 // traverses values in the range zext([0,UINT_MAX]). 1741 if (isKnownNegative(Step)) { 1742 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1743 getSignedRangeMin(Step)); 1744 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1745 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1746 // Cache knowledge of AR NW, which is propagated to this 1747 // AddRec. Negative step causes unsigned wrap, but it 1748 // still can't self-wrap. 1749 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1750 // Return the expression with the addrec on the outside. 1751 return getAddRecExpr( 1752 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1753 Depth + 1), 1754 getSignExtendExpr(Step, Ty, Depth + 1), L, 1755 AR->getNoWrapFlags()); 1756 } 1757 } 1758 } 1759 1760 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1761 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1762 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1763 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1764 const APInt &C = SC->getAPInt(); 1765 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1766 if (D != 0) { 1767 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1768 const SCEV *SResidual = 1769 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1770 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1771 return getAddExpr(SZExtD, SZExtR, 1772 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1773 Depth + 1); 1774 } 1775 } 1776 1777 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1778 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1779 return getAddRecExpr( 1780 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1781 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1782 } 1783 } 1784 1785 // zext(A % B) --> zext(A) % zext(B) 1786 { 1787 const SCEV *LHS; 1788 const SCEV *RHS; 1789 if (matchURem(Op, LHS, RHS)) 1790 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1791 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1792 } 1793 1794 // zext(A / B) --> zext(A) / zext(B). 1795 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1796 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1797 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1798 1799 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1800 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1801 if (SA->hasNoUnsignedWrap()) { 1802 // If the addition does not unsign overflow then we can, by definition, 1803 // commute the zero extension with the addition operation. 1804 SmallVector<const SCEV *, 4> Ops; 1805 for (const auto *Op : SA->operands()) 1806 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1807 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1808 } 1809 1810 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1811 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1812 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1813 // 1814 // Often address arithmetics contain expressions like 1815 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1816 // This transformation is useful while proving that such expressions are 1817 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1818 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1819 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1820 if (D != 0) { 1821 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1822 const SCEV *SResidual = 1823 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1824 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1825 return getAddExpr(SZExtD, SZExtR, 1826 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1827 Depth + 1); 1828 } 1829 } 1830 } 1831 1832 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1833 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1834 if (SM->hasNoUnsignedWrap()) { 1835 // If the multiply does not unsign overflow then we can, by definition, 1836 // commute the zero extension with the multiply operation. 1837 SmallVector<const SCEV *, 4> Ops; 1838 for (const auto *Op : SM->operands()) 1839 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1840 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1841 } 1842 1843 // zext(2^K * (trunc X to iN)) to iM -> 1844 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1845 // 1846 // Proof: 1847 // 1848 // zext(2^K * (trunc X to iN)) to iM 1849 // = zext((trunc X to iN) << K) to iM 1850 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1851 // (because shl removes the top K bits) 1852 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1853 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1854 // 1855 if (SM->getNumOperands() == 2) 1856 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1857 if (MulLHS->getAPInt().isPowerOf2()) 1858 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1859 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1860 MulLHS->getAPInt().logBase2(); 1861 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1862 return getMulExpr( 1863 getZeroExtendExpr(MulLHS, Ty), 1864 getZeroExtendExpr( 1865 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1866 SCEV::FlagNUW, Depth + 1); 1867 } 1868 } 1869 1870 // The cast wasn't folded; create an explicit cast node. 1871 // Recompute the insert position, as it may have been invalidated. 1872 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1873 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1874 Op, Ty); 1875 UniqueSCEVs.InsertNode(S, IP); 1876 addToLoopUseLists(S); 1877 return S; 1878 } 1879 1880 const SCEV * 1881 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1882 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1883 "This is not an extending conversion!"); 1884 assert(isSCEVable(Ty) && 1885 "This is not a conversion to a SCEVable type!"); 1886 Ty = getEffectiveSCEVType(Ty); 1887 1888 // Fold if the operand is constant. 1889 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1890 return getConstant( 1891 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1892 1893 // sext(sext(x)) --> sext(x) 1894 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1895 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1896 1897 // sext(zext(x)) --> zext(x) 1898 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1899 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1900 1901 // Before doing any expensive analysis, check to see if we've already 1902 // computed a SCEV for this Op and Ty. 1903 FoldingSetNodeID ID; 1904 ID.AddInteger(scSignExtend); 1905 ID.AddPointer(Op); 1906 ID.AddPointer(Ty); 1907 void *IP = nullptr; 1908 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1909 // Limit recursion depth. 1910 if (Depth > MaxCastDepth) { 1911 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1912 Op, Ty); 1913 UniqueSCEVs.InsertNode(S, IP); 1914 addToLoopUseLists(S); 1915 return S; 1916 } 1917 1918 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1919 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1920 // It's possible the bits taken off by the truncate were all sign bits. If 1921 // so, we should be able to simplify this further. 1922 const SCEV *X = ST->getOperand(); 1923 ConstantRange CR = getSignedRange(X); 1924 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1925 unsigned NewBits = getTypeSizeInBits(Ty); 1926 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1927 CR.sextOrTrunc(NewBits))) 1928 return getTruncateOrSignExtend(X, Ty, Depth); 1929 } 1930 1931 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1932 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1933 if (SA->hasNoSignedWrap()) { 1934 // If the addition does not sign overflow then we can, by definition, 1935 // commute the sign extension with the addition operation. 1936 SmallVector<const SCEV *, 4> Ops; 1937 for (const auto *Op : SA->operands()) 1938 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1939 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1940 } 1941 1942 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1943 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1944 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1945 // 1946 // For instance, this will bring two seemingly different expressions: 1947 // 1 + sext(5 + 20 * %x + 24 * %y) and 1948 // sext(6 + 20 * %x + 24 * %y) 1949 // to the same form: 1950 // 2 + sext(4 + 20 * %x + 24 * %y) 1951 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1952 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1953 if (D != 0) { 1954 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1955 const SCEV *SResidual = 1956 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1957 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1958 return getAddExpr(SSExtD, SSExtR, 1959 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1960 Depth + 1); 1961 } 1962 } 1963 } 1964 // If the input value is a chrec scev, and we can prove that the value 1965 // did not overflow the old, smaller, value, we can sign extend all of the 1966 // operands (often constants). This allows analysis of something like 1967 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1968 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1969 if (AR->isAffine()) { 1970 const SCEV *Start = AR->getStart(); 1971 const SCEV *Step = AR->getStepRecurrence(*this); 1972 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1973 const Loop *L = AR->getLoop(); 1974 1975 if (!AR->hasNoSignedWrap()) { 1976 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1977 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1978 } 1979 1980 // If we have special knowledge that this addrec won't overflow, 1981 // we don't need to do any further analysis. 1982 if (AR->hasNoSignedWrap()) 1983 return getAddRecExpr( 1984 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1985 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1986 1987 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1988 // Note that this serves two purposes: It filters out loops that are 1989 // simply not analyzable, and it covers the case where this code is 1990 // being called from within backedge-taken count analysis, such that 1991 // attempting to ask for the backedge-taken count would likely result 1992 // in infinite recursion. In the later case, the analysis code will 1993 // cope with a conservative value, and it will take care to purge 1994 // that value once it has finished. 1995 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1996 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1997 // Manually compute the final value for AR, checking for 1998 // overflow. 1999 2000 // Check whether the backedge-taken count can be losslessly casted to 2001 // the addrec's type. The count is always unsigned. 2002 const SCEV *CastedMaxBECount = 2003 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2004 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2005 CastedMaxBECount, MaxBECount->getType(), Depth); 2006 if (MaxBECount == RecastedMaxBECount) { 2007 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2008 // Check whether Start+Step*MaxBECount has no signed overflow. 2009 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2010 SCEV::FlagAnyWrap, Depth + 1); 2011 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2012 SCEV::FlagAnyWrap, 2013 Depth + 1), 2014 WideTy, Depth + 1); 2015 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2016 const SCEV *WideMaxBECount = 2017 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2018 const SCEV *OperandExtendedAdd = 2019 getAddExpr(WideStart, 2020 getMulExpr(WideMaxBECount, 2021 getSignExtendExpr(Step, WideTy, Depth + 1), 2022 SCEV::FlagAnyWrap, Depth + 1), 2023 SCEV::FlagAnyWrap, Depth + 1); 2024 if (SAdd == OperandExtendedAdd) { 2025 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2026 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2027 // Return the expression with the addrec on the outside. 2028 return getAddRecExpr( 2029 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2030 Depth + 1), 2031 getSignExtendExpr(Step, Ty, Depth + 1), L, 2032 AR->getNoWrapFlags()); 2033 } 2034 // Similar to above, only this time treat the step value as unsigned. 2035 // This covers loops that count up with an unsigned step. 2036 OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getZeroExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // If AR wraps around then 2044 // 2045 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2046 // => SAdd != OperandExtendedAdd 2047 // 2048 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2049 // (SAdd == OperandExtendedAdd => AR is NW) 2050 2051 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2052 2053 // Return the expression with the addrec on the outside. 2054 return getAddRecExpr( 2055 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2056 Depth + 1), 2057 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2058 AR->getNoWrapFlags()); 2059 } 2060 } 2061 } 2062 2063 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2064 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2065 if (AR->hasNoSignedWrap()) { 2066 // Same as nsw case above - duplicated here to avoid a compile time 2067 // issue. It's not clear that the order of checks does matter, but 2068 // it's one of two issue possible causes for a change which was 2069 // reverted. Be conservative for the moment. 2070 return getAddRecExpr( 2071 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2072 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2073 } 2074 2075 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2076 // if D + (C - D + Step * n) could be proven to not signed wrap 2077 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2078 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2079 const APInt &C = SC->getAPInt(); 2080 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2081 if (D != 0) { 2082 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2083 const SCEV *SResidual = 2084 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2085 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2086 return getAddExpr(SSExtD, SSExtR, 2087 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2088 Depth + 1); 2089 } 2090 } 2091 2092 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2093 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2094 return getAddRecExpr( 2095 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2096 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2097 } 2098 } 2099 2100 // If the input value is provably positive and we could not simplify 2101 // away the sext build a zext instead. 2102 if (isKnownNonNegative(Op)) 2103 return getZeroExtendExpr(Op, Ty, Depth + 1); 2104 2105 // The cast wasn't folded; create an explicit cast node. 2106 // Recompute the insert position, as it may have been invalidated. 2107 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2108 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2109 Op, Ty); 2110 UniqueSCEVs.InsertNode(S, IP); 2111 addToLoopUseLists(S); 2112 return S; 2113 } 2114 2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2116 /// unspecified bits out to the given type. 2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2118 Type *Ty) { 2119 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2120 "This is not an extending conversion!"); 2121 assert(isSCEVable(Ty) && 2122 "This is not a conversion to a SCEVable type!"); 2123 Ty = getEffectiveSCEVType(Ty); 2124 2125 // Sign-extend negative constants. 2126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2127 if (SC->getAPInt().isNegative()) 2128 return getSignExtendExpr(Op, Ty); 2129 2130 // Peel off a truncate cast. 2131 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2132 const SCEV *NewOp = T->getOperand(); 2133 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2134 return getAnyExtendExpr(NewOp, Ty); 2135 return getTruncateOrNoop(NewOp, Ty); 2136 } 2137 2138 // Next try a zext cast. If the cast is folded, use it. 2139 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2140 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2141 return ZExt; 2142 2143 // Next try a sext cast. If the cast is folded, use it. 2144 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2145 if (!isa<SCEVSignExtendExpr>(SExt)) 2146 return SExt; 2147 2148 // Force the cast to be folded into the operands of an addrec. 2149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2150 SmallVector<const SCEV *, 4> Ops; 2151 for (const SCEV *Op : AR->operands()) 2152 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2153 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2154 } 2155 2156 // If the expression is obviously signed, use the sext cast value. 2157 if (isa<SCEVSMaxExpr>(Op)) 2158 return SExt; 2159 2160 // Absent any other information, use the zext cast value. 2161 return ZExt; 2162 } 2163 2164 /// Process the given Ops list, which is a list of operands to be added under 2165 /// the given scale, update the given map. This is a helper function for 2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2167 /// that would form an add expression like this: 2168 /// 2169 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2170 /// 2171 /// where A and B are constants, update the map with these values: 2172 /// 2173 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2174 /// 2175 /// and add 13 + A*B*29 to AccumulatedConstant. 2176 /// This will allow getAddRecExpr to produce this: 2177 /// 2178 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2179 /// 2180 /// This form often exposes folding opportunities that are hidden in 2181 /// the original operand list. 2182 /// 2183 /// Return true iff it appears that any interesting folding opportunities 2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2185 /// the common case where no interesting opportunities are present, and 2186 /// is also used as a check to avoid infinite recursion. 2187 static bool 2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2189 SmallVectorImpl<const SCEV *> &NewOps, 2190 APInt &AccumulatedConstant, 2191 const SCEV *const *Ops, size_t NumOperands, 2192 const APInt &Scale, 2193 ScalarEvolution &SE) { 2194 bool Interesting = false; 2195 2196 // Iterate over the add operands. They are sorted, with constants first. 2197 unsigned i = 0; 2198 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2199 ++i; 2200 // Pull a buried constant out to the outside. 2201 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2202 Interesting = true; 2203 AccumulatedConstant += Scale * C->getAPInt(); 2204 } 2205 2206 // Next comes everything else. We're especially interested in multiplies 2207 // here, but they're in the middle, so just visit the rest with one loop. 2208 for (; i != NumOperands; ++i) { 2209 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2210 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2211 APInt NewScale = 2212 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2213 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2214 // A multiplication of a constant with another add; recurse. 2215 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2216 Interesting |= 2217 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2218 Add->op_begin(), Add->getNumOperands(), 2219 NewScale, SE); 2220 } else { 2221 // A multiplication of a constant with some other value. Update 2222 // the map. 2223 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2224 const SCEV *Key = SE.getMulExpr(MulOps); 2225 auto Pair = M.insert({Key, NewScale}); 2226 if (Pair.second) { 2227 NewOps.push_back(Pair.first->first); 2228 } else { 2229 Pair.first->second += NewScale; 2230 // The map already had an entry for this value, which may indicate 2231 // a folding opportunity. 2232 Interesting = true; 2233 } 2234 } 2235 } else { 2236 // An ordinary operand. Update the map. 2237 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2238 M.insert({Ops[i], Scale}); 2239 if (Pair.second) { 2240 NewOps.push_back(Pair.first->first); 2241 } else { 2242 Pair.first->second += Scale; 2243 // The map already had an entry for this value, which may indicate 2244 // a folding opportunity. 2245 Interesting = true; 2246 } 2247 } 2248 } 2249 2250 return Interesting; 2251 } 2252 2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2254 const SCEV *LHS, const SCEV *RHS) { 2255 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2256 SCEV::NoWrapFlags, unsigned); 2257 switch (BinOp) { 2258 default: 2259 llvm_unreachable("Unsupported binary op"); 2260 case Instruction::Add: 2261 Operation = &ScalarEvolution::getAddExpr; 2262 break; 2263 case Instruction::Sub: 2264 Operation = &ScalarEvolution::getMinusSCEV; 2265 break; 2266 case Instruction::Mul: 2267 Operation = &ScalarEvolution::getMulExpr; 2268 break; 2269 } 2270 2271 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2272 Signed ? &ScalarEvolution::getSignExtendExpr 2273 : &ScalarEvolution::getZeroExtendExpr; 2274 2275 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2276 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2277 auto *WideTy = 2278 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2279 2280 const SCEV *A = (this->*Extension)( 2281 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2282 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2283 (this->*Extension)(RHS, WideTy, 0), 2284 SCEV::FlagAnyWrap, 0); 2285 return A == B; 2286 } 2287 2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2290 const OverflowingBinaryOperator *OBO) { 2291 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2292 2293 if (OBO->hasNoUnsignedWrap()) 2294 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2295 if (OBO->hasNoSignedWrap()) 2296 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2297 2298 bool Deduced = false; 2299 2300 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2301 return {Flags, Deduced}; 2302 2303 if (OBO->getOpcode() != Instruction::Add && 2304 OBO->getOpcode() != Instruction::Sub && 2305 OBO->getOpcode() != Instruction::Mul) 2306 return {Flags, Deduced}; 2307 2308 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2309 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2310 2311 if (!OBO->hasNoUnsignedWrap() && 2312 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2313 /* Signed */ false, LHS, RHS)) { 2314 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2315 Deduced = true; 2316 } 2317 2318 if (!OBO->hasNoSignedWrap() && 2319 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2320 /* Signed */ true, LHS, RHS)) { 2321 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2322 Deduced = true; 2323 } 2324 2325 return {Flags, Deduced}; 2326 } 2327 2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2329 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2330 // can't-overflow flags for the operation if possible. 2331 static SCEV::NoWrapFlags 2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2333 const ArrayRef<const SCEV *> Ops, 2334 SCEV::NoWrapFlags Flags) { 2335 using namespace std::placeholders; 2336 2337 using OBO = OverflowingBinaryOperator; 2338 2339 bool CanAnalyze = 2340 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2341 (void)CanAnalyze; 2342 assert(CanAnalyze && "don't call from other places!"); 2343 2344 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2345 SCEV::NoWrapFlags SignOrUnsignWrap = 2346 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2347 2348 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2349 auto IsKnownNonNegative = [&](const SCEV *S) { 2350 return SE->isKnownNonNegative(S); 2351 }; 2352 2353 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2354 Flags = 2355 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2356 2357 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2358 2359 if (SignOrUnsignWrap != SignOrUnsignMask && 2360 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2361 isa<SCEVConstant>(Ops[0])) { 2362 2363 auto Opcode = [&] { 2364 switch (Type) { 2365 case scAddExpr: 2366 return Instruction::Add; 2367 case scMulExpr: 2368 return Instruction::Mul; 2369 default: 2370 llvm_unreachable("Unexpected SCEV op."); 2371 } 2372 }(); 2373 2374 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2375 2376 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2377 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2378 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2379 Opcode, C, OBO::NoSignedWrap); 2380 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2381 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2382 } 2383 2384 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2385 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2386 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2387 Opcode, C, OBO::NoUnsignedWrap); 2388 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2389 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2390 } 2391 } 2392 2393 return Flags; 2394 } 2395 2396 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2397 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2398 } 2399 2400 /// Get a canonical add expression, or something simpler if possible. 2401 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2402 SCEV::NoWrapFlags OrigFlags, 2403 unsigned Depth) { 2404 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2405 "only nuw or nsw allowed"); 2406 assert(!Ops.empty() && "Cannot get empty add!"); 2407 if (Ops.size() == 1) return Ops[0]; 2408 #ifndef NDEBUG 2409 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2410 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2411 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2412 "SCEVAddExpr operand types don't match!"); 2413 #endif 2414 2415 // Sort by complexity, this groups all similar expression types together. 2416 GroupByComplexity(Ops, &LI, DT); 2417 2418 // If there are any constants, fold them together. 2419 unsigned Idx = 0; 2420 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2421 ++Idx; 2422 assert(Idx < Ops.size()); 2423 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2424 // We found two constants, fold them together! 2425 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2426 if (Ops.size() == 2) return Ops[0]; 2427 Ops.erase(Ops.begin()+1); // Erase the folded element 2428 LHSC = cast<SCEVConstant>(Ops[0]); 2429 } 2430 2431 // If we are left with a constant zero being added, strip it off. 2432 if (LHSC->getValue()->isZero()) { 2433 Ops.erase(Ops.begin()); 2434 --Idx; 2435 } 2436 2437 if (Ops.size() == 1) return Ops[0]; 2438 } 2439 2440 // Delay expensive flag strengthening until necessary. 2441 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2442 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2443 }; 2444 2445 // Limit recursion calls depth. 2446 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2447 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2448 2449 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2450 // Don't strengthen flags if we have no new information. 2451 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2452 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2453 Add->setNoWrapFlags(ComputeFlags(Ops)); 2454 return S; 2455 } 2456 2457 // Okay, check to see if the same value occurs in the operand list more than 2458 // once. If so, merge them together into an multiply expression. Since we 2459 // sorted the list, these values are required to be adjacent. 2460 Type *Ty = Ops[0]->getType(); 2461 bool FoundMatch = false; 2462 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2463 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2464 // Scan ahead to count how many equal operands there are. 2465 unsigned Count = 2; 2466 while (i+Count != e && Ops[i+Count] == Ops[i]) 2467 ++Count; 2468 // Merge the values into a multiply. 2469 const SCEV *Scale = getConstant(Ty, Count); 2470 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2471 if (Ops.size() == Count) 2472 return Mul; 2473 Ops[i] = Mul; 2474 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2475 --i; e -= Count - 1; 2476 FoundMatch = true; 2477 } 2478 if (FoundMatch) 2479 return getAddExpr(Ops, OrigFlags, Depth + 1); 2480 2481 // Check for truncates. If all the operands are truncated from the same 2482 // type, see if factoring out the truncate would permit the result to be 2483 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2484 // if the contents of the resulting outer trunc fold to something simple. 2485 auto FindTruncSrcType = [&]() -> Type * { 2486 // We're ultimately looking to fold an addrec of truncs and muls of only 2487 // constants and truncs, so if we find any other types of SCEV 2488 // as operands of the addrec then we bail and return nullptr here. 2489 // Otherwise, we return the type of the operand of a trunc that we find. 2490 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2491 return T->getOperand()->getType(); 2492 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2493 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2494 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2495 return T->getOperand()->getType(); 2496 } 2497 return nullptr; 2498 }; 2499 if (auto *SrcType = FindTruncSrcType()) { 2500 SmallVector<const SCEV *, 8> LargeOps; 2501 bool Ok = true; 2502 // Check all the operands to see if they can be represented in the 2503 // source type of the truncate. 2504 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2505 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2506 if (T->getOperand()->getType() != SrcType) { 2507 Ok = false; 2508 break; 2509 } 2510 LargeOps.push_back(T->getOperand()); 2511 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2512 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2513 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2514 SmallVector<const SCEV *, 8> LargeMulOps; 2515 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2516 if (const SCEVTruncateExpr *T = 2517 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2518 if (T->getOperand()->getType() != SrcType) { 2519 Ok = false; 2520 break; 2521 } 2522 LargeMulOps.push_back(T->getOperand()); 2523 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2524 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2525 } else { 2526 Ok = false; 2527 break; 2528 } 2529 } 2530 if (Ok) 2531 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2532 } else { 2533 Ok = false; 2534 break; 2535 } 2536 } 2537 if (Ok) { 2538 // Evaluate the expression in the larger type. 2539 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2540 // If it folds to something simple, use it. Otherwise, don't. 2541 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2542 return getTruncateExpr(Fold, Ty); 2543 } 2544 } 2545 2546 if (Ops.size() == 2) { 2547 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2548 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2549 // C1). 2550 const SCEV *A = Ops[0]; 2551 const SCEV *B = Ops[1]; 2552 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2553 auto *C = dyn_cast<SCEVConstant>(A); 2554 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2555 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2556 auto C2 = C->getAPInt(); 2557 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2558 2559 APInt ConstAdd = C1 + C2; 2560 auto AddFlags = AddExpr->getNoWrapFlags(); 2561 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2562 if (ScalarEvolution::maskFlags(AddFlags, SCEV::FlagNUW) == 2563 SCEV::FlagNUW && 2564 ConstAdd.ule(C1)) { 2565 PreservedFlags = 2566 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2567 } 2568 2569 // Adding a constant with the same sign and small magnitude is NSW, if the 2570 // original AddExpr was NSW. 2571 if (ScalarEvolution::maskFlags(AddFlags, SCEV::FlagNSW) == 2572 SCEV::FlagNSW && 2573 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2574 ConstAdd.abs().ule(C1.abs())) { 2575 PreservedFlags = 2576 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2577 } 2578 2579 if (PreservedFlags != SCEV::FlagAnyWrap) { 2580 SmallVector<const SCEV *, 4> NewOps(AddExpr->op_begin(), 2581 AddExpr->op_end()); 2582 NewOps[0] = getConstant(ConstAdd); 2583 return getAddExpr(NewOps, PreservedFlags); 2584 } 2585 } 2586 } 2587 2588 // Skip past any other cast SCEVs. 2589 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2590 ++Idx; 2591 2592 // If there are add operands they would be next. 2593 if (Idx < Ops.size()) { 2594 bool DeletedAdd = false; 2595 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2596 // common NUW flag for expression after inlining. Other flags cannot be 2597 // preserved, because they may depend on the original order of operations. 2598 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2599 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2600 if (Ops.size() > AddOpsInlineThreshold || 2601 Add->getNumOperands() > AddOpsInlineThreshold) 2602 break; 2603 // If we have an add, expand the add operands onto the end of the operands 2604 // list. 2605 Ops.erase(Ops.begin()+Idx); 2606 Ops.append(Add->op_begin(), Add->op_end()); 2607 DeletedAdd = true; 2608 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2609 } 2610 2611 // If we deleted at least one add, we added operands to the end of the list, 2612 // and they are not necessarily sorted. Recurse to resort and resimplify 2613 // any operands we just acquired. 2614 if (DeletedAdd) 2615 return getAddExpr(Ops, CommonFlags, Depth + 1); 2616 } 2617 2618 // Skip over the add expression until we get to a multiply. 2619 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2620 ++Idx; 2621 2622 // Check to see if there are any folding opportunities present with 2623 // operands multiplied by constant values. 2624 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2625 uint64_t BitWidth = getTypeSizeInBits(Ty); 2626 DenseMap<const SCEV *, APInt> M; 2627 SmallVector<const SCEV *, 8> NewOps; 2628 APInt AccumulatedConstant(BitWidth, 0); 2629 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2630 Ops.data(), Ops.size(), 2631 APInt(BitWidth, 1), *this)) { 2632 struct APIntCompare { 2633 bool operator()(const APInt &LHS, const APInt &RHS) const { 2634 return LHS.ult(RHS); 2635 } 2636 }; 2637 2638 // Some interesting folding opportunity is present, so its worthwhile to 2639 // re-generate the operands list. Group the operands by constant scale, 2640 // to avoid multiplying by the same constant scale multiple times. 2641 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2642 for (const SCEV *NewOp : NewOps) 2643 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2644 // Re-generate the operands list. 2645 Ops.clear(); 2646 if (AccumulatedConstant != 0) 2647 Ops.push_back(getConstant(AccumulatedConstant)); 2648 for (auto &MulOp : MulOpLists) 2649 if (MulOp.first != 0) 2650 Ops.push_back(getMulExpr( 2651 getConstant(MulOp.first), 2652 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2653 SCEV::FlagAnyWrap, Depth + 1)); 2654 if (Ops.empty()) 2655 return getZero(Ty); 2656 if (Ops.size() == 1) 2657 return Ops[0]; 2658 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2659 } 2660 } 2661 2662 // If we are adding something to a multiply expression, make sure the 2663 // something is not already an operand of the multiply. If so, merge it into 2664 // the multiply. 2665 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2666 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2667 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2668 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2669 if (isa<SCEVConstant>(MulOpSCEV)) 2670 continue; 2671 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2672 if (MulOpSCEV == Ops[AddOp]) { 2673 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2674 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2675 if (Mul->getNumOperands() != 2) { 2676 // If the multiply has more than two operands, we must get the 2677 // Y*Z term. 2678 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2679 Mul->op_begin()+MulOp); 2680 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2681 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2682 } 2683 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2684 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2685 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2686 SCEV::FlagAnyWrap, Depth + 1); 2687 if (Ops.size() == 2) return OuterMul; 2688 if (AddOp < Idx) { 2689 Ops.erase(Ops.begin()+AddOp); 2690 Ops.erase(Ops.begin()+Idx-1); 2691 } else { 2692 Ops.erase(Ops.begin()+Idx); 2693 Ops.erase(Ops.begin()+AddOp-1); 2694 } 2695 Ops.push_back(OuterMul); 2696 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2697 } 2698 2699 // Check this multiply against other multiplies being added together. 2700 for (unsigned OtherMulIdx = Idx+1; 2701 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2702 ++OtherMulIdx) { 2703 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2704 // If MulOp occurs in OtherMul, we can fold the two multiplies 2705 // together. 2706 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2707 OMulOp != e; ++OMulOp) 2708 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2709 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2710 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2711 if (Mul->getNumOperands() != 2) { 2712 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2713 Mul->op_begin()+MulOp); 2714 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2715 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2716 } 2717 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2718 if (OtherMul->getNumOperands() != 2) { 2719 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2720 OtherMul->op_begin()+OMulOp); 2721 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2722 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2723 } 2724 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2725 const SCEV *InnerMulSum = 2726 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2727 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2728 SCEV::FlagAnyWrap, Depth + 1); 2729 if (Ops.size() == 2) return OuterMul; 2730 Ops.erase(Ops.begin()+Idx); 2731 Ops.erase(Ops.begin()+OtherMulIdx-1); 2732 Ops.push_back(OuterMul); 2733 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2734 } 2735 } 2736 } 2737 } 2738 2739 // If there are any add recurrences in the operands list, see if any other 2740 // added values are loop invariant. If so, we can fold them into the 2741 // recurrence. 2742 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2743 ++Idx; 2744 2745 // Scan over all recurrences, trying to fold loop invariants into them. 2746 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2747 // Scan all of the other operands to this add and add them to the vector if 2748 // they are loop invariant w.r.t. the recurrence. 2749 SmallVector<const SCEV *, 8> LIOps; 2750 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2751 const Loop *AddRecLoop = AddRec->getLoop(); 2752 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2753 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2754 LIOps.push_back(Ops[i]); 2755 Ops.erase(Ops.begin()+i); 2756 --i; --e; 2757 } 2758 2759 // If we found some loop invariants, fold them into the recurrence. 2760 if (!LIOps.empty()) { 2761 // Compute nowrap flags for the addition of the loop-invariant ops and 2762 // the addrec. Temporarily push it as an operand for that purpose. 2763 LIOps.push_back(AddRec); 2764 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2765 LIOps.pop_back(); 2766 2767 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2768 LIOps.push_back(AddRec->getStart()); 2769 2770 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2771 // This follows from the fact that the no-wrap flags on the outer add 2772 // expression are applicable on the 0th iteration, when the add recurrence 2773 // will be equal to its start value. 2774 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2775 2776 // Build the new addrec. Propagate the NUW and NSW flags if both the 2777 // outer add and the inner addrec are guaranteed to have no overflow. 2778 // Always propagate NW. 2779 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2780 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2781 2782 // If all of the other operands were loop invariant, we are done. 2783 if (Ops.size() == 1) return NewRec; 2784 2785 // Otherwise, add the folded AddRec by the non-invariant parts. 2786 for (unsigned i = 0;; ++i) 2787 if (Ops[i] == AddRec) { 2788 Ops[i] = NewRec; 2789 break; 2790 } 2791 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2792 } 2793 2794 // Okay, if there weren't any loop invariants to be folded, check to see if 2795 // there are multiple AddRec's with the same loop induction variable being 2796 // added together. If so, we can fold them. 2797 for (unsigned OtherIdx = Idx+1; 2798 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2799 ++OtherIdx) { 2800 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2801 // so that the 1st found AddRecExpr is dominated by all others. 2802 assert(DT.dominates( 2803 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2804 AddRec->getLoop()->getHeader()) && 2805 "AddRecExprs are not sorted in reverse dominance order?"); 2806 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2807 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2808 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2809 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2810 ++OtherIdx) { 2811 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2812 if (OtherAddRec->getLoop() == AddRecLoop) { 2813 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2814 i != e; ++i) { 2815 if (i >= AddRecOps.size()) { 2816 AddRecOps.append(OtherAddRec->op_begin()+i, 2817 OtherAddRec->op_end()); 2818 break; 2819 } 2820 SmallVector<const SCEV *, 2> TwoOps = { 2821 AddRecOps[i], OtherAddRec->getOperand(i)}; 2822 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2823 } 2824 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2825 } 2826 } 2827 // Step size has changed, so we cannot guarantee no self-wraparound. 2828 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2829 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2830 } 2831 } 2832 2833 // Otherwise couldn't fold anything into this recurrence. Move onto the 2834 // next one. 2835 } 2836 2837 // Okay, it looks like we really DO need an add expr. Check to see if we 2838 // already have one, otherwise create a new one. 2839 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2840 } 2841 2842 const SCEV * 2843 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2844 SCEV::NoWrapFlags Flags) { 2845 FoldingSetNodeID ID; 2846 ID.AddInteger(scAddExpr); 2847 for (const SCEV *Op : Ops) 2848 ID.AddPointer(Op); 2849 void *IP = nullptr; 2850 SCEVAddExpr *S = 2851 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2852 if (!S) { 2853 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2854 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2855 S = new (SCEVAllocator) 2856 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2857 UniqueSCEVs.InsertNode(S, IP); 2858 addToLoopUseLists(S); 2859 } 2860 S->setNoWrapFlags(Flags); 2861 return S; 2862 } 2863 2864 const SCEV * 2865 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2866 const Loop *L, SCEV::NoWrapFlags Flags) { 2867 FoldingSetNodeID ID; 2868 ID.AddInteger(scAddRecExpr); 2869 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2870 ID.AddPointer(Ops[i]); 2871 ID.AddPointer(L); 2872 void *IP = nullptr; 2873 SCEVAddRecExpr *S = 2874 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2875 if (!S) { 2876 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2877 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2878 S = new (SCEVAllocator) 2879 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2880 UniqueSCEVs.InsertNode(S, IP); 2881 addToLoopUseLists(S); 2882 } 2883 setNoWrapFlags(S, Flags); 2884 return S; 2885 } 2886 2887 const SCEV * 2888 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2889 SCEV::NoWrapFlags Flags) { 2890 FoldingSetNodeID ID; 2891 ID.AddInteger(scMulExpr); 2892 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2893 ID.AddPointer(Ops[i]); 2894 void *IP = nullptr; 2895 SCEVMulExpr *S = 2896 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2897 if (!S) { 2898 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2899 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2900 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2901 O, Ops.size()); 2902 UniqueSCEVs.InsertNode(S, IP); 2903 addToLoopUseLists(S); 2904 } 2905 S->setNoWrapFlags(Flags); 2906 return S; 2907 } 2908 2909 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2910 uint64_t k = i*j; 2911 if (j > 1 && k / j != i) Overflow = true; 2912 return k; 2913 } 2914 2915 /// Compute the result of "n choose k", the binomial coefficient. If an 2916 /// intermediate computation overflows, Overflow will be set and the return will 2917 /// be garbage. Overflow is not cleared on absence of overflow. 2918 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2919 // We use the multiplicative formula: 2920 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2921 // At each iteration, we take the n-th term of the numeral and divide by the 2922 // (k-n)th term of the denominator. This division will always produce an 2923 // integral result, and helps reduce the chance of overflow in the 2924 // intermediate computations. However, we can still overflow even when the 2925 // final result would fit. 2926 2927 if (n == 0 || n == k) return 1; 2928 if (k > n) return 0; 2929 2930 if (k > n/2) 2931 k = n-k; 2932 2933 uint64_t r = 1; 2934 for (uint64_t i = 1; i <= k; ++i) { 2935 r = umul_ov(r, n-(i-1), Overflow); 2936 r /= i; 2937 } 2938 return r; 2939 } 2940 2941 /// Determine if any of the operands in this SCEV are a constant or if 2942 /// any of the add or multiply expressions in this SCEV contain a constant. 2943 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2944 struct FindConstantInAddMulChain { 2945 bool FoundConstant = false; 2946 2947 bool follow(const SCEV *S) { 2948 FoundConstant |= isa<SCEVConstant>(S); 2949 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2950 } 2951 2952 bool isDone() const { 2953 return FoundConstant; 2954 } 2955 }; 2956 2957 FindConstantInAddMulChain F; 2958 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2959 ST.visitAll(StartExpr); 2960 return F.FoundConstant; 2961 } 2962 2963 /// Get a canonical multiply expression, or something simpler if possible. 2964 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2965 SCEV::NoWrapFlags OrigFlags, 2966 unsigned Depth) { 2967 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2968 "only nuw or nsw allowed"); 2969 assert(!Ops.empty() && "Cannot get empty mul!"); 2970 if (Ops.size() == 1) return Ops[0]; 2971 #ifndef NDEBUG 2972 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2973 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2974 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2975 "SCEVMulExpr operand types don't match!"); 2976 #endif 2977 2978 // Sort by complexity, this groups all similar expression types together. 2979 GroupByComplexity(Ops, &LI, DT); 2980 2981 // If there are any constants, fold them together. 2982 unsigned Idx = 0; 2983 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2984 ++Idx; 2985 assert(Idx < Ops.size()); 2986 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2987 // We found two constants, fold them together! 2988 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 2989 if (Ops.size() == 2) return Ops[0]; 2990 Ops.erase(Ops.begin()+1); // Erase the folded element 2991 LHSC = cast<SCEVConstant>(Ops[0]); 2992 } 2993 2994 // If we have a multiply of zero, it will always be zero. 2995 if (LHSC->getValue()->isZero()) 2996 return LHSC; 2997 2998 // If we are left with a constant one being multiplied, strip it off. 2999 if (LHSC->getValue()->isOne()) { 3000 Ops.erase(Ops.begin()); 3001 --Idx; 3002 } 3003 3004 if (Ops.size() == 1) 3005 return Ops[0]; 3006 } 3007 3008 // Delay expensive flag strengthening until necessary. 3009 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3010 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3011 }; 3012 3013 // Limit recursion calls depth. 3014 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3015 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3016 3017 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 3018 // Don't strengthen flags if we have no new information. 3019 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3020 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3021 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3022 return S; 3023 } 3024 3025 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3026 if (Ops.size() == 2) { 3027 // C1*(C2+V) -> C1*C2 + C1*V 3028 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3029 // If any of Add's ops are Adds or Muls with a constant, apply this 3030 // transformation as well. 3031 // 3032 // TODO: There are some cases where this transformation is not 3033 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3034 // this transformation should be narrowed down. 3035 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3036 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3037 SCEV::FlagAnyWrap, Depth + 1), 3038 getMulExpr(LHSC, Add->getOperand(1), 3039 SCEV::FlagAnyWrap, Depth + 1), 3040 SCEV::FlagAnyWrap, Depth + 1); 3041 3042 if (Ops[0]->isAllOnesValue()) { 3043 // If we have a mul by -1 of an add, try distributing the -1 among the 3044 // add operands. 3045 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3046 SmallVector<const SCEV *, 4> NewOps; 3047 bool AnyFolded = false; 3048 for (const SCEV *AddOp : Add->operands()) { 3049 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3050 Depth + 1); 3051 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3052 NewOps.push_back(Mul); 3053 } 3054 if (AnyFolded) 3055 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3056 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3057 // Negation preserves a recurrence's no self-wrap property. 3058 SmallVector<const SCEV *, 4> Operands; 3059 for (const SCEV *AddRecOp : AddRec->operands()) 3060 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3061 Depth + 1)); 3062 3063 return getAddRecExpr(Operands, AddRec->getLoop(), 3064 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3065 } 3066 } 3067 } 3068 } 3069 3070 // Skip over the add expression until we get to a multiply. 3071 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3072 ++Idx; 3073 3074 // If there are mul operands inline them all into this expression. 3075 if (Idx < Ops.size()) { 3076 bool DeletedMul = false; 3077 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3078 if (Ops.size() > MulOpsInlineThreshold) 3079 break; 3080 // If we have an mul, expand the mul operands onto the end of the 3081 // operands list. 3082 Ops.erase(Ops.begin()+Idx); 3083 Ops.append(Mul->op_begin(), Mul->op_end()); 3084 DeletedMul = true; 3085 } 3086 3087 // If we deleted at least one mul, we added operands to the end of the 3088 // list, and they are not necessarily sorted. Recurse to resort and 3089 // resimplify any operands we just acquired. 3090 if (DeletedMul) 3091 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3092 } 3093 3094 // If there are any add recurrences in the operands list, see if any other 3095 // added values are loop invariant. If so, we can fold them into the 3096 // recurrence. 3097 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3098 ++Idx; 3099 3100 // Scan over all recurrences, trying to fold loop invariants into them. 3101 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3102 // Scan all of the other operands to this mul and add them to the vector 3103 // if they are loop invariant w.r.t. the recurrence. 3104 SmallVector<const SCEV *, 8> LIOps; 3105 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3106 const Loop *AddRecLoop = AddRec->getLoop(); 3107 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3108 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3109 LIOps.push_back(Ops[i]); 3110 Ops.erase(Ops.begin()+i); 3111 --i; --e; 3112 } 3113 3114 // If we found some loop invariants, fold them into the recurrence. 3115 if (!LIOps.empty()) { 3116 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3117 SmallVector<const SCEV *, 4> NewOps; 3118 NewOps.reserve(AddRec->getNumOperands()); 3119 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3120 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3121 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3122 SCEV::FlagAnyWrap, Depth + 1)); 3123 3124 // Build the new addrec. Propagate the NUW and NSW flags if both the 3125 // outer mul and the inner addrec are guaranteed to have no overflow. 3126 // 3127 // No self-wrap cannot be guaranteed after changing the step size, but 3128 // will be inferred if either NUW or NSW is true. 3129 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3130 const SCEV *NewRec = getAddRecExpr( 3131 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3132 3133 // If all of the other operands were loop invariant, we are done. 3134 if (Ops.size() == 1) return NewRec; 3135 3136 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3137 for (unsigned i = 0;; ++i) 3138 if (Ops[i] == AddRec) { 3139 Ops[i] = NewRec; 3140 break; 3141 } 3142 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3143 } 3144 3145 // Okay, if there weren't any loop invariants to be folded, check to see 3146 // if there are multiple AddRec's with the same loop induction variable 3147 // being multiplied together. If so, we can fold them. 3148 3149 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3150 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3151 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3152 // ]]],+,...up to x=2n}. 3153 // Note that the arguments to choose() are always integers with values 3154 // known at compile time, never SCEV objects. 3155 // 3156 // The implementation avoids pointless extra computations when the two 3157 // addrec's are of different length (mathematically, it's equivalent to 3158 // an infinite stream of zeros on the right). 3159 bool OpsModified = false; 3160 for (unsigned OtherIdx = Idx+1; 3161 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3162 ++OtherIdx) { 3163 const SCEVAddRecExpr *OtherAddRec = 3164 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3165 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3166 continue; 3167 3168 // Limit max number of arguments to avoid creation of unreasonably big 3169 // SCEVAddRecs with very complex operands. 3170 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3171 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3172 continue; 3173 3174 bool Overflow = false; 3175 Type *Ty = AddRec->getType(); 3176 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3177 SmallVector<const SCEV*, 7> AddRecOps; 3178 for (int x = 0, xe = AddRec->getNumOperands() + 3179 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3180 SmallVector <const SCEV *, 7> SumOps; 3181 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3182 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3183 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3184 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3185 z < ze && !Overflow; ++z) { 3186 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3187 uint64_t Coeff; 3188 if (LargerThan64Bits) 3189 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3190 else 3191 Coeff = Coeff1*Coeff2; 3192 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3193 const SCEV *Term1 = AddRec->getOperand(y-z); 3194 const SCEV *Term2 = OtherAddRec->getOperand(z); 3195 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3196 SCEV::FlagAnyWrap, Depth + 1)); 3197 } 3198 } 3199 if (SumOps.empty()) 3200 SumOps.push_back(getZero(Ty)); 3201 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3202 } 3203 if (!Overflow) { 3204 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3205 SCEV::FlagAnyWrap); 3206 if (Ops.size() == 2) return NewAddRec; 3207 Ops[Idx] = NewAddRec; 3208 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3209 OpsModified = true; 3210 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3211 if (!AddRec) 3212 break; 3213 } 3214 } 3215 if (OpsModified) 3216 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3217 3218 // Otherwise couldn't fold anything into this recurrence. Move onto the 3219 // next one. 3220 } 3221 3222 // Okay, it looks like we really DO need an mul expr. Check to see if we 3223 // already have one, otherwise create a new one. 3224 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3225 } 3226 3227 /// Represents an unsigned remainder expression based on unsigned division. 