1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/Config/llvm-config.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/ConstantRange.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DerivedTypes.h" 94 #include "llvm/IR/Dominators.h" 95 #include "llvm/IR/Function.h" 96 #include "llvm/IR/GlobalAlias.h" 97 #include "llvm/IR/GlobalValue.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Operator.h" 106 #include "llvm/IR/PatternMatch.h" 107 #include "llvm/IR/Type.h" 108 #include "llvm/IR/Use.h" 109 #include "llvm/IR/User.h" 110 #include "llvm/IR/Value.h" 111 #include "llvm/IR/Verifier.h" 112 #include "llvm/InitializePasses.h" 113 #include "llvm/Pass.h" 114 #include "llvm/Support/Casting.h" 115 #include "llvm/Support/CommandLine.h" 116 #include "llvm/Support/Compiler.h" 117 #include "llvm/Support/Debug.h" 118 #include "llvm/Support/ErrorHandling.h" 119 #include "llvm/Support/KnownBits.h" 120 #include "llvm/Support/SaveAndRestore.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <climits> 125 #include <cstdint> 126 #include <cstdlib> 127 #include <map> 128 #include <memory> 129 #include <tuple> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 using namespace PatternMatch; 135 136 #define DEBUG_TYPE "scalar-evolution" 137 138 STATISTIC(NumTripCountsComputed, 139 "Number of loops with predictable loop counts"); 140 STATISTIC(NumTripCountsNotComputed, 141 "Number of loops without predictable loop counts"); 142 STATISTIC(NumBruteForceTripCountsComputed, 143 "Number of loops with trip counts computed by force"); 144 145 #ifdef EXPENSIVE_CHECKS 146 bool llvm::VerifySCEV = true; 147 #else 148 bool llvm::VerifySCEV = false; 149 #endif 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 static cl::opt<bool, true> VerifySCEVOpt( 160 "verify-scev", cl::Hidden, cl::location(VerifySCEV), 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 static cl::opt<bool> UseExpensiveRangeSharpening( 230 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 231 cl::init(false), 232 cl::desc("Use more powerful methods of sharpening expression ranges. May " 233 "be costly in terms of compile time")); 234 235 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 236 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 237 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 238 "Phi strongly connected components"), 239 cl::init(8)); 240 241 static cl::opt<bool> 242 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 243 cl::desc("Handle <= and >= in finite loops"), 244 cl::init(true)); 245 246 //===----------------------------------------------------------------------===// 247 // SCEV class definitions 248 //===----------------------------------------------------------------------===// 249 250 //===----------------------------------------------------------------------===// 251 // Implementation of the SCEV class. 252 // 253 254 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 255 LLVM_DUMP_METHOD void SCEV::dump() const { 256 print(dbgs()); 257 dbgs() << '\n'; 258 } 259 #endif 260 261 void SCEV::print(raw_ostream &OS) const { 262 switch (getSCEVType()) { 263 case scConstant: 264 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 265 return; 266 case scPtrToInt: { 267 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 268 const SCEV *Op = PtrToInt->getOperand(); 269 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 270 << *PtrToInt->getType() << ")"; 271 return; 272 } 273 case scTruncate: { 274 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 275 const SCEV *Op = Trunc->getOperand(); 276 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 277 << *Trunc->getType() << ")"; 278 return; 279 } 280 case scZeroExtend: { 281 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 282 const SCEV *Op = ZExt->getOperand(); 283 OS << "(zext " << *Op->getType() << " " << *Op << " to " 284 << *ZExt->getType() << ")"; 285 return; 286 } 287 case scSignExtend: { 288 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 289 const SCEV *Op = SExt->getOperand(); 290 OS << "(sext " << *Op->getType() << " " << *Op << " to " 291 << *SExt->getType() << ")"; 292 return; 293 } 294 case scAddRecExpr: { 295 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 296 OS << "{" << *AR->getOperand(0); 297 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 298 OS << ",+," << *AR->getOperand(i); 299 OS << "}<"; 300 if (AR->hasNoUnsignedWrap()) 301 OS << "nuw><"; 302 if (AR->hasNoSignedWrap()) 303 OS << "nsw><"; 304 if (AR->hasNoSelfWrap() && 305 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 306 OS << "nw><"; 307 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 308 OS << ">"; 309 return; 310 } 311 case scAddExpr: 312 case scMulExpr: 313 case scUMaxExpr: 314 case scSMaxExpr: 315 case scUMinExpr: 316 case scSMinExpr: 317 case scSequentialUMinExpr: { 318 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 319 const char *OpStr = nullptr; 320 switch (NAry->getSCEVType()) { 321 case scAddExpr: OpStr = " + "; break; 322 case scMulExpr: OpStr = " * "; break; 323 case scUMaxExpr: OpStr = " umax "; break; 324 case scSMaxExpr: OpStr = " smax "; break; 325 case scUMinExpr: 326 OpStr = " umin "; 327 break; 328 case scSMinExpr: 329 OpStr = " smin "; 330 break; 331 case scSequentialUMinExpr: 332 OpStr = " umin_seq "; 333 break; 334 default: 335 llvm_unreachable("There are no other nary expression types."); 336 } 337 OS << "("; 338 ListSeparator LS(OpStr); 339 for (const SCEV *Op : NAry->operands()) 340 OS << LS << *Op; 341 OS << ")"; 342 switch (NAry->getSCEVType()) { 343 case scAddExpr: 344 case scMulExpr: 345 if (NAry->hasNoUnsignedWrap()) 346 OS << "<nuw>"; 347 if (NAry->hasNoSignedWrap()) 348 OS << "<nsw>"; 349 break; 350 default: 351 // Nothing to print for other nary expressions. 352 break; 353 } 354 return; 355 } 356 case scUDivExpr: { 357 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 358 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 359 return; 360 } 361 case scUnknown: { 362 const SCEVUnknown *U = cast<SCEVUnknown>(this); 363 Type *AllocTy; 364 if (U->isSizeOf(AllocTy)) { 365 OS << "sizeof(" << *AllocTy << ")"; 366 return; 367 } 368 if (U->isAlignOf(AllocTy)) { 369 OS << "alignof(" << *AllocTy << ")"; 370 return; 371 } 372 373 Type *CTy; 374 Constant *FieldNo; 375 if (U->isOffsetOf(CTy, FieldNo)) { 376 OS << "offsetof(" << *CTy << ", "; 377 FieldNo->printAsOperand(OS, false); 378 OS << ")"; 379 return; 380 } 381 382 // Otherwise just print it normally. 383 U->getValue()->printAsOperand(OS, false); 384 return; 385 } 386 case scCouldNotCompute: 387 OS << "***COULDNOTCOMPUTE***"; 388 return; 389 } 390 llvm_unreachable("Unknown SCEV kind!"); 391 } 392 393 Type *SCEV::getType() const { 394 switch (getSCEVType()) { 395 case scConstant: 396 return cast<SCEVConstant>(this)->getType(); 397 case scPtrToInt: 398 case scTruncate: 399 case scZeroExtend: 400 case scSignExtend: 401 return cast<SCEVCastExpr>(this)->getType(); 402 case scAddRecExpr: 403 return cast<SCEVAddRecExpr>(this)->getType(); 404 case scMulExpr: 405 return cast<SCEVMulExpr>(this)->getType(); 406 case scUMaxExpr: 407 case scSMaxExpr: 408 case scUMinExpr: 409 case scSMinExpr: 410 return cast<SCEVMinMaxExpr>(this)->getType(); 411 case scSequentialUMinExpr: 412 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 413 case scAddExpr: 414 return cast<SCEVAddExpr>(this)->getType(); 415 case scUDivExpr: 416 return cast<SCEVUDivExpr>(this)->getType(); 417 case scUnknown: 418 return cast<SCEVUnknown>(this)->getType(); 419 case scCouldNotCompute: 420 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 421 } 422 llvm_unreachable("Unknown SCEV kind!"); 423 } 424 425 bool SCEV::isZero() const { 426 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 427 return SC->getValue()->isZero(); 428 return false; 429 } 430 431 bool SCEV::isOne() const { 432 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 433 return SC->getValue()->isOne(); 434 return false; 435 } 436 437 bool SCEV::isAllOnesValue() const { 438 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 439 return SC->getValue()->isMinusOne(); 440 return false; 441 } 442 443 bool SCEV::isNonConstantNegative() const { 444 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 445 if (!Mul) return false; 446 447 // If there is a constant factor, it will be first. 448 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 449 if (!SC) return false; 450 451 // Return true if the value is negative, this matches things like (-42 * V). 452 return SC->getAPInt().isNegative(); 453 } 454 455 SCEVCouldNotCompute::SCEVCouldNotCompute() : 456 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 457 458 bool SCEVCouldNotCompute::classof(const SCEV *S) { 459 return S->getSCEVType() == scCouldNotCompute; 460 } 461 462 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 463 FoldingSetNodeID ID; 464 ID.AddInteger(scConstant); 465 ID.AddPointer(V); 466 void *IP = nullptr; 467 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 468 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 469 UniqueSCEVs.InsertNode(S, IP); 470 return S; 471 } 472 473 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 474 return getConstant(ConstantInt::get(getContext(), Val)); 475 } 476 477 const SCEV * 478 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 479 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 480 return getConstant(ConstantInt::get(ITy, V, isSigned)); 481 } 482 483 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 484 const SCEV *op, Type *ty) 485 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 486 Operands[0] = op; 487 } 488 489 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 490 Type *ITy) 491 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 492 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 493 "Must be a non-bit-width-changing pointer-to-integer cast!"); 494 } 495 496 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 497 SCEVTypes SCEVTy, const SCEV *op, 498 Type *ty) 499 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 500 501 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 502 Type *ty) 503 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 504 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 505 "Cannot truncate non-integer value!"); 506 } 507 508 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 509 const SCEV *op, Type *ty) 510 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 511 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 512 "Cannot zero extend non-integer value!"); 513 } 514 515 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 516 const SCEV *op, Type *ty) 517 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 518 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 519 "Cannot sign extend non-integer value!"); 520 } 521 522 void SCEVUnknown::deleted() { 523 // Clear this SCEVUnknown from various maps. 524 SE->forgetMemoizedResults(this); 525 526 // Remove this SCEVUnknown from the uniquing map. 527 SE->UniqueSCEVs.RemoveNode(this); 528 529 // Release the value. 530 setValPtr(nullptr); 531 } 532 533 void SCEVUnknown::allUsesReplacedWith(Value *New) { 534 // Clear this SCEVUnknown from various maps. 535 SE->forgetMemoizedResults(this); 536 537 // Remove this SCEVUnknown from the uniquing map. 538 SE->UniqueSCEVs.RemoveNode(this); 539 540 // Replace the value pointer in case someone is still using this SCEVUnknown. 541 setValPtr(New); 542 } 543 544 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 546 if (VCE->getOpcode() == Instruction::PtrToInt) 547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 548 if (CE->getOpcode() == Instruction::GetElementPtr && 549 CE->getOperand(0)->isNullValue() && 550 CE->getNumOperands() == 2) 551 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 552 if (CI->isOne()) { 553 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 554 return true; 555 } 556 557 return false; 558 } 559 560 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 561 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 562 if (VCE->getOpcode() == Instruction::PtrToInt) 563 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 564 if (CE->getOpcode() == Instruction::GetElementPtr && 565 CE->getOperand(0)->isNullValue()) { 566 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 567 if (StructType *STy = dyn_cast<StructType>(Ty)) 568 if (!STy->isPacked() && 569 CE->getNumOperands() == 3 && 570 CE->getOperand(1)->isNullValue()) { 571 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 572 if (CI->isOne() && 573 STy->getNumElements() == 2 && 574 STy->getElementType(0)->isIntegerTy(1)) { 575 AllocTy = STy->getElementType(1); 576 return true; 577 } 578 } 579 } 580 581 return false; 582 } 583 584 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 585 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 586 if (VCE->getOpcode() == Instruction::PtrToInt) 587 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 588 if (CE->getOpcode() == Instruction::GetElementPtr && 589 CE->getNumOperands() == 3 && 590 CE->getOperand(0)->isNullValue() && 591 CE->getOperand(1)->isNullValue()) { 592 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 593 // Ignore vector types here so that ScalarEvolutionExpander doesn't 594 // emit getelementptrs that index into vectors. 595 if (Ty->isStructTy() || Ty->isArrayTy()) { 596 CTy = Ty; 597 FieldNo = CE->getOperand(2); 598 return true; 599 } 600 } 601 602 return false; 603 } 604 605 //===----------------------------------------------------------------------===// 606 // SCEV Utilities 607 //===----------------------------------------------------------------------===// 608 609 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 610 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 611 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 612 /// have been previously deemed to be "equally complex" by this routine. It is 613 /// intended to avoid exponential time complexity in cases like: 614 /// 615 /// %a = f(%x, %y) 616 /// %b = f(%a, %a) 617 /// %c = f(%b, %b) 618 /// 619 /// %d = f(%x, %y) 620 /// %e = f(%d, %d) 621 /// %f = f(%e, %e) 622 /// 623 /// CompareValueComplexity(%f, %c) 624 /// 625 /// Since we do not continue running this routine on expression trees once we 626 /// have seen unequal values, there is no need to track them in the cache. 627 static int 628 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 629 const LoopInfo *const LI, Value *LV, Value *RV, 630 unsigned Depth) { 631 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 632 return 0; 633 634 // Order pointer values after integer values. This helps SCEVExpander form 635 // GEPs. 636 bool LIsPointer = LV->getType()->isPointerTy(), 637 RIsPointer = RV->getType()->isPointerTy(); 638 if (LIsPointer != RIsPointer) 639 return (int)LIsPointer - (int)RIsPointer; 640 641 // Compare getValueID values. 642 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 643 if (LID != RID) 644 return (int)LID - (int)RID; 645 646 // Sort arguments by their position. 647 if (const auto *LA = dyn_cast<Argument>(LV)) { 648 const auto *RA = cast<Argument>(RV); 649 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 650 return (int)LArgNo - (int)RArgNo; 651 } 652 653 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 654 const auto *RGV = cast<GlobalValue>(RV); 655 656 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 657 auto LT = GV->getLinkage(); 658 return !(GlobalValue::isPrivateLinkage(LT) || 659 GlobalValue::isInternalLinkage(LT)); 660 }; 661 662 // Use the names to distinguish the two values, but only if the 663 // names are semantically important. 664 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 665 return LGV->getName().compare(RGV->getName()); 666 } 667 668 // For instructions, compare their loop depth, and their operand count. This 669 // is pretty loose. 670 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 671 const auto *RInst = cast<Instruction>(RV); 672 673 // Compare loop depths. 674 const BasicBlock *LParent = LInst->getParent(), 675 *RParent = RInst->getParent(); 676 if (LParent != RParent) { 677 unsigned LDepth = LI->getLoopDepth(LParent), 678 RDepth = LI->getLoopDepth(RParent); 679 if (LDepth != RDepth) 680 return (int)LDepth - (int)RDepth; 681 } 682 683 // Compare the number of operands. 684 unsigned LNumOps = LInst->getNumOperands(), 685 RNumOps = RInst->getNumOperands(); 686 if (LNumOps != RNumOps) 687 return (int)LNumOps - (int)RNumOps; 688 689 for (unsigned Idx : seq(0u, LNumOps)) { 690 int Result = 691 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 692 RInst->getOperand(Idx), Depth + 1); 693 if (Result != 0) 694 return Result; 695 } 696 } 697 698 EqCacheValue.unionSets(LV, RV); 699 return 0; 700 } 701 702 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 703 // than RHS, respectively. A three-way result allows recursive comparisons to be 704 // more efficient. 705 // If the max analysis depth was reached, return None, assuming we do not know 706 // if they are equivalent for sure. 707 static Optional<int> 708 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 709 EquivalenceClasses<const Value *> &EqCacheValue, 710 const LoopInfo *const LI, const SCEV *LHS, 711 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 712 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 713 if (LHS == RHS) 714 return 0; 715 716 // Primarily, sort the SCEVs by their getSCEVType(). 717 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 718 if (LType != RType) 719 return (int)LType - (int)RType; 720 721 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 722 return 0; 723 724 if (Depth > MaxSCEVCompareDepth) 725 return None; 726 727 // Aside from the getSCEVType() ordering, the particular ordering 728 // isn't very important except that it's beneficial to be consistent, 729 // so that (a + b) and (b + a) don't end up as different expressions. 730 switch (LType) { 731 case scUnknown: { 732 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 733 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 734 735 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 736 RU->getValue(), Depth + 1); 737 if (X == 0) 738 EqCacheSCEV.unionSets(LHS, RHS); 739 return X; 740 } 741 742 case scConstant: { 743 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 744 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 745 746 // Compare constant values. 747 const APInt &LA = LC->getAPInt(); 748 const APInt &RA = RC->getAPInt(); 749 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 750 if (LBitWidth != RBitWidth) 751 return (int)LBitWidth - (int)RBitWidth; 752 return LA.ult(RA) ? -1 : 1; 753 } 754 755 case scAddRecExpr: { 756 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 757 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 758 759 // There is always a dominance between two recs that are used by one SCEV, 760 // so we can safely sort recs by loop header dominance. We require such 761 // order in getAddExpr. 762 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 763 if (LLoop != RLoop) { 764 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 765 assert(LHead != RHead && "Two loops share the same header?"); 766 if (DT.dominates(LHead, RHead)) 767 return 1; 768 else 769 assert(DT.dominates(RHead, LHead) && 770 "No dominance between recurrences used by one SCEV?"); 771 return -1; 772 } 773 774 // Addrec complexity grows with operand count. 775 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 776 if (LNumOps != RNumOps) 777 return (int)LNumOps - (int)RNumOps; 778 779 // Lexicographically compare. 780 for (unsigned i = 0; i != LNumOps; ++i) { 781 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 782 LA->getOperand(i), RA->getOperand(i), DT, 783 Depth + 1); 784 if (X != 0) 785 return X; 786 } 787 EqCacheSCEV.unionSets(LHS, RHS); 788 return 0; 789 } 790 791 case scAddExpr: 792 case scMulExpr: 793 case scSMaxExpr: 794 case scUMaxExpr: 795 case scSMinExpr: 796 case scUMinExpr: 797 case scSequentialUMinExpr: { 798 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 799 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 800 801 // Lexicographically compare n-ary expressions. 802 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 803 if (LNumOps != RNumOps) 804 return (int)LNumOps - (int)RNumOps; 805 806 for (unsigned i = 0; i != LNumOps; ++i) { 807 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 808 LC->getOperand(i), RC->getOperand(i), DT, 809 Depth + 1); 810 if (X != 0) 811 return X; 812 } 813 EqCacheSCEV.unionSets(LHS, RHS); 814 return 0; 815 } 816 817 case scUDivExpr: { 818 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 819 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 820 821 // Lexicographically compare udiv expressions. 822 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 823 RC->getLHS(), DT, Depth + 1); 824 if (X != 0) 825 return X; 826 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 827 RC->getRHS(), DT, Depth + 1); 828 if (X == 0) 829 EqCacheSCEV.unionSets(LHS, RHS); 830 return X; 831 } 832 833 case scPtrToInt: 834 case scTruncate: 835 case scZeroExtend: 836 case scSignExtend: { 837 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 838 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 839 840 // Compare cast expressions by operand. 841 auto X = 842 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 843 RC->getOperand(), DT, Depth + 1); 844 if (X == 0) 845 EqCacheSCEV.unionSets(LHS, RHS); 846 return X; 847 } 848 849 case scCouldNotCompute: 850 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 851 } 852 llvm_unreachable("Unknown SCEV kind!"); 853 } 854 855 /// Given a list of SCEV objects, order them by their complexity, and group 856 /// objects of the same complexity together by value. When this routine is 857 /// finished, we know that any duplicates in the vector are consecutive and that 858 /// complexity is monotonically increasing. 859 /// 860 /// Note that we go take special precautions to ensure that we get deterministic 861 /// results from this routine. In other words, we don't want the results of 862 /// this to depend on where the addresses of various SCEV objects happened to 863 /// land in memory. 864 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 865 LoopInfo *LI, DominatorTree &DT) { 866 if (Ops.size() < 2) return; // Noop 867 868 EquivalenceClasses<const SCEV *> EqCacheSCEV; 869 EquivalenceClasses<const Value *> EqCacheValue; 870 871 // Whether LHS has provably less complexity than RHS. 872 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 873 auto Complexity = 874 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 875 return Complexity && *Complexity < 0; 876 }; 877 if (Ops.size() == 2) { 878 // This is the common case, which also happens to be trivially simple. 879 // Special case it. 880 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 881 if (IsLessComplex(RHS, LHS)) 882 std::swap(LHS, RHS); 883 return; 884 } 885 886 // Do the rough sort by complexity. 887 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 888 return IsLessComplex(LHS, RHS); 889 }); 890 891 // Now that we are sorted by complexity, group elements of the same 892 // complexity. Note that this is, at worst, N^2, but the vector is likely to 893 // be extremely short in practice. Note that we take this approach because we 894 // do not want to depend on the addresses of the objects we are grouping. 895 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 896 const SCEV *S = Ops[i]; 897 unsigned Complexity = S->getSCEVType(); 898 899 // If there are any objects of the same complexity and same value as this 900 // one, group them. 901 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 902 if (Ops[j] == S) { // Found a duplicate. 903 // Move it to immediately after i'th element. 904 std::swap(Ops[i+1], Ops[j]); 905 ++i; // no need to rescan it. 906 if (i == e-2) return; // Done! 907 } 908 } 909 } 910 } 911 912 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 913 /// least HugeExprThreshold nodes). 914 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 915 return any_of(Ops, [](const SCEV *S) { 916 return S->getExpressionSize() >= HugeExprThreshold; 917 }); 918 } 919 920 //===----------------------------------------------------------------------===// 921 // Simple SCEV method implementations 922 //===----------------------------------------------------------------------===// 923 924 /// Compute BC(It, K). The result has width W. Assume, K > 0. 925 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 926 ScalarEvolution &SE, 927 Type *ResultTy) { 928 // Handle the simplest case efficiently. 929 if (K == 1) 930 return SE.getTruncateOrZeroExtend(It, ResultTy); 931 932 // We are using the following formula for BC(It, K): 933 // 934 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 935 // 936 // Suppose, W is the bitwidth of the return value. We must be prepared for 937 // overflow. Hence, we must assure that the result of our computation is 938 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 939 // safe in modular arithmetic. 940 // 941 // However, this code doesn't use exactly that formula; the formula it uses 942 // is something like the following, where T is the number of factors of 2 in 943 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 944 // exponentiation: 945 // 946 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 947 // 948 // This formula is trivially equivalent to the previous formula. However, 949 // this formula can be implemented much more efficiently. The trick is that 950 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 951 // arithmetic. To do exact division in modular arithmetic, all we have 952 // to do is multiply by the inverse. Therefore, this step can be done at 953 // width W. 954 // 955 // The next issue is how to safely do the division by 2^T. The way this 956 // is done is by doing the multiplication step at a width of at least W + T 957 // bits. This way, the bottom W+T bits of the product are accurate. Then, 958 // when we perform the division by 2^T (which is equivalent to a right shift 959 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 960 // truncated out after the division by 2^T. 961 // 962 // In comparison to just directly using the first formula, this technique 963 // is much more efficient; using the first formula requires W * K bits, 964 // but this formula less than W + K bits. Also, the first formula requires 965 // a division step, whereas this formula only requires multiplies and shifts. 966 // 967 // It doesn't matter whether the subtraction step is done in the calculation 968 // width or the input iteration count's width; if the subtraction overflows, 969 // the result must be zero anyway. We prefer here to do it in the width of 970 // the induction variable because it helps a lot for certain cases; CodeGen 971 // isn't smart enough to ignore the overflow, which leads to much less 972 // efficient code if the width of the subtraction is wider than the native 973 // register width. 974 // 975 // (It's possible to not widen at all by pulling out factors of 2 before 976 // the multiplication; for example, K=2 can be calculated as 977 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 978 // extra arithmetic, so it's not an obvious win, and it gets 979 // much more complicated for K > 3.) 980 981 // Protection from insane SCEVs; this bound is conservative, 982 // but it probably doesn't matter. 983 if (K > 1000) 984 return SE.getCouldNotCompute(); 985 986 unsigned W = SE.getTypeSizeInBits(ResultTy); 987 988 // Calculate K! / 2^T and T; we divide out the factors of two before 989 // multiplying for calculating K! / 2^T to avoid overflow. 990 // Other overflow doesn't matter because we only care about the bottom 991 // W bits of the result. 992 APInt OddFactorial(W, 1); 993 unsigned T = 1; 994 for (unsigned i = 3; i <= K; ++i) { 995 APInt Mult(W, i); 996 unsigned TwoFactors = Mult.countTrailingZeros(); 997 T += TwoFactors; 998 Mult.lshrInPlace(TwoFactors); 999 OddFactorial *= Mult; 1000 } 1001 1002 // We need at least W + T bits for the multiplication step 1003 unsigned CalculationBits = W + T; 1004 1005 // Calculate 2^T, at width T+W. 1006 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1007 1008 // Calculate the multiplicative inverse of K! / 2^T; 1009 // this multiplication factor will perform the exact division by 1010 // K! / 2^T. 1011 APInt Mod = APInt::getSignedMinValue(W+1); 1012 APInt MultiplyFactor = OddFactorial.zext(W+1); 1013 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1014 MultiplyFactor = MultiplyFactor.trunc(W); 1015 1016 // Calculate the product, at width T+W 1017 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1018 CalculationBits); 1019 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1020 for (unsigned i = 1; i != K; ++i) { 1021 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1022 Dividend = SE.getMulExpr(Dividend, 1023 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1024 } 1025 1026 // Divide by 2^T 1027 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1028 1029 // Truncate the result, and divide by K! / 2^T. 1030 1031 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1032 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1033 } 1034 1035 /// Return the value of this chain of recurrences at the specified iteration 1036 /// number. We can evaluate this recurrence by multiplying each element in the 1037 /// chain by the binomial coefficient corresponding to it. In other words, we 1038 /// can evaluate {A,+,B,+,C,+,D} as: 1039 /// 1040 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1041 /// 1042 /// where BC(It, k) stands for binomial coefficient. 1043 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1044 ScalarEvolution &SE) const { 1045 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1046 } 1047 1048 const SCEV * 1049 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1050 const SCEV *It, ScalarEvolution &SE) { 1051 assert(Operands.size() > 0); 1052 const SCEV *Result = Operands[0]; 1053 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1054 // The computation is correct in the face of overflow provided that the 1055 // multiplication is performed _after_ the evaluation of the binomial 1056 // coefficient. 1057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1058 if (isa<SCEVCouldNotCompute>(Coeff)) 1059 return Coeff; 1060 1061 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1062 } 1063 return Result; 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // SCEV Expression folder implementations 1068 //===----------------------------------------------------------------------===// 1069 1070 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1071 unsigned Depth) { 1072 assert(Depth <= 1 && 1073 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1074 1075 // We could be called with an integer-typed operands during SCEV rewrites. 1076 // Since the operand is an integer already, just perform zext/trunc/self cast. 1077 if (!Op->getType()->isPointerTy()) 1078 return Op; 1079 1080 // What would be an ID for such a SCEV cast expression? 1081 FoldingSetNodeID ID; 1082 ID.AddInteger(scPtrToInt); 1083 ID.AddPointer(Op); 1084 1085 void *IP = nullptr; 1086 1087 // Is there already an expression for such a cast? 1088 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1089 return S; 1090 1091 // It isn't legal for optimizations to construct new ptrtoint expressions 1092 // for non-integral pointers. 1093 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1094 return getCouldNotCompute(); 1095 1096 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1097 1098 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1099 // is sufficiently wide to represent all possible pointer values. 1100 // We could theoretically teach SCEV to truncate wider pointers, but 1101 // that isn't implemented for now. 1102 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1103 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1104 return getCouldNotCompute(); 1105 1106 // If not, is this expression something we can't reduce any further? 1107 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1108 // Perform some basic constant folding. If the operand of the ptr2int cast 1109 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1110 // left as-is), but produce a zero constant. 1111 // NOTE: We could handle a more general case, but lack motivational cases. 1112 if (isa<ConstantPointerNull>(U->getValue())) 1113 return getZero(IntPtrTy); 1114 1115 // Create an explicit cast node. 1116 // We can reuse the existing insert position since if we get here, 1117 // we won't have made any changes which would invalidate it. 1118 SCEV *S = new (SCEVAllocator) 1119 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1120 UniqueSCEVs.InsertNode(S, IP); 1121 registerUser(S, Op); 1122 return S; 1123 } 1124 1125 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1126 "non-SCEVUnknown's."); 1127 1128 // Otherwise, we've got some expression that is more complex than just a 1129 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1130 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1131 // only, and the expressions must otherwise be integer-typed. 1132 // So sink the cast down to the SCEVUnknown's. 1133 1134 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1135 /// which computes a pointer-typed value, and rewrites the whole expression 1136 /// tree so that *all* the computations are done on integers, and the only 1137 /// pointer-typed operands in the expression are SCEVUnknown. 1138 class SCEVPtrToIntSinkingRewriter 1139 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1140 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1141 1142 public: 1143 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1144 1145 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1146 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1147 return Rewriter.visit(Scev); 1148 } 1149 1150 const SCEV *visit(const SCEV *S) { 1151 Type *STy = S->getType(); 1152 // If the expression is not pointer-typed, just keep it as-is. 1153 if (!STy->isPointerTy()) 1154 return S; 1155 // Else, recursively sink the cast down into it. 1156 return Base::visit(S); 1157 } 1158 1159 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1160 SmallVector<const SCEV *, 2> Operands; 1161 bool Changed = false; 1162 for (auto *Op : Expr->operands()) { 1163 Operands.push_back(visit(Op)); 1164 Changed |= Op != Operands.back(); 1165 } 1166 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1167 } 1168 1169 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1170 SmallVector<const SCEV *, 2> Operands; 1171 bool Changed = false; 1172 for (auto *Op : Expr->operands()) { 1173 Operands.push_back(visit(Op)); 1174 Changed |= Op != Operands.back(); 1175 } 1176 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1177 } 1178 1179 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1180 assert(Expr->getType()->isPointerTy() && 1181 "Should only reach pointer-typed SCEVUnknown's."); 1182 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1183 } 1184 }; 1185 1186 // And actually perform the cast sinking. 1187 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1188 assert(IntOp->getType()->isIntegerTy() && 1189 "We must have succeeded in sinking the cast, " 1190 "and ending up with an integer-typed expression!"); 1191 return IntOp; 1192 } 1193 1194 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1195 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1196 1197 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1198 if (isa<SCEVCouldNotCompute>(IntOp)) 1199 return IntOp; 1200 1201 return getTruncateOrZeroExtend(IntOp, Ty); 1202 } 1203 1204 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1205 unsigned Depth) { 1206 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1207 "This is not a truncating conversion!"); 1208 assert(isSCEVable(Ty) && 1209 "This is not a conversion to a SCEVable type!"); 1210 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1211 Ty = getEffectiveSCEVType(Ty); 1212 1213 FoldingSetNodeID ID; 1214 ID.AddInteger(scTruncate); 1215 ID.AddPointer(Op); 1216 ID.AddPointer(Ty); 1217 void *IP = nullptr; 1218 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1219 1220 // Fold if the operand is constant. 1221 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1222 return getConstant( 1223 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1224 1225 // trunc(trunc(x)) --> trunc(x) 1226 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1227 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1228 1229 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1230 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1231 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1232 1233 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1234 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1235 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1236 1237 if (Depth > MaxCastDepth) { 1238 SCEV *S = 1239 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1240 UniqueSCEVs.InsertNode(S, IP); 1241 registerUser(S, Op); 1242 return S; 1243 } 1244 1245 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1246 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1247 // if after transforming we have at most one truncate, not counting truncates 1248 // that replace other casts. 1249 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1250 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1251 SmallVector<const SCEV *, 4> Operands; 1252 unsigned numTruncs = 0; 1253 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1254 ++i) { 1255 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1256 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1257 isa<SCEVTruncateExpr>(S)) 1258 numTruncs++; 1259 Operands.push_back(S); 1260 } 1261 if (numTruncs < 2) { 1262 if (isa<SCEVAddExpr>(Op)) 1263 return getAddExpr(Operands); 1264 else if (isa<SCEVMulExpr>(Op)) 1265 return getMulExpr(Operands); 1266 else 1267 llvm_unreachable("Unexpected SCEV type for Op."); 1268 } 1269 // Although we checked in the beginning that ID is not in the cache, it is 1270 // possible that during recursion and different modification ID was inserted 1271 // into the cache. So if we find it, just return it. 1272 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1273 return S; 1274 } 1275 1276 // If the input value is a chrec scev, truncate the chrec's operands. 1277 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1278 SmallVector<const SCEV *, 4> Operands; 1279 for (const SCEV *Op : AddRec->operands()) 1280 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1281 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1282 } 1283 1284 // Return zero if truncating to known zeros. 1285 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1286 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1287 return getZero(Ty); 1288 1289 // The cast wasn't folded; create an explicit cast node. We can reuse 1290 // the existing insert position since if we get here, we won't have 1291 // made any changes which would invalidate it. 1292 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1293 Op, Ty); 1294 UniqueSCEVs.InsertNode(S, IP); 1295 registerUser(S, Op); 1296 return S; 1297 } 1298 1299 // Get the limit of a recurrence such that incrementing by Step cannot cause 1300 // signed overflow as long as the value of the recurrence within the 1301 // loop does not exceed this limit before incrementing. 1302 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1306 if (SE->isKnownPositive(Step)) { 1307 *Pred = ICmpInst::ICMP_SLT; 1308 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1309 SE->getSignedRangeMax(Step)); 1310 } 1311 if (SE->isKnownNegative(Step)) { 1312 *Pred = ICmpInst::ICMP_SGT; 1313 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1314 SE->getSignedRangeMin(Step)); 1315 } 1316 return nullptr; 1317 } 1318 1319 // Get the limit of a recurrence such that incrementing by Step cannot cause 1320 // unsigned overflow as long as the value of the recurrence within the loop does 1321 // not exceed this limit before incrementing. 1322 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1323 ICmpInst::Predicate *Pred, 1324 ScalarEvolution *SE) { 1325 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1326 *Pred = ICmpInst::ICMP_ULT; 1327 1328 return SE->getConstant(APInt::getMinValue(BitWidth) - 1329 SE->getUnsignedRangeMax(Step)); 1330 } 1331 1332 namespace { 1333 1334 struct ExtendOpTraitsBase { 1335 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1336 unsigned); 1337 }; 1338 1339 // Used to make code generic over signed and unsigned overflow. 1340 template <typename ExtendOp> struct ExtendOpTraits { 1341 // Members present: 1342 // 1343 // static const SCEV::NoWrapFlags WrapType; 1344 // 1345 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1346 // 1347 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1348 // ICmpInst::Predicate *Pred, 1349 // ScalarEvolution *SE); 1350 }; 1351 1352 template <> 1353 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1354 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1355 1356 static const GetExtendExprTy GetExtendExpr; 1357 1358 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1359 ICmpInst::Predicate *Pred, 1360 ScalarEvolution *SE) { 1361 return getSignedOverflowLimitForStep(Step, Pred, SE); 1362 } 1363 }; 1364 1365 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1366 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1367 1368 template <> 1369 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1370 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1371 1372 static const GetExtendExprTy GetExtendExpr; 1373 1374 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1375 ICmpInst::Predicate *Pred, 1376 ScalarEvolution *SE) { 1377 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1378 } 1379 }; 1380 1381 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1382 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1383 1384 } // end anonymous namespace 1385 1386 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1387 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1388 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1389 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1390 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1391 // expression "Step + sext/zext(PreIncAR)" is congruent with 1392 // "sext/zext(PostIncAR)" 1393 template <typename ExtendOpTy> 1394 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1395 ScalarEvolution *SE, unsigned Depth) { 1396 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1397 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1398 1399 const Loop *L = AR->getLoop(); 1400 const SCEV *Start = AR->getStart(); 1401 const SCEV *Step = AR->getStepRecurrence(*SE); 1402 1403 // Check for a simple looking step prior to loop entry. 1404 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1405 if (!SA) 1406 return nullptr; 1407 1408 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1409 // subtraction is expensive. For this purpose, perform a quick and dirty 1410 // difference, by checking for Step in the operand list. 1411 SmallVector<const SCEV *, 4> DiffOps; 1412 for (const SCEV *Op : SA->operands()) 1413 if (Op != Step) 1414 DiffOps.push_back(Op); 1415 1416 if (DiffOps.size() == SA->getNumOperands()) 1417 return nullptr; 1418 1419 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1420 // `Step`: 1421 1422 // 1. NSW/NUW flags on the step increment. 1423 auto PreStartFlags = 1424 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1425 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1426 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1427 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1428 1429 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1430 // "S+X does not sign/unsign-overflow". 1431 // 1432 1433 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1434 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1435 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1436 return PreStart; 1437 1438 // 2. Direct overflow check on the step operation's expression. 1439 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1440 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1441 const SCEV *OperandExtendedStart = 1442 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1443 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1444 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1445 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1446 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1447 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1448 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1449 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1450 } 1451 return PreStart; 1452 } 1453 1454 // 3. Loop precondition. 1455 ICmpInst::Predicate Pred; 1456 const SCEV *OverflowLimit = 1457 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1458 1459 if (OverflowLimit && 1460 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1461 return PreStart; 1462 1463 return nullptr; 1464 } 1465 1466 // Get the normalized zero or sign extended expression for this AddRec's Start. 1467 template <typename ExtendOpTy> 1468 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1469 ScalarEvolution *SE, 1470 unsigned Depth) { 1471 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1472 1473 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1474 if (!PreStart) 1475 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1476 1477 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1478 Depth), 1479 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1480 } 1481 1482 // Try to prove away overflow by looking at "nearby" add recurrences. A 1483 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1484 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1485 // 1486 // Formally: 1487 // 1488 // {S,+,X} == {S-T,+,X} + T 1489 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1490 // 1491 // If ({S-T,+,X} + T) does not overflow ... (1) 1492 // 1493 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1494 // 1495 // If {S-T,+,X} does not overflow ... (2) 1496 // 1497 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1498 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1499 // 1500 // If (S-T)+T does not overflow ... (3) 1501 // 1502 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1503 // == {Ext(S),+,Ext(X)} == LHS 1504 // 1505 // Thus, if (1), (2) and (3) are true for some T, then 1506 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1507 // 1508 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1509 // does not overflow" restricted to the 0th iteration. Therefore we only need 1510 // to check for (1) and (2). 1511 // 1512 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1513 // is `Delta` (defined below). 1514 template <typename ExtendOpTy> 1515 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1516 const SCEV *Step, 1517 const Loop *L) { 1518 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1519 1520 // We restrict `Start` to a constant to prevent SCEV from spending too much 1521 // time here. It is correct (but more expensive) to continue with a 1522 // non-constant `Start` and do a general SCEV subtraction to compute 1523 // `PreStart` below. 1524 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1525 if (!StartC) 1526 return false; 1527 1528 APInt StartAI = StartC->getAPInt(); 1529 1530 for (unsigned Delta : {-2, -1, 1, 2}) { 1531 const SCEV *PreStart = getConstant(StartAI - Delta); 1532 1533 FoldingSetNodeID ID; 1534 ID.AddInteger(scAddRecExpr); 1535 ID.AddPointer(PreStart); 1536 ID.AddPointer(Step); 1537 ID.AddPointer(L); 1538 void *IP = nullptr; 1539 const auto *PreAR = 1540 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1541 1542 // Give up if we don't already have the add recurrence we need because 1543 // actually constructing an add recurrence is relatively expensive. 1544 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1545 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1546 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1547 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1548 DeltaS, &Pred, this); 1549 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1550 return true; 1551 } 1552 } 1553 1554 return false; 1555 } 1556 1557 // Finds an integer D for an expression (C + x + y + ...) such that the top 1558 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1559 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1560 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1561 // the (C + x + y + ...) expression is \p WholeAddExpr. 1562 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1563 const SCEVConstant *ConstantTerm, 1564 const SCEVAddExpr *WholeAddExpr) { 1565 const APInt &C = ConstantTerm->getAPInt(); 1566 const unsigned BitWidth = C.getBitWidth(); 1567 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1568 uint32_t TZ = BitWidth; 1569 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1570 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1571 if (TZ) { 1572 // Set D to be as many least significant bits of C as possible while still 1573 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1574 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1575 } 1576 return APInt(BitWidth, 0); 1577 } 1578 1579 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1580 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1581 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1582 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1583 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1584 const APInt &ConstantStart, 1585 const SCEV *Step) { 1586 const unsigned BitWidth = ConstantStart.getBitWidth(); 1587 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1588 if (TZ) 1589 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1590 : ConstantStart; 1591 return APInt(BitWidth, 0); 1592 } 1593 1594 const SCEV * 1595 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1596 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1597 "This is not an extending conversion!"); 1598 assert(isSCEVable(Ty) && 1599 "This is not a conversion to a SCEVable type!"); 1600 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1601 Ty = getEffectiveSCEVType(Ty); 1602 1603 // Fold if the operand is constant. 1604 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1605 return getConstant( 1606 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1607 1608 // zext(zext(x)) --> zext(x) 1609 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1610 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1611 1612 // Before doing any expensive analysis, check to see if we've already 1613 // computed a SCEV for this Op and Ty. 1614 FoldingSetNodeID ID; 1615 ID.AddInteger(scZeroExtend); 1616 ID.AddPointer(Op); 1617 ID.AddPointer(Ty); 1618 void *IP = nullptr; 1619 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1620 if (Depth > MaxCastDepth) { 1621 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1622 Op, Ty); 1623 UniqueSCEVs.InsertNode(S, IP); 1624 registerUser(S, Op); 1625 return S; 1626 } 1627 1628 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1629 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1630 // It's possible the bits taken off by the truncate were all zero bits. If 1631 // so, we should be able to simplify this further. 1632 const SCEV *X = ST->getOperand(); 1633 ConstantRange CR = getUnsignedRange(X); 1634 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1635 unsigned NewBits = getTypeSizeInBits(Ty); 1636 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1637 CR.zextOrTrunc(NewBits))) 1638 return getTruncateOrZeroExtend(X, Ty, Depth); 1639 } 1640 1641 // If the input value is a chrec scev, and we can prove that the value 1642 // did not overflow the old, smaller, value, we can zero extend all of the 1643 // operands (often constants). This allows analysis of something like 1644 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1645 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1646 if (AR->isAffine()) { 1647 const SCEV *Start = AR->getStart(); 1648 const SCEV *Step = AR->getStepRecurrence(*this); 1649 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1650 const Loop *L = AR->getLoop(); 1651 1652 if (!AR->hasNoUnsignedWrap()) { 1653 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1654 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1655 } 1656 1657 // If we have special knowledge that this addrec won't overflow, 1658 // we don't need to do any further analysis. 1659 if (AR->hasNoUnsignedWrap()) 1660 return getAddRecExpr( 1661 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1662 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1663 1664 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1665 // Note that this serves two purposes: It filters out loops that are 1666 // simply not analyzable, and it covers the case where this code is 1667 // being called from within backedge-taken count analysis, such that 1668 // attempting to ask for the backedge-taken count would likely result 1669 // in infinite recursion. In the later case, the analysis code will 1670 // cope with a conservative value, and it will take care to purge 1671 // that value once it has finished. 1672 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1673 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1674 // Manually compute the final value for AR, checking for overflow. 1675 1676 // Check whether the backedge-taken count can be losslessly casted to 1677 // the addrec's type. The count is always unsigned. 1678 const SCEV *CastedMaxBECount = 1679 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1680 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1681 CastedMaxBECount, MaxBECount->getType(), Depth); 1682 if (MaxBECount == RecastedMaxBECount) { 1683 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1684 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1685 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1686 SCEV::FlagAnyWrap, Depth + 1); 1687 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1688 SCEV::FlagAnyWrap, 1689 Depth + 1), 1690 WideTy, Depth + 1); 1691 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1692 const SCEV *WideMaxBECount = 1693 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1694 const SCEV *OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getZeroExtendExpr(Step, WideTy, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1); 1700 if (ZAdd == OperandExtendedAdd) { 1701 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1702 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1703 // Return the expression with the addrec on the outside. 1704 return getAddRecExpr( 1705 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1706 Depth + 1), 1707 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1708 AR->getNoWrapFlags()); 1709 } 1710 // Similar to above, only this time treat the step value as signed. 1711 // This covers loops that count down. 1712 OperandExtendedAdd = 1713 getAddExpr(WideStart, 1714 getMulExpr(WideMaxBECount, 1715 getSignExtendExpr(Step, WideTy, Depth + 1), 1716 SCEV::FlagAnyWrap, Depth + 1), 1717 SCEV::FlagAnyWrap, Depth + 1); 1718 if (ZAdd == OperandExtendedAdd) { 1719 // Cache knowledge of AR NW, which is propagated to this AddRec. 1720 // Negative step causes unsigned wrap, but it still can't self-wrap. 1721 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1722 // Return the expression with the addrec on the outside. 1723 return getAddRecExpr( 1724 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1725 Depth + 1), 1726 getSignExtendExpr(Step, Ty, Depth + 1), L, 1727 AR->getNoWrapFlags()); 1728 } 1729 } 1730 } 1731 1732 // Normally, in the cases we can prove no-overflow via a 1733 // backedge guarding condition, we can also compute a backedge 1734 // taken count for the loop. The exceptions are assumptions and 1735 // guards present in the loop -- SCEV is not great at exploiting 1736 // these to compute max backedge taken counts, but can still use 1737 // these to prove lack of overflow. Use this fact to avoid 1738 // doing extra work that may not pay off. 1739 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1740 !AC.assumptions().empty()) { 1741 1742 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1743 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1744 if (AR->hasNoUnsignedWrap()) { 1745 // Same as nuw case above - duplicated here to avoid a compile time 1746 // issue. It's not clear that the order of checks does matter, but 1747 // it's one of two issue possible causes for a change which was 1748 // reverted. Be conservative for the moment. 1749 return getAddRecExpr( 1750 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1751 Depth + 1), 1752 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1753 AR->getNoWrapFlags()); 1754 } 1755 1756 // For a negative step, we can extend the operands iff doing so only 1757 // traverses values in the range zext([0,UINT_MAX]). 1758 if (isKnownNegative(Step)) { 1759 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1760 getSignedRangeMin(Step)); 1761 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1762 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1763 // Cache knowledge of AR NW, which is propagated to this 1764 // AddRec. Negative step causes unsigned wrap, but it 1765 // still can't self-wrap. 1766 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1767 // Return the expression with the addrec on the outside. 1768 return getAddRecExpr( 1769 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1770 Depth + 1), 1771 getSignExtendExpr(Step, Ty, Depth + 1), L, 1772 AR->getNoWrapFlags()); 1773 } 1774 } 1775 } 1776 1777 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1778 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1779 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1780 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1781 const APInt &C = SC->getAPInt(); 1782 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1783 if (D != 0) { 1784 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1785 const SCEV *SResidual = 1786 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1787 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1788 return getAddExpr(SZExtD, SZExtR, 1789 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1790 Depth + 1); 1791 } 1792 } 1793 1794 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1795 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1796 return getAddRecExpr( 1797 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1798 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1799 } 1800 } 1801 1802 // zext(A % B) --> zext(A) % zext(B) 1803 { 1804 const SCEV *LHS; 1805 const SCEV *RHS; 1806 if (matchURem(Op, LHS, RHS)) 1807 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1808 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1809 } 1810 1811 // zext(A / B) --> zext(A) / zext(B). 1812 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1813 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1814 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1815 1816 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1817 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1818 if (SA->hasNoUnsignedWrap()) { 1819 // If the addition does not unsign overflow then we can, by definition, 1820 // commute the zero extension with the addition operation. 1821 SmallVector<const SCEV *, 4> Ops; 1822 for (const auto *Op : SA->operands()) 1823 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1824 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1825 } 1826 1827 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1828 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1829 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1830 // 1831 // Often address arithmetics contain expressions like 1832 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1833 // This transformation is useful while proving that such expressions are 1834 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1835 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1836 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1837 if (D != 0) { 1838 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1839 const SCEV *SResidual = 1840 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1841 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1842 return getAddExpr(SZExtD, SZExtR, 1843 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1844 Depth + 1); 1845 } 1846 } 1847 } 1848 1849 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1850 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1851 if (SM->hasNoUnsignedWrap()) { 1852 // If the multiply does not unsign overflow then we can, by definition, 1853 // commute the zero extension with the multiply operation. 