3228 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3229 const SCEV *RHS) { 3230 assert(getEffectiveSCEVType(LHS->getType()) == 3231 getEffectiveSCEVType(RHS->getType()) && 3232 "SCEVURemExpr operand types don't match!"); 3233 3234 // Short-circuit easy cases 3235 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3236 // If constant is one, the result is trivial 3237 if (RHSC->getValue()->isOne()) 3238 return getZero(LHS->getType()); // X urem 1 --> 0 3239 3240 // If constant is a power of two, fold into a zext(trunc(LHS)). 3241 if (RHSC->getAPInt().isPowerOf2()) { 3242 Type *FullTy = LHS->getType(); 3243 Type *TruncTy = 3244 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3245 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3246 } 3247 } 3248 3249 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3250 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3251 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3252 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3253 } 3254 3255 /// Get a canonical unsigned division expression, or something simpler if 3256 /// possible. 3257 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3258 const SCEV *RHS) { 3259 assert(getEffectiveSCEVType(LHS->getType()) == 3260 getEffectiveSCEVType(RHS->getType()) && 3261 "SCEVUDivExpr operand types don't match!"); 3262 3263 FoldingSetNodeID ID; 3264 ID.AddInteger(scUDivExpr); 3265 ID.AddPointer(LHS); 3266 ID.AddPointer(RHS); 3267 void *IP = nullptr; 3268 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3269 return S; 3270 3271 // 0 udiv Y == 0 3272 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3273 if (LHSC->getValue()->isZero()) 3274 return LHS; 3275 3276 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3277 if (RHSC->getValue()->isOne()) 3278 return LHS; // X udiv 1 --> x 3279 // If the denominator is zero, the result of the udiv is undefined. Don't 3280 // try to analyze it, because the resolution chosen here may differ from 3281 // the resolution chosen in other parts of the compiler. 3282 if (!RHSC->getValue()->isZero()) { 3283 // Determine if the division can be folded into the operands of 3284 // its operands. 3285 // TODO: Generalize this to non-constants by using known-bits information. 3286 Type *Ty = LHS->getType(); 3287 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3288 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3289 // For non-power-of-two values, effectively round the value up to the 3290 // nearest power of two. 3291 if (!RHSC->getAPInt().isPowerOf2()) 3292 ++MaxShiftAmt; 3293 IntegerType *ExtTy = 3294 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3295 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3296 if (const SCEVConstant *Step = 3297 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3298 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3299 const APInt &StepInt = Step->getAPInt(); 3300 const APInt &DivInt = RHSC->getAPInt(); 3301 if (!StepInt.urem(DivInt) && 3302 getZeroExtendExpr(AR, ExtTy) == 3303 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3304 getZeroExtendExpr(Step, ExtTy), 3305 AR->getLoop(), SCEV::FlagAnyWrap)) { 3306 SmallVector<const SCEV *, 4> Operands; 3307 for (const SCEV *Op : AR->operands()) 3308 Operands.push_back(getUDivExpr(Op, RHS)); 3309 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3310 } 3311 /// Get a canonical UDivExpr for a recurrence. 3312 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3313 // We can currently only fold X%N if X is constant. 3314 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3315 if (StartC && !DivInt.urem(StepInt) && 3316 getZeroExtendExpr(AR, ExtTy) == 3317 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3318 getZeroExtendExpr(Step, ExtTy), 3319 AR->getLoop(), SCEV::FlagAnyWrap)) { 3320 const APInt &StartInt = StartC->getAPInt(); 3321 const APInt &StartRem = StartInt.urem(StepInt); 3322 if (StartRem != 0) { 3323 const SCEV *NewLHS = 3324 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3325 AR->getLoop(), SCEV::FlagNW); 3326 if (LHS != NewLHS) { 3327 LHS = NewLHS; 3328 3329 // Reset the ID to include the new LHS, and check if it is 3330 // already cached. 3331 ID.clear(); 3332 ID.AddInteger(scUDivExpr); 3333 ID.AddPointer(LHS); 3334 ID.AddPointer(RHS); 3335 IP = nullptr; 3336 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3337 return S; 3338 } 3339 } 3340 } 3341 } 3342 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3343 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3344 SmallVector<const SCEV *, 4> Operands; 3345 for (const SCEV *Op : M->operands()) 3346 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3347 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3348 // Find an operand that's safely divisible. 3349 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3350 const SCEV *Op = M->getOperand(i); 3351 const SCEV *Div = getUDivExpr(Op, RHSC); 3352 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3353 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3354 Operands[i] = Div; 3355 return getMulExpr(Operands); 3356 } 3357 } 3358 } 3359 3360 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3361 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3362 if (auto *DivisorConstant = 3363 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3364 bool Overflow = false; 3365 APInt NewRHS = 3366 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3367 if (Overflow) { 3368 return getConstant(RHSC->getType(), 0, false); 3369 } 3370 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3371 } 3372 } 3373 3374 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3375 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3376 SmallVector<const SCEV *, 4> Operands; 3377 for (const SCEV *Op : A->operands()) 3378 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3379 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3380 Operands.clear(); 3381 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3382 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3383 if (isa<SCEVUDivExpr>(Op) || 3384 getMulExpr(Op, RHS) != A->getOperand(i)) 3385 break; 3386 Operands.push_back(Op); 3387 } 3388 if (Operands.size() == A->getNumOperands()) 3389 return getAddExpr(Operands); 3390 } 3391 } 3392 3393 // Fold if both operands are constant. 3394 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3395 Constant *LHSCV = LHSC->getValue(); 3396 Constant *RHSCV = RHSC->getValue(); 3397 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3398 RHSCV))); 3399 } 3400 } 3401 } 3402 3403 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3404 // changes). Make sure we get a new one. 3405 IP = nullptr; 3406 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3407 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3408 LHS, RHS); 3409 UniqueSCEVs.InsertNode(S, IP); 3410 addToLoopUseLists(S); 3411 return S; 3412 } 3413 3414 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3415 APInt A = C1->getAPInt().abs(); 3416 APInt B = C2->getAPInt().abs(); 3417 uint32_t ABW = A.getBitWidth(); 3418 uint32_t BBW = B.getBitWidth(); 3419 3420 if (ABW > BBW) 3421 B = B.zext(ABW); 3422 else if (ABW < BBW) 3423 A = A.zext(BBW); 3424 3425 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3426 } 3427 3428 /// Get a canonical unsigned division expression, or something simpler if 3429 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3430 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3431 /// it's not exact because the udiv may be clearing bits. 3432 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3433 const SCEV *RHS) { 3434 // TODO: we could try to find factors in all sorts of things, but for now we 3435 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3436 // end of this file for inspiration. 3437 3438 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3439 if (!Mul || !Mul->hasNoUnsignedWrap()) 3440 return getUDivExpr(LHS, RHS); 3441 3442 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3443 // If the mulexpr multiplies by a constant, then that constant must be the 3444 // first element of the mulexpr. 3445 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3446 if (LHSCst == RHSCst) { 3447 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3448 return getMulExpr(Operands); 3449 } 3450 3451 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3452 // that there's a factor provided by one of the other terms. We need to 3453 // check. 3454 APInt Factor = gcd(LHSCst, RHSCst); 3455 if (!Factor.isIntN(1)) { 3456 LHSCst = 3457 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3458 RHSCst = 3459 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3460 SmallVector<const SCEV *, 2> Operands; 3461 Operands.push_back(LHSCst); 3462 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3463 LHS = getMulExpr(Operands); 3464 RHS = RHSCst; 3465 Mul = dyn_cast<SCEVMulExpr>(LHS); 3466 if (!Mul) 3467 return getUDivExactExpr(LHS, RHS); 3468 } 3469 } 3470 } 3471 3472 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3473 if (Mul->getOperand(i) == RHS) { 3474 SmallVector<const SCEV *, 2> Operands; 3475 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3476 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3477 return getMulExpr(Operands); 3478 } 3479 } 3480 3481 return getUDivExpr(LHS, RHS); 3482 } 3483 3484 /// Get an add recurrence expression for the specified loop. Simplify the 3485 /// expression as much as possible. 3486 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3487 const Loop *L, 3488 SCEV::NoWrapFlags Flags) { 3489 SmallVector<const SCEV *, 4> Operands; 3490 Operands.push_back(Start); 3491 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3492 if (StepChrec->getLoop() == L) { 3493 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3494 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3495 } 3496 3497 Operands.push_back(Step); 3498 return getAddRecExpr(Operands, L, Flags); 3499 } 3500 3501 /// Get an add recurrence expression for the specified loop. Simplify the 3502 /// expression as much as possible. 3503 const SCEV * 3504 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3505 const Loop *L, SCEV::NoWrapFlags Flags) { 3506 if (Operands.size() == 1) return Operands[0]; 3507 #ifndef NDEBUG 3508 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3509 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3510 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3511 "SCEVAddRecExpr operand types don't match!"); 3512 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3513 assert(isLoopInvariant(Operands[i], L) && 3514 "SCEVAddRecExpr operand is not loop-invariant!"); 3515 #endif 3516 3517 if (Operands.back()->isZero()) { 3518 Operands.pop_back(); 3519 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3520 } 3521 3522 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3523 // use that information to infer NUW and NSW flags. However, computing a 3524 // BE count requires calling getAddRecExpr, so we may not yet have a 3525 // meaningful BE count at this point (and if we don't, we'd be stuck 3526 // with a SCEVCouldNotCompute as the cached BE count). 3527 3528 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3529 3530 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3531 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3532 const Loop *NestedLoop = NestedAR->getLoop(); 3533 if (L->contains(NestedLoop) 3534 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3535 : (!NestedLoop->contains(L) && 3536 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3537 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3538 Operands[0] = NestedAR->getStart(); 3539 // AddRecs require their operands be loop-invariant with respect to their 3540 // loops. Don't perform this transformation if it would break this 3541 // requirement. 3542 bool AllInvariant = all_of( 3543 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3544 3545 if (AllInvariant) { 3546 // Create a recurrence for the outer loop with the same step size. 3547 // 3548 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3549 // inner recurrence has the same property. 3550 SCEV::NoWrapFlags OuterFlags = 3551 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3552 3553 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3554 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3555 return isLoopInvariant(Op, NestedLoop); 3556 }); 3557 3558 if (AllInvariant) { 3559 // Ok, both add recurrences are valid after the transformation. 3560 // 3561 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3562 // the outer recurrence has the same property. 3563 SCEV::NoWrapFlags InnerFlags = 3564 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3565 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3566 } 3567 } 3568 // Reset Operands to its original state. 3569 Operands[0] = NestedAR; 3570 } 3571 } 3572 3573 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3574 // already have one, otherwise create a new one. 3575 return getOrCreateAddRecExpr(Operands, L, Flags); 3576 } 3577 3578 const SCEV * 3579 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3580 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3581 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3582 // getSCEV(Base)->getType() has the same address space as Base->getType() 3583 // because SCEV::getType() preserves the address space. 3584 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3585 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3586 // instruction to its SCEV, because the Instruction may be guarded by control 3587 // flow and the no-overflow bits may not be valid for the expression in any 3588 // context. This can be fixed similarly to how these flags are handled for 3589 // adds. 3590 SCEV::NoWrapFlags OffsetWrap = 3591 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3592 3593 Type *CurTy = GEP->getType(); 3594 bool FirstIter = true; 3595 SmallVector<const SCEV *, 4> Offsets; 3596 for (const SCEV *IndexExpr : IndexExprs) { 3597 // Compute the (potentially symbolic) offset in bytes for this index. 3598 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3599 // For a struct, add the member offset. 3600 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3601 unsigned FieldNo = Index->getZExtValue(); 3602 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3603 Offsets.push_back(FieldOffset); 3604 3605 // Update CurTy to the type of the field at Index. 3606 CurTy = STy->getTypeAtIndex(Index); 3607 } else { 3608 // Update CurTy to its element type. 3609 if (FirstIter) { 3610 assert(isa<PointerType>(CurTy) && 3611 "The first index of a GEP indexes a pointer"); 3612 CurTy = GEP->getSourceElementType(); 3613 FirstIter = false; 3614 } else { 3615 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3616 } 3617 // For an array, add the element offset, explicitly scaled. 3618 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3619 // Getelementptr indices are signed. 3620 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3621 3622 // Multiply the index by the element size to compute the element offset. 3623 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3624 Offsets.push_back(LocalOffset); 3625 } 3626 } 3627 3628 // Handle degenerate case of GEP without offsets. 3629 if (Offsets.empty()) 3630 return BaseExpr; 3631 3632 // Add the offsets together, assuming nsw if inbounds. 3633 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3634 // Add the base address and the offset. We cannot use the nsw flag, as the 3635 // base address is unsigned. However, if we know that the offset is 3636 // non-negative, we can use nuw. 3637 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3638 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3639 return getAddExpr(BaseExpr, Offset, BaseWrap); 3640 } 3641 3642 std::tuple<SCEV *, FoldingSetNodeID, void *> 3643 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3644 ArrayRef<const SCEV *> Ops) { 3645 FoldingSetNodeID ID; 3646 void *IP = nullptr; 3647 ID.AddInteger(SCEVType); 3648 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3649 ID.AddPointer(Ops[i]); 3650 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3651 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3652 } 3653 3654 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3655 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3656 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3657 } 3658 3659 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3660 SmallVectorImpl<const SCEV *> &Ops) { 3661 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3662 if (Ops.size() == 1) return Ops[0]; 3663 #ifndef NDEBUG 3664 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3665 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3666 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3667 "Operand types don't match!"); 3668 #endif 3669 3670 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3671 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3672 3673 // Sort by complexity, this groups all similar expression types together. 3674 GroupByComplexity(Ops, &LI, DT); 3675 3676 // Check if we have created the same expression before. 3677 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3678 return S; 3679 } 3680 3681 // If there are any constants, fold them together. 3682 unsigned Idx = 0; 3683 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3684 ++Idx; 3685 assert(Idx < Ops.size()); 3686 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3687 if (Kind == scSMaxExpr) 3688 return APIntOps::smax(LHS, RHS); 3689 else if (Kind == scSMinExpr) 3690 return APIntOps::smin(LHS, RHS); 3691 else if (Kind == scUMaxExpr) 3692 return APIntOps::umax(LHS, RHS); 3693 else if (Kind == scUMinExpr) 3694 return APIntOps::umin(LHS, RHS); 3695 llvm_unreachable("Unknown SCEV min/max opcode"); 3696 }; 3697 3698 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3699 // We found two constants, fold them together! 3700 ConstantInt *Fold = ConstantInt::get( 3701 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3702 Ops[0] = getConstant(Fold); 3703 Ops.erase(Ops.begin()+1); // Erase the folded element 3704 if (Ops.size() == 1) return Ops[0]; 3705 LHSC = cast<SCEVConstant>(Ops[0]); 3706 } 3707 3708 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3709 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3710 3711 if (IsMax ? IsMinV : IsMaxV) { 3712 // If we are left with a constant minimum(/maximum)-int, strip it off. 3713 Ops.erase(Ops.begin()); 3714 --Idx; 3715 } else if (IsMax ? IsMaxV : IsMinV) { 3716 // If we have a max(/min) with a constant maximum(/minimum)-int, 3717 // it will always be the extremum. 3718 return LHSC; 3719 } 3720 3721 if (Ops.size() == 1) return Ops[0]; 3722 } 3723 3724 // Find the first operation of the same kind 3725 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3726 ++Idx; 3727 3728 // Check to see if one of the operands is of the same kind. If so, expand its 3729 // operands onto our operand list, and recurse to simplify. 3730 if (Idx < Ops.size()) { 3731 bool DeletedAny = false; 3732 while (Ops[Idx]->getSCEVType() == Kind) { 3733 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3734 Ops.erase(Ops.begin()+Idx); 3735 Ops.append(SMME->op_begin(), SMME->op_end()); 3736 DeletedAny = true; 3737 } 3738 3739 if (DeletedAny) 3740 return getMinMaxExpr(Kind, Ops); 3741 } 3742 3743 // Okay, check to see if the same value occurs in the operand list twice. If 3744 // so, delete one. Since we sorted the list, these values are required to 3745 // be adjacent. 3746 llvm::CmpInst::Predicate GEPred = 3747 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3748 llvm::CmpInst::Predicate LEPred = 3749 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3750 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3751 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3752 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3753 if (Ops[i] == Ops[i + 1] || 3754 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3755 // X op Y op Y --> X op Y 3756 // X op Y --> X, if we know X, Y are ordered appropriately 3757 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3758 --i; 3759 --e; 3760 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3761 Ops[i + 1])) { 3762 // X op Y --> Y, if we know X, Y are ordered appropriately 3763 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3764 --i; 3765 --e; 3766 } 3767 } 3768 3769 if (Ops.size() == 1) return Ops[0]; 3770 3771 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3772 3773 // Okay, it looks like we really DO need an expr. Check to see if we 3774 // already have one, otherwise create a new one. 3775 const SCEV *ExistingSCEV; 3776 FoldingSetNodeID ID; 3777 void *IP; 3778 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3779 if (ExistingSCEV) 3780 return ExistingSCEV; 3781 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3782 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3783 SCEV *S = new (SCEVAllocator) 3784 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3785 3786 UniqueSCEVs.InsertNode(S, IP); 3787 addToLoopUseLists(S); 3788 return S; 3789 } 3790 3791 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3792 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3793 return getSMaxExpr(Ops); 3794 } 3795 3796 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3797 return getMinMaxExpr(scSMaxExpr, Ops); 3798 } 3799 3800 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3801 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3802 return getUMaxExpr(Ops); 3803 } 3804 3805 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3806 return getMinMaxExpr(scUMaxExpr, Ops); 3807 } 3808 3809 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3810 const SCEV *RHS) { 3811 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3812 return getSMinExpr(Ops); 3813 } 3814 3815 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3816 return getMinMaxExpr(scSMinExpr, Ops); 3817 } 3818 3819 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3820 const SCEV *RHS) { 3821 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3822 return getUMinExpr(Ops); 3823 } 3824 3825 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3826 return getMinMaxExpr(scUMinExpr, Ops); 3827 } 3828 3829 const SCEV * 3830 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3831 ScalableVectorType *ScalableTy) { 3832 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3833 Constant *One = ConstantInt::get(IntTy, 1); 3834 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3835 // Note that the expression we created is the final expression, we don't 3836 // want to simplify it any further Also, if we call a normal getSCEV(), 3837 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3838 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3839 } 3840 3841 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3842 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3843 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3844 // We can bypass creating a target-independent constant expression and then 3845 // folding it back into a ConstantInt. This is just a compile-time 3846 // optimization. 3847 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3848 } 3849 3850 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3851 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3852 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3853 // We can bypass creating a target-independent constant expression and then 3854 // folding it back into a ConstantInt. This is just a compile-time 3855 // optimization. 3856 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3857 } 3858 3859 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3860 StructType *STy, 3861 unsigned FieldNo) { 3862 // We can bypass creating a target-independent constant expression and then 3863 // folding it back into a ConstantInt. This is just a compile-time 3864 // optimization. 3865 return getConstant( 3866 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3867 } 3868 3869 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3870 // Don't attempt to do anything other than create a SCEVUnknown object 3871 // here. createSCEV only calls getUnknown after checking for all other 3872 // interesting possibilities, and any other code that calls getUnknown 3873 // is doing so in order to hide a value from SCEV canonicalization. 3874 3875 FoldingSetNodeID ID; 3876 ID.AddInteger(scUnknown); 3877 ID.AddPointer(V); 3878 void *IP = nullptr; 3879 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3880 assert(cast<SCEVUnknown>(S)->getValue() == V && 3881 "Stale SCEVUnknown in uniquing map!"); 3882 return S; 3883 } 3884 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3885 FirstUnknown); 3886 FirstUnknown = cast<SCEVUnknown>(S); 3887 UniqueSCEVs.InsertNode(S, IP); 3888 return S; 3889 } 3890 3891 //===----------------------------------------------------------------------===// 3892 // Basic SCEV Analysis and PHI Idiom Recognition Code 3893 // 3894 3895 /// Test if values of the given type are analyzable within the SCEV 3896 /// framework. This primarily includes integer types, and it can optionally 3897 /// include pointer types if the ScalarEvolution class has access to 3898 /// target-specific information. 3899 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3900 // Integers and pointers are always SCEVable. 3901 return Ty->isIntOrPtrTy(); 3902 } 3903 3904 /// Return the size in bits of the specified type, for which isSCEVable must 3905 /// return true. 3906 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3907 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3908 if (Ty->isPointerTy()) 3909 return getDataLayout().getIndexTypeSizeInBits(Ty); 3910 return getDataLayout().getTypeSizeInBits(Ty); 3911 } 3912 3913 /// Return a type with the same bitwidth as the given type and which represents 3914 /// how SCEV will treat the given type, for which isSCEVable must return 3915 /// true. For pointer types, this is the pointer index sized integer type. 3916 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3917 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3918 3919 if (Ty->isIntegerTy()) 3920 return Ty; 3921 3922 // The only other support type is pointer. 3923 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3924 return getDataLayout().getIndexType(Ty); 3925 } 3926 3927 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3928 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3929 } 3930 3931 const SCEV *ScalarEvolution::getCouldNotCompute() { 3932 return CouldNotCompute.get(); 3933 } 3934 3935 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3936 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3937 auto *SU = dyn_cast<SCEVUnknown>(S); 3938 return SU && SU->getValue() == nullptr; 3939 }); 3940 3941 return !ContainsNulls; 3942 } 3943 3944 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3945 HasRecMapType::iterator I = HasRecMap.find(S); 3946 if (I != HasRecMap.end()) 3947 return I->second; 3948 3949 bool FoundAddRec = 3950 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3951 HasRecMap.insert({S, FoundAddRec}); 3952 return FoundAddRec; 3953 } 3954 3955 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3956 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3957 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3958 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3959 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3960 if (!Add) 3961 return {S, nullptr}; 3962 3963 if (Add->getNumOperands() != 2) 3964 return {S, nullptr}; 3965 3966 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3967 if (!ConstOp) 3968 return {S, nullptr}; 3969 3970 return {Add->getOperand(1), ConstOp->getValue()}; 3971 } 3972 3973 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3974 /// by the value and offset from any ValueOffsetPair in the set. 3975 ScalarEvolution::ValueOffsetPairSetVector * 3976 ScalarEvolution::getSCEVValues(const SCEV *S) { 3977 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3978 if (SI == ExprValueMap.end()) 3979 return nullptr; 3980 #ifndef NDEBUG 3981 if (VerifySCEVMap) { 3982 // Check there is no dangling Value in the set returned. 3983 for (const auto &VE : SI->second) 3984 assert(ValueExprMap.count(VE.first)); 3985 } 3986 #endif 3987 return &SI->second; 3988 } 3989 3990 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3991 /// cannot be used separately. eraseValueFromMap should be used to remove 3992 /// V from ValueExprMap and ExprValueMap at the same time. 3993 void ScalarEvolution::eraseValueFromMap(Value *V) { 3994 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3995 if (I != ValueExprMap.end()) { 3996 const SCEV *S = I->second; 3997 // Remove {V, 0} from the set of ExprValueMap[S] 3998 if (auto *SV = getSCEVValues(S)) 3999 SV->remove({V, nullptr}); 4000 4001 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4002 const SCEV *Stripped; 4003 ConstantInt *Offset; 4004 std::tie(Stripped, Offset) = splitAddExpr(S); 4005 if (Offset != nullptr) { 4006 if (auto *SV = getSCEVValues(Stripped)) 4007 SV->remove({V, Offset}); 4008 } 4009 ValueExprMap.erase(V); 4010 } 4011 } 4012 4013 /// Check whether value has nuw/nsw/exact set but SCEV does not. 4014 /// TODO: In reality it is better to check the poison recursively 4015 /// but this is better than nothing. 4016 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 4017 if (auto *I = dyn_cast<Instruction>(V)) { 4018 if (isa<OverflowingBinaryOperator>(I)) { 4019 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 4020 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 4021 return true; 4022 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 4023 return true; 4024 } 4025 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 4026 return true; 4027 } 4028 return false; 4029 } 4030 4031 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4032 /// create a new one. 4033 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4034 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4035 4036 const SCEV *S = getExistingSCEV(V); 4037 if (S == nullptr) { 4038 S = createSCEV(V); 4039 // During PHI resolution, it is possible to create two SCEVs for the same 4040 // V, so it is needed to double check whether V->S is inserted into 4041 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4042 std::pair<ValueExprMapType::iterator, bool> Pair = 4043 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4044 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 4045 ExprValueMap[S].insert({V, nullptr}); 4046 4047 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4048 // ExprValueMap. 4049 const SCEV *Stripped = S; 4050 ConstantInt *Offset = nullptr; 4051 std::tie(Stripped, Offset) = splitAddExpr(S); 4052 // If stripped is SCEVUnknown, don't bother to save 4053 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4054 // increase the complexity of the expansion code. 4055 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4056 // because it may generate add/sub instead of GEP in SCEV expansion. 4057 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4058 !isa<GetElementPtrInst>(V)) 4059 ExprValueMap[Stripped].insert({V, Offset}); 4060 } 4061 } 4062 return S; 4063 } 4064 4065 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4066 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4067 4068 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4069 if (I != ValueExprMap.end()) { 4070 const SCEV *S = I->second; 4071 if (checkValidity(S)) 4072 return S; 4073 eraseValueFromMap(V); 4074 forgetMemoizedResults(S); 4075 } 4076 return nullptr; 4077 } 4078 4079 /// Return a SCEV corresponding to -V = -1*V 4080 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4081 SCEV::NoWrapFlags Flags) { 4082 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4083 return getConstant( 4084 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4085 4086 Type *Ty = V->getType(); 4087 Ty = getEffectiveSCEVType(Ty); 4088 return getMulExpr(V, getMinusOne(Ty), Flags); 4089 } 4090 4091 /// If Expr computes ~A, return A else return nullptr 4092 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4093 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4094 if (!Add || Add->getNumOperands() != 2 || 4095 !Add->getOperand(0)->isAllOnesValue()) 4096 return nullptr; 4097 4098 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4099 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4100 !AddRHS->getOperand(0)->isAllOnesValue()) 4101 return nullptr; 4102 4103 return AddRHS->getOperand(1); 4104 } 4105 4106 /// Return a SCEV corresponding to ~V = -1-V 4107 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4108 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4109 return getConstant( 4110 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4111 4112 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4113 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4114 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4115 SmallVector<const SCEV *, 2> MatchedOperands; 4116 for (const SCEV *Operand : MME->operands()) { 4117 const SCEV *Matched = MatchNotExpr(Operand); 4118 if (!Matched) 4119 return (const SCEV *)nullptr; 4120 MatchedOperands.push_back(Matched); 4121 } 4122 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4123 MatchedOperands); 4124 }; 4125 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4126 return Replaced; 4127 } 4128 4129 Type *Ty = V->getType(); 4130 Ty = getEffectiveSCEVType(Ty); 4131 return getMinusSCEV(getMinusOne(Ty), V); 4132 } 4133 4134 /// Compute an expression equivalent to S - getPointerBase(S). 4135 static const SCEV *removePointerBase(ScalarEvolution *SE, const SCEV *P) { 4136 assert(P->getType()->isPointerTy()); 4137 4138 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4139 // The base of an AddRec is the first operand. 4140 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4141 Ops[0] = removePointerBase(SE, Ops[0]); 4142 // Don't try to transfer nowrap flags for now. We could in some cases 4143 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4144 return SE->getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4145 } 4146 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4147 // The base of an Add is the pointer operand. 4148 SmallVector<const SCEV *> Ops{Add->operands()}; 4149 const SCEV **PtrOp = nullptr; 4150 for (const SCEV *&AddOp : Ops) { 4151 if (AddOp->getType()->isPointerTy()) { 4152 // If we find an Add with multiple pointer operands, treat it as a 4153 // pointer base to be consistent with getPointerBase. Eventually 4154 // we should be able to assert this is impossible. 4155 if (PtrOp) 4156 return SE->getZero(P->getType()); 4157 PtrOp = &AddOp; 4158 } 4159 } 4160 *PtrOp = removePointerBase(SE, *PtrOp); 4161 // Don't try to transfer nowrap flags for now. We could in some cases 4162 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4163 return SE->getAddExpr(Ops); 4164 } 4165 // Any other expression must be a pointer base. 4166 return SE->getZero(P->getType()); 4167 } 4168 4169 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4170 SCEV::NoWrapFlags Flags, 4171 unsigned Depth) { 4172 // Fast path: X - X --> 0. 4173 if (LHS == RHS) 4174 return getZero(LHS->getType()); 4175 4176 // If we subtract two pointers with different pointer bases, bail. 4177 // Eventually, we're going to add an assertion to getMulExpr that we 4178 // can't multiply by a pointer. 4179 if (RHS->getType()->isPointerTy()) { 4180 if (!LHS->getType()->isPointerTy() || 4181 getPointerBase(LHS) != getPointerBase(RHS)) 4182 return getCouldNotCompute(); 4183 LHS = removePointerBase(this, LHS); 4184 RHS = removePointerBase(this, RHS); 4185 } 4186 4187 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4188 // makes it so that we cannot make much use of NUW. 4189 auto AddFlags = SCEV::FlagAnyWrap; 4190 const bool RHSIsNotMinSigned = 4191 !getSignedRangeMin(RHS).isMinSignedValue(); 4192 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 4193 // Let M be the minimum representable signed value. Then (-1)*RHS 4194 // signed-wraps if and only if RHS is M. That can happen even for 4195 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4196 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4197 // (-1)*RHS, we need to prove that RHS != M. 4198 // 4199 // If LHS is non-negative and we know that LHS - RHS does not 4200 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4201 // either by proving that RHS > M or that LHS >= 0. 4202 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4203 AddFlags = SCEV::FlagNSW; 4204 } 4205 } 4206 4207 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4208 // RHS is NSW and LHS >= 0. 4209 // 4210 // The difficulty here is that the NSW flag may have been proven 4211 // relative to a loop that is to be found in a recurrence in LHS and 4212 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4213 // larger scope than intended. 4214 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4215 4216 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4217 } 4218 4219 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4220 unsigned Depth) { 4221 Type *SrcTy = V->getType(); 4222 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4223 "Cannot truncate or zero extend with non-integer arguments!"); 4224 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4225 return V; // No conversion 4226 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4227 return getTruncateExpr(V, Ty, Depth); 4228 return getZeroExtendExpr(V, Ty, Depth); 4229 } 4230 4231 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4232 unsigned Depth) { 4233 Type *SrcTy = V->getType(); 4234 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4235 "Cannot truncate or zero extend with non-integer arguments!"); 4236 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4237 return V; // No conversion 4238 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4239 return getTruncateExpr(V, Ty, Depth); 4240 return getSignExtendExpr(V, Ty, Depth); 4241 } 4242 4243 const SCEV * 4244 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4245 Type *SrcTy = V->getType(); 4246 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4247 "Cannot noop or zero extend with non-integer arguments!"); 4248 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4249 "getNoopOrZeroExtend cannot truncate!"); 4250 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4251 return V; // No conversion 4252 return getZeroExtendExpr(V, Ty); 4253 } 4254 4255 const SCEV * 4256 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4257 Type *SrcTy = V->getType(); 4258 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4259 "Cannot noop or sign extend with non-integer arguments!"); 4260 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4261 "getNoopOrSignExtend cannot truncate!"); 4262 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4263 return V; // No conversion 4264 return getSignExtendExpr(V, Ty); 4265 } 4266 4267 const SCEV * 4268 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4269 Type *SrcTy = V->getType(); 4270 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4271 "Cannot noop or any extend with non-integer arguments!"); 4272 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4273 "getNoopOrAnyExtend cannot truncate!"); 4274 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4275 return V; // No conversion 4276 return getAnyExtendExpr(V, Ty); 4277 } 4278 4279 const SCEV * 4280 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4281 Type *SrcTy = V->getType(); 4282 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4283 "Cannot truncate or noop with non-integer arguments!"); 4284 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4285 "getTruncateOrNoop cannot extend!"); 4286 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4287 return V; // No conversion 4288 return getTruncateExpr(V, Ty); 4289 } 4290 4291 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4292 const SCEV *RHS) { 4293 const SCEV *PromotedLHS = LHS; 4294 const SCEV *PromotedRHS = RHS; 4295 4296 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4297 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4298 else 4299 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4300 4301 return getUMaxExpr(PromotedLHS, PromotedRHS); 4302 } 4303 4304 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4305 const SCEV *RHS) { 4306 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4307 return getUMinFromMismatchedTypes(Ops); 4308 } 4309 4310 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4311 SmallVectorImpl<const SCEV *> &Ops) { 4312 assert(!Ops.empty() && "At least one operand must be!"); 4313 // Trivial case. 4314 if (Ops.size() == 1) 4315 return Ops[0]; 4316 4317 // Find the max type first. 4318 Type *MaxType = nullptr; 4319 for (auto *S : Ops) 4320 if (MaxType) 4321 MaxType = getWiderType(MaxType, S->getType()); 4322 else 4323 MaxType = S->getType(); 4324 assert(MaxType && "Failed to find maximum type!"); 4325 4326 // Extend all ops to max type. 4327 SmallVector<const SCEV *, 2> PromotedOps; 4328 for (auto *S : Ops) 4329 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4330 4331 // Generate umin. 4332 return getUMinExpr(PromotedOps); 4333 } 4334 4335 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4336 // A pointer operand may evaluate to a nonpointer expression, such as null. 4337 if (!V->getType()->isPointerTy()) 4338 return V; 4339 4340 while (true) { 4341 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4342 V = AddRec->getStart(); 4343 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4344 const SCEV *PtrOp = nullptr; 4345 for (const SCEV *AddOp : Add->operands()) { 4346 if (AddOp->getType()->isPointerTy()) { 4347 // Cannot find the base of an expression with multiple pointer ops. 4348 if (PtrOp) 4349 return V; 4350 PtrOp = AddOp; 4351 } 4352 } 4353 if (!PtrOp) // All operands were non-pointer. 4354 return V; 4355 V = PtrOp; 4356 } else // Not something we can look further into. 4357 return V; 4358 } 4359 } 4360 4361 /// Push users of the given Instruction onto the given Worklist. 4362 static void 4363 PushDefUseChildren(Instruction *I, 4364 SmallVectorImpl<Instruction *> &Worklist) { 4365 // Push the def-use children onto the Worklist stack. 4366 for (User *U : I->users()) 4367 Worklist.push_back(cast<Instruction>(U)); 4368 } 4369 4370 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4371 SmallVector<Instruction *, 16> Worklist; 4372 PushDefUseChildren(PN, Worklist); 4373 4374 SmallPtrSet<Instruction *, 8> Visited; 4375 Visited.insert(PN); 4376 while (!Worklist.empty()) { 4377 Instruction *I = Worklist.pop_back_val(); 4378 if (!Visited.insert(I).second) 4379 continue; 4380 4381 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4382 if (It != ValueExprMap.end()) { 4383 const SCEV *Old = It->second; 4384 4385 // Short-circuit the def-use traversal if the symbolic name 4386 // ceases to appear in expressions. 4387 if (Old != SymName && !hasOperand(Old, SymName)) 4388 continue; 4389 4390 // SCEVUnknown for a PHI either means that it has an unrecognized 4391 // structure, it's a PHI that's in the progress of being computed 4392 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4393 // additional loop trip count information isn't going to change anything. 4394 // In the second case, createNodeForPHI will perform the necessary 4395 // updates on its own when it gets to that point. In the third, we do 4396 // want to forget the SCEVUnknown. 4397 if (!isa<PHINode>(I) || 4398 !isa<SCEVUnknown>(Old) || 4399 (I != PN && Old == SymName)) { 4400 eraseValueFromMap(It->first); 4401 forgetMemoizedResults(Old); 4402 } 4403 } 4404 4405 PushDefUseChildren(I, Worklist); 4406 } 4407 } 4408 4409 namespace { 4410 4411 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4412 /// expression in case its Loop is L. If it is not L then 4413 /// if IgnoreOtherLoops is true then use AddRec itself 4414 /// otherwise rewrite cannot be done. 4415 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4416 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4417 public: 4418 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4419 bool IgnoreOtherLoops = true) { 4420 SCEVInitRewriter Rewriter(L, SE); 4421 const SCEV *Result = Rewriter.visit(S); 4422 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4423 return SE.getCouldNotCompute(); 4424 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4425 ? SE.getCouldNotCompute() 4426 : Result; 4427 } 4428 4429 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4430 if (!SE.isLoopInvariant(Expr, L)) 4431 SeenLoopVariantSCEVUnknown = true; 4432 return Expr; 4433 } 4434 4435 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4436 // Only re-write AddRecExprs for this loop. 4437 if (Expr->getLoop() == L) 4438 return Expr->getStart(); 4439 SeenOtherLoops = true; 4440 return Expr; 4441 } 4442 4443 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4444 4445 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4446 4447 private: 4448 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4449 : SCEVRewriteVisitor(SE), L(L) {} 4450 4451 const Loop *L; 4452 bool SeenLoopVariantSCEVUnknown = false; 4453 bool SeenOtherLoops = false; 4454 }; 4455 4456 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4457 /// increment expression in case its Loop is L. If it is not L then 4458 /// use AddRec itself. 4459 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4460 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4461 public: 4462 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4463 SCEVPostIncRewriter Rewriter(L, SE); 4464 const SCEV *Result = Rewriter.visit(S); 4465 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4466 ? SE.getCouldNotCompute() 4467 : Result; 4468 } 4469 4470 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4471 if (!SE.isLoopInvariant(Expr, L)) 4472 SeenLoopVariantSCEVUnknown = true; 4473 return Expr; 4474 } 4475 4476 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4477 // Only re-write AddRecExprs for this loop. 4478 if (Expr->getLoop() == L) 4479 return Expr->getPostIncExpr(SE); 4480 SeenOtherLoops = true; 4481 return Expr; 4482 } 4483 4484 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4485 4486 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4487 4488 private: 4489 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4490 : SCEVRewriteVisitor(SE), L(L) {} 4491 4492 const Loop *L; 4493 bool SeenLoopVariantSCEVUnknown = false; 4494 bool SeenOtherLoops = false; 4495 }; 4496 4497 /// This class evaluates the compare condition by matching it against the 4498 /// condition of loop latch. If there is a match we assume a true value 4499 /// for the condition while building SCEV nodes. 4500 class SCEVBackedgeConditionFolder 4501 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4502 public: 4503 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4504 ScalarEvolution &SE) { 4505 bool IsPosBECond = false; 4506 Value *BECond = nullptr; 4507 if (BasicBlock *Latch = L->getLoopLatch()) { 4508 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4509 if (BI && BI->isConditional()) { 4510 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4511 "Both outgoing branches should not target same header!"); 4512 BECond = BI->getCondition(); 4513 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4514 } else { 4515 return S; 4516 } 4517 } 4518 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4519 return Rewriter.visit(S); 4520 } 4521 4522 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4523 const SCEV *Result = Expr; 4524 bool InvariantF = SE.isLoopInvariant(Expr, L); 4525 4526 if (!InvariantF) { 4527 Instruction *I = cast<Instruction>(Expr->getValue()); 4528 switch (I->getOpcode()) { 4529 case Instruction::Select: { 4530 SelectInst *SI = cast<SelectInst>(I); 4531 Optional<const SCEV *> Res = 4532 compareWithBackedgeCondition(SI->getCondition()); 4533 if (Res.hasValue()) { 4534 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4535 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4536 } 4537 break; 4538 } 4539 default: { 4540 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4541 if (Res.hasValue()) 4542 Result = Res.getValue(); 4543 break; 4544 } 4545 } 4546 } 4547 return Result; 4548 } 4549 4550 private: 4551 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4552 bool IsPosBECond, ScalarEvolution &SE) 4553 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4554 IsPositiveBECond(IsPosBECond) {} 4555 4556 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4557 4558 const Loop *L; 4559 /// Loop back condition. 4560 Value *BackedgeCond = nullptr; 4561 /// Set to true if loop back is on positive branch condition. 4562 bool IsPositiveBECond; 4563 }; 4564 4565 Optional<const SCEV *> 4566 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4567 4568 // If value matches the backedge condition for loop latch, 4569 // then return a constant evolution node based on loopback 4570 // branch taken. 4571 if (BackedgeCond == IC) 4572 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4573 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4574 return None; 4575 } 4576 4577 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4578 public: 4579 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4580 ScalarEvolution &SE) { 4581 SCEVShiftRewriter Rewriter(L, SE); 4582 const SCEV *Result = Rewriter.visit(S); 4583 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4584 } 4585 4586 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4587 // Only allow AddRecExprs for this loop. 4588 if (!SE.isLoopInvariant(Expr, L)) 4589 Valid = false; 4590 return Expr; 4591 } 4592 4593 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4594 if (Expr->getLoop() == L && Expr->isAffine()) 4595 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4596 Valid = false; 4597 return Expr; 4598 } 4599 4600 bool isValid() { return Valid; } 4601 4602 private: 4603 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4604 : SCEVRewriteVisitor(SE), L(L) {} 4605 4606 const Loop *L; 4607 bool Valid = true; 4608 }; 4609 4610 } // end anonymous namespace 4611 4612 SCEV::NoWrapFlags 4613 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4614 if (!AR->isAffine()) 4615 return SCEV::FlagAnyWrap; 4616 4617 using OBO = OverflowingBinaryOperator; 4618 4619 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4620 4621 if (!AR->hasNoSignedWrap()) { 4622 ConstantRange AddRecRange = getSignedRange(AR); 4623 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4624 4625 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4626 Instruction::Add, IncRange, OBO::NoSignedWrap); 4627 if (NSWRegion.contains(AddRecRange)) 4628 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4629 } 4630 4631 if (!AR->hasNoUnsignedWrap()) { 4632 ConstantRange AddRecRange = getUnsignedRange(AR); 4633 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4634 4635 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4636 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4637 if (NUWRegion.contains(AddRecRange)) 4638 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4639 } 4640 4641 return Result; 4642 } 4643 4644 SCEV::NoWrapFlags 4645 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4646 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4647 4648 if (AR->hasNoSignedWrap()) 4649 return Result; 4650 4651 if (!AR->isAffine()) 4652 return Result; 4653 4654 const SCEV *Step = AR->getStepRecurrence(*this); 4655 const Loop *L = AR->getLoop(); 4656 4657 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4658 // Note that this serves two purposes: It filters out loops that are 4659 // simply not analyzable, and it covers the case where this code is 4660 // being called from within backedge-taken count analysis, such that 4661 // attempting to ask for the backedge-taken count would likely result 4662 // in infinite recursion. In the later case, the analysis code will 4663 // cope with a conservative value, and it will take care to purge 4664 // that value once it has finished. 4665 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4666 4667 // Normally, in the cases we can prove no-overflow via a 4668 // backedge guarding condition, we can also compute a backedge 4669 // taken count for the loop. The exceptions are assumptions and 4670 // guards present in the loop -- SCEV is not great at exploiting 4671 // these to compute max backedge taken counts, but can still use 4672 // these to prove lack of overflow. Use this fact to avoid 4673 // doing extra work that may not pay off. 4674 4675 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4676 AC.assumptions().empty()) 4677 return Result; 4678 4679 // If the backedge is guarded by a comparison with the pre-inc value the 4680 // addrec is safe. Also, if the entry is guarded by a comparison with the 4681 // start value and the backedge is guarded by a comparison with the post-inc 4682 // value, the addrec is safe. 4683 ICmpInst::Predicate Pred; 4684 const SCEV *OverflowLimit = 4685 getSignedOverflowLimitForStep(Step, &Pred, this); 4686 if (OverflowLimit && 4687 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4688 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4689 Result = setFlags(Result, SCEV::FlagNSW); 4690 } 4691 return Result; 4692 } 4693 SCEV::NoWrapFlags 4694 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4695 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4696 4697 if (AR->hasNoUnsignedWrap()) 4698 return Result; 4699 4700 if (!AR->isAffine()) 4701 return Result; 4702 4703 const SCEV *Step = AR->getStepRecurrence(*this); 4704 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4705 const Loop *L = AR->getLoop(); 4706 4707 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4708 // Note that this serves two purposes: It filters out loops that are 4709 // simply not analyzable, and it covers the case where this code is 4710 // being called from within backedge-taken count analysis, such that 4711 // attempting to ask for the backedge-taken count would likely result 4712 // in infinite recursion. In the later case, the analysis code will 4713 // cope with a conservative value, and it will take care to purge 4714 // that value once it has finished. 4715 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4716 4717 // Normally, in the cases we can prove no-overflow via a 4718 // backedge guarding condition, we can also compute a backedge 4719 // taken count for the loop. The exceptions are assumptions and 4720 // guards present in the loop -- SCEV is not great at exploiting 4721 // these to compute max backedge taken counts, but can still use 4722 // these to prove lack of overflow. Use this fact to avoid 4723 // doing extra work that may not pay off. 4724 4725 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4726 AC.assumptions().empty()) 4727 return Result; 4728 4729 // If the backedge is guarded by a comparison with the pre-inc value the 4730 // addrec is safe. Also, if the entry is guarded by a comparison with the 4731 // start value and the backedge is guarded by a comparison with the post-inc 4732 // value, the addrec is safe. 4733 if (isKnownPositive(Step)) { 4734 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4735 getUnsignedRangeMax(Step)); 4736 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4737 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4738 Result = setFlags(Result, SCEV::FlagNUW); 4739 } 4740 } 4741 4742 return Result; 4743 } 4744 4745 namespace { 4746 4747 /// Represents an abstract binary operation. This may exist as a 4748 /// normal instruction or constant expression, or may have been 4749 /// derived from an expression tree. 4750 struct BinaryOp { 4751 unsigned Opcode; 4752 Value *LHS; 4753 Value *RHS; 4754 bool IsNSW = false; 4755 bool IsNUW = false; 4756 4757 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4758 /// constant expression. 4759 Operator *Op = nullptr; 4760 4761 explicit BinaryOp(Operator *Op) 4762 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4763 Op(Op) { 4764 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4765 IsNSW = OBO->hasNoSignedWrap(); 4766 IsNUW = OBO->hasNoUnsignedWrap(); 4767 } 4768 } 4769 4770 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4771 bool IsNUW = false) 4772 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4773 }; 4774 4775 } // end anonymous namespace 4776 4777 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4778 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4779 auto *Op = dyn_cast<Operator>(V); 4780 if (!Op) 4781 return None; 4782 4783 // Implementation detail: all the cleverness here should happen without 4784 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4785 // SCEV expressions when possible, and we should not break that. 4786 4787 switch (Op->getOpcode()) { 4788 case Instruction::Add: 4789 case Instruction::Sub: 4790 case Instruction::Mul: 4791 case Instruction::UDiv: 4792 case Instruction::URem: 4793 case Instruction::And: 4794 case Instruction::Or: 4795 case Instruction::AShr: 4796 case Instruction::Shl: 4797 return BinaryOp(Op); 4798 4799 case Instruction::Xor: 4800 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4801 // If the RHS of the xor is a signmask, then this is just an add. 4802 // Instcombine turns add of signmask into xor as a strength reduction step. 4803 if (RHSC->getValue().isSignMask()) 4804 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4805 return BinaryOp(Op); 4806 4807 case Instruction::LShr: 4808 // Turn logical shift right of a constant into a unsigned divide. 4809 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4810 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4811 4812 // If the shift count is not less than the bitwidth, the result of 4813 // the shift is undefined. Don't try to analyze it, because the 4814 // resolution chosen here may differ from the resolution chosen in 4815 // other parts of the compiler. 4816 if (SA->getValue().ult(BitWidth)) { 4817 Constant *X = 4818 ConstantInt::get(SA->getContext(), 4819 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4820 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4821 } 4822 } 4823 return BinaryOp(Op); 4824 4825 case Instruction::ExtractValue: { 4826 auto *EVI = cast<ExtractValueInst>(Op); 4827 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4828 break; 4829 4830 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4831 if (!WO) 4832 break; 4833 4834 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4835 bool Signed = WO->isSigned(); 4836 // TODO: Should add nuw/nsw flags for mul as well. 4837 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4838 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4839 4840 // Now that we know that all uses of the arithmetic-result component of 4841 // CI are guarded by the overflow check, we can go ahead and pretend 4842 // that the arithmetic is non-overflowing. 4843 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4844 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4845 } 4846 4847 default: 4848 break; 4849 } 4850 4851 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4852 // semantics as a Sub, return a binary sub expression. 4853 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4854 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4855 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4856 4857 return None; 4858 } 4859 4860 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4861 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4862 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4863 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4864 /// follows one of the following patterns: 4865 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4866 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4867 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4868 /// we return the type of the truncation operation, and indicate whether the 4869 /// truncated type should be treated as signed/unsigned by setting 4870 /// \p Signed to true/false, respectively. 4871 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4872 bool &Signed, ScalarEvolution &SE) { 4873 // The case where Op == SymbolicPHI (that is, with no type conversions on 4874 // the way) is handled by the regular add recurrence creating logic and 4875 // would have already been triggered in createAddRecForPHI. Reaching it here 4876 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4877 // because one of the other operands of the SCEVAddExpr updating this PHI is 4878 // not invariant). 4879 // 4880 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4881 // this case predicates that allow us to prove that Op == SymbolicPHI will 4882 // be added. 4883 if (Op == SymbolicPHI) 4884 return nullptr; 4885 4886 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4887 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4888 if (SourceBits != NewBits) 4889 return nullptr; 4890 4891 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4892 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4893 if (!SExt && !ZExt) 4894 return nullptr; 4895 const SCEVTruncateExpr *Trunc = 4896 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4897 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4898 if (!Trunc) 4899 return nullptr; 4900 const SCEV *X = Trunc->getOperand(); 4901 if (X != SymbolicPHI) 4902 return nullptr; 4903 Signed = SExt != nullptr; 4904 return Trunc->getType(); 4905 } 4906 4907 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4908 if (!PN->getType()->isIntegerTy()) 4909 return nullptr; 4910 const Loop *L = LI.getLoopFor(PN->getParent()); 4911 if (!L || L->getHeader() != PN->getParent()) 4912 return nullptr; 4913 return L; 4914 } 4915 4916 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4917 // computation that updates the phi follows the following pattern: 4918 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4919 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4920 // If so, try to see if it can be rewritten as an AddRecExpr under some 4921 // Predicates. If successful, return them as a pair. Also cache the results 4922 // of the analysis. 4923 // 4924 // Example usage scenario: 4925 // Say the Rewriter is called for the following SCEV: 4926 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4927 // where: 4928 // %X = phi i64 (%Start, %BEValue) 4929 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4930 // and call this function with %SymbolicPHI = %X. 4931 // 4932 // The analysis will find that the value coming around the backedge has 4933 // the following SCEV: 4934 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4935 // Upon concluding that this matches the desired pattern, the function 4936 // will return the pair {NewAddRec, SmallPredsVec} where: 4937 // NewAddRec = {%Start,+,%Step} 4938 // SmallPredsVec = {P1, P2, P3} as follows: 4939 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4940 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4941 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4942 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4943 // under the predicates {P1,P2,P3}. 4944 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4945 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4946 // 4947 // TODO's: 4948 // 4949 // 1) Extend the Induction descriptor to also support inductions that involve 4950 // casts: When needed (namely, when we are called in the context of the 4951 // vectorizer induction analysis), a Set of cast instructions will be 4952 // populated by this method, and provided back to isInductionPHI. This is 4953 // needed to allow the vectorizer to properly record them to be ignored by 4954 // the cost model and to avoid vectorizing them (otherwise these casts, 4955 // which are redundant under the runtime overflow checks, will be 4956 // vectorized, which can be costly). 4957 // 4958 // 2) Support additional induction/PHISCEV patterns: We also want to support 4959 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4960 // after the induction update operation (the induction increment): 4961 // 4962 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4963 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4964 // 4965 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4966 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4967 // 4968 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4969 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4970 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4971 SmallVector<const SCEVPredicate *, 3> Predicates; 4972 4973 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4974 // return an AddRec expression under some predicate. 4975 4976 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4977 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4978 assert(L && "Expecting an integer loop header phi"); 4979 4980 // The loop may have multiple entrances or multiple exits; we can analyze 4981 // this phi as an addrec if it has a unique entry value and a unique 4982 // backedge value. 4983 Value *BEValueV = nullptr, *StartValueV = nullptr; 4984 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4985 Value *V = PN->getIncomingValue(i); 4986 if (L->contains(PN->getIncomingBlock(i))) { 4987 if (!BEValueV) { 4988 BEValueV = V; 4989 } else if (BEValueV != V) { 4990 BEValueV = nullptr; 4991 break; 4992 } 4993 } else if (!StartValueV) { 4994 StartValueV = V; 4995 } else if (StartValueV != V) { 4996 StartValueV = nullptr; 4997 break; 4998 } 4999 } 5000 if (!BEValueV || !StartValueV) 5001 return None; 5002 5003 const SCEV *BEValue = getSCEV(BEValueV); 5004 5005 // If the value coming around the backedge is an add with the symbolic 5006 // value we just inserted, possibly with casts that we can ignore under 5007 // an appropriate runtime guard, then we found a simple induction variable! 5008 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5009 if (!Add) 5010 return None; 5011 5012 // If there is a single occurrence of the symbolic value, possibly 5013 // casted, replace it with a recurrence. 5014 unsigned FoundIndex = Add->getNumOperands(); 5015 Type *TruncTy = nullptr; 5016 bool Signed; 5017 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5018 if ((TruncTy = 5019 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5020 if (FoundIndex == e) { 5021 FoundIndex = i; 5022 break; 5023 } 5024 5025 if (FoundIndex == Add->getNumOperands()) 5026 return None; 5027 5028 // Create an add with everything but the specified operand. 5029 SmallVector<const SCEV *, 8> Ops; 5030 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5031 if (i != FoundIndex) 5032 Ops.push_back(Add->getOperand(i)); 5033 const SCEV *Accum = getAddExpr(Ops); 5034 5035 // The runtime checks will not be valid if the step amount is 5036 // varying inside the loop. 5037 if (!isLoopInvariant(Accum, L)) 5038 return None; 5039 5040 // *** Part2: Create the predicates 5041 5042 // Analysis was successful: we have a phi-with-cast pattern for which we 5043 // can return an AddRec expression under the following predicates: 5044 // 5045 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5046 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5047 // P2: An Equal predicate that guarantees that 5048 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5049 // P3: An Equal predicate that guarantees that 5050 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5051 // 5052 // As we next prove, the above predicates guarantee that: 5053 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5054 // 5055 // 5056 // More formally, we want to prove that: 5057 // Expr(i+1) = Start + (i+1) * Accum 5058 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5059 // 5060 // Given that: 5061 // 1) Expr(0) = Start 5062 // 2) Expr(1) = Start + Accum 5063 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5064 // 3) Induction hypothesis (step i): 5065 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5066 // 5067 // Proof: 5068 // Expr(i+1) = 5069 // = Start + (i+1)*Accum 5070 // = (Start + i*Accum) + Accum 5071 // = Expr(i) + Accum 5072 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5073 // :: from step i 5074 // 5075 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5076 // 5077 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5078 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5079 // + Accum :: from P3 5080 // 5081 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5082 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5083 // 5084 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5085 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5086 // 5087 // By induction, the same applies to all iterations 1<=i<n: 5088 // 5089 5090 // Create a truncated addrec for which we will add a no overflow check (P1). 5091 const SCEV *StartVal = getSCEV(StartValueV); 5092 const SCEV *PHISCEV = 5093 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5094 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5095 5096 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5097 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5098 // will be constant. 5099 // 5100 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5101 // add P1. 5102 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5103 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5104 Signed ? SCEVWrapPredicate::IncrementNSSW 5105 : SCEVWrapPredicate::IncrementNUSW; 5106 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5107 Predicates.push_back(AddRecPred); 5108 } 5109 5110 // Create the Equal Predicates P2,P3: 5111 5112 // It is possible that the predicates P2 and/or P3 are computable at 5113 // compile time due to StartVal and/or Accum being constants. 5114 // If either one is, then we can check that now and escape if either P2 5115 // or P3 is false. 5116 5117 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5118 // for each of StartVal and Accum 5119 auto getExtendedExpr = [&](const SCEV *Expr, 5120 bool CreateSignExtend) -> const SCEV * { 5121 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5122 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5123 const SCEV *ExtendedExpr = 5124 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5125 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5126 return ExtendedExpr; 5127 }; 5128 5129 // Given: 5130 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5131 // = getExtendedExpr(Expr) 5132 // Determine whether the predicate P: Expr == ExtendedExpr 5133 // is known to be false at compile time 5134 auto PredIsKnownFalse = [&](const SCEV *Expr, 5135 const SCEV *ExtendedExpr) -> bool { 5136 return Expr != ExtendedExpr && 5137 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5138 }; 5139 5140 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5141 if (PredIsKnownFalse(StartVal, StartExtended)) { 5142 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5143 return None; 5144 } 5145 5146 // The Step is always Signed (because the overflow checks are either 5147 // NSSW or NUSW) 5148 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5149 if (PredIsKnownFalse(Accum, AccumExtended)) { 5150 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5151 return None; 5152 } 5153 5154 auto AppendPredicate = [&](const SCEV *Expr, 5155 const SCEV *ExtendedExpr) -> void { 5156 if (Expr != ExtendedExpr && 5157 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5158 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5159 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5160 Predicates.push_back(Pred); 5161 } 5162 }; 5163 5164 AppendPredicate(StartVal, StartExtended); 5165 AppendPredicate(Accum, AccumExtended); 5166 5167 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5168 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5169 // into NewAR if it will also add the runtime overflow checks specified in 5170 // Predicates. 5171 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5172 5173 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5174 std::make_pair(NewAR, Predicates); 5175 // Remember the result of the analysis for this SCEV at this locayyytion. 5176 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5177 return PredRewrite; 5178 } 5179 5180 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5181 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5182 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5183 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5184 if (!L) 5185 return None; 5186 5187 // Check to see if we already analyzed this PHI. 5188 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5189 if (I != PredicatedSCEVRewrites.end()) { 5190 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5191 I->second; 5192 // Analysis was done before and failed to create an AddRec: 5193 if (Rewrite.first == SymbolicPHI) 5194 return None; 5195 // Analysis was done before and succeeded to create an AddRec under 5196 // a predicate: 5197 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5198 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5199 return Rewrite; 5200 } 5201 5202 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5203 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5204 5205 // Record in the cache that the analysis failed 5206 if (!Rewrite) { 5207 SmallVector<const SCEVPredicate *, 3> Predicates; 5208 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5209 return None; 5210 } 5211 5212 return Rewrite; 5213 } 5214 5215 // FIXME: This utility is currently required because the Rewriter currently 5216 // does not rewrite this expression: 5217 // {0, +, (sext ix (trunc iy to ix) to iy)} 5218 // into {0, +, %step}, 5219 // even when the following Equal predicate exists: 5220 // "%step == (sext ix (trunc iy to ix) to iy)". 5221 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5222 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5223 if (AR1 == AR2) 5224 return true; 5225 5226 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5227 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5228 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5229 return false; 5230 return true; 5231 }; 5232 5233 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5234 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5235 return false; 5236 return true; 5237 } 5238 5239 /// A helper function for createAddRecFromPHI to handle simple cases. 5240 /// 5241 /// This function tries to find an AddRec expression for the simplest (yet most 5242 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5243 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5244 /// technique for finding the AddRec expression. 5245 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5246 Value *BEValueV, 5247 Value *StartValueV) { 5248 const Loop *L = LI.getLoopFor(PN->getParent()); 5249 assert(L && L->getHeader() == PN->getParent()); 5250 assert(BEValueV && StartValueV); 5251 5252 auto BO = MatchBinaryOp(BEValueV, DT); 5253 if (!BO) 5254 return nullptr; 5255 5256 if (BO->Opcode != Instruction::Add) 5257 return nullptr; 5258 5259 const SCEV *Accum = nullptr; 5260 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5261 Accum = getSCEV(BO->RHS); 5262 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5263 Accum = getSCEV(BO->LHS); 5264 5265 if (!Accum) 5266 return nullptr; 5267 5268 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5269 if (BO->IsNUW) 5270 Flags = setFlags(Flags, SCEV::FlagNUW); 5271 if (BO->IsNSW) 5272 Flags = setFlags(Flags, SCEV::FlagNSW); 5273 5274 const SCEV *StartVal = getSCEV(StartValueV); 5275 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5276 5277 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5278 5279 // We can add Flags to the post-inc expression only if we 5280 // know that it is *undefined behavior* for BEValueV to 5281 // overflow. 5282 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5283 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5284 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5285 5286 return PHISCEV; 5287 } 5288 5289 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5290 const Loop *L = LI.getLoopFor(PN->getParent()); 5291 if (!L || L->getHeader() != PN->getParent()) 5292 return nullptr; 5293 5294 // The loop may have multiple entrances or multiple exits; we can analyze 5295 // this phi as an addrec if it has a unique entry value and a unique 5296 // backedge value. 5297 Value *BEValueV = nullptr, *StartValueV = nullptr; 5298 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5299 Value *V = PN->getIncomingValue(i); 5300 if (L->contains(PN->getIncomingBlock(i))) { 5301 if (!BEValueV) { 5302 BEValueV = V; 5303 } else if (BEValueV != V) { 5304 BEValueV = nullptr; 5305 break; 5306 } 5307 } else if (!StartValueV) { 5308 StartValueV = V; 5309 } else if (StartValueV != V) { 5310 StartValueV = nullptr; 5311 break; 5312 } 5313 } 5314 if (!BEValueV || !StartValueV) 5315 return nullptr; 5316 5317 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5318 "PHI node already processed?"); 5319 5320 // First, try to find AddRec expression without creating a fictituos symbolic 5321 // value for PN. 5322 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5323 return S; 5324 5325 // Handle PHI node value symbolically. 5326 const SCEV *SymbolicName = getUnknown(PN); 5327 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5328 5329 // Using this symbolic name for the PHI, analyze the value coming around 5330 // the back-edge. 5331 const SCEV *BEValue = getSCEV(BEValueV); 5332 5333 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5334 // has a special value for the first iteration of the loop. 5335 5336 // If the value coming around the backedge is an add with the symbolic 5337 // value we just inserted, then we found a simple induction variable! 5338 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5339 // If there is a single occurrence of the symbolic value, replace it 5340 // with a recurrence. 5341 unsigned FoundIndex = Add->getNumOperands(); 5342 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5343 if (Add->getOperand(i) == SymbolicName) 5344 if (FoundIndex == e) { 5345 FoundIndex = i; 5346 break; 5347 } 5348 5349 if (FoundIndex != Add->getNumOperands()) { 5350 // Create an add with everything but the specified operand. 5351 SmallVector<const SCEV *, 8> Ops; 5352 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5353 if (i != FoundIndex) 5354 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5355 L, *this)); 5356 const SCEV *Accum = getAddExpr(Ops); 5357 5358 // This is not a valid addrec if the step amount is varying each 5359 // loop iteration, but is not itself an addrec in this loop. 5360 if (isLoopInvariant(Accum, L) || 5361 (isa<SCEVAddRecExpr>(Accum) && 5362 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5363 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5364 5365 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5366 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5367 if (BO->IsNUW) 5368 Flags = setFlags(Flags, SCEV::FlagNUW); 5369 if (BO->IsNSW) 5370 Flags = setFlags(Flags, SCEV::FlagNSW); 5371 } 5372 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5373 // If the increment is an inbounds GEP, then we know the address 5374 // space cannot be wrapped around. We cannot make any guarantee 5375 // about signed or unsigned overflow because pointers are 5376 // unsigned but we may have a negative index from the base 5377 // pointer. We can guarantee that no unsigned wrap occurs if the 5378 // indices form a positive value. 5379 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5380 Flags = setFlags(Flags, SCEV::FlagNW); 5381 5382 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5383 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5384 Flags = setFlags(Flags, SCEV::FlagNUW); 5385 } 5386 5387 // We cannot transfer nuw and nsw flags from subtraction 5388 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5389 // for instance. 5390 } 5391 5392 const SCEV *StartVal = getSCEV(StartValueV); 5393 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5394 5395 // Okay, for the entire analysis of this edge we assumed the PHI 5396 // to be symbolic. We now need to go back and purge all of the 5397 // entries for the scalars that use the symbolic expression. 5398 forgetSymbolicName(PN, SymbolicName); 5399 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5400 5401 // We can add Flags to the post-inc expression only if we 5402 // know that it is *undefined behavior* for BEValueV to 5403 // overflow. 5404 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5405 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5406 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5407 5408 return PHISCEV; 5409 } 5410 } 5411 } else { 5412 // Otherwise, this could be a loop like this: 5413 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5414 // In this case, j = {1,+,1} and BEValue is j. 5415 // Because the other in-value of i (0) fits the evolution of BEValue 5416 // i really is an addrec evolution. 5417 // 5418 // We can generalize this saying that i is the shifted value of BEValue 5419 // by one iteration: 5420 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5421 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5422 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5423 if (Shifted != getCouldNotCompute() && 5424 Start != getCouldNotCompute()) { 5425 const SCEV *StartVal = getSCEV(StartValueV); 5426 if (Start == StartVal) { 5427 // Okay, for the entire analysis of this edge we assumed the PHI 5428 // to be symbolic. We now need to go back and purge all of the 5429 // entries for the scalars that use the symbolic expression. 5430 forgetSymbolicName(PN, SymbolicName); 5431 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5432 return Shifted; 5433 } 5434 } 5435 } 5436 5437 // Remove the temporary PHI node SCEV that has been inserted while intending 5438 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5439 // as it will prevent later (possibly simpler) SCEV expressions to be added 5440 // to the ValueExprMap. 5441 eraseValueFromMap(PN); 5442 5443 return nullptr; 5444 } 5445 5446 // Checks if the SCEV S is available at BB. S is considered available at BB 5447 // if S can be materialized at BB without introducing a fault. 5448 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5449 BasicBlock *BB) { 5450 struct CheckAvailable { 5451 bool TraversalDone = false; 5452 bool Available = true; 5453 5454 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5455 BasicBlock *BB = nullptr; 5456 DominatorTree &DT; 5457 5458 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5459 : L(L), BB(BB), DT(DT) {} 5460 5461 bool setUnavailable() { 5462 TraversalDone = true; 5463 Available = false; 5464 return false; 5465 } 5466 5467 bool follow(const SCEV *S) { 5468 switch (S->getSCEVType()) { 5469 case scConstant: 5470 case scPtrToInt: 5471 case scTruncate: 5472 case scZeroExtend: 5473 case scSignExtend: 5474 case scAddExpr: 5475 case scMulExpr: 5476 case scUMaxExpr: 5477 case scSMaxExpr: 5478 case scUMinExpr: 5479 case scSMinExpr: 5480 // These expressions are available if their operand(s) is/are. 5481 return true; 5482 5483 case scAddRecExpr: { 5484 // We allow add recurrences that are on the loop BB is in, or some 5485 // outer loop. This guarantees availability because the value of the 5486 // add recurrence at BB is simply the "current" value of the induction 5487 // variable. We can relax this in the future; for instance an add 5488 // recurrence on a sibling dominating loop is also available at BB. 5489 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5490 if (L && (ARLoop == L || ARLoop->contains(L))) 5491 return true; 5492 5493 return setUnavailable(); 5494 } 5495 5496 case scUnknown: { 5497 // For SCEVUnknown, we check for simple dominance. 5498 const auto *SU = cast<SCEVUnknown>(S); 5499 Value *V = SU->getValue(); 5500 5501 if (isa<Argument>(V)) 5502 return false; 5503 5504 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5505 return false; 5506 5507 return setUnavailable(); 5508 } 5509 5510 case scUDivExpr: 5511 case scCouldNotCompute: 5512 // We do not try to smart about these at all. 5513 return setUnavailable(); 5514 } 5515 llvm_unreachable("Unknown SCEV kind!"); 5516 } 5517 5518 bool isDone() { return TraversalDone; } 5519 }; 5520 5521 CheckAvailable CA(L, BB, DT); 5522 SCEVTraversal<CheckAvailable> ST(CA); 5523 5524 ST.visitAll(S); 5525 return CA.Available; 5526 } 5527 5528 // Try to match a control flow sequence that branches out at BI and merges back 5529 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5530 // match. 5531 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5532 Value *&C, Value *&LHS, Value *&RHS) { 5533 C = BI->getCondition(); 5534 5535 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5536 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5537 5538 if (!LeftEdge.isSingleEdge()) 5539 return false; 5540 5541 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5542 5543 Use &LeftUse = Merge->getOperandUse(0); 5544 Use &RightUse = Merge->getOperandUse(1); 5545 5546 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5547 LHS = LeftUse; 5548 RHS = RightUse; 5549 return true; 5550 } 5551 5552 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5553 LHS = RightUse; 5554 RHS = LeftUse; 5555 return true; 5556 } 5557 5558 return false; 5559 } 5560 5561 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5562 auto IsReachable = 5563 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5564 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5565 const Loop *L = LI.getLoopFor(PN->getParent()); 5566 5567 // We don't want to break LCSSA, even in a SCEV expression tree. 5568 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5569 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5570 return nullptr; 5571 5572 // Try to match 5573 // 5574 // br %cond, label %left, label %right 5575 // left: 5576 // br label %merge 5577 // right: 5578 // br label %merge 5579 // merge: 5580 // V = phi [ %x, %left ], [ %y, %right ] 5581 // 5582 // as "select %cond, %x, %y" 5583 5584 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5585 assert(IDom && "At least the entry block should dominate PN"); 5586 5587 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5588 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5589 5590 if (BI && BI->isConditional() && 5591 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5592 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5593 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5594 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5595 } 5596 5597 return nullptr; 5598 } 5599 5600 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5601 if (const SCEV *S = createAddRecFromPHI(PN)) 5602 return S; 5603 5604 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5605 return S; 5606 5607 // If the PHI has a single incoming value, follow that value, unless the 5608 // PHI's incoming blocks are in a different loop, in which case doing so 5609 // risks breaking LCSSA form. Instcombine would normally zap these, but 5610 // it doesn't have DominatorTree information, so it may miss cases. 5611 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5612 if (LI.replacementPreservesLCSSAForm(PN, V)) 5613 return getSCEV(V); 5614 5615 // If it's not a loop phi, we can't handle it yet. 5616 return getUnknown(PN); 5617 } 5618 5619 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5620 Value *Cond, 5621 Value *TrueVal, 5622 Value *FalseVal) { 5623 // Handle "constant" branch or select. This can occur for instance when a 5624 // loop pass transforms an inner loop and moves on to process the outer loop. 5625 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5626 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5627 5628 // Try to match some simple smax or umax patterns. 5629 auto *ICI = dyn_cast<ICmpInst>(Cond); 5630 if (!ICI) 5631 return getUnknown(I); 5632 5633 Value *LHS = ICI->getOperand(0); 5634 Value *RHS = ICI->getOperand(1); 5635 5636 switch (ICI->getPredicate()) { 5637 case ICmpInst::ICMP_SLT: 5638 case ICmpInst::ICMP_SLE: 5639 case ICmpInst::ICMP_ULT: 5640 case ICmpInst::ICMP_ULE: 5641 std::swap(LHS, RHS); 5642 LLVM_FALLTHROUGH; 5643 case ICmpInst::ICMP_SGT: 5644 case ICmpInst::ICMP_SGE: 5645 case ICmpInst::ICMP_UGT: 5646 case ICmpInst::ICMP_UGE: 5647 // a > b ? a+x : b+x -> max(a, b)+x 5648 // a > b ? b+x : a+x -> min(a, b)+x 5649 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5650 bool Signed = ICI->isSigned(); 5651 const SCEV *LA = getSCEV(TrueVal); 5652 const SCEV *RA = getSCEV(FalseVal); 5653 const SCEV *LS = getSCEV(LHS); 5654 const SCEV *RS = getSCEV(RHS); 5655 if (LA->getType()->isPointerTy()) { 5656 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5657 // Need to make sure we can't produce weird expressions involving 5658 // negated pointers. 5659 if (LA == LS && RA == RS) 5660 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5661 if (LA == RS && RA == LS) 5662 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5663 } 5664 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5665 if (Op->getType()->isPointerTy()) { 5666 Op = getLosslessPtrToIntExpr(Op); 5667 if (isa<SCEVCouldNotCompute>(Op)) 5668 return Op; 5669 } 5670 if (Signed) 5671 Op = getNoopOrSignExtend(Op, I->getType()); 5672 else 5673 Op = getNoopOrZeroExtend(Op, I->getType()); 5674 return Op; 5675 }; 5676 LS = CoerceOperand(LS); 5677 RS = CoerceOperand(RS); 5678 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5679 break; 5680 const SCEV *LDiff = getMinusSCEV(LA, LS); 5681 const SCEV *RDiff = getMinusSCEV(RA, RS); 5682 if (LDiff == RDiff) 5683 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5684 LDiff); 5685 LDiff = getMinusSCEV(LA, RS); 5686 RDiff = getMinusSCEV(RA, LS); 5687 if (LDiff == RDiff) 5688 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5689 LDiff); 5690 } 5691 break; 5692 case ICmpInst::ICMP_NE: 5693 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5694 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5695 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5696 const SCEV *One = getOne(I->getType()); 5697 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5698 const SCEV *LA = getSCEV(TrueVal); 5699 const SCEV *RA = getSCEV(FalseVal); 5700 const SCEV *LDiff = getMinusSCEV(LA, LS); 5701 const SCEV *RDiff = getMinusSCEV(RA, One); 5702 if (LDiff == RDiff) 5703 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5704 } 5705 break; 5706 case ICmpInst::ICMP_EQ: 5707 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5708 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5709 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5710 const SCEV *One = getOne(I->getType()); 5711 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5712 const SCEV *LA = getSCEV(TrueVal); 5713 const SCEV *RA = getSCEV(FalseVal); 5714 const SCEV *LDiff = getMinusSCEV(LA, One); 5715 const SCEV *RDiff = getMinusSCEV(RA, LS); 5716 if (LDiff == RDiff) 5717 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5718 } 5719 break; 5720 default: 5721 break; 5722 } 5723 5724 return getUnknown(I); 5725 } 5726 5727 /// Expand GEP instructions into add and multiply operations. This allows them 5728 /// to be analyzed by regular SCEV code. 5729 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5730 // Don't attempt to analyze GEPs over unsized objects. 5731 if (!GEP->getSourceElementType()->isSized()) 5732 return getUnknown(GEP); 5733 5734 SmallVector<const SCEV *, 4> IndexExprs; 5735 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5736 IndexExprs.push_back(getSCEV(*Index)); 5737 return getGEPExpr(GEP, IndexExprs); 5738 } 5739 5740 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5741 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5742 return C->getAPInt().countTrailingZeros(); 5743 5744 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5745 return GetMinTrailingZeros(I->getOperand()); 5746 5747 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5748 return std::min(GetMinTrailingZeros(T->getOperand()), 5749 (uint32_t)getTypeSizeInBits(T->getType())); 5750 5751 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5752 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5753 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5754 ? getTypeSizeInBits(E->getType()) 5755 : OpRes; 5756 } 5757 5758 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5759 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5760 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5761 ? getTypeSizeInBits(E->getType()) 5762 : OpRes; 5763 } 5764 5765 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5766 // The result is the min of all operands results. 5767 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5768 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5769 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5770 return MinOpRes; 5771 } 5772 5773 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5774 // The result is the sum of all operands results. 5775 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5776 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5777 for (unsigned i = 1, e = M->getNumOperands(); 5778 SumOpRes != BitWidth && i != e; ++i) 5779 SumOpRes = 5780 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5781 return SumOpRes; 5782 } 5783 5784 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5785 // The result is the min of all operands results. 5786 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5787 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5788 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5789 return MinOpRes; 5790 } 5791 5792 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5793 // The result is the min of all operands results. 5794 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5795 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5796 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5797 return MinOpRes; 5798 } 5799 5800 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5801 // The result is the min of all operands results. 5802 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5803 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5804 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5805 return MinOpRes; 5806 } 5807 5808 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5809 // For a SCEVUnknown, ask ValueTracking. 5810 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5811 return Known.countMinTrailingZeros(); 5812 } 5813 5814 // SCEVUDivExpr 5815 return 0; 5816 } 5817 5818 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5819 auto I = MinTrailingZerosCache.find(S); 5820 if (I != MinTrailingZerosCache.end()) 5821 return I->second; 5822 5823 uint32_t Result = GetMinTrailingZerosImpl(S); 5824 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5825 assert(InsertPair.second && "Should insert a new key"); 5826 return InsertPair.first->second; 5827 } 5828 5829 /// Helper method to assign a range to V from metadata present in the IR. 5830 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5831 if (Instruction *I = dyn_cast<Instruction>(V)) 5832 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5833 return getConstantRangeFromMetadata(*MD); 5834 5835 return None; 5836 } 5837 5838 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5839 SCEV::NoWrapFlags Flags) { 5840 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5841 AddRec->setNoWrapFlags(Flags); 5842 UnsignedRanges.erase(AddRec); 5843 SignedRanges.erase(AddRec); 5844 } 5845 } 5846 5847 ConstantRange ScalarEvolution:: 5848 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5849 const DataLayout &DL = getDataLayout(); 5850 5851 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5852 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5853 5854 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5855 // use information about the trip count to improve our available range. Note 5856 // that the trip count independent cases are already handled by known bits. 5857 // WARNING: The definition of recurrence used here is subtly different than 5858 // the one used by AddRec (and thus most of this file). Step is allowed to 5859 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5860 // and other addrecs in the same loop (for non-affine addrecs). The code 5861 // below intentionally handles the case where step is not loop invariant. 5862 auto *P = dyn_cast<PHINode>(U->getValue()); 5863 if (!P) 5864 return FullSet; 5865 5866 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5867 // even the values that are not available in these blocks may come from them, 5868 // and this leads to false-positive recurrence test. 5869 for (auto *Pred : predecessors(P->getParent())) 5870 if (!DT.isReachableFromEntry(Pred)) 5871 return FullSet; 5872 5873 BinaryOperator *BO; 5874 Value *Start, *Step; 5875 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5876 return FullSet; 5877 5878 // If we found a recurrence in reachable code, we must be in a loop. Note 5879 // that BO might be in some subloop of L, and that's completely okay. 5880 auto *L = LI.getLoopFor(P->getParent()); 5881 assert(L && L->getHeader() == P->getParent()); 5882 if (!L->contains(BO->getParent())) 5883 // NOTE: This bailout should be an assert instead. However, asserting 5884 // the condition here exposes a case where LoopFusion is querying SCEV 5885 // with malformed loop information during the midst of the transform. 5886 // There doesn't appear to be an obvious fix, so for the moment bailout 5887 // until the caller issue can be fixed. PR49566 tracks the bug. 5888 return FullSet; 5889 5890 // TODO: Extend to other opcodes such as mul, and div 5891 switch (BO->getOpcode()) { 5892 default: 5893 return FullSet; 5894 case Instruction::AShr: 5895 case Instruction::LShr: 5896 case Instruction::Shl: 5897 break; 5898 }; 5899 5900 if (BO->getOperand(0) != P) 5901 // TODO: Handle the power function forms some day. 5902 return FullSet; 5903 5904 unsigned TC = getSmallConstantMaxTripCount(L); 5905 if (!TC || TC >= BitWidth) 5906 return FullSet; 5907 5908 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5909 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5910 assert(KnownStart.getBitWidth() == BitWidth && 5911 KnownStep.getBitWidth() == BitWidth); 5912 5913 // Compute total shift amount, being careful of overflow and bitwidths. 5914 auto MaxShiftAmt = KnownStep.getMaxValue(); 5915 APInt TCAP(BitWidth, TC-1); 5916 bool Overflow = false; 5917 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5918 if (Overflow) 5919 return FullSet; 5920 5921 switch (BO->getOpcode()) { 5922 default: 5923 llvm_unreachable("filtered out above"); 5924 case Instruction::AShr: { 5925 // For each ashr, three cases: 5926 // shift = 0 => unchanged value 5927 // saturation => 0 or -1 5928 // other => a value closer to zero (of the same sign) 5929 // Thus, the end value is closer to zero than the start. 5930 auto KnownEnd = KnownBits::ashr(KnownStart, 5931 KnownBits::makeConstant(TotalShift)); 5932 if (KnownStart.isNonNegative()) 5933 // Analogous to lshr (simply not yet canonicalized) 5934 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5935 KnownStart.getMaxValue() + 1); 5936 if (KnownStart.isNegative()) 5937 // End >=u Start && End <=s Start 5938 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 5939 KnownEnd.getMaxValue() + 1); 5940 break; 5941 } 5942 case Instruction::LShr: { 5943 // For each lshr, three cases: 5944 // shift = 0 => unchanged value 5945 // saturation => 0 5946 // other => a smaller positive number 5947 // Thus, the low end of the unsigned range is the last value produced. 5948 auto KnownEnd = KnownBits::lshr(KnownStart, 5949 KnownBits::makeConstant(TotalShift)); 5950 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5951 KnownStart.getMaxValue() + 1); 5952 } 5953 case Instruction::Shl: { 5954 // Iff no bits are shifted out, value increases on every shift. 5955 auto KnownEnd = KnownBits::shl(KnownStart, 5956 KnownBits::makeConstant(TotalShift)); 5957 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 5958 return ConstantRange(KnownStart.getMinValue(), 5959 KnownEnd.getMaxValue() + 1); 5960 break; 5961 } 5962 }; 5963 return FullSet; 5964 } 5965 5966 /// Determine the range for a particular SCEV. If SignHint is 5967 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5968 /// with a "cleaner" unsigned (resp. signed) representation. 5969 const ConstantRange & 5970 ScalarEvolution::getRangeRef(const SCEV *S, 5971 ScalarEvolution::RangeSignHint SignHint) { 5972 DenseMap<const SCEV *, ConstantRange> &Cache = 5973 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5974 : SignedRanges; 5975 ConstantRange::PreferredRangeType RangeType = 5976 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5977 ? ConstantRange::Unsigned : ConstantRange::Signed; 5978 5979 // See if we've computed this range already. 5980 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5981 if (I != Cache.end()) 5982 return I->second; 5983 5984 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5985 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5986 5987 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5988 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5989 using OBO = OverflowingBinaryOperator; 5990 5991 // If the value has known zeros, the maximum value will have those known zeros 5992 // as well. 5993 uint32_t TZ = GetMinTrailingZeros(S); 5994 if (TZ != 0) { 5995 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5996 ConservativeResult = 5997 ConstantRange(APInt::getMinValue(BitWidth), 5998 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5999 else 6000 ConservativeResult = ConstantRange( 6001 APInt::getSignedMinValue(BitWidth), 6002 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6003 } 6004 6005 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6006 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6007 unsigned WrapType = OBO::AnyWrap; 6008 if (Add->hasNoSignedWrap()) 6009 WrapType |= OBO::NoSignedWrap; 6010 if (Add->hasNoUnsignedWrap()) 6011 WrapType |= OBO::NoUnsignedWrap; 6012 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6013 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6014 WrapType, RangeType); 6015 return setRange(Add, SignHint, 6016 ConservativeResult.intersectWith(X, RangeType)); 6017 } 6018 6019 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6020 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6021 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6022 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6023 return setRange(Mul, SignHint, 6024 ConservativeResult.intersectWith(X, RangeType)); 6025 } 6026 6027 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 6028 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 6029 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 6030 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 6031 return setRange(SMax, SignHint, 6032 ConservativeResult.intersectWith(X, RangeType)); 6033 } 6034 6035 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 6036 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 6037 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 6038 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 6039 return setRange(UMax, SignHint, 6040 ConservativeResult.intersectWith(X, RangeType)); 6041 } 6042 6043 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 6044 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 6045 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 6046 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 6047 return setRange(SMin, SignHint, 6048 ConservativeResult.intersectWith(X, RangeType)); 6049 } 6050 6051 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 6052 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 6053 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 6054 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 6055 return setRange(UMin, SignHint, 6056 ConservativeResult.intersectWith(X, RangeType)); 6057 } 6058 6059 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6060 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6061 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6062 return setRange(UDiv, SignHint, 6063 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6064 } 6065 6066 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6067 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6068 return setRange(ZExt, SignHint, 6069 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6070 RangeType)); 6071 } 6072 6073 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6074 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6075 return setRange(SExt, SignHint, 6076 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6077 RangeType)); 6078 } 6079 6080 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6081 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6082 return setRange(PtrToInt, SignHint, X); 6083 } 6084 6085 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6086 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6087 return setRange(Trunc, SignHint, 6088 ConservativeResult.intersectWith(X.truncate(BitWidth), 6089 RangeType)); 6090 } 6091 6092 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6093 // If there's no unsigned wrap, the value will never be less than its 6094 // initial value. 6095 if (AddRec->hasNoUnsignedWrap()) { 6096 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6097 if (!UnsignedMinValue.isNullValue()) 6098 ConservativeResult = ConservativeResult.intersectWith( 6099 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6100 } 6101 6102 // If there's no signed wrap, and all the operands except initial value have 6103 // the same sign or zero, the value won't ever be: 6104 // 1: smaller than initial value if operands are non negative, 6105 // 2: bigger than initial value if operands are non positive. 6106 // For both cases, value can not cross signed min/max boundary. 6107 if (AddRec->hasNoSignedWrap()) { 6108 bool AllNonNeg = true; 6109 bool AllNonPos = true; 6110 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6111 if (!isKnownNonNegative(AddRec->getOperand(i))) 6112 AllNonNeg = false; 6113 if (!isKnownNonPositive(AddRec->getOperand(i))) 6114 AllNonPos = false; 6115 } 6116 if (AllNonNeg) 6117 ConservativeResult = ConservativeResult.intersectWith( 6118 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6119 APInt::getSignedMinValue(BitWidth)), 6120 RangeType); 6121 else if (AllNonPos) 6122 ConservativeResult = ConservativeResult.intersectWith( 6123 ConstantRange::getNonEmpty( 6124 APInt::getSignedMinValue(BitWidth), 6125 getSignedRangeMax(AddRec->getStart()) + 1), 6126 RangeType); 6127 } 6128 6129 // TODO: non-affine addrec 6130 if (AddRec->isAffine()) { 6131 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6132 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6133 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6134 auto RangeFromAffine = getRangeForAffineAR( 6135 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6136 BitWidth); 6137 ConservativeResult = 6138 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6139 6140 auto RangeFromFactoring = getRangeViaFactoring( 6141 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6142 BitWidth); 6143 ConservativeResult = 6144 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6145 } 6146 6147 // Now try symbolic BE count and more powerful methods. 6148 if (UseExpensiveRangeSharpening) { 6149 const SCEV *SymbolicMaxBECount = 6150 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6151 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6152 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6153 AddRec->hasNoSelfWrap()) { 6154 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6155 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6156 ConservativeResult = 6157 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6158 } 6159 } 6160 } 6161 6162 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6163 } 6164 6165 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6166 6167 // Check if the IR explicitly contains !range metadata. 6168 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6169 if (MDRange.hasValue()) 6170 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6171 RangeType); 6172 6173 // Use facts about recurrences in the underlying IR. Note that add 6174 // recurrences are AddRecExprs and thus don't hit this path. This 6175 // primarily handles shift recurrences. 6176 auto CR = getRangeForUnknownRecurrence(U); 6177 ConservativeResult = ConservativeResult.intersectWith(CR); 6178 6179 // See if ValueTracking can give us a useful range. 6180 const DataLayout &DL = getDataLayout(); 6181 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6182 if (Known.getBitWidth() != BitWidth) 6183 Known = Known.zextOrTrunc(BitWidth); 6184 6185 // ValueTracking may be able to compute a tighter result for the number of 6186 // sign bits than for the value of those sign bits. 6187 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6188 if (U->getType()->isPointerTy()) { 6189 // If the pointer size is larger than the index size type, this can cause 6190 // NS to be larger than BitWidth. So compensate for this. 6191 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6192 int ptrIdxDiff = ptrSize - BitWidth; 6193 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6194 NS -= ptrIdxDiff; 6195 } 6196 6197 if (NS > 1) { 6198 // If we know any of the sign bits, we know all of the sign bits. 6199 if (!Known.Zero.getHiBits(NS).isNullValue()) 6200 Known.Zero.setHighBits(NS); 6201 if (!Known.One.getHiBits(NS).isNullValue()) 6202 Known.One.setHighBits(NS); 6203 } 6204 6205 if (Known.getMinValue() != Known.getMaxValue() + 1) 6206 ConservativeResult = ConservativeResult.intersectWith( 6207 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6208 RangeType); 6209 if (NS > 1) 6210 ConservativeResult = ConservativeResult.intersectWith( 6211 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6212 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6213 RangeType); 6214 6215 // A range of Phi is a subset of union of all ranges of its input. 6216 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6217 // Make sure that we do not run over cycled Phis. 6218 if (PendingPhiRanges.insert(Phi).second) { 6219 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6220 for (auto &Op : Phi->operands()) { 6221 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6222 RangeFromOps = RangeFromOps.unionWith(OpRange); 6223 // No point to continue if we already have a full set. 6224 if (RangeFromOps.isFullSet()) 6225 break; 6226 } 6227 ConservativeResult = 6228 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6229 bool Erased = PendingPhiRanges.erase(Phi); 6230 assert(Erased && "Failed to erase Phi properly?"); 6231 (void) Erased; 6232 } 6233 } 6234 6235 return setRange(U, SignHint, std::move(ConservativeResult)); 6236 } 6237 6238 return setRange(S, SignHint, std::move(ConservativeResult)); 6239 } 6240 6241 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6242 // values that the expression can take. Initially, the expression has a value 6243 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6244 // argument defines if we treat Step as signed or unsigned. 6245 static ConstantRange getRangeForAffineARHelper(APInt Step, 6246 const ConstantRange &StartRange, 6247 const APInt &MaxBECount, 6248 unsigned BitWidth, bool Signed) { 6249 // If either Step or MaxBECount is 0, then the expression won't change, and we 6250 // just need to return the initial range. 6251 if (Step == 0 || MaxBECount == 0) 6252 return StartRange; 6253 6254 // If we don't know anything about the initial value (i.e. StartRange is 6255 // FullRange), then we don't know anything about the final range either. 6256 // Return FullRange. 6257 if (StartRange.isFullSet()) 6258 return ConstantRange::getFull(BitWidth); 6259 6260 // If Step is signed and negative, then we use its absolute value, but we also 6261 // note that we're moving in the opposite direction. 6262 bool Descending = Signed && Step.isNegative(); 6263 6264 if (Signed) 6265 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6266 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6267 // This equations hold true due to the well-defined wrap-around behavior of 6268 // APInt. 6269 Step = Step.abs(); 6270 6271 // Check if Offset is more than full span of BitWidth. If it is, the 6272 // expression is guaranteed to overflow. 