1854 SmallVector<const SCEV *, 4> Ops; 1855 for (const auto *Op : SM->operands()) 1856 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1857 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1858 } 1859 1860 // zext(2^K * (trunc X to iN)) to iM -> 1861 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1862 // 1863 // Proof: 1864 // 1865 // zext(2^K * (trunc X to iN)) to iM 1866 // = zext((trunc X to iN) << K) to iM 1867 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1868 // (because shl removes the top K bits) 1869 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1870 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1871 // 1872 if (SM->getNumOperands() == 2) 1873 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1874 if (MulLHS->getAPInt().isPowerOf2()) 1875 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1876 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1877 MulLHS->getAPInt().logBase2(); 1878 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1879 return getMulExpr( 1880 getZeroExtendExpr(MulLHS, Ty), 1881 getZeroExtendExpr( 1882 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1883 SCEV::FlagNUW, Depth + 1); 1884 } 1885 } 1886 1887 // The cast wasn't folded; create an explicit cast node. 1888 // Recompute the insert position, as it may have been invalidated. 1889 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1890 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1891 Op, Ty); 1892 UniqueSCEVs.InsertNode(S, IP); 1893 registerUser(S, Op); 1894 return S; 1895 } 1896 1897 const SCEV * 1898 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1900 "This is not an extending conversion!"); 1901 assert(isSCEVable(Ty) && 1902 "This is not a conversion to a SCEVable type!"); 1903 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1904 Ty = getEffectiveSCEVType(Ty); 1905 1906 // Fold if the operand is constant. 1907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1908 return getConstant( 1909 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1910 1911 // sext(sext(x)) --> sext(x) 1912 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1913 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1914 1915 // sext(zext(x)) --> zext(x) 1916 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1917 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1918 1919 // Before doing any expensive analysis, check to see if we've already 1920 // computed a SCEV for this Op and Ty. 1921 FoldingSetNodeID ID; 1922 ID.AddInteger(scSignExtend); 1923 ID.AddPointer(Op); 1924 ID.AddPointer(Ty); 1925 void *IP = nullptr; 1926 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1927 // Limit recursion depth. 1928 if (Depth > MaxCastDepth) { 1929 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1930 Op, Ty); 1931 UniqueSCEVs.InsertNode(S, IP); 1932 registerUser(S, Op); 1933 return S; 1934 } 1935 1936 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1937 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1938 // It's possible the bits taken off by the truncate were all sign bits. If 1939 // so, we should be able to simplify this further. 1940 const SCEV *X = ST->getOperand(); 1941 ConstantRange CR = getSignedRange(X); 1942 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1943 unsigned NewBits = getTypeSizeInBits(Ty); 1944 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1945 CR.sextOrTrunc(NewBits))) 1946 return getTruncateOrSignExtend(X, Ty, Depth); 1947 } 1948 1949 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1950 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1951 if (SA->hasNoSignedWrap()) { 1952 // If the addition does not sign overflow then we can, by definition, 1953 // commute the sign extension with the addition operation. 1954 SmallVector<const SCEV *, 4> Ops; 1955 for (const auto *Op : SA->operands()) 1956 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1957 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1958 } 1959 1960 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1961 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1962 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1963 // 1964 // For instance, this will bring two seemingly different expressions: 1965 // 1 + sext(5 + 20 * %x + 24 * %y) and 1966 // sext(6 + 20 * %x + 24 * %y) 1967 // to the same form: 1968 // 2 + sext(4 + 20 * %x + 24 * %y) 1969 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1970 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1971 if (D != 0) { 1972 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1973 const SCEV *SResidual = 1974 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1975 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1976 return getAddExpr(SSExtD, SSExtR, 1977 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1978 Depth + 1); 1979 } 1980 } 1981 } 1982 // If the input value is a chrec scev, and we can prove that the value 1983 // did not overflow the old, smaller, value, we can sign extend all of the 1984 // operands (often constants). This allows analysis of something like 1985 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1986 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1987 if (AR->isAffine()) { 1988 const SCEV *Start = AR->getStart(); 1989 const SCEV *Step = AR->getStepRecurrence(*this); 1990 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1991 const Loop *L = AR->getLoop(); 1992 1993 if (!AR->hasNoSignedWrap()) { 1994 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1995 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1996 } 1997 1998 // If we have special knowledge that this addrec won't overflow, 1999 // we don't need to do any further analysis. 2000 if (AR->hasNoSignedWrap()) 2001 return getAddRecExpr( 2002 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2003 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 2004 2005 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2006 // Note that this serves two purposes: It filters out loops that are 2007 // simply not analyzable, and it covers the case where this code is 2008 // being called from within backedge-taken count analysis, such that 2009 // attempting to ask for the backedge-taken count would likely result 2010 // in infinite recursion. In the later case, the analysis code will 2011 // cope with a conservative value, and it will take care to purge 2012 // that value once it has finished. 2013 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2014 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2015 // Manually compute the final value for AR, checking for 2016 // overflow. 2017 2018 // Check whether the backedge-taken count can be losslessly casted to 2019 // the addrec's type. The count is always unsigned. 2020 const SCEV *CastedMaxBECount = 2021 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2022 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2023 CastedMaxBECount, MaxBECount->getType(), Depth); 2024 if (MaxBECount == RecastedMaxBECount) { 2025 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2026 // Check whether Start+Step*MaxBECount has no signed overflow. 2027 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2030 SCEV::FlagAnyWrap, 2031 Depth + 1), 2032 WideTy, Depth + 1); 2033 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2034 const SCEV *WideMaxBECount = 2035 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2036 const SCEV *OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getSignExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2044 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2045 // Return the expression with the addrec on the outside. 2046 return getAddRecExpr( 2047 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2048 Depth + 1), 2049 getSignExtendExpr(Step, Ty, Depth + 1), L, 2050 AR->getNoWrapFlags()); 2051 } 2052 // Similar to above, only this time treat the step value as unsigned. 2053 // This covers loops that count up with an unsigned step. 2054 OperandExtendedAdd = 2055 getAddExpr(WideStart, 2056 getMulExpr(WideMaxBECount, 2057 getZeroExtendExpr(Step, WideTy, Depth + 1), 2058 SCEV::FlagAnyWrap, Depth + 1), 2059 SCEV::FlagAnyWrap, Depth + 1); 2060 if (SAdd == OperandExtendedAdd) { 2061 // If AR wraps around then 2062 // 2063 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2064 // => SAdd != OperandExtendedAdd 2065 // 2066 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2067 // (SAdd == OperandExtendedAdd => AR is NW) 2068 2069 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2070 2071 // Return the expression with the addrec on the outside. 2072 return getAddRecExpr( 2073 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2074 Depth + 1), 2075 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2076 AR->getNoWrapFlags()); 2077 } 2078 } 2079 } 2080 2081 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2082 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2083 if (AR->hasNoSignedWrap()) { 2084 // Same as nsw case above - duplicated here to avoid a compile time 2085 // issue. It's not clear that the order of checks does matter, but 2086 // it's one of two issue possible causes for a change which was 2087 // reverted. Be conservative for the moment. 2088 return getAddRecExpr( 2089 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2090 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2091 } 2092 2093 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2094 // if D + (C - D + Step * n) could be proven to not signed wrap 2095 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2096 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2097 const APInt &C = SC->getAPInt(); 2098 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2099 if (D != 0) { 2100 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2101 const SCEV *SResidual = 2102 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2103 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2104 return getAddExpr(SSExtD, SSExtR, 2105 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2106 Depth + 1); 2107 } 2108 } 2109 2110 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2111 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2112 return getAddRecExpr( 2113 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2114 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2115 } 2116 } 2117 2118 // If the input value is provably positive and we could not simplify 2119 // away the sext build a zext instead. 2120 if (isKnownNonNegative(Op)) 2121 return getZeroExtendExpr(Op, Ty, Depth + 1); 2122 2123 // The cast wasn't folded; create an explicit cast node. 2124 // Recompute the insert position, as it may have been invalidated. 2125 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2126 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2127 Op, Ty); 2128 UniqueSCEVs.InsertNode(S, IP); 2129 registerUser(S, { Op }); 2130 return S; 2131 } 2132 2133 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2134 Type *Ty) { 2135 switch (Kind) { 2136 case scTruncate: 2137 return getTruncateExpr(Op, Ty); 2138 case scZeroExtend: 2139 return getZeroExtendExpr(Op, Ty); 2140 case scSignExtend: 2141 return getSignExtendExpr(Op, Ty); 2142 case scPtrToInt: 2143 return getPtrToIntExpr(Op, Ty); 2144 default: 2145 llvm_unreachable("Not a SCEV cast expression!"); 2146 } 2147 } 2148 2149 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2150 /// unspecified bits out to the given type. 2151 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2152 Type *Ty) { 2153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2154 "This is not an extending conversion!"); 2155 assert(isSCEVable(Ty) && 2156 "This is not a conversion to a SCEVable type!"); 2157 Ty = getEffectiveSCEVType(Ty); 2158 2159 // Sign-extend negative constants. 2160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2161 if (SC->getAPInt().isNegative()) 2162 return getSignExtendExpr(Op, Ty); 2163 2164 // Peel off a truncate cast. 2165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2166 const SCEV *NewOp = T->getOperand(); 2167 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2168 return getAnyExtendExpr(NewOp, Ty); 2169 return getTruncateOrNoop(NewOp, Ty); 2170 } 2171 2172 // Next try a zext cast. If the cast is folded, use it. 2173 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2174 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2175 return ZExt; 2176 2177 // Next try a sext cast. If the cast is folded, use it. 2178 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2179 if (!isa<SCEVSignExtendExpr>(SExt)) 2180 return SExt; 2181 2182 // Force the cast to be folded into the operands of an addrec. 2183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2184 SmallVector<const SCEV *, 4> Ops; 2185 for (const SCEV *Op : AR->operands()) 2186 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2187 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2188 } 2189 2190 // If the expression is obviously signed, use the sext cast value. 2191 if (isa<SCEVSMaxExpr>(Op)) 2192 return SExt; 2193 2194 // Absent any other information, use the zext cast value. 2195 return ZExt; 2196 } 2197 2198 /// Process the given Ops list, which is a list of operands to be added under 2199 /// the given scale, update the given map. This is a helper function for 2200 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2201 /// that would form an add expression like this: 2202 /// 2203 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2204 /// 2205 /// where A and B are constants, update the map with these values: 2206 /// 2207 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2208 /// 2209 /// and add 13 + A*B*29 to AccumulatedConstant. 2210 /// This will allow getAddRecExpr to produce this: 2211 /// 2212 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2213 /// 2214 /// This form often exposes folding opportunities that are hidden in 2215 /// the original operand list. 2216 /// 2217 /// Return true iff it appears that any interesting folding opportunities 2218 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2219 /// the common case where no interesting opportunities are present, and 2220 /// is also used as a check to avoid infinite recursion. 2221 static bool 2222 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2223 SmallVectorImpl<const SCEV *> &NewOps, 2224 APInt &AccumulatedConstant, 2225 const SCEV *const *Ops, size_t NumOperands, 2226 const APInt &Scale, 2227 ScalarEvolution &SE) { 2228 bool Interesting = false; 2229 2230 // Iterate over the add operands. They are sorted, with constants first. 2231 unsigned i = 0; 2232 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2233 ++i; 2234 // Pull a buried constant out to the outside. 2235 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2236 Interesting = true; 2237 AccumulatedConstant += Scale * C->getAPInt(); 2238 } 2239 2240 // Next comes everything else. We're especially interested in multiplies 2241 // here, but they're in the middle, so just visit the rest with one loop. 2242 for (; i != NumOperands; ++i) { 2243 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2244 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2245 APInt NewScale = 2246 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2247 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2248 // A multiplication of a constant with another add; recurse. 2249 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2250 Interesting |= 2251 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2252 Add->op_begin(), Add->getNumOperands(), 2253 NewScale, SE); 2254 } else { 2255 // A multiplication of a constant with some other value. Update 2256 // the map. 2257 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2258 const SCEV *Key = SE.getMulExpr(MulOps); 2259 auto Pair = M.insert({Key, NewScale}); 2260 if (Pair.second) { 2261 NewOps.push_back(Pair.first->first); 2262 } else { 2263 Pair.first->second += NewScale; 2264 // The map already had an entry for this value, which may indicate 2265 // a folding opportunity. 2266 Interesting = true; 2267 } 2268 } 2269 } else { 2270 // An ordinary operand. Update the map. 2271 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2272 M.insert({Ops[i], Scale}); 2273 if (Pair.second) { 2274 NewOps.push_back(Pair.first->first); 2275 } else { 2276 Pair.first->second += Scale; 2277 // The map already had an entry for this value, which may indicate 2278 // a folding opportunity. 2279 Interesting = true; 2280 } 2281 } 2282 } 2283 2284 return Interesting; 2285 } 2286 2287 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2288 const SCEV *LHS, const SCEV *RHS) { 2289 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2290 SCEV::NoWrapFlags, unsigned); 2291 switch (BinOp) { 2292 default: 2293 llvm_unreachable("Unsupported binary op"); 2294 case Instruction::Add: 2295 Operation = &ScalarEvolution::getAddExpr; 2296 break; 2297 case Instruction::Sub: 2298 Operation = &ScalarEvolution::getMinusSCEV; 2299 break; 2300 case Instruction::Mul: 2301 Operation = &ScalarEvolution::getMulExpr; 2302 break; 2303 } 2304 2305 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2306 Signed ? &ScalarEvolution::getSignExtendExpr 2307 : &ScalarEvolution::getZeroExtendExpr; 2308 2309 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2310 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2311 auto *WideTy = 2312 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2313 2314 const SCEV *A = (this->*Extension)( 2315 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2316 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2317 (this->*Extension)(RHS, WideTy, 0), 2318 SCEV::FlagAnyWrap, 0); 2319 return A == B; 2320 } 2321 2322 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2323 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2324 const OverflowingBinaryOperator *OBO) { 2325 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2326 2327 if (OBO->hasNoUnsignedWrap()) 2328 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2329 if (OBO->hasNoSignedWrap()) 2330 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2331 2332 bool Deduced = false; 2333 2334 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2335 return {Flags, Deduced}; 2336 2337 if (OBO->getOpcode() != Instruction::Add && 2338 OBO->getOpcode() != Instruction::Sub && 2339 OBO->getOpcode() != Instruction::Mul) 2340 return {Flags, Deduced}; 2341 2342 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2343 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2344 2345 if (!OBO->hasNoUnsignedWrap() && 2346 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2347 /* Signed */ false, LHS, RHS)) { 2348 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2349 Deduced = true; 2350 } 2351 2352 if (!OBO->hasNoSignedWrap() && 2353 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2354 /* Signed */ true, LHS, RHS)) { 2355 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2356 Deduced = true; 2357 } 2358 2359 return {Flags, Deduced}; 2360 } 2361 2362 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2363 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2364 // can't-overflow flags for the operation if possible. 2365 static SCEV::NoWrapFlags 2366 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2367 const ArrayRef<const SCEV *> Ops, 2368 SCEV::NoWrapFlags Flags) { 2369 using namespace std::placeholders; 2370 2371 using OBO = OverflowingBinaryOperator; 2372 2373 bool CanAnalyze = 2374 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2375 (void)CanAnalyze; 2376 assert(CanAnalyze && "don't call from other places!"); 2377 2378 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2379 SCEV::NoWrapFlags SignOrUnsignWrap = 2380 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2381 2382 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2383 auto IsKnownNonNegative = [&](const SCEV *S) { 2384 return SE->isKnownNonNegative(S); 2385 }; 2386 2387 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2388 Flags = 2389 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2390 2391 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2392 2393 if (SignOrUnsignWrap != SignOrUnsignMask && 2394 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2395 isa<SCEVConstant>(Ops[0])) { 2396 2397 auto Opcode = [&] { 2398 switch (Type) { 2399 case scAddExpr: 2400 return Instruction::Add; 2401 case scMulExpr: 2402 return Instruction::Mul; 2403 default: 2404 llvm_unreachable("Unexpected SCEV op."); 2405 } 2406 }(); 2407 2408 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2409 2410 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2411 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2412 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2413 Opcode, C, OBO::NoSignedWrap); 2414 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2415 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2416 } 2417 2418 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2419 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2420 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2421 Opcode, C, OBO::NoUnsignedWrap); 2422 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2423 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2424 } 2425 } 2426 2427 // <0,+,nonnegative><nw> is also nuw 2428 // TODO: Add corresponding nsw case 2429 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2430 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2431 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2432 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2433 2434 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2435 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2436 Ops.size() == 2) { 2437 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2438 if (UDiv->getOperand(1) == Ops[1]) 2439 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2440 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2441 if (UDiv->getOperand(1) == Ops[0]) 2442 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2443 } 2444 2445 return Flags; 2446 } 2447 2448 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2449 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2450 } 2451 2452 /// Get a canonical add expression, or something simpler if possible. 2453 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2454 SCEV::NoWrapFlags OrigFlags, 2455 unsigned Depth) { 2456 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2457 "only nuw or nsw allowed"); 2458 assert(!Ops.empty() && "Cannot get empty add!"); 2459 if (Ops.size() == 1) return Ops[0]; 2460 #ifndef NDEBUG 2461 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2462 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2463 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2464 "SCEVAddExpr operand types don't match!"); 2465 unsigned NumPtrs = count_if( 2466 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2467 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2468 #endif 2469 2470 // Sort by complexity, this groups all similar expression types together. 2471 GroupByComplexity(Ops, &LI, DT); 2472 2473 // If there are any constants, fold them together. 2474 unsigned Idx = 0; 2475 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2476 ++Idx; 2477 assert(Idx < Ops.size()); 2478 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2479 // We found two constants, fold them together! 2480 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2481 if (Ops.size() == 2) return Ops[0]; 2482 Ops.erase(Ops.begin()+1); // Erase the folded element 2483 LHSC = cast<SCEVConstant>(Ops[0]); 2484 } 2485 2486 // If we are left with a constant zero being added, strip it off. 2487 if (LHSC->getValue()->isZero()) { 2488 Ops.erase(Ops.begin()); 2489 --Idx; 2490 } 2491 2492 if (Ops.size() == 1) return Ops[0]; 2493 } 2494 2495 // Delay expensive flag strengthening until necessary. 2496 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2497 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2498 }; 2499 2500 // Limit recursion calls depth. 2501 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2502 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2503 2504 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2505 // Don't strengthen flags if we have no new information. 2506 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2507 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2508 Add->setNoWrapFlags(ComputeFlags(Ops)); 2509 return S; 2510 } 2511 2512 // Okay, check to see if the same value occurs in the operand list more than 2513 // once. If so, merge them together into an multiply expression. Since we 2514 // sorted the list, these values are required to be adjacent. 2515 Type *Ty = Ops[0]->getType(); 2516 bool FoundMatch = false; 2517 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2518 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2519 // Scan ahead to count how many equal operands there are. 2520 unsigned Count = 2; 2521 while (i+Count != e && Ops[i+Count] == Ops[i]) 2522 ++Count; 2523 // Merge the values into a multiply. 2524 const SCEV *Scale = getConstant(Ty, Count); 2525 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2526 if (Ops.size() == Count) 2527 return Mul; 2528 Ops[i] = Mul; 2529 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2530 --i; e -= Count - 1; 2531 FoundMatch = true; 2532 } 2533 if (FoundMatch) 2534 return getAddExpr(Ops, OrigFlags, Depth + 1); 2535 2536 // Check for truncates. If all the operands are truncated from the same 2537 // type, see if factoring out the truncate would permit the result to be 2538 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2539 // if the contents of the resulting outer trunc fold to something simple. 2540 auto FindTruncSrcType = [&]() -> Type * { 2541 // We're ultimately looking to fold an addrec of truncs and muls of only 2542 // constants and truncs, so if we find any other types of SCEV 2543 // as operands of the addrec then we bail and return nullptr here. 2544 // Otherwise, we return the type of the operand of a trunc that we find. 2545 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2546 return T->getOperand()->getType(); 2547 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2548 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2549 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2550 return T->getOperand()->getType(); 2551 } 2552 return nullptr; 2553 }; 2554 if (auto *SrcType = FindTruncSrcType()) { 2555 SmallVector<const SCEV *, 8> LargeOps; 2556 bool Ok = true; 2557 // Check all the operands to see if they can be represented in the 2558 // source type of the truncate. 2559 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2560 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2561 if (T->getOperand()->getType() != SrcType) { 2562 Ok = false; 2563 break; 2564 } 2565 LargeOps.push_back(T->getOperand()); 2566 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2567 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2568 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2569 SmallVector<const SCEV *, 8> LargeMulOps; 2570 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2571 if (const SCEVTruncateExpr *T = 2572 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2573 if (T->getOperand()->getType() != SrcType) { 2574 Ok = false; 2575 break; 2576 } 2577 LargeMulOps.push_back(T->getOperand()); 2578 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2579 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2580 } else { 2581 Ok = false; 2582 break; 2583 } 2584 } 2585 if (Ok) 2586 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2587 } else { 2588 Ok = false; 2589 break; 2590 } 2591 } 2592 if (Ok) { 2593 // Evaluate the expression in the larger type. 2594 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2595 // If it folds to something simple, use it. Otherwise, don't. 2596 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2597 return getTruncateExpr(Fold, Ty); 2598 } 2599 } 2600 2601 if (Ops.size() == 2) { 2602 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2603 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2604 // C1). 2605 const SCEV *A = Ops[0]; 2606 const SCEV *B = Ops[1]; 2607 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2608 auto *C = dyn_cast<SCEVConstant>(A); 2609 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2610 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2611 auto C2 = C->getAPInt(); 2612 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2613 2614 APInt ConstAdd = C1 + C2; 2615 auto AddFlags = AddExpr->getNoWrapFlags(); 2616 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2617 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2618 ConstAdd.ule(C1)) { 2619 PreservedFlags = 2620 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2621 } 2622 2623 // Adding a constant with the same sign and small magnitude is NSW, if the 2624 // original AddExpr was NSW. 2625 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2626 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2627 ConstAdd.abs().ule(C1.abs())) { 2628 PreservedFlags = 2629 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2630 } 2631 2632 if (PreservedFlags != SCEV::FlagAnyWrap) { 2633 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2634 NewOps[0] = getConstant(ConstAdd); 2635 return getAddExpr(NewOps, PreservedFlags); 2636 } 2637 } 2638 } 2639 2640 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2641 if (Ops.size() == 2) { 2642 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2643 if (Mul && Mul->getNumOperands() == 2 && 2644 Mul->getOperand(0)->isAllOnesValue()) { 2645 const SCEV *X; 2646 const SCEV *Y; 2647 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2648 return getMulExpr(Y, getUDivExpr(X, Y)); 2649 } 2650 } 2651 } 2652 2653 // Skip past any other cast SCEVs. 2654 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2655 ++Idx; 2656 2657 // If there are add operands they would be next. 2658 if (Idx < Ops.size()) { 2659 bool DeletedAdd = false; 2660 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2661 // common NUW flag for expression after inlining. Other flags cannot be 2662 // preserved, because they may depend on the original order of operations. 2663 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2664 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2665 if (Ops.size() > AddOpsInlineThreshold || 2666 Add->getNumOperands() > AddOpsInlineThreshold) 2667 break; 2668 // If we have an add, expand the add operands onto the end of the operands 2669 // list. 2670 Ops.erase(Ops.begin()+Idx); 2671 Ops.append(Add->op_begin(), Add->op_end()); 2672 DeletedAdd = true; 2673 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2674 } 2675 2676 // If we deleted at least one add, we added operands to the end of the list, 2677 // and they are not necessarily sorted. Recurse to resort and resimplify 2678 // any operands we just acquired. 2679 if (DeletedAdd) 2680 return getAddExpr(Ops, CommonFlags, Depth + 1); 2681 } 2682 2683 // Skip over the add expression until we get to a multiply. 2684 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2685 ++Idx; 2686 2687 // Check to see if there are any folding opportunities present with 2688 // operands multiplied by constant values. 2689 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2690 uint64_t BitWidth = getTypeSizeInBits(Ty); 2691 DenseMap<const SCEV *, APInt> M; 2692 SmallVector<const SCEV *, 8> NewOps; 2693 APInt AccumulatedConstant(BitWidth, 0); 2694 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2695 Ops.data(), Ops.size(), 2696 APInt(BitWidth, 1), *this)) { 2697 struct APIntCompare { 2698 bool operator()(const APInt &LHS, const APInt &RHS) const { 2699 return LHS.ult(RHS); 2700 } 2701 }; 2702 2703 // Some interesting folding opportunity is present, so its worthwhile to 2704 // re-generate the operands list. Group the operands by constant scale, 2705 // to avoid multiplying by the same constant scale multiple times. 2706 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2707 for (const SCEV *NewOp : NewOps) 2708 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2709 // Re-generate the operands list. 2710 Ops.clear(); 2711 if (AccumulatedConstant != 0) 2712 Ops.push_back(getConstant(AccumulatedConstant)); 2713 for (auto &MulOp : MulOpLists) { 2714 if (MulOp.first == 1) { 2715 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2716 } else if (MulOp.first != 0) { 2717 Ops.push_back(getMulExpr( 2718 getConstant(MulOp.first), 2719 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2720 SCEV::FlagAnyWrap, Depth + 1)); 2721 } 2722 } 2723 if (Ops.empty()) 2724 return getZero(Ty); 2725 if (Ops.size() == 1) 2726 return Ops[0]; 2727 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2728 } 2729 } 2730 2731 // If we are adding something to a multiply expression, make sure the 2732 // something is not already an operand of the multiply. If so, merge it into 2733 // the multiply. 2734 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2735 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2736 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2737 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2738 if (isa<SCEVConstant>(MulOpSCEV)) 2739 continue; 2740 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2741 if (MulOpSCEV == Ops[AddOp]) { 2742 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2743 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2744 if (Mul->getNumOperands() != 2) { 2745 // If the multiply has more than two operands, we must get the 2746 // Y*Z term. 2747 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2748 Mul->op_begin()+MulOp); 2749 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2750 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2751 } 2752 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2753 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2754 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2755 SCEV::FlagAnyWrap, Depth + 1); 2756 if (Ops.size() == 2) return OuterMul; 2757 if (AddOp < Idx) { 2758 Ops.erase(Ops.begin()+AddOp); 2759 Ops.erase(Ops.begin()+Idx-1); 2760 } else { 2761 Ops.erase(Ops.begin()+Idx); 2762 Ops.erase(Ops.begin()+AddOp-1); 2763 } 2764 Ops.push_back(OuterMul); 2765 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2766 } 2767 2768 // Check this multiply against other multiplies being added together. 2769 for (unsigned OtherMulIdx = Idx+1; 2770 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2771 ++OtherMulIdx) { 2772 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2773 // If MulOp occurs in OtherMul, we can fold the two multiplies 2774 // together. 2775 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2776 OMulOp != e; ++OMulOp) 2777 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2778 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2779 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2780 if (Mul->getNumOperands() != 2) { 2781 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2782 Mul->op_begin()+MulOp); 2783 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2784 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2785 } 2786 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2787 if (OtherMul->getNumOperands() != 2) { 2788 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2789 OtherMul->op_begin()+OMulOp); 2790 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2791 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2792 } 2793 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2794 const SCEV *InnerMulSum = 2795 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2796 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2797 SCEV::FlagAnyWrap, Depth + 1); 2798 if (Ops.size() == 2) return OuterMul; 2799 Ops.erase(Ops.begin()+Idx); 2800 Ops.erase(Ops.begin()+OtherMulIdx-1); 2801 Ops.push_back(OuterMul); 2802 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2803 } 2804 } 2805 } 2806 } 2807 2808 // If there are any add recurrences in the operands list, see if any other 2809 // added values are loop invariant. If so, we can fold them into the 2810 // recurrence. 2811 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2812 ++Idx; 2813 2814 // Scan over all recurrences, trying to fold loop invariants into them. 2815 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2816 // Scan all of the other operands to this add and add them to the vector if 2817 // they are loop invariant w.r.t. the recurrence. 2818 SmallVector<const SCEV *, 8> LIOps; 2819 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2820 const Loop *AddRecLoop = AddRec->getLoop(); 2821 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2822 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2823 LIOps.push_back(Ops[i]); 2824 Ops.erase(Ops.begin()+i); 2825 --i; --e; 2826 } 2827 2828 // If we found some loop invariants, fold them into the recurrence. 2829 if (!LIOps.empty()) { 2830 // Compute nowrap flags for the addition of the loop-invariant ops and 2831 // the addrec. Temporarily push it as an operand for that purpose. These 2832 // flags are valid in the scope of the addrec only. 2833 LIOps.push_back(AddRec); 2834 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2835 LIOps.pop_back(); 2836 2837 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2838 LIOps.push_back(AddRec->getStart()); 2839 2840 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2841 2842 // It is not in general safe to propagate flags valid on an add within 2843 // the addrec scope to one outside it. We must prove that the inner 2844 // scope is guaranteed to execute if the outer one does to be able to 2845 // safely propagate. We know the program is undefined if poison is 2846 // produced on the inner scoped addrec. We also know that *for this use* 2847 // the outer scoped add can't overflow (because of the flags we just 2848 // computed for the inner scoped add) without the program being undefined. 2849 // Proving that entry to the outer scope neccesitates entry to the inner 2850 // scope, thus proves the program undefined if the flags would be violated 2851 // in the outer scope. 2852 SCEV::NoWrapFlags AddFlags = Flags; 2853 if (AddFlags != SCEV::FlagAnyWrap) { 2854 auto *DefI = getDefiningScopeBound(LIOps); 2855 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2856 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2857 AddFlags = SCEV::FlagAnyWrap; 2858 } 2859 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2860 2861 // Build the new addrec. Propagate the NUW and NSW flags if both the 2862 // outer add and the inner addrec are guaranteed to have no overflow. 2863 // Always propagate NW. 2864 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2865 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2866 2867 // If all of the other operands were loop invariant, we are done. 2868 if (Ops.size() == 1) return NewRec; 2869 2870 // Otherwise, add the folded AddRec by the non-invariant parts. 2871 for (unsigned i = 0;; ++i) 2872 if (Ops[i] == AddRec) { 2873 Ops[i] = NewRec; 2874 break; 2875 } 2876 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2877 } 2878 2879 // Okay, if there weren't any loop invariants to be folded, check to see if 2880 // there are multiple AddRec's with the same loop induction variable being 2881 // added together. If so, we can fold them. 2882 for (unsigned OtherIdx = Idx+1; 2883 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2884 ++OtherIdx) { 2885 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2886 // so that the 1st found AddRecExpr is dominated by all others. 2887 assert(DT.dominates( 2888 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2889 AddRec->getLoop()->getHeader()) && 2890 "AddRecExprs are not sorted in reverse dominance order?"); 2891 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2892 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2893 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2894 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2895 ++OtherIdx) { 2896 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2897 if (OtherAddRec->getLoop() == AddRecLoop) { 2898 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2899 i != e; ++i) { 2900 if (i >= AddRecOps.size()) { 2901 AddRecOps.append(OtherAddRec->op_begin()+i, 2902 OtherAddRec->op_end()); 2903 break; 2904 } 2905 SmallVector<const SCEV *, 2> TwoOps = { 2906 AddRecOps[i], OtherAddRec->getOperand(i)}; 2907 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2908 } 2909 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2910 } 2911 } 2912 // Step size has changed, so we cannot guarantee no self-wraparound. 2913 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2914 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2915 } 2916 } 2917 2918 // Otherwise couldn't fold anything into this recurrence. Move onto the 2919 // next one. 2920 } 2921 2922 // Okay, it looks like we really DO need an add expr. Check to see if we 2923 // already have one, otherwise create a new one. 2924 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2925 } 2926 2927 const SCEV * 2928 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2929 SCEV::NoWrapFlags Flags) { 2930 FoldingSetNodeID ID; 2931 ID.AddInteger(scAddExpr); 2932 for (const SCEV *Op : Ops) 2933 ID.AddPointer(Op); 2934 void *IP = nullptr; 2935 SCEVAddExpr *S = 2936 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2937 if (!S) { 2938 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2939 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2940 S = new (SCEVAllocator) 2941 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2942 UniqueSCEVs.InsertNode(S, IP); 2943 registerUser(S, Ops); 2944 } 2945 S->setNoWrapFlags(Flags); 2946 return S; 2947 } 2948 2949 const SCEV * 2950 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2951 const Loop *L, SCEV::NoWrapFlags Flags) { 2952 FoldingSetNodeID ID; 2953 ID.AddInteger(scAddRecExpr); 2954 for (const SCEV *Op : Ops) 2955 ID.AddPointer(Op); 2956 ID.AddPointer(L); 2957 void *IP = nullptr; 2958 SCEVAddRecExpr *S = 2959 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2960 if (!S) { 2961 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2962 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2963 S = new (SCEVAllocator) 2964 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2965 UniqueSCEVs.InsertNode(S, IP); 2966 LoopUsers[L].push_back(S); 2967 registerUser(S, Ops); 2968 } 2969 setNoWrapFlags(S, Flags); 2970 return S; 2971 } 2972 2973 const SCEV * 2974 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2975 SCEV::NoWrapFlags Flags) { 2976 FoldingSetNodeID ID; 2977 ID.AddInteger(scMulExpr); 2978 for (const SCEV *Op : Ops) 2979 ID.AddPointer(Op); 2980 void *IP = nullptr; 2981 SCEVMulExpr *S = 2982 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2983 if (!S) { 2984 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2985 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2986 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2987 O, Ops.size()); 2988 UniqueSCEVs.InsertNode(S, IP); 2989 registerUser(S, Ops); 2990 } 2991 S->setNoWrapFlags(Flags); 2992 return S; 2993 } 2994 2995 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2996 uint64_t k = i*j; 2997 if (j > 1 && k / j != i) Overflow = true; 2998 return k; 2999 } 3000 3001 /// Compute the result of "n choose k", the binomial coefficient. If an 3002 /// intermediate computation overflows, Overflow will be set and the return will 3003 /// be garbage. Overflow is not cleared on absence of overflow. 3004 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3005 // We use the multiplicative formula: 3006 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3007 // At each iteration, we take the n-th term of the numeral and divide by the 3008 // (k-n)th term of the denominator. This division will always produce an 3009 // integral result, and helps reduce the chance of overflow in the 3010 // intermediate computations. However, we can still overflow even when the 3011 // final result would fit. 3012 3013 if (n == 0 || n == k) return 1; 3014 if (k > n) return 0; 3015 3016 if (k > n/2) 3017 k = n-k; 3018 3019 uint64_t r = 1; 3020 for (uint64_t i = 1; i <= k; ++i) { 3021 r = umul_ov(r, n-(i-1), Overflow); 3022 r /= i; 3023 } 3024 return r; 3025 } 3026 3027 /// Determine if any of the operands in this SCEV are a constant or if 3028 /// any of the add or multiply expressions in this SCEV contain a constant. 3029 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3030 struct FindConstantInAddMulChain { 3031 bool FoundConstant = false; 3032 3033 bool follow(const SCEV *S) { 3034 FoundConstant |= isa<SCEVConstant>(S); 3035 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3036 } 3037 3038 bool isDone() const { 3039 return FoundConstant; 3040 } 3041 }; 3042 3043 FindConstantInAddMulChain F; 3044 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3045 ST.visitAll(StartExpr); 3046 return F.FoundConstant; 3047 } 3048 3049 /// Get a canonical multiply expression, or something simpler if possible. 3050 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3051 SCEV::NoWrapFlags OrigFlags, 3052 unsigned Depth) { 3053 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3054 "only nuw or nsw allowed"); 3055 assert(!Ops.empty() && "Cannot get empty mul!"); 3056 if (Ops.size() == 1) return Ops[0]; 3057 #ifndef NDEBUG 3058 Type *ETy = Ops[0]->getType(); 3059 assert(!ETy->isPointerTy()); 3060 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3061 assert(Ops[i]->getType() == ETy && 3062 "SCEVMulExpr operand types don't match!"); 3063 #endif 3064 3065 // Sort by complexity, this groups all similar expression types together. 3066 GroupByComplexity(Ops, &LI, DT); 3067 3068 // If there are any constants, fold them together. 3069 unsigned Idx = 0; 3070 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3071 ++Idx; 3072 assert(Idx < Ops.size()); 3073 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3074 // We found two constants, fold them together! 3075 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3076 if (Ops.size() == 2) return Ops[0]; 3077 Ops.erase(Ops.begin()+1); // Erase the folded element 3078 LHSC = cast<SCEVConstant>(Ops[0]); 3079 } 3080 3081 // If we have a multiply of zero, it will always be zero. 3082 if (LHSC->getValue()->isZero()) 3083 return LHSC; 3084 3085 // If we are left with a constant one being multiplied, strip it off. 3086 if (LHSC->getValue()->isOne()) { 3087 Ops.erase(Ops.begin()); 3088 --Idx; 3089 } 3090 3091 if (Ops.size() == 1) 3092 return Ops[0]; 3093 } 3094 3095 // Delay expensive flag strengthening until necessary. 3096 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3097 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3098 }; 3099 3100 // Limit recursion calls depth. 3101 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3102 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3103 3104 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3105 // Don't strengthen flags if we have no new information. 3106 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3107 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3108 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3109 return S; 3110 } 3111 3112 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3113 if (Ops.size() == 2) { 3114 // C1*(C2+V) -> C1*C2 + C1*V 3115 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3116 // If any of Add's ops are Adds or Muls with a constant, apply this 3117 // transformation as well. 3118 // 3119 // TODO: There are some cases where this transformation is not 3120 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3121 // this transformation should be narrowed down. 3122 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3123 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3124 SCEV::FlagAnyWrap, Depth + 1), 3125 getMulExpr(LHSC, Add->getOperand(1), 3126 SCEV::FlagAnyWrap, Depth + 1), 3127 SCEV::FlagAnyWrap, Depth + 1); 3128 3129 if (Ops[0]->isAllOnesValue()) { 3130 // If we have a mul by -1 of an add, try distributing the -1 among the 3131 // add operands. 3132 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3133 SmallVector<const SCEV *, 4> NewOps; 3134 bool AnyFolded = false; 3135 for (const SCEV *AddOp : Add->operands()) { 3136 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3137 Depth + 1); 3138 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3139 NewOps.push_back(Mul); 3140 } 3141 if (AnyFolded) 3142 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3143 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3144 // Negation preserves a recurrence's no self-wrap property. 3145 SmallVector<const SCEV *, 4> Operands; 3146 for (const SCEV *AddRecOp : AddRec->operands()) 3147 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3148 Depth + 1)); 3149 3150 return getAddRecExpr(Operands, AddRec->getLoop(), 3151 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3152 } 3153 } 3154 } 3155 } 3156 3157 // Skip over the add expression until we get to a multiply. 3158 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3159 ++Idx; 3160 3161 // If there are mul operands inline them all into this expression. 3162 if (Idx < Ops.size()) { 3163 bool DeletedMul = false; 3164 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3165 if (Ops.size() > MulOpsInlineThreshold) 3166 break; 3167 // If we have an mul, expand the mul operands onto the end of the 3168 // operands list. 3169 Ops.erase(Ops.begin()+Idx); 3170 Ops.append(Mul->op_begin(), Mul->op_end()); 3171 DeletedMul = true; 3172 } 3173 3174 // If we deleted at least one mul, we added operands to the end of the 3175 // list, and they are not necessarily sorted. Recurse to resort and 3176 // resimplify any operands we just acquired. 3177 if (DeletedMul) 3178 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3179 } 3180 3181 // If there are any add recurrences in the operands list, see if any other 3182 // added values are loop invariant. If so, we can fold them into the 3183 // recurrence. 3184 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3185 ++Idx; 3186 3187 // Scan over all recurrences, trying to fold loop invariants into them. 3188 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3189 // Scan all of the other operands to this mul and add them to the vector 3190 // if they are loop invariant w.r.t. the recurrence. 3191 SmallVector<const SCEV *, 8> LIOps; 3192 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3193 const Loop *AddRecLoop = AddRec->getLoop(); 3194 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3195 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3196 LIOps.push_back(Ops[i]); 3197 Ops.erase(Ops.begin()+i); 3198 --i; --e; 3199 } 3200 3201 // If we found some loop invariants, fold them into the recurrence. 3202 if (!LIOps.empty()) { 3203 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3204 SmallVector<const SCEV *, 4> NewOps; 3205 NewOps.reserve(AddRec->getNumOperands()); 3206 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3207 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3208 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3209 SCEV::FlagAnyWrap, Depth + 1)); 3210 3211 // Build the new addrec. Propagate the NUW and NSW flags if both the 3212 // outer mul and the inner addrec are guaranteed to have no overflow. 3213 // 3214 // No self-wrap cannot be guaranteed after changing the step size, but 3215 // will be inferred if either NUW or NSW is true. 3216 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3217 const SCEV *NewRec = getAddRecExpr( 3218 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3219 3220 // If all of the other operands were loop invariant, we are done. 3221 if (Ops.size() == 1) return NewRec; 3222 3223 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3224 for (unsigned i = 0;; ++i) 3225 if (Ops[i] == AddRec) { 3226 Ops[i] = NewRec; 3227 break; 3228 } 3229 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3230 } 3231 3232 // Okay, if there weren't any loop invariants to be folded, check to see 3233 // if there are multiple AddRec's with the same loop induction variable 3234 // being multiplied together. If so, we can fold them. 3235 3236 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3237 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3238 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3239 // ]]],+,...up to x=2n}. 3240 // Note that the arguments to choose() are always integers with values 3241 // known at compile time, never SCEV objects. 3242 // 3243 // The implementation avoids pointless extra computations when the two 3244 // addrec's are of different length (mathematically, it's equivalent to 3245 // an infinite stream of zeros on the right). 3246 bool OpsModified = false; 3247 for (unsigned OtherIdx = Idx+1; 3248 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3249 ++OtherIdx) { 3250 const SCEVAddRecExpr *OtherAddRec = 3251 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3252 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3253 continue; 3254 3255 // Limit max number of arguments to avoid creation of unreasonably big 3256 // SCEVAddRecs with very complex operands. 3257 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3258 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3259 continue; 3260 3261 bool Overflow = false; 3262 Type *Ty = AddRec->getType(); 3263 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3264 SmallVector<const SCEV*, 7> AddRecOps; 3265 for (int x = 0, xe = AddRec->getNumOperands() + 3266 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3267 SmallVector <const SCEV *, 7> SumOps; 3268 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3269 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3270 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3271 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3272 z < ze && !Overflow; ++z) { 3273 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3274 uint64_t Coeff; 3275 if (LargerThan64Bits) 3276 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3277 else 3278 Coeff = Coeff1*Coeff2; 3279 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3280 const SCEV *Term1 = AddRec->getOperand(y-z); 3281 const SCEV *Term2 = OtherAddRec->getOperand(z); 3282 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3283 SCEV::FlagAnyWrap, Depth + 1)); 3284 } 3285 } 3286 if (SumOps.empty()) 3287 SumOps.push_back(getZero(Ty)); 3288 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3289 } 3290 if (!Overflow) { 3291 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3292 SCEV::FlagAnyWrap); 3293 if (Ops.size() == 2) return NewAddRec; 3294 Ops[Idx] = NewAddRec; 3295 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3296 OpsModified = true; 3297 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3298 if (!AddRec) 3299 break; 3300 } 3301 } 3302 if (OpsModified) 3303 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3304 3305 // Otherwise couldn't fold anything into this recurrence. Move onto the 3306 // next one. 3307 } 3308 3309 // Okay, it looks like we really DO need an mul expr. Check to see if we 3310 // already have one, otherwise create a new one. 3311 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3312 } 3313 3314 /// Represents an unsigned remainder expression based on unsigned division. 3315 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3316 const SCEV *RHS) { 3317 assert(getEffectiveSCEVType(LHS->getType()) == 3318 getEffectiveSCEVType(RHS->getType()) && 3319 "SCEVURemExpr operand types don't match!"); 3320 3321 // Short-circuit easy cases 3322 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3323 // If constant is one, the result is trivial 3324 if (RHSC->getValue()->isOne()) 3325 return getZero(LHS->getType()); // X urem 1 --> 0 3326 3327 // If constant is a power of two, fold into a zext(trunc(LHS)). 3328 if (RHSC->getAPInt().isPowerOf2()) { 3329 Type *FullTy = LHS->getType(); 3330 Type *TruncTy = 3331 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3332 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3333 } 3334 } 3335 3336 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3337 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3338 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3339 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3340 } 3341 3342 /// Get a canonical unsigned division expression, or something simpler if 3343 /// possible. 3344 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3345 const SCEV *RHS) { 3346 assert(!LHS->getType()->isPointerTy() && 3347 "SCEVUDivExpr operand can't be pointer!"); 3348 assert(LHS->getType() == RHS->getType() && 3349 "SCEVUDivExpr operand types don't match!"); 3350 3351 FoldingSetNodeID ID; 3352 ID.AddInteger(scUDivExpr); 3353 ID.AddPointer(LHS); 3354 ID.AddPointer(RHS); 3355 void *IP = nullptr; 3356 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3357 return S; 3358 3359 // 0 udiv Y == 0 3360 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3361 if (LHSC->getValue()->isZero()) 3362 return LHS; 3363 3364 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3365 if (RHSC->getValue()->isOne()) 3366 return LHS; // X udiv 1 --> x 3367 // If the denominator is zero, the result of the udiv is undefined. Don't 3368 // try to analyze it, because the resolution chosen here may differ from 3369 // the resolution chosen in other parts of the compiler. 3370 if (!RHSC->getValue()->isZero()) { 3371 // Determine if the division can be folded into the operands of 3372 // its operands. 3373 // TODO: Generalize this to non-constants by using known-bits information. 3374 Type *Ty = LHS->getType(); 3375 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3376 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3377 // For non-power-of-two values, effectively round the value up to the 3378 // nearest power of two. 3379 if (!RHSC->getAPInt().isPowerOf2()) 3380 ++MaxShiftAmt; 3381 IntegerType *ExtTy = 3382 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3383 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3384 if (const SCEVConstant *Step = 3385 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3386 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3387 const APInt &StepInt = Step->getAPInt(); 3388 const APInt &DivInt = RHSC->getAPInt(); 3389 if (!StepInt.urem(DivInt) && 3390 getZeroExtendExpr(AR, ExtTy) == 3391 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3392 getZeroExtendExpr(Step, ExtTy), 3393 AR->getLoop(), SCEV::FlagAnyWrap)) { 3394 SmallVector<const SCEV *, 4> Operands; 3395 for (const SCEV *Op : AR->operands()) 3396 Operands.push_back(getUDivExpr(Op, RHS)); 3397 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3398 } 3399 /// Get a canonical UDivExpr for a recurrence. 3400 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3401 // We can currently only fold X%N if X is constant. 3402 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3403 if (StartC && !DivInt.urem(StepInt) && 3404 getZeroExtendExpr(AR, ExtTy) == 3405 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3406 getZeroExtendExpr(Step, ExtTy), 3407 AR->getLoop(), SCEV::FlagAnyWrap)) { 3408 const APInt &StartInt = StartC->getAPInt(); 3409 const APInt &StartRem = StartInt.urem(StepInt); 3410 if (StartRem != 0) { 3411 const SCEV *NewLHS = 3412 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3413 AR->getLoop(), SCEV::FlagNW); 3414 if (LHS != NewLHS) { 3415 LHS = NewLHS; 3416 3417 // Reset the ID to include the new LHS, and check if it is 3418 // already cached. 3419 ID.clear(); 3420 ID.AddInteger(scUDivExpr); 3421 ID.AddPointer(LHS); 3422 ID.AddPointer(RHS); 3423 IP = nullptr; 3424 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3425 return S; 3426 } 3427 } 3428 } 3429 } 3430 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3431 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3432 SmallVector<const SCEV *, 4> Operands; 3433 for (const SCEV *Op : M->operands()) 3434 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3435 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3436 // Find an operand that's safely divisible. 3437 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3438 const SCEV *Op = M->getOperand(i); 3439 const SCEV *Div = getUDivExpr(Op, RHSC); 3440 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3441 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3442 Operands[i] = Div; 3443 return getMulExpr(Operands); 3444 } 3445 } 3446 } 3447 3448 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3449 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3450 if (auto *DivisorConstant = 3451 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3452 bool Overflow = false; 3453 APInt NewRHS = 3454 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3455 if (Overflow) { 3456 return getConstant(RHSC->getType(), 0, false); 3457 } 3458 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3459 } 3460 } 3461 3462 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3463 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3464 SmallVector<const SCEV *, 4> Operands; 3465 for (const SCEV *Op : A->operands()) 3466 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3467 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3468 Operands.clear(); 3469 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3470 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3471 if (isa<SCEVUDivExpr>(Op) || 3472 getMulExpr(Op, RHS) != A->getOperand(i)) 3473 break; 3474 Operands.push_back(Op); 3475 } 3476 if (Operands.size() == A->getNumOperands()) 3477 return getAddExpr(Operands); 3478 } 3479 } 3480 3481 // Fold if both operands are constant. 