6273 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6274 return ConstantRange::getFull(BitWidth); 6275 6276 // Offset is by how much the expression can change. Checks above guarantee no 6277 // overflow here. 6278 APInt Offset = Step * MaxBECount; 6279 6280 // Minimum value of the final range will match the minimal value of StartRange 6281 // if the expression is increasing and will be decreased by Offset otherwise. 6282 // Maximum value of the final range will match the maximal value of StartRange 6283 // if the expression is decreasing and will be increased by Offset otherwise. 6284 APInt StartLower = StartRange.getLower(); 6285 APInt StartUpper = StartRange.getUpper() - 1; 6286 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6287 : (StartUpper + std::move(Offset)); 6288 6289 // It's possible that the new minimum/maximum value will fall into the initial 6290 // range (due to wrap around). This means that the expression can take any 6291 // value in this bitwidth, and we have to return full range. 6292 if (StartRange.contains(MovedBoundary)) 6293 return ConstantRange::getFull(BitWidth); 6294 6295 APInt NewLower = 6296 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6297 APInt NewUpper = 6298 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6299 NewUpper += 1; 6300 6301 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6302 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6303 } 6304 6305 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6306 const SCEV *Step, 6307 const SCEV *MaxBECount, 6308 unsigned BitWidth) { 6309 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6310 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6311 "Precondition!"); 6312 6313 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6314 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6315 6316 // First, consider step signed. 6317 ConstantRange StartSRange = getSignedRange(Start); 6318 ConstantRange StepSRange = getSignedRange(Step); 6319 6320 // If Step can be both positive and negative, we need to find ranges for the 6321 // maximum absolute step values in both directions and union them. 6322 ConstantRange SR = 6323 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6324 MaxBECountValue, BitWidth, /* Signed = */ true); 6325 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6326 StartSRange, MaxBECountValue, 6327 BitWidth, /* Signed = */ true)); 6328 6329 // Next, consider step unsigned. 6330 ConstantRange UR = getRangeForAffineARHelper( 6331 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6332 MaxBECountValue, BitWidth, /* Signed = */ false); 6333 6334 // Finally, intersect signed and unsigned ranges. 6335 return SR.intersectWith(UR, ConstantRange::Smallest); 6336 } 6337 6338 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6339 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6340 ScalarEvolution::RangeSignHint SignHint) { 6341 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6342 assert(AddRec->hasNoSelfWrap() && 6343 "This only works for non-self-wrapping AddRecs!"); 6344 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6345 const SCEV *Step = AddRec->getStepRecurrence(*this); 6346 // Only deal with constant step to save compile time. 6347 if (!isa<SCEVConstant>(Step)) 6348 return ConstantRange::getFull(BitWidth); 6349 // Let's make sure that we can prove that we do not self-wrap during 6350 // MaxBECount iterations. We need this because MaxBECount is a maximum 6351 // iteration count estimate, and we might infer nw from some exit for which we 6352 // do not know max exit count (or any other side reasoning). 6353 // TODO: Turn into assert at some point. 6354 if (getTypeSizeInBits(MaxBECount->getType()) > 6355 getTypeSizeInBits(AddRec->getType())) 6356 return ConstantRange::getFull(BitWidth); 6357 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6358 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6359 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6360 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6361 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6362 MaxItersWithoutWrap)) 6363 return ConstantRange::getFull(BitWidth); 6364 6365 ICmpInst::Predicate LEPred = 6366 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6367 ICmpInst::Predicate GEPred = 6368 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6369 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6370 6371 // We know that there is no self-wrap. Let's take Start and End values and 6372 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6373 // the iteration. They either lie inside the range [Min(Start, End), 6374 // Max(Start, End)] or outside it: 6375 // 6376 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6377 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6378 // 6379 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6380 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6381 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6382 // Start <= End and step is positive, or Start >= End and step is negative. 6383 const SCEV *Start = AddRec->getStart(); 6384 ConstantRange StartRange = getRangeRef(Start, SignHint); 6385 ConstantRange EndRange = getRangeRef(End, SignHint); 6386 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6387 // If they already cover full iteration space, we will know nothing useful 6388 // even if we prove what we want to prove. 6389 if (RangeBetween.isFullSet()) 6390 return RangeBetween; 6391 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6392 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6393 : RangeBetween.isWrappedSet(); 6394 if (IsWrappedSet) 6395 return ConstantRange::getFull(BitWidth); 6396 6397 if (isKnownPositive(Step) && 6398 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6399 return RangeBetween; 6400 else if (isKnownNegative(Step) && 6401 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6402 return RangeBetween; 6403 return ConstantRange::getFull(BitWidth); 6404 } 6405 6406 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6407 const SCEV *Step, 6408 const SCEV *MaxBECount, 6409 unsigned BitWidth) { 6410 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6411 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6412 6413 struct SelectPattern { 6414 Value *Condition = nullptr; 6415 APInt TrueValue; 6416 APInt FalseValue; 6417 6418 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6419 const SCEV *S) { 6420 Optional<unsigned> CastOp; 6421 APInt Offset(BitWidth, 0); 6422 6423 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6424 "Should be!"); 6425 6426 // Peel off a constant offset: 6427 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6428 // In the future we could consider being smarter here and handle 6429 // {Start+Step,+,Step} too. 6430 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6431 return; 6432 6433 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6434 S = SA->getOperand(1); 6435 } 6436 6437 // Peel off a cast operation 6438 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6439 CastOp = SCast->getSCEVType(); 6440 S = SCast->getOperand(); 6441 } 6442 6443 using namespace llvm::PatternMatch; 6444 6445 auto *SU = dyn_cast<SCEVUnknown>(S); 6446 const APInt *TrueVal, *FalseVal; 6447 if (!SU || 6448 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6449 m_APInt(FalseVal)))) { 6450 Condition = nullptr; 6451 return; 6452 } 6453 6454 TrueValue = *TrueVal; 6455 FalseValue = *FalseVal; 6456 6457 // Re-apply the cast we peeled off earlier 6458 if (CastOp.hasValue()) 6459 switch (*CastOp) { 6460 default: 6461 llvm_unreachable("Unknown SCEV cast type!"); 6462 6463 case scTruncate: 6464 TrueValue = TrueValue.trunc(BitWidth); 6465 FalseValue = FalseValue.trunc(BitWidth); 6466 break; 6467 case scZeroExtend: 6468 TrueValue = TrueValue.zext(BitWidth); 6469 FalseValue = FalseValue.zext(BitWidth); 6470 break; 6471 case scSignExtend: 6472 TrueValue = TrueValue.sext(BitWidth); 6473 FalseValue = FalseValue.sext(BitWidth); 6474 break; 6475 } 6476 6477 // Re-apply the constant offset we peeled off earlier 6478 TrueValue += Offset; 6479 FalseValue += Offset; 6480 } 6481 6482 bool isRecognized() { return Condition != nullptr; } 6483 }; 6484 6485 SelectPattern StartPattern(*this, BitWidth, Start); 6486 if (!StartPattern.isRecognized()) 6487 return ConstantRange::getFull(BitWidth); 6488 6489 SelectPattern StepPattern(*this, BitWidth, Step); 6490 if (!StepPattern.isRecognized()) 6491 return ConstantRange::getFull(BitWidth); 6492 6493 if (StartPattern.Condition != StepPattern.Condition) { 6494 // We don't handle this case today; but we could, by considering four 6495 // possibilities below instead of two. I'm not sure if there are cases where 6496 // that will help over what getRange already does, though. 6497 return ConstantRange::getFull(BitWidth); 6498 } 6499 6500 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6501 // construct arbitrary general SCEV expressions here. This function is called 6502 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6503 // say) can end up caching a suboptimal value. 6504 6505 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6506 // C2352 and C2512 (otherwise it isn't needed). 6507 6508 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6509 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6510 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6511 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6512 6513 ConstantRange TrueRange = 6514 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6515 ConstantRange FalseRange = 6516 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6517 6518 return TrueRange.unionWith(FalseRange); 6519 } 6520 6521 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6522 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6523 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6524 6525 // Return early if there are no flags to propagate to the SCEV. 6526 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6527 if (BinOp->hasNoUnsignedWrap()) 6528 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6529 if (BinOp->hasNoSignedWrap()) 6530 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6531 if (Flags == SCEV::FlagAnyWrap) 6532 return SCEV::FlagAnyWrap; 6533 6534 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6535 } 6536 6537 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6538 // Here we check that I is in the header of the innermost loop containing I, 6539 // since we only deal with instructions in the loop header. The actual loop we 6540 // need to check later will come from an add recurrence, but getting that 6541 // requires computing the SCEV of the operands, which can be expensive. This 6542 // check we can do cheaply to rule out some cases early. 6543 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6544 if (InnermostContainingLoop == nullptr || 6545 InnermostContainingLoop->getHeader() != I->getParent()) 6546 return false; 6547 6548 // Only proceed if we can prove that I does not yield poison. 6549 if (!programUndefinedIfPoison(I)) 6550 return false; 6551 6552 // At this point we know that if I is executed, then it does not wrap 6553 // according to at least one of NSW or NUW. If I is not executed, then we do 6554 // not know if the calculation that I represents would wrap. Multiple 6555 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6556 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6557 // derived from other instructions that map to the same SCEV. We cannot make 6558 // that guarantee for cases where I is not executed. So we need to find the 6559 // loop that I is considered in relation to and prove that I is executed for 6560 // every iteration of that loop. That implies that the value that I 6561 // calculates does not wrap anywhere in the loop, so then we can apply the 6562 // flags to the SCEV. 6563 // 6564 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6565 // from different loops, so that we know which loop to prove that I is 6566 // executed in. 6567 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6568 // I could be an extractvalue from a call to an overflow intrinsic. 6569 // TODO: We can do better here in some cases. 6570 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6571 return false; 6572 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6573 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6574 bool AllOtherOpsLoopInvariant = true; 6575 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6576 ++OtherOpIndex) { 6577 if (OtherOpIndex != OpIndex) { 6578 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6579 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6580 AllOtherOpsLoopInvariant = false; 6581 break; 6582 } 6583 } 6584 } 6585 if (AllOtherOpsLoopInvariant && 6586 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6587 return true; 6588 } 6589 } 6590 return false; 6591 } 6592 6593 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6594 // If we know that \c I can never be poison period, then that's enough. 6595 if (isSCEVExprNeverPoison(I)) 6596 return true; 6597 6598 // For an add recurrence specifically, we assume that infinite loops without 6599 // side effects are undefined behavior, and then reason as follows: 6600 // 6601 // If the add recurrence is poison in any iteration, it is poison on all 6602 // future iterations (since incrementing poison yields poison). If the result 6603 // of the add recurrence is fed into the loop latch condition and the loop 6604 // does not contain any throws or exiting blocks other than the latch, we now 6605 // have the ability to "choose" whether the backedge is taken or not (by 6606 // choosing a sufficiently evil value for the poison feeding into the branch) 6607 // for every iteration including and after the one in which \p I first became 6608 // poison. There are two possibilities (let's call the iteration in which \p 6609 // I first became poison as K): 6610 // 6611 // 1. In the set of iterations including and after K, the loop body executes 6612 // no side effects. In this case executing the backege an infinte number 6613 // of times will yield undefined behavior. 6614 // 6615 // 2. In the set of iterations including and after K, the loop body executes 6616 // at least one side effect. In this case, that specific instance of side 6617 // effect is control dependent on poison, which also yields undefined 6618 // behavior. 6619 6620 auto *ExitingBB = L->getExitingBlock(); 6621 auto *LatchBB = L->getLoopLatch(); 6622 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6623 return false; 6624 6625 SmallPtrSet<const Instruction *, 16> Pushed; 6626 SmallVector<const Instruction *, 8> PoisonStack; 6627 6628 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6629 // things that are known to be poison under that assumption go on the 6630 // PoisonStack. 6631 Pushed.insert(I); 6632 PoisonStack.push_back(I); 6633 6634 bool LatchControlDependentOnPoison = false; 6635 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6636 const Instruction *Poison = PoisonStack.pop_back_val(); 6637 6638 for (auto *PoisonUser : Poison->users()) { 6639 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6640 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6641 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6642 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6643 assert(BI->isConditional() && "Only possibility!"); 6644 if (BI->getParent() == LatchBB) { 6645 LatchControlDependentOnPoison = true; 6646 break; 6647 } 6648 } 6649 } 6650 } 6651 6652 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6653 } 6654 6655 ScalarEvolution::LoopProperties 6656 ScalarEvolution::getLoopProperties(const Loop *L) { 6657 using LoopProperties = ScalarEvolution::LoopProperties; 6658 6659 auto Itr = LoopPropertiesCache.find(L); 6660 if (Itr == LoopPropertiesCache.end()) { 6661 auto HasSideEffects = [](Instruction *I) { 6662 if (auto *SI = dyn_cast<StoreInst>(I)) 6663 return !SI->isSimple(); 6664 6665 return I->mayHaveSideEffects(); 6666 }; 6667 6668 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6669 /*HasNoSideEffects*/ true}; 6670 6671 for (auto *BB : L->getBlocks()) 6672 for (auto &I : *BB) { 6673 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6674 LP.HasNoAbnormalExits = false; 6675 if (HasSideEffects(&I)) 6676 LP.HasNoSideEffects = false; 6677 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6678 break; // We're already as pessimistic as we can get. 6679 } 6680 6681 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6682 assert(InsertPair.second && "We just checked!"); 6683 Itr = InsertPair.first; 6684 } 6685 6686 return Itr->second; 6687 } 6688 6689 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6690 // A mustprogress loop without side effects must be finite. 6691 // TODO: The check used here is very conservative. It's only *specific* 6692 // side effects which are well defined in infinite loops. 6693 return isMustProgress(L) && loopHasNoSideEffects(L); 6694 } 6695 6696 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6697 if (!isSCEVable(V->getType())) 6698 return getUnknown(V); 6699 6700 if (Instruction *I = dyn_cast<Instruction>(V)) { 6701 // Don't attempt to analyze instructions in blocks that aren't 6702 // reachable. Such instructions don't matter, and they aren't required 6703 // to obey basic rules for definitions dominating uses which this 6704 // analysis depends on. 6705 if (!DT.isReachableFromEntry(I->getParent())) 6706 return getUnknown(UndefValue::get(V->getType())); 6707 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6708 return getConstant(CI); 6709 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6710 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6711 else if (!isa<ConstantExpr>(V)) 6712 return getUnknown(V); 6713 6714 Operator *U = cast<Operator>(V); 6715 if (auto BO = MatchBinaryOp(U, DT)) { 6716 switch (BO->Opcode) { 6717 case Instruction::Add: { 6718 // The simple thing to do would be to just call getSCEV on both operands 6719 // and call getAddExpr with the result. However if we're looking at a 6720 // bunch of things all added together, this can be quite inefficient, 6721 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6722 // Instead, gather up all the operands and make a single getAddExpr call. 6723 // LLVM IR canonical form means we need only traverse the left operands. 6724 SmallVector<const SCEV *, 4> AddOps; 6725 do { 6726 if (BO->Op) { 6727 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6728 AddOps.push_back(OpSCEV); 6729 break; 6730 } 6731 6732 // If a NUW or NSW flag can be applied to the SCEV for this 6733 // addition, then compute the SCEV for this addition by itself 6734 // with a separate call to getAddExpr. We need to do that 6735 // instead of pushing the operands of the addition onto AddOps, 6736 // since the flags are only known to apply to this particular 6737 // addition - they may not apply to other additions that can be 6738 // formed with operands from AddOps. 6739 const SCEV *RHS = getSCEV(BO->RHS); 6740 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6741 if (Flags != SCEV::FlagAnyWrap) { 6742 const SCEV *LHS = getSCEV(BO->LHS); 6743 if (BO->Opcode == Instruction::Sub) 6744 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6745 else 6746 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6747 break; 6748 } 6749 } 6750 6751 if (BO->Opcode == Instruction::Sub) 6752 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6753 else 6754 AddOps.push_back(getSCEV(BO->RHS)); 6755 6756 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6757 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6758 NewBO->Opcode != Instruction::Sub)) { 6759 AddOps.push_back(getSCEV(BO->LHS)); 6760 break; 6761 } 6762 BO = NewBO; 6763 } while (true); 6764 6765 return getAddExpr(AddOps); 6766 } 6767 6768 case Instruction::Mul: { 6769 SmallVector<const SCEV *, 4> MulOps; 6770 do { 6771 if (BO->Op) { 6772 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6773 MulOps.push_back(OpSCEV); 6774 break; 6775 } 6776 6777 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6778 if (Flags != SCEV::FlagAnyWrap) { 6779 MulOps.push_back( 6780 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6781 break; 6782 } 6783 } 6784 6785 MulOps.push_back(getSCEV(BO->RHS)); 6786 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6787 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6788 MulOps.push_back(getSCEV(BO->LHS)); 6789 break; 6790 } 6791 BO = NewBO; 6792 } while (true); 6793 6794 return getMulExpr(MulOps); 6795 } 6796 case Instruction::UDiv: 6797 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6798 case Instruction::URem: 6799 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6800 case Instruction::Sub: { 6801 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6802 if (BO->Op) 6803 Flags = getNoWrapFlagsFromUB(BO->Op); 6804 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6805 } 6806 case Instruction::And: 6807 // For an expression like x&255 that merely masks off the high bits, 6808 // use zext(trunc(x)) as the SCEV expression. 6809 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6810 if (CI->isZero()) 6811 return getSCEV(BO->RHS); 6812 if (CI->isMinusOne()) 6813 return getSCEV(BO->LHS); 6814 const APInt &A = CI->getValue(); 6815 6816 // Instcombine's ShrinkDemandedConstant may strip bits out of 6817 // constants, obscuring what would otherwise be a low-bits mask. 6818 // Use computeKnownBits to compute what ShrinkDemandedConstant 6819 // knew about to reconstruct a low-bits mask value. 6820 unsigned LZ = A.countLeadingZeros(); 6821 unsigned TZ = A.countTrailingZeros(); 6822 unsigned BitWidth = A.getBitWidth(); 6823 KnownBits Known(BitWidth); 6824 computeKnownBits(BO->LHS, Known, getDataLayout(), 6825 0, &AC, nullptr, &DT); 6826 6827 APInt EffectiveMask = 6828 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6829 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6830 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6831 const SCEV *LHS = getSCEV(BO->LHS); 6832 const SCEV *ShiftedLHS = nullptr; 6833 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6834 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6835 // For an expression like (x * 8) & 8, simplify the multiply. 6836 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6837 unsigned GCD = std::min(MulZeros, TZ); 6838 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6839 SmallVector<const SCEV*, 4> MulOps; 6840 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6841 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6842 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6843 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6844 } 6845 } 6846 if (!ShiftedLHS) 6847 ShiftedLHS = getUDivExpr(LHS, MulCount); 6848 return getMulExpr( 6849 getZeroExtendExpr( 6850 getTruncateExpr(ShiftedLHS, 6851 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6852 BO->LHS->getType()), 6853 MulCount); 6854 } 6855 } 6856 break; 6857 6858 case Instruction::Or: 6859 // If the RHS of the Or is a constant, we may have something like: 6860 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6861 // optimizations will transparently handle this case. 6862 // 6863 // In order for this transformation to be safe, the LHS must be of the 6864 // form X*(2^n) and the Or constant must be less than 2^n. 6865 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6866 const SCEV *LHS = getSCEV(BO->LHS); 6867 const APInt &CIVal = CI->getValue(); 6868 if (GetMinTrailingZeros(LHS) >= 6869 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6870 // Build a plain add SCEV. 6871 return getAddExpr(LHS, getSCEV(CI), 6872 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6873 } 6874 } 6875 break; 6876 6877 case Instruction::Xor: 6878 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6879 // If the RHS of xor is -1, then this is a not operation. 6880 if (CI->isMinusOne()) 6881 return getNotSCEV(getSCEV(BO->LHS)); 6882 6883 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6884 // This is a variant of the check for xor with -1, and it handles 6885 // the case where instcombine has trimmed non-demanded bits out 6886 // of an xor with -1. 6887 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6888 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6889 if (LBO->getOpcode() == Instruction::And && 6890 LCI->getValue() == CI->getValue()) 6891 if (const SCEVZeroExtendExpr *Z = 6892 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6893 Type *UTy = BO->LHS->getType(); 6894 const SCEV *Z0 = Z->getOperand(); 6895 Type *Z0Ty = Z0->getType(); 6896 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6897 6898 // If C is a low-bits mask, the zero extend is serving to 6899 // mask off the high bits. Complement the operand and 6900 // re-apply the zext. 6901 if (CI->getValue().isMask(Z0TySize)) 6902 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6903 6904 // If C is a single bit, it may be in the sign-bit position 6905 // before the zero-extend. In this case, represent the xor 6906 // using an add, which is equivalent, and re-apply the zext. 6907 APInt Trunc = CI->getValue().trunc(Z0TySize); 6908 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6909 Trunc.isSignMask()) 6910 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6911 UTy); 6912 } 6913 } 6914 break; 6915 6916 case Instruction::Shl: 6917 // Turn shift left of a constant amount into a multiply. 6918 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6919 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6920 6921 // If the shift count is not less than the bitwidth, the result of 6922 // the shift is undefined. Don't try to analyze it, because the 6923 // resolution chosen here may differ from the resolution chosen in 6924 // other parts of the compiler. 6925 if (SA->getValue().uge(BitWidth)) 6926 break; 6927 6928 // We can safely preserve the nuw flag in all cases. It's also safe to 6929 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6930 // requires special handling. It can be preserved as long as we're not 6931 // left shifting by bitwidth - 1. 6932 auto Flags = SCEV::FlagAnyWrap; 6933 if (BO->Op) { 6934 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6935 if ((MulFlags & SCEV::FlagNSW) && 6936 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6937 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6938 if (MulFlags & SCEV::FlagNUW) 6939 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6940 } 6941 6942 Constant *X = ConstantInt::get( 6943 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6944 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6945 } 6946 break; 6947 6948 case Instruction::AShr: { 6949 // AShr X, C, where C is a constant. 6950 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6951 if (!CI) 6952 break; 6953 6954 Type *OuterTy = BO->LHS->getType(); 6955 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6956 // If the shift count is not less than the bitwidth, the result of 6957 // the shift is undefined. Don't try to analyze it, because the 6958 // resolution chosen here may differ from the resolution chosen in 6959 // other parts of the compiler. 6960 if (CI->getValue().uge(BitWidth)) 6961 break; 6962 6963 if (CI->isZero()) 6964 return getSCEV(BO->LHS); // shift by zero --> noop 6965 6966 uint64_t AShrAmt = CI->getZExtValue(); 6967 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6968 6969 Operator *L = dyn_cast<Operator>(BO->LHS); 6970 if (L && L->getOpcode() == Instruction::Shl) { 6971 // X = Shl A, n 6972 // Y = AShr X, m 6973 // Both n and m are constant. 6974 6975 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6976 if (L->getOperand(1) == BO->RHS) 6977 // For a two-shift sext-inreg, i.e. n = m, 6978 // use sext(trunc(x)) as the SCEV expression. 6979 return getSignExtendExpr( 6980 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6981 6982 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6983 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6984 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6985 if (ShlAmt > AShrAmt) { 6986 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6987 // expression. We already checked that ShlAmt < BitWidth, so 6988 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6989 // ShlAmt - AShrAmt < Amt. 6990 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6991 ShlAmt - AShrAmt); 6992 return getSignExtendExpr( 6993 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6994 getConstant(Mul)), OuterTy); 6995 } 6996 } 6997 } 6998 break; 6999 } 7000 } 7001 } 7002 7003 switch (U->getOpcode()) { 7004 case Instruction::Trunc: 7005 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7006 7007 case Instruction::ZExt: 7008 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7009 7010 case Instruction::SExt: 7011 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7012 // The NSW flag of a subtract does not always survive the conversion to 7013 // A + (-1)*B. By pushing sign extension onto its operands we are much 7014 // more likely to preserve NSW and allow later AddRec optimisations. 7015 // 7016 // NOTE: This is effectively duplicating this logic from getSignExtend: 7017 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7018 // but by that point the NSW information has potentially been lost. 7019 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7020 Type *Ty = U->getType(); 7021 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7022 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7023 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7024 } 7025 } 7026 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7027 7028 case Instruction::BitCast: 7029 // BitCasts are no-op casts so we just eliminate the cast. 7030 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7031 return getSCEV(U->getOperand(0)); 7032 break; 7033 7034 case Instruction::PtrToInt: { 7035 // Pointer to integer cast is straight-forward, so do model it. 7036 const SCEV *Op = getSCEV(U->getOperand(0)); 7037 Type *DstIntTy = U->getType(); 7038 // But only if effective SCEV (integer) type is wide enough to represent 7039 // all possible pointer values. 7040 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7041 if (isa<SCEVCouldNotCompute>(IntOp)) 7042 return getUnknown(V); 7043 return IntOp; 7044 } 7045 case Instruction::IntToPtr: 7046 // Just don't deal with inttoptr casts. 7047 return getUnknown(V); 7048 7049 case Instruction::SDiv: 7050 // If both operands are non-negative, this is just an udiv. 7051 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7052 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7053 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7054 break; 7055 7056 case Instruction::SRem: 7057 // If both operands are non-negative, this is just an urem. 7058 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7059 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7060 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7061 break; 7062 7063 case Instruction::GetElementPtr: 7064 return createNodeForGEP(cast<GEPOperator>(U)); 7065 7066 case Instruction::PHI: 7067 return createNodeForPHI(cast<PHINode>(U)); 7068 7069 case Instruction::Select: 7070 // U can also be a select constant expr, which let fall through. Since 7071 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7072 // constant expressions cannot have instructions as operands, we'd have 7073 // returned getUnknown for a select constant expressions anyway. 7074 if (isa<Instruction>(U)) 7075 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7076 U->getOperand(1), U->getOperand(2)); 7077 break; 7078 7079 case Instruction::Call: 7080 case Instruction::Invoke: 7081 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7082 return getSCEV(RV); 7083 7084 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7085 switch (II->getIntrinsicID()) { 7086 case Intrinsic::abs: 7087 return getAbsExpr( 7088 getSCEV(II->getArgOperand(0)), 7089 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7090 case Intrinsic::umax: 7091 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7092 getSCEV(II->getArgOperand(1))); 7093 case Intrinsic::umin: 7094 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7095 getSCEV(II->getArgOperand(1))); 7096 case Intrinsic::smax: 7097 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7098 getSCEV(II->getArgOperand(1))); 7099 case Intrinsic::smin: 7100 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7101 getSCEV(II->getArgOperand(1))); 7102 case Intrinsic::usub_sat: { 7103 const SCEV *X = getSCEV(II->getArgOperand(0)); 7104 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7105 const SCEV *ClampedY = getUMinExpr(X, Y); 7106 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7107 } 7108 case Intrinsic::uadd_sat: { 7109 const SCEV *X = getSCEV(II->getArgOperand(0)); 7110 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7111 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7112 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7113 } 7114 case Intrinsic::start_loop_iterations: 7115 // A start_loop_iterations is just equivalent to the first operand for 7116 // SCEV purposes. 7117 return getSCEV(II->getArgOperand(0)); 7118 default: 7119 break; 7120 } 7121 } 7122 break; 7123 } 7124 7125 return getUnknown(V); 7126 } 7127 7128 //===----------------------------------------------------------------------===// 7129 // Iteration Count Computation Code 7130 // 7131 7132 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { 7133 // Get the trip count from the BE count by adding 1. Overflow, results 7134 // in zero which means "unknown". 7135 return getAddExpr(ExitCount, getOne(ExitCount->getType())); 7136 } 7137 7138 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7139 if (!ExitCount) 7140 return 0; 7141 7142 ConstantInt *ExitConst = ExitCount->getValue(); 7143 7144 // Guard against huge trip counts. 7145 if (ExitConst->getValue().getActiveBits() > 32) 7146 return 0; 7147 7148 // In case of integer overflow, this returns 0, which is correct. 7149 return ((unsigned)ExitConst->getZExtValue()) + 1; 7150 } 7151 7152 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7153 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7154 return getConstantTripCount(ExitCount); 7155 } 7156 7157 unsigned 7158 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7159 const BasicBlock *ExitingBlock) { 7160 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7161 assert(L->isLoopExiting(ExitingBlock) && 7162 "Exiting block must actually branch out of the loop!"); 7163 const SCEVConstant *ExitCount = 7164 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7165 return getConstantTripCount(ExitCount); 7166 } 7167 7168 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7169 const auto *MaxExitCount = 7170 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7171 return getConstantTripCount(MaxExitCount); 7172 } 7173 7174 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7175 SmallVector<BasicBlock *, 8> ExitingBlocks; 7176 L->getExitingBlocks(ExitingBlocks); 7177 7178 Optional<unsigned> Res = None; 7179 for (auto *ExitingBB : ExitingBlocks) { 7180 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7181 if (!Res) 7182 Res = Multiple; 7183 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7184 } 7185 return Res.getValueOr(1); 7186 } 7187 7188 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7189 const SCEV *ExitCount) { 7190 if (ExitCount == getCouldNotCompute()) 7191 return 1; 7192 7193 // Get the trip count 7194 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7195 7196 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7197 if (!TC) 7198 // Attempt to factor more general cases. Returns the greatest power of 7199 // two divisor. If overflow happens, the trip count expression is still 7200 // divisible by the greatest power of 2 divisor returned. 7201 return 1U << std::min((uint32_t)31, 7202 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7203 7204 ConstantInt *Result = TC->getValue(); 7205 7206 // Guard against huge trip counts (this requires checking 7207 // for zero to handle the case where the trip count == -1 and the 7208 // addition wraps). 7209 if (!Result || Result->getValue().getActiveBits() > 32 || 7210 Result->getValue().getActiveBits() == 0) 7211 return 1; 7212 7213 return (unsigned)Result->getZExtValue(); 7214 } 7215 7216 /// Returns the largest constant divisor of the trip count of this loop as a 7217 /// normal unsigned value, if possible. This means that the actual trip count is 7218 /// always a multiple of the returned value (don't forget the trip count could 7219 /// very well be zero as well!). 7220 /// 7221 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7222 /// multiple of a constant (which is also the case if the trip count is simply 7223 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7224 /// if the trip count is very large (>= 2^32). 7225 /// 7226 /// As explained in the comments for getSmallConstantTripCount, this assumes 7227 /// that control exits the loop via ExitingBlock. 7228 unsigned 7229 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7230 const BasicBlock *ExitingBlock) { 7231 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7232 assert(L->isLoopExiting(ExitingBlock) && 7233 "Exiting block must actually branch out of the loop!"); 7234 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7235 return getSmallConstantTripMultiple(L, ExitCount); 7236 } 7237 7238 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7239 const BasicBlock *ExitingBlock, 7240 ExitCountKind Kind) { 7241 switch (Kind) { 7242 case Exact: 7243 case SymbolicMaximum: 7244 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7245 case ConstantMaximum: 7246 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7247 }; 7248 llvm_unreachable("Invalid ExitCountKind!"); 7249 } 7250 7251 const SCEV * 7252 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7253 SCEVUnionPredicate &Preds) { 7254 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7255 } 7256 7257 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7258 ExitCountKind Kind) { 7259 switch (Kind) { 7260 case Exact: 7261 return getBackedgeTakenInfo(L).getExact(L, this); 7262 case ConstantMaximum: 7263 return getBackedgeTakenInfo(L).getConstantMax(this); 7264 case SymbolicMaximum: 7265 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7266 }; 7267 llvm_unreachable("Invalid ExitCountKind!"); 7268 } 7269 7270 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7271 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7272 } 7273 7274 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7275 static void 7276 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 7277 BasicBlock *Header = L->getHeader(); 7278 7279 // Push all Loop-header PHIs onto the Worklist stack. 7280 for (PHINode &PN : Header->phis()) 7281 Worklist.push_back(&PN); 7282 } 7283 7284 const ScalarEvolution::BackedgeTakenInfo & 7285 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7286 auto &BTI = getBackedgeTakenInfo(L); 7287 if (BTI.hasFullInfo()) 7288 return BTI; 7289 7290 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7291 7292 if (!Pair.second) 7293 return Pair.first->second; 7294 7295 BackedgeTakenInfo Result = 7296 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7297 7298 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7299 } 7300 7301 ScalarEvolution::BackedgeTakenInfo & 7302 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7303 // Initially insert an invalid entry for this loop. If the insertion 7304 // succeeds, proceed to actually compute a backedge-taken count and 7305 // update the value. The temporary CouldNotCompute value tells SCEV 7306 // code elsewhere that it shouldn't attempt to request a new 7307 // backedge-taken count, which could result in infinite recursion. 7308 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7309 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7310 if (!Pair.second) 7311 return Pair.first->second; 7312 7313 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7314 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7315 // must be cleared in this scope. 7316 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7317 7318 // In product build, there are no usage of statistic. 7319 (void)NumTripCountsComputed; 7320 (void)NumTripCountsNotComputed; 7321 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7322 const SCEV *BEExact = Result.getExact(L, this); 7323 if (BEExact != getCouldNotCompute()) { 7324 assert(isLoopInvariant(BEExact, L) && 7325 isLoopInvariant(Result.getConstantMax(this), L) && 7326 "Computed backedge-taken count isn't loop invariant for loop!"); 7327 ++NumTripCountsComputed; 7328 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7329 isa<PHINode>(L->getHeader()->begin())) { 7330 // Only count loops that have phi nodes as not being computable. 7331 ++NumTripCountsNotComputed; 7332 } 7333 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7334 7335 // Now that we know more about the trip count for this loop, forget any 7336 // existing SCEV values for PHI nodes in this loop since they are only 7337 // conservative estimates made without the benefit of trip count 7338 // information. This is similar to the code in forgetLoop, except that 7339 // it handles SCEVUnknown PHI nodes specially. 7340 if (Result.hasAnyInfo()) { 7341 SmallVector<Instruction *, 16> Worklist; 7342 PushLoopPHIs(L, Worklist); 7343 7344 SmallPtrSet<Instruction *, 8> Discovered; 7345 while (!Worklist.empty()) { 7346 Instruction *I = Worklist.pop_back_val(); 7347 7348 ValueExprMapType::iterator It = 7349 ValueExprMap.find_as(static_cast<Value *>(I)); 7350 if (It != ValueExprMap.end()) { 7351 const SCEV *Old = It->second; 7352 7353 // SCEVUnknown for a PHI either means that it has an unrecognized 7354 // structure, or it's a PHI that's in the progress of being computed 7355 // by createNodeForPHI. In the former case, additional loop trip 7356 // count information isn't going to change anything. In the later 7357 // case, createNodeForPHI will perform the necessary updates on its 7358 // own when it gets to that point. 7359 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7360 eraseValueFromMap(It->first); 7361 forgetMemoizedResults(Old); 7362 } 7363 if (PHINode *PN = dyn_cast<PHINode>(I)) 7364 ConstantEvolutionLoopExitValue.erase(PN); 7365 } 7366 7367 // Since we don't need to invalidate anything for correctness and we're 7368 // only invalidating to make SCEV's results more precise, we get to stop 7369 // early to avoid invalidating too much. This is especially important in 7370 // cases like: 7371 // 7372 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7373 // loop0: 7374 // %pn0 = phi 7375 // ... 7376 // loop1: 7377 // %pn1 = phi 7378 // ... 7379 // 7380 // where both loop0 and loop1's backedge taken count uses the SCEV 7381 // expression for %v. If we don't have the early stop below then in cases 7382 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7383 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7384 // count for loop1, effectively nullifying SCEV's trip count cache. 7385 for (auto *U : I->users()) 7386 if (auto *I = dyn_cast<Instruction>(U)) { 7387 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7388 if (LoopForUser && L->contains(LoopForUser) && 7389 Discovered.insert(I).second) 7390 Worklist.push_back(I); 7391 } 7392 } 7393 } 7394 7395 // Re-lookup the insert position, since the call to 7396 // computeBackedgeTakenCount above could result in a 7397 // recusive call to getBackedgeTakenInfo (on a different 7398 // loop), which would invalidate the iterator computed 7399 // earlier. 7400 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7401 } 7402 7403 void ScalarEvolution::forgetAllLoops() { 7404 // This method is intended to forget all info about loops. It should 7405 // invalidate caches as if the following happened: 7406 // - The trip counts of all loops have changed arbitrarily 7407 // - Every llvm::Value has been updated in place to produce a different 7408 // result. 7409 BackedgeTakenCounts.clear(); 7410 PredicatedBackedgeTakenCounts.clear(); 7411 LoopPropertiesCache.clear(); 7412 ConstantEvolutionLoopExitValue.clear(); 7413 ValueExprMap.clear(); 7414 ValuesAtScopes.clear(); 7415 LoopDispositions.clear(); 7416 BlockDispositions.clear(); 7417 UnsignedRanges.clear(); 7418 SignedRanges.clear(); 7419 ExprValueMap.clear(); 7420 HasRecMap.clear(); 7421 MinTrailingZerosCache.clear(); 7422 PredicatedSCEVRewrites.clear(); 7423 } 7424 7425 void ScalarEvolution::forgetLoop(const Loop *L) { 7426 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7427 SmallVector<Instruction *, 32> Worklist; 7428 SmallPtrSet<Instruction *, 16> Visited; 7429 7430 // Iterate over all the loops and sub-loops to drop SCEV information. 7431 while (!LoopWorklist.empty()) { 7432 auto *CurrL = LoopWorklist.pop_back_val(); 7433 7434 // Drop any stored trip count value. 7435 BackedgeTakenCounts.erase(CurrL); 7436 PredicatedBackedgeTakenCounts.erase(CurrL); 7437 7438 // Drop information about predicated SCEV rewrites for this loop. 7439 for (auto I = PredicatedSCEVRewrites.begin(); 7440 I != PredicatedSCEVRewrites.end();) { 7441 std::pair<const SCEV *, const Loop *> Entry = I->first; 7442 if (Entry.second == CurrL) 7443 PredicatedSCEVRewrites.erase(I++); 7444 else 7445 ++I; 7446 } 7447 7448 auto LoopUsersItr = LoopUsers.find(CurrL); 7449 if (LoopUsersItr != LoopUsers.end()) { 7450 for (auto *S : LoopUsersItr->second) 7451 forgetMemoizedResults(S); 7452 LoopUsers.erase(LoopUsersItr); 7453 } 7454 7455 // Drop information about expressions based on loop-header PHIs. 7456 PushLoopPHIs(CurrL, Worklist); 7457 7458 while (!Worklist.empty()) { 7459 Instruction *I = Worklist.pop_back_val(); 7460 if (!Visited.insert(I).second) 7461 continue; 7462 7463 ValueExprMapType::iterator It = 7464 ValueExprMap.find_as(static_cast<Value *>(I)); 7465 if (It != ValueExprMap.end()) { 7466 eraseValueFromMap(It->first); 7467 forgetMemoizedResults(It->second); 7468 if (PHINode *PN = dyn_cast<PHINode>(I)) 7469 ConstantEvolutionLoopExitValue.erase(PN); 7470 } 7471 7472 PushDefUseChildren(I, Worklist); 7473 } 7474 7475 LoopPropertiesCache.erase(CurrL); 7476 // Forget all contained loops too, to avoid dangling entries in the 7477 // ValuesAtScopes map. 7478 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7479 } 7480 } 7481 7482 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7483 while (Loop *Parent = L->getParentLoop()) 7484 L = Parent; 7485 forgetLoop(L); 7486 } 7487 7488 void ScalarEvolution::forgetValue(Value *V) { 7489 Instruction *I = dyn_cast<Instruction>(V); 7490 if (!I) return; 7491 7492 // Drop information about expressions based on loop-header PHIs. 7493 SmallVector<Instruction *, 16> Worklist; 7494 Worklist.push_back(I); 7495 7496 SmallPtrSet<Instruction *, 8> Visited; 7497 while (!Worklist.empty()) { 7498 I = Worklist.pop_back_val(); 7499 if (!Visited.insert(I).second) 7500 continue; 7501 7502 ValueExprMapType::iterator It = 7503 ValueExprMap.find_as(static_cast<Value *>(I)); 7504 if (It != ValueExprMap.end()) { 7505 eraseValueFromMap(It->first); 7506 forgetMemoizedResults(It->second); 7507 if (PHINode *PN = dyn_cast<PHINode>(I)) 7508 ConstantEvolutionLoopExitValue.erase(PN); 7509 } 7510 7511 PushDefUseChildren(I, Worklist); 7512 } 7513 } 7514 7515 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7516 LoopDispositions.clear(); 7517 } 7518 7519 /// Get the exact loop backedge taken count considering all loop exits. A 7520 /// computable result can only be returned for loops with all exiting blocks 7521 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7522 /// is never skipped. This is a valid assumption as long as the loop exits via 7523 /// that test. For precise results, it is the caller's responsibility to specify 7524 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7525 const SCEV * 7526 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7527 SCEVUnionPredicate *Preds) const { 7528 // If any exits were not computable, the loop is not computable. 7529 if (!isComplete() || ExitNotTaken.empty()) 7530 return SE->getCouldNotCompute(); 7531 7532 const BasicBlock *Latch = L->getLoopLatch(); 7533 // All exiting blocks we have collected must dominate the only backedge. 7534 if (!Latch) 7535 return SE->getCouldNotCompute(); 7536 7537 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7538 // count is simply a minimum out of all these calculated exit counts. 7539 SmallVector<const SCEV *, 2> Ops; 7540 for (auto &ENT : ExitNotTaken) { 7541 const SCEV *BECount = ENT.ExactNotTaken; 7542 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7543 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7544 "We should only have known counts for exiting blocks that dominate " 7545 "latch!"); 7546 7547 Ops.push_back(BECount); 7548 7549 if (Preds && !ENT.hasAlwaysTruePredicate()) 7550 Preds->add(ENT.Predicate.get()); 7551 7552 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7553 "Predicate should be always true!"); 7554 } 7555 7556 return SE->getUMinFromMismatchedTypes(Ops); 7557 } 7558 7559 /// Get the exact not taken count for this loop exit. 7560 const SCEV * 7561 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7562 ScalarEvolution *SE) const { 7563 for (auto &ENT : ExitNotTaken) 7564 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7565 return ENT.ExactNotTaken; 7566 7567 return SE->getCouldNotCompute(); 7568 } 7569 7570 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7571 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7572 for (auto &ENT : ExitNotTaken) 7573 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7574 return ENT.MaxNotTaken; 7575 7576 return SE->getCouldNotCompute(); 7577 } 7578 7579 /// getConstantMax - Get the constant max backedge taken count for the loop. 7580 const SCEV * 7581 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7582 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7583 return !ENT.hasAlwaysTruePredicate(); 7584 }; 7585 7586 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7587 return SE->getCouldNotCompute(); 7588 7589 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7590 isa<SCEVConstant>(getConstantMax())) && 7591 "No point in having a non-constant max backedge taken count!"); 7592 return getConstantMax(); 7593 } 7594 7595 const SCEV * 7596 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7597 ScalarEvolution *SE) { 7598 if (!SymbolicMax) 7599 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7600 return SymbolicMax; 7601 } 7602 7603 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7604 ScalarEvolution *SE) const { 7605 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7606 return !ENT.hasAlwaysTruePredicate(); 7607 }; 7608 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7609 } 7610 7611 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const { 7612 return Operands.contains(S); 7613 } 7614 7615 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7616 : ExitLimit(E, E, false, None) { 7617 } 7618 7619 ScalarEvolution::ExitLimit::ExitLimit( 7620 const SCEV *E, const SCEV *M, bool MaxOrZero, 7621 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7622 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7623 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7624 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7625 "Exact is not allowed to be less precise than Max"); 7626 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7627 isa<SCEVConstant>(MaxNotTaken)) && 7628 "No point in having a non-constant max backedge taken count!"); 7629 for (auto *PredSet : PredSetList) 7630 for (auto *P : *PredSet) 7631 addPredicate(P); 7632 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7633 "Backedge count should be int"); 7634 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7635 "Max backedge count should be int"); 7636 } 7637 7638 ScalarEvolution::ExitLimit::ExitLimit( 7639 const SCEV *E, const SCEV *M, bool MaxOrZero, 7640 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7641 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7642 } 7643 7644 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7645 bool MaxOrZero) 7646 : ExitLimit(E, M, MaxOrZero, None) { 7647 } 7648 7649 class SCEVRecordOperands { 7650 SmallPtrSetImpl<const SCEV *> &Operands; 7651 7652 public: 7653 SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands) 7654 : Operands(Operands) {} 7655 bool follow(const SCEV *S) { 7656 Operands.insert(S); 7657 return true; 7658 } 7659 bool isDone() { return false; } 7660 }; 7661 7662 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7663 /// computable exit into a persistent ExitNotTakenInfo array. 7664 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7665 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7666 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7667 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7668 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7669 7670 ExitNotTaken.reserve(ExitCounts.size()); 7671 std::transform( 7672 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7673 [&](const EdgeExitInfo &EEI) { 7674 BasicBlock *ExitBB = EEI.first; 7675 const ExitLimit &EL = EEI.second; 7676 if (EL.Predicates.empty()) 7677 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7678 nullptr); 7679 7680 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7681 for (auto *Pred : EL.Predicates) 7682 Predicate->add(Pred); 7683 7684 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7685 std::move(Predicate)); 7686 }); 7687 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7688 isa<SCEVConstant>(ConstantMax)) && 7689 "No point in having a non-constant max backedge taken count!"); 7690 7691 SCEVRecordOperands RecordOperands(Operands); 7692 SCEVTraversal<SCEVRecordOperands> ST(RecordOperands); 7693 if (!isa<SCEVCouldNotCompute>(ConstantMax)) 7694 ST.visitAll(ConstantMax); 7695 for (auto &ENT : ExitNotTaken) 7696 if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken)) 7697 ST.visitAll(ENT.ExactNotTaken); 7698 } 7699 7700 /// Compute the number of times the backedge of the specified loop will execute. 7701 ScalarEvolution::BackedgeTakenInfo 7702 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7703 bool AllowPredicates) { 7704 SmallVector<BasicBlock *, 8> ExitingBlocks; 7705 L->getExitingBlocks(ExitingBlocks); 7706 7707 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7708 7709 SmallVector<EdgeExitInfo, 4> ExitCounts; 7710 bool CouldComputeBECount = true; 7711 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7712 const SCEV *MustExitMaxBECount = nullptr; 7713 const SCEV *MayExitMaxBECount = nullptr; 7714 bool MustExitMaxOrZero = false; 7715 7716 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7717 // and compute maxBECount. 7718 // Do a union of all the predicates here. 7719 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7720 BasicBlock *ExitBB = ExitingBlocks[i]; 7721 7722 // We canonicalize untaken exits to br (constant), ignore them so that 7723 // proving an exit untaken doesn't negatively impact our ability to reason 7724 // about the loop as whole. 7725 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7726 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7727 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7728 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7729 continue; 7730 } 7731 7732 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7733 7734 assert((AllowPredicates || EL.Predicates.empty()) && 7735 "Predicated exit limit when predicates are not allowed!"); 7736 7737 // 1. For each exit that can be computed, add an entry to ExitCounts. 7738 // CouldComputeBECount is true only if all exits can be computed. 7739 if (EL.ExactNotTaken == getCouldNotCompute()) 7740 // We couldn't compute an exact value for this exit, so 7741 // we won't be able to compute an exact value for the loop. 7742 CouldComputeBECount = false; 7743 else 7744 ExitCounts.emplace_back(ExitBB, EL); 7745 7746 // 2. Derive the loop's MaxBECount from each exit's max number of 7747 // non-exiting iterations. Partition the loop exits into two kinds: 7748 // LoopMustExits and LoopMayExits. 7749 // 7750 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7751 // is a LoopMayExit. If any computable LoopMustExit is found, then 7752 // MaxBECount is the minimum EL.MaxNotTaken of computable 7753 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7754 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7755 // computable EL.MaxNotTaken. 