3482 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3483 Constant *LHSCV = LHSC->getValue(); 3484 Constant *RHSCV = RHSC->getValue(); 3485 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3486 RHSCV))); 3487 } 3488 } 3489 } 3490 3491 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3492 // changes). Make sure we get a new one. 3493 IP = nullptr; 3494 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3495 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3496 LHS, RHS); 3497 UniqueSCEVs.InsertNode(S, IP); 3498 registerUser(S, {LHS, RHS}); 3499 return S; 3500 } 3501 3502 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3503 APInt A = C1->getAPInt().abs(); 3504 APInt B = C2->getAPInt().abs(); 3505 uint32_t ABW = A.getBitWidth(); 3506 uint32_t BBW = B.getBitWidth(); 3507 3508 if (ABW > BBW) 3509 B = B.zext(ABW); 3510 else if (ABW < BBW) 3511 A = A.zext(BBW); 3512 3513 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3514 } 3515 3516 /// Get a canonical unsigned division expression, or something simpler if 3517 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3518 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3519 /// it's not exact because the udiv may be clearing bits. 3520 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3521 const SCEV *RHS) { 3522 // TODO: we could try to find factors in all sorts of things, but for now we 3523 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3524 // end of this file for inspiration. 3525 3526 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3527 if (!Mul || !Mul->hasNoUnsignedWrap()) 3528 return getUDivExpr(LHS, RHS); 3529 3530 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3531 // If the mulexpr multiplies by a constant, then that constant must be the 3532 // first element of the mulexpr. 3533 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3534 if (LHSCst == RHSCst) { 3535 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3536 return getMulExpr(Operands); 3537 } 3538 3539 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3540 // that there's a factor provided by one of the other terms. We need to 3541 // check. 3542 APInt Factor = gcd(LHSCst, RHSCst); 3543 if (!Factor.isIntN(1)) { 3544 LHSCst = 3545 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3546 RHSCst = 3547 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3548 SmallVector<const SCEV *, 2> Operands; 3549 Operands.push_back(LHSCst); 3550 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3551 LHS = getMulExpr(Operands); 3552 RHS = RHSCst; 3553 Mul = dyn_cast<SCEVMulExpr>(LHS); 3554 if (!Mul) 3555 return getUDivExactExpr(LHS, RHS); 3556 } 3557 } 3558 } 3559 3560 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3561 if (Mul->getOperand(i) == RHS) { 3562 SmallVector<const SCEV *, 2> Operands; 3563 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3564 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3565 return getMulExpr(Operands); 3566 } 3567 } 3568 3569 return getUDivExpr(LHS, RHS); 3570 } 3571 3572 /// Get an add recurrence expression for the specified loop. Simplify the 3573 /// expression as much as possible. 3574 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3575 const Loop *L, 3576 SCEV::NoWrapFlags Flags) { 3577 SmallVector<const SCEV *, 4> Operands; 3578 Operands.push_back(Start); 3579 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3580 if (StepChrec->getLoop() == L) { 3581 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3582 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3583 } 3584 3585 Operands.push_back(Step); 3586 return getAddRecExpr(Operands, L, Flags); 3587 } 3588 3589 /// Get an add recurrence expression for the specified loop. Simplify the 3590 /// expression as much as possible. 3591 const SCEV * 3592 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3593 const Loop *L, SCEV::NoWrapFlags Flags) { 3594 if (Operands.size() == 1) return Operands[0]; 3595 #ifndef NDEBUG 3596 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3597 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3598 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3599 "SCEVAddRecExpr operand types don't match!"); 3600 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3601 } 3602 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3603 assert(isLoopInvariant(Operands[i], L) && 3604 "SCEVAddRecExpr operand is not loop-invariant!"); 3605 #endif 3606 3607 if (Operands.back()->isZero()) { 3608 Operands.pop_back(); 3609 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3610 } 3611 3612 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3613 // use that information to infer NUW and NSW flags. However, computing a 3614 // BE count requires calling getAddRecExpr, so we may not yet have a 3615 // meaningful BE count at this point (and if we don't, we'd be stuck 3616 // with a SCEVCouldNotCompute as the cached BE count). 3617 3618 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3619 3620 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3621 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3622 const Loop *NestedLoop = NestedAR->getLoop(); 3623 if (L->contains(NestedLoop) 3624 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3625 : (!NestedLoop->contains(L) && 3626 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3627 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3628 Operands[0] = NestedAR->getStart(); 3629 // AddRecs require their operands be loop-invariant with respect to their 3630 // loops. Don't perform this transformation if it would break this 3631 // requirement. 3632 bool AllInvariant = all_of( 3633 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3634 3635 if (AllInvariant) { 3636 // Create a recurrence for the outer loop with the same step size. 3637 // 3638 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3639 // inner recurrence has the same property. 3640 SCEV::NoWrapFlags OuterFlags = 3641 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3642 3643 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3644 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3645 return isLoopInvariant(Op, NestedLoop); 3646 }); 3647 3648 if (AllInvariant) { 3649 // Ok, both add recurrences are valid after the transformation. 3650 // 3651 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3652 // the outer recurrence has the same property. 3653 SCEV::NoWrapFlags InnerFlags = 3654 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3655 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3656 } 3657 } 3658 // Reset Operands to its original state. 3659 Operands[0] = NestedAR; 3660 } 3661 } 3662 3663 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3664 // already have one, otherwise create a new one. 3665 return getOrCreateAddRecExpr(Operands, L, Flags); 3666 } 3667 3668 const SCEV * 3669 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3670 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3671 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3672 // getSCEV(Base)->getType() has the same address space as Base->getType() 3673 // because SCEV::getType() preserves the address space. 3674 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3675 const bool AssumeInBoundsFlags = [&]() { 3676 if (!GEP->isInBounds()) 3677 return false; 3678 3679 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3680 // but to do that, we have to ensure that said flag is valid in the entire 3681 // defined scope of the SCEV. 3682 auto *GEPI = dyn_cast<Instruction>(GEP); 3683 // TODO: non-instructions have global scope. We might be able to prove 3684 // some global scope cases 3685 return GEPI && isSCEVExprNeverPoison(GEPI); 3686 }(); 3687 3688 SCEV::NoWrapFlags OffsetWrap = 3689 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3690 3691 Type *CurTy = GEP->getType(); 3692 bool FirstIter = true; 3693 SmallVector<const SCEV *, 4> Offsets; 3694 for (const SCEV *IndexExpr : IndexExprs) { 3695 // Compute the (potentially symbolic) offset in bytes for this index. 3696 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3697 // For a struct, add the member offset. 3698 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3699 unsigned FieldNo = Index->getZExtValue(); 3700 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3701 Offsets.push_back(FieldOffset); 3702 3703 // Update CurTy to the type of the field at Index. 3704 CurTy = STy->getTypeAtIndex(Index); 3705 } else { 3706 // Update CurTy to its element type. 3707 if (FirstIter) { 3708 assert(isa<PointerType>(CurTy) && 3709 "The first index of a GEP indexes a pointer"); 3710 CurTy = GEP->getSourceElementType(); 3711 FirstIter = false; 3712 } else { 3713 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3714 } 3715 // For an array, add the element offset, explicitly scaled. 3716 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3717 // Getelementptr indices are signed. 3718 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3719 3720 // Multiply the index by the element size to compute the element offset. 3721 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3722 Offsets.push_back(LocalOffset); 3723 } 3724 } 3725 3726 // Handle degenerate case of GEP without offsets. 3727 if (Offsets.empty()) 3728 return BaseExpr; 3729 3730 // Add the offsets together, assuming nsw if inbounds. 3731 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3732 // Add the base address and the offset. We cannot use the nsw flag, as the 3733 // base address is unsigned. However, if we know that the offset is 3734 // non-negative, we can use nuw. 3735 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3736 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3737 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3738 assert(BaseExpr->getType() == GEPExpr->getType() && 3739 "GEP should not change type mid-flight."); 3740 return GEPExpr; 3741 } 3742 3743 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3744 ArrayRef<const SCEV *> Ops) { 3745 FoldingSetNodeID ID; 3746 ID.AddInteger(SCEVType); 3747 for (const SCEV *Op : Ops) 3748 ID.AddPointer(Op); 3749 void *IP = nullptr; 3750 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3751 } 3752 3753 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3754 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3755 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3756 } 3757 3758 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3759 SmallVectorImpl<const SCEV *> &Ops) { 3760 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3761 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3762 if (Ops.size() == 1) return Ops[0]; 3763 #ifndef NDEBUG 3764 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3765 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3766 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3767 "Operand types don't match!"); 3768 assert(Ops[0]->getType()->isPointerTy() == 3769 Ops[i]->getType()->isPointerTy() && 3770 "min/max should be consistently pointerish"); 3771 } 3772 #endif 3773 3774 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3775 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3776 3777 // Sort by complexity, this groups all similar expression types together. 3778 GroupByComplexity(Ops, &LI, DT); 3779 3780 // Check if we have created the same expression before. 3781 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3782 return S; 3783 } 3784 3785 // If there are any constants, fold them together. 3786 unsigned Idx = 0; 3787 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3788 ++Idx; 3789 assert(Idx < Ops.size()); 3790 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3791 if (Kind == scSMaxExpr) 3792 return APIntOps::smax(LHS, RHS); 3793 else if (Kind == scSMinExpr) 3794 return APIntOps::smin(LHS, RHS); 3795 else if (Kind == scUMaxExpr) 3796 return APIntOps::umax(LHS, RHS); 3797 else if (Kind == scUMinExpr) 3798 return APIntOps::umin(LHS, RHS); 3799 llvm_unreachable("Unknown SCEV min/max opcode"); 3800 }; 3801 3802 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3803 // We found two constants, fold them together! 3804 ConstantInt *Fold = ConstantInt::get( 3805 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3806 Ops[0] = getConstant(Fold); 3807 Ops.erase(Ops.begin()+1); // Erase the folded element 3808 if (Ops.size() == 1) return Ops[0]; 3809 LHSC = cast<SCEVConstant>(Ops[0]); 3810 } 3811 3812 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3813 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3814 3815 if (IsMax ? IsMinV : IsMaxV) { 3816 // If we are left with a constant minimum(/maximum)-int, strip it off. 3817 Ops.erase(Ops.begin()); 3818 --Idx; 3819 } else if (IsMax ? IsMaxV : IsMinV) { 3820 // If we have a max(/min) with a constant maximum(/minimum)-int, 3821 // it will always be the extremum. 3822 return LHSC; 3823 } 3824 3825 if (Ops.size() == 1) return Ops[0]; 3826 } 3827 3828 // Find the first operation of the same kind 3829 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3830 ++Idx; 3831 3832 // Check to see if one of the operands is of the same kind. If so, expand its 3833 // operands onto our operand list, and recurse to simplify. 3834 if (Idx < Ops.size()) { 3835 bool DeletedAny = false; 3836 while (Ops[Idx]->getSCEVType() == Kind) { 3837 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3838 Ops.erase(Ops.begin()+Idx); 3839 Ops.append(SMME->op_begin(), SMME->op_end()); 3840 DeletedAny = true; 3841 } 3842 3843 if (DeletedAny) 3844 return getMinMaxExpr(Kind, Ops); 3845 } 3846 3847 // Okay, check to see if the same value occurs in the operand list twice. If 3848 // so, delete one. Since we sorted the list, these values are required to 3849 // be adjacent. 3850 llvm::CmpInst::Predicate GEPred = 3851 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3852 llvm::CmpInst::Predicate LEPred = 3853 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3854 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3855 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3856 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3857 if (Ops[i] == Ops[i + 1] || 3858 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3859 // X op Y op Y --> X op Y 3860 // X op Y --> X, if we know X, Y are ordered appropriately 3861 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3862 --i; 3863 --e; 3864 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3865 Ops[i + 1])) { 3866 // X op Y --> Y, if we know X, Y are ordered appropriately 3867 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3868 --i; 3869 --e; 3870 } 3871 } 3872 3873 if (Ops.size() == 1) return Ops[0]; 3874 3875 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3876 3877 // Okay, it looks like we really DO need an expr. Check to see if we 3878 // already have one, otherwise create a new one. 3879 FoldingSetNodeID ID; 3880 ID.AddInteger(Kind); 3881 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3882 ID.AddPointer(Ops[i]); 3883 void *IP = nullptr; 3884 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3885 if (ExistingSCEV) 3886 return ExistingSCEV; 3887 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3888 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3889 SCEV *S = new (SCEVAllocator) 3890 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3891 3892 UniqueSCEVs.InsertNode(S, IP); 3893 registerUser(S, Ops); 3894 return S; 3895 } 3896 3897 namespace { 3898 3899 class SCEVSequentialMinMaxDeduplicatingVisitor final 3900 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3901 Optional<const SCEV *>> { 3902 using RetVal = Optional<const SCEV *>; 3903 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3904 3905 ScalarEvolution &SE; 3906 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3907 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3908 SmallPtrSet<const SCEV *, 16> SeenOps; 3909 3910 bool canRecurseInto(SCEVTypes Kind) const { 3911 // We can only recurse into the SCEV expression of the same effective type 3912 // as the type of our root SCEV expression. 3913 return RootKind == Kind || NonSequentialRootKind == Kind; 3914 }; 3915 3916 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3917 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3918 "Only for min/max expressions."); 3919 SCEVTypes Kind = S->getSCEVType(); 3920 3921 if (!canRecurseInto(Kind)) 3922 return S; 3923 3924 auto *NAry = cast<SCEVNAryExpr>(S); 3925 SmallVector<const SCEV *> NewOps; 3926 bool Changed = 3927 visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps); 3928 3929 if (!Changed) 3930 return S; 3931 if (NewOps.empty()) 3932 return None; 3933 3934 return isa<SCEVSequentialMinMaxExpr>(S) 3935 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3936 : SE.getMinMaxExpr(Kind, NewOps); 3937 } 3938 3939 RetVal visit(const SCEV *S) { 3940 // Has the whole operand been seen already? 3941 if (!SeenOps.insert(S).second) 3942 return None; 3943 return Base::visit(S); 3944 } 3945 3946 public: 3947 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 3948 SCEVTypes RootKind) 3949 : SE(SE), RootKind(RootKind), 3950 NonSequentialRootKind( 3951 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 3952 RootKind)) {} 3953 3954 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 3955 SmallVectorImpl<const SCEV *> &NewOps) { 3956 bool Changed = false; 3957 SmallVector<const SCEV *> Ops; 3958 Ops.reserve(OrigOps.size()); 3959 3960 for (const SCEV *Op : OrigOps) { 3961 RetVal NewOp = visit(Op); 3962 if (NewOp != Op) 3963 Changed = true; 3964 if (NewOp) 3965 Ops.emplace_back(*NewOp); 3966 } 3967 3968 if (Changed) 3969 NewOps = std::move(Ops); 3970 return Changed; 3971 } 3972 3973 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 3974 3975 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 3976 3977 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 3978 3979 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 3980 3981 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 3982 3983 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 3984 3985 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 3986 3987 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 3988 3989 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 3990 3991 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 3992 return visitAnyMinMaxExpr(Expr); 3993 } 3994 3995 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 3996 return visitAnyMinMaxExpr(Expr); 3997 } 3998 3999 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 4000 return visitAnyMinMaxExpr(Expr); 4001 } 4002 4003 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4004 return visitAnyMinMaxExpr(Expr); 4005 } 4006 4007 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4008 return visitAnyMinMaxExpr(Expr); 4009 } 4010 4011 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4012 4013 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4014 }; 4015 4016 } // namespace 4017 4018 /// Return true if V is poison given that AssumedPoison is already poison. 4019 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { 4020 // The only way poison may be introduced in a SCEV expression is from a 4021 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, 4022 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* 4023 // introduce poison -- they encode guaranteed, non-speculated knowledge. 4024 // 4025 // Additionally, all SCEV nodes propagate poison from inputs to outputs, 4026 // with the notable exception of umin_seq, where only poison from the first 4027 // operand is (unconditionally) propagated. 4028 struct SCEVPoisonCollector { 4029 bool LookThroughSeq; 4030 SmallPtrSet<const SCEV *, 4> MaybePoison; 4031 SCEVPoisonCollector(bool LookThroughSeq) : LookThroughSeq(LookThroughSeq) {} 4032 4033 bool follow(const SCEV *S) { 4034 // TODO: We can always follow the first operand, but the SCEVTraversal 4035 // API doesn't support this. 4036 if (!LookThroughSeq && isa<SCEVSequentialMinMaxExpr>(S)) 4037 return false; 4038 4039 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 4040 if (!isGuaranteedNotToBePoison(SU->getValue())) 4041 MaybePoison.insert(S); 4042 } 4043 return true; 4044 } 4045 bool isDone() const { return false; } 4046 }; 4047 4048 // First collect all SCEVs that might result in AssumedPoison to be poison. 4049 // We need to look through umin_seq here, because we want to find all SCEVs 4050 // that *might* result in poison, not only those that are *required* to. 4051 SCEVPoisonCollector PC1(/* LookThroughSeq */ true); 4052 visitAll(AssumedPoison, PC1); 4053 4054 // AssumedPoison is never poison. As the assumption is false, the implication 4055 // is true. Don't bother walking the other SCEV in this case. 4056 if (PC1.MaybePoison.empty()) 4057 return true; 4058 4059 // Collect all SCEVs in S that, if poison, *will* result in S being poison 4060 // as well. We cannot look through umin_seq here, as its argument only *may* 4061 // make the result poison. 4062 SCEVPoisonCollector PC2(/* LookThroughSeq */ false); 4063 visitAll(S, PC2); 4064 4065 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, 4066 // it will also make S poison by being part of PC2.MaybePoison. 4067 return all_of(PC1.MaybePoison, 4068 [&](const SCEV *S) { return PC2.MaybePoison.contains(S); }); 4069 } 4070 4071 const SCEV * 4072 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4073 SmallVectorImpl<const SCEV *> &Ops) { 4074 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4075 "Not a SCEVSequentialMinMaxExpr!"); 4076 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4077 if (Ops.size() == 1) 4078 return Ops[0]; 4079 if (Ops.size() == 2 && 4080 any_of(Ops, [](const SCEV *Op) { return isa<SCEVConstant>(Op); })) 4081 return getMinMaxExpr( 4082 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4083 Ops); 4084 #ifndef NDEBUG 4085 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4086 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4087 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4088 "Operand types don't match!"); 4089 assert(Ops[0]->getType()->isPointerTy() == 4090 Ops[i]->getType()->isPointerTy() && 4091 "min/max should be consistently pointerish"); 4092 } 4093 #endif 4094 4095 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4096 // so we can *NOT* do any kind of sorting of the expressions! 4097 4098 // Check if we have created the same expression before. 4099 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4100 return S; 4101 4102 // FIXME: there are *some* simplifications that we can do here. 4103 4104 // Keep only the first instance of an operand. 4105 { 4106 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4107 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4108 if (Changed) 4109 return getSequentialMinMaxExpr(Kind, Ops); 4110 } 4111 4112 // Check to see if one of the operands is of the same kind. If so, expand its 4113 // operands onto our operand list, and recurse to simplify. 4114 { 4115 unsigned Idx = 0; 4116 bool DeletedAny = false; 4117 while (Idx < Ops.size()) { 4118 if (Ops[Idx]->getSCEVType() != Kind) { 4119 ++Idx; 4120 continue; 4121 } 4122 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4123 Ops.erase(Ops.begin() + Idx); 4124 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end()); 4125 DeletedAny = true; 4126 } 4127 4128 if (DeletedAny) 4129 return getSequentialMinMaxExpr(Kind, Ops); 4130 } 4131 4132 // In %x umin_seq %y, if %y being poison implies %x is also poison, we can 4133 // use a non-sequential umin instead. 4134 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4135 if (::impliesPoison(Ops[i], Ops[i - 1])) { 4136 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; 4137 Ops[i - 1] = getMinMaxExpr( 4138 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4139 SeqOps); 4140 Ops.erase(Ops.begin() + i); 4141 return getSequentialMinMaxExpr(Kind, Ops); 4142 } 4143 } 4144 4145 // Okay, it looks like we really DO need an expr. Check to see if we 4146 // already have one, otherwise create a new one. 4147 FoldingSetNodeID ID; 4148 ID.AddInteger(Kind); 4149 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4150 ID.AddPointer(Ops[i]); 4151 void *IP = nullptr; 4152 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4153 if (ExistingSCEV) 4154 return ExistingSCEV; 4155 4156 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4157 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4158 SCEV *S = new (SCEVAllocator) 4159 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4160 4161 UniqueSCEVs.InsertNode(S, IP); 4162 registerUser(S, Ops); 4163 return S; 4164 } 4165 4166 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4167 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4168 return getSMaxExpr(Ops); 4169 } 4170 4171 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4172 return getMinMaxExpr(scSMaxExpr, Ops); 4173 } 4174 4175 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4176 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4177 return getUMaxExpr(Ops); 4178 } 4179 4180 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4181 return getMinMaxExpr(scUMaxExpr, Ops); 4182 } 4183 4184 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4185 const SCEV *RHS) { 4186 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4187 return getSMinExpr(Ops); 4188 } 4189 4190 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4191 return getMinMaxExpr(scSMinExpr, Ops); 4192 } 4193 4194 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4195 bool Sequential) { 4196 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4197 return getUMinExpr(Ops, Sequential); 4198 } 4199 4200 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4201 bool Sequential) { 4202 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4203 : getMinMaxExpr(scUMinExpr, Ops); 4204 } 4205 4206 const SCEV * 4207 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4208 ScalableVectorType *ScalableTy) { 4209 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4210 Constant *One = ConstantInt::get(IntTy, 1); 4211 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4212 // Note that the expression we created is the final expression, we don't 4213 // want to simplify it any further Also, if we call a normal getSCEV(), 4214 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4215 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4216 } 4217 4218 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4219 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4220 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4221 // We can bypass creating a target-independent constant expression and then 4222 // folding it back into a ConstantInt. This is just a compile-time 4223 // optimization. 4224 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4225 } 4226 4227 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4228 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4229 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4230 // We can bypass creating a target-independent constant expression and then 4231 // folding it back into a ConstantInt. This is just a compile-time 4232 // optimization. 4233 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4234 } 4235 4236 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4237 StructType *STy, 4238 unsigned FieldNo) { 4239 // We can bypass creating a target-independent constant expression and then 4240 // folding it back into a ConstantInt. This is just a compile-time 4241 // optimization. 4242 return getConstant( 4243 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4244 } 4245 4246 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4247 // Don't attempt to do anything other than create a SCEVUnknown object 4248 // here. createSCEV only calls getUnknown after checking for all other 4249 // interesting possibilities, and any other code that calls getUnknown 4250 // is doing so in order to hide a value from SCEV canonicalization. 4251 4252 FoldingSetNodeID ID; 4253 ID.AddInteger(scUnknown); 4254 ID.AddPointer(V); 4255 void *IP = nullptr; 4256 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4257 assert(cast<SCEVUnknown>(S)->getValue() == V && 4258 "Stale SCEVUnknown in uniquing map!"); 4259 return S; 4260 } 4261 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4262 FirstUnknown); 4263 FirstUnknown = cast<SCEVUnknown>(S); 4264 UniqueSCEVs.InsertNode(S, IP); 4265 return S; 4266 } 4267 4268 //===----------------------------------------------------------------------===// 4269 // Basic SCEV Analysis and PHI Idiom Recognition Code 4270 // 4271 4272 /// Test if values of the given type are analyzable within the SCEV 4273 /// framework. This primarily includes integer types, and it can optionally 4274 /// include pointer types if the ScalarEvolution class has access to 4275 /// target-specific information. 4276 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4277 // Integers and pointers are always SCEVable. 4278 return Ty->isIntOrPtrTy(); 4279 } 4280 4281 /// Return the size in bits of the specified type, for which isSCEVable must 4282 /// return true. 4283 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4284 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4285 if (Ty->isPointerTy()) 4286 return getDataLayout().getIndexTypeSizeInBits(Ty); 4287 return getDataLayout().getTypeSizeInBits(Ty); 4288 } 4289 4290 /// Return a type with the same bitwidth as the given type and which represents 4291 /// how SCEV will treat the given type, for which isSCEVable must return 4292 /// true. For pointer types, this is the pointer index sized integer type. 4293 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4294 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4295 4296 if (Ty->isIntegerTy()) 4297 return Ty; 4298 4299 // The only other support type is pointer. 4300 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4301 return getDataLayout().getIndexType(Ty); 4302 } 4303 4304 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4305 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4306 } 4307 4308 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4309 const SCEV *B) { 4310 /// For a valid use point to exist, the defining scope of one operand 4311 /// must dominate the other. 4312 bool PreciseA, PreciseB; 4313 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4314 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4315 if (!PreciseA || !PreciseB) 4316 // Can't tell. 4317 return false; 4318 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4319 DT.dominates(ScopeB, ScopeA); 4320 } 4321 4322 4323 const SCEV *ScalarEvolution::getCouldNotCompute() { 4324 return CouldNotCompute.get(); 4325 } 4326 4327 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4328 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4329 auto *SU = dyn_cast<SCEVUnknown>(S); 4330 return SU && SU->getValue() == nullptr; 4331 }); 4332 4333 return !ContainsNulls; 4334 } 4335 4336 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4337 HasRecMapType::iterator I = HasRecMap.find(S); 4338 if (I != HasRecMap.end()) 4339 return I->second; 4340 4341 bool FoundAddRec = 4342 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4343 HasRecMap.insert({S, FoundAddRec}); 4344 return FoundAddRec; 4345 } 4346 4347 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4348 /// by the value and offset from any ValueOffsetPair in the set. 4349 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4350 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4351 if (SI == ExprValueMap.end()) 4352 return None; 4353 #ifndef NDEBUG 4354 if (VerifySCEVMap) { 4355 // Check there is no dangling Value in the set returned. 4356 for (Value *V : SI->second) 4357 assert(ValueExprMap.count(V)); 4358 } 4359 #endif 4360 return SI->second.getArrayRef(); 4361 } 4362 4363 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4364 /// cannot be used separately. eraseValueFromMap should be used to remove 4365 /// V from ValueExprMap and ExprValueMap at the same time. 4366 void ScalarEvolution::eraseValueFromMap(Value *V) { 4367 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4368 if (I != ValueExprMap.end()) { 4369 auto EVIt = ExprValueMap.find(I->second); 4370 bool Removed = EVIt->second.remove(V); 4371 (void) Removed; 4372 assert(Removed && "Value not in ExprValueMap?"); 4373 ValueExprMap.erase(I); 4374 } 4375 } 4376 4377 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4378 // A recursive query may have already computed the SCEV. It should be 4379 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4380 // inferred nowrap flags. 4381 auto It = ValueExprMap.find_as(V); 4382 if (It == ValueExprMap.end()) { 4383 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4384 ExprValueMap[S].insert(V); 4385 } 4386 } 4387 4388 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4389 /// create a new one. 4390 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4391 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4392 4393 const SCEV *S = getExistingSCEV(V); 4394 if (S == nullptr) { 4395 S = createSCEV(V); 4396 // During PHI resolution, it is possible to create two SCEVs for the same 4397 // V, so it is needed to double check whether V->S is inserted into 4398 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4399 std::pair<ValueExprMapType::iterator, bool> Pair = 4400 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4401 if (Pair.second) 4402 ExprValueMap[S].insert(V); 4403 } 4404 return S; 4405 } 4406 4407 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4408 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4409 4410 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4411 if (I != ValueExprMap.end()) { 4412 const SCEV *S = I->second; 4413 assert(checkValidity(S) && 4414 "existing SCEV has not been properly invalidated"); 4415 return S; 4416 } 4417 return nullptr; 4418 } 4419 4420 /// Return a SCEV corresponding to -V = -1*V 4421 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4422 SCEV::NoWrapFlags Flags) { 4423 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4424 return getConstant( 4425 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4426 4427 Type *Ty = V->getType(); 4428 Ty = getEffectiveSCEVType(Ty); 4429 return getMulExpr(V, getMinusOne(Ty), Flags); 4430 } 4431 4432 /// If Expr computes ~A, return A else return nullptr 4433 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4434 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4435 if (!Add || Add->getNumOperands() != 2 || 4436 !Add->getOperand(0)->isAllOnesValue()) 4437 return nullptr; 4438 4439 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4440 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4441 !AddRHS->getOperand(0)->isAllOnesValue()) 4442 return nullptr; 4443 4444 return AddRHS->getOperand(1); 4445 } 4446 4447 /// Return a SCEV corresponding to ~V = -1-V 4448 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4449 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4450 4451 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4452 return getConstant( 4453 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4454 4455 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4456 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4457 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4458 SmallVector<const SCEV *, 2> MatchedOperands; 4459 for (const SCEV *Operand : MME->operands()) { 4460 const SCEV *Matched = MatchNotExpr(Operand); 4461 if (!Matched) 4462 return (const SCEV *)nullptr; 4463 MatchedOperands.push_back(Matched); 4464 } 4465 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4466 MatchedOperands); 4467 }; 4468 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4469 return Replaced; 4470 } 4471 4472 Type *Ty = V->getType(); 4473 Ty = getEffectiveSCEVType(Ty); 4474 return getMinusSCEV(getMinusOne(Ty), V); 4475 } 4476 4477 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4478 assert(P->getType()->isPointerTy()); 4479 4480 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4481 // The base of an AddRec is the first operand. 4482 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4483 Ops[0] = removePointerBase(Ops[0]); 4484 // Don't try to transfer nowrap flags for now. We could in some cases 4485 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4486 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4487 } 4488 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4489 // The base of an Add is the pointer operand. 4490 SmallVector<const SCEV *> Ops{Add->operands()}; 4491 const SCEV **PtrOp = nullptr; 4492 for (const SCEV *&AddOp : Ops) { 4493 if (AddOp->getType()->isPointerTy()) { 4494 assert(!PtrOp && "Cannot have multiple pointer ops"); 4495 PtrOp = &AddOp; 4496 } 4497 } 4498 *PtrOp = removePointerBase(*PtrOp); 4499 // Don't try to transfer nowrap flags for now. We could in some cases 4500 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4501 return getAddExpr(Ops); 4502 } 4503 // Any other expression must be a pointer base. 4504 return getZero(P->getType()); 4505 } 4506 4507 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4508 SCEV::NoWrapFlags Flags, 4509 unsigned Depth) { 4510 // Fast path: X - X --> 0. 4511 if (LHS == RHS) 4512 return getZero(LHS->getType()); 4513 4514 // If we subtract two pointers with different pointer bases, bail. 4515 // Eventually, we're going to add an assertion to getMulExpr that we 4516 // can't multiply by a pointer. 4517 if (RHS->getType()->isPointerTy()) { 4518 if (!LHS->getType()->isPointerTy() || 4519 getPointerBase(LHS) != getPointerBase(RHS)) 4520 return getCouldNotCompute(); 4521 LHS = removePointerBase(LHS); 4522 RHS = removePointerBase(RHS); 4523 } 4524 4525 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4526 // makes it so that we cannot make much use of NUW. 4527 auto AddFlags = SCEV::FlagAnyWrap; 4528 const bool RHSIsNotMinSigned = 4529 !getSignedRangeMin(RHS).isMinSignedValue(); 4530 if (hasFlags(Flags, SCEV::FlagNSW)) { 4531 // Let M be the minimum representable signed value. Then (-1)*RHS 4532 // signed-wraps if and only if RHS is M. That can happen even for 4533 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4534 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4535 // (-1)*RHS, we need to prove that RHS != M. 4536 // 4537 // If LHS is non-negative and we know that LHS - RHS does not 4538 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4539 // either by proving that RHS > M or that LHS >= 0. 4540 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4541 AddFlags = SCEV::FlagNSW; 4542 } 4543 } 4544 4545 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4546 // RHS is NSW and LHS >= 0. 4547 // 4548 // The difficulty here is that the NSW flag may have been proven 4549 // relative to a loop that is to be found in a recurrence in LHS and 4550 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4551 // larger scope than intended. 4552 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4553 4554 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4555 } 4556 4557 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4558 unsigned Depth) { 4559 Type *SrcTy = V->getType(); 4560 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4561 "Cannot truncate or zero extend with non-integer arguments!"); 4562 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4563 return V; // No conversion 4564 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4565 return getTruncateExpr(V, Ty, Depth); 4566 return getZeroExtendExpr(V, Ty, Depth); 4567 } 4568 4569 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4570 unsigned Depth) { 4571 Type *SrcTy = V->getType(); 4572 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4573 "Cannot truncate or zero extend with non-integer arguments!"); 4574 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4575 return V; // No conversion 4576 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4577 return getTruncateExpr(V, Ty, Depth); 4578 return getSignExtendExpr(V, Ty, Depth); 4579 } 4580 4581 const SCEV * 4582 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4583 Type *SrcTy = V->getType(); 4584 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4585 "Cannot noop or zero extend with non-integer arguments!"); 4586 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4587 "getNoopOrZeroExtend cannot truncate!"); 4588 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4589 return V; // No conversion 4590 return getZeroExtendExpr(V, Ty); 4591 } 4592 4593 const SCEV * 4594 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4595 Type *SrcTy = V->getType(); 4596 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4597 "Cannot noop or sign extend with non-integer arguments!"); 4598 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4599 "getNoopOrSignExtend cannot truncate!"); 4600 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4601 return V; // No conversion 4602 return getSignExtendExpr(V, Ty); 4603 } 4604 4605 const SCEV * 4606 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4607 Type *SrcTy = V->getType(); 4608 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4609 "Cannot noop or any extend with non-integer arguments!"); 4610 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4611 "getNoopOrAnyExtend cannot truncate!"); 4612 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4613 return V; // No conversion 4614 return getAnyExtendExpr(V, Ty); 4615 } 4616 4617 const SCEV * 4618 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4619 Type *SrcTy = V->getType(); 4620 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4621 "Cannot truncate or noop with non-integer arguments!"); 4622 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4623 "getTruncateOrNoop cannot extend!"); 4624 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4625 return V; // No conversion 4626 return getTruncateExpr(V, Ty); 4627 } 4628 4629 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4630 const SCEV *RHS) { 4631 const SCEV *PromotedLHS = LHS; 4632 const SCEV *PromotedRHS = RHS; 4633 4634 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4635 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4636 else 4637 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4638 4639 return getUMaxExpr(PromotedLHS, PromotedRHS); 4640 } 4641 4642 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4643 const SCEV *RHS, 4644 bool Sequential) { 4645 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4646 return getUMinFromMismatchedTypes(Ops, Sequential); 4647 } 4648 4649 const SCEV * 4650 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4651 bool Sequential) { 4652 assert(!Ops.empty() && "At least one operand must be!"); 4653 // Trivial case. 4654 if (Ops.size() == 1) 4655 return Ops[0]; 4656 4657 // Find the max type first. 4658 Type *MaxType = nullptr; 4659 for (auto *S : Ops) 4660 if (MaxType) 4661 MaxType = getWiderType(MaxType, S->getType()); 4662 else 4663 MaxType = S->getType(); 4664 assert(MaxType && "Failed to find maximum type!"); 4665 4666 // Extend all ops to max type. 4667 SmallVector<const SCEV *, 2> PromotedOps; 4668 for (auto *S : Ops) 4669 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4670 4671 // Generate umin. 4672 return getUMinExpr(PromotedOps, Sequential); 4673 } 4674 4675 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4676 // A pointer operand may evaluate to a nonpointer expression, such as null. 4677 if (!V->getType()->isPointerTy()) 4678 return V; 4679 4680 while (true) { 4681 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4682 V = AddRec->getStart(); 4683 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4684 const SCEV *PtrOp = nullptr; 4685 for (const SCEV *AddOp : Add->operands()) { 4686 if (AddOp->getType()->isPointerTy()) { 4687 assert(!PtrOp && "Cannot have multiple pointer ops"); 4688 PtrOp = AddOp; 4689 } 4690 } 4691 assert(PtrOp && "Must have pointer op"); 4692 V = PtrOp; 4693 } else // Not something we can look further into. 4694 return V; 4695 } 4696 } 4697 4698 /// Push users of the given Instruction onto the given Worklist. 4699 static void PushDefUseChildren(Instruction *I, 4700 SmallVectorImpl<Instruction *> &Worklist, 4701 SmallPtrSetImpl<Instruction *> &Visited) { 4702 // Push the def-use children onto the Worklist stack. 4703 for (User *U : I->users()) { 4704 auto *UserInsn = cast<Instruction>(U); 4705 if (Visited.insert(UserInsn).second) 4706 Worklist.push_back(UserInsn); 4707 } 4708 } 4709 4710 namespace { 4711 4712 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4713 /// expression in case its Loop is L. If it is not L then 4714 /// if IgnoreOtherLoops is true then use AddRec itself 4715 /// otherwise rewrite cannot be done. 4716 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4717 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4718 public: 4719 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4720 bool IgnoreOtherLoops = true) { 4721 SCEVInitRewriter Rewriter(L, SE); 4722 const SCEV *Result = Rewriter.visit(S); 4723 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4724 return SE.getCouldNotCompute(); 4725 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4726 ? SE.getCouldNotCompute() 4727 : Result; 4728 } 4729 4730 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4731 if (!SE.isLoopInvariant(Expr, L)) 4732 SeenLoopVariantSCEVUnknown = true; 4733 return Expr; 4734 } 4735 4736 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4737 // Only re-write AddRecExprs for this loop. 4738 if (Expr->getLoop() == L) 4739 return Expr->getStart(); 4740 SeenOtherLoops = true; 4741 return Expr; 4742 } 4743 4744 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4745 4746 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4747 4748 private: 4749 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4750 : SCEVRewriteVisitor(SE), L(L) {} 4751 4752 const Loop *L; 4753 bool SeenLoopVariantSCEVUnknown = false; 4754 bool SeenOtherLoops = false; 4755 }; 4756 4757 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4758 /// increment expression in case its Loop is L. If it is not L then 4759 /// use AddRec itself. 4760 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4761 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4762 public: 4763 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4764 SCEVPostIncRewriter Rewriter(L, SE); 4765 const SCEV *Result = Rewriter.visit(S); 4766 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4767 ? SE.getCouldNotCompute() 4768 : Result; 4769 } 4770 4771 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4772 if (!SE.isLoopInvariant(Expr, L)) 4773 SeenLoopVariantSCEVUnknown = true; 4774 return Expr; 4775 } 4776 4777 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4778 // Only re-write AddRecExprs for this loop. 4779 if (Expr->getLoop() == L) 4780 return Expr->getPostIncExpr(SE); 4781 SeenOtherLoops = true; 4782 return Expr; 4783 } 4784 4785 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4786 4787 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4788 4789 private: 4790 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4791 : SCEVRewriteVisitor(SE), L(L) {} 4792 4793 const Loop *L; 4794 bool SeenLoopVariantSCEVUnknown = false; 4795 bool SeenOtherLoops = false; 4796 }; 4797 4798 /// This class evaluates the compare condition by matching it against the 4799 /// condition of loop latch. If there is a match we assume a true value 4800 /// for the condition while building SCEV nodes. 4801 class SCEVBackedgeConditionFolder 4802 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4803 public: 4804 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4805 ScalarEvolution &SE) { 4806 bool IsPosBECond = false; 4807 Value *BECond = nullptr; 4808 if (BasicBlock *Latch = L->getLoopLatch()) { 4809 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4810 if (BI && BI->isConditional()) { 4811 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4812 "Both outgoing branches should not target same header!"); 4813 BECond = BI->getCondition(); 4814 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4815 } else { 4816 return S; 4817 } 4818 } 4819 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4820 return Rewriter.visit(S); 4821 } 4822 4823 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4824 const SCEV *Result = Expr; 4825 bool InvariantF = SE.isLoopInvariant(Expr, L); 4826 4827 if (!InvariantF) { 4828 Instruction *I = cast<Instruction>(Expr->getValue()); 4829 switch (I->getOpcode()) { 4830 case Instruction::Select: { 4831 SelectInst *SI = cast<SelectInst>(I); 4832 Optional<const SCEV *> Res = 4833 compareWithBackedgeCondition(SI->getCondition()); 4834 if (Res.hasValue()) { 4835 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4836 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4837 } 4838 break; 4839 } 4840 default: { 4841 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4842 if (Res.hasValue()) 4843 Result = Res.getValue(); 4844 break; 4845 } 4846 } 4847 } 4848 return Result; 4849 } 4850 4851 private: 4852 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4853 bool IsPosBECond, ScalarEvolution &SE) 4854 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4855 IsPositiveBECond(IsPosBECond) {} 4856 4857 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4858 4859 const Loop *L; 4860 /// Loop back condition. 4861 Value *BackedgeCond = nullptr; 4862 /// Set to true if loop back is on positive branch condition. 4863 bool IsPositiveBECond; 4864 }; 4865 4866 Optional<const SCEV *> 4867 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4868 4869 // If value matches the backedge condition for loop latch, 4870 // then return a constant evolution node based on loopback 4871 // branch taken. 4872 if (BackedgeCond == IC) 4873 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4874 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4875 return None; 4876 } 4877 4878 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4879 public: 4880 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4881 ScalarEvolution &SE) { 4882 SCEVShiftRewriter Rewriter(L, SE); 4883 const SCEV *Result = Rewriter.visit(S); 4884 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4885 } 4886 4887 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4888 // Only allow AddRecExprs for this loop. 4889 if (!SE.isLoopInvariant(Expr, L)) 4890 Valid = false; 4891 return Expr; 4892 } 4893 4894 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4895 if (Expr->getLoop() == L && Expr->isAffine()) 4896 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4897 Valid = false; 4898 return Expr; 4899 } 4900 4901 bool isValid() { return Valid; } 4902 4903 private: 4904 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4905 : SCEVRewriteVisitor(SE), L(L) {} 4906 4907 const Loop *L; 4908 bool Valid = true; 4909 }; 4910 4911 } // end anonymous namespace 4912 4913 SCEV::NoWrapFlags 4914 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4915 if (!AR->isAffine()) 4916 return SCEV::FlagAnyWrap; 4917 4918 using OBO = OverflowingBinaryOperator; 4919 4920 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4921 4922 if (!AR->hasNoSignedWrap()) { 4923 ConstantRange AddRecRange = getSignedRange(AR); 4924 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4925 4926 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4927 Instruction::Add, IncRange, OBO::NoSignedWrap); 4928 if (NSWRegion.contains(AddRecRange)) 4929 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4930 } 4931 4932 if (!AR->hasNoUnsignedWrap()) { 4933 ConstantRange AddRecRange = getUnsignedRange(AR); 4934 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4935 4936 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4937 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4938 if (NUWRegion.contains(AddRecRange)) 4939 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4940 } 4941 4942 return Result; 4943 } 4944 4945 SCEV::NoWrapFlags 4946 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4947 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4948 4949 if (AR->hasNoSignedWrap()) 4950 return Result; 4951 4952 if (!AR->isAffine()) 4953 return Result; 4954 4955 const SCEV *Step = AR->getStepRecurrence(*this); 4956 const Loop *L = AR->getLoop(); 4957 4958 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4959 // Note that this serves two purposes: It filters out loops that are 4960 // simply not analyzable, and it covers the case where this code is 4961 // being called from within backedge-taken count analysis, such that 4962 // attempting to ask for the backedge-taken count would likely result 4963 // in infinite recursion. In the later case, the analysis code will 4964 // cope with a conservative value, and it will take care to purge 4965 // that value once it has finished. 4966 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4967 4968 // Normally, in the cases we can prove no-overflow via a 4969 // backedge guarding condition, we can also compute a backedge 4970 // taken count for the loop. The exceptions are assumptions and 4971 // guards present in the loop -- SCEV is not great at exploiting 4972 // these to compute max backedge taken counts, but can still use 4973 // these to prove lack of overflow. Use this fact to avoid 4974 // doing extra work that may not pay off. 4975 4976 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4977 AC.assumptions().empty()) 4978 return Result; 4979 4980 // If the backedge is guarded by a comparison with the pre-inc value the 4981 // addrec is safe. Also, if the entry is guarded by a comparison with the 4982 // start value and the backedge is guarded by a comparison with the post-inc 4983 // value, the addrec is safe. 4984 ICmpInst::Predicate Pred; 4985 const SCEV *OverflowLimit = 4986 getSignedOverflowLimitForStep(Step, &Pred, this); 4987 if (OverflowLimit && 4988 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4989 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4990 Result = setFlags(Result, SCEV::FlagNSW); 4991 } 4992 return Result; 4993 } 4994 SCEV::NoWrapFlags 4995 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4996 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4997 4998 if (AR->hasNoUnsignedWrap()) 4999 return Result; 5000 5001 if (!AR->isAffine()) 5002 return Result; 5003 5004 const SCEV *Step = AR->getStepRecurrence(*this); 5005 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 5006 const Loop *L = AR->getLoop(); 5007 5008 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5009 // Note that this serves two purposes: It filters out loops that are 5010 // simply not analyzable, and it covers the case where this code is 5011 // being called from within backedge-taken count analysis, such that 5012 // attempting to ask for the backedge-taken count would likely result 5013 // in infinite recursion. In the later case, the analysis code will 5014 // cope with a conservative value, and it will take care to purge 5015 // that value once it has finished. 5016 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5017 5018 // Normally, in the cases we can prove no-overflow via a 5019 // backedge guarding condition, we can also compute a backedge 5020 // taken count for the loop. The exceptions are assumptions and 5021 // guards present in the loop -- SCEV is not great at exploiting 5022 // these to compute max backedge taken counts, but can still use 5023 // these to prove lack of overflow. Use this fact to avoid 5024 // doing extra work that may not pay off. 5025 5026 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5027 AC.assumptions().empty()) 5028 return Result; 5029 5030 // If the backedge is guarded by a comparison with the pre-inc value the 5031 // addrec is safe. Also, if the entry is guarded by a comparison with the 5032 // start value and the backedge is guarded by a comparison with the post-inc 5033 // value, the addrec is safe. 5034 if (isKnownPositive(Step)) { 5035 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5036 getUnsignedRangeMax(Step)); 5037 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5038 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5039 Result = setFlags(Result, SCEV::FlagNUW); 5040 } 5041 } 5042 5043 return Result; 5044 } 5045 5046 namespace { 5047 5048 /// Represents an abstract binary operation. This may exist as a 5049 /// normal instruction or constant expression, or may have been 5050 /// derived from an expression tree. 5051 struct BinaryOp { 5052 unsigned Opcode; 5053 Value *LHS; 5054 Value *RHS; 5055 bool IsNSW = false; 5056 bool IsNUW = false; 5057 5058 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5059 /// constant expression. 5060 Operator *Op = nullptr; 5061 5062 explicit BinaryOp(Operator *Op) 5063 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5064 Op(Op) { 5065 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5066 IsNSW = OBO->hasNoSignedWrap(); 5067 IsNUW = OBO->hasNoUnsignedWrap(); 5068 } 5069 } 5070 5071 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5072 bool IsNUW = false) 5073 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5074 }; 5075 5076 } // end anonymous namespace 5077 5078 /// Try to map \p V into a BinaryOp, and return \c None on failure. 5079 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 5080 auto *Op = dyn_cast<Operator>(V); 5081 if (!Op) 5082 return None; 5083 5084 // Implementation detail: all the cleverness here should happen without 5085 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5086 // SCEV expressions when possible, and we should not break that. 5087 5088 switch (Op->getOpcode()) { 5089 case Instruction::Add: 5090 case Instruction::Sub: 5091 case Instruction::Mul: 5092 case Instruction::UDiv: 5093 case Instruction::URem: 5094 case Instruction::And: 5095 case Instruction::Or: 5096 case Instruction::AShr: 5097 case Instruction::Shl: 5098 return BinaryOp(Op); 5099 5100 case Instruction::Xor: 5101 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5102 // If the RHS of the xor is a signmask, then this is just an add. 5103 // Instcombine turns add of signmask into xor as a strength reduction step. 5104 if (RHSC->getValue().isSignMask()) 5105 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5106 // Binary `xor` is a bit-wise `add`. 5107 if (V->getType()->isIntegerTy(1)) 5108 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5109 return BinaryOp(Op); 5110 5111 case Instruction::LShr: 5112 // Turn logical shift right of a constant into a unsigned divide. 5113 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5114 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5115 5116 // If the shift count is not less than the bitwidth, the result of 5117 // the shift is undefined. Don't try to analyze it, because the 5118 // resolution chosen here may differ from the resolution chosen in 5119 // other parts of the compiler. 5120 if (SA->getValue().ult(BitWidth)) { 5121 Constant *X = 5122 ConstantInt::get(SA->getContext(), 5123 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5124 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5125 } 5126 } 5127 return BinaryOp(Op); 5128 5129 case Instruction::ExtractValue: { 5130 auto *EVI = cast<ExtractValueInst>(Op); 5131 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5132 break; 5133 5134 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5135 if (!WO) 5136 break; 5137 5138 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5139 bool Signed = WO->isSigned(); 5140 // TODO: Should add nuw/nsw flags for mul as well. 5141 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5142 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5143 5144 // Now that we know that all uses of the arithmetic-result component of 5145 // CI are guarded by the overflow check, we can go ahead and pretend 5146 // that the arithmetic is non-overflowing. 5147 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5148 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5149 } 5150 5151 default: 5152 break; 5153 } 5154 5155 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5156 // semantics as a Sub, return a binary sub expression. 5157 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5158 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5159 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5160 5161 return None; 5162 } 5163 5164 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5165 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5166 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5167 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5168 /// follows one of the following patterns: 5169 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5170 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5171 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5172 /// we return the type of the truncation operation, and indicate whether the 5173 /// truncated type should be treated as signed/unsigned by setting 5174 /// \p Signed to true/false, respectively. 5175 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5176 bool &Signed, ScalarEvolution &SE) { 5177 // The case where Op == SymbolicPHI (that is, with no type conversions on 5178 // the way) is handled by the regular add recurrence creating logic and 5179 // would have already been triggered in createAddRecForPHI. Reaching it here 5180 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5181 // because one of the other operands of the SCEVAddExpr updating this PHI is 5182 // not invariant). 5183 // 5184 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5185 // this case predicates that allow us to prove that Op == SymbolicPHI will 5186 // be added. 5187 if (Op == SymbolicPHI) 5188 return nullptr; 5189 5190 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5191 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5192 if (SourceBits != NewBits) 5193 return nullptr; 5194 5195 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5196 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5197 if (!SExt && !ZExt) 5198 return nullptr; 5199 const SCEVTruncateExpr *Trunc = 5200 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5201 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5202 if (!Trunc) 5203 return nullptr; 5204 const SCEV *X = Trunc->getOperand(); 5205 if (X != SymbolicPHI) 5206 return nullptr; 5207 Signed = SExt != nullptr; 5208 return Trunc->getType(); 5209 } 5210 5211 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5212 if (!PN->getType()->isIntegerTy()) 5213 return nullptr; 5214 const Loop *L = LI.getLoopFor(PN->getParent()); 5215 if (!L || L->getHeader() != PN->getParent()) 5216 return nullptr; 5217 return L; 5218 } 5219 5220 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5221 // computation that updates the phi follows the following pattern: 5222 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5223 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5224 // If so, try to see if it can be rewritten as an AddRecExpr under some 5225 // Predicates. If successful, return them as a pair. Also cache the results 5226 // of the analysis. 5227 // 5228 // Example usage scenario: 5229 // Say the Rewriter is called for the following SCEV: 5230 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5231 // where: 5232 // %X = phi i64 (%Start, %BEValue) 5233 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5234 // and call this function with %SymbolicPHI = %X. 5235 // 5236 // The analysis will find that the value coming around the backedge has 5237 // the following SCEV: 5238 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5239 // Upon concluding that this matches the desired pattern, the function 5240 // will return the pair {NewAddRec, SmallPredsVec} where: 5241 // NewAddRec = {%Start,+,%Step} 5242 // SmallPredsVec = {P1, P2, P3} as follows: 5243 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5244 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5245 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5246 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5247 // under the predicates {P1,P2,P3}. 5248 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5249 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5250 // 5251 // TODO's: 5252 // 5253 // 1) Extend the Induction descriptor to also support inductions that involve 5254 // casts: When needed (namely, when we are called in the context of the 5255 // vectorizer induction analysis), a Set of cast instructions will be 5256 // populated by this method, and provided back to isInductionPHI. This is 5257 // needed to allow the vectorizer to properly record them to be ignored by 5258 // the cost model and to avoid vectorizing them (otherwise these casts, 5259 // which are redundant under the runtime overflow checks, will be 5260 // vectorized, which can be costly). 5261 // 5262 // 2) Support additional induction/PHISCEV patterns: We also want to support 5263 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5264 // after the induction update operation (the induction increment): 5265 // 5266 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5267 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5268 // 5269 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5270 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5271 // 5272 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5273 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5274 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5275 SmallVector<const SCEVPredicate *, 3> Predicates; 5276 5277 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5278 // return an AddRec expression under some predicate. 5279 5280 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5281 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5282 assert(L && "Expecting an integer loop header phi"); 5283 5284 // The loop may have multiple entrances or multiple exits; we can analyze 5285 // this phi as an addrec if it has a unique entry value and a unique 5286 // backedge value. 5287 Value *BEValueV = nullptr, *StartValueV = nullptr; 5288 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5289 Value *V = PN->getIncomingValue(i); 5290 if (L->contains(PN->getIncomingBlock(i))) { 5291 if (!BEValueV) { 5292 BEValueV = V; 5293 } else if (BEValueV != V) { 5294 BEValueV = nullptr; 5295 break; 5296 } 5297 } else if (!StartValueV) { 5298 StartValueV = V; 5299 } else if (StartValueV != V) { 5300 StartValueV = nullptr; 5301 break; 5302 } 5303 } 5304 if (!BEValueV || !StartValueV) 5305 return None; 5306 5307 const SCEV *BEValue = getSCEV(BEValueV); 5308 5309 // If the value coming around the backedge is an add with the symbolic 5310 // value we just inserted, possibly with casts that we can ignore under 5311 // an appropriate runtime guard, then we found a simple induction variable! 5312 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5313 if (!Add) 5314 return None; 5315 5316 // If there is a single occurrence of the symbolic value, possibly 5317 // casted, replace it with a recurrence. 5318 unsigned FoundIndex = Add->getNumOperands(); 5319 Type *TruncTy = nullptr; 5320 bool Signed; 5321 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5322 if ((TruncTy = 5323 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5324 if (FoundIndex == e) { 5325 FoundIndex = i; 5326 break; 5327 } 5328 5329 if (FoundIndex == Add->getNumOperands()) 5330 return None; 5331 5332 // Create an add with everything but the specified operand. 5333 SmallVector<const SCEV *, 8> Ops; 5334 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5335 if (i != FoundIndex) 5336 Ops.push_back(Add->getOperand(i)); 5337 const SCEV *Accum = getAddExpr(Ops); 5338 5339 // The runtime checks will not be valid if the step amount is 5340 // varying inside the loop. 5341 if (!isLoopInvariant(Accum, L)) 5342 return None; 5343 5344 // *** Part2: Create the predicates 5345 5346 // Analysis was successful: we have a phi-with-cast pattern for which we 5347 // can return an AddRec expression under the following predicates: 5348 // 5349 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5350 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5351 // P2: An Equal predicate that guarantees that 5352 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5353 // P3: An Equal predicate that guarantees that 5354 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5355 // 5356 // As we next prove, the above predicates guarantee that: 5357 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5358 // 5359 // 5360 // More formally, we want to prove that: 5361 // Expr(i+1) = Start + (i+1) * Accum 5362 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5363 // 5364 // Given that: 5365 // 1) Expr(0) = Start 5366 // 2) Expr(1) = Start + Accum 5367 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5368 // 3) Induction hypothesis (step i): 5369 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5370 // 5371 // Proof: 5372 // Expr(i+1) = 5373 // = Start + (i+1)*Accum 5374 // = (Start + i*Accum) + Accum 5375 // = Expr(i) + Accum 5376 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5377 // :: from step i 5378 // 5379 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5380 // 5381 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5382 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5383 // + Accum :: from P3 5384 // 5385 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5386 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5387 // 5388 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5389 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5390 // 5391 // By induction, the same applies to all iterations 1<=i<n: 5392 // 5393 5394 // Create a truncated addrec for which we will add a no overflow check (P1). 5395 const SCEV *StartVal = getSCEV(StartValueV); 5396 const SCEV *PHISCEV = 5397 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5398 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5399 5400 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5401 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5402 // will be constant. 5403 // 5404 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5405 // add P1. 5406 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5407 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5408 Signed ? SCEVWrapPredicate::IncrementNSSW 5409 : SCEVWrapPredicate::IncrementNUSW; 5410 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5411 Predicates.push_back(AddRecPred); 5412 } 5413 5414 // Create the Equal Predicates P2,P3: 5415 5416 // It is possible that the predicates P2 and/or P3 are computable at 5417 // compile time due to StartVal and/or Accum being constants. 5418 // If either one is, then we can check that now and escape if either P2 5419 // or P3 is false. 5420 5421 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5422 // for each of StartVal and Accum 5423 auto getExtendedExpr = [&](const SCEV *Expr, 5424 bool CreateSignExtend) -> const SCEV * { 5425 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5426 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5427 const SCEV *ExtendedExpr = 5428 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5429 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5430 return ExtendedExpr; 5431 }; 5432 5433 // Given: 5434 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5435 // = getExtendedExpr(Expr) 5436 // Determine whether the predicate P: Expr == ExtendedExpr 5437 // is known to be false at compile time 5438 auto PredIsKnownFalse = [&](const SCEV *Expr, 5439 const SCEV *ExtendedExpr) -> bool { 5440 return Expr != ExtendedExpr && 5441 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5442 }; 5443 5444 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5445 if (PredIsKnownFalse(StartVal, StartExtended)) { 5446 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5447 return None; 5448 } 5449 5450 // The Step is always Signed (because the overflow checks are either 5451 // NSSW or NUSW) 5452 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5453 if (PredIsKnownFalse(Accum, AccumExtended)) { 5454 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5455 return None; 5456 } 5457 5458 auto AppendPredicate = [&](const SCEV *Expr, 5459 const SCEV *ExtendedExpr) -> void { 5460 if (Expr != ExtendedExpr && 5461 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5462 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5463 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5464 Predicates.push_back(Pred); 5465 } 5466 }; 5467 5468 AppendPredicate(StartVal, StartExtended); 5469 AppendPredicate(Accum, AccumExtended); 5470 5471 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5472 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5473 // into NewAR if it will also add the runtime overflow checks specified in 5474 // Predicates. 5475 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5476 5477 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5478 std::make_pair(NewAR, Predicates); 5479 // Remember the result of the analysis for this SCEV at this locayyytion. 5480 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5481 return PredRewrite; 5482 } 5483 5484 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5485 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5486 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5487 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5488 if (!L) 5489 return None; 5490 5491 // Check to see if we already analyzed this PHI. 5492 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5493 if (I != PredicatedSCEVRewrites.end()) { 5494 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5495 I->second; 5496 // Analysis was done before and failed to create an AddRec: 5497 if (Rewrite.first == SymbolicPHI) 5498 return None; 5499 // Analysis was done before and succeeded to create an AddRec under 5500 // a predicate: 5501 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5502 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5503 return Rewrite; 5504 } 5505 5506 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5507 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5508 5509 // Record in the cache that the analysis failed 5510 if (!Rewrite) { 5511 SmallVector<const SCEVPredicate *, 3> Predicates; 5512 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5513 return None; 5514 } 5515 5516 return Rewrite; 5517 } 5518 5519 // FIXME: This utility is currently required because the Rewriter currently 5520 // does not rewrite this expression: 5521 // {0, +, (sext ix (trunc iy to ix) to iy)} 5522 // into {0, +, %step}, 5523 // even when the following Equal predicate exists: 5524 // "%step == (sext ix (trunc iy to ix) to iy)". 5525 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5526 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5527 if (AR1 == AR2) 5528 return true; 5529 5530 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5531 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5532 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5533 return false; 5534 return true; 5535 }; 5536 5537 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5538 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5539 return false; 5540 return true; 5541 } 5542 5543 /// A helper function for createAddRecFromPHI to handle simple cases. 5544 /// 5545 /// This function tries to find an AddRec expression for the simplest (yet most 5546 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5547 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5548 /// technique for finding the AddRec expression. 5549 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5550 Value *BEValueV, 5551 Value *StartValueV) { 5552 const Loop *L = LI.getLoopFor(PN->getParent()); 5553 assert(L && L->getHeader() == PN->getParent()); 5554 assert(BEValueV && StartValueV); 5555 5556 auto BO = MatchBinaryOp(BEValueV, DT); 5557 if (!BO) 5558 return nullptr; 5559 5560 if (BO->Opcode != Instruction::Add) 5561 return nullptr; 5562 5563 const SCEV *Accum = nullptr; 5564 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5565 Accum = getSCEV(BO->RHS); 5566 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5567 Accum = getSCEV(BO->LHS); 5568 5569 if (!Accum) 5570 return nullptr; 5571 5572 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5573 if (BO->IsNUW) 5574 Flags = setFlags(Flags, SCEV::FlagNUW); 5575 if (BO->IsNSW) 5576 Flags = setFlags(Flags, SCEV::FlagNSW); 5577 5578 const SCEV *StartVal = getSCEV(StartValueV); 5579 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5580 insertValueToMap(PN, PHISCEV); 5581 5582 // We can add Flags to the post-inc expression only if we 5583 // know that it is *undefined behavior* for BEValueV to 5584 // overflow. 5585 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5586 assert(isLoopInvariant(Accum, L) && 5587 "Accum is defined outside L, but is not invariant?"); 5588 if (isAddRecNeverPoison(BEInst, L)) 5589 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5590 } 5591 5592 return PHISCEV; 5593 } 5594 5595 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5596 const Loop *L = LI.getLoopFor(PN->getParent()); 5597 if (!L || L->getHeader() != PN->getParent()) 5598 return nullptr; 5599 5600 // The loop may have multiple entrances or multiple exits; we can analyze 5601 // this phi as an addrec if it has a unique entry value and a unique 5602 // backedge value. 5603 Value *BEValueV = nullptr, *StartValueV = nullptr; 5604 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5605 Value *V = PN->getIncomingValue(i); 5606 if (L->contains(PN->getIncomingBlock(i))) { 5607 if (!BEValueV) { 5608 BEValueV = V; 5609 } else if (BEValueV != V) { 5610 BEValueV = nullptr; 5611 break; 5612 } 5613 } else if (!StartValueV) { 5614 StartValueV = V; 5615 } else if (StartValueV != V) { 5616 StartValueV = nullptr; 5617 break; 5618 } 5619 } 5620 if (!BEValueV || !StartValueV) 5621 return nullptr; 5622 5623 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5624 "PHI node already processed?"); 5625 5626 // First, try to find AddRec expression without creating a fictituos symbolic 5627 // value for PN. 5628 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5629 return S; 5630 5631 // Handle PHI node value symbolically. 5632 const SCEV *SymbolicName = getUnknown(PN); 5633 insertValueToMap(PN, SymbolicName); 5634 5635 // Using this symbolic name for the PHI, analyze the value coming around 5636 // the back-edge. 5637 const SCEV *BEValue = getSCEV(BEValueV); 5638 5639 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5640 // has a special value for the first iteration of the loop. 5641 5642 // If the value coming around the backedge is an add with the symbolic 5643 // value we just inserted, then we found a simple induction variable! 5644 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5645 // If there is a single occurrence of the symbolic value, replace it 5646 // with a recurrence. 5647 unsigned FoundIndex = Add->getNumOperands(); 5648 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5649 if (Add->getOperand(i) == SymbolicName) 5650 if (FoundIndex == e) { 5651 FoundIndex = i; 5652 break; 5653 } 5654 5655 if (FoundIndex != Add->getNumOperands()) { 5656 // Create an add with everything but the specified operand. 5657 SmallVector<const SCEV *, 8> Ops; 5658 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5659 if (i != FoundIndex) 5660 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5661 L, *this)); 5662 const SCEV *Accum = getAddExpr(Ops); 5663 5664 // This is not a valid addrec if the step amount is varying each 5665 // loop iteration, but is not itself an addrec in this loop. 5666 if (isLoopInvariant(Accum, L) || 5667 (isa<SCEVAddRecExpr>(Accum) && 5668 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5669 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5670 5671 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5672 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5673 if (BO->IsNUW) 5674 Flags = setFlags(Flags, SCEV::FlagNUW); 5675 if (BO->IsNSW) 5676 Flags = setFlags(Flags, SCEV::FlagNSW); 5677 } 5678 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5679 // If the increment is an inbounds GEP, then we know the address 5680 // space cannot be wrapped around. We cannot make any guarantee 5681 // about signed or unsigned overflow because pointers are 5682 // unsigned but we may have a negative index from the base 5683 // pointer. We can guarantee that no unsigned wrap occurs if the 5684 // indices form a positive value. 5685 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5686 Flags = setFlags(Flags, SCEV::FlagNW); 5687 5688 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5689 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5690 Flags = setFlags(Flags, SCEV::FlagNUW); 5691 } 5692 5693 // We cannot transfer nuw and nsw flags from subtraction 5694 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5695 // for instance. 5696 } 5697 5698 const SCEV *StartVal = getSCEV(StartValueV); 5699 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5700 5701 // Okay, for the entire analysis of this edge we assumed the PHI 5702 // to be symbolic. We now need to go back and purge all of the 5703 // entries for the scalars that use the symbolic expression. 5704 forgetMemoizedResults(SymbolicName); 5705 insertValueToMap(PN, PHISCEV); 5706 5707 // We can add Flags to the post-inc expression only if we 5708 // know that it is *undefined behavior* for BEValueV to 5709 // overflow. 5710 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5711 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5712 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5713 5714 return PHISCEV; 5715 } 5716 } 5717 } else { 5718 // Otherwise, this could be a loop like this: 5719 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5720 // In this case, j = {1,+,1} and BEValue is j. 5721 // Because the other in-value of i (0) fits the evolution of BEValue 5722 // i really is an addrec evolution. 5723 // 5724 // We can generalize this saying that i is the shifted value of BEValue 5725 // by one iteration: 5726 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5727 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5728 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5729 if (Shifted != getCouldNotCompute() && 5730 Start != getCouldNotCompute()) { 5731 const SCEV *StartVal = getSCEV(StartValueV); 5732 if (Start == StartVal) { 5733 // Okay, for the entire analysis of this edge we assumed the PHI 5734 // to be symbolic. We now need to go back and purge all of the 5735 // entries for the scalars that use the symbolic expression. 5736 forgetMemoizedResults(SymbolicName); 5737 insertValueToMap(PN, Shifted); 5738 return Shifted; 5739 } 5740 } 5741 } 5742 5743 // Remove the temporary PHI node SCEV that has been inserted while intending 5744 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5745 // as it will prevent later (possibly simpler) SCEV expressions to be added 5746 // to the ValueExprMap. 5747 eraseValueFromMap(PN); 5748 5749 return nullptr; 5750 } 5751 5752 // Checks if the SCEV S is available at BB. S is considered available at BB 5753 // if S can be materialized at BB without introducing a fault. 5754 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5755 BasicBlock *BB) { 5756 struct CheckAvailable { 5757 bool TraversalDone = false; 5758 bool Available = true; 5759 5760 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5761 BasicBlock *BB = nullptr; 5762 DominatorTree &DT; 5763 5764 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5765 : L(L), BB(BB), DT(DT) {} 5766 5767 bool setUnavailable() { 5768 TraversalDone = true; 5769 Available = false; 5770 return false; 5771 } 5772 5773 bool follow(const SCEV *S) { 5774 switch (S->getSCEVType()) { 5775 case scConstant: 5776 case scPtrToInt: 5777 case scTruncate: 5778 case scZeroExtend: 5779 case scSignExtend: 5780 case scAddExpr: 5781 case scMulExpr: 5782 case scUMaxExpr: 5783 case scSMaxExpr: 5784 case scUMinExpr: 5785 case scSMinExpr: 5786 case scSequentialUMinExpr: 5787 // These expressions are available if their operand(s) is/are. 5788 return true; 5789 5790 case scAddRecExpr: { 5791 // We allow add recurrences that are on the loop BB is in, or some 5792 // outer loop. This guarantees availability because the value of the 5793 // add recurrence at BB is simply the "current" value of the induction 5794 // variable. We can relax this in the future; for instance an add 5795 // recurrence on a sibling dominating loop is also available at BB. 5796 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5797 if (L && (ARLoop == L || ARLoop->contains(L))) 5798 return true; 5799 5800 return setUnavailable(); 5801 } 5802 5803 case scUnknown: { 5804 // For SCEVUnknown, we check for simple dominance. 5805 const auto *SU = cast<SCEVUnknown>(S); 5806 Value *V = SU->getValue(); 5807 5808 if (isa<Argument>(V)) 5809 return false; 5810 5811 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5812 return false; 5813 5814 return setUnavailable(); 5815 } 5816 5817 case scUDivExpr: 5818 case scCouldNotCompute: 5819 // We do not try to smart about these at all. 5820 return setUnavailable(); 5821 } 5822 llvm_unreachable("Unknown SCEV kind!"); 5823 } 5824 5825 bool isDone() { return TraversalDone; } 5826 }; 5827 5828 CheckAvailable CA(L, BB, DT); 5829 SCEVTraversal<CheckAvailable> ST(CA); 5830 5831 ST.visitAll(S); 5832 return CA.Available; 5833 } 5834 5835 // Try to match a control flow sequence that branches out at BI and merges back 5836 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5837 // match. 5838 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5839 Value *&C, Value *&LHS, Value *&RHS) { 5840 C = BI->getCondition(); 5841 5842 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5843 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5844 5845 if (!LeftEdge.isSingleEdge()) 5846 return false; 5847 5848 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5849 5850 Use &LeftUse = Merge->getOperandUse(0); 5851 Use &RightUse = Merge->getOperandUse(1); 5852 5853 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5854 LHS = LeftUse; 5855 RHS = RightUse; 5856 return true; 5857 } 5858 5859 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5860 LHS = RightUse; 5861 RHS = LeftUse; 5862 return true; 5863 } 5864 5865 return false; 5866 } 5867 5868 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5869 auto IsReachable = 5870 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5871 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5872 const Loop *L = LI.getLoopFor(PN->getParent()); 5873 5874 // We don't want to break LCSSA, even in a SCEV expression tree. 5875 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5876 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5877 return nullptr; 5878 5879 // Try to match 5880 // 5881 // br %cond, label %left, label %right 5882 // left: 5883 // br label %merge 5884 // right: 5885 // br label %merge 5886 // merge: 5887 // V = phi [ %x, %left ], [ %y, %right ] 5888 // 5889 // as "select %cond, %x, %y" 5890 5891 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5892 assert(IDom && "At least the entry block should dominate PN"); 5893 5894 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5895 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5896 5897 if (BI && BI->isConditional() && 5898 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5899 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5900 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5901 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5902 } 5903 5904 return nullptr; 5905 } 5906 5907 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5908 if (const SCEV *S = createAddRecFromPHI(PN)) 5909 return S; 5910 5911 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5912 return S; 5913 5914 // If the PHI has a single incoming value, follow that value, unless the 5915 // PHI's incoming blocks are in a different loop, in which case doing so 5916 // risks breaking LCSSA form. Instcombine would normally zap these, but 5917 // it doesn't have DominatorTree information, so it may miss cases. 5918 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5919 if (LI.replacementPreservesLCSSAForm(PN, V)) 5920 return getSCEV(V); 5921 5922 // If it's not a loop phi, we can't handle it yet. 5923 return getUnknown(PN); 5924 } 5925 5926 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 5927 SCEVTypes RootKind) { 5928 struct FindClosure { 5929 const SCEV *OperandToFind; 5930 const SCEVTypes RootKind; // Must be a sequential min/max expression. 5931 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 5932 5933 bool Found = false; 5934 5935 bool canRecurseInto(SCEVTypes Kind) const { 5936 // We can only recurse into the SCEV expression of the same effective type 5937 // as the type of our root SCEV expression, and into zero-extensions. 5938 return RootKind == Kind || NonSequentialRootKind == Kind || 5939 scZeroExtend == Kind; 5940 }; 5941 5942 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 5943 : OperandToFind(OperandToFind), RootKind(RootKind), 5944 NonSequentialRootKind( 5945 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 5946 RootKind)) {} 5947 5948 bool follow(const SCEV *S) { 5949 Found = S == OperandToFind; 5950 5951 return !isDone() && canRecurseInto(S->getSCEVType()); 5952 } 5953 5954 bool isDone() const { return Found; } 5955 }; 5956 5957 FindClosure FC(OperandToFind, RootKind); 5958 visitAll(Root, FC); 5959 return FC.Found; 5960 } 5961 5962 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond( 5963 Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) { 5964 // Try to match some simple smax or umax patterns. 5965 auto *ICI = Cond; 5966 5967 Value *LHS = ICI->getOperand(0); 5968 Value *RHS = ICI->getOperand(1); 5969 5970 switch (ICI->getPredicate()) { 5971 case ICmpInst::ICMP_SLT: 5972 case ICmpInst::ICMP_SLE: 5973 case ICmpInst::ICMP_ULT: 5974 case ICmpInst::ICMP_ULE: 5975 std::swap(LHS, RHS); 5976 LLVM_FALLTHROUGH; 5977 case ICmpInst::ICMP_SGT: 5978 case ICmpInst::ICMP_SGE: 5979 case ICmpInst::ICMP_UGT: 5980 case ICmpInst::ICMP_UGE: 5981 // a > b ? a+x : b+x -> max(a, b)+x 5982 // a > b ? b+x : a+x -> min(a, b)+x 5983 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5984 bool Signed = ICI->isSigned(); 5985 const SCEV *LA = getSCEV(TrueVal); 5986 const SCEV *RA = getSCEV(FalseVal); 5987 const SCEV *LS = getSCEV(LHS); 5988 const SCEV *RS = getSCEV(RHS); 5989 if (LA->getType()->isPointerTy()) { 5990 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5991 // Need to make sure we can't produce weird expressions involving 5992 // negated pointers. 5993 if (LA == LS && RA == RS) 5994 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5995 if (LA == RS && RA == LS) 5996 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5997 } 5998 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5999 if (Op->getType()->isPointerTy()) { 6000 Op = getLosslessPtrToIntExpr(Op); 6001 if (isa<SCEVCouldNotCompute>(Op)) 6002 return Op; 6003 } 6004 if (Signed) 6005 Op = getNoopOrSignExtend(Op, I->getType()); 6006 else 6007 Op = getNoopOrZeroExtend(Op, I->getType()); 6008 return Op; 6009 }; 6010 LS = CoerceOperand(LS); 6011 RS = CoerceOperand(RS); 6012 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 6013 break; 6014 const SCEV *LDiff = getMinusSCEV(LA, LS); 6015 const SCEV *RDiff = getMinusSCEV(RA, RS); 6016 if (LDiff == RDiff) 6017 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 6018 LDiff); 6019 LDiff = getMinusSCEV(LA, RS); 6020 RDiff = getMinusSCEV(RA, LS); 6021 if (LDiff == RDiff) 6022 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 6023 LDiff); 6024 } 6025 break; 6026 case ICmpInst::ICMP_NE: 6027 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 6028 std::swap(TrueVal, FalseVal); 6029 LLVM_FALLTHROUGH; 6030 case ICmpInst::ICMP_EQ: 6031 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 6032 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 6033 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 6034 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 6035 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 6036 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 6037 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 6038 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 6039 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 6040 return getAddExpr(getUMaxExpr(X, C), Y); 6041 } 6042 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 6043 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 6044 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 6045 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 6046 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 6047 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 6048 const SCEV *X = getSCEV(LHS); 6049 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 6050 X = ZExt->getOperand(); 6051 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) { 6052 const SCEV *FalseValExpr = getSCEV(FalseVal); 6053 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 6054 return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr, 6055 /*Sequential=*/true); 6056 } 6057 } 6058 break; 6059 default: 6060 break; 6061 } 6062 6063 return getUnknown(I); 6064 } 6065 6066 static Optional<const SCEV *> 6067 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, 6068 const SCEV *TrueExpr, const SCEV *FalseExpr) { 6069 assert(CondExpr->getType()->isIntegerTy(1) && 6070 TrueExpr->getType() == FalseExpr->getType() && 6071 TrueExpr->getType()->isIntegerTy(1) && 6072 "Unexpected operands of a select."); 6073 6074 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6075 // --> C + (umin_seq cond, x - C) 6076 // 6077 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6078 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6079 // --> C + (umin_seq ~cond, x - C) 6080 6081 // FIXME: while we can't legally model the case where both of the hands 6082 // are fully variable, we only require that the *difference* is constant. 6083 if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr)) 6084 return None; 6085 6086 const SCEV *X, *C; 6087 if (isa<SCEVConstant>(TrueExpr)) { 6088 CondExpr = SE->getNotSCEV(CondExpr); 6089 X = FalseExpr; 6090 C = TrueExpr; 6091 } else { 6092 X = TrueExpr; 6093 C = FalseExpr; 6094 } 6095 return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C), 6096 /*Sequential=*/true)); 6097 } 6098 6099 static Optional<const SCEV *> createNodeForSelectViaUMinSeq(ScalarEvolution *SE, 6100 Value *Cond, 6101 Value *TrueVal, 6102 Value *FalseVal) { 6103 if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal)) 6104 return None; 6105 6106 return createNodeForSelectViaUMinSeq( 6107 SE, SE->getSCEV(Cond), SE->getSCEV(TrueVal), SE->getSCEV(FalseVal)); 6108 } 6109 6110 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6111 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6112 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?"); 6113 assert(TrueVal->getType() == FalseVal->getType() && 6114 V->getType() == TrueVal->getType() && 6115 "Types of select hands and of the result must match."); 6116 6117 // For now, only deal with i1-typed `select`s. 6118 if (!V->getType()->isIntegerTy(1)) 6119 return getUnknown(V); 6120 6121 if (Optional<const SCEV *> S = 6122 createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal)) 6123 return *S; 6124 6125 return getUnknown(V); 6126 } 6127 6128 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6129 Value *TrueVal, 6130 Value *FalseVal) { 6131 // Handle "constant" branch or select. This can occur for instance when a 6132 // loop pass transforms an inner loop and moves on to process the outer loop. 6133 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6134 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6135 6136 if (auto *I = dyn_cast<Instruction>(V)) { 6137 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6138 const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond( 6139 I, ICI, TrueVal, FalseVal); 6140 if (!isa<SCEVUnknown>(S)) 6141 return S; 6142 } 6143 } 6144 6145 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6146 } 6147 6148 /// Expand GEP instructions into add and multiply operations. This allows them 6149 /// to be analyzed by regular SCEV code. 6150 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6151 // Don't attempt to analyze GEPs over unsized objects. 6152 if (!GEP->getSourceElementType()->isSized()) 6153 return getUnknown(GEP); 6154 6155 SmallVector<const SCEV *, 4> IndexExprs; 6156 for (Value *Index : GEP->indices()) 6157 IndexExprs.push_back(getSCEV(Index)); 6158 return getGEPExpr(GEP, IndexExprs); 6159 } 6160 6161 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 6162 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6163 return C->getAPInt().countTrailingZeros(); 6164 6165 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 6166 return GetMinTrailingZeros(I->getOperand()); 6167 6168 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 6169 return std::min(GetMinTrailingZeros(T->getOperand()), 6170 (uint32_t)getTypeSizeInBits(T->getType())); 6171 6172 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 6173 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6174 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6175 ? getTypeSizeInBits(E->getType()) 6176 : OpRes; 6177 } 6178 6179 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 6180 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6181 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6182 ? getTypeSizeInBits(E->getType()) 6183 : OpRes; 6184 } 6185 6186 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 6187 // The result is the min of all operands results. 6188 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6189 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6190 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6191 return MinOpRes; 6192 } 6193 6194 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 6195 // The result is the sum of all operands results. 6196 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 6197 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 6198 for (unsigned i = 1, e = M->getNumOperands(); 6199 SumOpRes != BitWidth && i != e; ++i) 6200 SumOpRes = 6201 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 6202 return SumOpRes; 6203 } 6204 6205 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 6206 // The result is the min of all operands results. 6207 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6208 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6209 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6210 return MinOpRes; 6211 } 6212 6213 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 6214 // The result is the min of all operands results. 6215 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6216 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6217 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6218 return MinOpRes; 6219 } 6220 6221 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 6222 // The result is the min of all operands results. 6223 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6224 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6225 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6226 return MinOpRes; 6227 } 6228 6229 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6230 // For a SCEVUnknown, ask ValueTracking. 6231 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 6232 return Known.countMinTrailingZeros(); 6233 } 6234 6235 // SCEVUDivExpr 6236 return 0; 6237 } 6238 6239 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 6240 auto I = MinTrailingZerosCache.find(S); 6241 if (I != MinTrailingZerosCache.end()) 6242 return I->second; 6243 6244 uint32_t Result = GetMinTrailingZerosImpl(S); 6245 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 6246 assert(InsertPair.second && "Should insert a new key"); 6247 return InsertPair.first->second; 6248 } 6249 6250 /// Helper method to assign a range to V from metadata present in the IR. 6251 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6252 if (Instruction *I = dyn_cast<Instruction>(V)) 6253 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6254 return getConstantRangeFromMetadata(*MD); 6255 6256 return None; 6257 } 6258 6259 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6260 SCEV::NoWrapFlags Flags) { 6261 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6262 AddRec->setNoWrapFlags(Flags); 6263 UnsignedRanges.erase(AddRec); 6264 SignedRanges.erase(AddRec); 6265 } 6266 } 6267 6268 ConstantRange ScalarEvolution:: 6269 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6270 const DataLayout &DL = getDataLayout(); 6271 6272 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6273 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6274 6275 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6276 // use information about the trip count to improve our available range. Note 6277 // that the trip count independent cases are already handled by known bits. 6278 // WARNING: The definition of recurrence used here is subtly different than 6279 // the one used by AddRec (and thus most of this file). Step is allowed to 6280 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6281 // and other addrecs in the same loop (for non-affine addrecs). The code 6282 // below intentionally handles the case where step is not loop invariant. 6283 auto *P = dyn_cast<PHINode>(U->getValue()); 6284 if (!P) 6285 return FullSet; 6286 6287 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6288 // even the values that are not available in these blocks may come from them, 6289 // and this leads to false-positive recurrence test. 6290 for (auto *Pred : predecessors(P->getParent())) 6291 if (!DT.isReachableFromEntry(Pred)) 6292 return FullSet; 6293 6294 BinaryOperator *BO; 6295 Value *Start, *Step; 6296 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6297 return FullSet; 6298 6299 // If we found a recurrence in reachable code, we must be in a loop. Note 6300 // that BO might be in some subloop of L, and that's completely okay. 6301 auto *L = LI.getLoopFor(P->getParent()); 6302 assert(L && L->getHeader() == P->getParent()); 6303 if (!L->contains(BO->getParent())) 6304 // NOTE: This bailout should be an assert instead. However, asserting 6305 // the condition here exposes a case where LoopFusion is querying SCEV 6306 // with malformed loop information during the midst of the transform. 6307 // There doesn't appear to be an obvious fix, so for the moment bailout 6308 // until the caller issue can be fixed. PR49566 tracks the bug. 6309 return FullSet; 6310 6311 // TODO: Extend to other opcodes such as mul, and div 6312 switch (BO->getOpcode()) { 6313 default: 6314 return FullSet; 6315 case Instruction::AShr: 6316 case Instruction::LShr: 6317 case Instruction::Shl: 6318 break; 6319 }; 6320 6321 if (BO->getOperand(0) != P) 6322 // TODO: Handle the power function forms some day. 6323 return FullSet; 6324 6325 unsigned TC = getSmallConstantMaxTripCount(L); 6326 if (!TC || TC >= BitWidth) 6327 return FullSet; 6328 6329 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6330 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6331 assert(KnownStart.getBitWidth() == BitWidth && 6332 KnownStep.getBitWidth() == BitWidth); 6333 6334 // Compute total shift amount, being careful of overflow and bitwidths. 6335 auto MaxShiftAmt = KnownStep.getMaxValue(); 6336 APInt TCAP(BitWidth, TC-1); 6337 bool Overflow = false; 6338 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6339 if (Overflow) 6340 return FullSet; 6341 6342 switch (BO->getOpcode()) { 6343 default: 6344 llvm_unreachable("filtered out above"); 6345 case Instruction::AShr: { 6346 // For each ashr, three cases: 6347 // shift = 0 => unchanged value 6348 // saturation => 0 or -1 6349 // other => a value closer to zero (of the same sign) 6350 // Thus, the end value is closer to zero than the start. 6351 auto KnownEnd = KnownBits::ashr(KnownStart, 6352 KnownBits::makeConstant(TotalShift)); 6353 if (KnownStart.isNonNegative()) 6354 // Analogous to lshr (simply not yet canonicalized) 6355 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6356 KnownStart.getMaxValue() + 1); 6357 if (KnownStart.isNegative()) 6358 // End >=u Start && End <=s Start 6359 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6360 KnownEnd.getMaxValue() + 1); 6361 break; 6362 } 6363 case Instruction::LShr: { 6364 // For each lshr, three cases: 6365 // shift = 0 => unchanged value 6366 // saturation => 0 6367 // other => a smaller positive number 6368 // Thus, the low end of the unsigned range is the last value produced. 6369 auto KnownEnd = KnownBits::lshr(KnownStart, 6370 KnownBits::makeConstant(TotalShift)); 6371 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6372 KnownStart.getMaxValue() + 1); 6373 } 6374 case Instruction::Shl: { 6375 // Iff no bits are shifted out, value increases on every shift. 6376 auto KnownEnd = KnownBits::shl(KnownStart, 6377 KnownBits::makeConstant(TotalShift)); 6378 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6379 return ConstantRange(KnownStart.getMinValue(), 6380 KnownEnd.getMaxValue() + 1); 6381 break; 6382 } 6383 }; 6384 return FullSet; 6385 } 6386 6387 /// Determine the range for a particular SCEV. If SignHint is 6388 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6389 /// with a "cleaner" unsigned (resp. signed) representation. 6390 const ConstantRange & 6391 ScalarEvolution::getRangeRef(const SCEV *S, 6392 ScalarEvolution::RangeSignHint SignHint) { 6393 DenseMap<const SCEV *, ConstantRange> &Cache = 6394 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6395 : SignedRanges; 6396 ConstantRange::PreferredRangeType RangeType = 6397 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6398 ? ConstantRange::Unsigned : ConstantRange::Signed; 6399 6400 // See if we've computed this range already. 6401 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6402 if (I != Cache.end()) 6403 return I->second; 6404 6405 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6406 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6407 6408 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6409 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6410 using OBO = OverflowingBinaryOperator; 6411 6412 // If the value has known zeros, the maximum value will have those known zeros 6413 // as well. 6414 uint32_t TZ = GetMinTrailingZeros(S); 6415 if (TZ != 0) { 6416 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6417 ConservativeResult = 6418 ConstantRange(APInt::getMinValue(BitWidth), 6419 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6420 else 6421 ConservativeResult = ConstantRange( 6422 APInt::getSignedMinValue(BitWidth), 6423 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6424 } 6425 6426 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6427 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6428 unsigned WrapType = OBO::AnyWrap; 6429 if (Add->hasNoSignedWrap()) 6430 WrapType |= OBO::NoSignedWrap; 6431 if (Add->hasNoUnsignedWrap()) 6432 WrapType |= OBO::NoUnsignedWrap; 6433 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6434 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6435 WrapType, RangeType); 6436 return setRange(Add, SignHint, 6437 ConservativeResult.intersectWith(X, RangeType)); 6438 } 6439 6440 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6441 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6442 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6443 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6444 return setRange(Mul, SignHint, 6445 ConservativeResult.intersectWith(X, RangeType)); 6446 } 6447 6448 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) { 6449 Intrinsic::ID ID; 6450 switch (S->getSCEVType()) { 6451 case scUMaxExpr: 6452 ID = Intrinsic::umax; 6453 break; 6454 case scSMaxExpr: 6455 ID = Intrinsic::smax; 6456 break; 6457 case scUMinExpr: 6458 case scSequentialUMinExpr: 6459 ID = Intrinsic::umin; 6460 break; 6461 case scSMinExpr: 6462 ID = Intrinsic::smin; 6463 break; 6464 default: 6465 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6466 } 6467 6468 const auto *NAry = cast<SCEVNAryExpr>(S); 6469 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint); 6470 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6471 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)}); 6472 return setRange(S, SignHint, 6473 ConservativeResult.intersectWith(X, RangeType)); 6474 } 6475 6476 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6477 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6478 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6479 return setRange(UDiv, SignHint, 6480 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6481 } 6482 6483 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6484 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6485 return setRange(ZExt, SignHint, 6486 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6487 RangeType)); 6488 } 6489 6490 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6491 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6492 return setRange(SExt, SignHint, 6493 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6494 RangeType)); 6495 } 6496 6497 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6498 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6499 return setRange(PtrToInt, SignHint, X); 6500 } 6501 6502 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6503 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6504 return setRange(Trunc, SignHint, 6505 ConservativeResult.intersectWith(X.truncate(BitWidth), 6506 RangeType)); 6507 } 6508 6509 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6510 // If there's no unsigned wrap, the value will never be less than its 6511 // initial value. 6512 if (AddRec->hasNoUnsignedWrap()) { 6513 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6514 if (!UnsignedMinValue.isZero()) 6515 ConservativeResult = ConservativeResult.intersectWith( 6516 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6517 } 6518 6519 // If there's no signed wrap, and all the operands except initial value have 6520 // the same sign or zero, the value won't ever be: 6521 // 1: smaller than initial value if operands are non negative, 6522 // 2: bigger than initial value if operands are non positive. 6523 // For both cases, value can not cross signed min/max boundary. 6524 if (AddRec->hasNoSignedWrap()) { 6525 bool AllNonNeg = true; 6526 bool AllNonPos = true; 6527 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6528 if (!isKnownNonNegative(AddRec->getOperand(i))) 6529 AllNonNeg = false; 6530 if (!isKnownNonPositive(AddRec->getOperand(i))) 6531 AllNonPos = false; 6532 } 6533 if (AllNonNeg) 6534 ConservativeResult = ConservativeResult.intersectWith( 6535 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6536 APInt::getSignedMinValue(BitWidth)), 6537 RangeType); 6538 else if (AllNonPos) 6539 ConservativeResult = ConservativeResult.intersectWith( 6540 ConstantRange::getNonEmpty( 6541 APInt::getSignedMinValue(BitWidth), 6542 getSignedRangeMax(AddRec->getStart()) + 1), 6543 RangeType); 6544 } 6545 6546 // TODO: non-affine addrec 6547 if (AddRec->isAffine()) { 6548 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6549 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6550 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6551 auto RangeFromAffine = getRangeForAffineAR( 6552 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6553 BitWidth); 6554 ConservativeResult = 6555 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6556 6557 auto RangeFromFactoring = getRangeViaFactoring( 6558 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6559 BitWidth); 6560 ConservativeResult = 6561 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6562 } 6563 6564 // Now try symbolic BE count and more powerful methods. 6565 if (UseExpensiveRangeSharpening) { 6566 const SCEV *SymbolicMaxBECount = 6567 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6568 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6569 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6570 AddRec->hasNoSelfWrap()) { 6571 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6572 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6573 ConservativeResult = 6574 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6575 } 6576 } 6577 } 6578 6579 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6580 } 6581 6582 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6583 6584 // Check if the IR explicitly contains !range metadata. 6585 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6586 if (MDRange.hasValue()) 6587 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6588 RangeType); 6589 6590 // Use facts about recurrences in the underlying IR. Note that add 6591 // recurrences are AddRecExprs and thus don't hit this path. This 6592 // primarily handles shift recurrences. 6593 auto CR = getRangeForUnknownRecurrence(U); 6594 ConservativeResult = ConservativeResult.intersectWith(CR); 6595 6596 // See if ValueTracking can give us a useful range. 6597 const DataLayout &DL = getDataLayout(); 6598 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6599 if (Known.getBitWidth() != BitWidth) 6600 Known = Known.zextOrTrunc(BitWidth); 6601 6602 // ValueTracking may be able to compute a tighter result for the number of 6603 // sign bits than for the value of those sign bits. 6604 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6605 if (U->getType()->isPointerTy()) { 6606 // If the pointer size is larger than the index size type, this can cause 6607 // NS to be larger than BitWidth. So compensate for this. 6608 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6609 int ptrIdxDiff = ptrSize - BitWidth; 6610 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6611 NS -= ptrIdxDiff; 6612 } 6613 6614 if (NS > 1) { 6615 // If we know any of the sign bits, we know all of the sign bits. 6616 if (!Known.Zero.getHiBits(NS).isZero()) 6617 Known.Zero.setHighBits(NS); 6618 if (!Known.One.getHiBits(NS).isZero()) 6619 Known.One.setHighBits(NS); 6620 } 6621 6622 if (Known.getMinValue() != Known.getMaxValue() + 1) 6623 ConservativeResult = ConservativeResult.intersectWith( 6624 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6625 RangeType); 6626 if (NS > 1) 6627 ConservativeResult = ConservativeResult.intersectWith( 6628 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6629 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6630 RangeType); 6631 6632 // A range of Phi is a subset of union of all ranges of its input. 6633 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6634 // Make sure that we do not run over cycled Phis. 6635 if (PendingPhiRanges.insert(Phi).second) { 6636 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6637 for (auto &Op : Phi->operands()) { 6638 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6639 RangeFromOps = RangeFromOps.unionWith(OpRange); 6640 // No point to continue if we already have a full set. 6641 if (RangeFromOps.isFullSet()) 6642 break; 6643 } 6644 ConservativeResult = 6645 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6646 bool Erased = PendingPhiRanges.erase(Phi); 6647 assert(Erased && "Failed to erase Phi properly?"); 6648 (void) Erased; 6649 } 6650 } 6651 6652 return setRange(U, SignHint, std::move(ConservativeResult)); 6653 } 6654 6655 return setRange(S, SignHint, std::move(ConservativeResult)); 6656 } 6657 6658 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6659 // values that the expression can take. Initially, the expression has a value 6660 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6661 // argument defines if we treat Step as signed or unsigned. 6662 static ConstantRange getRangeForAffineARHelper(APInt Step, 6663 const ConstantRange &StartRange, 6664 const APInt &MaxBECount, 6665 unsigned BitWidth, bool Signed) { 6666 // If either Step or MaxBECount is 0, then the expression won't change, and we 6667 // just need to return the initial range. 6668 if (Step == 0 || MaxBECount == 0) 6669 return StartRange; 6670 6671 // If we don't know anything about the initial value (i.e. StartRange is 6672 // FullRange), then we don't know anything about the final range either. 6673 // Return FullRange. 6674 if (StartRange.isFullSet()) 6675 return ConstantRange::getFull(BitWidth); 6676 6677 // If Step is signed and negative, then we use its absolute value, but we also 6678 // note that we're moving in the opposite direction. 6679 bool Descending = Signed && Step.isNegative(); 6680 6681 if (Signed) 6682 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6683 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6684 // This equations hold true due to the well-defined wrap-around behavior of 6685 // APInt. 6686 Step = Step.abs(); 6687 6688 // Check if Offset is more than full span of BitWidth. If it is, the 6689 // expression is guaranteed to overflow. 6690 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6691 return ConstantRange::getFull(BitWidth); 6692 6693 // Offset is by how much the expression can change. Checks above guarantee no 6694 // overflow here. 6695 APInt Offset = Step * MaxBECount; 6696 6697 // Minimum value of the final range will match the minimal value of StartRange 6698 // if the expression is increasing and will be decreased by Offset otherwise. 6699 // Maximum value of the final range will match the maximal value of StartRange 6700 // if the expression is decreasing and will be increased by Offset otherwise. 6701 APInt StartLower = StartRange.getLower(); 6702 APInt StartUpper = StartRange.getUpper() - 1; 6703 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6704 : (StartUpper + std::move(Offset)); 6705 6706 // It's possible that the new minimum/maximum value will fall into the initial 6707 // range (due to wrap around). This means that the expression can take any 6708 // value in this bitwidth, and we have to return full range. 6709 if (StartRange.contains(MovedBoundary)) 6710 return ConstantRange::getFull(BitWidth); 6711 6712 APInt NewLower = 6713 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6714 APInt NewUpper = 6715 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6716 NewUpper += 1; 6717 6718 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6719 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6720 } 6721 6722 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6723 const SCEV *Step, 6724 const SCEV *MaxBECount, 6725 unsigned BitWidth) { 6726 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6727 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6728 "Precondition!"); 6729 6730 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6731 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6732 6733 // First, consider step signed. 6734 ConstantRange StartSRange = getSignedRange(Start); 6735 ConstantRange StepSRange = getSignedRange(Step); 6736 6737 // If Step can be both positive and negative, we need to find ranges for the 6738 // maximum absolute step values in both directions and union them. 6739 ConstantRange SR = 6740 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6741 MaxBECountValue, BitWidth, /* Signed = */ true); 6742 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6743 StartSRange, MaxBECountValue, 6744 BitWidth, /* Signed = */ true)); 6745 6746 // Next, consider step unsigned. 6747 ConstantRange UR = getRangeForAffineARHelper( 6748 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6749 MaxBECountValue, BitWidth, /* Signed = */ false); 6750 6751 // Finally, intersect signed and unsigned ranges. 6752 return SR.intersectWith(UR, ConstantRange::Smallest); 6753 } 6754 6755 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6756 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6757 ScalarEvolution::RangeSignHint SignHint) { 6758 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6759 assert(AddRec->hasNoSelfWrap() && 6760 "This only works for non-self-wrapping AddRecs!"); 6761 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6762 const SCEV *Step = AddRec->getStepRecurrence(*this); 6763 // Only deal with constant step to save compile time. 6764 if (!isa<SCEVConstant>(Step)) 6765 return ConstantRange::getFull(BitWidth); 6766 // Let's make sure that we can prove that we do not self-wrap during 6767 // MaxBECount iterations. We need this because MaxBECount is a maximum 6768 // iteration count estimate, and we might infer nw from some exit for which we 6769 // do not know max exit count (or any other side reasoning). 6770 // TODO: Turn into assert at some point. 6771 if (getTypeSizeInBits(MaxBECount->getType()) > 6772 getTypeSizeInBits(AddRec->getType())) 6773 return ConstantRange::getFull(BitWidth); 6774 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6775 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6776 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6777 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6778 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6779 MaxItersWithoutWrap)) 6780 return ConstantRange::getFull(BitWidth); 6781 6782 ICmpInst::Predicate LEPred = 6783 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6784 ICmpInst::Predicate GEPred = 6785 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6786 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6787 6788 // We know that there is no self-wrap. Let's take Start and End values and 6789 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6790 // the iteration. They either lie inside the range [Min(Start, End), 6791 // Max(Start, End)] or outside it: 6792 // 6793 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6794 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6795 // 6796 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6797 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6798 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6799 // Start <= End and step is positive, or Start >= End and step is negative. 6800 const SCEV *Start = AddRec->getStart(); 6801 ConstantRange StartRange = getRangeRef(Start, SignHint); 6802 ConstantRange EndRange = getRangeRef(End, SignHint); 6803 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6804 // If they already cover full iteration space, we will know nothing useful 6805 // even if we prove what we want to prove. 