7756 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7757 DT.dominates(ExitBB, Latch)) { 7758 if (!MustExitMaxBECount) { 7759 MustExitMaxBECount = EL.MaxNotTaken; 7760 MustExitMaxOrZero = EL.MaxOrZero; 7761 } else { 7762 MustExitMaxBECount = 7763 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7764 } 7765 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7766 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7767 MayExitMaxBECount = EL.MaxNotTaken; 7768 else { 7769 MayExitMaxBECount = 7770 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7771 } 7772 } 7773 } 7774 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7775 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7776 // The loop backedge will be taken the maximum or zero times if there's 7777 // a single exit that must be taken the maximum or zero times. 7778 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7779 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7780 MaxBECount, MaxOrZero); 7781 } 7782 7783 ScalarEvolution::ExitLimit 7784 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7785 bool AllowPredicates) { 7786 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7787 // If our exiting block does not dominate the latch, then its connection with 7788 // loop's exit limit may be far from trivial. 7789 const BasicBlock *Latch = L->getLoopLatch(); 7790 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7791 return getCouldNotCompute(); 7792 7793 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7794 Instruction *Term = ExitingBlock->getTerminator(); 7795 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7796 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7797 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7798 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7799 "It should have one successor in loop and one exit block!"); 7800 // Proceed to the next level to examine the exit condition expression. 7801 return computeExitLimitFromCond( 7802 L, BI->getCondition(), ExitIfTrue, 7803 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7804 } 7805 7806 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7807 // For switch, make sure that there is a single exit from the loop. 7808 BasicBlock *Exit = nullptr; 7809 for (auto *SBB : successors(ExitingBlock)) 7810 if (!L->contains(SBB)) { 7811 if (Exit) // Multiple exit successors. 7812 return getCouldNotCompute(); 7813 Exit = SBB; 7814 } 7815 assert(Exit && "Exiting block must have at least one exit"); 7816 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7817 /*ControlsExit=*/IsOnlyExit); 7818 } 7819 7820 return getCouldNotCompute(); 7821 } 7822 7823 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7824 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7825 bool ControlsExit, bool AllowPredicates) { 7826 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7827 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7828 ControlsExit, AllowPredicates); 7829 } 7830 7831 Optional<ScalarEvolution::ExitLimit> 7832 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7833 bool ExitIfTrue, bool ControlsExit, 7834 bool AllowPredicates) { 7835 (void)this->L; 7836 (void)this->ExitIfTrue; 7837 (void)this->AllowPredicates; 7838 7839 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7840 this->AllowPredicates == AllowPredicates && 7841 "Variance in assumed invariant key components!"); 7842 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7843 if (Itr == TripCountMap.end()) 7844 return None; 7845 return Itr->second; 7846 } 7847 7848 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7849 bool ExitIfTrue, 7850 bool ControlsExit, 7851 bool AllowPredicates, 7852 const ExitLimit &EL) { 7853 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7854 this->AllowPredicates == AllowPredicates && 7855 "Variance in assumed invariant key components!"); 7856 7857 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7858 assert(InsertResult.second && "Expected successful insertion!"); 7859 (void)InsertResult; 7860 (void)ExitIfTrue; 7861 } 7862 7863 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7864 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7865 bool ControlsExit, bool AllowPredicates) { 7866 7867 if (auto MaybeEL = 7868 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7869 return *MaybeEL; 7870 7871 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7872 ControlsExit, AllowPredicates); 7873 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7874 return EL; 7875 } 7876 7877 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7878 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7879 bool ControlsExit, bool AllowPredicates) { 7880 // Handle BinOp conditions (And, Or). 7881 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7882 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7883 return *LimitFromBinOp; 7884 7885 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7886 // Proceed to the next level to examine the icmp. 7887 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7888 ExitLimit EL = 7889 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7890 if (EL.hasFullInfo() || !AllowPredicates) 7891 return EL; 7892 7893 // Try again, but use SCEV predicates this time. 7894 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7895 /*AllowPredicates=*/true); 7896 } 7897 7898 // Check for a constant condition. These are normally stripped out by 7899 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7900 // preserve the CFG and is temporarily leaving constant conditions 7901 // in place. 7902 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7903 if (ExitIfTrue == !CI->getZExtValue()) 7904 // The backedge is always taken. 7905 return getCouldNotCompute(); 7906 else 7907 // The backedge is never taken. 7908 return getZero(CI->getType()); 7909 } 7910 7911 // If it's not an integer or pointer comparison then compute it the hard way. 7912 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7913 } 7914 7915 Optional<ScalarEvolution::ExitLimit> 7916 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7917 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7918 bool ControlsExit, bool AllowPredicates) { 7919 // Check if the controlling expression for this loop is an And or Or. 7920 Value *Op0, *Op1; 7921 bool IsAnd = false; 7922 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 7923 IsAnd = true; 7924 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 7925 IsAnd = false; 7926 else 7927 return None; 7928 7929 // EitherMayExit is true in these two cases: 7930 // br (and Op0 Op1), loop, exit 7931 // br (or Op0 Op1), exit, loop 7932 bool EitherMayExit = IsAnd ^ ExitIfTrue; 7933 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 7934 ControlsExit && !EitherMayExit, 7935 AllowPredicates); 7936 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 7937 ControlsExit && !EitherMayExit, 7938 AllowPredicates); 7939 7940 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 7941 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 7942 if (isa<ConstantInt>(Op1)) 7943 return Op1 == NeutralElement ? EL0 : EL1; 7944 if (isa<ConstantInt>(Op0)) 7945 return Op0 == NeutralElement ? EL1 : EL0; 7946 7947 const SCEV *BECount = getCouldNotCompute(); 7948 const SCEV *MaxBECount = getCouldNotCompute(); 7949 if (EitherMayExit) { 7950 // Both conditions must be same for the loop to continue executing. 7951 // Choose the less conservative count. 7952 // If ExitCond is a short-circuit form (select), using 7953 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 7954 // To see the detailed examples, please see 7955 // test/Analysis/ScalarEvolution/exit-count-select.ll 7956 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 7957 if (!PoisonSafe) 7958 // Even if ExitCond is select, we can safely derive BECount using both 7959 // EL0 and EL1 in these cases: 7960 // (1) EL0.ExactNotTaken is non-zero 7961 // (2) EL1.ExactNotTaken is non-poison 7962 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 7963 // it cannot be umin(0, ..)) 7964 // The PoisonSafe assignment below is simplified and the assertion after 7965 // BECount calculation fully guarantees the condition (3). 7966 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 7967 isa<SCEVConstant>(EL1.ExactNotTaken); 7968 if (EL0.ExactNotTaken != getCouldNotCompute() && 7969 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 7970 BECount = 7971 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7972 7973 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 7974 // it should have been simplified to zero (see the condition (3) above) 7975 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 7976 BECount->isZero()); 7977 } 7978 if (EL0.MaxNotTaken == getCouldNotCompute()) 7979 MaxBECount = EL1.MaxNotTaken; 7980 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7981 MaxBECount = EL0.MaxNotTaken; 7982 else 7983 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7984 } else { 7985 // Both conditions must be same at the same time for the loop to exit. 7986 // For now, be conservative. 7987 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7988 BECount = EL0.ExactNotTaken; 7989 } 7990 7991 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7992 // to be more aggressive when computing BECount than when computing 7993 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7994 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7995 // to not. 7996 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7997 !isa<SCEVCouldNotCompute>(BECount)) 7998 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7999 8000 return ExitLimit(BECount, MaxBECount, false, 8001 { &EL0.Predicates, &EL1.Predicates }); 8002 } 8003 8004 ScalarEvolution::ExitLimit 8005 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8006 ICmpInst *ExitCond, 8007 bool ExitIfTrue, 8008 bool ControlsExit, 8009 bool AllowPredicates) { 8010 // If the condition was exit on true, convert the condition to exit on false 8011 ICmpInst::Predicate Pred; 8012 if (!ExitIfTrue) 8013 Pred = ExitCond->getPredicate(); 8014 else 8015 Pred = ExitCond->getInversePredicate(); 8016 const ICmpInst::Predicate OriginalPred = Pred; 8017 8018 // Handle common loops like: for (X = "string"; *X; ++X) 8019 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 8020 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 8021 ExitLimit ItCnt = 8022 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 8023 if (ItCnt.hasAnyInfo()) 8024 return ItCnt; 8025 } 8026 8027 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8028 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8029 8030 // Try to evaluate any dependencies out of the loop. 8031 LHS = getSCEVAtScope(LHS, L); 8032 RHS = getSCEVAtScope(RHS, L); 8033 8034 // At this point, we would like to compute how many iterations of the 8035 // loop the predicate will return true for these inputs. 8036 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8037 // If there is a loop-invariant, force it into the RHS. 8038 std::swap(LHS, RHS); 8039 Pred = ICmpInst::getSwappedPredicate(Pred); 8040 } 8041 8042 // Simplify the operands before analyzing them. 8043 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8044 8045 // If we have a comparison of a chrec against a constant, try to use value 8046 // ranges to answer this query. 8047 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8048 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8049 if (AddRec->getLoop() == L) { 8050 // Form the constant range. 8051 ConstantRange CompRange = 8052 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8053 8054 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8055 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8056 } 8057 8058 switch (Pred) { 8059 case ICmpInst::ICMP_NE: { // while (X != Y) 8060 // Convert to: while (X-Y != 0) 8061 if (LHS->getType()->isPointerTy()) { 8062 LHS = getLosslessPtrToIntExpr(LHS); 8063 if (isa<SCEVCouldNotCompute>(LHS)) 8064 return LHS; 8065 } 8066 if (RHS->getType()->isPointerTy()) { 8067 RHS = getLosslessPtrToIntExpr(RHS); 8068 if (isa<SCEVCouldNotCompute>(RHS)) 8069 return RHS; 8070 } 8071 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8072 AllowPredicates); 8073 if (EL.hasAnyInfo()) return EL; 8074 break; 8075 } 8076 case ICmpInst::ICMP_EQ: { // while (X == Y) 8077 // Convert to: while (X-Y == 0) 8078 if (LHS->getType()->isPointerTy()) { 8079 LHS = getLosslessPtrToIntExpr(LHS); 8080 if (isa<SCEVCouldNotCompute>(LHS)) 8081 return LHS; 8082 } 8083 if (RHS->getType()->isPointerTy()) { 8084 RHS = getLosslessPtrToIntExpr(RHS); 8085 if (isa<SCEVCouldNotCompute>(RHS)) 8086 return RHS; 8087 } 8088 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8089 if (EL.hasAnyInfo()) return EL; 8090 break; 8091 } 8092 case ICmpInst::ICMP_SLT: 8093 case ICmpInst::ICMP_ULT: { // while (X < Y) 8094 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8095 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8096 AllowPredicates); 8097 if (EL.hasAnyInfo()) return EL; 8098 break; 8099 } 8100 case ICmpInst::ICMP_SGT: 8101 case ICmpInst::ICMP_UGT: { // while (X > Y) 8102 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8103 ExitLimit EL = 8104 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8105 AllowPredicates); 8106 if (EL.hasAnyInfo()) return EL; 8107 break; 8108 } 8109 default: 8110 break; 8111 } 8112 8113 auto *ExhaustiveCount = 8114 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8115 8116 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8117 return ExhaustiveCount; 8118 8119 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8120 ExitCond->getOperand(1), L, OriginalPred); 8121 } 8122 8123 ScalarEvolution::ExitLimit 8124 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8125 SwitchInst *Switch, 8126 BasicBlock *ExitingBlock, 8127 bool ControlsExit) { 8128 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8129 8130 // Give up if the exit is the default dest of a switch. 8131 if (Switch->getDefaultDest() == ExitingBlock) 8132 return getCouldNotCompute(); 8133 8134 assert(L->contains(Switch->getDefaultDest()) && 8135 "Default case must not exit the loop!"); 8136 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8137 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8138 8139 // while (X != Y) --> while (X-Y != 0) 8140 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8141 if (EL.hasAnyInfo()) 8142 return EL; 8143 8144 return getCouldNotCompute(); 8145 } 8146 8147 static ConstantInt * 8148 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8149 ScalarEvolution &SE) { 8150 const SCEV *InVal = SE.getConstant(C); 8151 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8152 assert(isa<SCEVConstant>(Val) && 8153 "Evaluation of SCEV at constant didn't fold correctly?"); 8154 return cast<SCEVConstant>(Val)->getValue(); 8155 } 8156 8157 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 8158 /// compute the backedge execution count. 8159 ScalarEvolution::ExitLimit 8160 ScalarEvolution::computeLoadConstantCompareExitLimit( 8161 LoadInst *LI, 8162 Constant *RHS, 8163 const Loop *L, 8164 ICmpInst::Predicate predicate) { 8165 if (LI->isVolatile()) return getCouldNotCompute(); 8166 8167 // Check to see if the loaded pointer is a getelementptr of a global. 8168 // TODO: Use SCEV instead of manually grubbing with GEPs. 8169 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 8170 if (!GEP) return getCouldNotCompute(); 8171 8172 // Make sure that it is really a constant global we are gepping, with an 8173 // initializer, and make sure the first IDX is really 0. 8174 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 8175 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 8176 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 8177 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 8178 return getCouldNotCompute(); 8179 8180 // Okay, we allow one non-constant index into the GEP instruction. 8181 Value *VarIdx = nullptr; 8182 std::vector<Constant*> Indexes; 8183 unsigned VarIdxNum = 0; 8184 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 8185 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 8186 Indexes.push_back(CI); 8187 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 8188 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 8189 VarIdx = GEP->getOperand(i); 8190 VarIdxNum = i-2; 8191 Indexes.push_back(nullptr); 8192 } 8193 8194 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 8195 if (!VarIdx) 8196 return getCouldNotCompute(); 8197 8198 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 8199 // Check to see if X is a loop variant variable value now. 8200 const SCEV *Idx = getSCEV(VarIdx); 8201 Idx = getSCEVAtScope(Idx, L); 8202 8203 // We can only recognize very limited forms of loop index expressions, in 8204 // particular, only affine AddRec's like {C1,+,C2}<L>. 8205 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 8206 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() || 8207 isLoopInvariant(IdxExpr, L) || 8208 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 8209 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 8210 return getCouldNotCompute(); 8211 8212 unsigned MaxSteps = MaxBruteForceIterations; 8213 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 8214 ConstantInt *ItCst = ConstantInt::get( 8215 cast<IntegerType>(IdxExpr->getType()), IterationNum); 8216 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 8217 8218 // Form the GEP offset. 8219 Indexes[VarIdxNum] = Val; 8220 8221 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 8222 Indexes); 8223 if (!Result) break; // Cannot compute! 8224 8225 // Evaluate the condition for this iteration. 8226 Result = ConstantExpr::getICmp(predicate, Result, RHS); 8227 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 8228 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 8229 ++NumArrayLenItCounts; 8230 return getConstant(ItCst); // Found terminating iteration! 8231 } 8232 } 8233 return getCouldNotCompute(); 8234 } 8235 8236 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8237 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8238 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8239 if (!RHS) 8240 return getCouldNotCompute(); 8241 8242 const BasicBlock *Latch = L->getLoopLatch(); 8243 if (!Latch) 8244 return getCouldNotCompute(); 8245 8246 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8247 if (!Predecessor) 8248 return getCouldNotCompute(); 8249 8250 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8251 // Return LHS in OutLHS and shift_opt in OutOpCode. 8252 auto MatchPositiveShift = 8253 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8254 8255 using namespace PatternMatch; 8256 8257 ConstantInt *ShiftAmt; 8258 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8259 OutOpCode = Instruction::LShr; 8260 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8261 OutOpCode = Instruction::AShr; 8262 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8263 OutOpCode = Instruction::Shl; 8264 else 8265 return false; 8266 8267 return ShiftAmt->getValue().isStrictlyPositive(); 8268 }; 8269 8270 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8271 // 8272 // loop: 8273 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8274 // %iv.shifted = lshr i32 %iv, <positive constant> 8275 // 8276 // Return true on a successful match. Return the corresponding PHI node (%iv 8277 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8278 auto MatchShiftRecurrence = 8279 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8280 Optional<Instruction::BinaryOps> PostShiftOpCode; 8281 8282 { 8283 Instruction::BinaryOps OpC; 8284 Value *V; 8285 8286 // If we encounter a shift instruction, "peel off" the shift operation, 8287 // and remember that we did so. Later when we inspect %iv's backedge 8288 // value, we will make sure that the backedge value uses the same 8289 // operation. 8290 // 8291 // Note: the peeled shift operation does not have to be the same 8292 // instruction as the one feeding into the PHI's backedge value. We only 8293 // really care about it being the same *kind* of shift instruction -- 8294 // that's all that is required for our later inferences to hold. 8295 if (MatchPositiveShift(LHS, V, OpC)) { 8296 PostShiftOpCode = OpC; 8297 LHS = V; 8298 } 8299 } 8300 8301 PNOut = dyn_cast<PHINode>(LHS); 8302 if (!PNOut || PNOut->getParent() != L->getHeader()) 8303 return false; 8304 8305 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8306 Value *OpLHS; 8307 8308 return 8309 // The backedge value for the PHI node must be a shift by a positive 8310 // amount 8311 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8312 8313 // of the PHI node itself 8314 OpLHS == PNOut && 8315 8316 // and the kind of shift should be match the kind of shift we peeled 8317 // off, if any. 8318 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8319 }; 8320 8321 PHINode *PN; 8322 Instruction::BinaryOps OpCode; 8323 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8324 return getCouldNotCompute(); 8325 8326 const DataLayout &DL = getDataLayout(); 8327 8328 // The key rationale for this optimization is that for some kinds of shift 8329 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8330 // within a finite number of iterations. If the condition guarding the 8331 // backedge (in the sense that the backedge is taken if the condition is true) 8332 // is false for the value the shift recurrence stabilizes to, then we know 8333 // that the backedge is taken only a finite number of times. 8334 8335 ConstantInt *StableValue = nullptr; 8336 switch (OpCode) { 8337 default: 8338 llvm_unreachable("Impossible case!"); 8339 8340 case Instruction::AShr: { 8341 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8342 // bitwidth(K) iterations. 8343 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8344 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8345 Predecessor->getTerminator(), &DT); 8346 auto *Ty = cast<IntegerType>(RHS->getType()); 8347 if (Known.isNonNegative()) 8348 StableValue = ConstantInt::get(Ty, 0); 8349 else if (Known.isNegative()) 8350 StableValue = ConstantInt::get(Ty, -1, true); 8351 else 8352 return getCouldNotCompute(); 8353 8354 break; 8355 } 8356 case Instruction::LShr: 8357 case Instruction::Shl: 8358 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8359 // stabilize to 0 in at most bitwidth(K) iterations. 8360 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8361 break; 8362 } 8363 8364 auto *Result = 8365 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8366 assert(Result->getType()->isIntegerTy(1) && 8367 "Otherwise cannot be an operand to a branch instruction"); 8368 8369 if (Result->isZeroValue()) { 8370 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8371 const SCEV *UpperBound = 8372 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8373 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8374 } 8375 8376 return getCouldNotCompute(); 8377 } 8378 8379 /// Return true if we can constant fold an instruction of the specified type, 8380 /// assuming that all operands were constants. 8381 static bool CanConstantFold(const Instruction *I) { 8382 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8383 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8384 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8385 return true; 8386 8387 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8388 if (const Function *F = CI->getCalledFunction()) 8389 return canConstantFoldCallTo(CI, F); 8390 return false; 8391 } 8392 8393 /// Determine whether this instruction can constant evolve within this loop 8394 /// assuming its operands can all constant evolve. 8395 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8396 // An instruction outside of the loop can't be derived from a loop PHI. 8397 if (!L->contains(I)) return false; 8398 8399 if (isa<PHINode>(I)) { 8400 // We don't currently keep track of the control flow needed to evaluate 8401 // PHIs, so we cannot handle PHIs inside of loops. 8402 return L->getHeader() == I->getParent(); 8403 } 8404 8405 // If we won't be able to constant fold this expression even if the operands 8406 // are constants, bail early. 8407 return CanConstantFold(I); 8408 } 8409 8410 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8411 /// recursing through each instruction operand until reaching a loop header phi. 8412 static PHINode * 8413 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8414 DenseMap<Instruction *, PHINode *> &PHIMap, 8415 unsigned Depth) { 8416 if (Depth > MaxConstantEvolvingDepth) 8417 return nullptr; 8418 8419 // Otherwise, we can evaluate this instruction if all of its operands are 8420 // constant or derived from a PHI node themselves. 8421 PHINode *PHI = nullptr; 8422 for (Value *Op : UseInst->operands()) { 8423 if (isa<Constant>(Op)) continue; 8424 8425 Instruction *OpInst = dyn_cast<Instruction>(Op); 8426 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8427 8428 PHINode *P = dyn_cast<PHINode>(OpInst); 8429 if (!P) 8430 // If this operand is already visited, reuse the prior result. 8431 // We may have P != PHI if this is the deepest point at which the 8432 // inconsistent paths meet. 8433 P = PHIMap.lookup(OpInst); 8434 if (!P) { 8435 // Recurse and memoize the results, whether a phi is found or not. 8436 // This recursive call invalidates pointers into PHIMap. 8437 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8438 PHIMap[OpInst] = P; 8439 } 8440 if (!P) 8441 return nullptr; // Not evolving from PHI 8442 if (PHI && PHI != P) 8443 return nullptr; // Evolving from multiple different PHIs. 8444 PHI = P; 8445 } 8446 // This is a expression evolving from a constant PHI! 8447 return PHI; 8448 } 8449 8450 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8451 /// in the loop that V is derived from. We allow arbitrary operations along the 8452 /// way, but the operands of an operation must either be constants or a value 8453 /// derived from a constant PHI. If this expression does not fit with these 8454 /// constraints, return null. 8455 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8456 Instruction *I = dyn_cast<Instruction>(V); 8457 if (!I || !canConstantEvolve(I, L)) return nullptr; 8458 8459 if (PHINode *PN = dyn_cast<PHINode>(I)) 8460 return PN; 8461 8462 // Record non-constant instructions contained by the loop. 8463 DenseMap<Instruction *, PHINode *> PHIMap; 8464 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8465 } 8466 8467 /// EvaluateExpression - Given an expression that passes the 8468 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8469 /// in the loop has the value PHIVal. If we can't fold this expression for some 8470 /// reason, return null. 8471 static Constant *EvaluateExpression(Value *V, const Loop *L, 8472 DenseMap<Instruction *, Constant *> &Vals, 8473 const DataLayout &DL, 8474 const TargetLibraryInfo *TLI) { 8475 // Convenient constant check, but redundant for recursive calls. 8476 if (Constant *C = dyn_cast<Constant>(V)) return C; 8477 Instruction *I = dyn_cast<Instruction>(V); 8478 if (!I) return nullptr; 8479 8480 if (Constant *C = Vals.lookup(I)) return C; 8481 8482 // An instruction inside the loop depends on a value outside the loop that we 8483 // weren't given a mapping for, or a value such as a call inside the loop. 8484 if (!canConstantEvolve(I, L)) return nullptr; 8485 8486 // An unmapped PHI can be due to a branch or another loop inside this loop, 8487 // or due to this not being the initial iteration through a loop where we 8488 // couldn't compute the evolution of this particular PHI last time. 8489 if (isa<PHINode>(I)) return nullptr; 8490 8491 std::vector<Constant*> Operands(I->getNumOperands()); 8492 8493 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8494 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8495 if (!Operand) { 8496 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8497 if (!Operands[i]) return nullptr; 8498 continue; 8499 } 8500 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8501 Vals[Operand] = C; 8502 if (!C) return nullptr; 8503 Operands[i] = C; 8504 } 8505 8506 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8507 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8508 Operands[1], DL, TLI); 8509 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8510 if (!LI->isVolatile()) 8511 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8512 } 8513 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8514 } 8515 8516 8517 // If every incoming value to PN except the one for BB is a specific Constant, 8518 // return that, else return nullptr. 8519 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8520 Constant *IncomingVal = nullptr; 8521 8522 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8523 if (PN->getIncomingBlock(i) == BB) 8524 continue; 8525 8526 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8527 if (!CurrentVal) 8528 return nullptr; 8529 8530 if (IncomingVal != CurrentVal) { 8531 if (IncomingVal) 8532 return nullptr; 8533 IncomingVal = CurrentVal; 8534 } 8535 } 8536 8537 return IncomingVal; 8538 } 8539 8540 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8541 /// in the header of its containing loop, we know the loop executes a 8542 /// constant number of times, and the PHI node is just a recurrence 8543 /// involving constants, fold it. 8544 Constant * 8545 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8546 const APInt &BEs, 8547 const Loop *L) { 8548 auto I = ConstantEvolutionLoopExitValue.find(PN); 8549 if (I != ConstantEvolutionLoopExitValue.end()) 8550 return I->second; 8551 8552 if (BEs.ugt(MaxBruteForceIterations)) 8553 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8554 8555 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8556 8557 DenseMap<Instruction *, Constant *> CurrentIterVals; 8558 BasicBlock *Header = L->getHeader(); 8559 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8560 8561 BasicBlock *Latch = L->getLoopLatch(); 8562 if (!Latch) 8563 return nullptr; 8564 8565 for (PHINode &PHI : Header->phis()) { 8566 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8567 CurrentIterVals[&PHI] = StartCST; 8568 } 8569 if (!CurrentIterVals.count(PN)) 8570 return RetVal = nullptr; 8571 8572 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8573 8574 // Execute the loop symbolically to determine the exit value. 8575 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8576 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8577 8578 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8579 unsigned IterationNum = 0; 8580 const DataLayout &DL = getDataLayout(); 8581 for (; ; ++IterationNum) { 8582 if (IterationNum == NumIterations) 8583 return RetVal = CurrentIterVals[PN]; // Got exit value! 8584 8585 // Compute the value of the PHIs for the next iteration. 8586 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8587 DenseMap<Instruction *, Constant *> NextIterVals; 8588 Constant *NextPHI = 8589 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8590 if (!NextPHI) 8591 return nullptr; // Couldn't evaluate! 8592 NextIterVals[PN] = NextPHI; 8593 8594 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8595 8596 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8597 // cease to be able to evaluate one of them or if they stop evolving, 8598 // because that doesn't necessarily prevent us from computing PN. 8599 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8600 for (const auto &I : CurrentIterVals) { 8601 PHINode *PHI = dyn_cast<PHINode>(I.first); 8602 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8603 PHIsToCompute.emplace_back(PHI, I.second); 8604 } 8605 // We use two distinct loops because EvaluateExpression may invalidate any 8606 // iterators into CurrentIterVals. 8607 for (const auto &I : PHIsToCompute) { 8608 PHINode *PHI = I.first; 8609 Constant *&NextPHI = NextIterVals[PHI]; 8610 if (!NextPHI) { // Not already computed. 8611 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8612 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8613 } 8614 if (NextPHI != I.second) 8615 StoppedEvolving = false; 8616 } 8617 8618 // If all entries in CurrentIterVals == NextIterVals then we can stop 8619 // iterating, the loop can't continue to change. 8620 if (StoppedEvolving) 8621 return RetVal = CurrentIterVals[PN]; 8622 8623 CurrentIterVals.swap(NextIterVals); 8624 } 8625 } 8626 8627 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8628 Value *Cond, 8629 bool ExitWhen) { 8630 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8631 if (!PN) return getCouldNotCompute(); 8632 8633 // If the loop is canonicalized, the PHI will have exactly two entries. 8634 // That's the only form we support here. 8635 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8636 8637 DenseMap<Instruction *, Constant *> CurrentIterVals; 8638 BasicBlock *Header = L->getHeader(); 8639 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8640 8641 BasicBlock *Latch = L->getLoopLatch(); 8642 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8643 8644 for (PHINode &PHI : Header->phis()) { 8645 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8646 CurrentIterVals[&PHI] = StartCST; 8647 } 8648 if (!CurrentIterVals.count(PN)) 8649 return getCouldNotCompute(); 8650 8651 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8652 // the loop symbolically to determine when the condition gets a value of 8653 // "ExitWhen". 8654 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8655 const DataLayout &DL = getDataLayout(); 8656 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8657 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8658 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8659 8660 // Couldn't symbolically evaluate. 8661 if (!CondVal) return getCouldNotCompute(); 8662 8663 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8664 ++NumBruteForceTripCountsComputed; 8665 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8666 } 8667 8668 // Update all the PHI nodes for the next iteration. 8669 DenseMap<Instruction *, Constant *> NextIterVals; 8670 8671 // Create a list of which PHIs we need to compute. We want to do this before 8672 // calling EvaluateExpression on them because that may invalidate iterators 8673 // into CurrentIterVals. 8674 SmallVector<PHINode *, 8> PHIsToCompute; 8675 for (const auto &I : CurrentIterVals) { 8676 PHINode *PHI = dyn_cast<PHINode>(I.first); 8677 if (!PHI || PHI->getParent() != Header) continue; 8678 PHIsToCompute.push_back(PHI); 8679 } 8680 for (PHINode *PHI : PHIsToCompute) { 8681 Constant *&NextPHI = NextIterVals[PHI]; 8682 if (NextPHI) continue; // Already computed! 8683 8684 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8685 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8686 } 8687 CurrentIterVals.swap(NextIterVals); 8688 } 8689 8690 // Too many iterations were needed to evaluate. 8691 return getCouldNotCompute(); 8692 } 8693 8694 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8695 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8696 ValuesAtScopes[V]; 8697 // Check to see if we've folded this expression at this loop before. 8698 for (auto &LS : Values) 8699 if (LS.first == L) 8700 return LS.second ? LS.second : V; 8701 8702 Values.emplace_back(L, nullptr); 8703 8704 // Otherwise compute it. 8705 const SCEV *C = computeSCEVAtScope(V, L); 8706 for (auto &LS : reverse(ValuesAtScopes[V])) 8707 if (LS.first == L) { 8708 LS.second = C; 8709 break; 8710 } 8711 return C; 8712 } 8713 8714 /// This builds up a Constant using the ConstantExpr interface. That way, we 8715 /// will return Constants for objects which aren't represented by a 8716 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8717 /// Returns NULL if the SCEV isn't representable as a Constant. 8718 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8719 switch (V->getSCEVType()) { 8720 case scCouldNotCompute: 8721 case scAddRecExpr: 8722 return nullptr; 8723 case scConstant: 8724 return cast<SCEVConstant>(V)->getValue(); 8725 case scUnknown: 8726 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8727 case scSignExtend: { 8728 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8729 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8730 return ConstantExpr::getSExt(CastOp, SS->getType()); 8731 return nullptr; 8732 } 8733 case scZeroExtend: { 8734 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8735 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8736 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8737 return nullptr; 8738 } 8739 case scPtrToInt: { 8740 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8741 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8742 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8743 8744 return nullptr; 8745 } 8746 case scTruncate: { 8747 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8748 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8749 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8750 return nullptr; 8751 } 8752 case scAddExpr: { 8753 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8754 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8755 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8756 unsigned AS = PTy->getAddressSpace(); 8757 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8758 C = ConstantExpr::getBitCast(C, DestPtrTy); 8759 } 8760 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8761 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8762 if (!C2) 8763 return nullptr; 8764 8765 // First pointer! 8766 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8767 unsigned AS = C2->getType()->getPointerAddressSpace(); 8768 std::swap(C, C2); 8769 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8770 // The offsets have been converted to bytes. We can add bytes to an 8771 // i8* by GEP with the byte count in the first index. 8772 C = ConstantExpr::getBitCast(C, DestPtrTy); 8773 } 8774 8775 // Don't bother trying to sum two pointers. We probably can't 8776 // statically compute a load that results from it anyway. 8777 if (C2->getType()->isPointerTy()) 8778 return nullptr; 8779 8780 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8781 if (PTy->getElementType()->isStructTy()) 8782 C2 = ConstantExpr::getIntegerCast( 8783 C2, Type::getInt32Ty(C->getContext()), true); 8784 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8785 } else 8786 C = ConstantExpr::getAdd(C, C2); 8787 } 8788 return C; 8789 } 8790 return nullptr; 8791 } 8792 case scMulExpr: { 8793 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8794 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8795 // Don't bother with pointers at all. 8796 if (C->getType()->isPointerTy()) 8797 return nullptr; 8798 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8799 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8800 if (!C2 || C2->getType()->isPointerTy()) 8801 return nullptr; 8802 C = ConstantExpr::getMul(C, C2); 8803 } 8804 return C; 8805 } 8806 return nullptr; 8807 } 8808 case scUDivExpr: { 8809 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8810 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8811 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8812 if (LHS->getType() == RHS->getType()) 8813 return ConstantExpr::getUDiv(LHS, RHS); 8814 return nullptr; 8815 } 8816 case scSMaxExpr: 8817 case scUMaxExpr: 8818 case scSMinExpr: 8819 case scUMinExpr: 8820 return nullptr; // TODO: smax, umax, smin, umax. 8821 } 8822 llvm_unreachable("Unknown SCEV kind!"); 8823 } 8824 8825 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8826 if (isa<SCEVConstant>(V)) return V; 8827 8828 // If this instruction is evolved from a constant-evolving PHI, compute the 8829 // exit value from the loop without using SCEVs. 8830 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8831 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8832 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8833 const Loop *CurrLoop = this->LI[I->getParent()]; 8834 // Looking for loop exit value. 8835 if (CurrLoop && CurrLoop->getParentLoop() == L && 8836 PN->getParent() == CurrLoop->getHeader()) { 8837 // Okay, there is no closed form solution for the PHI node. Check 8838 // to see if the loop that contains it has a known backedge-taken 8839 // count. If so, we may be able to force computation of the exit 8840 // value. 8841 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8842 // This trivial case can show up in some degenerate cases where 8843 // the incoming IR has not yet been fully simplified. 8844 if (BackedgeTakenCount->isZero()) { 8845 Value *InitValue = nullptr; 8846 bool MultipleInitValues = false; 8847 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8848 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8849 if (!InitValue) 8850 InitValue = PN->getIncomingValue(i); 8851 else if (InitValue != PN->getIncomingValue(i)) { 8852 MultipleInitValues = true; 8853 break; 8854 } 8855 } 8856 } 8857 if (!MultipleInitValues && InitValue) 8858 return getSCEV(InitValue); 8859 } 8860 // Do we have a loop invariant value flowing around the backedge 8861 // for a loop which must execute the backedge? 8862 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8863 isKnownPositive(BackedgeTakenCount) && 8864 PN->getNumIncomingValues() == 2) { 8865 8866 unsigned InLoopPred = 8867 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8868 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8869 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8870 return getSCEV(BackedgeVal); 8871 } 8872 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8873 // Okay, we know how many times the containing loop executes. If 8874 // this is a constant evolving PHI node, get the final value at 8875 // the specified iteration number. 8876 Constant *RV = getConstantEvolutionLoopExitValue( 8877 PN, BTCC->getAPInt(), CurrLoop); 8878 if (RV) return getSCEV(RV); 8879 } 8880 } 8881 8882 // If there is a single-input Phi, evaluate it at our scope. If we can 8883 // prove that this replacement does not break LCSSA form, use new value. 8884 if (PN->getNumOperands() == 1) { 8885 const SCEV *Input = getSCEV(PN->getOperand(0)); 8886 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8887 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8888 // for the simplest case just support constants. 8889 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8890 } 8891 } 8892 8893 // Okay, this is an expression that we cannot symbolically evaluate 8894 // into a SCEV. Check to see if it's possible to symbolically evaluate 8895 // the arguments into constants, and if so, try to constant propagate the 8896 // result. This is particularly useful for computing loop exit values. 8897 if (CanConstantFold(I)) { 8898 SmallVector<Constant *, 4> Operands; 8899 bool MadeImprovement = false; 8900 for (Value *Op : I->operands()) { 8901 if (Constant *C = dyn_cast<Constant>(Op)) { 8902 Operands.push_back(C); 8903 continue; 8904 } 8905 8906 // If any of the operands is non-constant and if they are 8907 // non-integer and non-pointer, don't even try to analyze them 8908 // with scev techniques. 8909 if (!isSCEVable(Op->getType())) 8910 return V; 8911 8912 const SCEV *OrigV = getSCEV(Op); 8913 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8914 MadeImprovement |= OrigV != OpV; 8915 8916 Constant *C = BuildConstantFromSCEV(OpV); 8917 if (!C) return V; 8918 if (C->getType() != Op->getType()) 8919 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8920 Op->getType(), 8921 false), 8922 C, Op->getType()); 8923 Operands.push_back(C); 8924 } 8925 8926 // Check to see if getSCEVAtScope actually made an improvement. 8927 if (MadeImprovement) { 8928 Constant *C = nullptr; 8929 const DataLayout &DL = getDataLayout(); 8930 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8931 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8932 Operands[1], DL, &TLI); 8933 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8934 if (!Load->isVolatile()) 8935 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8936 DL); 8937 } else 8938 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8939 if (!C) return V; 8940 return getSCEV(C); 8941 } 8942 } 8943 } 8944 8945 // This is some other type of SCEVUnknown, just return it. 8946 return V; 8947 } 8948 8949 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8950 // Avoid performing the look-up in the common case where the specified 8951 // expression has no loop-variant portions. 8952 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8953 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8954 if (OpAtScope != Comm->getOperand(i)) { 8955 // Okay, at least one of these operands is loop variant but might be 8956 // foldable. Build a new instance of the folded commutative expression. 8957 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8958 Comm->op_begin()+i); 8959 NewOps.push_back(OpAtScope); 8960 8961 for (++i; i != e; ++i) { 8962 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8963 NewOps.push_back(OpAtScope); 8964 } 8965 if (isa<SCEVAddExpr>(Comm)) 8966 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8967 if (isa<SCEVMulExpr>(Comm)) 8968 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8969 if (isa<SCEVMinMaxExpr>(Comm)) 8970 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8971 llvm_unreachable("Unknown commutative SCEV type!"); 8972 } 8973 } 8974 // If we got here, all operands are loop invariant. 8975 return Comm; 8976 } 8977 8978 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8979 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8980 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8981 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8982 return Div; // must be loop invariant 8983 return getUDivExpr(LHS, RHS); 8984 } 8985 8986 // If this is a loop recurrence for a loop that does not contain L, then we 8987 // are dealing with the final value computed by the loop. 8988 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8989 // First, attempt to evaluate each operand. 8990 // Avoid performing the look-up in the common case where the specified 8991 // expression has no loop-variant portions. 8992 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8993 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8994 if (OpAtScope == AddRec->getOperand(i)) 8995 continue; 8996 8997 // Okay, at least one of these operands is loop variant but might be 8998 // foldable. Build a new instance of the folded commutative expression. 8999 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9000 AddRec->op_begin()+i); 9001 NewOps.push_back(OpAtScope); 9002 for (++i; i != e; ++i) 9003 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9004 9005 const SCEV *FoldedRec = 9006 getAddRecExpr(NewOps, AddRec->getLoop(), 9007 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9008 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9009 // The addrec may be folded to a nonrecurrence, for example, if the 9010 // induction variable is multiplied by zero after constant folding. Go 9011 // ahead and return the folded value. 9012 if (!AddRec) 9013 return FoldedRec; 9014 break; 9015 } 9016 9017 // If the scope is outside the addrec's loop, evaluate it by using the 9018 // loop exit value of the addrec. 9019 if (!AddRec->getLoop()->contains(L)) { 9020 // To evaluate this recurrence, we need to know how many times the AddRec 9021 // loop iterates. Compute this now. 9022 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9023 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9024 9025 // Then, evaluate the AddRec. 9026 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9027 } 9028 9029 return AddRec; 9030 } 9031 9032 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 9033 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9034 if (Op == Cast->getOperand()) 9035 return Cast; // must be loop invariant 9036 return getZeroExtendExpr(Op, Cast->getType()); 9037 } 9038 9039 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 9040 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9041 if (Op == Cast->getOperand()) 9042 return Cast; // must be loop invariant 9043 return getSignExtendExpr(Op, Cast->getType()); 9044 } 9045 9046 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 9047 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9048 if (Op == Cast->getOperand()) 9049 return Cast; // must be loop invariant 9050 return getTruncateExpr(Op, Cast->getType()); 9051 } 9052 9053 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 9054 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9055 if (Op == Cast->getOperand()) 9056 return Cast; // must be loop invariant 9057 return getPtrToIntExpr(Op, Cast->getType()); 9058 } 9059 9060 llvm_unreachable("Unknown SCEV type!"); 9061 } 9062 9063 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9064 return getSCEVAtScope(getSCEV(V), L); 9065 } 9066 9067 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9068 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9069 return stripInjectiveFunctions(ZExt->getOperand()); 9070 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9071 return stripInjectiveFunctions(SExt->getOperand()); 9072 return S; 9073 } 9074 9075 /// Finds the minimum unsigned root of the following equation: 9076 /// 9077 /// A * X = B (mod N) 9078 /// 9079 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9080 /// A and B isn't important. 9081 /// 9082 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9083 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9084 ScalarEvolution &SE) { 9085 uint32_t BW = A.getBitWidth(); 9086 assert(BW == SE.getTypeSizeInBits(B->getType())); 9087 assert(A != 0 && "A must be non-zero."); 9088 9089 // 1. D = gcd(A, N) 9090 // 9091 // The gcd of A and N may have only one prime factor: 2. The number of 9092 // trailing zeros in A is its multiplicity 9093 uint32_t Mult2 = A.countTrailingZeros(); 9094 // D = 2^Mult2 9095 9096 // 2. Check if B is divisible by D. 9097 // 9098 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9099 // is not less than multiplicity of this prime factor for D. 9100 if (SE.GetMinTrailingZeros(B) < Mult2) 9101 return SE.getCouldNotCompute(); 9102 9103 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9104 // modulo (N / D). 9105 // 9106 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9107 // (N / D) in general. The inverse itself always fits into BW bits, though, 9108 // so we immediately truncate it. 9109 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9110 APInt Mod(BW + 1, 0); 9111 Mod.setBit(BW - Mult2); // Mod = N / D 9112 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9113 9114 // 4. Compute the minimum unsigned root of the equation: 9115 // I * (B / D) mod (N / D) 9116 // To simplify the computation, we factor out the divide by D: 9117 // (I * B mod N) / D 9118 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9119 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9120 } 9121 9122 /// For a given quadratic addrec, generate coefficients of the corresponding 9123 /// quadratic equation, multiplied by a common value to ensure that they are 9124 /// integers. 9125 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9126 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9127 /// were multiplied by, and BitWidth is the bit width of the original addrec 9128 /// coefficients. 9129 /// This function returns None if the addrec coefficients are not compile- 9130 /// time constants. 9131 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9132 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9133 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9134 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9135 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9136 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9137 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9138 << *AddRec << '\n'); 9139 9140 // We currently can only solve this if the coefficients are constants. 9141 if (!LC || !MC || !NC) { 9142 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9143 return None; 9144 } 9145 9146 APInt L = LC->getAPInt(); 9147 APInt M = MC->getAPInt(); 9148 APInt N = NC->getAPInt(); 9149 assert(!N.isNullValue() && "This is not a quadratic addrec"); 9150 9151 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9152 unsigned NewWidth = BitWidth + 1; 9153 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9154 << BitWidth << '\n'); 9155 // The sign-extension (as opposed to a zero-extension) here matches the 9156 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9157 N = N.sext(NewWidth); 9158 M = M.sext(NewWidth); 9159 L = L.sext(NewWidth); 9160 9161 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9162 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9163 // L+M, L+2M+N, L+3M+3N, ... 9164 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9165 // 9166 // The equation Acc = 0 is then 9167 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9168 // In a quadratic form it becomes: 9169 // N n^2 + (2M-N) n + 2L = 0. 9170 9171 APInt A = N; 9172 APInt B = 2 * M - A; 9173 APInt C = 2 * L; 9174 APInt T = APInt(NewWidth, 2); 9175 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9176 << "x + " << C << ", coeff bw: " << NewWidth 9177 << ", multiplied by " << T << '\n'); 9178 return std::make_tuple(A, B, C, T, BitWidth); 9179 } 9180 9181 /// Helper function to compare optional APInts: 9182 /// (a) if X and Y both exist, return min(X, Y), 9183 /// (b) if neither X nor Y exist, return None, 9184 /// (c) if exactly one of X and Y exists, return that value. 9185 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9186 if (X.hasValue() && Y.hasValue()) { 9187 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9188 APInt XW = X->sextOrSelf(W); 9189 APInt YW = Y->sextOrSelf(W); 9190 return XW.slt(YW) ? *X : *Y; 9191 } 9192 if (!X.hasValue() && !Y.hasValue()) 9193 return None; 9194 return X.hasValue() ? *X : *Y; 9195 } 9196 9197 /// Helper function to truncate an optional APInt to a given BitWidth. 9198 /// When solving addrec-related equations, it is preferable to return a value 9199 /// that has the same bit width as the original addrec's coefficients. If the 9200 /// solution fits in the original bit width, truncate it (except for i1). 9201 /// Returning a value of a different bit width may inhibit some optimizations. 9202 /// 9203 /// In general, a solution to a quadratic equation generated from an addrec 9204 /// may require BW+1 bits, where BW is the bit width of the addrec's 9205 /// coefficients. The reason is that the coefficients of the quadratic 9206 /// equation are BW+1 bits wide (to avoid truncation when converting from 9207 /// the addrec to the equation). 9208 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9209 if (!X.hasValue()) 9210 return None; 9211 unsigned W = X->getBitWidth(); 9212 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9213 return X->trunc(BitWidth); 9214 return X; 9215 } 9216 9217 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9218 /// iterations. The values L, M, N are assumed to be signed, and they 9219 /// should all have the same bit widths. 9220 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9221 /// where BW is the bit width of the addrec's coefficients. 9222 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9223 /// returned as such, otherwise the bit width of the returned value may 9224 /// be greater than BW. 9225 /// 9226 /// This function returns None if 9227 /// (a) the addrec coefficients are not constant, or 9228 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9229 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9230 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9231 static Optional<APInt> 9232 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9233 APInt A, B, C, M; 9234 unsigned BitWidth; 9235 auto T = GetQuadraticEquation(AddRec); 9236 if (!T.hasValue()) 9237 return None; 9238 9239 std::tie(A, B, C, M, BitWidth) = *T; 9240 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9241 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9242 if (!X.hasValue()) 9243 return None; 9244 9245 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9246 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9247 if (!V->isZero()) 9248 return None; 9249 9250 return TruncIfPossible(X, BitWidth); 9251 } 9252 9253 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9254 /// iterations. The values M, N are assumed to be signed, and they 9255 /// should all have the same bit widths. 