6806 if (RangeBetween.isFullSet()) 6807 return RangeBetween; 6808 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6809 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6810 : RangeBetween.isWrappedSet(); 6811 if (IsWrappedSet) 6812 return ConstantRange::getFull(BitWidth); 6813 6814 if (isKnownPositive(Step) && 6815 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6816 return RangeBetween; 6817 else if (isKnownNegative(Step) && 6818 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6819 return RangeBetween; 6820 return ConstantRange::getFull(BitWidth); 6821 } 6822 6823 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6824 const SCEV *Step, 6825 const SCEV *MaxBECount, 6826 unsigned BitWidth) { 6827 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6828 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6829 6830 struct SelectPattern { 6831 Value *Condition = nullptr; 6832 APInt TrueValue; 6833 APInt FalseValue; 6834 6835 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6836 const SCEV *S) { 6837 Optional<unsigned> CastOp; 6838 APInt Offset(BitWidth, 0); 6839 6840 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6841 "Should be!"); 6842 6843 // Peel off a constant offset: 6844 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6845 // In the future we could consider being smarter here and handle 6846 // {Start+Step,+,Step} too. 6847 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6848 return; 6849 6850 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6851 S = SA->getOperand(1); 6852 } 6853 6854 // Peel off a cast operation 6855 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6856 CastOp = SCast->getSCEVType(); 6857 S = SCast->getOperand(); 6858 } 6859 6860 using namespace llvm::PatternMatch; 6861 6862 auto *SU = dyn_cast<SCEVUnknown>(S); 6863 const APInt *TrueVal, *FalseVal; 6864 if (!SU || 6865 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6866 m_APInt(FalseVal)))) { 6867 Condition = nullptr; 6868 return; 6869 } 6870 6871 TrueValue = *TrueVal; 6872 FalseValue = *FalseVal; 6873 6874 // Re-apply the cast we peeled off earlier 6875 if (CastOp.hasValue()) 6876 switch (*CastOp) { 6877 default: 6878 llvm_unreachable("Unknown SCEV cast type!"); 6879 6880 case scTruncate: 6881 TrueValue = TrueValue.trunc(BitWidth); 6882 FalseValue = FalseValue.trunc(BitWidth); 6883 break; 6884 case scZeroExtend: 6885 TrueValue = TrueValue.zext(BitWidth); 6886 FalseValue = FalseValue.zext(BitWidth); 6887 break; 6888 case scSignExtend: 6889 TrueValue = TrueValue.sext(BitWidth); 6890 FalseValue = FalseValue.sext(BitWidth); 6891 break; 6892 } 6893 6894 // Re-apply the constant offset we peeled off earlier 6895 TrueValue += Offset; 6896 FalseValue += Offset; 6897 } 6898 6899 bool isRecognized() { return Condition != nullptr; } 6900 }; 6901 6902 SelectPattern StartPattern(*this, BitWidth, Start); 6903 if (!StartPattern.isRecognized()) 6904 return ConstantRange::getFull(BitWidth); 6905 6906 SelectPattern StepPattern(*this, BitWidth, Step); 6907 if (!StepPattern.isRecognized()) 6908 return ConstantRange::getFull(BitWidth); 6909 6910 if (StartPattern.Condition != StepPattern.Condition) { 6911 // We don't handle this case today; but we could, by considering four 6912 // possibilities below instead of two. I'm not sure if there are cases where 6913 // that will help over what getRange already does, though. 6914 return ConstantRange::getFull(BitWidth); 6915 } 6916 6917 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6918 // construct arbitrary general SCEV expressions here. This function is called 6919 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6920 // say) can end up caching a suboptimal value. 6921 6922 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6923 // C2352 and C2512 (otherwise it isn't needed). 6924 6925 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6926 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6927 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6928 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6929 6930 ConstantRange TrueRange = 6931 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6932 ConstantRange FalseRange = 6933 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6934 6935 return TrueRange.unionWith(FalseRange); 6936 } 6937 6938 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6939 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6940 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6941 6942 // Return early if there are no flags to propagate to the SCEV. 6943 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6944 if (BinOp->hasNoUnsignedWrap()) 6945 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6946 if (BinOp->hasNoSignedWrap()) 6947 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6948 if (Flags == SCEV::FlagAnyWrap) 6949 return SCEV::FlagAnyWrap; 6950 6951 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6952 } 6953 6954 const Instruction * 6955 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6956 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6957 return &*AddRec->getLoop()->getHeader()->begin(); 6958 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6959 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6960 return I; 6961 return nullptr; 6962 } 6963 6964 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6965 /// \p Ops remains unmodified. 6966 static void collectUniqueOps(const SCEV *S, 6967 SmallVectorImpl<const SCEV *> &Ops) { 6968 SmallPtrSet<const SCEV *, 4> Unique; 6969 auto InsertUnique = [&](const SCEV *S) { 6970 if (Unique.insert(S).second) 6971 Ops.push_back(S); 6972 }; 6973 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6974 for (auto *Op : S2->operands()) 6975 InsertUnique(Op); 6976 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6977 for (auto *Op : S2->operands()) 6978 InsertUnique(Op); 6979 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6980 for (auto *Op : S2->operands()) 6981 InsertUnique(Op); 6982 } 6983 6984 const Instruction * 6985 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6986 bool &Precise) { 6987 Precise = true; 6988 // Do a bounded search of the def relation of the requested SCEVs. 6989 SmallSet<const SCEV *, 16> Visited; 6990 SmallVector<const SCEV *> Worklist; 6991 auto pushOp = [&](const SCEV *S) { 6992 if (!Visited.insert(S).second) 6993 return; 6994 // Threshold of 30 here is arbitrary. 6995 if (Visited.size() > 30) { 6996 Precise = false; 6997 return; 6998 } 6999 Worklist.push_back(S); 7000 }; 7001 7002 for (auto *S : Ops) 7003 pushOp(S); 7004 7005 const Instruction *Bound = nullptr; 7006 while (!Worklist.empty()) { 7007 auto *S = Worklist.pop_back_val(); 7008 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7009 if (!Bound || DT.dominates(Bound, DefI)) 7010 Bound = DefI; 7011 } else { 7012 SmallVector<const SCEV *, 4> Ops; 7013 collectUniqueOps(S, Ops); 7014 for (auto *Op : Ops) 7015 pushOp(Op); 7016 } 7017 } 7018 return Bound ? Bound : &*F.getEntryBlock().begin(); 7019 } 7020 7021 const Instruction * 7022 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7023 bool Discard; 7024 return getDefiningScopeBound(Ops, Discard); 7025 } 7026 7027 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7028 const Instruction *B) { 7029 if (A->getParent() == B->getParent() && 7030 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7031 B->getIterator())) 7032 return true; 7033 7034 auto *BLoop = LI.getLoopFor(B->getParent()); 7035 if (BLoop && BLoop->getHeader() == B->getParent() && 7036 BLoop->getLoopPreheader() == A->getParent() && 7037 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7038 A->getParent()->end()) && 7039 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7040 B->getIterator())) 7041 return true; 7042 return false; 7043 } 7044 7045 7046 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7047 // Only proceed if we can prove that I does not yield poison. 7048 if (!programUndefinedIfPoison(I)) 7049 return false; 7050 7051 // At this point we know that if I is executed, then it does not wrap 7052 // according to at least one of NSW or NUW. If I is not executed, then we do 7053 // not know if the calculation that I represents would wrap. Multiple 7054 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7055 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7056 // derived from other instructions that map to the same SCEV. We cannot make 7057 // that guarantee for cases where I is not executed. So we need to find a 7058 // upper bound on the defining scope for the SCEV, and prove that I is 7059 // executed every time we enter that scope. When the bounding scope is a 7060 // loop (the common case), this is equivalent to proving I executes on every 7061 // iteration of that loop. 7062 SmallVector<const SCEV *> SCEVOps; 7063 for (const Use &Op : I->operands()) { 7064 // I could be an extractvalue from a call to an overflow intrinsic. 7065 // TODO: We can do better here in some cases. 7066 if (isSCEVable(Op->getType())) 7067 SCEVOps.push_back(getSCEV(Op)); 7068 } 7069 auto *DefI = getDefiningScopeBound(SCEVOps); 7070 return isGuaranteedToTransferExecutionTo(DefI, I); 7071 } 7072 7073 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7074 // If we know that \c I can never be poison period, then that's enough. 7075 if (isSCEVExprNeverPoison(I)) 7076 return true; 7077 7078 // For an add recurrence specifically, we assume that infinite loops without 7079 // side effects are undefined behavior, and then reason as follows: 7080 // 7081 // If the add recurrence is poison in any iteration, it is poison on all 7082 // future iterations (since incrementing poison yields poison). If the result 7083 // of the add recurrence is fed into the loop latch condition and the loop 7084 // does not contain any throws or exiting blocks other than the latch, we now 7085 // have the ability to "choose" whether the backedge is taken or not (by 7086 // choosing a sufficiently evil value for the poison feeding into the branch) 7087 // for every iteration including and after the one in which \p I first became 7088 // poison. There are two possibilities (let's call the iteration in which \p 7089 // I first became poison as K): 7090 // 7091 // 1. In the set of iterations including and after K, the loop body executes 7092 // no side effects. In this case executing the backege an infinte number 7093 // of times will yield undefined behavior. 7094 // 7095 // 2. In the set of iterations including and after K, the loop body executes 7096 // at least one side effect. In this case, that specific instance of side 7097 // effect is control dependent on poison, which also yields undefined 7098 // behavior. 7099 7100 auto *ExitingBB = L->getExitingBlock(); 7101 auto *LatchBB = L->getLoopLatch(); 7102 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 7103 return false; 7104 7105 SmallPtrSet<const Instruction *, 16> Pushed; 7106 SmallVector<const Instruction *, 8> PoisonStack; 7107 7108 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7109 // things that are known to be poison under that assumption go on the 7110 // PoisonStack. 7111 Pushed.insert(I); 7112 PoisonStack.push_back(I); 7113 7114 bool LatchControlDependentOnPoison = false; 7115 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 7116 const Instruction *Poison = PoisonStack.pop_back_val(); 7117 7118 for (auto *PoisonUser : Poison->users()) { 7119 if (propagatesPoison(cast<Operator>(PoisonUser))) { 7120 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 7121 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 7122 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 7123 assert(BI->isConditional() && "Only possibility!"); 7124 if (BI->getParent() == LatchBB) { 7125 LatchControlDependentOnPoison = true; 7126 break; 7127 } 7128 } 7129 } 7130 } 7131 7132 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 7133 } 7134 7135 ScalarEvolution::LoopProperties 7136 ScalarEvolution::getLoopProperties(const Loop *L) { 7137 using LoopProperties = ScalarEvolution::LoopProperties; 7138 7139 auto Itr = LoopPropertiesCache.find(L); 7140 if (Itr == LoopPropertiesCache.end()) { 7141 auto HasSideEffects = [](Instruction *I) { 7142 if (auto *SI = dyn_cast<StoreInst>(I)) 7143 return !SI->isSimple(); 7144 7145 return I->mayThrow() || I->mayWriteToMemory(); 7146 }; 7147 7148 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7149 /*HasNoSideEffects*/ true}; 7150 7151 for (auto *BB : L->getBlocks()) 7152 for (auto &I : *BB) { 7153 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7154 LP.HasNoAbnormalExits = false; 7155 if (HasSideEffects(&I)) 7156 LP.HasNoSideEffects = false; 7157 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7158 break; // We're already as pessimistic as we can get. 7159 } 7160 7161 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7162 assert(InsertPair.second && "We just checked!"); 7163 Itr = InsertPair.first; 7164 } 7165 7166 return Itr->second; 7167 } 7168 7169 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7170 // A mustprogress loop without side effects must be finite. 7171 // TODO: The check used here is very conservative. It's only *specific* 7172 // side effects which are well defined in infinite loops. 7173 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7174 } 7175 7176 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7177 if (!isSCEVable(V->getType())) 7178 return getUnknown(V); 7179 7180 if (Instruction *I = dyn_cast<Instruction>(V)) { 7181 // Don't attempt to analyze instructions in blocks that aren't 7182 // reachable. Such instructions don't matter, and they aren't required 7183 // to obey basic rules for definitions dominating uses which this 7184 // analysis depends on. 7185 if (!DT.isReachableFromEntry(I->getParent())) 7186 return getUnknown(UndefValue::get(V->getType())); 7187 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7188 return getConstant(CI); 7189 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 7190 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 7191 else if (!isa<ConstantExpr>(V)) 7192 return getUnknown(V); 7193 7194 Operator *U = cast<Operator>(V); 7195 if (auto BO = MatchBinaryOp(U, DT)) { 7196 switch (BO->Opcode) { 7197 case Instruction::Add: { 7198 // The simple thing to do would be to just call getSCEV on both operands 7199 // and call getAddExpr with the result. However if we're looking at a 7200 // bunch of things all added together, this can be quite inefficient, 7201 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7202 // Instead, gather up all the operands and make a single getAddExpr call. 7203 // LLVM IR canonical form means we need only traverse the left operands. 7204 SmallVector<const SCEV *, 4> AddOps; 7205 do { 7206 if (BO->Op) { 7207 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7208 AddOps.push_back(OpSCEV); 7209 break; 7210 } 7211 7212 // If a NUW or NSW flag can be applied to the SCEV for this 7213 // addition, then compute the SCEV for this addition by itself 7214 // with a separate call to getAddExpr. We need to do that 7215 // instead of pushing the operands of the addition onto AddOps, 7216 // since the flags are only known to apply to this particular 7217 // addition - they may not apply to other additions that can be 7218 // formed with operands from AddOps. 7219 const SCEV *RHS = getSCEV(BO->RHS); 7220 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7221 if (Flags != SCEV::FlagAnyWrap) { 7222 const SCEV *LHS = getSCEV(BO->LHS); 7223 if (BO->Opcode == Instruction::Sub) 7224 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7225 else 7226 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7227 break; 7228 } 7229 } 7230 7231 if (BO->Opcode == Instruction::Sub) 7232 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7233 else 7234 AddOps.push_back(getSCEV(BO->RHS)); 7235 7236 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7237 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7238 NewBO->Opcode != Instruction::Sub)) { 7239 AddOps.push_back(getSCEV(BO->LHS)); 7240 break; 7241 } 7242 BO = NewBO; 7243 } while (true); 7244 7245 return getAddExpr(AddOps); 7246 } 7247 7248 case Instruction::Mul: { 7249 SmallVector<const SCEV *, 4> MulOps; 7250 do { 7251 if (BO->Op) { 7252 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7253 MulOps.push_back(OpSCEV); 7254 break; 7255 } 7256 7257 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7258 if (Flags != SCEV::FlagAnyWrap) { 7259 MulOps.push_back( 7260 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 7261 break; 7262 } 7263 } 7264 7265 MulOps.push_back(getSCEV(BO->RHS)); 7266 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7267 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7268 MulOps.push_back(getSCEV(BO->LHS)); 7269 break; 7270 } 7271 BO = NewBO; 7272 } while (true); 7273 7274 return getMulExpr(MulOps); 7275 } 7276 case Instruction::UDiv: 7277 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7278 case Instruction::URem: 7279 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7280 case Instruction::Sub: { 7281 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7282 if (BO->Op) 7283 Flags = getNoWrapFlagsFromUB(BO->Op); 7284 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 7285 } 7286 case Instruction::And: 7287 // For an expression like x&255 that merely masks off the high bits, 7288 // use zext(trunc(x)) as the SCEV expression. 7289 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7290 if (CI->isZero()) 7291 return getSCEV(BO->RHS); 7292 if (CI->isMinusOne()) 7293 return getSCEV(BO->LHS); 7294 const APInt &A = CI->getValue(); 7295 7296 // Instcombine's ShrinkDemandedConstant may strip bits out of 7297 // constants, obscuring what would otherwise be a low-bits mask. 7298 // Use computeKnownBits to compute what ShrinkDemandedConstant 7299 // knew about to reconstruct a low-bits mask value. 7300 unsigned LZ = A.countLeadingZeros(); 7301 unsigned TZ = A.countTrailingZeros(); 7302 unsigned BitWidth = A.getBitWidth(); 7303 KnownBits Known(BitWidth); 7304 computeKnownBits(BO->LHS, Known, getDataLayout(), 7305 0, &AC, nullptr, &DT); 7306 7307 APInt EffectiveMask = 7308 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7309 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7310 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7311 const SCEV *LHS = getSCEV(BO->LHS); 7312 const SCEV *ShiftedLHS = nullptr; 7313 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7314 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7315 // For an expression like (x * 8) & 8, simplify the multiply. 7316 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7317 unsigned GCD = std::min(MulZeros, TZ); 7318 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7319 SmallVector<const SCEV*, 4> MulOps; 7320 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7321 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 7322 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7323 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7324 } 7325 } 7326 if (!ShiftedLHS) 7327 ShiftedLHS = getUDivExpr(LHS, MulCount); 7328 return getMulExpr( 7329 getZeroExtendExpr( 7330 getTruncateExpr(ShiftedLHS, 7331 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7332 BO->LHS->getType()), 7333 MulCount); 7334 } 7335 } 7336 // Binary `and` is a bit-wise `umin`. 7337 if (BO->LHS->getType()->isIntegerTy(1)) 7338 return getUMinExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7339 break; 7340 7341 case Instruction::Or: 7342 // If the RHS of the Or is a constant, we may have something like: 7343 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 7344 // optimizations will transparently handle this case. 7345 // 7346 // In order for this transformation to be safe, the LHS must be of the 7347 // form X*(2^n) and the Or constant must be less than 2^n. 7348 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7349 const SCEV *LHS = getSCEV(BO->LHS); 7350 const APInt &CIVal = CI->getValue(); 7351 if (GetMinTrailingZeros(LHS) >= 7352 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 7353 // Build a plain add SCEV. 7354 return getAddExpr(LHS, getSCEV(CI), 7355 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 7356 } 7357 } 7358 // Binary `or` is a bit-wise `umax`. 7359 if (BO->LHS->getType()->isIntegerTy(1)) 7360 return getUMaxExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7361 break; 7362 7363 case Instruction::Xor: 7364 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7365 // If the RHS of xor is -1, then this is a not operation. 7366 if (CI->isMinusOne()) 7367 return getNotSCEV(getSCEV(BO->LHS)); 7368 7369 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7370 // This is a variant of the check for xor with -1, and it handles 7371 // the case where instcombine has trimmed non-demanded bits out 7372 // of an xor with -1. 7373 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7374 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7375 if (LBO->getOpcode() == Instruction::And && 7376 LCI->getValue() == CI->getValue()) 7377 if (const SCEVZeroExtendExpr *Z = 7378 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7379 Type *UTy = BO->LHS->getType(); 7380 const SCEV *Z0 = Z->getOperand(); 7381 Type *Z0Ty = Z0->getType(); 7382 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7383 7384 // If C is a low-bits mask, the zero extend is serving to 7385 // mask off the high bits. Complement the operand and 7386 // re-apply the zext. 7387 if (CI->getValue().isMask(Z0TySize)) 7388 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7389 7390 // If C is a single bit, it may be in the sign-bit position 7391 // before the zero-extend. In this case, represent the xor 7392 // using an add, which is equivalent, and re-apply the zext. 7393 APInt Trunc = CI->getValue().trunc(Z0TySize); 7394 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7395 Trunc.isSignMask()) 7396 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7397 UTy); 7398 } 7399 } 7400 break; 7401 7402 case Instruction::Shl: 7403 // Turn shift left of a constant amount into a multiply. 7404 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7405 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7406 7407 // If the shift count is not less than the bitwidth, the result of 7408 // the shift is undefined. Don't try to analyze it, because the 7409 // resolution chosen here may differ from the resolution chosen in 7410 // other parts of the compiler. 7411 if (SA->getValue().uge(BitWidth)) 7412 break; 7413 7414 // We can safely preserve the nuw flag in all cases. It's also safe to 7415 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7416 // requires special handling. It can be preserved as long as we're not 7417 // left shifting by bitwidth - 1. 7418 auto Flags = SCEV::FlagAnyWrap; 7419 if (BO->Op) { 7420 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7421 if ((MulFlags & SCEV::FlagNSW) && 7422 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7423 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7424 if (MulFlags & SCEV::FlagNUW) 7425 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7426 } 7427 7428 ConstantInt *X = ConstantInt::get( 7429 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7430 return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags); 7431 } 7432 break; 7433 7434 case Instruction::AShr: { 7435 // AShr X, C, where C is a constant. 7436 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7437 if (!CI) 7438 break; 7439 7440 Type *OuterTy = BO->LHS->getType(); 7441 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7442 // If the shift count is not less than the bitwidth, the result of 7443 // the shift is undefined. Don't try to analyze it, because the 7444 // resolution chosen here may differ from the resolution chosen in 7445 // other parts of the compiler. 7446 if (CI->getValue().uge(BitWidth)) 7447 break; 7448 7449 if (CI->isZero()) 7450 return getSCEV(BO->LHS); // shift by zero --> noop 7451 7452 uint64_t AShrAmt = CI->getZExtValue(); 7453 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7454 7455 Operator *L = dyn_cast<Operator>(BO->LHS); 7456 if (L && L->getOpcode() == Instruction::Shl) { 7457 // X = Shl A, n 7458 // Y = AShr X, m 7459 // Both n and m are constant. 7460 7461 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7462 if (L->getOperand(1) == BO->RHS) 7463 // For a two-shift sext-inreg, i.e. n = m, 7464 // use sext(trunc(x)) as the SCEV expression. 7465 return getSignExtendExpr( 7466 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7467 7468 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7469 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7470 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7471 if (ShlAmt > AShrAmt) { 7472 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7473 // expression. We already checked that ShlAmt < BitWidth, so 7474 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7475 // ShlAmt - AShrAmt < Amt. 7476 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7477 ShlAmt - AShrAmt); 7478 return getSignExtendExpr( 7479 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7480 getConstant(Mul)), OuterTy); 7481 } 7482 } 7483 } 7484 break; 7485 } 7486 } 7487 } 7488 7489 switch (U->getOpcode()) { 7490 case Instruction::Trunc: 7491 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7492 7493 case Instruction::ZExt: 7494 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7495 7496 case Instruction::SExt: 7497 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7498 // The NSW flag of a subtract does not always survive the conversion to 7499 // A + (-1)*B. By pushing sign extension onto its operands we are much 7500 // more likely to preserve NSW and allow later AddRec optimisations. 7501 // 7502 // NOTE: This is effectively duplicating this logic from getSignExtend: 7503 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7504 // but by that point the NSW information has potentially been lost. 7505 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7506 Type *Ty = U->getType(); 7507 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7508 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7509 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7510 } 7511 } 7512 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7513 7514 case Instruction::BitCast: 7515 // BitCasts are no-op casts so we just eliminate the cast. 7516 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7517 return getSCEV(U->getOperand(0)); 7518 break; 7519 7520 case Instruction::PtrToInt: { 7521 // Pointer to integer cast is straight-forward, so do model it. 7522 const SCEV *Op = getSCEV(U->getOperand(0)); 7523 Type *DstIntTy = U->getType(); 7524 // But only if effective SCEV (integer) type is wide enough to represent 7525 // all possible pointer values. 7526 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7527 if (isa<SCEVCouldNotCompute>(IntOp)) 7528 return getUnknown(V); 7529 return IntOp; 7530 } 7531 case Instruction::IntToPtr: 7532 // Just don't deal with inttoptr casts. 7533 return getUnknown(V); 7534 7535 case Instruction::SDiv: 7536 // If both operands are non-negative, this is just an udiv. 7537 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7538 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7539 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7540 break; 7541 7542 case Instruction::SRem: 7543 // If both operands are non-negative, this is just an urem. 7544 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7545 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7546 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7547 break; 7548 7549 case Instruction::GetElementPtr: 7550 return createNodeForGEP(cast<GEPOperator>(U)); 7551 7552 case Instruction::PHI: 7553 return createNodeForPHI(cast<PHINode>(U)); 7554 7555 case Instruction::Select: 7556 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 7557 U->getOperand(2)); 7558 7559 case Instruction::Call: 7560 case Instruction::Invoke: 7561 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7562 return getSCEV(RV); 7563 7564 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7565 switch (II->getIntrinsicID()) { 7566 case Intrinsic::abs: 7567 return getAbsExpr( 7568 getSCEV(II->getArgOperand(0)), 7569 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7570 case Intrinsic::umax: 7571 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7572 getSCEV(II->getArgOperand(1))); 7573 case Intrinsic::umin: 7574 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7575 getSCEV(II->getArgOperand(1))); 7576 case Intrinsic::smax: 7577 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7578 getSCEV(II->getArgOperand(1))); 7579 case Intrinsic::smin: 7580 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7581 getSCEV(II->getArgOperand(1))); 7582 case Intrinsic::usub_sat: { 7583 const SCEV *X = getSCEV(II->getArgOperand(0)); 7584 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7585 const SCEV *ClampedY = getUMinExpr(X, Y); 7586 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7587 } 7588 case Intrinsic::uadd_sat: { 7589 const SCEV *X = getSCEV(II->getArgOperand(0)); 7590 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7591 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7592 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7593 } 7594 case Intrinsic::start_loop_iterations: 7595 // A start_loop_iterations is just equivalent to the first operand for 7596 // SCEV purposes. 7597 return getSCEV(II->getArgOperand(0)); 7598 default: 7599 break; 7600 } 7601 } 7602 break; 7603 } 7604 7605 return getUnknown(V); 7606 } 7607 7608 //===----------------------------------------------------------------------===// 7609 // Iteration Count Computation Code 7610 // 7611 7612 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7613 bool Extend) { 7614 if (isa<SCEVCouldNotCompute>(ExitCount)) 7615 return getCouldNotCompute(); 7616 7617 auto *ExitCountType = ExitCount->getType(); 7618 assert(ExitCountType->isIntegerTy()); 7619 7620 if (!Extend) 7621 return getAddExpr(ExitCount, getOne(ExitCountType)); 7622 7623 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7624 1 + ExitCountType->getScalarSizeInBits()); 7625 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7626 getOne(WiderType)); 7627 } 7628 7629 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7630 if (!ExitCount) 7631 return 0; 7632 7633 ConstantInt *ExitConst = ExitCount->getValue(); 7634 7635 // Guard against huge trip counts. 7636 if (ExitConst->getValue().getActiveBits() > 32) 7637 return 0; 7638 7639 // In case of integer overflow, this returns 0, which is correct. 7640 return ((unsigned)ExitConst->getZExtValue()) + 1; 7641 } 7642 7643 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7644 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7645 return getConstantTripCount(ExitCount); 7646 } 7647 7648 unsigned 7649 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7650 const BasicBlock *ExitingBlock) { 7651 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7652 assert(L->isLoopExiting(ExitingBlock) && 7653 "Exiting block must actually branch out of the loop!"); 7654 const SCEVConstant *ExitCount = 7655 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7656 return getConstantTripCount(ExitCount); 7657 } 7658 7659 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7660 const auto *MaxExitCount = 7661 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7662 return getConstantTripCount(MaxExitCount); 7663 } 7664 7665 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7666 // We can't infer from Array in Irregular Loop. 7667 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7668 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7669 return getCouldNotCompute(); 7670 7671 // FIXME: To make the scene more typical, we only analysis loops that have 7672 // one exiting block and that block must be the latch. To make it easier to 7673 // capture loops that have memory access and memory access will be executed 7674 // in each iteration. 7675 const BasicBlock *LoopLatch = L->getLoopLatch(); 7676 assert(LoopLatch && "See defination of simplify form loop."); 7677 if (L->getExitingBlock() != LoopLatch) 7678 return getCouldNotCompute(); 7679 7680 const DataLayout &DL = getDataLayout(); 7681 SmallVector<const SCEV *> InferCountColl; 7682 for (auto *BB : L->getBlocks()) { 7683 // Go here, we can know that Loop is a single exiting and simplified form 7684 // loop. Make sure that infer from Memory Operation in those BBs must be 7685 // executed in loop. First step, we can make sure that max execution time 7686 // of MemAccessBB in loop represents latch max excution time. 7687 // If MemAccessBB does not dom Latch, skip. 7688 // Entry 7689 // │ 7690 // ┌─────▼─────┐ 7691 // │Loop Header◄─────┐ 7692 // └──┬──────┬─┘ │ 7693 // │ │ │ 7694 // ┌────────▼──┐ ┌─▼─────┐ │ 7695 // │MemAccessBB│ │OtherBB│ │ 7696 // └────────┬──┘ └─┬─────┘ │ 7697 // │ │ │ 7698 // ┌─▼──────▼─┐ │ 7699 // │Loop Latch├─────┘ 7700 // └────┬─────┘ 7701 // ▼ 7702 // Exit 7703 if (!DT.dominates(BB, LoopLatch)) 7704 continue; 7705 7706 for (Instruction &Inst : *BB) { 7707 // Find Memory Operation Instruction. 7708 auto *GEP = getLoadStorePointerOperand(&Inst); 7709 if (!GEP) 7710 continue; 7711 7712 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7713 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7714 if (!ElemSize) 7715 continue; 7716 7717 // Use a existing polynomial recurrence on the trip count. 7718 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7719 if (!AddRec) 7720 continue; 7721 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7722 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7723 if (!ArrBase || !Step) 7724 continue; 7725 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7726 7727 // Only handle { %array + step }, 7728 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7729 if (AddRec->getStart() != ArrBase) 7730 continue; 7731 7732 // Memory operation pattern which have gaps. 7733 // Or repeat memory opreation. 7734 // And index of GEP wraps arround. 7735 if (Step->getAPInt().getActiveBits() > 32 || 7736 Step->getAPInt().getZExtValue() != 7737 ElemSize->getAPInt().getZExtValue() || 7738 Step->isZero() || Step->getAPInt().isNegative()) 7739 continue; 7740 7741 // Only infer from stack array which has certain size. 7742 // Make sure alloca instruction is not excuted in loop. 7743 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7744 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7745 continue; 7746 7747 // Make sure only handle normal array. 7748 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7749 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7750 if (!Ty || !ArrSize || !ArrSize->isOne()) 7751 continue; 7752 7753 // FIXME: Since gep indices are silently zext to the indexing type, 7754 // we will have a narrow gep index which wraps around rather than 7755 // increasing strictly, we shoule ensure that step is increasing 7756 // strictly by the loop iteration. 7757 // Now we can infer a max execution time by MemLength/StepLength. 7758 const SCEV *MemSize = 7759 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7760 auto *MaxExeCount = 7761 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7762 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7763 continue; 7764 7765 // If the loop reaches the maximum number of executions, we can not 7766 // access bytes starting outside the statically allocated size without 7767 // being immediate UB. But it is allowed to enter loop header one more 7768 // time. 7769 auto *InferCount = dyn_cast<SCEVConstant>( 7770 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7771 // Discard the maximum number of execution times under 32bits. 7772 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7773 continue; 7774 7775 InferCountColl.push_back(InferCount); 7776 } 7777 } 7778 7779 if (InferCountColl.size() == 0) 7780 return getCouldNotCompute(); 7781 7782 return getUMinFromMismatchedTypes(InferCountColl); 7783 } 7784 7785 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7786 SmallVector<BasicBlock *, 8> ExitingBlocks; 7787 L->getExitingBlocks(ExitingBlocks); 7788 7789 Optional<unsigned> Res = None; 7790 for (auto *ExitingBB : ExitingBlocks) { 7791 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7792 if (!Res) 7793 Res = Multiple; 7794 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7795 } 7796 return Res.getValueOr(1); 7797 } 7798 7799 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7800 const SCEV *ExitCount) { 7801 if (ExitCount == getCouldNotCompute()) 7802 return 1; 7803 7804 // Get the trip count 7805 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7806 7807 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7808 if (!TC) 7809 // Attempt to factor more general cases. Returns the greatest power of 7810 // two divisor. If overflow happens, the trip count expression is still 7811 // divisible by the greatest power of 2 divisor returned. 7812 return 1U << std::min((uint32_t)31, 7813 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7814 7815 ConstantInt *Result = TC->getValue(); 7816 7817 // Guard against huge trip counts (this requires checking 7818 // for zero to handle the case where the trip count == -1 and the 7819 // addition wraps). 7820 if (!Result || Result->getValue().getActiveBits() > 32 || 7821 Result->getValue().getActiveBits() == 0) 7822 return 1; 7823 7824 return (unsigned)Result->getZExtValue(); 7825 } 7826 7827 /// Returns the largest constant divisor of the trip count of this loop as a 7828 /// normal unsigned value, if possible. This means that the actual trip count is 7829 /// always a multiple of the returned value (don't forget the trip count could 7830 /// very well be zero as well!). 7831 /// 7832 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7833 /// multiple of a constant (which is also the case if the trip count is simply 7834 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7835 /// if the trip count is very large (>= 2^32). 7836 /// 7837 /// As explained in the comments for getSmallConstantTripCount, this assumes 7838 /// that control exits the loop via ExitingBlock. 7839 unsigned 7840 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7841 const BasicBlock *ExitingBlock) { 7842 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7843 assert(L->isLoopExiting(ExitingBlock) && 7844 "Exiting block must actually branch out of the loop!"); 7845 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7846 return getSmallConstantTripMultiple(L, ExitCount); 7847 } 7848 7849 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7850 const BasicBlock *ExitingBlock, 7851 ExitCountKind Kind) { 7852 switch (Kind) { 7853 case Exact: 7854 case SymbolicMaximum: 7855 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7856 case ConstantMaximum: 7857 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7858 }; 7859 llvm_unreachable("Invalid ExitCountKind!"); 7860 } 7861 7862 const SCEV * 7863 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7864 SmallVector<const SCEVPredicate *, 4> &Preds) { 7865 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7866 } 7867 7868 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7869 ExitCountKind Kind) { 7870 switch (Kind) { 7871 case Exact: 7872 return getBackedgeTakenInfo(L).getExact(L, this); 7873 case ConstantMaximum: 7874 return getBackedgeTakenInfo(L).getConstantMax(this); 7875 case SymbolicMaximum: 7876 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7877 }; 7878 llvm_unreachable("Invalid ExitCountKind!"); 7879 } 7880 7881 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7882 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7883 } 7884 7885 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7886 static void PushLoopPHIs(const Loop *L, 7887 SmallVectorImpl<Instruction *> &Worklist, 7888 SmallPtrSetImpl<Instruction *> &Visited) { 7889 BasicBlock *Header = L->getHeader(); 7890 7891 // Push all Loop-header PHIs onto the Worklist stack. 7892 for (PHINode &PN : Header->phis()) 7893 if (Visited.insert(&PN).second) 7894 Worklist.push_back(&PN); 7895 } 7896 7897 const ScalarEvolution::BackedgeTakenInfo & 7898 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7899 auto &BTI = getBackedgeTakenInfo(L); 7900 if (BTI.hasFullInfo()) 7901 return BTI; 7902 7903 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7904 7905 if (!Pair.second) 7906 return Pair.first->second; 7907 7908 BackedgeTakenInfo Result = 7909 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7910 7911 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7912 } 7913 7914 ScalarEvolution::BackedgeTakenInfo & 7915 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7916 // Initially insert an invalid entry for this loop. If the insertion 7917 // succeeds, proceed to actually compute a backedge-taken count and 7918 // update the value. The temporary CouldNotCompute value tells SCEV 7919 // code elsewhere that it shouldn't attempt to request a new 7920 // backedge-taken count, which could result in infinite recursion. 7921 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7922 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7923 if (!Pair.second) 7924 return Pair.first->second; 7925 7926 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7927 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7928 // must be cleared in this scope. 7929 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7930 7931 // In product build, there are no usage of statistic. 7932 (void)NumTripCountsComputed; 7933 (void)NumTripCountsNotComputed; 7934 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7935 const SCEV *BEExact = Result.getExact(L, this); 7936 if (BEExact != getCouldNotCompute()) { 7937 assert(isLoopInvariant(BEExact, L) && 7938 isLoopInvariant(Result.getConstantMax(this), L) && 7939 "Computed backedge-taken count isn't loop invariant for loop!"); 7940 ++NumTripCountsComputed; 7941 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7942 isa<PHINode>(L->getHeader()->begin())) { 7943 // Only count loops that have phi nodes as not being computable. 7944 ++NumTripCountsNotComputed; 7945 } 7946 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7947 7948 // Now that we know more about the trip count for this loop, forget any 7949 // existing SCEV values for PHI nodes in this loop since they are only 7950 // conservative estimates made without the benefit of trip count 7951 // information. This invalidation is not necessary for correctness, and is 7952 // only done to produce more precise results. 7953 if (Result.hasAnyInfo()) { 7954 // Invalidate any expression using an addrec in this loop. 7955 SmallVector<const SCEV *, 8> ToForget; 7956 auto LoopUsersIt = LoopUsers.find(L); 7957 if (LoopUsersIt != LoopUsers.end()) 7958 append_range(ToForget, LoopUsersIt->second); 7959 forgetMemoizedResults(ToForget); 7960 7961 // Invalidate constant-evolved loop header phis. 7962 for (PHINode &PN : L->getHeader()->phis()) 7963 ConstantEvolutionLoopExitValue.erase(&PN); 7964 } 7965 7966 // Re-lookup the insert position, since the call to 7967 // computeBackedgeTakenCount above could result in a 7968 // recusive call to getBackedgeTakenInfo (on a different 7969 // loop), which would invalidate the iterator computed 7970 // earlier. 7971 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7972 } 7973 7974 void ScalarEvolution::forgetAllLoops() { 7975 // This method is intended to forget all info about loops. It should 7976 // invalidate caches as if the following happened: 7977 // - The trip counts of all loops have changed arbitrarily 7978 // - Every llvm::Value has been updated in place to produce a different 7979 // result. 7980 BackedgeTakenCounts.clear(); 7981 PredicatedBackedgeTakenCounts.clear(); 7982 BECountUsers.clear(); 7983 LoopPropertiesCache.clear(); 7984 ConstantEvolutionLoopExitValue.clear(); 7985 ValueExprMap.clear(); 7986 ValuesAtScopes.clear(); 7987 ValuesAtScopesUsers.clear(); 7988 LoopDispositions.clear(); 7989 BlockDispositions.clear(); 7990 UnsignedRanges.clear(); 7991 SignedRanges.clear(); 7992 ExprValueMap.clear(); 7993 HasRecMap.clear(); 7994 MinTrailingZerosCache.clear(); 7995 PredicatedSCEVRewrites.clear(); 7996 } 7997 7998 void ScalarEvolution::forgetLoop(const Loop *L) { 7999 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8000 SmallVector<Instruction *, 32> Worklist; 8001 SmallPtrSet<Instruction *, 16> Visited; 8002 SmallVector<const SCEV *, 16> ToForget; 8003 8004 // Iterate over all the loops and sub-loops to drop SCEV information. 8005 while (!LoopWorklist.empty()) { 8006 auto *CurrL = LoopWorklist.pop_back_val(); 8007 8008 // Drop any stored trip count value. 8009 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8010 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8011 8012 // Drop information about predicated SCEV rewrites for this loop. 8013 for (auto I = PredicatedSCEVRewrites.begin(); 8014 I != PredicatedSCEVRewrites.end();) { 8015 std::pair<const SCEV *, const Loop *> Entry = I->first; 8016 if (Entry.second == CurrL) 8017 PredicatedSCEVRewrites.erase(I++); 8018 else 8019 ++I; 8020 } 8021 8022 auto LoopUsersItr = LoopUsers.find(CurrL); 8023 if (LoopUsersItr != LoopUsers.end()) { 8024 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8025 LoopUsersItr->second.end()); 8026 } 8027 8028 // Drop information about expressions based on loop-header PHIs. 8029 PushLoopPHIs(CurrL, Worklist, Visited); 8030 8031 while (!Worklist.empty()) { 8032 Instruction *I = Worklist.pop_back_val(); 8033 8034 ValueExprMapType::iterator It = 8035 ValueExprMap.find_as(static_cast<Value *>(I)); 8036 if (It != ValueExprMap.end()) { 8037 eraseValueFromMap(It->first); 8038 ToForget.push_back(It->second); 8039 if (PHINode *PN = dyn_cast<PHINode>(I)) 8040 ConstantEvolutionLoopExitValue.erase(PN); 8041 } 8042 8043 PushDefUseChildren(I, Worklist, Visited); 8044 } 8045 8046 LoopPropertiesCache.erase(CurrL); 8047 // Forget all contained loops too, to avoid dangling entries in the 8048 // ValuesAtScopes map. 8049 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8050 } 8051 forgetMemoizedResults(ToForget); 8052 } 8053 8054 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8055 while (Loop *Parent = L->getParentLoop()) 8056 L = Parent; 8057 forgetLoop(L); 8058 } 8059 8060 void ScalarEvolution::forgetValue(Value *V) { 8061 Instruction *I = dyn_cast<Instruction>(V); 8062 if (!I) return; 8063 8064 // Drop information about expressions based on loop-header PHIs. 8065 SmallVector<Instruction *, 16> Worklist; 8066 SmallPtrSet<Instruction *, 8> Visited; 8067 SmallVector<const SCEV *, 8> ToForget; 8068 Worklist.push_back(I); 8069 Visited.insert(I); 8070 8071 while (!Worklist.empty()) { 8072 I = Worklist.pop_back_val(); 8073 ValueExprMapType::iterator It = 8074 ValueExprMap.find_as(static_cast<Value *>(I)); 8075 if (It != ValueExprMap.end()) { 8076 eraseValueFromMap(It->first); 8077 ToForget.push_back(It->second); 8078 if (PHINode *PN = dyn_cast<PHINode>(I)) 8079 ConstantEvolutionLoopExitValue.erase(PN); 8080 } 8081 8082 PushDefUseChildren(I, Worklist, Visited); 8083 } 8084 forgetMemoizedResults(ToForget); 8085 } 8086 8087 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 8088 LoopDispositions.clear(); 8089 } 8090 8091 /// Get the exact loop backedge taken count considering all loop exits. A 8092 /// computable result can only be returned for loops with all exiting blocks 8093 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8094 /// is never skipped. This is a valid assumption as long as the loop exits via 8095 /// that test. For precise results, it is the caller's responsibility to specify 8096 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8097 const SCEV * 8098 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8099 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8100 // If any exits were not computable, the loop is not computable. 8101 if (!isComplete() || ExitNotTaken.empty()) 8102 return SE->getCouldNotCompute(); 8103 8104 const BasicBlock *Latch = L->getLoopLatch(); 8105 // All exiting blocks we have collected must dominate the only backedge. 8106 if (!Latch) 8107 return SE->getCouldNotCompute(); 8108 8109 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8110 // count is simply a minimum out of all these calculated exit counts. 8111 SmallVector<const SCEV *, 2> Ops; 8112 for (auto &ENT : ExitNotTaken) { 8113 const SCEV *BECount = ENT.ExactNotTaken; 8114 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8115 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8116 "We should only have known counts for exiting blocks that dominate " 8117 "latch!"); 8118 8119 Ops.push_back(BECount); 8120 8121 if (Preds) 8122 for (auto *P : ENT.Predicates) 8123 Preds->push_back(P); 8124 8125 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8126 "Predicate should be always true!"); 8127 } 8128 8129 return SE->getUMinFromMismatchedTypes(Ops); 8130 } 8131 8132 /// Get the exact not taken count for this loop exit. 8133 const SCEV * 8134 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8135 ScalarEvolution *SE) const { 8136 for (auto &ENT : ExitNotTaken) 8137 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8138 return ENT.ExactNotTaken; 8139 8140 return SE->getCouldNotCompute(); 8141 } 8142 8143 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8144 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8145 for (auto &ENT : ExitNotTaken) 8146 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8147 return ENT.MaxNotTaken; 8148 8149 return SE->getCouldNotCompute(); 8150 } 8151 8152 /// getConstantMax - Get the constant max backedge taken count for the loop. 8153 const SCEV * 8154 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8155 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8156 return !ENT.hasAlwaysTruePredicate(); 8157 }; 8158 8159 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8160 return SE->getCouldNotCompute(); 8161 8162 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8163 isa<SCEVConstant>(getConstantMax())) && 8164 "No point in having a non-constant max backedge taken count!"); 8165 return getConstantMax(); 8166 } 8167 8168 const SCEV * 8169 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8170 ScalarEvolution *SE) { 8171 if (!SymbolicMax) 8172 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8173 return SymbolicMax; 8174 } 8175 8176 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8177 ScalarEvolution *SE) const { 8178 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8179 return !ENT.hasAlwaysTruePredicate(); 8180 }; 8181 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8182 } 8183 8184 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8185 : ExitLimit(E, E, false, None) { 8186 } 8187 8188 ScalarEvolution::ExitLimit::ExitLimit( 8189 const SCEV *E, const SCEV *M, bool MaxOrZero, 8190 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8191 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 8192 // If we prove the max count is zero, so is the symbolic bound. This happens 8193 // in practice due to differences in a) how context sensitive we've chosen 8194 // to be and b) how we reason about bounds impied by UB. 8195 if (MaxNotTaken->isZero()) 8196 ExactNotTaken = MaxNotTaken; 8197 8198 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8199 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 8200 "Exact is not allowed to be less precise than Max"); 8201 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 8202 isa<SCEVConstant>(MaxNotTaken)) && 8203 "No point in having a non-constant max backedge taken count!"); 8204 for (auto *PredSet : PredSetList) 8205 for (auto *P : *PredSet) 8206 addPredicate(P); 8207 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8208 "Backedge count should be int"); 8209 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 8210 "Max backedge count should be int"); 8211 } 8212 8213 ScalarEvolution::ExitLimit::ExitLimit( 8214 const SCEV *E, const SCEV *M, bool MaxOrZero, 8215 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8216 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 8217 } 8218 8219 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 8220 bool MaxOrZero) 8221 : ExitLimit(E, M, MaxOrZero, None) { 8222 } 8223 8224 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8225 /// computable exit into a persistent ExitNotTakenInfo array. 8226 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8227 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8228 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8229 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8230 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8231 8232 ExitNotTaken.reserve(ExitCounts.size()); 8233 std::transform( 8234 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 8235 [&](const EdgeExitInfo &EEI) { 8236 BasicBlock *ExitBB = EEI.first; 8237 const ExitLimit &EL = EEI.second; 8238 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 8239 EL.Predicates); 8240 }); 8241 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8242 isa<SCEVConstant>(ConstantMax)) && 8243 "No point in having a non-constant max backedge taken count!"); 8244 } 8245 8246 /// Compute the number of times the backedge of the specified loop will execute. 8247 ScalarEvolution::BackedgeTakenInfo 8248 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8249 bool AllowPredicates) { 8250 SmallVector<BasicBlock *, 8> ExitingBlocks; 8251 L->getExitingBlocks(ExitingBlocks); 8252 8253 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8254 8255 SmallVector<EdgeExitInfo, 4> ExitCounts; 8256 bool CouldComputeBECount = true; 8257 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8258 const SCEV *MustExitMaxBECount = nullptr; 8259 const SCEV *MayExitMaxBECount = nullptr; 8260 bool MustExitMaxOrZero = false; 8261 8262 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8263 // and compute maxBECount. 8264 // Do a union of all the predicates here. 8265 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8266 BasicBlock *ExitBB = ExitingBlocks[i]; 8267 8268 // We canonicalize untaken exits to br (constant), ignore them so that 8269 // proving an exit untaken doesn't negatively impact our ability to reason 8270 // about the loop as whole. 8271 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8272 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8273 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8274 if (ExitIfTrue == CI->isZero()) 8275 continue; 8276 } 8277 8278 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8279 8280 assert((AllowPredicates || EL.Predicates.empty()) && 8281 "Predicated exit limit when predicates are not allowed!"); 8282 8283 // 1. For each exit that can be computed, add an entry to ExitCounts. 8284 // CouldComputeBECount is true only if all exits can be computed. 8285 if (EL.ExactNotTaken == getCouldNotCompute()) 8286 // We couldn't compute an exact value for this exit, so 8287 // we won't be able to compute an exact value for the loop. 8288 CouldComputeBECount = false; 8289 else 8290 ExitCounts.emplace_back(ExitBB, EL); 8291 8292 // 2. Derive the loop's MaxBECount from each exit's max number of 8293 // non-exiting iterations. Partition the loop exits into two kinds: 8294 // LoopMustExits and LoopMayExits. 8295 // 8296 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8297 // is a LoopMayExit. If any computable LoopMustExit is found, then 8298 // MaxBECount is the minimum EL.MaxNotTaken of computable 8299 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8300 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8301 // computable EL.MaxNotTaken. 8302 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8303 DT.dominates(ExitBB, Latch)) { 8304 if (!MustExitMaxBECount) { 8305 MustExitMaxBECount = EL.MaxNotTaken; 8306 MustExitMaxOrZero = EL.MaxOrZero; 8307 } else { 8308 MustExitMaxBECount = 8309 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8310 } 8311 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8312 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8313 MayExitMaxBECount = EL.MaxNotTaken; 8314 else { 8315 MayExitMaxBECount = 8316 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8317 } 8318 } 8319 } 8320 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8321 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8322 // The loop backedge will be taken the maximum or zero times if there's 8323 // a single exit that must be taken the maximum or zero times. 8324 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8325 8326 // Remember which SCEVs are used in exit limits for invalidation purposes. 8327 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 8328 // and MaxBECount, which must be SCEVConstant. 8329 for (const auto &Pair : ExitCounts) 8330 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8331 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8332 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8333 MaxBECount, MaxOrZero); 8334 } 8335 8336 ScalarEvolution::ExitLimit 8337 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8338 bool AllowPredicates) { 8339 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8340 // If our exiting block does not dominate the latch, then its connection with 8341 // loop's exit limit may be far from trivial. 8342 const BasicBlock *Latch = L->getLoopLatch(); 8343 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8344 return getCouldNotCompute(); 8345 8346 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8347 Instruction *Term = ExitingBlock->getTerminator(); 8348 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8349 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8350 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8351 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8352 "It should have one successor in loop and one exit block!"); 8353 // Proceed to the next level to examine the exit condition expression. 8354 return computeExitLimitFromCond( 8355 L, BI->getCondition(), ExitIfTrue, 8356 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8357 } 8358 8359 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8360 // For switch, make sure that there is a single exit from the loop. 8361 BasicBlock *Exit = nullptr; 8362 for (auto *SBB : successors(ExitingBlock)) 8363 if (!L->contains(SBB)) { 8364 if (Exit) // Multiple exit successors. 8365 return getCouldNotCompute(); 8366 Exit = SBB; 8367 } 8368 assert(Exit && "Exiting block must have at least one exit"); 8369 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8370 /*ControlsExit=*/IsOnlyExit); 8371 } 8372 8373 return getCouldNotCompute(); 8374 } 8375 8376 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8377 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8378 bool ControlsExit, bool AllowPredicates) { 8379 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8380 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8381 ControlsExit, AllowPredicates); 8382 } 8383 8384 Optional<ScalarEvolution::ExitLimit> 8385 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8386 bool ExitIfTrue, bool ControlsExit, 8387 bool AllowPredicates) { 8388 (void)this->L; 8389 (void)this->ExitIfTrue; 8390 (void)this->AllowPredicates; 8391 8392 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8393 this->AllowPredicates == AllowPredicates && 8394 "Variance in assumed invariant key components!"); 8395 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8396 if (Itr == TripCountMap.end()) 8397 return None; 8398 return Itr->second; 8399 } 8400 8401 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8402 bool ExitIfTrue, 8403 bool ControlsExit, 8404 bool AllowPredicates, 8405 const ExitLimit &EL) { 8406 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8407 this->AllowPredicates == AllowPredicates && 8408 "Variance in assumed invariant key components!"); 8409 8410 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8411 assert(InsertResult.second && "Expected successful insertion!"); 8412 (void)InsertResult; 8413 (void)ExitIfTrue; 8414 } 8415 8416 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8417 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8418 bool ControlsExit, bool AllowPredicates) { 8419 8420 if (auto MaybeEL = 8421 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8422 return *MaybeEL; 8423 8424 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8425 ControlsExit, AllowPredicates); 8426 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8427 return EL; 8428 } 8429 8430 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8431 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8432 bool ControlsExit, bool AllowPredicates) { 8433 // Handle BinOp conditions (And, Or). 8434 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8435 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8436 return *LimitFromBinOp; 8437 8438 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8439 // Proceed to the next level to examine the icmp. 8440 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8441 ExitLimit EL = 8442 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8443 if (EL.hasFullInfo() || !AllowPredicates) 8444 return EL; 8445 8446 // Try again, but use SCEV predicates this time. 8447 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8448 /*AllowPredicates=*/true); 8449 } 8450 8451 // Check for a constant condition. These are normally stripped out by 8452 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8453 // preserve the CFG and is temporarily leaving constant conditions 8454 // in place. 8455 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8456 if (ExitIfTrue == !CI->getZExtValue()) 8457 // The backedge is always taken. 8458 return getCouldNotCompute(); 8459 else 8460 // The backedge is never taken. 8461 return getZero(CI->getType()); 8462 } 8463 8464 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8465 // with a constant step, we can form an equivalent icmp predicate and figure 8466 // out how many iterations will be taken before we exit. 8467 const WithOverflowInst *WO; 8468 const APInt *C; 8469 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8470 match(WO->getRHS(), m_APInt(C))) { 8471 ConstantRange NWR = 8472 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8473 WO->getNoWrapKind()); 8474 CmpInst::Predicate Pred; 8475 APInt NewRHSC, Offset; 8476 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8477 if (!ExitIfTrue) 8478 Pred = ICmpInst::getInversePredicate(Pred); 8479 auto *LHS = getSCEV(WO->getLHS()); 8480 if (Offset != 0) 8481 LHS = getAddExpr(LHS, getConstant(Offset)); 8482 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8483 ControlsExit, AllowPredicates); 8484 if (EL.hasAnyInfo()) return EL; 8485 } 8486 8487 // If it's not an integer or pointer comparison then compute it the hard way. 8488 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8489 } 8490 8491 Optional<ScalarEvolution::ExitLimit> 8492 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8493 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8494 bool ControlsExit, bool AllowPredicates) { 8495 // Check if the controlling expression for this loop is an And or Or. 8496 Value *Op0, *Op1; 8497 bool IsAnd = false; 8498 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8499 IsAnd = true; 8500 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8501 IsAnd = false; 8502 else 8503 return None; 8504 8505 // EitherMayExit is true in these two cases: 8506 // br (and Op0 Op1), loop, exit 8507 // br (or Op0 Op1), exit, loop 8508 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8509 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8510 ControlsExit && !EitherMayExit, 8511 AllowPredicates); 8512 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8513 ControlsExit && !EitherMayExit, 8514 AllowPredicates); 8515 8516 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8517 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8518 if (isa<ConstantInt>(Op1)) 8519 return Op1 == NeutralElement ? EL0 : EL1; 8520 if (isa<ConstantInt>(Op0)) 8521 return Op0 == NeutralElement ? EL1 : EL0; 8522 8523 const SCEV *BECount = getCouldNotCompute(); 8524 const SCEV *MaxBECount = getCouldNotCompute(); 8525 if (EitherMayExit) { 8526 // Both conditions must be same for the loop to continue executing. 8527 // Choose the less conservative count. 8528 if (EL0.ExactNotTaken != getCouldNotCompute() && 8529 EL1.ExactNotTaken != getCouldNotCompute()) { 8530 BECount = getUMinFromMismatchedTypes( 8531 EL0.ExactNotTaken, EL1.ExactNotTaken, 8532 /*Sequential=*/!isa<BinaryOperator>(ExitCond)); 8533 } 8534 if (EL0.MaxNotTaken == getCouldNotCompute()) 8535 MaxBECount = EL1.MaxNotTaken; 8536 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8537 MaxBECount = EL0.MaxNotTaken; 8538 else 8539 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8540 } else { 8541 // Both conditions must be same at the same time for the loop to exit. 8542 // For now, be conservative. 8543 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8544 BECount = EL0.ExactNotTaken; 8545 } 8546 8547 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8548 // to be more aggressive when computing BECount than when computing 8549 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8550 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8551 // to not. 8552 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8553 !isa<SCEVCouldNotCompute>(BECount)) 8554 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8555 8556 return ExitLimit(BECount, MaxBECount, false, 8557 { &EL0.Predicates, &EL1.Predicates }); 8558 } 8559 8560 ScalarEvolution::ExitLimit 8561 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8562 ICmpInst *ExitCond, 8563 bool ExitIfTrue, 8564 bool ControlsExit, 8565 bool AllowPredicates) { 8566 // If the condition was exit on true, convert the condition to exit on false 8567 ICmpInst::Predicate Pred; 8568 if (!ExitIfTrue) 8569 Pred = ExitCond->getPredicate(); 8570 else 8571 Pred = ExitCond->getInversePredicate(); 8572 const ICmpInst::Predicate OriginalPred = Pred; 8573 8574 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8575 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8576 8577 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 8578 AllowPredicates); 8579 if (EL.hasAnyInfo()) return EL; 8580 8581 auto *ExhaustiveCount = 8582 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8583 8584 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8585 return ExhaustiveCount; 8586 8587 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8588 ExitCond->getOperand(1), L, OriginalPred); 8589 } 8590 ScalarEvolution::ExitLimit 8591 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8592 ICmpInst::Predicate Pred, 8593 const SCEV *LHS, const SCEV *RHS, 8594 bool ControlsExit, 8595 bool AllowPredicates) { 8596 8597 // Try to evaluate any dependencies out of the loop. 8598 LHS = getSCEVAtScope(LHS, L); 8599 RHS = getSCEVAtScope(RHS, L); 8600 8601 // At this point, we would like to compute how many iterations of the 8602 // loop the predicate will return true for these inputs. 8603 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8604 // If there is a loop-invariant, force it into the RHS. 8605 std::swap(LHS, RHS); 8606 Pred = ICmpInst::getSwappedPredicate(Pred); 8607 } 8608 8609 bool ControllingFiniteLoop = 8610 ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L); 8611 // Simplify the operands before analyzing them. 8612 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0, 8613 (EnableFiniteLoopControl ? ControllingFiniteLoop 8614 : false)); 8615 8616 // If we have a comparison of a chrec against a constant, try to use value 8617 // ranges to answer this query. 8618 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8619 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8620 if (AddRec->getLoop() == L) { 8621 // Form the constant range. 8622 ConstantRange CompRange = 8623 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8624 8625 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8626 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8627 } 8628 8629 // If this loop must exit based on this condition (or execute undefined 8630 // behaviour), and we can prove the test sequence produced must repeat 8631 // the same values on self-wrap of the IV, then we can infer that IV 8632 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8633 // loop. 8634 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 8635 // TODO: We can peel off any functions which are invertible *in L*. Loop 8636 // invariant terms are effectively constants for our purposes here. 8637 auto *InnerLHS = LHS; 8638 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8639 InnerLHS = ZExt->getOperand(); 8640 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8641 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8642 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8643 StrideC && StrideC->getAPInt().isPowerOf2()) { 8644 auto Flags = AR->getNoWrapFlags(); 8645 Flags = setFlags(Flags, SCEV::FlagNW); 8646 SmallVector<const SCEV*> Operands{AR->operands()}; 8647 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8648 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8649 } 8650 } 8651 } 8652 8653 switch (Pred) { 8654 case ICmpInst::ICMP_NE: { // while (X != Y) 8655 // Convert to: while (X-Y != 0) 8656 if (LHS->getType()->isPointerTy()) { 8657 LHS = getLosslessPtrToIntExpr(LHS); 8658 if (isa<SCEVCouldNotCompute>(LHS)) 8659 return LHS; 8660 } 8661 if (RHS->getType()->isPointerTy()) { 8662 RHS = getLosslessPtrToIntExpr(RHS); 8663 if (isa<SCEVCouldNotCompute>(RHS)) 8664 return RHS; 8665 } 8666 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8667 AllowPredicates); 8668 if (EL.hasAnyInfo()) return EL; 8669 break; 8670 } 8671 case ICmpInst::ICMP_EQ: { // while (X == Y) 8672 // Convert to: while (X-Y == 0) 8673 if (LHS->getType()->isPointerTy()) { 8674 LHS = getLosslessPtrToIntExpr(LHS); 8675 if (isa<SCEVCouldNotCompute>(LHS)) 8676 return LHS; 8677 } 8678 if (RHS->getType()->isPointerTy()) { 8679 RHS = getLosslessPtrToIntExpr(RHS); 8680 if (isa<SCEVCouldNotCompute>(RHS)) 8681 return RHS; 8682 } 8683 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8684 if (EL.hasAnyInfo()) return EL; 8685 break; 8686 } 8687 case ICmpInst::ICMP_SLT: 8688 case ICmpInst::ICMP_ULT: { // while (X < Y) 8689 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8690 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8691 AllowPredicates); 8692 if (EL.hasAnyInfo()) return EL; 8693 break; 8694 } 8695 case ICmpInst::ICMP_SGT: 8696 case ICmpInst::ICMP_UGT: { // while (X > Y) 8697 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8698 ExitLimit EL = 8699 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8700 AllowPredicates); 8701 if (EL.hasAnyInfo()) return EL; 8702 break; 8703 } 8704 default: 8705 break; 8706 } 8707 8708 return getCouldNotCompute(); 8709 } 8710 8711 ScalarEvolution::ExitLimit 8712 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8713 SwitchInst *Switch, 8714 BasicBlock *ExitingBlock, 8715 bool ControlsExit) { 8716 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8717 8718 // Give up if the exit is the default dest of a switch. 8719 if (Switch->getDefaultDest() == ExitingBlock) 8720 return getCouldNotCompute(); 8721 8722 assert(L->contains(Switch->getDefaultDest()) && 8723 "Default case must not exit the loop!"); 8724 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8725 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8726 8727 // while (X != Y) --> while (X-Y != 0) 8728 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8729 if (EL.hasAnyInfo()) 8730 return EL; 8731 8732 return getCouldNotCompute(); 8733 } 8734 8735 static ConstantInt * 8736 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8737 ScalarEvolution &SE) { 8738 const SCEV *InVal = SE.getConstant(C); 8739 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8740 assert(isa<SCEVConstant>(Val) && 8741 "Evaluation of SCEV at constant didn't fold correctly?"); 8742 return cast<SCEVConstant>(Val)->getValue(); 8743 } 8744 8745 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8746 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8747 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8748 if (!RHS) 8749 return getCouldNotCompute(); 8750 8751 const BasicBlock *Latch = L->getLoopLatch(); 8752 if (!Latch) 8753 return getCouldNotCompute(); 8754 8755 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8756 if (!Predecessor) 8757 return getCouldNotCompute(); 8758 8759 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8760 // Return LHS in OutLHS and shift_opt in OutOpCode. 8761 auto MatchPositiveShift = 8762 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8763 8764 using namespace PatternMatch; 8765 8766 ConstantInt *ShiftAmt; 8767 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8768 OutOpCode = Instruction::LShr; 8769 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8770 OutOpCode = Instruction::AShr; 8771 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8772 OutOpCode = Instruction::Shl; 8773 else 8774 return false; 8775 8776 return ShiftAmt->getValue().isStrictlyPositive(); 8777 }; 8778 8779 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8780 // 8781 // loop: 8782 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8783 // %iv.shifted = lshr i32 %iv, <positive constant> 8784 // 8785 // Return true on a successful match. Return the corresponding PHI node (%iv 8786 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8787 auto MatchShiftRecurrence = 8788 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8789 Optional<Instruction::BinaryOps> PostShiftOpCode; 8790 8791 { 8792 Instruction::BinaryOps OpC; 8793 Value *V; 8794 8795 // If we encounter a shift instruction, "peel off" the shift operation, 8796 // and remember that we did so. Later when we inspect %iv's backedge 8797 // value, we will make sure that the backedge value uses the same 8798 // operation. 8799 // 8800 // Note: the peeled shift operation does not have to be the same 8801 // instruction as the one feeding into the PHI's backedge value. We only 8802 // really care about it being the same *kind* of shift instruction -- 8803 // that's all that is required for our later inferences to hold. 8804 if (MatchPositiveShift(LHS, V, OpC)) { 8805 PostShiftOpCode = OpC; 8806 LHS = V; 8807 } 8808 } 8809 8810 PNOut = dyn_cast<PHINode>(LHS); 8811 if (!PNOut || PNOut->getParent() != L->getHeader()) 8812 return false; 8813 8814 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8815 Value *OpLHS; 8816 8817 return 8818 // The backedge value for the PHI node must be a shift by a positive 8819 // amount 8820 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8821 8822 // of the PHI node itself 8823 OpLHS == PNOut && 8824 8825 // and the kind of shift should be match the kind of shift we peeled 8826 // off, if any. 8827 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8828 }; 8829 8830 PHINode *PN; 8831 Instruction::BinaryOps OpCode; 8832 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8833 return getCouldNotCompute(); 8834 8835 const DataLayout &DL = getDataLayout(); 8836 8837 // The key rationale for this optimization is that for some kinds of shift 8838 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8839 // within a finite number of iterations. If the condition guarding the 8840 // backedge (in the sense that the backedge is taken if the condition is true) 8841 // is false for the value the shift recurrence stabilizes to, then we know 8842 // that the backedge is taken only a finite number of times. 8843 8844 ConstantInt *StableValue = nullptr; 8845 switch (OpCode) { 8846 default: 8847 llvm_unreachable("Impossible case!"); 8848 8849 case Instruction::AShr: { 8850 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8851 // bitwidth(K) iterations. 8852 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8853 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8854 Predecessor->getTerminator(), &DT); 8855 auto *Ty = cast<IntegerType>(RHS->getType()); 8856 if (Known.isNonNegative()) 8857 StableValue = ConstantInt::get(Ty, 0); 8858 else if (Known.isNegative()) 8859 StableValue = ConstantInt::get(Ty, -1, true); 8860 else 8861 return getCouldNotCompute(); 8862 8863 break; 8864 } 8865 case Instruction::LShr: 8866 case Instruction::Shl: 8867 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8868 // stabilize to 0 in at most bitwidth(K) iterations. 8869 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8870 break; 8871 } 8872 8873 auto *Result = 8874 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8875 assert(Result->getType()->isIntegerTy(1) && 8876 "Otherwise cannot be an operand to a branch instruction"); 8877 8878 if (Result->isZeroValue()) { 8879 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8880 const SCEV *UpperBound = 8881 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8882 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8883 } 8884 8885 return getCouldNotCompute(); 8886 } 8887 8888 /// Return true if we can constant fold an instruction of the specified type, 8889 /// assuming that all operands were constants. 8890 static bool CanConstantFold(const Instruction *I) { 8891 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8892 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8893 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8894 return true; 8895 8896 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8897 if (const Function *F = CI->getCalledFunction()) 8898 return canConstantFoldCallTo(CI, F); 8899 return false; 8900 } 8901 8902 /// Determine whether this instruction can constant evolve within this loop 8903 /// assuming its operands can all constant evolve. 8904 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8905 // An instruction outside of the loop can't be derived from a loop PHI. 8906 if (!L->contains(I)) return false; 8907 8908 if (isa<PHINode>(I)) { 8909 // We don't currently keep track of the control flow needed to evaluate 8910 // PHIs, so we cannot handle PHIs inside of loops. 8911 return L->getHeader() == I->getParent(); 8912 } 8913 8914 // If we won't be able to constant fold this expression even if the operands 8915 // are constants, bail early. 8916 return CanConstantFold(I); 8917 } 8918 8919 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8920 /// recursing through each instruction operand until reaching a loop header phi. 8921 static PHINode * 8922 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8923 DenseMap<Instruction *, PHINode *> &PHIMap, 8924 unsigned Depth) { 8925 if (Depth > MaxConstantEvolvingDepth) 8926 return nullptr; 8927 8928 // Otherwise, we can evaluate this instruction if all of its operands are 8929 // constant or derived from a PHI node themselves. 8930 PHINode *PHI = nullptr; 8931 for (Value *Op : UseInst->operands()) { 8932 if (isa<Constant>(Op)) continue; 8933 8934 Instruction *OpInst = dyn_cast<Instruction>(Op); 8935 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8936 8937 PHINode *P = dyn_cast<PHINode>(OpInst); 8938 if (!P) 8939 // If this operand is already visited, reuse the prior result. 8940 // We may have P != PHI if this is the deepest point at which the 8941 // inconsistent paths meet. 8942 P = PHIMap.lookup(OpInst); 8943 if (!P) { 8944 // Recurse and memoize the results, whether a phi is found or not. 8945 // This recursive call invalidates pointers into PHIMap. 8946 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8947 PHIMap[OpInst] = P; 8948 } 8949 if (!P) 8950 return nullptr; // Not evolving from PHI 8951 if (PHI && PHI != P) 8952 return nullptr; // Evolving from multiple different PHIs. 8953 PHI = P; 8954 } 8955 // This is a expression evolving from a constant PHI! 8956 return PHI; 8957 } 8958 8959 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8960 /// in the loop that V is derived from. We allow arbitrary operations along the 8961 /// way, but the operands of an operation must either be constants or a value 8962 /// derived from a constant PHI. If this expression does not fit with these 8963 /// constraints, return null. 8964 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8965 Instruction *I = dyn_cast<Instruction>(V); 8966 if (!I || !canConstantEvolve(I, L)) return nullptr; 8967 8968 if (PHINode *PN = dyn_cast<PHINode>(I)) 8969 return PN; 8970 8971 // Record non-constant instructions contained by the loop. 8972 DenseMap<Instruction *, PHINode *> PHIMap; 8973 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8974 } 8975 8976 /// EvaluateExpression - Given an expression that passes the 8977 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8978 /// in the loop has the value PHIVal. If we can't fold this expression for some 8979 /// reason, return null. 8980 static Constant *EvaluateExpression(Value *V, const Loop *L, 8981 DenseMap<Instruction *, Constant *> &Vals, 8982 const DataLayout &DL, 8983 const TargetLibraryInfo *TLI) { 8984 // Convenient constant check, but redundant for recursive calls. 8985 if (Constant *C = dyn_cast<Constant>(V)) return C; 8986 Instruction *I = dyn_cast<Instruction>(V); 8987 if (!I) return nullptr; 8988 8989 if (Constant *C = Vals.lookup(I)) return C; 8990 8991 // An instruction inside the loop depends on a value outside the loop that we 8992 // weren't given a mapping for, or a value such as a call inside the loop. 8993 if (!canConstantEvolve(I, L)) return nullptr; 8994 8995 // An unmapped PHI can be due to a branch or another loop inside this loop, 8996 // or due to this not being the initial iteration through a loop where we 8997 // couldn't compute the evolution of this particular PHI last time. 8998 if (isa<PHINode>(I)) return nullptr; 8999 9000 std::vector<Constant*> Operands(I->getNumOperands()); 9001 9002 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9003 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9004 if (!Operand) { 9005 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9006 if (!Operands[i]) return nullptr; 9007 continue; 9008 } 9009 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9010 Vals[Operand] = C; 9011 if (!C) return nullptr; 9012 Operands[i] = C; 9013 } 9014 9015 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 9016 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9017 Operands[1], DL, TLI); 9018 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 9019 if (!LI->isVolatile()) 9020 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 9021 } 9022 return ConstantFoldInstOperands(I, Operands, DL, TLI); 9023 } 9024 9025 9026 // If every incoming value to PN except the one for BB is a specific Constant, 9027 // return that, else return nullptr. 9028 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9029 Constant *IncomingVal = nullptr; 9030 9031 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9032 if (PN->getIncomingBlock(i) == BB) 9033 continue; 9034 9035 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9036 if (!CurrentVal) 9037 return nullptr; 9038 9039 if (IncomingVal != CurrentVal) { 9040 if (IncomingVal) 9041 return nullptr; 9042 IncomingVal = CurrentVal; 9043 } 9044 } 9045 9046 return IncomingVal; 9047 } 9048 9049 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9050 /// in the header of its containing loop, we know the loop executes a 9051 /// constant number of times, and the PHI node is just a recurrence 9052 /// involving constants, fold it. 9053 Constant * 9054 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9055 const APInt &BEs, 9056 const Loop *L) { 9057 auto I = ConstantEvolutionLoopExitValue.find(PN); 9058 if (I != ConstantEvolutionLoopExitValue.end()) 9059 return I->second; 9060 9061 if (BEs.ugt(MaxBruteForceIterations)) 9062 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9063 9064 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9065 9066 DenseMap<Instruction *, Constant *> CurrentIterVals; 9067 BasicBlock *Header = L->getHeader(); 9068 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9069 9070 BasicBlock *Latch = L->getLoopLatch(); 9071 if (!Latch) 9072 return nullptr; 9073 9074 for (PHINode &PHI : Header->phis()) { 9075 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9076 CurrentIterVals[&PHI] = StartCST; 9077 } 9078 if (!CurrentIterVals.count(PN)) 9079 return RetVal = nullptr; 9080 9081 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9082 9083 // Execute the loop symbolically to determine the exit value. 9084 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9085 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9086 9087 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9088 unsigned IterationNum = 0; 9089 const DataLayout &DL = getDataLayout(); 9090 for (; ; ++IterationNum) { 9091 if (IterationNum == NumIterations) 9092 return RetVal = CurrentIterVals[PN]; // Got exit value! 9093 9094 // Compute the value of the PHIs for the next iteration. 9095 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9096 DenseMap<Instruction *, Constant *> NextIterVals; 9097 Constant *NextPHI = 9098 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9099 if (!NextPHI) 9100 return nullptr; // Couldn't evaluate! 9101 NextIterVals[PN] = NextPHI; 9102 9103 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9104 9105 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9106 // cease to be able to evaluate one of them or if they stop evolving, 9107 // because that doesn't necessarily prevent us from computing PN. 9108 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9109 for (const auto &I : CurrentIterVals) { 9110 PHINode *PHI = dyn_cast<PHINode>(I.first); 9111 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9112 PHIsToCompute.emplace_back(PHI, I.second); 9113 } 9114 // We use two distinct loops because EvaluateExpression may invalidate any 9115 // iterators into CurrentIterVals. 9116 for (const auto &I : PHIsToCompute) { 9117 PHINode *PHI = I.first; 9118 Constant *&NextPHI = NextIterVals[PHI]; 9119 if (!NextPHI) { // Not already computed. 9120 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9121 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9122 } 9123 if (NextPHI != I.second) 9124 StoppedEvolving = false; 9125 } 9126 9127 // If all entries in CurrentIterVals == NextIterVals then we can stop 9128 // iterating, the loop can't continue to change. 9129 if (StoppedEvolving) 9130 return RetVal = CurrentIterVals[PN]; 9131 9132 CurrentIterVals.swap(NextIterVals); 9133 } 9134 } 9135 9136 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9137 Value *Cond, 9138 bool ExitWhen) { 9139 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9140 if (!PN) return getCouldNotCompute(); 9141 9142 // If the loop is canonicalized, the PHI will have exactly two entries. 9143 // That's the only form we support here. 9144 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9145 9146 DenseMap<Instruction *, Constant *> CurrentIterVals; 9147 BasicBlock *Header = L->getHeader(); 9148 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9149 9150 BasicBlock *Latch = L->getLoopLatch(); 9151 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9152 9153 for (PHINode &PHI : Header->phis()) { 9154 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9155 CurrentIterVals[&PHI] = StartCST; 9156 } 9157 if (!CurrentIterVals.count(PN)) 9158 return getCouldNotCompute(); 9159 9160 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9161 // the loop symbolically to determine when the condition gets a value of 9162 // "ExitWhen". 9163 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9164 const DataLayout &DL = getDataLayout(); 9165 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9166 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9167 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9168 9169 // Couldn't symbolically evaluate. 9170 if (!CondVal) return getCouldNotCompute(); 9171 9172 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9173 ++NumBruteForceTripCountsComputed; 9174 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9175 } 9176 9177 // Update all the PHI nodes for the next iteration. 9178 DenseMap<Instruction *, Constant *> NextIterVals; 9179 9180 // Create a list of which PHIs we need to compute. We want to do this before 9181 // calling EvaluateExpression on them because that may invalidate iterators 9182 // into CurrentIterVals. 9183 SmallVector<PHINode *, 8> PHIsToCompute; 9184 for (const auto &I : CurrentIterVals) { 9185 PHINode *PHI = dyn_cast<PHINode>(I.first); 9186 if (!PHI || PHI->getParent() != Header) continue; 9187 PHIsToCompute.push_back(PHI); 9188 } 9189 for (PHINode *PHI : PHIsToCompute) { 9190 Constant *&NextPHI = NextIterVals[PHI]; 9191 if (NextPHI) continue; // Already computed! 9192 9193 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9194 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9195 } 9196 CurrentIterVals.swap(NextIterVals); 9197 } 9198 9199 // Too many iterations were needed to evaluate. 9200 return getCouldNotCompute(); 9201 } 9202 9203 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9204 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9205 ValuesAtScopes[V]; 9206 // Check to see if we've folded this expression at this loop before. 9207 for (auto &LS : Values) 9208 if (LS.first == L) 9209 return LS.second ? LS.second : V; 9210 9211 Values.emplace_back(L, nullptr); 9212 9213 // Otherwise compute it. 9214 const SCEV *C = computeSCEVAtScope(V, L); 9215 for (auto &LS : reverse(ValuesAtScopes[V])) 9216 if (LS.first == L) { 9217 LS.second = C; 9218 if (!isa<SCEVConstant>(C)) 9219 ValuesAtScopesUsers[C].push_back({L, V}); 9220 break; 9221 } 9222 return C; 9223 } 9224 9225 /// This builds up a Constant using the ConstantExpr interface. That way, we 9226 /// will return Constants for objects which aren't represented by a 9227 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9228 /// Returns NULL if the SCEV isn't representable as a Constant. 9229 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9230 switch (V->getSCEVType()) { 9231 case scCouldNotCompute: 9232 case scAddRecExpr: 9233 return nullptr; 9234 case scConstant: 9235 return cast<SCEVConstant>(V)->getValue(); 9236 case scUnknown: 9237 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9238 case scSignExtend: { 9239 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9240 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9241 return ConstantExpr::getSExt(CastOp, SS->getType()); 9242 return nullptr; 9243 } 9244 case scZeroExtend: { 9245 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9246 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9247 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9248 return nullptr; 9249 } 9250 case scPtrToInt: { 9251 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9252 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9253 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9254 9255 return nullptr; 9256 } 9257 case scTruncate: { 9258 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9259 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9260 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9261 return nullptr; 9262 } 9263 case scAddExpr: { 9264 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9265 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 9266 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 9267 unsigned AS = PTy->getAddressSpace(); 9268 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9269 C = ConstantExpr::getBitCast(C, DestPtrTy); 9270 } 9271 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 9272 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 9273 if (!C2) 9274 return nullptr; 9275 9276 // First pointer! 9277 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 9278 unsigned AS = C2->getType()->getPointerAddressSpace(); 9279 std::swap(C, C2); 9280 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9281 // The offsets have been converted to bytes. We can add bytes to an 9282 // i8* by GEP with the byte count in the first index. 9283 C = ConstantExpr::getBitCast(C, DestPtrTy); 9284 } 9285 9286 // Don't bother trying to sum two pointers. We probably can't 9287 // statically compute a load that results from it anyway. 9288 if (C2->getType()->isPointerTy()) 9289 return nullptr; 9290 9291 if (C->getType()->isPointerTy()) { 9292 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9293 C, C2); 9294 } else { 9295 C = ConstantExpr::getAdd(C, C2); 9296 } 9297 } 9298 return C; 9299 } 9300 return nullptr; 9301 } 9302 case scMulExpr: { 9303 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9304 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 9305 // Don't bother with pointers at all. 9306 if (C->getType()->isPointerTy()) 9307 return nullptr; 9308 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 9309 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 9310 if (!C2 || C2->getType()->isPointerTy()) 9311 return nullptr; 9312 C = ConstantExpr::getMul(C, C2); 9313 } 9314 return C; 9315 } 9316 return nullptr; 9317 } 9318 case scUDivExpr: { 9319 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 9320 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 9321 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 9322 if (LHS->getType() == RHS->getType()) 9323 return ConstantExpr::getUDiv(LHS, RHS); 9324 return nullptr; 9325 } 9326 case scSMaxExpr: 9327 case scUMaxExpr: 9328 case scSMinExpr: 9329 case scUMinExpr: 9330 case scSequentialUMinExpr: 9331 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9332 } 9333 llvm_unreachable("Unknown SCEV kind!"); 9334 } 9335 9336 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9337 if (isa<SCEVConstant>(V)) return V; 9338 9339 // If this instruction is evolved from a constant-evolving PHI, compute the 9340 // exit value from the loop without using SCEVs. 9341 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9342 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9343 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9344 const Loop *CurrLoop = this->LI[I->getParent()]; 9345 // Looking for loop exit value. 9346 if (CurrLoop && CurrLoop->getParentLoop() == L && 9347 PN->getParent() == CurrLoop->getHeader()) { 9348 // Okay, there is no closed form solution for the PHI node. Check 9349 // to see if the loop that contains it has a known backedge-taken 9350 // count. If so, we may be able to force computation of the exit 9351 // value. 9352 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9353 // This trivial case can show up in some degenerate cases where 9354 // the incoming IR has not yet been fully simplified. 9355 if (BackedgeTakenCount->isZero()) { 9356 Value *InitValue = nullptr; 9357 bool MultipleInitValues = false; 9358 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9359 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9360 if (!InitValue) 9361 InitValue = PN->getIncomingValue(i); 9362 else if (InitValue != PN->getIncomingValue(i)) { 9363 MultipleInitValues = true; 9364 break; 9365 } 9366 } 9367 } 9368 if (!MultipleInitValues && InitValue) 9369 return getSCEV(InitValue); 9370 } 9371 // Do we have a loop invariant value flowing around the backedge 9372 // for a loop which must execute the backedge? 9373 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9374 isKnownPositive(BackedgeTakenCount) && 9375 PN->getNumIncomingValues() == 2) { 9376 9377 unsigned InLoopPred = 9378 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9379 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9380 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9381 return getSCEV(BackedgeVal); 9382 } 9383 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9384 // Okay, we know how many times the containing loop executes. If 9385 // this is a constant evolving PHI node, get the final value at 9386 // the specified iteration number. 9387 Constant *RV = getConstantEvolutionLoopExitValue( 9388 PN, BTCC->getAPInt(), CurrLoop); 9389 if (RV) return getSCEV(RV); 9390 } 9391 } 9392 9393 // If there is a single-input Phi, evaluate it at our scope. If we can 9394 // prove that this replacement does not break LCSSA form, use new value. 9395 if (PN->getNumOperands() == 1) { 9396 const SCEV *Input = getSCEV(PN->getOperand(0)); 9397 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9398 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9399 // for the simplest case just support constants. 9400 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9401 } 9402 } 9403 9404 // Okay, this is an expression that we cannot symbolically evaluate 9405 // into a SCEV. Check to see if it's possible to symbolically evaluate 9406 // the arguments into constants, and if so, try to constant propagate the 9407 // result. This is particularly useful for computing loop exit values. 9408 if (CanConstantFold(I)) { 9409 SmallVector<Constant *, 4> Operands; 9410 bool MadeImprovement = false; 9411 for (Value *Op : I->operands()) { 9412 if (Constant *C = dyn_cast<Constant>(Op)) { 9413 Operands.push_back(C); 9414 continue; 9415 } 9416 9417 // If any of the operands is non-constant and if they are 9418 // non-integer and non-pointer, don't even try to analyze them 9419 // with scev techniques. 9420 if (!isSCEVable(Op->getType())) 9421 return V; 9422 9423 const SCEV *OrigV = getSCEV(Op); 9424 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9425 MadeImprovement |= OrigV != OpV; 9426 9427 Constant *C = BuildConstantFromSCEV(OpV); 9428 if (!C) return V; 9429 if (C->getType() != Op->getType()) 9430 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9431 Op->getType(), 9432 false), 9433 C, Op->getType()); 9434 Operands.push_back(C); 9435 } 9436 9437 // Check to see if getSCEVAtScope actually made an improvement. 9438 if (MadeImprovement) { 9439 Constant *C = nullptr; 9440 const DataLayout &DL = getDataLayout(); 9441 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9442 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9443 Operands[1], DL, &TLI); 9444 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9445 if (!Load->isVolatile()) 9446 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9447 DL); 9448 } else 9449 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9450 if (!C) return V; 9451 return getSCEV(C); 9452 } 9453 } 9454 } 9455 9456 // This is some other type of SCEVUnknown, just return it. 9457 return V; 9458 } 9459 9460 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) { 9461 const auto *Comm = cast<SCEVNAryExpr>(V); 9462 // Avoid performing the look-up in the common case where the specified 9463 // expression has no loop-variant portions. 9464 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9465 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9466 if (OpAtScope != Comm->getOperand(i)) { 9467 // Okay, at least one of these operands is loop variant but might be 9468 // foldable. Build a new instance of the folded commutative expression. 9469 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9470 Comm->op_begin()+i); 9471 NewOps.push_back(OpAtScope); 9472 9473 for (++i; i != e; ++i) { 9474 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9475 NewOps.push_back(OpAtScope); 9476 } 9477 if (isa<SCEVAddExpr>(Comm)) 9478 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9479 if (isa<SCEVMulExpr>(Comm)) 9480 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9481 if (isa<SCEVMinMaxExpr>(Comm)) 9482 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9483 if (isa<SCEVSequentialMinMaxExpr>(Comm)) 9484 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps); 9485 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!"); 9486 } 9487 } 9488 // If we got here, all operands are loop invariant. 9489 return Comm; 9490 } 9491 9492 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9493 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9494 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9495 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9496 return Div; // must be loop invariant 9497 return getUDivExpr(LHS, RHS); 9498 } 9499 9500 // If this is a loop recurrence for a loop that does not contain L, then we 9501 // are dealing with the final value computed by the loop. 9502 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9503 // First, attempt to evaluate each operand. 9504 // Avoid performing the look-up in the common case where the specified 9505 // expression has no loop-variant portions. 9506 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9507 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9508 if (OpAtScope == AddRec->getOperand(i)) 9509 continue; 9510 9511 // Okay, at least one of these operands is loop variant but might be 9512 // foldable. Build a new instance of the folded commutative expression. 9513 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9514 AddRec->op_begin()+i); 9515 NewOps.push_back(OpAtScope); 9516 for (++i; i != e; ++i) 9517 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9518 9519 const SCEV *FoldedRec = 9520 getAddRecExpr(NewOps, AddRec->getLoop(), 9521 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9522 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9523 // The addrec may be folded to a nonrecurrence, for example, if the 9524 // induction variable is multiplied by zero after constant folding. Go 9525 // ahead and return the folded value. 9526 if (!AddRec) 9527 return FoldedRec; 9528 break; 9529 } 9530 9531 // If the scope is outside the addrec's loop, evaluate it by using the 9532 // loop exit value of the addrec. 9533 if (!AddRec->getLoop()->contains(L)) { 9534 // To evaluate this recurrence, we need to know how many times the AddRec 9535 // loop iterates. Compute this now. 9536 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9537 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9538 9539 // Then, evaluate the AddRec. 9540 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9541 } 9542 9543 return AddRec; 9544 } 9545 9546 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 9547 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9548 if (Op == Cast->getOperand()) 9549 return Cast; // must be loop invariant 9550 return getCastExpr(Cast->getSCEVType(), Op, Cast->getType()); 9551 } 9552 9553 llvm_unreachable("Unknown SCEV type!"); 9554 } 9555 9556 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9557 return getSCEVAtScope(getSCEV(V), L); 9558 } 9559 9560 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9561 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9562 return stripInjectiveFunctions(ZExt->getOperand()); 9563 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9564 return stripInjectiveFunctions(SExt->getOperand()); 9565 return S; 9566 } 9567 9568 /// Finds the minimum unsigned root of the following equation: 9569 /// 9570 /// A * X = B (mod N) 9571 /// 9572 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9573 /// A and B isn't important. 9574 /// 9575 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9576 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9577 ScalarEvolution &SE) { 9578 uint32_t BW = A.getBitWidth(); 9579 assert(BW == SE.getTypeSizeInBits(B->getType())); 9580 assert(A != 0 && "A must be non-zero."); 9581 9582 // 1. D = gcd(A, N) 9583 // 9584 // The gcd of A and N may have only one prime factor: 2. The number of 9585 // trailing zeros in A is its multiplicity 9586 uint32_t Mult2 = A.countTrailingZeros(); 9587 // D = 2^Mult2 9588 9589 // 2. Check if B is divisible by D. 9590 // 9591 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9592 // is not less than multiplicity of this prime factor for D. 9593 if (SE.GetMinTrailingZeros(B) < Mult2) 9594 return SE.getCouldNotCompute(); 9595 9596 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9597 // modulo (N / D). 9598 // 9599 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9600 // (N / D) in general. The inverse itself always fits into BW bits, though, 9601 // so we immediately truncate it. 9602 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9603 APInt Mod(BW + 1, 0); 9604 Mod.setBit(BW - Mult2); // Mod = N / D 9605 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9606 9607 // 4. Compute the minimum unsigned root of the equation: 9608 // I * (B / D) mod (N / D) 9609 // To simplify the computation, we factor out the divide by D: 9610 // (I * B mod N) / D 9611 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9612 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9613 } 9614 9615 /// For a given quadratic addrec, generate coefficients of the corresponding 9616 /// quadratic equation, multiplied by a common value to ensure that they are 9617 /// integers. 9618 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9619 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9620 /// were multiplied by, and BitWidth is the bit width of the original addrec 9621 /// coefficients. 9622 /// This function returns None if the addrec coefficients are not compile- 9623 /// time constants. 9624 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9625 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9626 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9627 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9628 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9629 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9630 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9631 << *AddRec << '\n'); 9632 9633 // We currently can only solve this if the coefficients are constants. 9634 if (!LC || !MC || !NC) { 9635 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9636 return None; 9637 } 9638 9639 APInt L = LC->getAPInt(); 9640 APInt M = MC->getAPInt(); 9641 APInt N = NC->getAPInt(); 9642 assert(!N.isZero() && "This is not a quadratic addrec"); 9643 9644 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9645 unsigned NewWidth = BitWidth + 1; 9646 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9647 << BitWidth << '\n'); 9648 // The sign-extension (as opposed to a zero-extension) here matches the 9649 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9650 N = N.sext(NewWidth); 9651 M = M.sext(NewWidth); 9652 L = L.sext(NewWidth); 9653 9654 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9655 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9656 // L+M, L+2M+N, L+3M+3N, ... 9657 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9658 // 9659 // The equation Acc = 0 is then 9660 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9661 // In a quadratic form it becomes: 9662 // N n^2 + (2M-N) n + 2L = 0. 9663 9664 APInt A = N; 9665 APInt B = 2 * M - A; 9666 APInt C = 2 * L; 9667 APInt T = APInt(NewWidth, 2); 9668 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9669 << "x + " << C << ", coeff bw: " << NewWidth 9670 << ", multiplied by " << T << '\n'); 9671 return std::make_tuple(A, B, C, T, BitWidth); 9672 } 9673 9674 /// Helper function to compare optional APInts: 9675 /// (a) if X and Y both exist, return min(X, Y), 9676 /// (b) if neither X nor Y exist, return None, 9677 /// (c) if exactly one of X and Y exists, return that value. 9678 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9679 if (X.hasValue() && Y.hasValue()) { 9680 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9681 APInt XW = X->sextOrSelf(W); 9682 APInt YW = Y->sextOrSelf(W); 9683 return XW.slt(YW) ? *X : *Y; 9684 } 9685 if (!X.hasValue() && !Y.hasValue()) 9686 return None; 9687 return X.hasValue() ? *X : *Y; 9688 } 9689 9690 /// Helper function to truncate an optional APInt to a given BitWidth. 9691 /// When solving addrec-related equations, it is preferable to return a value 9692 /// that has the same bit width as the original addrec's coefficients. If the 9693 /// solution fits in the original bit width, truncate it (except for i1). 9694 /// Returning a value of a different bit width may inhibit some optimizations. 9695 /// 9696 /// In general, a solution to a quadratic equation generated from an addrec 9697 /// may require BW+1 bits, where BW is the bit width of the addrec's 9698 /// coefficients. The reason is that the coefficients of the quadratic 9699 /// equation are BW+1 bits wide (to avoid truncation when converting from 9700 /// the addrec to the equation). 9701 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9702 if (!X.hasValue()) 9703 return None; 9704 unsigned W = X->getBitWidth(); 9705 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9706 return X->trunc(BitWidth); 9707 return X; 9708 } 9709 9710 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9711 /// iterations. The values L, M, N are assumed to be signed, and they 9712 /// should all have the same bit widths. 9713 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9714 /// where BW is the bit width of the addrec's coefficients. 9715 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9716 /// returned as such, otherwise the bit width of the returned value may 9717 /// be greater than BW. 9718 /// 9719 /// This function returns None if 9720 /// (a) the addrec coefficients are not constant, or 9721 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9722 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9723 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9724 static Optional<APInt> 9725 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9726 APInt A, B, C, M; 9727 unsigned BitWidth; 9728 auto T = GetQuadraticEquation(AddRec); 9729 if (!T.hasValue()) 9730 return None; 9731 9732 std::tie(A, B, C, M, BitWidth) = *T; 9733 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9734 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9735 if (!X.hasValue()) 9736 return None; 9737 9738 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9739 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9740 if (!V->isZero()) 9741 return None; 9742 9743 return TruncIfPossible(X, BitWidth); 9744 } 9745 9746 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9747 /// iterations. The values M, N are assumed to be signed, and they 9748 /// should all have the same bit widths. 9749 /// Find the least n such that c(n) does not belong to the given range, 9750 /// while c(n-1) does. 9751 /// 9752 /// This function returns None if 9753 /// (a) the addrec coefficients are not constant, or 9754 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9755 /// bounds of the range. 9756 static Optional<APInt> 9757 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9758 const ConstantRange &Range, ScalarEvolution &SE) { 9759 assert(AddRec->getOperand(0)->isZero() && 9760 "Starting value of addrec should be 0"); 9761 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9762 << Range << ", addrec " << *AddRec << '\n'); 9763 // This case is handled in getNumIterationsInRange. Here we can assume that 9764 // we start in the range. 9765 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9766 "Addrec's initial value should be in range"); 9767 9768 APInt A, B, C, M; 9769 unsigned BitWidth; 9770 auto T = GetQuadraticEquation(AddRec); 9771 if (!T.hasValue()) 9772 return None; 9773 9774 // Be careful about the return value: there can be two reasons for not 9775 // returning an actual number. First, if no solutions to the equations 9776 // were found, and second, if the solutions don't leave the given range. 9777 // The first case means that the actual solution is "unknown", the second 9778 // means that it's known, but not valid. If the solution is unknown, we 9779 // cannot make any conclusions. 9780 // Return a pair: the optional solution and a flag indicating if the 9781 // solution was found. 9782 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9783 // Solve for signed overflow and unsigned overflow, pick the lower 9784 // solution. 9785 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9786 << Bound << " (before multiplying by " << M << ")\n"); 9787 Bound *= M; // The quadratic equation multiplier. 9788 9789 Optional<APInt> SO = None; 9790 if (BitWidth > 1) { 9791 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9792 "signed overflow\n"); 9793 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9794 } 9795 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9796 "unsigned overflow\n"); 9797 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9798 BitWidth+1); 9799 9800 auto LeavesRange = [&] (const APInt &X) { 9801 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9802 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9803 if (Range.contains(V0->getValue())) 9804 return false; 9805 // X should be at least 1, so X-1 is non-negative. 9806 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9807 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9808 if (Range.contains(V1->getValue())) 9809 return true; 9810 return false; 9811 }; 9812 9813 // If SolveQuadraticEquationWrap returns None, it means that there can 9814 // be a solution, but the function failed to find it. We cannot treat it 9815 // as "no solution". 9816 if (!SO.hasValue() || !UO.hasValue()) 9817 return { None, false }; 9818 9819 // Check the smaller value first to see if it leaves the range. 9820 // At this point, both SO and UO must have values. 9821 Optional<APInt> Min = MinOptional(SO, UO); 9822 if (LeavesRange(*Min)) 9823 return { Min, true }; 9824 Optional<APInt> Max = Min == SO ? UO : SO; 9825 if (LeavesRange(*Max)) 9826 return { Max, true }; 9827 9828 // Solutions were found, but were eliminated, hence the "true". 9829 return { None, true }; 9830 }; 9831 9832 std::tie(A, B, C, M, BitWidth) = *T; 9833 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9834 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9835 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9836 auto SL = SolveForBoundary(Lower); 9837 auto SU = SolveForBoundary(Upper); 9838 // If any of the solutions was unknown, no meaninigful conclusions can 9839 // be made. 9840 if (!SL.second || !SU.second) 9841 return None; 9842 9843 // Claim: The correct solution is not some value between Min and Max. 9844 // 9845 // Justification: Assuming that Min and Max are different values, one of 9846 // them is when the first signed overflow happens, the other is when the 9847 // first unsigned overflow happens. Crossing the range boundary is only 9848 // possible via an overflow (treating 0 as a special case of it, modeling 9849 // an overflow as crossing k*2^W for some k). 9850 // 9851 // The interesting case here is when Min was eliminated as an invalid 9852 // solution, but Max was not. The argument is that if there was another 9853 // overflow between Min and Max, it would also have been eliminated if 9854 // it was considered. 9855 // 9856 // For a given boundary, it is possible to have two overflows of the same 9857 // type (signed/unsigned) without having the other type in between: this 9858 // can happen when the vertex of the parabola is between the iterations 9859 // corresponding to the overflows. This is only possible when the two 9860 // overflows cross k*2^W for the same k. In such case, if the second one 9861 // left the range (and was the first one to do so), the first overflow 9862 // would have to enter the range, which would mean that either we had left 9863 // the range before or that we started outside of it. Both of these cases 9864 // are contradictions. 9865 // 9866 // Claim: In the case where SolveForBoundary returns None, the correct 9867 // solution is not some value between the Max for this boundary and the 9868 // Min of the other boundary. 9869 // 9870 // Justification: Assume that we had such Max_A and Min_B corresponding 9871 // to range boundaries A and B and such that Max_A < Min_B. If there was 9872 // a solution between Max_A and Min_B, it would have to be caused by an 9873 // overflow corresponding to either A or B. It cannot correspond to B, 9874 // since Min_B is the first occurrence of such an overflow. If it 9875 // corresponded to A, it would have to be either a signed or an unsigned 9876 // overflow that is larger than both eliminated overflows for A. But 9877 // between the eliminated overflows and this overflow, the values would 9878 // cover the entire value space, thus crossing the other boundary, which 9879 // is a contradiction. 9880 9881 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9882 } 9883 9884 ScalarEvolution::ExitLimit 9885 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9886 bool AllowPredicates) { 9887 9888 // This is only used for loops with a "x != y" exit test. The exit condition 9889 // is now expressed as a single expression, V = x-y. So the exit test is 9890 // effectively V != 0. We know and take advantage of the fact that this 9891 // expression only being used in a comparison by zero context. 9892 9893 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9894 // If the value is a constant 9895 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9896 // If the value is already zero, the branch will execute zero times. 9897 if (C->getValue()->isZero()) return C; 9898 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9899 } 9900 9901 const SCEVAddRecExpr *AddRec = 9902 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9903 9904 if (!AddRec && AllowPredicates) 9905 // Try to make this an AddRec using runtime tests, in the first X 9906 // iterations of this loop, where X is the SCEV expression found by the 9907 // algorithm below. 9908 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9909 9910 if (!AddRec || AddRec->getLoop() != L) 9911 return getCouldNotCompute(); 9912 9913 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9914 // the quadratic equation to solve it. 9915 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9916 // We can only use this value if the chrec ends up with an exact zero 9917 // value at this index. When solving for "X*X != 5", for example, we 9918 // should not accept a root of 2. 9919 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9920 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9921 return ExitLimit(R, R, false, Predicates); 9922 } 9923 return getCouldNotCompute(); 9924 } 9925 9926 // Otherwise we can only handle this if it is affine. 9927 if (!AddRec->isAffine()) 9928 return getCouldNotCompute(); 9929 9930 // If this is an affine expression, the execution count of this branch is 9931 // the minimum unsigned root of the following equation: 9932 // 9933 // Start + Step*N = 0 (mod 2^BW) 9934 // 9935 // equivalent to: 9936 // 9937 // Step*N = -Start (mod 2^BW) 9938 // 9939 // where BW is the common bit width of Start and Step. 9940 9941 // Get the initial value for the loop. 9942 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9943 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9944 9945 // For now we handle only constant steps. 9946 // 9947 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9948 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9949 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9950 // We have not yet seen any such cases. 9951 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9952 if (!StepC || StepC->getValue()->isZero()) 9953 return getCouldNotCompute(); 9954 9955 // For positive steps (counting up until unsigned overflow): 9956 // N = -Start/Step (as unsigned) 9957 // For negative steps (counting down to zero): 9958 // N = Start/-Step 9959 // First compute the unsigned distance from zero in the direction of Step. 9960 bool CountDown = StepC->getAPInt().isNegative(); 9961 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9962 9963 // Handle unitary steps, which cannot wraparound. 9964 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9965 // N = Distance (as unsigned) 9966 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9967 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9968 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 9969 9970 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9971 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9972 // case, and see if we can improve the bound. 9973 // 9974 // Explicitly handling this here is necessary because getUnsignedRange 9975 // isn't context-sensitive; it doesn't know that we only care about the 9976 // range inside the loop. 9977 const SCEV *Zero = getZero(Distance->getType()); 9978 const SCEV *One = getOne(Distance->getType()); 9979 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9980 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9981 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9982 // as "unsigned_max(Distance + 1) - 1". 9983 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9984 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9985 } 9986 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9987 } 9988 9989 // If the condition controls loop exit (the loop exits only if the expression 9990 // is true) and the addition is no-wrap we can use unsigned divide to 9991 // compute the backedge count. In this case, the step may not divide the 9992 // distance, but we don't care because if the condition is "missed" the loop 9993 // will have undefined behavior due to wrapping. 9994 if (ControlsExit && AddRec->hasNoSelfWrap() && 9995 loopHasNoAbnormalExits(AddRec->getLoop())) { 9996 const SCEV *Exact = 9997 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9998 const SCEV *Max = getCouldNotCompute(); 9999 if (Exact != getCouldNotCompute()) { 10000 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 10001 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10002 } 10003 return ExitLimit(Exact, Max, false, Predicates); 10004 } 10005 10006 // Solve the general equation. 10007 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10008 getNegativeSCEV(Start), *this); 10009 10010 const SCEV *M = E; 10011 if (E != getCouldNotCompute()) { 10012 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 10013 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10014 } 10015 return ExitLimit(E, M, false, Predicates); 10016 } 10017 10018 ScalarEvolution::ExitLimit 10019 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10020 // Loops that look like: while (X == 0) are very strange indeed. We don't 10021 // handle them yet except for the trivial case. This could be expanded in the 10022 // future as needed. 10023 10024 // If the value is a constant, check to see if it is known to be non-zero 10025 // already. If so, the backedge will execute zero times. 10026 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10027 if (!C->getValue()->isZero()) 10028 return getZero(C->getType()); 10029 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10030 } 10031 10032 // We could implement others, but I really doubt anyone writes loops like 10033 // this, and if they did, they would already be constant folded. 10034 return getCouldNotCompute(); 10035 } 10036 10037 std::pair<const BasicBlock *, const BasicBlock *> 10038 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10039 const { 10040 // If the block has a unique predecessor, then there is no path from the 10041 // predecessor to the block that does not go through the direct edge 10042 // from the predecessor to the block. 10043 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10044 return {Pred, BB}; 10045 10046 // A loop's header is defined to be a block that dominates the loop. 10047 // If the header has a unique predecessor outside the loop, it must be 10048 // a block that has exactly one successor that can reach the loop. 10049 if (const Loop *L = LI.getLoopFor(BB)) 10050 return {L->getLoopPredecessor(), L->getHeader()}; 10051 10052 return {nullptr, nullptr}; 10053 } 10054 10055 /// SCEV structural equivalence is usually sufficient for testing whether two 10056 /// expressions are equal, however for the purposes of looking for a condition 10057 /// guarding a loop, it can be useful to be a little more general, since a 10058 /// front-end may have replicated the controlling expression. 10059 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10060 // Quick check to see if they are the same SCEV. 10061 if (A == B) return true; 10062 10063 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10064 // Not all instructions that are "identical" compute the same value. For 10065 // instance, two distinct alloca instructions allocating the same type are 10066 // identical and do not read memory; but compute distinct values. 10067 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10068 }; 10069 10070 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10071 // two different instructions with the same value. Check for this case. 10072 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10073 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10074 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10075 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10076 if (ComputesEqualValues(AI, BI)) 10077 return true; 10078 10079 // Otherwise assume they may have a different value. 