9256 /// Find the least n such that c(n) does not belong to the given range, 9257 /// while c(n-1) does. 9258 /// 9259 /// This function returns None if 9260 /// (a) the addrec coefficients are not constant, or 9261 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9262 /// bounds of the range. 9263 static Optional<APInt> 9264 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9265 const ConstantRange &Range, ScalarEvolution &SE) { 9266 assert(AddRec->getOperand(0)->isZero() && 9267 "Starting value of addrec should be 0"); 9268 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9269 << Range << ", addrec " << *AddRec << '\n'); 9270 // This case is handled in getNumIterationsInRange. Here we can assume that 9271 // we start in the range. 9272 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9273 "Addrec's initial value should be in range"); 9274 9275 APInt A, B, C, M; 9276 unsigned BitWidth; 9277 auto T = GetQuadraticEquation(AddRec); 9278 if (!T.hasValue()) 9279 return None; 9280 9281 // Be careful about the return value: there can be two reasons for not 9282 // returning an actual number. First, if no solutions to the equations 9283 // were found, and second, if the solutions don't leave the given range. 9284 // The first case means that the actual solution is "unknown", the second 9285 // means that it's known, but not valid. If the solution is unknown, we 9286 // cannot make any conclusions. 9287 // Return a pair: the optional solution and a flag indicating if the 9288 // solution was found. 9289 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9290 // Solve for signed overflow and unsigned overflow, pick the lower 9291 // solution. 9292 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9293 << Bound << " (before multiplying by " << M << ")\n"); 9294 Bound *= M; // The quadratic equation multiplier. 9295 9296 Optional<APInt> SO = None; 9297 if (BitWidth > 1) { 9298 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9299 "signed overflow\n"); 9300 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9301 } 9302 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9303 "unsigned overflow\n"); 9304 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9305 BitWidth+1); 9306 9307 auto LeavesRange = [&] (const APInt &X) { 9308 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9309 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9310 if (Range.contains(V0->getValue())) 9311 return false; 9312 // X should be at least 1, so X-1 is non-negative. 9313 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9314 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9315 if (Range.contains(V1->getValue())) 9316 return true; 9317 return false; 9318 }; 9319 9320 // If SolveQuadraticEquationWrap returns None, it means that there can 9321 // be a solution, but the function failed to find it. We cannot treat it 9322 // as "no solution". 9323 if (!SO.hasValue() || !UO.hasValue()) 9324 return { None, false }; 9325 9326 // Check the smaller value first to see if it leaves the range. 9327 // At this point, both SO and UO must have values. 9328 Optional<APInt> Min = MinOptional(SO, UO); 9329 if (LeavesRange(*Min)) 9330 return { Min, true }; 9331 Optional<APInt> Max = Min == SO ? UO : SO; 9332 if (LeavesRange(*Max)) 9333 return { Max, true }; 9334 9335 // Solutions were found, but were eliminated, hence the "true". 9336 return { None, true }; 9337 }; 9338 9339 std::tie(A, B, C, M, BitWidth) = *T; 9340 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9341 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9342 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9343 auto SL = SolveForBoundary(Lower); 9344 auto SU = SolveForBoundary(Upper); 9345 // If any of the solutions was unknown, no meaninigful conclusions can 9346 // be made. 9347 if (!SL.second || !SU.second) 9348 return None; 9349 9350 // Claim: The correct solution is not some value between Min and Max. 9351 // 9352 // Justification: Assuming that Min and Max are different values, one of 9353 // them is when the first signed overflow happens, the other is when the 9354 // first unsigned overflow happens. Crossing the range boundary is only 9355 // possible via an overflow (treating 0 as a special case of it, modeling 9356 // an overflow as crossing k*2^W for some k). 9357 // 9358 // The interesting case here is when Min was eliminated as an invalid 9359 // solution, but Max was not. The argument is that if there was another 9360 // overflow between Min and Max, it would also have been eliminated if 9361 // it was considered. 9362 // 9363 // For a given boundary, it is possible to have two overflows of the same 9364 // type (signed/unsigned) without having the other type in between: this 9365 // can happen when the vertex of the parabola is between the iterations 9366 // corresponding to the overflows. This is only possible when the two 9367 // overflows cross k*2^W for the same k. In such case, if the second one 9368 // left the range (and was the first one to do so), the first overflow 9369 // would have to enter the range, which would mean that either we had left 9370 // the range before or that we started outside of it. Both of these cases 9371 // are contradictions. 9372 // 9373 // Claim: In the case where SolveForBoundary returns None, the correct 9374 // solution is not some value between the Max for this boundary and the 9375 // Min of the other boundary. 9376 // 9377 // Justification: Assume that we had such Max_A and Min_B corresponding 9378 // to range boundaries A and B and such that Max_A < Min_B. If there was 9379 // a solution between Max_A and Min_B, it would have to be caused by an 9380 // overflow corresponding to either A or B. It cannot correspond to B, 9381 // since Min_B is the first occurrence of such an overflow. If it 9382 // corresponded to A, it would have to be either a signed or an unsigned 9383 // overflow that is larger than both eliminated overflows for A. But 9384 // between the eliminated overflows and this overflow, the values would 9385 // cover the entire value space, thus crossing the other boundary, which 9386 // is a contradiction. 9387 9388 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9389 } 9390 9391 ScalarEvolution::ExitLimit 9392 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9393 bool AllowPredicates) { 9394 9395 // This is only used for loops with a "x != y" exit test. The exit condition 9396 // is now expressed as a single expression, V = x-y. So the exit test is 9397 // effectively V != 0. We know and take advantage of the fact that this 9398 // expression only being used in a comparison by zero context. 9399 9400 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9401 // If the value is a constant 9402 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9403 // If the value is already zero, the branch will execute zero times. 9404 if (C->getValue()->isZero()) return C; 9405 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9406 } 9407 9408 const SCEVAddRecExpr *AddRec = 9409 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9410 9411 if (!AddRec && AllowPredicates) 9412 // Try to make this an AddRec using runtime tests, in the first X 9413 // iterations of this loop, where X is the SCEV expression found by the 9414 // algorithm below. 9415 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9416 9417 if (!AddRec || AddRec->getLoop() != L) 9418 return getCouldNotCompute(); 9419 9420 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9421 // the quadratic equation to solve it. 9422 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9423 // We can only use this value if the chrec ends up with an exact zero 9424 // value at this index. When solving for "X*X != 5", for example, we 9425 // should not accept a root of 2. 9426 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9427 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9428 return ExitLimit(R, R, false, Predicates); 9429 } 9430 return getCouldNotCompute(); 9431 } 9432 9433 // Otherwise we can only handle this if it is affine. 9434 if (!AddRec->isAffine()) 9435 return getCouldNotCompute(); 9436 9437 // If this is an affine expression, the execution count of this branch is 9438 // the minimum unsigned root of the following equation: 9439 // 9440 // Start + Step*N = 0 (mod 2^BW) 9441 // 9442 // equivalent to: 9443 // 9444 // Step*N = -Start (mod 2^BW) 9445 // 9446 // where BW is the common bit width of Start and Step. 9447 9448 // Get the initial value for the loop. 9449 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9450 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9451 9452 // For now we handle only constant steps. 9453 // 9454 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9455 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9456 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9457 // We have not yet seen any such cases. 9458 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9459 if (!StepC || StepC->getValue()->isZero()) 9460 return getCouldNotCompute(); 9461 9462 // For positive steps (counting up until unsigned overflow): 9463 // N = -Start/Step (as unsigned) 9464 // For negative steps (counting down to zero): 9465 // N = Start/-Step 9466 // First compute the unsigned distance from zero in the direction of Step. 9467 bool CountDown = StepC->getAPInt().isNegative(); 9468 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9469 9470 // Handle unitary steps, which cannot wraparound. 9471 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9472 // N = Distance (as unsigned) 9473 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9474 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9475 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9476 if (MaxBECountBase.ult(MaxBECount)) 9477 MaxBECount = MaxBECountBase; 9478 9479 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9480 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9481 // case, and see if we can improve the bound. 9482 // 9483 // Explicitly handling this here is necessary because getUnsignedRange 9484 // isn't context-sensitive; it doesn't know that we only care about the 9485 // range inside the loop. 9486 const SCEV *Zero = getZero(Distance->getType()); 9487 const SCEV *One = getOne(Distance->getType()); 9488 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9489 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9490 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9491 // as "unsigned_max(Distance + 1) - 1". 9492 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9493 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9494 } 9495 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9496 } 9497 9498 // If the condition controls loop exit (the loop exits only if the expression 9499 // is true) and the addition is no-wrap we can use unsigned divide to 9500 // compute the backedge count. In this case, the step may not divide the 9501 // distance, but we don't care because if the condition is "missed" the loop 9502 // will have undefined behavior due to wrapping. 9503 if (ControlsExit && AddRec->hasNoSelfWrap() && 9504 loopHasNoAbnormalExits(AddRec->getLoop())) { 9505 const SCEV *Exact = 9506 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9507 const SCEV *Max = getCouldNotCompute(); 9508 if (Exact != getCouldNotCompute()) { 9509 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9510 APInt BaseMaxInt = getUnsignedRangeMax(Exact); 9511 if (BaseMaxInt.ult(MaxInt)) 9512 Max = getConstant(BaseMaxInt); 9513 else 9514 Max = getConstant(MaxInt); 9515 } 9516 return ExitLimit(Exact, Max, false, Predicates); 9517 } 9518 9519 // Solve the general equation. 9520 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9521 getNegativeSCEV(Start), *this); 9522 const SCEV *M = E == getCouldNotCompute() 9523 ? E 9524 : getConstant(getUnsignedRangeMax(E)); 9525 return ExitLimit(E, M, false, Predicates); 9526 } 9527 9528 ScalarEvolution::ExitLimit 9529 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9530 // Loops that look like: while (X == 0) are very strange indeed. We don't 9531 // handle them yet except for the trivial case. This could be expanded in the 9532 // future as needed. 9533 9534 // If the value is a constant, check to see if it is known to be non-zero 9535 // already. If so, the backedge will execute zero times. 9536 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9537 if (!C->getValue()->isZero()) 9538 return getZero(C->getType()); 9539 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9540 } 9541 9542 // We could implement others, but I really doubt anyone writes loops like 9543 // this, and if they did, they would already be constant folded. 9544 return getCouldNotCompute(); 9545 } 9546 9547 std::pair<const BasicBlock *, const BasicBlock *> 9548 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9549 const { 9550 // If the block has a unique predecessor, then there is no path from the 9551 // predecessor to the block that does not go through the direct edge 9552 // from the predecessor to the block. 9553 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9554 return {Pred, BB}; 9555 9556 // A loop's header is defined to be a block that dominates the loop. 9557 // If the header has a unique predecessor outside the loop, it must be 9558 // a block that has exactly one successor that can reach the loop. 9559 if (const Loop *L = LI.getLoopFor(BB)) 9560 return {L->getLoopPredecessor(), L->getHeader()}; 9561 9562 return {nullptr, nullptr}; 9563 } 9564 9565 /// SCEV structural equivalence is usually sufficient for testing whether two 9566 /// expressions are equal, however for the purposes of looking for a condition 9567 /// guarding a loop, it can be useful to be a little more general, since a 9568 /// front-end may have replicated the controlling expression. 9569 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9570 // Quick check to see if they are the same SCEV. 9571 if (A == B) return true; 9572 9573 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9574 // Not all instructions that are "identical" compute the same value. For 9575 // instance, two distinct alloca instructions allocating the same type are 9576 // identical and do not read memory; but compute distinct values. 9577 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9578 }; 9579 9580 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9581 // two different instructions with the same value. Check for this case. 9582 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9583 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9584 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9585 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9586 if (ComputesEqualValues(AI, BI)) 9587 return true; 9588 9589 // Otherwise assume they may have a different value. 9590 return false; 9591 } 9592 9593 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9594 const SCEV *&LHS, const SCEV *&RHS, 9595 unsigned Depth) { 9596 bool Changed = false; 9597 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9598 // '0 != 0'. 9599 auto TrivialCase = [&](bool TriviallyTrue) { 9600 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9601 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9602 return true; 9603 }; 9604 // If we hit the max recursion limit bail out. 9605 if (Depth >= 3) 9606 return false; 9607 9608 // Canonicalize a constant to the right side. 9609 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9610 // Check for both operands constant. 9611 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9612 if (ConstantExpr::getICmp(Pred, 9613 LHSC->getValue(), 9614 RHSC->getValue())->isNullValue()) 9615 return TrivialCase(false); 9616 else 9617 return TrivialCase(true); 9618 } 9619 // Otherwise swap the operands to put the constant on the right. 9620 std::swap(LHS, RHS); 9621 Pred = ICmpInst::getSwappedPredicate(Pred); 9622 Changed = true; 9623 } 9624 9625 // If we're comparing an addrec with a value which is loop-invariant in the 9626 // addrec's loop, put the addrec on the left. Also make a dominance check, 9627 // as both operands could be addrecs loop-invariant in each other's loop. 9628 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9629 const Loop *L = AR->getLoop(); 9630 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9631 std::swap(LHS, RHS); 9632 Pred = ICmpInst::getSwappedPredicate(Pred); 9633 Changed = true; 9634 } 9635 } 9636 9637 // If there's a constant operand, canonicalize comparisons with boundary 9638 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9639 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9640 const APInt &RA = RC->getAPInt(); 9641 9642 bool SimplifiedByConstantRange = false; 9643 9644 if (!ICmpInst::isEquality(Pred)) { 9645 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9646 if (ExactCR.isFullSet()) 9647 return TrivialCase(true); 9648 else if (ExactCR.isEmptySet()) 9649 return TrivialCase(false); 9650 9651 APInt NewRHS; 9652 CmpInst::Predicate NewPred; 9653 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9654 ICmpInst::isEquality(NewPred)) { 9655 // We were able to convert an inequality to an equality. 9656 Pred = NewPred; 9657 RHS = getConstant(NewRHS); 9658 Changed = SimplifiedByConstantRange = true; 9659 } 9660 } 9661 9662 if (!SimplifiedByConstantRange) { 9663 switch (Pred) { 9664 default: 9665 break; 9666 case ICmpInst::ICMP_EQ: 9667 case ICmpInst::ICMP_NE: 9668 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9669 if (!RA) 9670 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9671 if (const SCEVMulExpr *ME = 9672 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9673 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9674 ME->getOperand(0)->isAllOnesValue()) { 9675 RHS = AE->getOperand(1); 9676 LHS = ME->getOperand(1); 9677 Changed = true; 9678 } 9679 break; 9680 9681 9682 // The "Should have been caught earlier!" messages refer to the fact 9683 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9684 // should have fired on the corresponding cases, and canonicalized the 9685 // check to trivial case. 9686 9687 case ICmpInst::ICMP_UGE: 9688 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9689 Pred = ICmpInst::ICMP_UGT; 9690 RHS = getConstant(RA - 1); 9691 Changed = true; 9692 break; 9693 case ICmpInst::ICMP_ULE: 9694 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9695 Pred = ICmpInst::ICMP_ULT; 9696 RHS = getConstant(RA + 1); 9697 Changed = true; 9698 break; 9699 case ICmpInst::ICMP_SGE: 9700 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9701 Pred = ICmpInst::ICMP_SGT; 9702 RHS = getConstant(RA - 1); 9703 Changed = true; 9704 break; 9705 case ICmpInst::ICMP_SLE: 9706 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9707 Pred = ICmpInst::ICMP_SLT; 9708 RHS = getConstant(RA + 1); 9709 Changed = true; 9710 break; 9711 } 9712 } 9713 } 9714 9715 // Check for obvious equality. 9716 if (HasSameValue(LHS, RHS)) { 9717 if (ICmpInst::isTrueWhenEqual(Pred)) 9718 return TrivialCase(true); 9719 if (ICmpInst::isFalseWhenEqual(Pred)) 9720 return TrivialCase(false); 9721 } 9722 9723 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9724 // adding or subtracting 1 from one of the operands. 9725 switch (Pred) { 9726 case ICmpInst::ICMP_SLE: 9727 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9728 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9729 SCEV::FlagNSW); 9730 Pred = ICmpInst::ICMP_SLT; 9731 Changed = true; 9732 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9733 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9734 SCEV::FlagNSW); 9735 Pred = ICmpInst::ICMP_SLT; 9736 Changed = true; 9737 } 9738 break; 9739 case ICmpInst::ICMP_SGE: 9740 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9741 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9742 SCEV::FlagNSW); 9743 Pred = ICmpInst::ICMP_SGT; 9744 Changed = true; 9745 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9746 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9747 SCEV::FlagNSW); 9748 Pred = ICmpInst::ICMP_SGT; 9749 Changed = true; 9750 } 9751 break; 9752 case ICmpInst::ICMP_ULE: 9753 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9754 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9755 SCEV::FlagNUW); 9756 Pred = ICmpInst::ICMP_ULT; 9757 Changed = true; 9758 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9759 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9760 Pred = ICmpInst::ICMP_ULT; 9761 Changed = true; 9762 } 9763 break; 9764 case ICmpInst::ICMP_UGE: 9765 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9766 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9767 Pred = ICmpInst::ICMP_UGT; 9768 Changed = true; 9769 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9770 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9771 SCEV::FlagNUW); 9772 Pred = ICmpInst::ICMP_UGT; 9773 Changed = true; 9774 } 9775 break; 9776 default: 9777 break; 9778 } 9779 9780 // TODO: More simplifications are possible here. 9781 9782 // Recursively simplify until we either hit a recursion limit or nothing 9783 // changes. 9784 if (Changed) 9785 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9786 9787 return Changed; 9788 } 9789 9790 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9791 return getSignedRangeMax(S).isNegative(); 9792 } 9793 9794 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9795 return getSignedRangeMin(S).isStrictlyPositive(); 9796 } 9797 9798 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9799 return !getSignedRangeMin(S).isNegative(); 9800 } 9801 9802 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9803 return !getSignedRangeMax(S).isStrictlyPositive(); 9804 } 9805 9806 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9807 return isKnownNegative(S) || isKnownPositive(S); 9808 } 9809 9810 std::pair<const SCEV *, const SCEV *> 9811 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9812 // Compute SCEV on entry of loop L. 9813 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9814 if (Start == getCouldNotCompute()) 9815 return { Start, Start }; 9816 // Compute post increment SCEV for loop L. 9817 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9818 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9819 return { Start, PostInc }; 9820 } 9821 9822 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9823 const SCEV *LHS, const SCEV *RHS) { 9824 // First collect all loops. 9825 SmallPtrSet<const Loop *, 8> LoopsUsed; 9826 getUsedLoops(LHS, LoopsUsed); 9827 getUsedLoops(RHS, LoopsUsed); 9828 9829 if (LoopsUsed.empty()) 9830 return false; 9831 9832 // Domination relationship must be a linear order on collected loops. 9833 #ifndef NDEBUG 9834 for (auto *L1 : LoopsUsed) 9835 for (auto *L2 : LoopsUsed) 9836 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9837 DT.dominates(L2->getHeader(), L1->getHeader())) && 9838 "Domination relationship is not a linear order"); 9839 #endif 9840 9841 const Loop *MDL = 9842 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9843 [&](const Loop *L1, const Loop *L2) { 9844 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9845 }); 9846 9847 // Get init and post increment value for LHS. 9848 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9849 // if LHS contains unknown non-invariant SCEV then bail out. 9850 if (SplitLHS.first == getCouldNotCompute()) 9851 return false; 9852 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9853 // Get init and post increment value for RHS. 9854 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9855 // if RHS contains unknown non-invariant SCEV then bail out. 9856 if (SplitRHS.first == getCouldNotCompute()) 9857 return false; 9858 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9859 // It is possible that init SCEV contains an invariant load but it does 9860 // not dominate MDL and is not available at MDL loop entry, so we should 9861 // check it here. 9862 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9863 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9864 return false; 9865 9866 // It seems backedge guard check is faster than entry one so in some cases 9867 // it can speed up whole estimation by short circuit 9868 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9869 SplitRHS.second) && 9870 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9871 } 9872 9873 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9874 const SCEV *LHS, const SCEV *RHS) { 9875 // Canonicalize the inputs first. 9876 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9877 9878 if (isKnownViaInduction(Pred, LHS, RHS)) 9879 return true; 9880 9881 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9882 return true; 9883 9884 // Otherwise see what can be done with some simple reasoning. 9885 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9886 } 9887 9888 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 9889 const SCEV *LHS, 9890 const SCEV *RHS) { 9891 if (isKnownPredicate(Pred, LHS, RHS)) 9892 return true; 9893 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 9894 return false; 9895 return None; 9896 } 9897 9898 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9899 const SCEV *LHS, const SCEV *RHS, 9900 const Instruction *Context) { 9901 // TODO: Analyze guards and assumes from Context's block. 9902 return isKnownPredicate(Pred, LHS, RHS) || 9903 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9904 } 9905 9906 Optional<bool> 9907 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 9908 const SCEV *RHS, 9909 const Instruction *Context) { 9910 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 9911 if (KnownWithoutContext) 9912 return KnownWithoutContext; 9913 9914 if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS)) 9915 return true; 9916 else if (isBasicBlockEntryGuardedByCond(Context->getParent(), 9917 ICmpInst::getInversePredicate(Pred), 9918 LHS, RHS)) 9919 return false; 9920 return None; 9921 } 9922 9923 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9924 const SCEVAddRecExpr *LHS, 9925 const SCEV *RHS) { 9926 const Loop *L = LHS->getLoop(); 9927 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9928 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9929 } 9930 9931 Optional<ScalarEvolution::MonotonicPredicateType> 9932 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9933 ICmpInst::Predicate Pred) { 9934 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9935 9936 #ifndef NDEBUG 9937 // Verify an invariant: inverting the predicate should turn a monotonically 9938 // increasing change to a monotonically decreasing one, and vice versa. 9939 if (Result) { 9940 auto ResultSwapped = 9941 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9942 9943 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9944 assert(ResultSwapped.getValue() != Result.getValue() && 9945 "monotonicity should flip as we flip the predicate"); 9946 } 9947 #endif 9948 9949 return Result; 9950 } 9951 9952 Optional<ScalarEvolution::MonotonicPredicateType> 9953 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9954 ICmpInst::Predicate Pred) { 9955 // A zero step value for LHS means the induction variable is essentially a 9956 // loop invariant value. We don't really depend on the predicate actually 9957 // flipping from false to true (for increasing predicates, and the other way 9958 // around for decreasing predicates), all we care about is that *if* the 9959 // predicate changes then it only changes from false to true. 9960 // 9961 // A zero step value in itself is not very useful, but there may be places 9962 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9963 // as general as possible. 9964 9965 // Only handle LE/LT/GE/GT predicates. 9966 if (!ICmpInst::isRelational(Pred)) 9967 return None; 9968 9969 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9970 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9971 "Should be greater or less!"); 9972 9973 // Check that AR does not wrap. 9974 if (ICmpInst::isUnsigned(Pred)) { 9975 if (!LHS->hasNoUnsignedWrap()) 9976 return None; 9977 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9978 } else { 9979 assert(ICmpInst::isSigned(Pred) && 9980 "Relational predicate is either signed or unsigned!"); 9981 if (!LHS->hasNoSignedWrap()) 9982 return None; 9983 9984 const SCEV *Step = LHS->getStepRecurrence(*this); 9985 9986 if (isKnownNonNegative(Step)) 9987 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9988 9989 if (isKnownNonPositive(Step)) 9990 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9991 9992 return None; 9993 } 9994 } 9995 9996 Optional<ScalarEvolution::LoopInvariantPredicate> 9997 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 9998 const SCEV *LHS, const SCEV *RHS, 9999 const Loop *L) { 10000 10001 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10002 if (!isLoopInvariant(RHS, L)) { 10003 if (!isLoopInvariant(LHS, L)) 10004 return None; 10005 10006 std::swap(LHS, RHS); 10007 Pred = ICmpInst::getSwappedPredicate(Pred); 10008 } 10009 10010 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10011 if (!ArLHS || ArLHS->getLoop() != L) 10012 return None; 10013 10014 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10015 if (!MonotonicType) 10016 return None; 10017 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10018 // true as the loop iterates, and the backedge is control dependent on 10019 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10020 // 10021 // * if the predicate was false in the first iteration then the predicate 10022 // is never evaluated again, since the loop exits without taking the 10023 // backedge. 10024 // * if the predicate was true in the first iteration then it will 10025 // continue to be true for all future iterations since it is 10026 // monotonically increasing. 10027 // 10028 // For both the above possibilities, we can replace the loop varying 10029 // predicate with its value on the first iteration of the loop (which is 10030 // loop invariant). 10031 // 10032 // A similar reasoning applies for a monotonically decreasing predicate, by 10033 // replacing true with false and false with true in the above two bullets. 10034 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10035 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10036 10037 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10038 return None; 10039 10040 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10041 } 10042 10043 Optional<ScalarEvolution::LoopInvariantPredicate> 10044 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10045 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10046 const Instruction *Context, const SCEV *MaxIter) { 10047 // Try to prove the following set of facts: 10048 // - The predicate is monotonic in the iteration space. 10049 // - If the check does not fail on the 1st iteration: 10050 // - No overflow will happen during first MaxIter iterations; 10051 // - It will not fail on the MaxIter'th iteration. 10052 // If the check does fail on the 1st iteration, we leave the loop and no 10053 // other checks matter. 10054 10055 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10056 if (!isLoopInvariant(RHS, L)) { 10057 if (!isLoopInvariant(LHS, L)) 10058 return None; 10059 10060 std::swap(LHS, RHS); 10061 Pred = ICmpInst::getSwappedPredicate(Pred); 10062 } 10063 10064 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10065 if (!AR || AR->getLoop() != L) 10066 return None; 10067 10068 // The predicate must be relational (i.e. <, <=, >=, >). 10069 if (!ICmpInst::isRelational(Pred)) 10070 return None; 10071 10072 // TODO: Support steps other than +/- 1. 10073 const SCEV *Step = AR->getStepRecurrence(*this); 10074 auto *One = getOne(Step->getType()); 10075 auto *MinusOne = getNegativeSCEV(One); 10076 if (Step != One && Step != MinusOne) 10077 return None; 10078 10079 // Type mismatch here means that MaxIter is potentially larger than max 10080 // unsigned value in start type, which mean we cannot prove no wrap for the 10081 // indvar. 10082 if (AR->getType() != MaxIter->getType()) 10083 return None; 10084 10085 // Value of IV on suggested last iteration. 10086 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10087 // Does it still meet the requirement? 10088 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10089 return None; 10090 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10091 // not exceed max unsigned value of this type), this effectively proves 10092 // that there is no wrap during the iteration. To prove that there is no 10093 // signed/unsigned wrap, we need to check that 10094 // Start <= Last for step = 1 or Start >= Last for step = -1. 10095 ICmpInst::Predicate NoOverflowPred = 10096 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10097 if (Step == MinusOne) 10098 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10099 const SCEV *Start = AR->getStart(); 10100 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 10101 return None; 10102 10103 // Everything is fine. 10104 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10105 } 10106 10107 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10108 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10109 if (HasSameValue(LHS, RHS)) 10110 return ICmpInst::isTrueWhenEqual(Pred); 10111 10112 // This code is split out from isKnownPredicate because it is called from 10113 // within isLoopEntryGuardedByCond. 10114 10115 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10116 const ConstantRange &RangeRHS) { 10117 return RangeLHS.icmp(Pred, RangeRHS); 10118 }; 10119 10120 // The check at the top of the function catches the case where the values are 10121 // known to be equal. 10122 if (Pred == CmpInst::ICMP_EQ) 10123 return false; 10124 10125 if (Pred == CmpInst::ICMP_NE) { 10126 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10127 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10128 return true; 10129 auto *Diff = getMinusSCEV(LHS, RHS); 10130 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10131 } 10132 10133 if (CmpInst::isSigned(Pred)) 10134 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10135 10136 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10137 } 10138 10139 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10140 const SCEV *LHS, 10141 const SCEV *RHS) { 10142 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10143 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10144 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10145 // OutC1 and OutC2. 10146 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10147 APInt &OutC1, APInt &OutC2, 10148 SCEV::NoWrapFlags ExpectedFlags) { 10149 const SCEV *XNonConstOp, *XConstOp; 10150 const SCEV *YNonConstOp, *YConstOp; 10151 SCEV::NoWrapFlags XFlagsPresent; 10152 SCEV::NoWrapFlags YFlagsPresent; 10153 10154 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10155 XConstOp = getZero(X->getType()); 10156 XNonConstOp = X; 10157 XFlagsPresent = ExpectedFlags; 10158 } 10159 if (!isa<SCEVConstant>(XConstOp) || 10160 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10161 return false; 10162 10163 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10164 YConstOp = getZero(Y->getType()); 10165 YNonConstOp = Y; 10166 YFlagsPresent = ExpectedFlags; 10167 } 10168 10169 if (!isa<SCEVConstant>(YConstOp) || 10170 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10171 return false; 10172 10173 if (YNonConstOp != XNonConstOp) 10174 return false; 10175 10176 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10177 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10178 10179 return true; 10180 }; 10181 10182 APInt C1; 10183 APInt C2; 10184 10185 switch (Pred) { 10186 default: 10187 break; 10188 10189 case ICmpInst::ICMP_SGE: 10190 std::swap(LHS, RHS); 10191 LLVM_FALLTHROUGH; 10192 case ICmpInst::ICMP_SLE: 10193 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10194 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10195 return true; 10196 10197 break; 10198 10199 case ICmpInst::ICMP_SGT: 10200 std::swap(LHS, RHS); 10201 LLVM_FALLTHROUGH; 10202 case ICmpInst::ICMP_SLT: 10203 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10204 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10205 return true; 10206 10207 break; 10208 10209 case ICmpInst::ICMP_UGE: 10210 std::swap(LHS, RHS); 10211 LLVM_FALLTHROUGH; 10212 case ICmpInst::ICMP_ULE: 10213 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10214 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10215 return true; 10216 10217 break; 10218 10219 case ICmpInst::ICMP_UGT: 10220 std::swap(LHS, RHS); 10221 LLVM_FALLTHROUGH; 10222 case ICmpInst::ICMP_ULT: 10223 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10224 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10225 return true; 10226 break; 10227 } 10228 10229 return false; 10230 } 10231 10232 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10233 const SCEV *LHS, 10234 const SCEV *RHS) { 10235 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10236 return false; 10237 10238 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10239 // the stack can result in exponential time complexity. 10240 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10241 10242 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10243 // 10244 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10245 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10246 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10247 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10248 // use isKnownPredicate later if needed. 10249 return isKnownNonNegative(RHS) && 10250 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10251 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10252 } 10253 10254 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10255 ICmpInst::Predicate Pred, 10256 const SCEV *LHS, const SCEV *RHS) { 10257 // No need to even try if we know the module has no guards. 10258 if (!HasGuards) 10259 return false; 10260 10261 return any_of(*BB, [&](const Instruction &I) { 10262 using namespace llvm::PatternMatch; 10263 10264 Value *Condition; 10265 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10266 m_Value(Condition))) && 10267 isImpliedCond(Pred, LHS, RHS, Condition, false); 10268 }); 10269 } 10270 10271 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10272 /// protected by a conditional between LHS and RHS. This is used to 10273 /// to eliminate casts. 10274 bool 10275 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10276 ICmpInst::Predicate Pred, 10277 const SCEV *LHS, const SCEV *RHS) { 10278 // Interpret a null as meaning no loop, where there is obviously no guard 10279 // (interprocedural conditions notwithstanding). 10280 if (!L) return true; 10281 10282 if (VerifyIR) 10283 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10284 "This cannot be done on broken IR!"); 10285 10286 10287 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10288 return true; 10289 10290 BasicBlock *Latch = L->getLoopLatch(); 10291 if (!Latch) 10292 return false; 10293 10294 BranchInst *LoopContinuePredicate = 10295 dyn_cast<BranchInst>(Latch->getTerminator()); 10296 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10297 isImpliedCond(Pred, LHS, RHS, 10298 LoopContinuePredicate->getCondition(), 10299 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10300 return true; 10301 10302 // We don't want more than one activation of the following loops on the stack 10303 // -- that can lead to O(n!) time complexity. 10304 if (WalkingBEDominatingConds) 10305 return false; 10306 10307 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10308 10309 // See if we can exploit a trip count to prove the predicate. 10310 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10311 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10312 if (LatchBECount != getCouldNotCompute()) { 10313 // We know that Latch branches back to the loop header exactly 10314 // LatchBECount times. This means the backdege condition at Latch is 10315 // equivalent to "{0,+,1} u< LatchBECount". 10316 Type *Ty = LatchBECount->getType(); 10317 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10318 const SCEV *LoopCounter = 10319 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10320 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10321 LatchBECount)) 10322 return true; 10323 } 10324 10325 // Check conditions due to any @llvm.assume intrinsics. 10326 for (auto &AssumeVH : AC.assumptions()) { 10327 if (!AssumeVH) 10328 continue; 10329 auto *CI = cast<CallInst>(AssumeVH); 10330 if (!DT.dominates(CI, Latch->getTerminator())) 10331 continue; 10332 10333 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10334 return true; 10335 } 10336 10337 // If the loop is not reachable from the entry block, we risk running into an 10338 // infinite loop as we walk up into the dom tree. These loops do not matter 10339 // anyway, so we just return a conservative answer when we see them. 10340 if (!DT.isReachableFromEntry(L->getHeader())) 10341 return false; 10342 10343 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10344 return true; 10345 10346 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10347 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10348 assert(DTN && "should reach the loop header before reaching the root!"); 10349 10350 BasicBlock *BB = DTN->getBlock(); 10351 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10352 return true; 10353 10354 BasicBlock *PBB = BB->getSinglePredecessor(); 10355 if (!PBB) 10356 continue; 10357 10358 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10359 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10360 continue; 10361 10362 Value *Condition = ContinuePredicate->getCondition(); 10363 10364 // If we have an edge `E` within the loop body that dominates the only 10365 // latch, the condition guarding `E` also guards the backedge. This 10366 // reasoning works only for loops with a single latch. 10367 10368 BasicBlockEdge DominatingEdge(PBB, BB); 10369 if (DominatingEdge.isSingleEdge()) { 10370 // We're constructively (and conservatively) enumerating edges within the 10371 // loop body that dominate the latch. The dominator tree better agree 10372 // with us on this: 10373 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10374 10375 if (isImpliedCond(Pred, LHS, RHS, Condition, 10376 BB != ContinuePredicate->getSuccessor(0))) 10377 return true; 10378 } 10379 } 10380 10381 return false; 10382 } 10383 10384 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10385 ICmpInst::Predicate Pred, 10386 const SCEV *LHS, 10387 const SCEV *RHS) { 10388 if (VerifyIR) 10389 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10390 "This cannot be done on broken IR!"); 10391 10392 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10393 // the facts (a >= b && a != b) separately. A typical situation is when the 10394 // non-strict comparison is known from ranges and non-equality is known from 10395 // dominating predicates. If we are proving strict comparison, we always try 10396 // to prove non-equality and non-strict comparison separately. 10397 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10398 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10399 bool ProvedNonStrictComparison = false; 10400 bool ProvedNonEquality = false; 10401 10402 auto SplitAndProve = 10403 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10404 if (!ProvedNonStrictComparison) 10405 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10406 if (!ProvedNonEquality) 10407 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10408 if (ProvedNonStrictComparison && ProvedNonEquality) 10409 return true; 10410 return false; 10411 }; 10412 10413 if (ProvingStrictComparison) { 10414 auto ProofFn = [&](ICmpInst::Predicate P) { 10415 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10416 }; 10417 if (SplitAndProve(ProofFn)) 10418 return true; 10419 } 10420 10421 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10422 auto ProveViaGuard = [&](const BasicBlock *Block) { 10423 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10424 return true; 10425 if (ProvingStrictComparison) { 10426 auto ProofFn = [&](ICmpInst::Predicate P) { 10427 return isImpliedViaGuard(Block, P, LHS, RHS); 10428 }; 10429 if (SplitAndProve(ProofFn)) 10430 return true; 10431 } 10432 return false; 10433 }; 10434 10435 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10436 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10437 const Instruction *Context = &BB->front(); 10438 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 10439 return true; 10440 if (ProvingStrictComparison) { 10441 auto ProofFn = [&](ICmpInst::Predicate P) { 10442 return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context); 10443 }; 10444 if (SplitAndProve(ProofFn)) 10445 return true; 10446 } 10447 return false; 10448 }; 10449 10450 // Starting at the block's predecessor, climb up the predecessor chain, as long 10451 // as there are predecessors that can be found that have unique successors 10452 // leading to the original block. 10453 const Loop *ContainingLoop = LI.getLoopFor(BB); 10454 const BasicBlock *PredBB; 10455 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10456 PredBB = ContainingLoop->getLoopPredecessor(); 10457 else 10458 PredBB = BB->getSinglePredecessor(); 10459 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10460 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10461 if (ProveViaGuard(Pair.first)) 10462 return true; 10463 10464 const BranchInst *LoopEntryPredicate = 10465 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10466 if (!LoopEntryPredicate || 10467 LoopEntryPredicate->isUnconditional()) 10468 continue; 10469 10470 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10471 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10472 return true; 10473 } 10474 10475 // Check conditions due to any @llvm.assume intrinsics. 10476 for (auto &AssumeVH : AC.assumptions()) { 10477 if (!AssumeVH) 10478 continue; 10479 auto *CI = cast<CallInst>(AssumeVH); 10480 if (!DT.dominates(CI, BB)) 10481 continue; 10482 10483 if (ProveViaCond(CI->getArgOperand(0), false)) 10484 return true; 10485 } 10486 10487 return false; 10488 } 10489 10490 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10491 ICmpInst::Predicate Pred, 10492 const SCEV *LHS, 10493 const SCEV *RHS) { 10494 // Interpret a null as meaning no loop, where there is obviously no guard 10495 // (interprocedural conditions notwithstanding). 10496 if (!L) 10497 return false; 10498 10499 // Both LHS and RHS must be available at loop entry. 10500 assert(isAvailableAtLoopEntry(LHS, L) && 10501 "LHS is not available at Loop Entry"); 10502 assert(isAvailableAtLoopEntry(RHS, L) && 10503 "RHS is not available at Loop Entry"); 10504 10505 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10506 return true; 10507 10508 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10509 } 10510 10511 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10512 const SCEV *RHS, 10513 const Value *FoundCondValue, bool Inverse, 10514 const Instruction *Context) { 10515 // False conditions implies anything. Do not bother analyzing it further. 10516 if (FoundCondValue == 10517 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10518 return true; 10519 10520 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10521 return false; 10522 10523 auto ClearOnExit = 10524 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10525 10526 // Recursively handle And and Or conditions. 10527 const Value *Op0, *Op1; 10528 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10529 if (!Inverse) 10530 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10531 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10532 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10533 if (Inverse) 10534 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10535 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10536 } 10537 10538 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10539 if (!ICI) return false; 10540 10541 // Now that we found a conditional branch that dominates the loop or controls 10542 // the loop latch. Check to see if it is the comparison we are looking for. 10543 ICmpInst::Predicate FoundPred; 10544 if (Inverse) 10545 FoundPred = ICI->getInversePredicate(); 10546 else 10547 FoundPred = ICI->getPredicate(); 10548 10549 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10550 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10551 10552 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 10553 } 10554 10555 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10556 const SCEV *RHS, 10557 ICmpInst::Predicate FoundPred, 10558 const SCEV *FoundLHS, const SCEV *FoundRHS, 10559 const Instruction *Context) { 10560 // Balance the types. 10561 if (getTypeSizeInBits(LHS->getType()) < 10562 getTypeSizeInBits(FoundLHS->getType())) { 10563 // For unsigned and equality predicates, try to prove that both found 10564 // operands fit into narrow unsigned range. If so, try to prove facts in 10565 // narrow types. 10566 if (!CmpInst::isSigned(FoundPred)) { 10567 auto *NarrowType = LHS->getType(); 10568 auto *WideType = FoundLHS->getType(); 10569 auto BitWidth = getTypeSizeInBits(NarrowType); 10570 const SCEV *MaxValue = getZeroExtendExpr( 10571 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10572 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10573 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10574 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10575 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10576 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10577 TruncFoundRHS, Context)) 10578 return true; 10579 } 10580 } 10581 10582 if (CmpInst::isSigned(Pred)) { 10583 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10584 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10585 } else { 10586 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10587 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10588 } 10589 } else if (getTypeSizeInBits(LHS->getType()) > 10590 getTypeSizeInBits(FoundLHS->getType())) { 10591 if (CmpInst::isSigned(FoundPred)) { 10592 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10593 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10594 } else { 10595 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10596 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10597 } 10598 } 10599 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10600 FoundRHS, Context); 10601 } 10602 10603 bool ScalarEvolution::isImpliedCondBalancedTypes( 10604 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10605 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10606 const Instruction *Context) { 10607 assert(getTypeSizeInBits(LHS->getType()) == 10608 getTypeSizeInBits(FoundLHS->getType()) && 10609 "Types should be balanced!"); 10610 // Canonicalize the query to match the way instcombine will have 10611 // canonicalized the comparison. 10612 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10613 if (LHS == RHS) 10614 return CmpInst::isTrueWhenEqual(Pred); 10615 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10616 if (FoundLHS == FoundRHS) 10617 return CmpInst::isFalseWhenEqual(FoundPred); 10618 10619 // Check to see if we can make the LHS or RHS match. 10620 if (LHS == FoundRHS || RHS == FoundLHS) { 10621 if (isa<SCEVConstant>(RHS)) { 10622 std::swap(FoundLHS, FoundRHS); 10623 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10624 } else { 10625 std::swap(LHS, RHS); 10626 Pred = ICmpInst::getSwappedPredicate(Pred); 10627 } 10628 } 10629 10630 // Check whether the found predicate is the same as the desired predicate. 10631 if (FoundPred == Pred) 10632 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10633 10634 // Check whether swapping the found predicate makes it the same as the 10635 // desired predicate. 10636 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10637 // We can write the implication 10638 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10639 // using one of the following ways: 10640 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10641 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10642 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10643 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10644 // Forms 1. and 2. require swapping the operands of one condition. Don't 10645 // do this if it would break canonical constant/addrec ordering. 10646 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10647 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10648 Context); 10649 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10650 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10651 10652 // Don't try to getNotSCEV pointers. 10653 if (LHS->getType()->isPointerTy() || FoundLHS->getType()->isPointerTy()) 10654 return false; 10655 10656 // There's no clear preference between forms 3. and 4., try both. 10657 return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10658 FoundLHS, FoundRHS, Context) || 10659 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10660 getNotSCEV(FoundRHS), Context); 10661 } 10662 10663 // Unsigned comparison is the same as signed comparison when both the operands 10664 // are non-negative. 10665 if (CmpInst::isUnsigned(FoundPred) && 10666 CmpInst::getSignedPredicate(FoundPred) == Pred && 10667 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10668 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10669 10670 // Check if we can make progress by sharpening ranges. 10671 if (FoundPred == ICmpInst::ICMP_NE && 10672 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10673 10674 const SCEVConstant *C = nullptr; 10675 const SCEV *V = nullptr; 10676 10677 if (isa<SCEVConstant>(FoundLHS)) { 10678 C = cast<SCEVConstant>(FoundLHS); 10679 V = FoundRHS; 10680 } else { 10681 C = cast<SCEVConstant>(FoundRHS); 10682 V = FoundLHS; 10683 } 10684 10685 // The guarding predicate tells us that C != V. If the known range 10686 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10687 // range we consider has to correspond to same signedness as the 10688 // predicate we're interested in folding. 10689 10690 APInt Min = ICmpInst::isSigned(Pred) ? 10691 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10692 10693 if (Min == C->getAPInt()) { 10694 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10695 // This is true even if (Min + 1) wraps around -- in case of 10696 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10697 10698 APInt SharperMin = Min + 1; 10699 10700 switch (Pred) { 10701 case ICmpInst::ICMP_SGE: 10702 case ICmpInst::ICMP_UGE: 10703 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10704 // RHS, we're done. 10705 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10706 Context)) 10707 return true; 10708 LLVM_FALLTHROUGH; 10709 10710 case ICmpInst::ICMP_SGT: 10711 case ICmpInst::ICMP_UGT: 10712 // We know from the range information that (V `Pred` Min || 10713 // V == Min). We know from the guarding condition that !(V 10714 // == Min). This gives us 10715 // 10716 // V `Pred` Min || V == Min && !(V == Min) 10717 // => V `Pred` Min 10718 // 10719 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10720 10721 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10722 Context)) 10723 return true; 10724 break; 10725 10726 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10727 case ICmpInst::ICMP_SLE: 10728 case ICmpInst::ICMP_ULE: 10729 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10730 LHS, V, getConstant(SharperMin), Context)) 10731 return true; 10732 LLVM_FALLTHROUGH; 10733 10734 case ICmpInst::ICMP_SLT: 10735 case ICmpInst::ICMP_ULT: 10736 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10737 LHS, V, getConstant(Min), Context)) 10738 return true; 10739 break; 10740 10741 default: 10742 // No change 10743 break; 10744 } 10745 } 10746 } 10747 10748 // Check whether the actual condition is beyond sufficient. 10749 if (FoundPred == ICmpInst::ICMP_EQ) 10750 if (ICmpInst::isTrueWhenEqual(Pred)) 10751 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10752 return true; 10753 if (Pred == ICmpInst::ICMP_NE) 10754 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10755 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10756 Context)) 10757 return true; 10758 10759 // Otherwise assume the worst. 