10080 return false; 10081 } 10082 10083 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10084 const SCEV *&LHS, const SCEV *&RHS, 10085 unsigned Depth, 10086 bool ControllingFiniteLoop) { 10087 bool Changed = false; 10088 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10089 // '0 != 0'. 10090 auto TrivialCase = [&](bool TriviallyTrue) { 10091 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10092 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10093 return true; 10094 }; 10095 // If we hit the max recursion limit bail out. 10096 if (Depth >= 3) 10097 return false; 10098 10099 // Canonicalize a constant to the right side. 10100 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10101 // Check for both operands constant. 10102 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10103 if (ConstantExpr::getICmp(Pred, 10104 LHSC->getValue(), 10105 RHSC->getValue())->isNullValue()) 10106 return TrivialCase(false); 10107 else 10108 return TrivialCase(true); 10109 } 10110 // Otherwise swap the operands to put the constant on the right. 10111 std::swap(LHS, RHS); 10112 Pred = ICmpInst::getSwappedPredicate(Pred); 10113 Changed = true; 10114 } 10115 10116 // If we're comparing an addrec with a value which is loop-invariant in the 10117 // addrec's loop, put the addrec on the left. Also make a dominance check, 10118 // as both operands could be addrecs loop-invariant in each other's loop. 10119 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10120 const Loop *L = AR->getLoop(); 10121 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10122 std::swap(LHS, RHS); 10123 Pred = ICmpInst::getSwappedPredicate(Pred); 10124 Changed = true; 10125 } 10126 } 10127 10128 // If there's a constant operand, canonicalize comparisons with boundary 10129 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10130 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10131 const APInt &RA = RC->getAPInt(); 10132 10133 bool SimplifiedByConstantRange = false; 10134 10135 if (!ICmpInst::isEquality(Pred)) { 10136 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10137 if (ExactCR.isFullSet()) 10138 return TrivialCase(true); 10139 else if (ExactCR.isEmptySet()) 10140 return TrivialCase(false); 10141 10142 APInt NewRHS; 10143 CmpInst::Predicate NewPred; 10144 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10145 ICmpInst::isEquality(NewPred)) { 10146 // We were able to convert an inequality to an equality. 10147 Pred = NewPred; 10148 RHS = getConstant(NewRHS); 10149 Changed = SimplifiedByConstantRange = true; 10150 } 10151 } 10152 10153 if (!SimplifiedByConstantRange) { 10154 switch (Pred) { 10155 default: 10156 break; 10157 case ICmpInst::ICMP_EQ: 10158 case ICmpInst::ICMP_NE: 10159 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10160 if (!RA) 10161 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10162 if (const SCEVMulExpr *ME = 10163 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10164 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10165 ME->getOperand(0)->isAllOnesValue()) { 10166 RHS = AE->getOperand(1); 10167 LHS = ME->getOperand(1); 10168 Changed = true; 10169 } 10170 break; 10171 10172 10173 // The "Should have been caught earlier!" messages refer to the fact 10174 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10175 // should have fired on the corresponding cases, and canonicalized the 10176 // check to trivial case. 10177 10178 case ICmpInst::ICMP_UGE: 10179 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10180 Pred = ICmpInst::ICMP_UGT; 10181 RHS = getConstant(RA - 1); 10182 Changed = true; 10183 break; 10184 case ICmpInst::ICMP_ULE: 10185 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10186 Pred = ICmpInst::ICMP_ULT; 10187 RHS = getConstant(RA + 1); 10188 Changed = true; 10189 break; 10190 case ICmpInst::ICMP_SGE: 10191 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10192 Pred = ICmpInst::ICMP_SGT; 10193 RHS = getConstant(RA - 1); 10194 Changed = true; 10195 break; 10196 case ICmpInst::ICMP_SLE: 10197 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10198 Pred = ICmpInst::ICMP_SLT; 10199 RHS = getConstant(RA + 1); 10200 Changed = true; 10201 break; 10202 } 10203 } 10204 } 10205 10206 // Check for obvious equality. 10207 if (HasSameValue(LHS, RHS)) { 10208 if (ICmpInst::isTrueWhenEqual(Pred)) 10209 return TrivialCase(true); 10210 if (ICmpInst::isFalseWhenEqual(Pred)) 10211 return TrivialCase(false); 10212 } 10213 10214 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10215 // adding or subtracting 1 from one of the operands. This can be done for 10216 // one of two reasons: 10217 // 1) The range of the RHS does not include the (signed/unsigned) boundaries 10218 // 2) The loop is finite, with this comparison controlling the exit. Since the 10219 // loop is finite, the bound cannot include the corresponding boundary 10220 // (otherwise it would loop forever). 10221 switch (Pred) { 10222 case ICmpInst::ICMP_SLE: 10223 if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) { 10224 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10225 SCEV::FlagNSW); 10226 Pred = ICmpInst::ICMP_SLT; 10227 Changed = true; 10228 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10229 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10230 SCEV::FlagNSW); 10231 Pred = ICmpInst::ICMP_SLT; 10232 Changed = true; 10233 } 10234 break; 10235 case ICmpInst::ICMP_SGE: 10236 if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) { 10237 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10238 SCEV::FlagNSW); 10239 Pred = ICmpInst::ICMP_SGT; 10240 Changed = true; 10241 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10242 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10243 SCEV::FlagNSW); 10244 Pred = ICmpInst::ICMP_SGT; 10245 Changed = true; 10246 } 10247 break; 10248 case ICmpInst::ICMP_ULE: 10249 if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) { 10250 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10251 SCEV::FlagNUW); 10252 Pred = ICmpInst::ICMP_ULT; 10253 Changed = true; 10254 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10255 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10256 Pred = ICmpInst::ICMP_ULT; 10257 Changed = true; 10258 } 10259 break; 10260 case ICmpInst::ICMP_UGE: 10261 if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) { 10262 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10263 Pred = ICmpInst::ICMP_UGT; 10264 Changed = true; 10265 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10266 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10267 SCEV::FlagNUW); 10268 Pred = ICmpInst::ICMP_UGT; 10269 Changed = true; 10270 } 10271 break; 10272 default: 10273 break; 10274 } 10275 10276 // TODO: More simplifications are possible here. 10277 10278 // Recursively simplify until we either hit a recursion limit or nothing 10279 // changes. 10280 if (Changed) 10281 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1, 10282 ControllingFiniteLoop); 10283 10284 return Changed; 10285 } 10286 10287 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10288 return getSignedRangeMax(S).isNegative(); 10289 } 10290 10291 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10292 return getSignedRangeMin(S).isStrictlyPositive(); 10293 } 10294 10295 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10296 return !getSignedRangeMin(S).isNegative(); 10297 } 10298 10299 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10300 return !getSignedRangeMax(S).isStrictlyPositive(); 10301 } 10302 10303 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10304 return getUnsignedRangeMin(S) != 0; 10305 } 10306 10307 std::pair<const SCEV *, const SCEV *> 10308 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10309 // Compute SCEV on entry of loop L. 10310 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10311 if (Start == getCouldNotCompute()) 10312 return { Start, Start }; 10313 // Compute post increment SCEV for loop L. 10314 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10315 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10316 return { Start, PostInc }; 10317 } 10318 10319 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10320 const SCEV *LHS, const SCEV *RHS) { 10321 // First collect all loops. 10322 SmallPtrSet<const Loop *, 8> LoopsUsed; 10323 getUsedLoops(LHS, LoopsUsed); 10324 getUsedLoops(RHS, LoopsUsed); 10325 10326 if (LoopsUsed.empty()) 10327 return false; 10328 10329 // Domination relationship must be a linear order on collected loops. 10330 #ifndef NDEBUG 10331 for (auto *L1 : LoopsUsed) 10332 for (auto *L2 : LoopsUsed) 10333 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10334 DT.dominates(L2->getHeader(), L1->getHeader())) && 10335 "Domination relationship is not a linear order"); 10336 #endif 10337 10338 const Loop *MDL = 10339 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10340 [&](const Loop *L1, const Loop *L2) { 10341 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10342 }); 10343 10344 // Get init and post increment value for LHS. 10345 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10346 // if LHS contains unknown non-invariant SCEV then bail out. 10347 if (SplitLHS.first == getCouldNotCompute()) 10348 return false; 10349 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10350 // Get init and post increment value for RHS. 10351 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10352 // if RHS contains unknown non-invariant SCEV then bail out. 10353 if (SplitRHS.first == getCouldNotCompute()) 10354 return false; 10355 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10356 // It is possible that init SCEV contains an invariant load but it does 10357 // not dominate MDL and is not available at MDL loop entry, so we should 10358 // check it here. 10359 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10360 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10361 return false; 10362 10363 // It seems backedge guard check is faster than entry one so in some cases 10364 // it can speed up whole estimation by short circuit 10365 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10366 SplitRHS.second) && 10367 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10368 } 10369 10370 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10371 const SCEV *LHS, const SCEV *RHS) { 10372 // Canonicalize the inputs first. 10373 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10374 10375 if (isKnownViaInduction(Pred, LHS, RHS)) 10376 return true; 10377 10378 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10379 return true; 10380 10381 // Otherwise see what can be done with some simple reasoning. 10382 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10383 } 10384 10385 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10386 const SCEV *LHS, 10387 const SCEV *RHS) { 10388 if (isKnownPredicate(Pred, LHS, RHS)) 10389 return true; 10390 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10391 return false; 10392 return None; 10393 } 10394 10395 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10396 const SCEV *LHS, const SCEV *RHS, 10397 const Instruction *CtxI) { 10398 // TODO: Analyze guards and assumes from Context's block. 10399 return isKnownPredicate(Pred, LHS, RHS) || 10400 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10401 } 10402 10403 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10404 const SCEV *LHS, 10405 const SCEV *RHS, 10406 const Instruction *CtxI) { 10407 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10408 if (KnownWithoutContext) 10409 return KnownWithoutContext; 10410 10411 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10412 return true; 10413 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10414 ICmpInst::getInversePredicate(Pred), 10415 LHS, RHS)) 10416 return false; 10417 return None; 10418 } 10419 10420 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10421 const SCEVAddRecExpr *LHS, 10422 const SCEV *RHS) { 10423 const Loop *L = LHS->getLoop(); 10424 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10425 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10426 } 10427 10428 Optional<ScalarEvolution::MonotonicPredicateType> 10429 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10430 ICmpInst::Predicate Pred) { 10431 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10432 10433 #ifndef NDEBUG 10434 // Verify an invariant: inverting the predicate should turn a monotonically 10435 // increasing change to a monotonically decreasing one, and vice versa. 10436 if (Result) { 10437 auto ResultSwapped = 10438 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10439 10440 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10441 assert(ResultSwapped.getValue() != Result.getValue() && 10442 "monotonicity should flip as we flip the predicate"); 10443 } 10444 #endif 10445 10446 return Result; 10447 } 10448 10449 Optional<ScalarEvolution::MonotonicPredicateType> 10450 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10451 ICmpInst::Predicate Pred) { 10452 // A zero step value for LHS means the induction variable is essentially a 10453 // loop invariant value. We don't really depend on the predicate actually 10454 // flipping from false to true (for increasing predicates, and the other way 10455 // around for decreasing predicates), all we care about is that *if* the 10456 // predicate changes then it only changes from false to true. 10457 // 10458 // A zero step value in itself is not very useful, but there may be places 10459 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10460 // as general as possible. 10461 10462 // Only handle LE/LT/GE/GT predicates. 10463 if (!ICmpInst::isRelational(Pred)) 10464 return None; 10465 10466 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10467 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10468 "Should be greater or less!"); 10469 10470 // Check that AR does not wrap. 10471 if (ICmpInst::isUnsigned(Pred)) { 10472 if (!LHS->hasNoUnsignedWrap()) 10473 return None; 10474 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10475 } else { 10476 assert(ICmpInst::isSigned(Pred) && 10477 "Relational predicate is either signed or unsigned!"); 10478 if (!LHS->hasNoSignedWrap()) 10479 return None; 10480 10481 const SCEV *Step = LHS->getStepRecurrence(*this); 10482 10483 if (isKnownNonNegative(Step)) 10484 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10485 10486 if (isKnownNonPositive(Step)) 10487 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10488 10489 return None; 10490 } 10491 } 10492 10493 Optional<ScalarEvolution::LoopInvariantPredicate> 10494 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10495 const SCEV *LHS, const SCEV *RHS, 10496 const Loop *L) { 10497 10498 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10499 if (!isLoopInvariant(RHS, L)) { 10500 if (!isLoopInvariant(LHS, L)) 10501 return None; 10502 10503 std::swap(LHS, RHS); 10504 Pred = ICmpInst::getSwappedPredicate(Pred); 10505 } 10506 10507 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10508 if (!ArLHS || ArLHS->getLoop() != L) 10509 return None; 10510 10511 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10512 if (!MonotonicType) 10513 return None; 10514 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10515 // true as the loop iterates, and the backedge is control dependent on 10516 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10517 // 10518 // * if the predicate was false in the first iteration then the predicate 10519 // is never evaluated again, since the loop exits without taking the 10520 // backedge. 10521 // * if the predicate was true in the first iteration then it will 10522 // continue to be true for all future iterations since it is 10523 // monotonically increasing. 10524 // 10525 // For both the above possibilities, we can replace the loop varying 10526 // predicate with its value on the first iteration of the loop (which is 10527 // loop invariant). 10528 // 10529 // A similar reasoning applies for a monotonically decreasing predicate, by 10530 // replacing true with false and false with true in the above two bullets. 10531 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10532 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10533 10534 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10535 return None; 10536 10537 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10538 } 10539 10540 Optional<ScalarEvolution::LoopInvariantPredicate> 10541 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10542 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10543 const Instruction *CtxI, const SCEV *MaxIter) { 10544 // Try to prove the following set of facts: 10545 // - The predicate is monotonic in the iteration space. 10546 // - If the check does not fail on the 1st iteration: 10547 // - No overflow will happen during first MaxIter iterations; 10548 // - It will not fail on the MaxIter'th iteration. 10549 // If the check does fail on the 1st iteration, we leave the loop and no 10550 // other checks matter. 10551 10552 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10553 if (!isLoopInvariant(RHS, L)) { 10554 if (!isLoopInvariant(LHS, L)) 10555 return None; 10556 10557 std::swap(LHS, RHS); 10558 Pred = ICmpInst::getSwappedPredicate(Pred); 10559 } 10560 10561 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10562 if (!AR || AR->getLoop() != L) 10563 return None; 10564 10565 // The predicate must be relational (i.e. <, <=, >=, >). 10566 if (!ICmpInst::isRelational(Pred)) 10567 return None; 10568 10569 // TODO: Support steps other than +/- 1. 10570 const SCEV *Step = AR->getStepRecurrence(*this); 10571 auto *One = getOne(Step->getType()); 10572 auto *MinusOne = getNegativeSCEV(One); 10573 if (Step != One && Step != MinusOne) 10574 return None; 10575 10576 // Type mismatch here means that MaxIter is potentially larger than max 10577 // unsigned value in start type, which mean we cannot prove no wrap for the 10578 // indvar. 10579 if (AR->getType() != MaxIter->getType()) 10580 return None; 10581 10582 // Value of IV on suggested last iteration. 10583 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10584 // Does it still meet the requirement? 10585 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10586 return None; 10587 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10588 // not exceed max unsigned value of this type), this effectively proves 10589 // that there is no wrap during the iteration. To prove that there is no 10590 // signed/unsigned wrap, we need to check that 10591 // Start <= Last for step = 1 or Start >= Last for step = -1. 10592 ICmpInst::Predicate NoOverflowPred = 10593 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10594 if (Step == MinusOne) 10595 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10596 const SCEV *Start = AR->getStart(); 10597 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10598 return None; 10599 10600 // Everything is fine. 10601 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10602 } 10603 10604 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10605 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10606 if (HasSameValue(LHS, RHS)) 10607 return ICmpInst::isTrueWhenEqual(Pred); 10608 10609 // This code is split out from isKnownPredicate because it is called from 10610 // within isLoopEntryGuardedByCond. 10611 10612 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10613 const ConstantRange &RangeRHS) { 10614 return RangeLHS.icmp(Pred, RangeRHS); 10615 }; 10616 10617 // The check at the top of the function catches the case where the values are 10618 // known to be equal. 10619 if (Pred == CmpInst::ICMP_EQ) 10620 return false; 10621 10622 if (Pred == CmpInst::ICMP_NE) { 10623 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10624 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10625 return true; 10626 auto *Diff = getMinusSCEV(LHS, RHS); 10627 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10628 } 10629 10630 if (CmpInst::isSigned(Pred)) 10631 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10632 10633 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10634 } 10635 10636 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10637 const SCEV *LHS, 10638 const SCEV *RHS) { 10639 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10640 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10641 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10642 // OutC1 and OutC2. 10643 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10644 APInt &OutC1, APInt &OutC2, 10645 SCEV::NoWrapFlags ExpectedFlags) { 10646 const SCEV *XNonConstOp, *XConstOp; 10647 const SCEV *YNonConstOp, *YConstOp; 10648 SCEV::NoWrapFlags XFlagsPresent; 10649 SCEV::NoWrapFlags YFlagsPresent; 10650 10651 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10652 XConstOp = getZero(X->getType()); 10653 XNonConstOp = X; 10654 XFlagsPresent = ExpectedFlags; 10655 } 10656 if (!isa<SCEVConstant>(XConstOp) || 10657 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10658 return false; 10659 10660 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10661 YConstOp = getZero(Y->getType()); 10662 YNonConstOp = Y; 10663 YFlagsPresent = ExpectedFlags; 10664 } 10665 10666 if (!isa<SCEVConstant>(YConstOp) || 10667 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10668 return false; 10669 10670 if (YNonConstOp != XNonConstOp) 10671 return false; 10672 10673 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10674 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10675 10676 return true; 10677 }; 10678 10679 APInt C1; 10680 APInt C2; 10681 10682 switch (Pred) { 10683 default: 10684 break; 10685 10686 case ICmpInst::ICMP_SGE: 10687 std::swap(LHS, RHS); 10688 LLVM_FALLTHROUGH; 10689 case ICmpInst::ICMP_SLE: 10690 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10691 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10692 return true; 10693 10694 break; 10695 10696 case ICmpInst::ICMP_SGT: 10697 std::swap(LHS, RHS); 10698 LLVM_FALLTHROUGH; 10699 case ICmpInst::ICMP_SLT: 10700 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10701 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10702 return true; 10703 10704 break; 10705 10706 case ICmpInst::ICMP_UGE: 10707 std::swap(LHS, RHS); 10708 LLVM_FALLTHROUGH; 10709 case ICmpInst::ICMP_ULE: 10710 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10711 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10712 return true; 10713 10714 break; 10715 10716 case ICmpInst::ICMP_UGT: 10717 std::swap(LHS, RHS); 10718 LLVM_FALLTHROUGH; 10719 case ICmpInst::ICMP_ULT: 10720 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10721 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10722 return true; 10723 break; 10724 } 10725 10726 return false; 10727 } 10728 10729 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10730 const SCEV *LHS, 10731 const SCEV *RHS) { 10732 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10733 return false; 10734 10735 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10736 // the stack can result in exponential time complexity. 10737 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10738 10739 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10740 // 10741 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10742 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10743 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10744 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10745 // use isKnownPredicate later if needed. 10746 return isKnownNonNegative(RHS) && 10747 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10748 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10749 } 10750 10751 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10752 ICmpInst::Predicate Pred, 10753 const SCEV *LHS, const SCEV *RHS) { 10754 // No need to even try if we know the module has no guards. 10755 if (!HasGuards) 10756 return false; 10757 10758 return any_of(*BB, [&](const Instruction &I) { 10759 using namespace llvm::PatternMatch; 10760 10761 Value *Condition; 10762 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10763 m_Value(Condition))) && 10764 isImpliedCond(Pred, LHS, RHS, Condition, false); 10765 }); 10766 } 10767 10768 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10769 /// protected by a conditional between LHS and RHS. This is used to 10770 /// to eliminate casts. 10771 bool 10772 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10773 ICmpInst::Predicate Pred, 10774 const SCEV *LHS, const SCEV *RHS) { 10775 // Interpret a null as meaning no loop, where there is obviously no guard 10776 // (interprocedural conditions notwithstanding). 10777 if (!L) return true; 10778 10779 if (VerifyIR) 10780 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10781 "This cannot be done on broken IR!"); 10782 10783 10784 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10785 return true; 10786 10787 BasicBlock *Latch = L->getLoopLatch(); 10788 if (!Latch) 10789 return false; 10790 10791 BranchInst *LoopContinuePredicate = 10792 dyn_cast<BranchInst>(Latch->getTerminator()); 10793 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10794 isImpliedCond(Pred, LHS, RHS, 10795 LoopContinuePredicate->getCondition(), 10796 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10797 return true; 10798 10799 // We don't want more than one activation of the following loops on the stack 10800 // -- that can lead to O(n!) time complexity. 10801 if (WalkingBEDominatingConds) 10802 return false; 10803 10804 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10805 10806 // See if we can exploit a trip count to prove the predicate. 10807 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10808 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10809 if (LatchBECount != getCouldNotCompute()) { 10810 // We know that Latch branches back to the loop header exactly 10811 // LatchBECount times. This means the backdege condition at Latch is 10812 // equivalent to "{0,+,1} u< LatchBECount". 10813 Type *Ty = LatchBECount->getType(); 10814 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10815 const SCEV *LoopCounter = 10816 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10817 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10818 LatchBECount)) 10819 return true; 10820 } 10821 10822 // Check conditions due to any @llvm.assume intrinsics. 10823 for (auto &AssumeVH : AC.assumptions()) { 10824 if (!AssumeVH) 10825 continue; 10826 auto *CI = cast<CallInst>(AssumeVH); 10827 if (!DT.dominates(CI, Latch->getTerminator())) 10828 continue; 10829 10830 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10831 return true; 10832 } 10833 10834 // If the loop is not reachable from the entry block, we risk running into an 10835 // infinite loop as we walk up into the dom tree. These loops do not matter 10836 // anyway, so we just return a conservative answer when we see them. 10837 if (!DT.isReachableFromEntry(L->getHeader())) 10838 return false; 10839 10840 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10841 return true; 10842 10843 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10844 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10845 assert(DTN && "should reach the loop header before reaching the root!"); 10846 10847 BasicBlock *BB = DTN->getBlock(); 10848 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10849 return true; 10850 10851 BasicBlock *PBB = BB->getSinglePredecessor(); 10852 if (!PBB) 10853 continue; 10854 10855 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10856 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10857 continue; 10858 10859 Value *Condition = ContinuePredicate->getCondition(); 10860 10861 // If we have an edge `E` within the loop body that dominates the only 10862 // latch, the condition guarding `E` also guards the backedge. This 10863 // reasoning works only for loops with a single latch. 10864 10865 BasicBlockEdge DominatingEdge(PBB, BB); 10866 if (DominatingEdge.isSingleEdge()) { 10867 // We're constructively (and conservatively) enumerating edges within the 10868 // loop body that dominate the latch. The dominator tree better agree 10869 // with us on this: 10870 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10871 10872 if (isImpliedCond(Pred, LHS, RHS, Condition, 10873 BB != ContinuePredicate->getSuccessor(0))) 10874 return true; 10875 } 10876 } 10877 10878 return false; 10879 } 10880 10881 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10882 ICmpInst::Predicate Pred, 10883 const SCEV *LHS, 10884 const SCEV *RHS) { 10885 if (VerifyIR) 10886 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10887 "This cannot be done on broken IR!"); 10888 10889 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10890 // the facts (a >= b && a != b) separately. A typical situation is when the 10891 // non-strict comparison is known from ranges and non-equality is known from 10892 // dominating predicates. If we are proving strict comparison, we always try 10893 // to prove non-equality and non-strict comparison separately. 10894 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10895 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10896 bool ProvedNonStrictComparison = false; 10897 bool ProvedNonEquality = false; 10898 10899 auto SplitAndProve = 10900 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10901 if (!ProvedNonStrictComparison) 10902 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10903 if (!ProvedNonEquality) 10904 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10905 if (ProvedNonStrictComparison && ProvedNonEquality) 10906 return true; 10907 return false; 10908 }; 10909 10910 if (ProvingStrictComparison) { 10911 auto ProofFn = [&](ICmpInst::Predicate P) { 10912 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10913 }; 10914 if (SplitAndProve(ProofFn)) 10915 return true; 10916 } 10917 10918 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10919 auto ProveViaGuard = [&](const BasicBlock *Block) { 10920 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10921 return true; 10922 if (ProvingStrictComparison) { 10923 auto ProofFn = [&](ICmpInst::Predicate P) { 10924 return isImpliedViaGuard(Block, P, LHS, RHS); 10925 }; 10926 if (SplitAndProve(ProofFn)) 10927 return true; 10928 } 10929 return false; 10930 }; 10931 10932 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10933 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10934 const Instruction *CtxI = &BB->front(); 10935 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10936 return true; 10937 if (ProvingStrictComparison) { 10938 auto ProofFn = [&](ICmpInst::Predicate P) { 10939 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10940 }; 10941 if (SplitAndProve(ProofFn)) 10942 return true; 10943 } 10944 return false; 10945 }; 10946 10947 // Starting at the block's predecessor, climb up the predecessor chain, as long 10948 // as there are predecessors that can be found that have unique successors 10949 // leading to the original block. 10950 const Loop *ContainingLoop = LI.getLoopFor(BB); 10951 const BasicBlock *PredBB; 10952 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10953 PredBB = ContainingLoop->getLoopPredecessor(); 10954 else 10955 PredBB = BB->getSinglePredecessor(); 10956 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10957 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10958 if (ProveViaGuard(Pair.first)) 10959 return true; 10960 10961 const BranchInst *LoopEntryPredicate = 10962 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10963 if (!LoopEntryPredicate || 10964 LoopEntryPredicate->isUnconditional()) 10965 continue; 10966 10967 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10968 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10969 return true; 10970 } 10971 10972 // Check conditions due to any @llvm.assume intrinsics. 10973 for (auto &AssumeVH : AC.assumptions()) { 10974 if (!AssumeVH) 10975 continue; 10976 auto *CI = cast<CallInst>(AssumeVH); 10977 if (!DT.dominates(CI, BB)) 10978 continue; 10979 10980 if (ProveViaCond(CI->getArgOperand(0), false)) 10981 return true; 10982 } 10983 10984 return false; 10985 } 10986 10987 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10988 ICmpInst::Predicate Pred, 10989 const SCEV *LHS, 10990 const SCEV *RHS) { 10991 // Interpret a null as meaning no loop, where there is obviously no guard 10992 // (interprocedural conditions notwithstanding). 10993 if (!L) 10994 return false; 10995 10996 // Both LHS and RHS must be available at loop entry. 10997 assert(isAvailableAtLoopEntry(LHS, L) && 10998 "LHS is not available at Loop Entry"); 10999 assert(isAvailableAtLoopEntry(RHS, L) && 11000 "RHS is not available at Loop Entry"); 11001 11002 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11003 return true; 11004 11005 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11006 } 11007 11008 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11009 const SCEV *RHS, 11010 const Value *FoundCondValue, bool Inverse, 11011 const Instruction *CtxI) { 11012 // False conditions implies anything. Do not bother analyzing it further. 11013 if (FoundCondValue == 11014 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11015 return true; 11016 11017 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11018 return false; 11019 11020 auto ClearOnExit = 11021 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11022 11023 // Recursively handle And and Or conditions. 11024 const Value *Op0, *Op1; 11025 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11026 if (!Inverse) 11027 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11028 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11029 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11030 if (Inverse) 11031 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11032 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11033 } 11034 11035 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11036 if (!ICI) return false; 11037 11038 // Now that we found a conditional branch that dominates the loop or controls 11039 // the loop latch. Check to see if it is the comparison we are looking for. 11040 ICmpInst::Predicate FoundPred; 11041 if (Inverse) 11042 FoundPred = ICI->getInversePredicate(); 11043 else 11044 FoundPred = ICI->getPredicate(); 11045 11046 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11047 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11048 11049 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11050 } 11051 11052 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11053 const SCEV *RHS, 11054 ICmpInst::Predicate FoundPred, 11055 const SCEV *FoundLHS, const SCEV *FoundRHS, 11056 const Instruction *CtxI) { 11057 // Balance the types. 11058 if (getTypeSizeInBits(LHS->getType()) < 11059 getTypeSizeInBits(FoundLHS->getType())) { 11060 // For unsigned and equality predicates, try to prove that both found 11061 // operands fit into narrow unsigned range. If so, try to prove facts in 11062 // narrow types. 11063 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11064 !FoundRHS->getType()->isPointerTy()) { 11065 auto *NarrowType = LHS->getType(); 11066 auto *WideType = FoundLHS->getType(); 11067 auto BitWidth = getTypeSizeInBits(NarrowType); 11068 const SCEV *MaxValue = getZeroExtendExpr( 11069 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11070 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11071 MaxValue) && 11072 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11073 MaxValue)) { 11074 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11075 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11076 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11077 TruncFoundRHS, CtxI)) 11078 return true; 11079 } 11080 } 11081 11082 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11083 return false; 11084 if (CmpInst::isSigned(Pred)) { 11085 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11086 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11087 } else { 11088 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11089 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11090 } 11091 } else if (getTypeSizeInBits(LHS->getType()) > 11092 getTypeSizeInBits(FoundLHS->getType())) { 11093 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11094 return false; 11095 if (CmpInst::isSigned(FoundPred)) { 11096 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11097 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11098 } else { 11099 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11100 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11101 } 11102 } 11103 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11104 FoundRHS, CtxI); 11105 } 11106 11107 bool ScalarEvolution::isImpliedCondBalancedTypes( 11108 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11109 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11110 const Instruction *CtxI) { 11111 assert(getTypeSizeInBits(LHS->getType()) == 11112 getTypeSizeInBits(FoundLHS->getType()) && 11113 "Types should be balanced!"); 11114 // Canonicalize the query to match the way instcombine will have 11115 // canonicalized the comparison. 11116 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11117 if (LHS == RHS) 11118 return CmpInst::isTrueWhenEqual(Pred); 11119 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11120 if (FoundLHS == FoundRHS) 11121 return CmpInst::isFalseWhenEqual(FoundPred); 11122 11123 // Check to see if we can make the LHS or RHS match. 11124 if (LHS == FoundRHS || RHS == FoundLHS) { 11125 if (isa<SCEVConstant>(RHS)) { 11126 std::swap(FoundLHS, FoundRHS); 11127 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11128 } else { 11129 std::swap(LHS, RHS); 11130 Pred = ICmpInst::getSwappedPredicate(Pred); 11131 } 11132 } 11133 11134 // Check whether the found predicate is the same as the desired predicate. 11135 if (FoundPred == Pred) 11136 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11137 11138 // Check whether swapping the found predicate makes it the same as the 11139 // desired predicate. 11140 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11141 // We can write the implication 11142 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11143 // using one of the following ways: 11144 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11145 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11146 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11147 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11148 // Forms 1. and 2. require swapping the operands of one condition. Don't 11149 // do this if it would break canonical constant/addrec ordering. 11150 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11151 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11152 CtxI); 11153 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11154 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11155 11156 // There's no clear preference between forms 3. and 4., try both. Avoid 11157 // forming getNotSCEV of pointer values as the resulting subtract is 11158 // not legal. 11159 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11160 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11161 FoundLHS, FoundRHS, CtxI)) 11162 return true; 11163 11164 if (!FoundLHS->getType()->isPointerTy() && 11165 !FoundRHS->getType()->isPointerTy() && 11166 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11167 getNotSCEV(FoundRHS), CtxI)) 11168 return true; 11169 11170 return false; 11171 } 11172 11173 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11174 CmpInst::Predicate P2) { 11175 assert(P1 != P2 && "Handled earlier!"); 11176 return CmpInst::isRelational(P2) && 11177 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11178 }; 11179 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11180 // Unsigned comparison is the same as signed comparison when both the 11181 // operands are non-negative or negative. 11182 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11183 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11184 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11185 // Create local copies that we can freely swap and canonicalize our 11186 // conditions to "le/lt". 11187 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11188 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11189 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11190 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11191 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11192 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11193 std::swap(CanonicalLHS, CanonicalRHS); 11194 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11195 } 11196 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11197 "Must be!"); 11198 assert((ICmpInst::isLT(CanonicalFoundPred) || 11199 ICmpInst::isLE(CanonicalFoundPred)) && 11200 "Must be!"); 11201 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11202 // Use implication: 11203 // x <u y && y >=s 0 --> x <s y. 11204 // If we can prove the left part, the right part is also proven. 11205 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11206 CanonicalRHS, CanonicalFoundLHS, 11207 CanonicalFoundRHS); 11208 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11209 // Use implication: 11210 // x <s y && y <s 0 --> x <u y. 11211 // If we can prove the left part, the right part is also proven. 11212 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11213 CanonicalRHS, CanonicalFoundLHS, 11214 CanonicalFoundRHS); 11215 } 11216 11217 // Check if we can make progress by sharpening ranges. 11218 if (FoundPred == ICmpInst::ICMP_NE && 11219 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11220 11221 const SCEVConstant *C = nullptr; 11222 const SCEV *V = nullptr; 11223 11224 if (isa<SCEVConstant>(FoundLHS)) { 11225 C = cast<SCEVConstant>(FoundLHS); 11226 V = FoundRHS; 11227 } else { 11228 C = cast<SCEVConstant>(FoundRHS); 11229 V = FoundLHS; 11230 } 11231 11232 // The guarding predicate tells us that C != V. If the known range 11233 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11234 // range we consider has to correspond to same signedness as the 11235 // predicate we're interested in folding. 11236 11237 APInt Min = ICmpInst::isSigned(Pred) ? 11238 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11239 11240 if (Min == C->getAPInt()) { 11241 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11242 // This is true even if (Min + 1) wraps around -- in case of 11243 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11244 11245 APInt SharperMin = Min + 1; 11246 11247 switch (Pred) { 11248 case ICmpInst::ICMP_SGE: 11249 case ICmpInst::ICMP_UGE: 11250 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11251 // RHS, we're done. 11252 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11253 CtxI)) 11254 return true; 11255 LLVM_FALLTHROUGH; 11256 11257 case ICmpInst::ICMP_SGT: 11258 case ICmpInst::ICMP_UGT: 11259 // We know from the range information that (V `Pred` Min || 11260 // V == Min). We know from the guarding condition that !(V 11261 // == Min). This gives us 11262 // 11263 // V `Pred` Min || V == Min && !(V == Min) 11264 // => V `Pred` Min 11265 // 11266 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11267 11268 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11269 return true; 11270 break; 11271 11272 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11273 case ICmpInst::ICMP_SLE: 11274 case ICmpInst::ICMP_ULE: 11275 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11276 LHS, V, getConstant(SharperMin), CtxI)) 11277 return true; 11278 LLVM_FALLTHROUGH; 11279 11280 case ICmpInst::ICMP_SLT: 11281 case ICmpInst::ICMP_ULT: 11282 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11283 LHS, V, getConstant(Min), CtxI)) 11284 return true; 11285 break; 11286 11287 default: 11288 // No change 11289 break; 11290 } 11291 } 11292 } 11293 11294 // Check whether the actual condition is beyond sufficient. 11295 if (FoundPred == ICmpInst::ICMP_EQ) 11296 if (ICmpInst::isTrueWhenEqual(Pred)) 11297 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11298 return true; 11299 if (Pred == ICmpInst::ICMP_NE) 11300 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11301 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11302 return true; 11303 11304 // Otherwise assume the worst. 11305 return false; 11306 } 11307 11308 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11309 const SCEV *&L, const SCEV *&R, 11310 SCEV::NoWrapFlags &Flags) { 11311 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11312 if (!AE || AE->getNumOperands() != 2) 11313 return false; 11314 11315 L = AE->getOperand(0); 11316 R = AE->getOperand(1); 11317 Flags = AE->getNoWrapFlags(); 11318 return true; 11319 } 11320 11321 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11322 const SCEV *Less) { 11323 // We avoid subtracting expressions here because this function is usually 11324 // fairly deep in the call stack (i.e. is called many times). 11325 11326 // X - X = 0. 11327 if (More == Less) 11328 return APInt(getTypeSizeInBits(More->getType()), 0); 11329 11330 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11331 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11332 const auto *MAR = cast<SCEVAddRecExpr>(More); 11333 11334 if (LAR->getLoop() != MAR->getLoop()) 11335 return None; 11336 11337 // We look at affine expressions only; not for correctness but to keep 11338 // getStepRecurrence cheap. 11339 if (!LAR->isAffine() || !MAR->isAffine()) 11340 return None; 11341 11342 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11343 return None; 11344 11345 Less = LAR->getStart(); 11346 More = MAR->getStart(); 11347 11348 // fall through 11349 } 11350 11351 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11352 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11353 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11354 return M - L; 11355 } 11356 11357 SCEV::NoWrapFlags Flags; 11358 const SCEV *LLess = nullptr, *RLess = nullptr; 11359 const SCEV *LMore = nullptr, *RMore = nullptr; 11360 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11361 // Compare (X + C1) vs X. 11362 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11363 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11364 if (RLess == More) 11365 return -(C1->getAPInt()); 11366 11367 // Compare X vs (X + C2). 11368 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11369 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11370 if (RMore == Less) 11371 return C2->getAPInt(); 11372 11373 // Compare (X + C1) vs (X + C2). 11374 if (C1 && C2 && RLess == RMore) 11375 return C2->getAPInt() - C1->getAPInt(); 11376 11377 return None; 11378 } 11379 11380 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11381 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11382 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11383 // Try to recognize the following pattern: 11384 // 11385 // FoundRHS = ... 11386 // ... 11387 // loop: 11388 // FoundLHS = {Start,+,W} 11389 // context_bb: // Basic block from the same loop 11390 // known(Pred, FoundLHS, FoundRHS) 11391 // 11392 // If some predicate is known in the context of a loop, it is also known on 11393 // each iteration of this loop, including the first iteration. Therefore, in 11394 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11395 // prove the original pred using this fact. 11396 if (!CtxI) 11397 return false; 11398 const BasicBlock *ContextBB = CtxI->getParent(); 11399 // Make sure AR varies in the context block. 11400 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11401 const Loop *L = AR->getLoop(); 11402 // Make sure that context belongs to the loop and executes on 1st iteration 11403 // (if it ever executes at all). 11404 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11405 return false; 11406 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11407 return false; 11408 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11409 } 11410 11411 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11412 const Loop *L = AR->getLoop(); 11413 // Make sure that context belongs to the loop and executes on 1st iteration 11414 // (if it ever executes at all). 11415 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11416 return false; 11417 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11418 return false; 11419 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11420 } 11421 11422 return false; 11423 } 11424 11425 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11426 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11427 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11428 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11429 return false; 11430 11431 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11432 if (!AddRecLHS) 11433 return false; 11434 11435 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11436 if (!AddRecFoundLHS) 11437 return false; 11438 11439 // We'd like to let SCEV reason about control dependencies, so we constrain 11440 // both the inequalities to be about add recurrences on the same loop. This 11441 // way we can use isLoopEntryGuardedByCond later. 11442 11443 const Loop *L = AddRecFoundLHS->getLoop(); 11444 if (L != AddRecLHS->getLoop()) 11445 return false; 11446 11447 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11448 // 11449 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11450 // ... (2) 11451 // 11452 // Informal proof for (2), assuming (1) [*]: 11453 // 11454 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11455 // 11456 // Then 11457 // 11458 // FoundLHS s< FoundRHS s< INT_MIN - C 11459 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11460 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11461 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11462 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11463 // <=> FoundLHS + C s< FoundRHS + C 11464 // 11465 // [*]: (1) can be proved by ruling out overflow. 11466 // 11467 // [**]: This can be proved by analyzing all the four possibilities: 11468 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11469 // (A s>= 0, B s>= 0). 11470 // 11471 // Note: 11472 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11473 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11474 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11475 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11476 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11477 // C)". 11478 11479 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11480 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11481 if (!LDiff || !RDiff || *LDiff != *RDiff) 11482 return false; 11483 11484 if (LDiff->isMinValue()) 11485 return true; 11486 11487 APInt FoundRHSLimit; 11488 11489 if (Pred == CmpInst::ICMP_ULT) { 11490 FoundRHSLimit = -(*RDiff); 11491 } else { 11492 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11493 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11494 } 11495 11496 // Try to prove (1) or (2), as needed. 11497 return isAvailableAtLoopEntry(FoundRHS, L) && 11498 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11499 getConstant(FoundRHSLimit)); 11500 } 11501 11502 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11503 const SCEV *LHS, const SCEV *RHS, 11504 const SCEV *FoundLHS, 11505 const SCEV *FoundRHS, unsigned Depth) { 11506 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11507 11508 auto ClearOnExit = make_scope_exit([&]() { 11509 if (LPhi) { 11510 bool Erased = PendingMerges.erase(LPhi); 11511 assert(Erased && "Failed to erase LPhi!"); 11512 (void)Erased; 11513 } 11514 if (RPhi) { 11515 bool Erased = PendingMerges.erase(RPhi); 11516 assert(Erased && "Failed to erase RPhi!"); 11517 (void)Erased; 11518 } 11519 }); 11520 11521 // Find respective Phis and check that they are not being pending. 11522 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11523 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11524 if (!PendingMerges.insert(Phi).second) 11525 return false; 11526 LPhi = Phi; 11527 } 11528 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11529 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11530 // If we detect a loop of Phi nodes being processed by this method, for 11531 // example: 11532 // 11533 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11534 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11535 // 11536 // we don't want to deal with a case that complex, so return conservative 11537 // answer false. 11538 if (!PendingMerges.insert(Phi).second) 11539 return false; 11540 RPhi = Phi; 11541 } 11542 11543 // If none of LHS, RHS is a Phi, nothing to do here. 11544 if (!LPhi && !RPhi) 11545 return false; 11546 11547 // If there is a SCEVUnknown Phi we are interested in, make it left. 11548 if (!LPhi) { 11549 std::swap(LHS, RHS); 11550 std::swap(FoundLHS, FoundRHS); 11551 std::swap(LPhi, RPhi); 11552 Pred = ICmpInst::getSwappedPredicate(Pred); 11553 } 11554 11555 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11556 const BasicBlock *LBB = LPhi->getParent(); 11557 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11558 11559 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11560 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11561 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11562 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11563 }; 11564 11565 if (RPhi && RPhi->getParent() == LBB) { 11566 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11567 // If we compare two Phis from the same block, and for each entry block 11568 // the predicate is true for incoming values from this block, then the 11569 // predicate is also true for the Phis. 11570 for (const BasicBlock *IncBB : predecessors(LBB)) { 11571 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11572 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11573 if (!ProvedEasily(L, R)) 11574 return false; 11575 } 11576 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11577 // Case two: RHS is also a Phi from the same basic block, and it is an 11578 // AddRec. It means that there is a loop which has both AddRec and Unknown 11579 // PHIs, for it we can compare incoming values of AddRec from above the loop 11580 // and latch with their respective incoming values of LPhi. 11581 // TODO: Generalize to handle loops with many inputs in a header. 11582 if (LPhi->getNumIncomingValues() != 2) return false; 11583 11584 auto *RLoop = RAR->getLoop(); 11585 auto *Predecessor = RLoop->getLoopPredecessor(); 11586 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11587 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11588 if (!ProvedEasily(L1, RAR->getStart())) 11589 return false; 11590 auto *Latch = RLoop->getLoopLatch(); 11591 assert(Latch && "Loop with AddRec with no latch?"); 11592 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11593 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11594 return false; 11595 } else { 11596 // In all other cases go over inputs of LHS and compare each of them to RHS, 11597 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11598 // At this point RHS is either a non-Phi, or it is a Phi from some block 11599 // different from LBB. 11600 for (const BasicBlock *IncBB : predecessors(LBB)) { 11601 // Check that RHS is available in this block. 11602 if (!dominates(RHS, IncBB)) 11603 return false; 11604 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11605 // Make sure L does not refer to a value from a potentially previous 11606 // iteration of a loop. 11607 if (!properlyDominates(L, IncBB)) 11608 return false; 11609 if (!ProvedEasily(L, RHS)) 11610 return false; 11611 } 11612 } 11613 return true; 11614 } 11615 11616 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 11617 const SCEV *LHS, 11618 const SCEV *RHS, 11619 const SCEV *FoundLHS, 11620 const SCEV *FoundRHS) { 11621 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 11622 // sure that we are dealing with same LHS. 11623 if (RHS == FoundRHS) { 11624 std::swap(LHS, RHS); 11625 std::swap(FoundLHS, FoundRHS); 11626 Pred = ICmpInst::getSwappedPredicate(Pred); 11627 } 11628 if (LHS != FoundLHS) 11629 return false; 11630 11631 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 11632 if (!SUFoundRHS) 11633 return false; 11634 11635 Value *Shiftee, *ShiftValue; 11636 11637 using namespace PatternMatch; 11638 if (match(SUFoundRHS->getValue(), 11639 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 11640 auto *ShifteeS = getSCEV(Shiftee); 11641 // Prove one of the following: 11642 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 11643 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 11644 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11645 // ---> LHS <s RHS 11646 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11647 // ---> LHS <=s RHS 11648 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 11649 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 11650 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 11651 if (isKnownNonNegative(ShifteeS)) 11652 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 11653 } 11654 11655 return false; 11656 } 11657 11658 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11659 const SCEV *LHS, const SCEV *RHS, 11660 const SCEV *FoundLHS, 11661 const SCEV *FoundRHS, 11662 const Instruction *CtxI) { 11663 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11664 return true; 11665 11666 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11667 return true; 11668 11669 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11670 return true; 11671 11672 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11673 CtxI)) 11674 return true; 11675 11676 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11677 FoundLHS, FoundRHS); 11678 } 11679 11680 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11681 template <typename MinMaxExprType> 11682 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11683 const SCEV *Candidate) { 11684 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11685 if (!MinMaxExpr) 11686 return false; 11687 11688 return is_contained(MinMaxExpr->operands(), Candidate); 11689 } 11690 11691 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11692 ICmpInst::Predicate Pred, 11693 const SCEV *LHS, const SCEV *RHS) { 11694 // If both sides are affine addrecs for the same loop, with equal 11695 // steps, and we know the recurrences don't wrap, then we only 11696 // need to check the predicate on the starting values. 11697 11698 if (!ICmpInst::isRelational(Pred)) 11699 return false; 11700 11701 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11702 if (!LAR) 11703 return false; 11704 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11705 if (!RAR) 11706 return false; 11707 if (LAR->getLoop() != RAR->getLoop()) 11708 return false; 11709 if (!LAR->isAffine() || !RAR->isAffine()) 11710 return false; 11711 11712 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11713 return false; 11714 11715 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11716 SCEV::FlagNSW : SCEV::FlagNUW; 11717 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11718 return false; 11719 11720 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11721 } 11722 11723 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11724 /// expression? 11725 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11726 ICmpInst::Predicate Pred, 11727 const SCEV *LHS, const SCEV *RHS) { 11728 switch (Pred) { 11729 default: 11730 return false; 11731 11732 case ICmpInst::ICMP_SGE: 11733 std::swap(LHS, RHS); 11734 LLVM_FALLTHROUGH; 11735 case ICmpInst::ICMP_SLE: 11736 return 11737 // min(A, ...) <= A 11738 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11739 // A <= max(A, ...) 11740 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11741 11742 case ICmpInst::ICMP_UGE: 11743 std::swap(LHS, RHS); 11744 LLVM_FALLTHROUGH; 11745 case ICmpInst::ICMP_ULE: 11746 return 11747 // min(A, ...) <= A 11748 // FIXME: what about umin_seq? 11749 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11750 // A <= max(A, ...) 11751 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11752 } 11753 11754 llvm_unreachable("covered switch fell through?!"); 11755 } 11756 11757 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11758 const SCEV *LHS, const SCEV *RHS, 11759 const SCEV *FoundLHS, 11760 const SCEV *FoundRHS, 11761 unsigned Depth) { 11762 assert(getTypeSizeInBits(LHS->getType()) == 11763 getTypeSizeInBits(RHS->getType()) && 11764 "LHS and RHS have different sizes?"); 11765 assert(getTypeSizeInBits(FoundLHS->getType()) == 11766 getTypeSizeInBits(FoundRHS->getType()) && 11767 "FoundLHS and FoundRHS have different sizes?"); 11768 // We want to avoid hurting the compile time with analysis of too big trees. 11769 if (Depth > MaxSCEVOperationsImplicationDepth) 11770 return false; 11771 11772 // We only want to work with GT comparison so far. 11773 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11774 Pred = CmpInst::getSwappedPredicate(Pred); 11775 std::swap(LHS, RHS); 11776 std::swap(FoundLHS, FoundRHS); 11777 } 11778 11779 // For unsigned, try to reduce it to corresponding signed comparison. 11780 if (Pred == ICmpInst::ICMP_UGT) 11781 // We can replace unsigned predicate with its signed counterpart if all 11782 // involved values are non-negative. 11783 // TODO: We could have better support for unsigned. 11784 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11785 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11786 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11787 // use this fact to prove that LHS and RHS are non-negative. 