10760 return false; 10761 } 10762 10763 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10764 const SCEV *&L, const SCEV *&R, 10765 SCEV::NoWrapFlags &Flags) { 10766 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10767 if (!AE || AE->getNumOperands() != 2) 10768 return false; 10769 10770 L = AE->getOperand(0); 10771 R = AE->getOperand(1); 10772 Flags = AE->getNoWrapFlags(); 10773 return true; 10774 } 10775 10776 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10777 const SCEV *Less) { 10778 // We avoid subtracting expressions here because this function is usually 10779 // fairly deep in the call stack (i.e. is called many times). 10780 10781 // X - X = 0. 10782 if (More == Less) 10783 return APInt(getTypeSizeInBits(More->getType()), 0); 10784 10785 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10786 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10787 const auto *MAR = cast<SCEVAddRecExpr>(More); 10788 10789 if (LAR->getLoop() != MAR->getLoop()) 10790 return None; 10791 10792 // We look at affine expressions only; not for correctness but to keep 10793 // getStepRecurrence cheap. 10794 if (!LAR->isAffine() || !MAR->isAffine()) 10795 return None; 10796 10797 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10798 return None; 10799 10800 Less = LAR->getStart(); 10801 More = MAR->getStart(); 10802 10803 // fall through 10804 } 10805 10806 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10807 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10808 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10809 return M - L; 10810 } 10811 10812 SCEV::NoWrapFlags Flags; 10813 const SCEV *LLess = nullptr, *RLess = nullptr; 10814 const SCEV *LMore = nullptr, *RMore = nullptr; 10815 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10816 // Compare (X + C1) vs X. 10817 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10818 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10819 if (RLess == More) 10820 return -(C1->getAPInt()); 10821 10822 // Compare X vs (X + C2). 10823 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10824 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10825 if (RMore == Less) 10826 return C2->getAPInt(); 10827 10828 // Compare (X + C1) vs (X + C2). 10829 if (C1 && C2 && RLess == RMore) 10830 return C2->getAPInt() - C1->getAPInt(); 10831 10832 return None; 10833 } 10834 10835 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10836 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10837 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10838 // Try to recognize the following pattern: 10839 // 10840 // FoundRHS = ... 10841 // ... 10842 // loop: 10843 // FoundLHS = {Start,+,W} 10844 // context_bb: // Basic block from the same loop 10845 // known(Pred, FoundLHS, FoundRHS) 10846 // 10847 // If some predicate is known in the context of a loop, it is also known on 10848 // each iteration of this loop, including the first iteration. Therefore, in 10849 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10850 // prove the original pred using this fact. 10851 if (!Context) 10852 return false; 10853 const BasicBlock *ContextBB = Context->getParent(); 10854 // Make sure AR varies in the context block. 10855 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10856 const Loop *L = AR->getLoop(); 10857 // Make sure that context belongs to the loop and executes on 1st iteration 10858 // (if it ever executes at all). 10859 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10860 return false; 10861 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10862 return false; 10863 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10864 } 10865 10866 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10867 const Loop *L = AR->getLoop(); 10868 // Make sure that context belongs to the loop and executes on 1st iteration 10869 // (if it ever executes at all). 10870 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10871 return false; 10872 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10873 return false; 10874 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10875 } 10876 10877 return false; 10878 } 10879 10880 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10881 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10882 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10883 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10884 return false; 10885 10886 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10887 if (!AddRecLHS) 10888 return false; 10889 10890 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10891 if (!AddRecFoundLHS) 10892 return false; 10893 10894 // We'd like to let SCEV reason about control dependencies, so we constrain 10895 // both the inequalities to be about add recurrences on the same loop. This 10896 // way we can use isLoopEntryGuardedByCond later. 10897 10898 const Loop *L = AddRecFoundLHS->getLoop(); 10899 if (L != AddRecLHS->getLoop()) 10900 return false; 10901 10902 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10903 // 10904 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10905 // ... (2) 10906 // 10907 // Informal proof for (2), assuming (1) [*]: 10908 // 10909 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10910 // 10911 // Then 10912 // 10913 // FoundLHS s< FoundRHS s< INT_MIN - C 10914 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10915 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10916 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10917 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10918 // <=> FoundLHS + C s< FoundRHS + C 10919 // 10920 // [*]: (1) can be proved by ruling out overflow. 10921 // 10922 // [**]: This can be proved by analyzing all the four possibilities: 10923 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10924 // (A s>= 0, B s>= 0). 10925 // 10926 // Note: 10927 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10928 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10929 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10930 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10931 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10932 // C)". 10933 10934 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10935 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10936 if (!LDiff || !RDiff || *LDiff != *RDiff) 10937 return false; 10938 10939 if (LDiff->isMinValue()) 10940 return true; 10941 10942 APInt FoundRHSLimit; 10943 10944 if (Pred == CmpInst::ICMP_ULT) { 10945 FoundRHSLimit = -(*RDiff); 10946 } else { 10947 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10948 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10949 } 10950 10951 // Try to prove (1) or (2), as needed. 10952 return isAvailableAtLoopEntry(FoundRHS, L) && 10953 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10954 getConstant(FoundRHSLimit)); 10955 } 10956 10957 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10958 const SCEV *LHS, const SCEV *RHS, 10959 const SCEV *FoundLHS, 10960 const SCEV *FoundRHS, unsigned Depth) { 10961 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10962 10963 auto ClearOnExit = make_scope_exit([&]() { 10964 if (LPhi) { 10965 bool Erased = PendingMerges.erase(LPhi); 10966 assert(Erased && "Failed to erase LPhi!"); 10967 (void)Erased; 10968 } 10969 if (RPhi) { 10970 bool Erased = PendingMerges.erase(RPhi); 10971 assert(Erased && "Failed to erase RPhi!"); 10972 (void)Erased; 10973 } 10974 }); 10975 10976 // Find respective Phis and check that they are not being pending. 10977 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10978 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10979 if (!PendingMerges.insert(Phi).second) 10980 return false; 10981 LPhi = Phi; 10982 } 10983 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10984 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10985 // If we detect a loop of Phi nodes being processed by this method, for 10986 // example: 10987 // 10988 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10989 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10990 // 10991 // we don't want to deal with a case that complex, so return conservative 10992 // answer false. 10993 if (!PendingMerges.insert(Phi).second) 10994 return false; 10995 RPhi = Phi; 10996 } 10997 10998 // If none of LHS, RHS is a Phi, nothing to do here. 10999 if (!LPhi && !RPhi) 11000 return false; 11001 11002 // If there is a SCEVUnknown Phi we are interested in, make it left. 11003 if (!LPhi) { 11004 std::swap(LHS, RHS); 11005 std::swap(FoundLHS, FoundRHS); 11006 std::swap(LPhi, RPhi); 11007 Pred = ICmpInst::getSwappedPredicate(Pred); 11008 } 11009 11010 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11011 const BasicBlock *LBB = LPhi->getParent(); 11012 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11013 11014 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11015 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11016 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11017 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11018 }; 11019 11020 if (RPhi && RPhi->getParent() == LBB) { 11021 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11022 // If we compare two Phis from the same block, and for each entry block 11023 // the predicate is true for incoming values from this block, then the 11024 // predicate is also true for the Phis. 11025 for (const BasicBlock *IncBB : predecessors(LBB)) { 11026 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11027 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11028 if (!ProvedEasily(L, R)) 11029 return false; 11030 } 11031 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11032 // Case two: RHS is also a Phi from the same basic block, and it is an 11033 // AddRec. It means that there is a loop which has both AddRec and Unknown 11034 // PHIs, for it we can compare incoming values of AddRec from above the loop 11035 // and latch with their respective incoming values of LPhi. 11036 // TODO: Generalize to handle loops with many inputs in a header. 11037 if (LPhi->getNumIncomingValues() != 2) return false; 11038 11039 auto *RLoop = RAR->getLoop(); 11040 auto *Predecessor = RLoop->getLoopPredecessor(); 11041 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11042 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11043 if (!ProvedEasily(L1, RAR->getStart())) 11044 return false; 11045 auto *Latch = RLoop->getLoopLatch(); 11046 assert(Latch && "Loop with AddRec with no latch?"); 11047 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11048 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11049 return false; 11050 } else { 11051 // In all other cases go over inputs of LHS and compare each of them to RHS, 11052 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11053 // At this point RHS is either a non-Phi, or it is a Phi from some block 11054 // different from LBB. 11055 for (const BasicBlock *IncBB : predecessors(LBB)) { 11056 // Check that RHS is available in this block. 11057 if (!dominates(RHS, IncBB)) 11058 return false; 11059 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11060 // Make sure L does not refer to a value from a potentially previous 11061 // iteration of a loop. 11062 if (!properlyDominates(L, IncBB)) 11063 return false; 11064 if (!ProvedEasily(L, RHS)) 11065 return false; 11066 } 11067 } 11068 return true; 11069 } 11070 11071 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11072 const SCEV *LHS, const SCEV *RHS, 11073 const SCEV *FoundLHS, 11074 const SCEV *FoundRHS, 11075 const Instruction *Context) { 11076 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11077 return true; 11078 11079 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11080 return true; 11081 11082 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11083 Context)) 11084 return true; 11085 11086 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11087 FoundLHS, FoundRHS); 11088 } 11089 11090 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11091 template <typename MinMaxExprType> 11092 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11093 const SCEV *Candidate) { 11094 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11095 if (!MinMaxExpr) 11096 return false; 11097 11098 return is_contained(MinMaxExpr->operands(), Candidate); 11099 } 11100 11101 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11102 ICmpInst::Predicate Pred, 11103 const SCEV *LHS, const SCEV *RHS) { 11104 // If both sides are affine addrecs for the same loop, with equal 11105 // steps, and we know the recurrences don't wrap, then we only 11106 // need to check the predicate on the starting values. 11107 11108 if (!ICmpInst::isRelational(Pred)) 11109 return false; 11110 11111 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11112 if (!LAR) 11113 return false; 11114 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11115 if (!RAR) 11116 return false; 11117 if (LAR->getLoop() != RAR->getLoop()) 11118 return false; 11119 if (!LAR->isAffine() || !RAR->isAffine()) 11120 return false; 11121 11122 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11123 return false; 11124 11125 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11126 SCEV::FlagNSW : SCEV::FlagNUW; 11127 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11128 return false; 11129 11130 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11131 } 11132 11133 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11134 /// expression? 11135 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11136 ICmpInst::Predicate Pred, 11137 const SCEV *LHS, const SCEV *RHS) { 11138 switch (Pred) { 11139 default: 11140 return false; 11141 11142 case ICmpInst::ICMP_SGE: 11143 std::swap(LHS, RHS); 11144 LLVM_FALLTHROUGH; 11145 case ICmpInst::ICMP_SLE: 11146 return 11147 // min(A, ...) <= A 11148 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11149 // A <= max(A, ...) 11150 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11151 11152 case ICmpInst::ICMP_UGE: 11153 std::swap(LHS, RHS); 11154 LLVM_FALLTHROUGH; 11155 case ICmpInst::ICMP_ULE: 11156 return 11157 // min(A, ...) <= A 11158 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11159 // A <= max(A, ...) 11160 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11161 } 11162 11163 llvm_unreachable("covered switch fell through?!"); 11164 } 11165 11166 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11167 const SCEV *LHS, const SCEV *RHS, 11168 const SCEV *FoundLHS, 11169 const SCEV *FoundRHS, 11170 unsigned Depth) { 11171 assert(getTypeSizeInBits(LHS->getType()) == 11172 getTypeSizeInBits(RHS->getType()) && 11173 "LHS and RHS have different sizes?"); 11174 assert(getTypeSizeInBits(FoundLHS->getType()) == 11175 getTypeSizeInBits(FoundRHS->getType()) && 11176 "FoundLHS and FoundRHS have different sizes?"); 11177 // We want to avoid hurting the compile time with analysis of too big trees. 11178 if (Depth > MaxSCEVOperationsImplicationDepth) 11179 return false; 11180 11181 // We only want to work with GT comparison so far. 11182 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11183 Pred = CmpInst::getSwappedPredicate(Pred); 11184 std::swap(LHS, RHS); 11185 std::swap(FoundLHS, FoundRHS); 11186 } 11187 11188 // For unsigned, try to reduce it to corresponding signed comparison. 11189 if (Pred == ICmpInst::ICMP_UGT) 11190 // We can replace unsigned predicate with its signed counterpart if all 11191 // involved values are non-negative. 11192 // TODO: We could have better support for unsigned. 11193 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11194 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11195 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11196 // use this fact to prove that LHS and RHS are non-negative. 11197 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11198 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11199 FoundRHS) && 11200 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11201 FoundRHS)) 11202 Pred = ICmpInst::ICMP_SGT; 11203 } 11204 11205 if (Pred != ICmpInst::ICMP_SGT) 11206 return false; 11207 11208 auto GetOpFromSExt = [&](const SCEV *S) { 11209 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11210 return Ext->getOperand(); 11211 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11212 // the constant in some cases. 11213 return S; 11214 }; 11215 11216 // Acquire values from extensions. 11217 auto *OrigLHS = LHS; 11218 auto *OrigFoundLHS = FoundLHS; 11219 LHS = GetOpFromSExt(LHS); 11220 FoundLHS = GetOpFromSExt(FoundLHS); 11221 11222 // Is the SGT predicate can be proved trivially or using the found context. 11223 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11224 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11225 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11226 FoundRHS, Depth + 1); 11227 }; 11228 11229 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11230 // We want to avoid creation of any new non-constant SCEV. Since we are 11231 // going to compare the operands to RHS, we should be certain that we don't 11232 // need any size extensions for this. So let's decline all cases when the 11233 // sizes of types of LHS and RHS do not match. 11234 // TODO: Maybe try to get RHS from sext to catch more cases? 11235 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11236 return false; 11237 11238 // Should not overflow. 11239 if (!LHSAddExpr->hasNoSignedWrap()) 11240 return false; 11241 11242 auto *LL = LHSAddExpr->getOperand(0); 11243 auto *LR = LHSAddExpr->getOperand(1); 11244 auto *MinusOne = getMinusOne(RHS->getType()); 11245 11246 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11247 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11248 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11249 }; 11250 // Try to prove the following rule: 11251 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11252 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11253 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11254 return true; 11255 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11256 Value *LL, *LR; 11257 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11258 11259 using namespace llvm::PatternMatch; 11260 11261 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11262 // Rules for division. 11263 // We are going to perform some comparisons with Denominator and its 11264 // derivative expressions. In general case, creating a SCEV for it may 11265 // lead to a complex analysis of the entire graph, and in particular it 11266 // can request trip count recalculation for the same loop. This would 11267 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11268 // this, we only want to create SCEVs that are constants in this section. 11269 // So we bail if Denominator is not a constant. 11270 if (!isa<ConstantInt>(LR)) 11271 return false; 11272 11273 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11274 11275 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11276 // then a SCEV for the numerator already exists and matches with FoundLHS. 11277 auto *Numerator = getExistingSCEV(LL); 11278 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11279 return false; 11280 11281 // Make sure that the numerator matches with FoundLHS and the denominator 11282 // is positive. 11283 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11284 return false; 11285 11286 auto *DTy = Denominator->getType(); 11287 auto *FRHSTy = FoundRHS->getType(); 11288 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11289 // One of types is a pointer and another one is not. We cannot extend 11290 // them properly to a wider type, so let us just reject this case. 11291 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11292 // to avoid this check. 11293 return false; 11294 11295 // Given that: 11296 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11297 auto *WTy = getWiderType(DTy, FRHSTy); 11298 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11299 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11300 11301 // Try to prove the following rule: 11302 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11303 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11304 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11305 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11306 if (isKnownNonPositive(RHS) && 11307 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11308 return true; 11309 11310 // Try to prove the following rule: 11311 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11312 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11313 // If we divide it by Denominator > 2, then: 11314 // 1. If FoundLHS is negative, then the result is 0. 11315 // 2. If FoundLHS is non-negative, then the result is non-negative. 11316 // Anyways, the result is non-negative. 11317 auto *MinusOne = getMinusOne(WTy); 11318 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11319 if (isKnownNegative(RHS) && 11320 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11321 return true; 11322 } 11323 } 11324 11325 // If our expression contained SCEVUnknown Phis, and we split it down and now 11326 // need to prove something for them, try to prove the predicate for every 11327 // possible incoming values of those Phis. 11328 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11329 return true; 11330 11331 return false; 11332 } 11333 11334 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11335 const SCEV *LHS, const SCEV *RHS) { 11336 // zext x u<= sext x, sext x s<= zext x 11337 switch (Pred) { 11338 case ICmpInst::ICMP_SGE: 11339 std::swap(LHS, RHS); 11340 LLVM_FALLTHROUGH; 11341 case ICmpInst::ICMP_SLE: { 11342 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11343 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11344 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11345 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11346 return true; 11347 break; 11348 } 11349 case ICmpInst::ICMP_UGE: 11350 std::swap(LHS, RHS); 11351 LLVM_FALLTHROUGH; 11352 case ICmpInst::ICMP_ULE: { 11353 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11354 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11355 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11356 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11357 return true; 11358 break; 11359 } 11360 default: 11361 break; 11362 }; 11363 return false; 11364 } 11365 11366 bool 11367 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11368 const SCEV *LHS, const SCEV *RHS) { 11369 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11370 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11371 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11372 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11373 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11374 } 11375 11376 bool 11377 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11378 const SCEV *LHS, const SCEV *RHS, 11379 const SCEV *FoundLHS, 11380 const SCEV *FoundRHS) { 11381 switch (Pred) { 11382 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11383 case ICmpInst::ICMP_EQ: 11384 case ICmpInst::ICMP_NE: 11385 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11386 return true; 11387 break; 11388 case ICmpInst::ICMP_SLT: 11389 case ICmpInst::ICMP_SLE: 11390 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11391 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11392 return true; 11393 break; 11394 case ICmpInst::ICMP_SGT: 11395 case ICmpInst::ICMP_SGE: 11396 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11397 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11398 return true; 11399 break; 11400 case ICmpInst::ICMP_ULT: 11401 case ICmpInst::ICMP_ULE: 11402 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11403 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11404 return true; 11405 break; 11406 case ICmpInst::ICMP_UGT: 11407 case ICmpInst::ICMP_UGE: 11408 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11409 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11410 return true; 11411 break; 11412 } 11413 11414 // Maybe it can be proved via operations? 11415 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11416 return true; 11417 11418 return false; 11419 } 11420 11421 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11422 const SCEV *LHS, 11423 const SCEV *RHS, 11424 const SCEV *FoundLHS, 11425 const SCEV *FoundRHS) { 11426 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11427 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11428 // reduce the compile time impact of this optimization. 11429 return false; 11430 11431 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11432 if (!Addend) 11433 return false; 11434 11435 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11436 11437 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11438 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11439 ConstantRange FoundLHSRange = 11440 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11441 11442 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11443 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11444 11445 // We can also compute the range of values for `LHS` that satisfy the 11446 // consequent, "`LHS` `Pred` `RHS`": 11447 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11448 // The antecedent implies the consequent if every value of `LHS` that 11449 // satisfies the antecedent also satisfies the consequent. 11450 return LHSRange.icmp(Pred, ConstRHS); 11451 } 11452 11453 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11454 bool IsSigned) { 11455 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11456 11457 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11458 const SCEV *One = getOne(Stride->getType()); 11459 11460 if (IsSigned) { 11461 APInt MaxRHS = getSignedRangeMax(RHS); 11462 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11463 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11464 11465 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11466 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11467 } 11468 11469 APInt MaxRHS = getUnsignedRangeMax(RHS); 11470 APInt MaxValue = APInt::getMaxValue(BitWidth); 11471 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11472 11473 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11474 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11475 } 11476 11477 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11478 bool IsSigned) { 11479 11480 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11481 const SCEV *One = getOne(Stride->getType()); 11482 11483 if (IsSigned) { 11484 APInt MinRHS = getSignedRangeMin(RHS); 11485 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11486 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11487 11488 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11489 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11490 } 11491 11492 APInt MinRHS = getUnsignedRangeMin(RHS); 11493 APInt MinValue = APInt::getMinValue(BitWidth); 11494 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11495 11496 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11497 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11498 } 11499 11500 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, 11501 const SCEV *Step) { 11502 const SCEV *One = getOne(Step->getType()); 11503 Delta = getAddExpr(Delta, getMinusSCEV(Step, One)); 11504 return getUDivExpr(Delta, Step); 11505 } 11506 11507 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11508 const SCEV *Stride, 11509 const SCEV *End, 11510 unsigned BitWidth, 11511 bool IsSigned) { 11512 11513 assert(!isKnownNonPositive(Stride) && 11514 "Stride is expected strictly positive!"); 11515 // Calculate the maximum backedge count based on the range of values 11516 // permitted by Start, End, and Stride. 11517 const SCEV *MaxBECount; 11518 APInt MinStart = 11519 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11520 11521 APInt StrideForMaxBECount = 11522 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11523 11524 // We already know that the stride is positive, so we paper over conservatism 11525 // in our range computation by forcing StrideForMaxBECount to be at least one. 11526 // In theory this is unnecessary, but we expect MaxBECount to be a 11527 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 11528 // is nothing to constant fold it to). 11529 APInt One(BitWidth, 1, IsSigned); 11530 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 11531 11532 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11533 : APInt::getMaxValue(BitWidth); 11534 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11535 11536 // Although End can be a MAX expression we estimate MaxEnd considering only 11537 // the case End = RHS of the loop termination condition. This is safe because 11538 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11539 // taken count. 11540 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11541 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11542 11543 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 11544 getConstant(StrideForMaxBECount) /* Step */); 11545 11546 return MaxBECount; 11547 } 11548 11549 ScalarEvolution::ExitLimit 11550 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11551 const Loop *L, bool IsSigned, 11552 bool ControlsExit, bool AllowPredicates) { 11553 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11554 11555 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11556 bool PredicatedIV = false; 11557 11558 if (!IV && AllowPredicates) { 11559 // Try to make this an AddRec using runtime tests, in the first X 11560 // iterations of this loop, where X is the SCEV expression found by the 11561 // algorithm below. 11562 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11563 PredicatedIV = true; 11564 } 11565 11566 // Avoid weird loops 11567 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11568 return getCouldNotCompute(); 11569 11570 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11571 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11572 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11573 11574 const SCEV *Stride = IV->getStepRecurrence(*this); 11575 11576 bool PositiveStride = isKnownPositive(Stride); 11577 11578 // Avoid negative or zero stride values. 11579 if (!PositiveStride) { 11580 // We can compute the correct backedge taken count for loops with unknown 11581 // strides if we can prove that the loop is not an infinite loop with side 11582 // effects. Here's the loop structure we are trying to handle - 11583 // 11584 // i = start 11585 // do { 11586 // A[i] = i; 11587 // i += s; 11588 // } while (i < end); 11589 // 11590 // The backedge taken count for such loops is evaluated as - 11591 // (max(end, start + stride) - start - 1) /u stride 11592 // 11593 // The additional preconditions that we need to check to prove correctness 11594 // of the above formula is as follows - 11595 // 11596 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11597 // NoWrap flag). 11598 // b) loop is single exit with no side effects. 11599 // 11600 // 11601 // Precondition a) implies that if the stride is negative, this is a single 11602 // trip loop. The backedge taken count formula reduces to zero in this case. 11603 // 11604 // Precondition b) implies that the unknown stride cannot be zero otherwise 11605 // we have UB. 11606 // 11607 // The positive stride case is the same as isKnownPositive(Stride) returning 11608 // true (original behavior of the function). 11609 // 11610 // We want to make sure that the stride is truly unknown as there are edge 11611 // cases where ScalarEvolution propagates no wrap flags to the 11612 // post-increment/decrement IV even though the increment/decrement operation 11613 // itself is wrapping. The computed backedge taken count may be wrong in 11614 // such cases. This is prevented by checking that the stride is not known to 11615 // be either positive or non-positive. For example, no wrap flags are 11616 // propagated to the post-increment IV of this loop with a trip count of 2 - 11617 // 11618 // unsigned char i; 11619 // for(i=127; i<128; i+=129) 11620 // A[i] = i; 11621 // 11622 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11623 !loopIsFiniteByAssumption(L)) 11624 return getCouldNotCompute(); 11625 } else if (!Stride->isOne() && !NoWrap) { 11626 auto isUBOnWrap = [&]() { 11627 // Can we prove this loop *must* be UB if overflow of IV occurs? 11628 // Reasoning goes as follows: 11629 // * Suppose the IV did self wrap. 11630 // * If Stride evenly divides the iteration space, then once wrap 11631 // occurs, the loop must revisit the same values. 11632 // * We know that RHS is invariant, and that none of those values 11633 // caused this exit to be taken previously. Thus, this exit is 11634 // dynamically dead. 11635 // * If this is the sole exit, then a dead exit implies the loop 11636 // must be infinite if there are no abnormal exits. 11637 // * If the loop were infinite, then it must either not be mustprogress 11638 // or have side effects. Otherwise, it must be UB. 11639 // * It can't (by assumption), be UB so we have contradicted our 11640 // premise and can conclude the IV did not in fact self-wrap. 11641 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 11642 // follows trivially from the fact that every (un)signed-wrapped, but 11643 // not self-wrapped value must be LT than the last value before 11644 // (un)signed wrap. Since we know that last value didn't exit, nor 11645 // will any smaller one. 11646 11647 if (!isLoopInvariant(RHS, L)) 11648 return false; 11649 11650 auto *StrideC = dyn_cast<SCEVConstant>(Stride); 11651 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11652 return false; 11653 11654 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11655 return false; 11656 11657 return loopIsFiniteByAssumption(L); 11658 }; 11659 11660 // Avoid proven overflow cases: this will ensure that the backedge taken 11661 // count will not generate any unsigned overflow. Relaxed no-overflow 11662 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11663 // undefined behaviors like the case of C language. 11664 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 11665 return getCouldNotCompute(); 11666 } 11667 11668 const SCEV *Start = IV->getStart(); 11669 11670 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 11671 // Use integer-typed versions for actual computation. 11672 const SCEV *OrigStart = Start; 11673 const SCEV *OrigRHS = RHS; 11674 if (Start->getType()->isPointerTy()) { 11675 Start = getLosslessPtrToIntExpr(Start); 11676 if (isa<SCEVCouldNotCompute>(Start)) 11677 return Start; 11678 } 11679 if (RHS->getType()->isPointerTy()) { 11680 RHS = getLosslessPtrToIntExpr(RHS); 11681 if (isa<SCEVCouldNotCompute>(RHS)) 11682 return RHS; 11683 } 11684 11685 const SCEV *End = RHS; 11686 // When the RHS is not invariant, we do not know the end bound of the loop and 11687 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11688 // calculate the MaxBECount, given the start, stride and max value for the end 11689 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11690 // checked above). 11691 if (!isLoopInvariant(RHS, L)) { 11692 const SCEV *MaxBECount = computeMaxBECountForLT( 11693 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11694 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11695 false /*MaxOrZero*/, Predicates); 11696 } 11697 // If the backedge is taken at least once, then it will be taken 11698 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 11699 // is the LHS value of the less-than comparison the first time it is evaluated 11700 // and End is the RHS. 11701 const SCEV *BECountIfBackedgeTaken = 11702 computeBECount(getMinusSCEV(End, Start), Stride); 11703 // If the loop entry is guarded by the result of the backedge test of the 11704 // first loop iteration, then we know the backedge will be taken at least 11705 // once and so the backedge taken count is as above. If not then we use the 11706 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 11707 // as if the backedge is taken at least once max(End,Start) is End and so the 11708 // result is as above, and if not max(End,Start) is Start so we get a backedge 11709 // count of zero. 11710 const SCEV *BECount; 11711 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(OrigStart, Stride), OrigRHS)) 11712 BECount = BECountIfBackedgeTaken; 11713 else { 11714 // If we know that RHS >= Start in the context of loop, then we know that 11715 // max(RHS, Start) = RHS at this point. 11716 if (isLoopEntryGuardedByCond( 11717 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, OrigRHS, OrigStart)) 11718 End = RHS; 11719 else 11720 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11721 BECount = computeBECount(getMinusSCEV(End, Start), Stride); 11722 } 11723 11724 const SCEV *MaxBECount; 11725 bool MaxOrZero = false; 11726 if (isa<SCEVConstant>(BECount)) 11727 MaxBECount = BECount; 11728 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11729 // If we know exactly how many times the backedge will be taken if it's 11730 // taken at least once, then the backedge count will either be that or 11731 // zero. 11732 MaxBECount = BECountIfBackedgeTaken; 11733 MaxOrZero = true; 11734 } else { 11735 MaxBECount = computeMaxBECountForLT( 11736 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11737 } 11738 11739 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11740 !isa<SCEVCouldNotCompute>(BECount)) 11741 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11742 11743 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11744 } 11745 11746 ScalarEvolution::ExitLimit 11747 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11748 const Loop *L, bool IsSigned, 11749 bool ControlsExit, bool AllowPredicates) { 11750 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11751 // We handle only IV > Invariant 11752 if (!isLoopInvariant(RHS, L)) 11753 return getCouldNotCompute(); 11754 11755 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11756 if (!IV && AllowPredicates) 11757 // Try to make this an AddRec using runtime tests, in the first X 11758 // iterations of this loop, where X is the SCEV expression found by the 11759 // algorithm below. 11760 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11761 11762 // Avoid weird loops 11763 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11764 return getCouldNotCompute(); 11765 11766 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11767 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11768 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11769 11770 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11771 11772 // Avoid negative or zero stride values 11773 if (!isKnownPositive(Stride)) 11774 return getCouldNotCompute(); 11775 11776 // Avoid proven overflow cases: this will ensure that the backedge taken count 11777 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11778 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11779 // behaviors like the case of C language. 11780 if (!Stride->isOne() && !NoWrap) 11781 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 11782 return getCouldNotCompute(); 11783 11784 const SCEV *Start = IV->getStart(); 11785 const SCEV *End = RHS; 11786 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 11787 // If we know that Start >= RHS in the context of loop, then we know that 11788 // min(RHS, Start) = RHS at this point. 11789 if (isLoopEntryGuardedByCond( 11790 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 11791 End = RHS; 11792 else 11793 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 11794 } 11795 11796 if (Start->getType()->isPointerTy()) { 11797 Start = getLosslessPtrToIntExpr(Start); 11798 if (isa<SCEVCouldNotCompute>(Start)) 11799 return Start; 11800 } 11801 if (End->getType()->isPointerTy()) { 11802 End = getLosslessPtrToIntExpr(End); 11803 if (isa<SCEVCouldNotCompute>(End)) 11804 return End; 11805 } 11806 11807 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride); 11808 11809 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 11810 : getUnsignedRangeMax(Start); 11811 11812 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 11813 : getUnsignedRangeMin(Stride); 11814 11815 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 11816 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 11817 : APInt::getMinValue(BitWidth) + (MinStride - 1); 11818 11819 // Although End can be a MIN expression we estimate MinEnd considering only 11820 // the case End = RHS. This is safe because in the other case (Start - End) 11821 // is zero, leading to a zero maximum backedge taken count. 11822 APInt MinEnd = 11823 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 11824 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 11825 11826 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 11827 ? BECount 11828 : computeBECount(getConstant(MaxStart - MinEnd), 11829 getConstant(MinStride)); 11830 11831 if (isa<SCEVCouldNotCompute>(MaxBECount)) 11832 MaxBECount = BECount; 11833 11834 return ExitLimit(BECount, MaxBECount, false, Predicates); 11835 } 11836 11837 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 11838 ScalarEvolution &SE) const { 11839 if (Range.isFullSet()) // Infinite loop. 11840 return SE.getCouldNotCompute(); 11841 11842 // If the start is a non-zero constant, shift the range to simplify things. 11843 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 11844 if (!SC->getValue()->isZero()) { 11845 SmallVector<const SCEV *, 4> Operands(operands()); 11846 Operands[0] = SE.getZero(SC->getType()); 11847 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 11848 getNoWrapFlags(FlagNW)); 11849 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 11850 return ShiftedAddRec->getNumIterationsInRange( 11851 Range.subtract(SC->getAPInt()), SE); 11852 // This is strange and shouldn't happen. 11853 return SE.getCouldNotCompute(); 11854 } 11855 11856 // The only time we can solve this is when we have all constant indices. 11857 // Otherwise, we cannot determine the overflow conditions. 11858 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 11859 return SE.getCouldNotCompute(); 11860 11861 // Okay at this point we know that all elements of the chrec are constants and 11862 // that the start element is zero. 11863 11864 // First check to see if the range contains zero. If not, the first 11865 // iteration exits. 11866 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 11867 if (!Range.contains(APInt(BitWidth, 0))) 11868 return SE.getZero(getType()); 11869 11870 if (isAffine()) { 11871 // If this is an affine expression then we have this situation: 11872 // Solve {0,+,A} in Range === Ax in Range 11873 11874 // We know that zero is in the range. If A is positive then we know that 11875 // the upper value of the range must be the first possible exit value. 11876 // If A is negative then the lower of the range is the last possible loop 11877 // value. Also note that we already checked for a full range. 11878 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 11879 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 11880 11881 // The exit value should be (End+A)/A. 11882 APInt ExitVal = (End + A).udiv(A); 11883 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 11884 11885 // Evaluate at the exit value. If we really did fall out of the valid 11886 // range, then we computed our trip count, otherwise wrap around or other 11887 // things must have happened. 11888 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 11889 if (Range.contains(Val->getValue())) 11890 return SE.getCouldNotCompute(); // Something strange happened 11891 11892 // Ensure that the previous value is in the range. This is a sanity check. 11893 assert(Range.contains( 11894 EvaluateConstantChrecAtConstant(this, 11895 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 11896 "Linear scev computation is off in a bad way!"); 11897 return SE.getConstant(ExitValue); 11898 } 11899 11900 if (isQuadratic()) { 11901 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 11902 return SE.getConstant(S.getValue()); 11903 } 11904 11905 return SE.getCouldNotCompute(); 11906 } 11907 11908 const SCEVAddRecExpr * 11909 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 11910 assert(getNumOperands() > 1 && "AddRec with zero step?"); 11911 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 11912 // but in this case we cannot guarantee that the value returned will be an 11913 // AddRec because SCEV does not have a fixed point where it stops 11914 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 11915 // may happen if we reach arithmetic depth limit while simplifying. So we 11916 // construct the returned value explicitly. 11917 SmallVector<const SCEV *, 3> Ops; 11918 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 11919 // (this + Step) is {A+B,+,B+C,+...,+,N}. 11920 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 11921 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 11922 // We know that the last operand is not a constant zero (otherwise it would 11923 // have been popped out earlier). This guarantees us that if the result has 11924 // the same last operand, then it will also not be popped out, meaning that 11925 // the returned value will be an AddRec. 11926 const SCEV *Last = getOperand(getNumOperands() - 1); 11927 assert(!Last->isZero() && "Recurrency with zero step?"); 11928 Ops.push_back(Last); 11929 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 11930 SCEV::FlagAnyWrap)); 11931 } 11932 11933 // Return true when S contains at least an undef value. 11934 static inline bool containsUndefs(const SCEV *S) { 11935 return SCEVExprContains(S, [](const SCEV *S) { 11936 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 11937 return isa<UndefValue>(SU->getValue()); 11938 return false; 11939 }); 11940 } 11941 11942 namespace { 11943 11944 // Collect all steps of SCEV expressions. 11945 struct SCEVCollectStrides { 11946 ScalarEvolution &SE; 11947 SmallVectorImpl<const SCEV *> &Strides; 11948 11949 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 11950 : SE(SE), Strides(S) {} 11951 11952 bool follow(const SCEV *S) { 11953 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 11954 Strides.push_back(AR->getStepRecurrence(SE)); 11955 return true; 11956 } 11957 11958 bool isDone() const { return false; } 11959 }; 11960 11961 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11962 struct SCEVCollectTerms { 11963 SmallVectorImpl<const SCEV *> &Terms; 11964 11965 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11966 11967 bool follow(const SCEV *S) { 11968 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11969 isa<SCEVSignExtendExpr>(S)) { 11970 if (!containsUndefs(S)) 11971 Terms.push_back(S); 11972 11973 // Stop recursion: once we collected a term, do not walk its operands. 11974 return false; 11975 } 11976 11977 // Keep looking. 11978 return true; 11979 } 11980 11981 bool isDone() const { return false; } 11982 }; 11983 11984 // Check if a SCEV contains an AddRecExpr. 11985 struct SCEVHasAddRec { 11986 bool &ContainsAddRec; 11987 11988 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11989 ContainsAddRec = false; 11990 } 11991 11992 bool follow(const SCEV *S) { 11993 if (isa<SCEVAddRecExpr>(S)) { 11994 ContainsAddRec = true; 11995 11996 // Stop recursion: once we collected a term, do not walk its operands. 11997 return false; 11998 } 11999 12000 // Keep looking. 12001 return true; 12002 } 12003 12004 bool isDone() const { return false; } 12005 }; 12006 12007 // Find factors that are multiplied with an expression that (possibly as a 12008 // subexpression) contains an AddRecExpr. In the expression: 12009 // 12010 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 12011 // 12012 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 12013 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 12014 // parameters as they form a product with an induction variable. 12015 // 12016 // This collector expects all array size parameters to be in the same MulExpr. 12017 // It might be necessary to later add support for collecting parameters that are 12018 // spread over different nested MulExpr. 12019 struct SCEVCollectAddRecMultiplies { 12020 SmallVectorImpl<const SCEV *> &Terms; 12021 ScalarEvolution &SE; 12022 12023 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 12024 : Terms(T), SE(SE) {} 12025 12026 bool follow(const SCEV *S) { 12027 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 12028 bool HasAddRec = false; 12029 SmallVector<const SCEV *, 0> Operands; 12030 for (auto Op : Mul->operands()) { 12031 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 12032 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 12033 Operands.push_back(Op); 12034 } else if (Unknown) { 12035 HasAddRec = true; 12036 } else { 12037 bool ContainsAddRec = false; 12038 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 12039 visitAll(Op, ContiansAddRec); 12040 HasAddRec |= ContainsAddRec; 12041 } 12042 } 12043 if (Operands.size() == 0) 12044 return true; 12045 12046 if (!HasAddRec) 12047 return false; 12048 12049 Terms.push_back(SE.getMulExpr(Operands)); 12050 // Stop recursion: once we collected a term, do not walk its operands. 12051 return false; 12052 } 12053 12054 // Keep looking. 12055 return true; 12056 } 12057 12058 bool isDone() const { return false; } 12059 }; 12060 12061 } // end anonymous namespace 12062 12063 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 12064 /// two places: 12065 /// 1) The strides of AddRec expressions. 12066 /// 2) Unknowns that are multiplied with AddRec expressions. 12067 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 12068 SmallVectorImpl<const SCEV *> &Terms) { 12069 SmallVector<const SCEV *, 4> Strides; 12070 SCEVCollectStrides StrideCollector(*this, Strides); 12071 visitAll(Expr, StrideCollector); 12072 12073 LLVM_DEBUG({ 12074 dbgs() << "Strides:\n"; 12075 for (const SCEV *S : Strides) 12076 dbgs() << *S << "\n"; 12077 }); 12078 12079 for (const SCEV *S : Strides) { 12080 SCEVCollectTerms TermCollector(Terms); 12081 visitAll(S, TermCollector); 12082 } 12083 12084 LLVM_DEBUG({ 12085 dbgs() << "Terms:\n"; 12086 for (const SCEV *T : Terms) 12087 dbgs() << *T << "\n"; 12088 }); 12089 12090 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 12091 visitAll(Expr, MulCollector); 12092 } 12093 12094 static bool findArrayDimensionsRec(ScalarEvolution &SE, 12095 SmallVectorImpl<const SCEV *> &Terms, 12096 SmallVectorImpl<const SCEV *> &Sizes) { 12097 int Last = Terms.size() - 1; 12098 const SCEV *Step = Terms[Last]; 12099 12100 // End of recursion. 12101 if (Last == 0) { 12102 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 12103 SmallVector<const SCEV *, 2> Qs; 12104 for (const SCEV *Op : M->operands()) 12105 if (!isa<SCEVConstant>(Op)) 12106 Qs.push_back(Op); 12107 12108 Step = SE.getMulExpr(Qs); 12109 } 12110 12111 Sizes.push_back(Step); 12112 return true; 12113 } 12114 12115 for (const SCEV *&Term : Terms) { 12116 // Normalize the terms before the next call to findArrayDimensionsRec. 12117 const SCEV *Q, *R; 12118 SCEVDivision::divide(SE, Term, Step, &Q, &R); 12119 12120 // Bail out when GCD does not evenly divide one of the terms. 12121 if (!R->isZero()) 12122 return false; 12123 12124 Term = Q; 12125 } 12126 12127 // Remove all SCEVConstants. 12128 erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }); 12129 12130 if (Terms.size() > 0) 12131 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 12132 return false; 12133 12134 Sizes.push_back(Step); 12135 return true; 12136 } 12137 12138 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 12139 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 12140 for (const SCEV *T : Terms) 12141 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 12142 return true; 12143 12144 return false; 12145 } 12146 12147 // Return the number of product terms in S. 12148 static inline int numberOfTerms(const SCEV *S) { 12149 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 12150 return Expr->getNumOperands(); 12151 return 1; 12152 } 12153 12154 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 12155 if (isa<SCEVConstant>(T)) 12156 return nullptr; 12157 12158 if (isa<SCEVUnknown>(T)) 12159 return T; 12160 12161 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 12162 SmallVector<const SCEV *, 2> Factors; 12163 for (const SCEV *Op : M->operands()) 12164 if (!isa<SCEVConstant>(Op)) 12165 Factors.push_back(Op); 12166 12167 return SE.getMulExpr(Factors); 12168 } 12169 12170 return T; 12171 } 12172 12173 /// Return the size of an element read or written by Inst. 12174 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12175 Type *Ty; 12176 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12177 Ty = Store->getValueOperand()->getType(); 12178 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12179 Ty = Load->getType(); 12180 else 12181 return nullptr; 12182 12183 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12184 return getSizeOfExpr(ETy, Ty); 12185 } 12186 12187 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 12188 SmallVectorImpl<const SCEV *> &Sizes, 12189 const SCEV *ElementSize) { 12190 if (Terms.size() < 1 || !ElementSize) 12191 return; 12192 12193 // Early return when Terms do not contain parameters: we do not delinearize 12194 // non parametric SCEVs. 12195 if (!containsParameters(Terms)) 12196 return; 12197 12198 LLVM_DEBUG({ 12199 dbgs() << "Terms:\n"; 12200 for (const SCEV *T : Terms) 12201 dbgs() << *T << "\n"; 12202 }); 12203 12204 // Remove duplicates. 12205 array_pod_sort(Terms.begin(), Terms.end()); 12206 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 12207 12208 // Put larger terms first. 12209 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 12210 return numberOfTerms(LHS) > numberOfTerms(RHS); 12211 }); 12212 12213 // Try to divide all terms by the element size. If term is not divisible by 12214 // element size, proceed with the original term. 12215 for (const SCEV *&Term : Terms) { 12216 const SCEV *Q, *R; 12217 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 12218 if (!Q->isZero()) 12219 Term = Q; 12220 } 12221 12222 SmallVector<const SCEV *, 4> NewTerms; 12223 12224 // Remove constant factors. 12225 for (const SCEV *T : Terms) 12226 if (const SCEV *NewT = removeConstantFactors(*this, T)) 12227 NewTerms.push_back(NewT); 12228 12229 LLVM_DEBUG({ 12230 dbgs() << "Terms after sorting:\n"; 12231 for (const SCEV *T : NewTerms) 12232 dbgs() << *T << "\n"; 12233 }); 12234 12235 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 12236 Sizes.clear(); 12237 return; 12238 } 12239 12240 // The last element to be pushed into Sizes is the size of an element. 12241 Sizes.push_back(ElementSize); 12242 12243 LLVM_DEBUG({ 12244 dbgs() << "Sizes:\n"; 12245 for (const SCEV *S : Sizes) 12246 dbgs() << *S << "\n"; 12247 }); 12248 } 12249 12250 void ScalarEvolution::computeAccessFunctions( 12251 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 12252 SmallVectorImpl<const SCEV *> &Sizes) { 12253 // Early exit in case this SCEV is not an affine multivariate function. 12254 if (Sizes.empty()) 12255 return; 12256 12257 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 12258 if (!AR->isAffine()) 12259 return; 12260 12261 const SCEV *Res = Expr; 12262 int Last = Sizes.size() - 1; 12263 for (int i = Last; i >= 0; i--) { 12264 const SCEV *Q, *R; 12265 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 12266 12267 LLVM_DEBUG({ 12268 dbgs() << "Res: " << *Res << "\n"; 12269 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 12270 dbgs() << "Res divided by Sizes[i]:\n"; 12271 dbgs() << "Quotient: " << *Q << "\n"; 12272 dbgs() << "Remainder: " << *R << "\n"; 12273 }); 12274 12275 Res = Q; 12276 12277 // Do not record the last subscript corresponding to the size of elements in 12278 // the array. 12279 if (i == Last) { 12280 12281 // Bail out if the remainder is too complex. 12282 if (isa<SCEVAddRecExpr>(R)) { 12283 Subscripts.clear(); 12284 Sizes.clear(); 12285 return; 12286 } 12287 12288 continue; 12289 } 12290 12291 // Record the access function for the current subscript. 12292 Subscripts.push_back(R); 12293 } 12294 12295 // Also push in last position the remainder of the last division: it will be 12296 // the access function of the innermost dimension. 12297 Subscripts.push_back(Res); 12298 12299 std::reverse(Subscripts.begin(), Subscripts.end()); 12300 12301 LLVM_DEBUG({ 12302 dbgs() << "Subscripts:\n"; 12303 for (const SCEV *S : Subscripts) 12304 dbgs() << *S << "\n"; 12305 }); 12306 } 12307 12308 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 12309 /// sizes of an array access. Returns the remainder of the delinearization that 12310 /// is the offset start of the array. The SCEV->delinearize algorithm computes 12311 /// the multiples of SCEV coefficients: that is a pattern matching of sub 12312 /// expressions in the stride and base of a SCEV corresponding to the 12313 /// computation of a GCD (greatest common divisor) of base and stride. When 12314 /// SCEV->delinearize fails, it returns the SCEV unchanged. 12315 /// 12316 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 12317 /// 12318 /// void foo(long n, long m, long o, double A[n][m][o]) { 12319 /// 12320 /// for (long i = 0; i < n; i++) 12321 /// for (long j = 0; j < m; j++) 12322 /// for (long k = 0; k < o; k++) 12323 /// A[i][j][k] = 1.0; 12324 /// } 12325 /// 12326 /// the delinearization input is the following AddRec SCEV: 12327 /// 12328 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 12329 /// 12330 /// From this SCEV, we are able to say that the base offset of the access is %A 12331 /// because it appears as an offset that does not divide any of the strides in 12332 /// the loops: 12333 /// 12334 /// CHECK: Base offset: %A 12335 /// 12336 /// and then SCEV->delinearize determines the size of some of the dimensions of 12337 /// the array as these are the multiples by which the strides are happening: 12338 /// 12339 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 12340 /// 12341 /// Note that the outermost dimension remains of UnknownSize because there are 12342 /// no strides that would help identifying the size of the last dimension: when 12343 /// the array has been statically allocated, one could compute the size of that 12344 /// dimension by dividing the overall size of the array by the size of the known 12345 /// dimensions: %m * %o * 8. 12346 /// 12347 /// Finally delinearize provides the access functions for the array reference 12348 /// that does correspond to A[i][j][k] of the above C testcase: 12349 /// 12350 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 12351 /// 12352 /// The testcases are checking the output of a function pass: 12353 /// DelinearizationPass that walks through all loads and stores of a function 12354 /// asking for the SCEV of the memory access with respect to all enclosing 12355 /// loops, calling SCEV->delinearize on that and printing the results. 12356 void ScalarEvolution::delinearize(const SCEV *Expr, 12357 SmallVectorImpl<const SCEV *> &Subscripts, 12358 SmallVectorImpl<const SCEV *> &Sizes, 12359 const SCEV *ElementSize) { 12360 // First step: collect parametric terms. 12361 SmallVector<const SCEV *, 4> Terms; 12362 collectParametricTerms(Expr, Terms); 12363 12364 if (Terms.empty()) 12365 return; 12366 12367 // Second step: find subscript sizes. 12368 findArrayDimensions(Terms, Sizes, ElementSize); 12369 12370 if (Sizes.empty()) 12371 return; 12372 12373 // Third step: compute the access functions for each subscript. 12374 computeAccessFunctions(Expr, Subscripts, Sizes); 12375 12376 if (Subscripts.empty()) 12377 return; 12378 12379 LLVM_DEBUG({ 12380 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 12381 dbgs() << "ArrayDecl[UnknownSize]"; 12382 for (const SCEV *S : Sizes) 12383 dbgs() << "[" << *S << "]"; 12384 12385 dbgs() << "\nArrayRef"; 12386 for (const SCEV *S : Subscripts) 12387 dbgs() << "[" << *S << "]"; 12388 dbgs() << "\n"; 12389 }); 12390 } 12391 12392 bool ScalarEvolution::getIndexExpressionsFromGEP( 12393 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 12394 SmallVectorImpl<int> &Sizes) { 12395 assert(Subscripts.empty() && Sizes.empty() && 12396 "Expected output lists to be empty on entry to this function."); 12397 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 12398 Type *Ty = GEP->getPointerOperandType(); 12399 bool DroppedFirstDim = false; 12400 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 12401 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 12402 if (i == 1) { 12403 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 12404 Ty = PtrTy->getElementType(); 12405 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 12406 Ty = ArrayTy->getElementType(); 12407 } else { 12408 Subscripts.clear(); 12409 Sizes.clear(); 12410 return false; 12411 } 12412 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 12413 if (Const->getValue()->isZero()) { 12414 DroppedFirstDim = true; 12415 continue; 12416 } 12417 Subscripts.push_back(Expr); 12418 continue; 12419 } 12420 12421 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 12422 if (!ArrayTy) { 12423 Subscripts.clear(); 12424 Sizes.clear(); 12425 return false; 12426 } 12427 12428 Subscripts.push_back(Expr); 12429 if (!(DroppedFirstDim && i == 2)) 12430 Sizes.push_back(ArrayTy->getNumElements()); 12431 12432 Ty = ArrayTy->getElementType(); 12433 } 12434 return !Subscripts.empty(); 12435 } 12436 12437 //===----------------------------------------------------------------------===// 12438 // SCEVCallbackVH Class Implementation 12439 //===----------------------------------------------------------------------===// 12440 12441 void ScalarEvolution::SCEVCallbackVH::deleted() { 12442 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12443 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12444 SE->ConstantEvolutionLoopExitValue.erase(PN); 12445 SE->eraseValueFromMap(getValPtr()); 12446 // this now dangles! 12447 } 12448 12449 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12450 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12451 12452 // Forget all the expressions associated with users of the old value, 12453 // so that future queries will recompute the expressions using the new 12454 // value. 12455 Value *Old = getValPtr(); 12456 SmallVector<User *, 16> Worklist(Old->users()); 12457 SmallPtrSet<User *, 8> Visited; 12458 while (!Worklist.empty()) { 12459 User *U = Worklist.pop_back_val(); 12460 // Deleting the Old value will cause this to dangle. Postpone 12461 // that until everything else is done. 12462 if (U == Old) 12463 continue; 12464 if (!Visited.insert(U).second) 12465 continue; 12466 if (PHINode *PN = dyn_cast<PHINode>(U)) 12467 SE->ConstantEvolutionLoopExitValue.erase(PN); 12468 SE->eraseValueFromMap(U); 12469 llvm::append_range(Worklist, U->users()); 12470 } 12471 // Delete the Old value. 12472 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12473 SE->ConstantEvolutionLoopExitValue.erase(PN); 12474 SE->eraseValueFromMap(Old); 12475 // this now dangles! 12476 } 12477 12478 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12479 : CallbackVH(V), SE(se) {} 12480 12481 //===----------------------------------------------------------------------===// 12482 // ScalarEvolution Class Implementation 12483 //===----------------------------------------------------------------------===// 12484 12485 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12486 AssumptionCache &AC, DominatorTree &DT, 12487 LoopInfo &LI) 12488 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12489 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12490 LoopDispositions(64), BlockDispositions(64) { 12491 // To use guards for proving predicates, we need to scan every instruction in 12492 // relevant basic blocks, and not just terminators. Doing this is a waste of 12493 // time if the IR does not actually contain any calls to 12494 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12495 // 12496 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12497 // to _add_ guards to the module when there weren't any before, and wants 12498 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12499 // efficient in lieu of being smart in that rather obscure case. 12500 12501 auto *GuardDecl = F.getParent()->getFunction( 12502 Intrinsic::getName(Intrinsic::experimental_guard)); 12503 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12504 } 12505 12506 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12507 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12508 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12509 ValueExprMap(std::move(Arg.ValueExprMap)), 12510 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12511 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12512 PendingMerges(std::move(Arg.PendingMerges)), 12513 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12514 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12515 PredicatedBackedgeTakenCounts( 12516 std::move(Arg.PredicatedBackedgeTakenCounts)), 12517 ConstantEvolutionLoopExitValue( 12518 std::move(Arg.ConstantEvolutionLoopExitValue)), 12519 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12520 LoopDispositions(std::move(Arg.LoopDispositions)), 12521 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12522 BlockDispositions(std::move(Arg.BlockDispositions)), 12523 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12524 SignedRanges(std::move(Arg.SignedRanges)), 12525 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12526 UniquePreds(std::move(Arg.UniquePreds)), 12527 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12528 LoopUsers(std::move(Arg.LoopUsers)), 12529 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12530 FirstUnknown(Arg.FirstUnknown) { 12531 Arg.FirstUnknown = nullptr; 12532 } 12533 12534 ScalarEvolution::~ScalarEvolution() { 12535 // Iterate through all the SCEVUnknown instances and call their 12536 // destructors, so that they release their references to their values. 12537 for (SCEVUnknown *U = FirstUnknown; U;) { 12538 SCEVUnknown *Tmp = U; 12539 U = U->Next; 12540 Tmp->~SCEVUnknown(); 12541 } 12542 FirstUnknown = nullptr; 12543 12544 ExprValueMap.clear(); 12545 ValueExprMap.clear(); 12546 HasRecMap.clear(); 12547 BackedgeTakenCounts.clear(); 12548 PredicatedBackedgeTakenCounts.clear(); 12549 12550 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12551 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12552 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12553 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12554 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12555 } 12556 12557 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12558 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12559 } 12560 12561 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12562 const Loop *L) { 12563 // Print all inner loops first 12564 for (Loop *I : *L) 12565 PrintLoopInfo(OS, SE, I); 12566 12567 OS << "Loop "; 12568 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12569 OS << ": "; 12570 12571 SmallVector<BasicBlock *, 8> ExitingBlocks; 12572 L->getExitingBlocks(ExitingBlocks); 12573 if (ExitingBlocks.size() != 1) 12574 OS << "<multiple exits> "; 12575 12576 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12577 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12578 else 12579 OS << "Unpredictable backedge-taken count.\n"; 12580 12581 if (ExitingBlocks.size() > 1) 12582 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12583 OS << " exit count for " << ExitingBlock->getName() << ": " 12584 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12585 } 12586 12587 OS << "Loop "; 12588 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12589 OS << ": "; 12590 12591 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12592 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12593 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12594 OS << ", actual taken count either this or zero."; 12595 } else { 12596 OS << "Unpredictable max backedge-taken count. "; 12597 } 12598 12599 OS << "\n" 12600 "Loop "; 12601 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12602 OS << ": "; 12603 12604 SCEVUnionPredicate Pred; 12605 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12606 if (!isa<SCEVCouldNotCompute>(PBT)) { 12607 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12608 OS << " Predicates:\n"; 12609 Pred.print(OS, 4); 12610 } else { 12611 OS << "Unpredictable predicated backedge-taken count. "; 12612 } 12613 OS << "\n"; 12614 12615 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12616 OS << "Loop "; 12617 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12618 OS << ": "; 12619 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12620 } 12621 } 12622 12623 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12624 switch (LD) { 12625 case ScalarEvolution::LoopVariant: 12626 return "Variant"; 12627 case ScalarEvolution::LoopInvariant: 12628 return "Invariant"; 12629 case ScalarEvolution::LoopComputable: 12630 return "Computable"; 12631 } 12632 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12633 } 12634 12635 void ScalarEvolution::print(raw_ostream &OS) const { 12636 // ScalarEvolution's implementation of the print method is to print 12637 // out SCEV values of all instructions that are interesting. Doing 12638 // this potentially causes it to create new SCEV objects though, 12639 // which technically conflicts with the const qualifier. This isn't 12640 // observable from outside the class though, so casting away the 12641 // const isn't dangerous. 12642 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12643 12644 if (ClassifyExpressions) { 12645 OS << "Classifying expressions for: "; 12646 F.printAsOperand(OS, /*PrintType=*/false); 12647 OS << "\n"; 12648 for (Instruction &I : instructions(F)) 12649 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12650 OS << I << '\n'; 12651 OS << " --> "; 12652 const SCEV *SV = SE.getSCEV(&I); 12653 SV->print(OS); 12654 if (!isa<SCEVCouldNotCompute>(SV)) { 12655 OS << " U: "; 12656 SE.getUnsignedRange(SV).print(OS); 12657 OS << " S: "; 12658 SE.getSignedRange(SV).print(OS); 12659 } 12660 12661 const Loop *L = LI.getLoopFor(I.getParent()); 12662 12663 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12664 if (AtUse != SV) { 12665 OS << " --> "; 12666 AtUse->print(OS); 12667 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12668 OS << " U: "; 12669 SE.getUnsignedRange(AtUse).print(OS); 12670 OS << " S: "; 12671 SE.getSignedRange(AtUse).print(OS); 12672 } 12673 } 12674 12675 if (L) { 12676 OS << "\t\t" "Exits: "; 12677 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12678 if (!SE.isLoopInvariant(ExitValue, L)) { 12679 OS << "<<Unknown>>"; 12680 } else { 12681 OS << *ExitValue; 12682 } 12683 12684 bool First = true; 12685 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12686 if (First) { 12687 OS << "\t\t" "LoopDispositions: { "; 12688 First = false; 12689 } else { 12690 OS << ", "; 12691 } 12692 12693 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12694 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12695 } 12696 12697 for (auto *InnerL : depth_first(L)) { 12698 if (InnerL == L) 12699 continue; 12700 if (First) { 12701 OS << "\t\t" "LoopDispositions: { "; 12702 First = false; 12703 } else { 12704 OS << ", "; 12705 } 12706 12707 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12708 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12709 } 12710 12711 OS << " }"; 12712 } 12713 12714 OS << "\n"; 12715 } 12716 } 12717 12718 OS << "Determining loop execution counts for: "; 12719 F.printAsOperand(OS, /*PrintType=*/false); 12720 OS << "\n"; 12721 for (Loop *I : LI) 12722 PrintLoopInfo(OS, &SE, I); 12723 } 12724 12725 ScalarEvolution::LoopDisposition 12726 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12727 auto &Values = LoopDispositions[S]; 12728 for (auto &V : Values) { 12729 if (V.getPointer() == L) 12730 return V.getInt(); 12731 } 12732 Values.emplace_back(L, LoopVariant); 12733 LoopDisposition D = computeLoopDisposition(S, L); 12734 auto &Values2 = LoopDispositions[S]; 12735 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12736 if (V.getPointer() == L) { 12737 V.setInt(D); 12738 break; 12739 } 12740 } 12741 return D; 12742 } 12743 12744 ScalarEvolution::LoopDisposition 12745 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12746 switch (S->getSCEVType()) { 12747 case scConstant: 12748 return LoopInvariant; 12749 case scPtrToInt: 12750 case scTruncate: 12751 case scZeroExtend: 12752 case scSignExtend: 12753 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12754 case scAddRecExpr: { 12755 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12756 12757 // If L is the addrec's loop, it's computable. 12758 if (AR->getLoop() == L) 12759 return LoopComputable; 12760 12761 // Add recurrences are never invariant in the function-body (null loop). 12762 if (!L) 12763 return LoopVariant; 12764 12765 // Everything that is not defined at loop entry is variant. 12766 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12767 return LoopVariant; 12768 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12769 " dominate the contained loop's header?"); 12770 12771 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12772 if (AR->getLoop()->contains(L)) 12773 return LoopInvariant; 12774 12775 // This recurrence is variant w.r.t. L if any of its operands 12776 // are variant. 12777 for (auto *Op : AR->operands()) 12778 if (!isLoopInvariant(Op, L)) 12779 return LoopVariant; 12780 12781 // Otherwise it's loop-invariant. 12782 return LoopInvariant; 12783 } 12784 case scAddExpr: 12785 case scMulExpr: 12786 case scUMaxExpr: 12787 case scSMaxExpr: 12788 case scUMinExpr: 12789 case scSMinExpr: { 12790 bool HasVarying = false; 12791 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12792 LoopDisposition D = getLoopDisposition(Op, L); 12793 if (D == LoopVariant) 12794 return LoopVariant; 12795 if (D == LoopComputable) 12796 HasVarying = true; 12797 } 12798 return HasVarying ? LoopComputable : LoopInvariant; 12799 } 12800 case scUDivExpr: { 12801 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12802 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12803 if (LD == LoopVariant) 12804 return LoopVariant; 12805 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12806 if (RD == LoopVariant) 12807 return LoopVariant; 12808 return (LD == LoopInvariant && RD == LoopInvariant) ? 12809 LoopInvariant : LoopComputable; 12810 } 12811 case scUnknown: 12812 // All non-instruction values are loop invariant. All instructions are loop 12813 // invariant if they are not contained in the specified loop. 12814 // Instructions are never considered invariant in the function body 12815 // (null loop) because they are defined within the "loop". 12816 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12817 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12818 return LoopInvariant; 12819 case scCouldNotCompute: 12820 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12821 } 12822 llvm_unreachable("Unknown SCEV kind!"); 12823 } 12824 12825 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12826 return getLoopDisposition(S, L) == LoopInvariant; 12827 } 12828 12829 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12830 return getLoopDisposition(S, L) == LoopComputable; 12831 } 12832 12833 ScalarEvolution::BlockDisposition 12834 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12835 auto &Values = BlockDispositions[S]; 12836 for (auto &V : Values) { 12837 if (V.getPointer() == BB) 12838 return V.getInt(); 12839 } 12840 Values.emplace_back(BB, DoesNotDominateBlock); 12841 BlockDisposition D = computeBlockDisposition(S, BB); 12842 auto &Values2 = BlockDispositions[S]; 12843 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12844 if (V.getPointer() == BB) { 12845 V.setInt(D); 12846 break; 12847 } 12848 } 12849 return D; 12850 } 12851 12852 ScalarEvolution::BlockDisposition 12853 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12854 switch (S->getSCEVType()) { 12855 case scConstant: 12856 return ProperlyDominatesBlock; 12857 case scPtrToInt: 12858 case scTruncate: 12859 case scZeroExtend: 12860 case scSignExtend: 12861 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12862 case scAddRecExpr: { 12863 // This uses a "dominates" query instead of "properly dominates" query 12864 // to test for proper dominance too, because the instruction which 12865 // produces the addrec's value is a PHI, and a PHI effectively properly 12866 // dominates its entire containing block. 12867 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12868 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12869 return DoesNotDominateBlock; 12870 12871 // Fall through into SCEVNAryExpr handling. 12872 LLVM_FALLTHROUGH; 12873 } 12874 case scAddExpr: 12875 case scMulExpr: 12876 case scUMaxExpr: 12877 case scSMaxExpr: 12878 case scUMinExpr: 12879 case scSMinExpr: { 12880 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12881 bool Proper = true; 12882 for (const SCEV *NAryOp : NAry->operands()) { 12883 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12884 if (D == DoesNotDominateBlock) 12885 return DoesNotDominateBlock; 12886 if (D == DominatesBlock) 12887 Proper = false; 12888 } 12889 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12890 } 12891 case scUDivExpr: { 12892 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12893 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12894 BlockDisposition LD = getBlockDisposition(LHS, BB); 12895 if (LD == DoesNotDominateBlock) 12896 return DoesNotDominateBlock; 12897 BlockDisposition RD = getBlockDisposition(RHS, BB); 12898 if (RD == DoesNotDominateBlock) 12899 return DoesNotDominateBlock; 12900 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12901 ProperlyDominatesBlock : DominatesBlock; 12902 } 12903 case scUnknown: 12904 if (Instruction *I = 12905 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12906 if (I->getParent() == BB) 12907 return DominatesBlock; 12908 if (DT.properlyDominates(I->getParent(), BB)) 12909 return ProperlyDominatesBlock; 12910 return DoesNotDominateBlock; 12911 } 12912 return ProperlyDominatesBlock; 12913 case scCouldNotCompute: 12914 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12915 } 12916 llvm_unreachable("Unknown SCEV kind!"); 12917 } 12918 12919 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12920 return getBlockDisposition(S, BB) >= DominatesBlock; 12921 } 12922 12923 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12924 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12925 } 12926 12927 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12928 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12929 } 12930 12931 void 12932 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12933 ValuesAtScopes.erase(S); 12934 LoopDispositions.erase(S); 12935 BlockDispositions.erase(S); 12936 UnsignedRanges.erase(S); 12937 SignedRanges.erase(S); 12938 ExprValueMap.erase(S); 12939 HasRecMap.erase(S); 12940 MinTrailingZerosCache.erase(S); 12941 12942 for (auto I = PredicatedSCEVRewrites.begin(); 12943 I != PredicatedSCEVRewrites.end();) { 12944 std::pair<const SCEV *, const Loop *> Entry = I->first; 12945 if (Entry.first == S) 12946 PredicatedSCEVRewrites.erase(I++); 12947 else 12948 ++I; 12949 } 12950 12951 auto RemoveSCEVFromBackedgeMap = 12952 [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12953 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12954 BackedgeTakenInfo &BEInfo = I->second; 12955 if (BEInfo.hasOperand(S)) 12956 Map.erase(I++); 12957 else 12958 ++I; 12959 } 12960 }; 12961 12962 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12963 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12964 } 12965 12966 void 12967 ScalarEvolution::getUsedLoops(const SCEV *S, 12968 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12969 struct FindUsedLoops { 12970 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12971 : LoopsUsed(LoopsUsed) {} 12972 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12973 bool follow(const SCEV *S) { 12974 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12975 LoopsUsed.insert(AR->getLoop()); 12976 return true; 12977 } 12978 12979 bool isDone() const { return false; } 12980 }; 12981 12982 FindUsedLoops F(LoopsUsed); 12983 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12984 } 12985 12986 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12987 SmallPtrSet<const Loop *, 8> LoopsUsed; 12988 getUsedLoops(S, LoopsUsed); 12989 for (auto *L : LoopsUsed) 12990 LoopUsers[L].push_back(S); 12991 } 12992 12993 void ScalarEvolution::verify() const { 12994 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12995 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12996 12997 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12998 12999 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13000 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13001 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13002 13003 const SCEV *visitConstant(const SCEVConstant *Constant) { 13004 return SE.getConstant(Constant->getAPInt()); 13005 } 13006 13007 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13008 return SE.getUnknown(Expr->getValue()); 13009 } 13010 13011 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13012 return SE.getCouldNotCompute(); 13013 } 13014 }; 13015 13016 SCEVMapper SCM(SE2); 13017 13018 while (!LoopStack.empty()) { 13019 auto *L = LoopStack.pop_back_val(); 13020 llvm::append_range(LoopStack, *L); 13021 13022 auto *CurBECount = SCM.visit( 13023 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13024 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13025 13026 if (CurBECount == SE2.getCouldNotCompute() || 13027 NewBECount == SE2.getCouldNotCompute()) { 13028 // NB! This situation is legal, but is very suspicious -- whatever pass 13029 // change the loop to make a trip count go from could not compute to 13030 // computable or vice-versa *should have* invalidated SCEV. However, we 13031 // choose not to assert here (for now) since we don't want false 13032 // positives. 13033 continue; 13034 } 13035 13036 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13037 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13038 // not propagate undef aggressively). This means we can (and do) fail 13039 // verification in cases where a transform makes the trip count of a loop 13040 // go from "undef" to "undef+1" (say). The transform is fine, since in 13041 // both cases the loop iterates "undef" times, but SCEV thinks we 13042 // increased the trip count of the loop by 1 incorrectly. 13043 continue; 13044 } 13045 13046 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13047 SE.getTypeSizeInBits(NewBECount->getType())) 13048 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13049 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13050 SE.getTypeSizeInBits(NewBECount->getType())) 13051 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13052 13053 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13054 13055 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13056 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13057 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13058 dbgs() << "Old: " << *CurBECount << "\n"; 13059 dbgs() << "New: " << *NewBECount << "\n"; 13060 dbgs() << "Delta: " << *Delta << "\n"; 13061 std::abort(); 13062 } 13063 } 13064 13065 // Collect all valid loops currently in LoopInfo. 13066 SmallPtrSet<Loop *, 32> ValidLoops; 13067 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13068 while (!Worklist.empty()) { 13069 Loop *L = Worklist.pop_back_val(); 13070 if (ValidLoops.contains(L)) 13071 continue; 13072 ValidLoops.insert(L); 13073 Worklist.append(L->begin(), L->end()); 13074 } 13075 // Check for SCEV expressions referencing invalid/deleted loops. 13076 for (auto &KV : ValueExprMap) { 13077 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 13078 if (!AR) 13079 continue; 13080 assert(ValidLoops.contains(AR->getLoop()) && 13081 "AddRec references invalid loop"); 13082 } 13083 } 13084 13085 bool ScalarEvolution::invalidate( 13086 Function &F, const PreservedAnalyses &PA, 13087 FunctionAnalysisManager::Invalidator &Inv) { 13088 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13089 // of its dependencies is invalidated. 13090 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13091 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13092 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13093 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13094 Inv.invalidate<LoopAnalysis>(F, PA); 13095 } 13096 13097 AnalysisKey ScalarEvolutionAnalysis::Key; 13098 13099 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13100 FunctionAnalysisManager &AM) { 13101 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13102 AM.getResult<AssumptionAnalysis>(F), 13103 AM.getResult<DominatorTreeAnalysis>(F), 13104 AM.getResult<LoopAnalysis>(F)); 13105 } 13106 13107 PreservedAnalyses 13108 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13109 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13110 return PreservedAnalyses::all(); 13111 } 13112 13113 PreservedAnalyses 13114 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13115 // For compatibility with opt's -analyze feature under legacy pass manager 13116 // which was not ported to NPM. This keeps tests using 13117 // update_analyze_test_checks.py working. 13118 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13119 << F.getName() << "':\n"; 13120 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13121 return PreservedAnalyses::all(); 13122 } 13123 13124 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13125 "Scalar Evolution Analysis", false, true) 13126 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13127 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13128 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13129 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13130 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13131 "Scalar Evolution Analysis", false, true) 13132 13133 char ScalarEvolutionWrapperPass::ID = 0; 13134 13135 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13136 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13137 } 13138 13139 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13140 SE.reset(new ScalarEvolution( 13141 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13142 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13143 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13144 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13145 return false; 13146 } 13147 13148 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13149 13150 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13151 SE->print(OS); 13152 } 13153 13154 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13155 if (!VerifySCEV) 13156 return; 13157 13158 SE->verify(); 13159 } 13160 13161 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13162 AU.setPreservesAll(); 13163 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13164 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13165 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13166 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13167 } 13168 13169 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13170 const SCEV *RHS) { 13171 FoldingSetNodeID ID; 13172 assert(LHS->getType() == RHS->getType() && 13173 "Type mismatch between LHS and RHS"); 13174 // Unique this node based on the arguments 13175 ID.AddInteger(SCEVPredicate::P_Equal); 13176 ID.AddPointer(LHS); 13177 ID.AddPointer(RHS); 13178 void *IP = nullptr; 13179 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13180 return S; 13181 SCEVEqualPredicate *Eq = new (SCEVAllocator) 13182 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 13183 UniquePreds.InsertNode(Eq, IP); 13184 return Eq; 13185 } 13186 13187 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13188 const SCEVAddRecExpr *AR, 13189 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13190 FoldingSetNodeID ID; 13191 // Unique this node based on the arguments 13192 ID.AddInteger(SCEVPredicate::P_Wrap); 13193 ID.AddPointer(AR); 13194 ID.AddInteger(AddedFlags); 13195 void *IP = nullptr; 13196 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13197 return S; 13198 auto *OF = new (SCEVAllocator) 13199 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13200 UniquePreds.InsertNode(OF, IP); 13201 return OF; 13202 } 13203 13204 namespace { 13205 13206 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13207 public: 13208 13209 /// Rewrites \p S in the context of a loop L and the SCEV predication 13210 /// infrastructure. 13211 /// 13212 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13213 /// equivalences present in \p Pred. 13214 /// 13215 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13216 /// \p NewPreds such that the result will be an AddRecExpr. 13217 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13218 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13219 SCEVUnionPredicate *Pred) { 13220 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13221 return Rewriter.visit(S); 13222 } 13223 13224 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13225 if (Pred) { 13226 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13227 for (auto *Pred : ExprPreds) 13228 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13229 if (IPred->getLHS() == Expr) 13230 return IPred->getRHS(); 13231 } 13232 return convertToAddRecWithPreds(Expr); 13233 } 13234 13235 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13236 const SCEV *Operand = visit(Expr->getOperand()); 13237 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13238 if (AR && AR->getLoop() == L && AR->isAffine()) { 13239 // This couldn't be folded because the operand didn't have the nuw 13240 // flag. Add the nusw flag as an assumption that we could make. 13241 const SCEV *Step = AR->getStepRecurrence(SE); 13242 Type *Ty = Expr->getType(); 13243 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13244 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13245 SE.getSignExtendExpr(Step, Ty), L, 13246 AR->getNoWrapFlags()); 13247 } 13248 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13249 } 13250 13251 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13252 const SCEV *Operand = visit(Expr->getOperand()); 13253 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13254 if (AR && AR->getLoop() == L && AR->isAffine()) { 13255 // This couldn't be folded because the operand didn't have the nsw 13256 // flag. Add the nssw flag as an assumption that we could make. 13257 const SCEV *Step = AR->getStepRecurrence(SE); 13258 Type *Ty = Expr->getType(); 13259 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13260 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13261 SE.getSignExtendExpr(Step, Ty), L, 13262 AR->getNoWrapFlags()); 13263 } 13264 return SE.getSignExtendExpr(Operand, Expr->getType()); 13265 } 13266 13267 private: 13268 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13269 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13270 SCEVUnionPredicate *Pred) 13271 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13272 13273 bool addOverflowAssumption(const SCEVPredicate *P) { 13274 if (!NewPreds) { 13275 // Check if we've already made this assumption. 13276 return Pred && Pred->implies(P); 13277 } 13278 NewPreds->insert(P); 13279 return true; 13280 } 13281 13282 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13283 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13284 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13285 return addOverflowAssumption(A); 13286 } 13287 13288 // If \p Expr represents a PHINode, we try to see if it can be represented 13289 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13290 // to add this predicate as a runtime overflow check, we return the AddRec. 13291 // If \p Expr does not meet these conditions (is not a PHI node, or we 13292 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13293 // return \p Expr. 13294 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13295 if (!isa<PHINode>(Expr->getValue())) 13296 return Expr; 13297 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13298 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13299 if (!PredicatedRewrite) 13300 return Expr; 13301 for (auto *P : PredicatedRewrite->second){ 13302 // Wrap predicates from outer loops are not supported. 13303 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13304 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13305 if (L != AR->getLoop()) 13306 return Expr; 13307 } 13308 if (!addOverflowAssumption(P)) 13309 return Expr; 13310 } 13311 return PredicatedRewrite->first; 13312 } 13313 13314 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13315 SCEVUnionPredicate *Pred; 13316 const Loop *L; 13317 }; 13318 13319 } // end anonymous namespace 13320 13321 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13322 SCEVUnionPredicate &Preds) { 13323 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13324 } 13325 13326 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13327 const SCEV *S, const Loop *L, 13328 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13329 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13330 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13331 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13332 13333 if (!AddRec) 13334 return nullptr; 13335 13336 // Since the transformation was successful, we can now transfer the SCEV 13337 // predicates. 13338 for (auto *P : TransformPreds) 13339 Preds.insert(P); 13340 13341 return AddRec; 13342 } 13343 13344 /// SCEV predicates 13345 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13346 SCEVPredicateKind Kind) 13347 : FastID(ID), Kind(Kind) {} 13348 13349 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13350 const SCEV *LHS, const SCEV *RHS) 13351 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13352 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13353 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13354 } 13355 13356 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13357 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13358 13359 if (!Op) 13360 return false; 13361 13362 return Op->LHS == LHS && Op->RHS == RHS; 13363 } 13364 13365 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13366 13367 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13368 13369 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13370 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13371 } 13372 13373 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13374 const SCEVAddRecExpr *AR, 13375 IncrementWrapFlags Flags) 13376 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13377 13378 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13379 13380 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13381 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13382 13383 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13384 } 13385 13386 bool SCEVWrapPredicate::isAlwaysTrue() const { 13387 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13388 IncrementWrapFlags IFlags = Flags; 13389 13390 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13391 IFlags = clearFlags(IFlags, IncrementNSSW); 13392 13393 return IFlags == IncrementAnyWrap; 13394 } 13395 13396 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13397 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13398 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13399 OS << "<nusw>"; 13400 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13401 OS << "<nssw>"; 13402 OS << "\n"; 13403 } 13404 13405 SCEVWrapPredicate::IncrementWrapFlags 13406 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13407 ScalarEvolution &SE) { 13408 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13409 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13410 13411 // We can safely transfer the NSW flag as NSSW. 13412 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13413 ImpliedFlags = IncrementNSSW; 13414 13415 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13416 // If the increment is positive, the SCEV NUW flag will also imply the 13417 // WrapPredicate NUSW flag. 13418 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13419 if (Step->getValue()->getValue().isNonNegative()) 13420 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13421 } 13422 13423 return ImpliedFlags; 13424 } 13425 13426 /// Union predicates don't get cached so create a dummy set ID for it. 13427 SCEVUnionPredicate::SCEVUnionPredicate() 13428 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13429 13430 bool SCEVUnionPredicate::isAlwaysTrue() const { 13431 return all_of(Preds, 13432 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13433 } 13434 13435 ArrayRef<const SCEVPredicate *> 13436 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13437 auto I = SCEVToPreds.find(Expr); 13438 if (I == SCEVToPreds.end()) 13439 return ArrayRef<const SCEVPredicate *>(); 13440 return I->second; 13441 } 13442 13443 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13444 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13445 return all_of(Set->Preds, 13446 [this](const SCEVPredicate *I) { return this->implies(I); }); 13447 13448 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13449 if (ScevPredsIt == SCEVToPreds.end()) 13450 return false; 13451 auto &SCEVPreds = ScevPredsIt->second; 13452 13453 return any_of(SCEVPreds, 13454 [N](const SCEVPredicate *I) { return I->implies(N); }); 13455 } 13456 13457 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13458 13459 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13460 for (auto Pred : Preds) 13461 Pred->print(OS, Depth); 13462 } 13463 13464 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13465 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13466 for (auto Pred : Set->Preds) 13467 add(Pred); 13468 return; 13469 } 13470 13471 if (implies(N)) 13472 return; 13473 13474 const SCEV *Key = N->getExpr(); 13475 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13476 " associated expression!"); 13477 13478 SCEVToPreds[Key].push_back(N); 13479 Preds.push_back(N); 13480 } 13481 13482 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13483 Loop &L) 13484 : SE(SE), L(L) {} 13485 13486 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13487 const SCEV *Expr = SE.getSCEV(V); 13488 RewriteEntry &Entry = RewriteMap[Expr]; 13489 13490 // If we already have an entry and the version matches, return it. 13491 if (Entry.second && Generation == Entry.first) 13492 return Entry.second; 13493 13494 // We found an entry but it's stale. Rewrite the stale entry 13495 // according to the current predicate. 13496 if (Entry.second) 13497 Expr = Entry.second; 13498 13499 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13500 Entry = {Generation, NewSCEV}; 13501 13502 return NewSCEV; 13503 } 13504 13505 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13506 if (!BackedgeCount) { 13507 SCEVUnionPredicate BackedgePred; 13508 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13509 addPredicate(BackedgePred); 13510 } 13511 return BackedgeCount; 13512 } 13513 13514 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13515 if (Preds.implies(&Pred)) 13516 return; 13517 Preds.add(&Pred); 13518 updateGeneration(); 13519 } 13520 13521 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13522 return Preds; 13523 } 13524 13525 void PredicatedScalarEvolution::updateGeneration() { 13526 // If the generation number wrapped recompute everything. 13527 if (++Generation == 0) { 13528 for (auto &II : RewriteMap) { 13529 const SCEV *Rewritten = II.second.second; 13530 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13531 } 13532 } 13533 } 13534 13535 void PredicatedScalarEvolution::setNoOverflow( 13536 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13537 const SCEV *Expr = getSCEV(V); 13538 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13539 13540 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13541 13542 // Clear the statically implied flags. 13543 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13544 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13545 13546 auto II = FlagsMap.insert({V, Flags}); 13547 if (!II.second) 13548 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13549 } 13550 13551 bool PredicatedScalarEvolution::hasNoOverflow( 13552 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13553 const SCEV *Expr = getSCEV(V); 13554 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13555 13556 Flags = SCEVWrapPredicate::clearFlags( 13557 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13558 13559 auto II = FlagsMap.find(V); 13560 13561 if (II != FlagsMap.end()) 13562 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13563 13564 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13565 } 13566 13567 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13568 const SCEV *Expr = this->getSCEV(V); 13569 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13570 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13571 13572 if (!New) 13573 return nullptr; 13574 13575 for (auto *P : NewPreds) 13576 Preds.add(P); 13577 13578 updateGeneration(); 13579 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13580 return New; 13581 } 13582 13583 PredicatedScalarEvolution::PredicatedScalarEvolution( 13584 const PredicatedScalarEvolution &Init) 13585 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13586 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13587 for (auto I : Init.FlagsMap) 13588 FlagsMap.insert(I); 13589 } 13590 13591 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13592 // For each block. 13593 for (auto *BB : L.getBlocks()) 13594 for (auto &I : *BB) { 13595 if (!SE.isSCEVable(I.getType())) 13596 continue; 13597 13598 auto *Expr = SE.getSCEV(&I); 13599 auto II = RewriteMap.find(Expr); 13600 13601 if (II == RewriteMap.end()) 13602 continue; 13603 13604 // Don't print things that are not interesting. 13605 if (II->second.second == Expr) 13606 continue; 13607 13608 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13609 OS.indent(Depth + 2) << *Expr << "\n"; 13610 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13611 } 13612 } 13613 13614 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13615 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13616 // for URem with constant power-of-2 second operands. 13617 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13618 // 4, A / B becomes X / 8). 13619 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13620 const SCEV *&RHS) { 13621 // Try to match 'zext (trunc A to iB) to iY', which is used 13622 // for URem with constant power-of-2 second operands. Make sure the size of 13623 // the operand A matches the size of the whole expressions. 13624 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13625 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13626 LHS = Trunc->getOperand(); 13627 // Bail out if the type of the LHS is larger than the type of the 13628 // expression for now. 13629 if (getTypeSizeInBits(LHS->getType()) > 13630 getTypeSizeInBits(Expr->getType())) 13631 return false; 13632 if (LHS->getType() != Expr->getType()) 13633 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13634 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13635 << getTypeSizeInBits(Trunc->getType())); 13636 return true; 13637 } 13638 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13639 if (Add == nullptr || Add->getNumOperands() != 2) 13640 return false; 13641 13642 const SCEV *A = Add->getOperand(1); 13643 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13644 13645 if (Mul == nullptr) 13646 return false; 13647 13648 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13649 // (SomeExpr + (-(SomeExpr / B) * B)). 13650 if (Expr == getURemExpr(A, B)) { 13651 LHS = A; 13652 RHS = B; 13653 return true; 13654 } 13655 return false; 13656 }; 13657 13658 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13659 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13660 return MatchURemWithDivisor(Mul->getOperand(1)) || 13661 MatchURemWithDivisor(Mul->getOperand(2)); 13662 13663 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13664 if (Mul->getNumOperands() == 2) 13665 return MatchURemWithDivisor(Mul->getOperand(1)) || 13666 MatchURemWithDivisor(Mul->getOperand(0)) || 13667 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13668 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13669 return false; 13670 } 13671 13672 const SCEV * 13673 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13674 SmallVector<BasicBlock*, 16> ExitingBlocks; 13675 L->getExitingBlocks(ExitingBlocks); 13676 13677 // Form an expression for the maximum exit count possible for this loop. We 13678 // merge the max and exact information to approximate a version of 13679 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13680 SmallVector<const SCEV*, 4> ExitCounts; 13681 for (BasicBlock *ExitingBB : ExitingBlocks) { 13682 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13683 if (isa<SCEVCouldNotCompute>(ExitCount)) 13684 ExitCount = getExitCount(L, ExitingBB, 13685 ScalarEvolution::ConstantMaximum); 13686 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13687 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13688 "We should only have known counts for exiting blocks that " 13689 "dominate latch!"); 13690 ExitCounts.push_back(ExitCount); 13691 } 13692 } 13693 if (ExitCounts.empty()) 13694 return getCouldNotCompute(); 13695 return getUMinFromMismatchedTypes(ExitCounts); 13696 } 13697 13698 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13699 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13700 /// we cannot guarantee that the replacement is loop invariant in the loop of 13701 /// the AddRec. 13702 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13703 ValueToSCEVMapTy ⤅ 13704 13705 public: 13706 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13707 : SCEVRewriteVisitor(SE), Map(M) {} 13708 13709 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13710 13711 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13712 auto I = Map.find(Expr->getValue()); 13713 if (I == Map.end()) 13714 return Expr; 13715 return I->second; 13716 } 13717 }; 13718 13719 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13720 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13721 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13722 // If we have LHS == 0, check if LHS is computing a property of some unknown 13723 // SCEV %v which we can rewrite %v to express explicitly. 13724 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13725 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13726 RHSC->getValue()->isNullValue()) { 13727 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13728 // explicitly express that. 13729 const SCEV *URemLHS = nullptr; 13730 const SCEV *URemRHS = nullptr; 13731 if (matchURem(LHS, URemLHS, URemRHS)) { 13732 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13733 Value *V = LHSUnknown->getValue(); 13734 auto Multiple = 13735 getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS, 13736 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 13737 RewriteMap[V] = Multiple; 13738 return; 13739 } 13740 } 13741 } 13742 13743 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 13744 std::swap(LHS, RHS); 13745 Predicate = CmpInst::getSwappedPredicate(Predicate); 13746 } 13747 13748 // Check for a condition of the form (-C1 + X < C2). InstCombine will 13749 // create this form when combining two checks of the form (X u< C2 + C1) and 13750 // (X >=u C1). 13751 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() { 13752 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 13753 if (!AddExpr || AddExpr->getNumOperands() != 2) 13754 return false; 13755 13756 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 13757 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 13758 auto *C2 = dyn_cast<SCEVConstant>(RHS); 13759 if (!C1 || !C2 || !LHSUnknown) 13760 return false; 13761 13762 auto ExactRegion = 13763 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 13764 .sub(C1->getAPInt()); 13765 13766 // Bail out, unless we have a non-wrapping, monotonic range. 13767 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 13768 return false; 13769 auto I = RewriteMap.find(LHSUnknown->getValue()); 13770 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13771 RewriteMap[LHSUnknown->getValue()] = getUMaxExpr( 13772 getConstant(ExactRegion.getUnsignedMin()), 13773 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 13774 return true; 13775 }; 13776 if (MatchRangeCheckIdiom()) 13777 return; 13778 13779 // For now, limit to conditions that provide information about unknown 13780 // expressions. RHS also cannot contain add recurrences. 13781 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13782 if (!LHSUnknown || containsAddRecurrence(RHS)) 13783 return; 13784 13785 // Check whether LHS has already been rewritten. In that case we want to 13786 // chain further rewrites onto the already rewritten value. 13787 auto I = RewriteMap.find(LHSUnknown->getValue()); 13788 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13789 const SCEV *RewrittenRHS = nullptr; 13790 switch (Predicate) { 13791 case CmpInst::ICMP_ULT: 13792 RewrittenRHS = 13793 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13794 break; 13795 case CmpInst::ICMP_SLT: 13796 RewrittenRHS = 13797 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13798 break; 13799 case CmpInst::ICMP_ULE: 13800 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 13801 break; 13802 case CmpInst::ICMP_SLE: 13803 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 13804 break; 13805 case CmpInst::ICMP_UGT: 13806 RewrittenRHS = 13807 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13808 break; 13809 case CmpInst::ICMP_SGT: 13810 RewrittenRHS = 13811 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13812 break; 13813 case CmpInst::ICMP_UGE: 13814 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 13815 break; 13816 case CmpInst::ICMP_SGE: 13817 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 13818 break; 13819 case CmpInst::ICMP_EQ: 13820 if (isa<SCEVConstant>(RHS)) 13821 RewrittenRHS = RHS; 13822 break; 13823 case CmpInst::ICMP_NE: 13824 if (isa<SCEVConstant>(RHS) && 13825 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13826 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 13827 break; 13828 default: 13829 break; 13830 } 13831 13832 if (RewrittenRHS) 13833 RewriteMap[LHSUnknown->getValue()] = RewrittenRHS; 13834 }; 13835 // Starting at the loop predecessor, climb up the predecessor chain, as long 13836 // as there are predecessors that can be found that have unique successors 13837 // leading to the original header. 13838 // TODO: share this logic with isLoopEntryGuardedByCond. 13839 ValueToSCEVMapTy RewriteMap; 13840 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13841 L->getLoopPredecessor(), L->getHeader()); 13842 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13843 13844 const BranchInst *LoopEntryPredicate = 13845 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13846 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13847 continue; 13848 13849 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 13850 SmallVector<Value *, 8> Worklist; 13851 SmallPtrSet<Value *, 8> Visited; 13852 Worklist.push_back(LoopEntryPredicate->getCondition()); 13853 while (!Worklist.empty()) { 13854 Value *Cond = Worklist.pop_back_val(); 13855 if (!Visited.insert(Cond).second) 13856 continue; 13857 13858 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13859 auto Predicate = 13860 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 13861 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13862 getSCEV(Cmp->getOperand(1)), RewriteMap); 13863 continue; 13864 } 13865 13866 Value *L, *R; 13867 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 13868 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 13869 Worklist.push_back(L); 13870 Worklist.push_back(R); 13871 } 13872 } 13873 } 13874 13875 // Also collect information from assumptions dominating the loop. 13876 for (auto &AssumeVH : AC.assumptions()) { 13877 if (!AssumeVH) 13878 continue; 13879 auto *AssumeI = cast<CallInst>(AssumeVH); 13880 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13881 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13882 continue; 13883 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13884 getSCEV(Cmp->getOperand(1)), RewriteMap); 13885 } 13886 13887 if (RewriteMap.empty()) 13888 return Expr; 13889 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13890 return Rewriter.visit(Expr); 13891 } 13892