11788 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11789 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11790 FoundRHS) && 11791 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11792 FoundRHS)) 11793 Pred = ICmpInst::ICMP_SGT; 11794 } 11795 11796 if (Pred != ICmpInst::ICMP_SGT) 11797 return false; 11798 11799 auto GetOpFromSExt = [&](const SCEV *S) { 11800 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11801 return Ext->getOperand(); 11802 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11803 // the constant in some cases. 11804 return S; 11805 }; 11806 11807 // Acquire values from extensions. 11808 auto *OrigLHS = LHS; 11809 auto *OrigFoundLHS = FoundLHS; 11810 LHS = GetOpFromSExt(LHS); 11811 FoundLHS = GetOpFromSExt(FoundLHS); 11812 11813 // Is the SGT predicate can be proved trivially or using the found context. 11814 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11815 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11816 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11817 FoundRHS, Depth + 1); 11818 }; 11819 11820 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11821 // We want to avoid creation of any new non-constant SCEV. Since we are 11822 // going to compare the operands to RHS, we should be certain that we don't 11823 // need any size extensions for this. So let's decline all cases when the 11824 // sizes of types of LHS and RHS do not match. 11825 // TODO: Maybe try to get RHS from sext to catch more cases? 11826 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11827 return false; 11828 11829 // Should not overflow. 11830 if (!LHSAddExpr->hasNoSignedWrap()) 11831 return false; 11832 11833 auto *LL = LHSAddExpr->getOperand(0); 11834 auto *LR = LHSAddExpr->getOperand(1); 11835 auto *MinusOne = getMinusOne(RHS->getType()); 11836 11837 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11838 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11839 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11840 }; 11841 // Try to prove the following rule: 11842 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11843 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11844 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11845 return true; 11846 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11847 Value *LL, *LR; 11848 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11849 11850 using namespace llvm::PatternMatch; 11851 11852 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11853 // Rules for division. 11854 // We are going to perform some comparisons with Denominator and its 11855 // derivative expressions. In general case, creating a SCEV for it may 11856 // lead to a complex analysis of the entire graph, and in particular it 11857 // can request trip count recalculation for the same loop. This would 11858 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11859 // this, we only want to create SCEVs that are constants in this section. 11860 // So we bail if Denominator is not a constant. 11861 if (!isa<ConstantInt>(LR)) 11862 return false; 11863 11864 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11865 11866 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11867 // then a SCEV for the numerator already exists and matches with FoundLHS. 11868 auto *Numerator = getExistingSCEV(LL); 11869 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11870 return false; 11871 11872 // Make sure that the numerator matches with FoundLHS and the denominator 11873 // is positive. 11874 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11875 return false; 11876 11877 auto *DTy = Denominator->getType(); 11878 auto *FRHSTy = FoundRHS->getType(); 11879 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11880 // One of types is a pointer and another one is not. We cannot extend 11881 // them properly to a wider type, so let us just reject this case. 11882 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11883 // to avoid this check. 11884 return false; 11885 11886 // Given that: 11887 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11888 auto *WTy = getWiderType(DTy, FRHSTy); 11889 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11890 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11891 11892 // Try to prove the following rule: 11893 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11894 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11895 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11896 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11897 if (isKnownNonPositive(RHS) && 11898 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11899 return true; 11900 11901 // Try to prove the following rule: 11902 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11903 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11904 // If we divide it by Denominator > 2, then: 11905 // 1. If FoundLHS is negative, then the result is 0. 11906 // 2. If FoundLHS is non-negative, then the result is non-negative. 11907 // Anyways, the result is non-negative. 11908 auto *MinusOne = getMinusOne(WTy); 11909 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11910 if (isKnownNegative(RHS) && 11911 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11912 return true; 11913 } 11914 } 11915 11916 // If our expression contained SCEVUnknown Phis, and we split it down and now 11917 // need to prove something for them, try to prove the predicate for every 11918 // possible incoming values of those Phis. 11919 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11920 return true; 11921 11922 return false; 11923 } 11924 11925 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11926 const SCEV *LHS, const SCEV *RHS) { 11927 // zext x u<= sext x, sext x s<= zext x 11928 switch (Pred) { 11929 case ICmpInst::ICMP_SGE: 11930 std::swap(LHS, RHS); 11931 LLVM_FALLTHROUGH; 11932 case ICmpInst::ICMP_SLE: { 11933 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11934 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11935 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11936 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11937 return true; 11938 break; 11939 } 11940 case ICmpInst::ICMP_UGE: 11941 std::swap(LHS, RHS); 11942 LLVM_FALLTHROUGH; 11943 case ICmpInst::ICMP_ULE: { 11944 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11945 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11946 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11947 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11948 return true; 11949 break; 11950 } 11951 default: 11952 break; 11953 }; 11954 return false; 11955 } 11956 11957 bool 11958 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11959 const SCEV *LHS, const SCEV *RHS) { 11960 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11961 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11962 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11963 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11964 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11965 } 11966 11967 bool 11968 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11969 const SCEV *LHS, const SCEV *RHS, 11970 const SCEV *FoundLHS, 11971 const SCEV *FoundRHS) { 11972 switch (Pred) { 11973 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11974 case ICmpInst::ICMP_EQ: 11975 case ICmpInst::ICMP_NE: 11976 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11977 return true; 11978 break; 11979 case ICmpInst::ICMP_SLT: 11980 case ICmpInst::ICMP_SLE: 11981 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11982 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11983 return true; 11984 break; 11985 case ICmpInst::ICMP_SGT: 11986 case ICmpInst::ICMP_SGE: 11987 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11988 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11989 return true; 11990 break; 11991 case ICmpInst::ICMP_ULT: 11992 case ICmpInst::ICMP_ULE: 11993 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11994 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11995 return true; 11996 break; 11997 case ICmpInst::ICMP_UGT: 11998 case ICmpInst::ICMP_UGE: 11999 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12000 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12001 return true; 12002 break; 12003 } 12004 12005 // Maybe it can be proved via operations? 12006 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12007 return true; 12008 12009 return false; 12010 } 12011 12012 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12013 const SCEV *LHS, 12014 const SCEV *RHS, 12015 const SCEV *FoundLHS, 12016 const SCEV *FoundRHS) { 12017 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12018 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12019 // reduce the compile time impact of this optimization. 12020 return false; 12021 12022 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12023 if (!Addend) 12024 return false; 12025 12026 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12027 12028 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12029 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 12030 ConstantRange FoundLHSRange = 12031 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 12032 12033 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12034 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12035 12036 // We can also compute the range of values for `LHS` that satisfy the 12037 // consequent, "`LHS` `Pred` `RHS`": 12038 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12039 // The antecedent implies the consequent if every value of `LHS` that 12040 // satisfies the antecedent also satisfies the consequent. 12041 return LHSRange.icmp(Pred, ConstRHS); 12042 } 12043 12044 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12045 bool IsSigned) { 12046 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12047 12048 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12049 const SCEV *One = getOne(Stride->getType()); 12050 12051 if (IsSigned) { 12052 APInt MaxRHS = getSignedRangeMax(RHS); 12053 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12054 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12055 12056 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12057 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12058 } 12059 12060 APInt MaxRHS = getUnsignedRangeMax(RHS); 12061 APInt MaxValue = APInt::getMaxValue(BitWidth); 12062 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12063 12064 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12065 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12066 } 12067 12068 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12069 bool IsSigned) { 12070 12071 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12072 const SCEV *One = getOne(Stride->getType()); 12073 12074 if (IsSigned) { 12075 APInt MinRHS = getSignedRangeMin(RHS); 12076 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12077 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12078 12079 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12080 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12081 } 12082 12083 APInt MinRHS = getUnsignedRangeMin(RHS); 12084 APInt MinValue = APInt::getMinValue(BitWidth); 12085 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12086 12087 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12088 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12089 } 12090 12091 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12092 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12093 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12094 // expression fixes the case of N=0. 12095 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12096 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12097 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12098 } 12099 12100 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12101 const SCEV *Stride, 12102 const SCEV *End, 12103 unsigned BitWidth, 12104 bool IsSigned) { 12105 // The logic in this function assumes we can represent a positive stride. 12106 // If we can't, the backedge-taken count must be zero. 12107 if (IsSigned && BitWidth == 1) 12108 return getZero(Stride->getType()); 12109 12110 // This code has only been closely audited for negative strides in the 12111 // unsigned comparison case, it may be correct for signed comparison, but 12112 // that needs to be established. 12113 assert((!IsSigned || !isKnownNonPositive(Stride)) && 12114 "Stride is expected strictly positive for signed case!"); 12115 12116 // Calculate the maximum backedge count based on the range of values 12117 // permitted by Start, End, and Stride. 12118 APInt MinStart = 12119 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12120 12121 APInt MinStride = 12122 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12123 12124 // We assume either the stride is positive, or the backedge-taken count 12125 // is zero. So force StrideForMaxBECount to be at least one. 12126 APInt One(BitWidth, 1); 12127 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12128 : APIntOps::umax(One, MinStride); 12129 12130 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12131 : APInt::getMaxValue(BitWidth); 12132 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12133 12134 // Although End can be a MAX expression we estimate MaxEnd considering only 12135 // the case End = RHS of the loop termination condition. This is safe because 12136 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12137 // taken count. 12138 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12139 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12140 12141 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12142 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12143 : APIntOps::umax(MaxEnd, MinStart); 12144 12145 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12146 getConstant(StrideForMaxBECount) /* Step */); 12147 } 12148 12149 ScalarEvolution::ExitLimit 12150 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12151 const Loop *L, bool IsSigned, 12152 bool ControlsExit, bool AllowPredicates) { 12153 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12154 12155 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12156 bool PredicatedIV = false; 12157 12158 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12159 // Can we prove this loop *must* be UB if overflow of IV occurs? 12160 // Reasoning goes as follows: 12161 // * Suppose the IV did self wrap. 12162 // * If Stride evenly divides the iteration space, then once wrap 12163 // occurs, the loop must revisit the same values. 12164 // * We know that RHS is invariant, and that none of those values 12165 // caused this exit to be taken previously. Thus, this exit is 12166 // dynamically dead. 12167 // * If this is the sole exit, then a dead exit implies the loop 12168 // must be infinite if there are no abnormal exits. 12169 // * If the loop were infinite, then it must either not be mustprogress 12170 // or have side effects. Otherwise, it must be UB. 12171 // * It can't (by assumption), be UB so we have contradicted our 12172 // premise and can conclude the IV did not in fact self-wrap. 12173 if (!isLoopInvariant(RHS, L)) 12174 return false; 12175 12176 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12177 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12178 return false; 12179 12180 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 12181 return false; 12182 12183 return loopIsFiniteByAssumption(L); 12184 }; 12185 12186 if (!IV) { 12187 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12188 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12189 if (AR && AR->getLoop() == L && AR->isAffine()) { 12190 auto canProveNUW = [&]() { 12191 if (!isLoopInvariant(RHS, L)) 12192 return false; 12193 12194 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12195 // We need the sequence defined by AR to strictly increase in the 12196 // unsigned integer domain for the logic below to hold. 12197 return false; 12198 12199 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12200 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12201 // If RHS <=u Limit, then there must exist a value V in the sequence 12202 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12203 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12204 // overflow occurs. This limit also implies that a signed comparison 12205 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12206 // the high bits on both sides must be zero. 12207 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12208 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12209 Limit = Limit.zext(OuterBitWidth); 12210 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12211 }; 12212 auto Flags = AR->getNoWrapFlags(); 12213 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12214 Flags = setFlags(Flags, SCEV::FlagNUW); 12215 12216 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12217 if (AR->hasNoUnsignedWrap()) { 12218 // Emulate what getZeroExtendExpr would have done during construction 12219 // if we'd been able to infer the fact just above at that time. 12220 const SCEV *Step = AR->getStepRecurrence(*this); 12221 Type *Ty = ZExt->getType(); 12222 auto *S = getAddRecExpr( 12223 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12224 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12225 IV = dyn_cast<SCEVAddRecExpr>(S); 12226 } 12227 } 12228 } 12229 } 12230 12231 12232 if (!IV && AllowPredicates) { 12233 // Try to make this an AddRec using runtime tests, in the first X 12234 // iterations of this loop, where X is the SCEV expression found by the 12235 // algorithm below. 12236 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12237 PredicatedIV = true; 12238 } 12239 12240 // Avoid weird loops 12241 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12242 return getCouldNotCompute(); 12243 12244 // A precondition of this method is that the condition being analyzed 12245 // reaches an exiting branch which dominates the latch. Given that, we can 12246 // assume that an increment which violates the nowrap specification and 12247 // produces poison must cause undefined behavior when the resulting poison 12248 // value is branched upon and thus we can conclude that the backedge is 12249 // taken no more often than would be required to produce that poison value. 12250 // Note that a well defined loop can exit on the iteration which violates 12251 // the nowrap specification if there is another exit (either explicit or 12252 // implicit/exceptional) which causes the loop to execute before the 12253 // exiting instruction we're analyzing would trigger UB. 12254 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12255 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12256 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12257 12258 const SCEV *Stride = IV->getStepRecurrence(*this); 12259 12260 bool PositiveStride = isKnownPositive(Stride); 12261 12262 // Avoid negative or zero stride values. 12263 if (!PositiveStride) { 12264 // We can compute the correct backedge taken count for loops with unknown 12265 // strides if we can prove that the loop is not an infinite loop with side 12266 // effects. Here's the loop structure we are trying to handle - 12267 // 12268 // i = start 12269 // do { 12270 // A[i] = i; 12271 // i += s; 12272 // } while (i < end); 12273 // 12274 // The backedge taken count for such loops is evaluated as - 12275 // (max(end, start + stride) - start - 1) /u stride 12276 // 12277 // The additional preconditions that we need to check to prove correctness 12278 // of the above formula is as follows - 12279 // 12280 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12281 // NoWrap flag). 12282 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12283 // no side effects within the loop) 12284 // c) loop has a single static exit (with no abnormal exits) 12285 // 12286 // Precondition a) implies that if the stride is negative, this is a single 12287 // trip loop. The backedge taken count formula reduces to zero in this case. 12288 // 12289 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12290 // then a zero stride means the backedge can't be taken without executing 12291 // undefined behavior. 12292 // 12293 // The positive stride case is the same as isKnownPositive(Stride) returning 12294 // true (original behavior of the function). 12295 // 12296 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12297 !loopHasNoAbnormalExits(L)) 12298 return getCouldNotCompute(); 12299 12300 // This bailout is protecting the logic in computeMaxBECountForLT which 12301 // has not yet been sufficiently auditted or tested with negative strides. 12302 // We used to filter out all known-non-positive cases here, we're in the 12303 // process of being less restrictive bit by bit. 12304 if (IsSigned && isKnownNonPositive(Stride)) 12305 return getCouldNotCompute(); 12306 12307 if (!isKnownNonZero(Stride)) { 12308 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12309 // if it might eventually be greater than start and if so, on which 12310 // iteration. We can't even produce a useful upper bound. 12311 if (!isLoopInvariant(RHS, L)) 12312 return getCouldNotCompute(); 12313 12314 // We allow a potentially zero stride, but we need to divide by stride 12315 // below. Since the loop can't be infinite and this check must control 12316 // the sole exit, we can infer the exit must be taken on the first 12317 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12318 // we know the numerator in the divides below must be zero, so we can 12319 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12320 // and produce the right result. 12321 // FIXME: Handle the case where Stride is poison? 12322 auto wouldZeroStrideBeUB = [&]() { 12323 // Proof by contradiction. Suppose the stride were zero. If we can 12324 // prove that the backedge *is* taken on the first iteration, then since 12325 // we know this condition controls the sole exit, we must have an 12326 // infinite loop. We can't have a (well defined) infinite loop per 12327 // check just above. 12328 // Note: The (Start - Stride) term is used to get the start' term from 12329 // (start' + stride,+,stride). Remember that we only care about the 12330 // result of this expression when stride == 0 at runtime. 12331 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12332 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12333 }; 12334 if (!wouldZeroStrideBeUB()) { 12335 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12336 } 12337 } 12338 } else if (!Stride->isOne() && !NoWrap) { 12339 auto isUBOnWrap = [&]() { 12340 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12341 // follows trivially from the fact that every (un)signed-wrapped, but 12342 // not self-wrapped value must be LT than the last value before 12343 // (un)signed wrap. Since we know that last value didn't exit, nor 12344 // will any smaller one. 12345 return canAssumeNoSelfWrap(IV); 12346 }; 12347 12348 // Avoid proven overflow cases: this will ensure that the backedge taken 12349 // count will not generate any unsigned overflow. Relaxed no-overflow 12350 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12351 // undefined behaviors like the case of C language. 12352 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12353 return getCouldNotCompute(); 12354 } 12355 12356 // On all paths just preceeding, we established the following invariant: 12357 // IV can be assumed not to overflow up to and including the exiting 12358 // iteration. We proved this in one of two ways: 12359 // 1) We can show overflow doesn't occur before the exiting iteration 12360 // 1a) canIVOverflowOnLT, and b) step of one 12361 // 2) We can show that if overflow occurs, the loop must execute UB 12362 // before any possible exit. 12363 // Note that we have not yet proved RHS invariant (in general). 12364 12365 const SCEV *Start = IV->getStart(); 12366 12367 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12368 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12369 // Use integer-typed versions for actual computation; we can't subtract 12370 // pointers in general. 12371 const SCEV *OrigStart = Start; 12372 const SCEV *OrigRHS = RHS; 12373 if (Start->getType()->isPointerTy()) { 12374 Start = getLosslessPtrToIntExpr(Start); 12375 if (isa<SCEVCouldNotCompute>(Start)) 12376 return Start; 12377 } 12378 if (RHS->getType()->isPointerTy()) { 12379 RHS = getLosslessPtrToIntExpr(RHS); 12380 if (isa<SCEVCouldNotCompute>(RHS)) 12381 return RHS; 12382 } 12383 12384 // When the RHS is not invariant, we do not know the end bound of the loop and 12385 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12386 // calculate the MaxBECount, given the start, stride and max value for the end 12387 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12388 // checked above). 12389 if (!isLoopInvariant(RHS, L)) { 12390 const SCEV *MaxBECount = computeMaxBECountForLT( 12391 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12392 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12393 false /*MaxOrZero*/, Predicates); 12394 } 12395 12396 // We use the expression (max(End,Start)-Start)/Stride to describe the 12397 // backedge count, as if the backedge is taken at least once max(End,Start) 12398 // is End and so the result is as above, and if not max(End,Start) is Start 12399 // so we get a backedge count of zero. 12400 const SCEV *BECount = nullptr; 12401 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12402 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12403 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12404 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12405 // Can we prove (max(RHS,Start) > Start - Stride? 12406 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12407 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12408 // In this case, we can use a refined formula for computing backedge taken 12409 // count. The general formula remains: 12410 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12411 // We want to use the alternate formula: 12412 // "((End - 1) - (Start - Stride)) /u Stride" 12413 // Let's do a quick case analysis to show these are equivalent under 12414 // our precondition that max(RHS,Start) > Start - Stride. 12415 // * For RHS <= Start, the backedge-taken count must be zero. 12416 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12417 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12418 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12419 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12420 // this to the stride of 1 case. 12421 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12422 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12423 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12424 // "((RHS - (Start - Stride) - 1) /u Stride". 12425 // Our preconditions trivially imply no overflow in that form. 12426 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12427 const SCEV *Numerator = 12428 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12429 BECount = getUDivExpr(Numerator, Stride); 12430 } 12431 12432 const SCEV *BECountIfBackedgeTaken = nullptr; 12433 if (!BECount) { 12434 auto canProveRHSGreaterThanEqualStart = [&]() { 12435 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12436 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12437 return true; 12438 12439 // (RHS > Start - 1) implies RHS >= Start. 12440 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12441 // "Start - 1" doesn't overflow. 12442 // * For signed comparison, if Start - 1 does overflow, it's equal 12443 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12444 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12445 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12446 // 12447 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12448 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12449 auto *StartMinusOne = getAddExpr(OrigStart, 12450 getMinusOne(OrigStart->getType())); 12451 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12452 }; 12453 12454 // If we know that RHS >= Start in the context of loop, then we know that 12455 // max(RHS, Start) = RHS at this point. 12456 const SCEV *End; 12457 if (canProveRHSGreaterThanEqualStart()) { 12458 End = RHS; 12459 } else { 12460 // If RHS < Start, the backedge will be taken zero times. So in 12461 // general, we can write the backedge-taken count as: 12462 // 12463 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12464 // 12465 // We convert it to the following to make it more convenient for SCEV: 12466 // 12467 // ceil(max(RHS, Start) - Start) / Stride 12468 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12469 12470 // See what would happen if we assume the backedge is taken. This is 12471 // used to compute MaxBECount. 12472 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12473 } 12474 12475 // At this point, we know: 12476 // 12477 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12478 // 2. The index variable doesn't overflow. 12479 // 12480 // Therefore, we know N exists such that 12481 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12482 // doesn't overflow. 12483 // 12484 // Using this information, try to prove whether the addition in 12485 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12486 const SCEV *One = getOne(Stride->getType()); 12487 bool MayAddOverflow = [&] { 12488 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12489 if (StrideC->getAPInt().isPowerOf2()) { 12490 // Suppose Stride is a power of two, and Start/End are unsigned 12491 // integers. Let UMAX be the largest representable unsigned 12492 // integer. 12493 // 12494 // By the preconditions of this function, we know 12495 // "(Start + Stride * N) >= End", and this doesn't overflow. 12496 // As a formula: 12497 // 12498 // End <= (Start + Stride * N) <= UMAX 12499 // 12500 // Subtracting Start from all the terms: 12501 // 12502 // End - Start <= Stride * N <= UMAX - Start 12503 // 12504 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12505 // 12506 // End - Start <= Stride * N <= UMAX 12507 // 12508 // Stride * N is a multiple of Stride. Therefore, 12509 // 12510 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12511 // 12512 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12513 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12514 // 12515 // End - Start <= Stride * N <= UMAX - Stride - 1 12516 // 12517 // Dropping the middle term: 12518 // 12519 // End - Start <= UMAX - Stride - 1 12520 // 12521 // Adding Stride - 1 to both sides: 12522 // 12523 // (End - Start) + (Stride - 1) <= UMAX 12524 // 12525 // In other words, the addition doesn't have unsigned overflow. 12526 // 12527 // A similar proof works if we treat Start/End as signed values. 12528 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12529 // use signed max instead of unsigned max. Note that we're trying 12530 // to prove a lack of unsigned overflow in either case. 12531 return false; 12532 } 12533 } 12534 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12535 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12536 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12537 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12538 // 12539 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12540 return false; 12541 } 12542 return true; 12543 }(); 12544 12545 const SCEV *Delta = getMinusSCEV(End, Start); 12546 if (!MayAddOverflow) { 12547 // floor((D + (S - 1)) / S) 12548 // We prefer this formulation if it's legal because it's fewer operations. 12549 BECount = 12550 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12551 } else { 12552 BECount = getUDivCeilSCEV(Delta, Stride); 12553 } 12554 } 12555 12556 const SCEV *MaxBECount; 12557 bool MaxOrZero = false; 12558 if (isa<SCEVConstant>(BECount)) { 12559 MaxBECount = BECount; 12560 } else if (BECountIfBackedgeTaken && 12561 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12562 // If we know exactly how many times the backedge will be taken if it's 12563 // taken at least once, then the backedge count will either be that or 12564 // zero. 12565 MaxBECount = BECountIfBackedgeTaken; 12566 MaxOrZero = true; 12567 } else { 12568 MaxBECount = computeMaxBECountForLT( 12569 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12570 } 12571 12572 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12573 !isa<SCEVCouldNotCompute>(BECount)) 12574 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12575 12576 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12577 } 12578 12579 ScalarEvolution::ExitLimit 12580 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12581 const Loop *L, bool IsSigned, 12582 bool ControlsExit, bool AllowPredicates) { 12583 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12584 // We handle only IV > Invariant 12585 if (!isLoopInvariant(RHS, L)) 12586 return getCouldNotCompute(); 12587 12588 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12589 if (!IV && AllowPredicates) 12590 // Try to make this an AddRec using runtime tests, in the first X 12591 // iterations of this loop, where X is the SCEV expression found by the 12592 // algorithm below. 12593 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12594 12595 // Avoid weird loops 12596 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12597 return getCouldNotCompute(); 12598 12599 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12600 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12601 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12602 12603 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12604 12605 // Avoid negative or zero stride values 12606 if (!isKnownPositive(Stride)) 12607 return getCouldNotCompute(); 12608 12609 // Avoid proven overflow cases: this will ensure that the backedge taken count 12610 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12611 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12612 // behaviors like the case of C language. 12613 if (!Stride->isOne() && !NoWrap) 12614 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12615 return getCouldNotCompute(); 12616 12617 const SCEV *Start = IV->getStart(); 12618 const SCEV *End = RHS; 12619 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12620 // If we know that Start >= RHS in the context of loop, then we know that 12621 // min(RHS, Start) = RHS at this point. 12622 if (isLoopEntryGuardedByCond( 12623 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12624 End = RHS; 12625 else 12626 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12627 } 12628 12629 if (Start->getType()->isPointerTy()) { 12630 Start = getLosslessPtrToIntExpr(Start); 12631 if (isa<SCEVCouldNotCompute>(Start)) 12632 return Start; 12633 } 12634 if (End->getType()->isPointerTy()) { 12635 End = getLosslessPtrToIntExpr(End); 12636 if (isa<SCEVCouldNotCompute>(End)) 12637 return End; 12638 } 12639 12640 // Compute ((Start - End) + (Stride - 1)) / Stride. 12641 // FIXME: This can overflow. Holding off on fixing this for now; 12642 // howManyGreaterThans will hopefully be gone soon. 12643 const SCEV *One = getOne(Stride->getType()); 12644 const SCEV *BECount = getUDivExpr( 12645 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12646 12647 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12648 : getUnsignedRangeMax(Start); 12649 12650 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12651 : getUnsignedRangeMin(Stride); 12652 12653 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12654 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12655 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12656 12657 // Although End can be a MIN expression we estimate MinEnd considering only 12658 // the case End = RHS. This is safe because in the other case (Start - End) 12659 // is zero, leading to a zero maximum backedge taken count. 12660 APInt MinEnd = 12661 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12662 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12663 12664 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12665 ? BECount 12666 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12667 getConstant(MinStride)); 12668 12669 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12670 MaxBECount = BECount; 12671 12672 return ExitLimit(BECount, MaxBECount, false, Predicates); 12673 } 12674 12675 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12676 ScalarEvolution &SE) const { 12677 if (Range.isFullSet()) // Infinite loop. 12678 return SE.getCouldNotCompute(); 12679 12680 // If the start is a non-zero constant, shift the range to simplify things. 12681 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12682 if (!SC->getValue()->isZero()) { 12683 SmallVector<const SCEV *, 4> Operands(operands()); 12684 Operands[0] = SE.getZero(SC->getType()); 12685 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12686 getNoWrapFlags(FlagNW)); 12687 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12688 return ShiftedAddRec->getNumIterationsInRange( 12689 Range.subtract(SC->getAPInt()), SE); 12690 // This is strange and shouldn't happen. 12691 return SE.getCouldNotCompute(); 12692 } 12693 12694 // The only time we can solve this is when we have all constant indices. 12695 // Otherwise, we cannot determine the overflow conditions. 12696 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12697 return SE.getCouldNotCompute(); 12698 12699 // Okay at this point we know that all elements of the chrec are constants and 12700 // that the start element is zero. 12701 12702 // First check to see if the range contains zero. If not, the first 12703 // iteration exits. 12704 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12705 if (!Range.contains(APInt(BitWidth, 0))) 12706 return SE.getZero(getType()); 12707 12708 if (isAffine()) { 12709 // If this is an affine expression then we have this situation: 12710 // Solve {0,+,A} in Range === Ax in Range 12711 12712 // We know that zero is in the range. If A is positive then we know that 12713 // the upper value of the range must be the first possible exit value. 12714 // If A is negative then the lower of the range is the last possible loop 12715 // value. Also note that we already checked for a full range. 12716 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12717 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12718 12719 // The exit value should be (End+A)/A. 12720 APInt ExitVal = (End + A).udiv(A); 12721 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12722 12723 // Evaluate at the exit value. If we really did fall out of the valid 12724 // range, then we computed our trip count, otherwise wrap around or other 12725 // things must have happened. 12726 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12727 if (Range.contains(Val->getValue())) 12728 return SE.getCouldNotCompute(); // Something strange happened 12729 12730 // Ensure that the previous value is in the range. 12731 assert(Range.contains( 12732 EvaluateConstantChrecAtConstant(this, 12733 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12734 "Linear scev computation is off in a bad way!"); 12735 return SE.getConstant(ExitValue); 12736 } 12737 12738 if (isQuadratic()) { 12739 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12740 return SE.getConstant(S.getValue()); 12741 } 12742 12743 return SE.getCouldNotCompute(); 12744 } 12745 12746 const SCEVAddRecExpr * 12747 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12748 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12749 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12750 // but in this case we cannot guarantee that the value returned will be an 12751 // AddRec because SCEV does not have a fixed point where it stops 12752 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12753 // may happen if we reach arithmetic depth limit while simplifying. So we 12754 // construct the returned value explicitly. 12755 SmallVector<const SCEV *, 3> Ops; 12756 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12757 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12758 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12759 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12760 // We know that the last operand is not a constant zero (otherwise it would 12761 // have been popped out earlier). This guarantees us that if the result has 12762 // the same last operand, then it will also not be popped out, meaning that 12763 // the returned value will be an AddRec. 12764 const SCEV *Last = getOperand(getNumOperands() - 1); 12765 assert(!Last->isZero() && "Recurrency with zero step?"); 12766 Ops.push_back(Last); 12767 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12768 SCEV::FlagAnyWrap)); 12769 } 12770 12771 // Return true when S contains at least an undef value. 12772 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12773 return SCEVExprContains(S, [](const SCEV *S) { 12774 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12775 return isa<UndefValue>(SU->getValue()); 12776 return false; 12777 }); 12778 } 12779 12780 // Return true when S contains a value that is a nullptr. 12781 bool ScalarEvolution::containsErasedValue(const SCEV *S) const { 12782 return SCEVExprContains(S, [](const SCEV *S) { 12783 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12784 return SU->getValue() == nullptr; 12785 return false; 12786 }); 12787 } 12788 12789 /// Return the size of an element read or written by Inst. 12790 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12791 Type *Ty; 12792 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12793 Ty = Store->getValueOperand()->getType(); 12794 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12795 Ty = Load->getType(); 12796 else 12797 return nullptr; 12798 12799 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12800 return getSizeOfExpr(ETy, Ty); 12801 } 12802 12803 //===----------------------------------------------------------------------===// 12804 // SCEVCallbackVH Class Implementation 12805 //===----------------------------------------------------------------------===// 12806 12807 void ScalarEvolution::SCEVCallbackVH::deleted() { 12808 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12809 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12810 SE->ConstantEvolutionLoopExitValue.erase(PN); 12811 SE->eraseValueFromMap(getValPtr()); 12812 // this now dangles! 12813 } 12814 12815 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12816 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12817 12818 // Forget all the expressions associated with users of the old value, 12819 // so that future queries will recompute the expressions using the new 12820 // value. 12821 Value *Old = getValPtr(); 12822 SmallVector<User *, 16> Worklist(Old->users()); 12823 SmallPtrSet<User *, 8> Visited; 12824 while (!Worklist.empty()) { 12825 User *U = Worklist.pop_back_val(); 12826 // Deleting the Old value will cause this to dangle. Postpone 12827 // that until everything else is done. 12828 if (U == Old) 12829 continue; 12830 if (!Visited.insert(U).second) 12831 continue; 12832 if (PHINode *PN = dyn_cast<PHINode>(U)) 12833 SE->ConstantEvolutionLoopExitValue.erase(PN); 12834 SE->eraseValueFromMap(U); 12835 llvm::append_range(Worklist, U->users()); 12836 } 12837 // Delete the Old value. 12838 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12839 SE->ConstantEvolutionLoopExitValue.erase(PN); 12840 SE->eraseValueFromMap(Old); 12841 // this now dangles! 12842 } 12843 12844 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12845 : CallbackVH(V), SE(se) {} 12846 12847 //===----------------------------------------------------------------------===// 12848 // ScalarEvolution Class Implementation 12849 //===----------------------------------------------------------------------===// 12850 12851 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12852 AssumptionCache &AC, DominatorTree &DT, 12853 LoopInfo &LI) 12854 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12855 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12856 LoopDispositions(64), BlockDispositions(64) { 12857 // To use guards for proving predicates, we need to scan every instruction in 12858 // relevant basic blocks, and not just terminators. Doing this is a waste of 12859 // time if the IR does not actually contain any calls to 12860 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12861 // 12862 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12863 // to _add_ guards to the module when there weren't any before, and wants 12864 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12865 // efficient in lieu of being smart in that rather obscure case. 12866 12867 auto *GuardDecl = F.getParent()->getFunction( 12868 Intrinsic::getName(Intrinsic::experimental_guard)); 12869 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12870 } 12871 12872 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12873 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12874 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12875 ValueExprMap(std::move(Arg.ValueExprMap)), 12876 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12877 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12878 PendingMerges(std::move(Arg.PendingMerges)), 12879 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12880 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12881 PredicatedBackedgeTakenCounts( 12882 std::move(Arg.PredicatedBackedgeTakenCounts)), 12883 BECountUsers(std::move(Arg.BECountUsers)), 12884 ConstantEvolutionLoopExitValue( 12885 std::move(Arg.ConstantEvolutionLoopExitValue)), 12886 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12887 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 12888 LoopDispositions(std::move(Arg.LoopDispositions)), 12889 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12890 BlockDispositions(std::move(Arg.BlockDispositions)), 12891 SCEVUsers(std::move(Arg.SCEVUsers)), 12892 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12893 SignedRanges(std::move(Arg.SignedRanges)), 12894 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12895 UniquePreds(std::move(Arg.UniquePreds)), 12896 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12897 LoopUsers(std::move(Arg.LoopUsers)), 12898 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12899 FirstUnknown(Arg.FirstUnknown) { 12900 Arg.FirstUnknown = nullptr; 12901 } 12902 12903 ScalarEvolution::~ScalarEvolution() { 12904 // Iterate through all the SCEVUnknown instances and call their 12905 // destructors, so that they release their references to their values. 12906 for (SCEVUnknown *U = FirstUnknown; U;) { 12907 SCEVUnknown *Tmp = U; 12908 U = U->Next; 12909 Tmp->~SCEVUnknown(); 12910 } 12911 FirstUnknown = nullptr; 12912 12913 ExprValueMap.clear(); 12914 ValueExprMap.clear(); 12915 HasRecMap.clear(); 12916 BackedgeTakenCounts.clear(); 12917 PredicatedBackedgeTakenCounts.clear(); 12918 12919 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12920 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12921 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12922 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12923 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12924 } 12925 12926 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12927 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12928 } 12929 12930 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12931 const Loop *L) { 12932 // Print all inner loops first 12933 for (Loop *I : *L) 12934 PrintLoopInfo(OS, SE, I); 12935 12936 OS << "Loop "; 12937 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12938 OS << ": "; 12939 12940 SmallVector<BasicBlock *, 8> ExitingBlocks; 12941 L->getExitingBlocks(ExitingBlocks); 12942 if (ExitingBlocks.size() != 1) 12943 OS << "<multiple exits> "; 12944 12945 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12946 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12947 else 12948 OS << "Unpredictable backedge-taken count.\n"; 12949 12950 if (ExitingBlocks.size() > 1) 12951 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12952 OS << " exit count for " << ExitingBlock->getName() << ": " 12953 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12954 } 12955 12956 OS << "Loop "; 12957 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12958 OS << ": "; 12959 12960 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12961 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12962 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12963 OS << ", actual taken count either this or zero."; 12964 } else { 12965 OS << "Unpredictable max backedge-taken count. "; 12966 } 12967 12968 OS << "\n" 12969 "Loop "; 12970 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12971 OS << ": "; 12972 12973 SmallVector<const SCEVPredicate *, 4> Preds; 12974 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 12975 if (!isa<SCEVCouldNotCompute>(PBT)) { 12976 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12977 OS << " Predicates:\n"; 12978 for (auto *P : Preds) 12979 P->print(OS, 4); 12980 } else { 12981 OS << "Unpredictable predicated backedge-taken count. "; 12982 } 12983 OS << "\n"; 12984 12985 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12986 OS << "Loop "; 12987 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12988 OS << ": "; 12989 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12990 } 12991 } 12992 12993 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12994 switch (LD) { 12995 case ScalarEvolution::LoopVariant: 12996 return "Variant"; 12997 case ScalarEvolution::LoopInvariant: 12998 return "Invariant"; 12999 case ScalarEvolution::LoopComputable: 13000 return "Computable"; 13001 } 13002 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 13003 } 13004 13005 void ScalarEvolution::print(raw_ostream &OS) const { 13006 // ScalarEvolution's implementation of the print method is to print 13007 // out SCEV values of all instructions that are interesting. Doing 13008 // this potentially causes it to create new SCEV objects though, 13009 // which technically conflicts with the const qualifier. This isn't 13010 // observable from outside the class though, so casting away the 13011 // const isn't dangerous. 13012 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13013 13014 if (ClassifyExpressions) { 13015 OS << "Classifying expressions for: "; 13016 F.printAsOperand(OS, /*PrintType=*/false); 13017 OS << "\n"; 13018 for (Instruction &I : instructions(F)) 13019 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13020 OS << I << '\n'; 13021 OS << " --> "; 13022 const SCEV *SV = SE.getSCEV(&I); 13023 SV->print(OS); 13024 if (!isa<SCEVCouldNotCompute>(SV)) { 13025 OS << " U: "; 13026 SE.getUnsignedRange(SV).print(OS); 13027 OS << " S: "; 13028 SE.getSignedRange(SV).print(OS); 13029 } 13030 13031 const Loop *L = LI.getLoopFor(I.getParent()); 13032 13033 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13034 if (AtUse != SV) { 13035 OS << " --> "; 13036 AtUse->print(OS); 13037 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13038 OS << " U: "; 13039 SE.getUnsignedRange(AtUse).print(OS); 13040 OS << " S: "; 13041 SE.getSignedRange(AtUse).print(OS); 13042 } 13043 } 13044 13045 if (L) { 13046 OS << "\t\t" "Exits: "; 13047 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13048 if (!SE.isLoopInvariant(ExitValue, L)) { 13049 OS << "<<Unknown>>"; 13050 } else { 13051 OS << *ExitValue; 13052 } 13053 13054 bool First = true; 13055 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13056 if (First) { 13057 OS << "\t\t" "LoopDispositions: { "; 13058 First = false; 13059 } else { 13060 OS << ", "; 13061 } 13062 13063 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13064 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 13065 } 13066 13067 for (auto *InnerL : depth_first(L)) { 13068 if (InnerL == L) 13069 continue; 13070 if (First) { 13071 OS << "\t\t" "LoopDispositions: { "; 13072 First = false; 13073 } else { 13074 OS << ", "; 13075 } 13076 13077 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13078 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 13079 } 13080 13081 OS << " }"; 13082 } 13083 13084 OS << "\n"; 13085 } 13086 } 13087 13088 OS << "Determining loop execution counts for: "; 13089 F.printAsOperand(OS, /*PrintType=*/false); 13090 OS << "\n"; 13091 for (Loop *I : LI) 13092 PrintLoopInfo(OS, &SE, I); 13093 } 13094 13095 ScalarEvolution::LoopDisposition 13096 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13097 auto &Values = LoopDispositions[S]; 13098 for (auto &V : Values) { 13099 if (V.getPointer() == L) 13100 return V.getInt(); 13101 } 13102 Values.emplace_back(L, LoopVariant); 13103 LoopDisposition D = computeLoopDisposition(S, L); 13104 auto &Values2 = LoopDispositions[S]; 13105 for (auto &V : llvm::reverse(Values2)) { 13106 if (V.getPointer() == L) { 13107 V.setInt(D); 13108 break; 13109 } 13110 } 13111 return D; 13112 } 13113 13114 ScalarEvolution::LoopDisposition 13115 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13116 switch (S->getSCEVType()) { 13117 case scConstant: 13118 return LoopInvariant; 13119 case scPtrToInt: 13120 case scTruncate: 13121 case scZeroExtend: 13122 case scSignExtend: 13123 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 13124 case scAddRecExpr: { 13125 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13126 13127 // If L is the addrec's loop, it's computable. 13128 if (AR->getLoop() == L) 13129 return LoopComputable; 13130 13131 // Add recurrences are never invariant in the function-body (null loop). 13132 if (!L) 13133 return LoopVariant; 13134 13135 // Everything that is not defined at loop entry is variant. 13136 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13137 return LoopVariant; 13138 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13139 " dominate the contained loop's header?"); 13140 13141 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13142 if (AR->getLoop()->contains(L)) 13143 return LoopInvariant; 13144 13145 // This recurrence is variant w.r.t. L if any of its operands 13146 // are variant. 13147 for (auto *Op : AR->operands()) 13148 if (!isLoopInvariant(Op, L)) 13149 return LoopVariant; 13150 13151 // Otherwise it's loop-invariant. 13152 return LoopInvariant; 13153 } 13154 case scAddExpr: 13155 case scMulExpr: 13156 case scUMaxExpr: 13157 case scSMaxExpr: 13158 case scUMinExpr: 13159 case scSMinExpr: 13160 case scSequentialUMinExpr: { 13161 bool HasVarying = false; 13162 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13163 LoopDisposition D = getLoopDisposition(Op, L); 13164 if (D == LoopVariant) 13165 return LoopVariant; 13166 if (D == LoopComputable) 13167 HasVarying = true; 13168 } 13169 return HasVarying ? LoopComputable : LoopInvariant; 13170 } 13171 case scUDivExpr: { 13172 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13173 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13174 if (LD == LoopVariant) 13175 return LoopVariant; 13176 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13177 if (RD == LoopVariant) 13178 return LoopVariant; 13179 return (LD == LoopInvariant && RD == LoopInvariant) ? 13180 LoopInvariant : LoopComputable; 13181 } 13182 case scUnknown: 13183 // All non-instruction values are loop invariant. All instructions are loop 13184 // invariant if they are not contained in the specified loop. 13185 // Instructions are never considered invariant in the function body 13186 // (null loop) because they are defined within the "loop". 13187 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13188 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13189 return LoopInvariant; 13190 case scCouldNotCompute: 13191 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13192 } 13193 llvm_unreachable("Unknown SCEV kind!"); 13194 } 13195 13196 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13197 return getLoopDisposition(S, L) == LoopInvariant; 13198 } 13199 13200 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13201 return getLoopDisposition(S, L) == LoopComputable; 13202 } 13203 13204 ScalarEvolution::BlockDisposition 13205 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13206 auto &Values = BlockDispositions[S]; 13207 for (auto &V : Values) { 13208 if (V.getPointer() == BB) 13209 return V.getInt(); 13210 } 13211 Values.emplace_back(BB, DoesNotDominateBlock); 13212 BlockDisposition D = computeBlockDisposition(S, BB); 13213 auto &Values2 = BlockDispositions[S]; 13214 for (auto &V : llvm::reverse(Values2)) { 13215 if (V.getPointer() == BB) { 13216 V.setInt(D); 13217 break; 13218 } 13219 } 13220 return D; 13221 } 13222 13223 ScalarEvolution::BlockDisposition 13224 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13225 switch (S->getSCEVType()) { 13226 case scConstant: 13227 return ProperlyDominatesBlock; 13228 case scPtrToInt: 13229 case scTruncate: 13230 case scZeroExtend: 13231 case scSignExtend: 13232 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13233 case scAddRecExpr: { 13234 // This uses a "dominates" query instead of "properly dominates" query 13235 // to test for proper dominance too, because the instruction which 13236 // produces the addrec's value is a PHI, and a PHI effectively properly 13237 // dominates its entire containing block. 13238 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13239 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13240 return DoesNotDominateBlock; 13241 13242 // Fall through into SCEVNAryExpr handling. 13243 LLVM_FALLTHROUGH; 13244 } 13245 case scAddExpr: 13246 case scMulExpr: 13247 case scUMaxExpr: 13248 case scSMaxExpr: 13249 case scUMinExpr: 13250 case scSMinExpr: 13251 case scSequentialUMinExpr: { 13252 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13253 bool Proper = true; 13254 for (const SCEV *NAryOp : NAry->operands()) { 13255 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13256 if (D == DoesNotDominateBlock) 13257 return DoesNotDominateBlock; 13258 if (D == DominatesBlock) 13259 Proper = false; 13260 } 13261 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13262 } 13263 case scUDivExpr: { 13264 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13265 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13266 BlockDisposition LD = getBlockDisposition(LHS, BB); 13267 if (LD == DoesNotDominateBlock) 13268 return DoesNotDominateBlock; 13269 BlockDisposition RD = getBlockDisposition(RHS, BB); 13270 if (RD == DoesNotDominateBlock) 13271 return DoesNotDominateBlock; 13272 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13273 ProperlyDominatesBlock : DominatesBlock; 13274 } 13275 case scUnknown: 13276 if (Instruction *I = 13277 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13278 if (I->getParent() == BB) 13279 return DominatesBlock; 13280 if (DT.properlyDominates(I->getParent(), BB)) 13281 return ProperlyDominatesBlock; 13282 return DoesNotDominateBlock; 13283 } 13284 return ProperlyDominatesBlock; 13285 case scCouldNotCompute: 13286 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13287 } 13288 llvm_unreachable("Unknown SCEV kind!"); 13289 } 13290 13291 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13292 return getBlockDisposition(S, BB) >= DominatesBlock; 13293 } 13294 13295 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13296 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13297 } 13298 13299 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13300 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13301 } 13302 13303 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13304 bool Predicated) { 13305 auto &BECounts = 13306 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13307 auto It = BECounts.find(L); 13308 if (It != BECounts.end()) { 13309 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13310 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13311 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13312 assert(UserIt != BECountUsers.end()); 13313 UserIt->second.erase({L, Predicated}); 13314 } 13315 } 13316 BECounts.erase(It); 13317 } 13318 } 13319 13320 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13321 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13322 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13323 13324 while (!Worklist.empty()) { 13325 const SCEV *Curr = Worklist.pop_back_val(); 13326 auto Users = SCEVUsers.find(Curr); 13327 if (Users != SCEVUsers.end()) 13328 for (auto *User : Users->second) 13329 if (ToForget.insert(User).second) 13330 Worklist.push_back(User); 13331 } 13332 13333 for (auto *S : ToForget) 13334 forgetMemoizedResultsImpl(S); 13335 13336 for (auto I = PredicatedSCEVRewrites.begin(); 13337 I != PredicatedSCEVRewrites.end();) { 13338 std::pair<const SCEV *, const Loop *> Entry = I->first; 13339 if (ToForget.count(Entry.first)) 13340 PredicatedSCEVRewrites.erase(I++); 13341 else 13342 ++I; 13343 } 13344 } 13345 13346 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13347 LoopDispositions.erase(S); 13348 BlockDispositions.erase(S); 13349 UnsignedRanges.erase(S); 13350 SignedRanges.erase(S); 13351 HasRecMap.erase(S); 13352 MinTrailingZerosCache.erase(S); 13353 13354 auto ExprIt = ExprValueMap.find(S); 13355 if (ExprIt != ExprValueMap.end()) { 13356 for (Value *V : ExprIt->second) { 13357 auto ValueIt = ValueExprMap.find_as(V); 13358 if (ValueIt != ValueExprMap.end()) 13359 ValueExprMap.erase(ValueIt); 13360 } 13361 ExprValueMap.erase(ExprIt); 13362 } 13363 13364 auto ScopeIt = ValuesAtScopes.find(S); 13365 if (ScopeIt != ValuesAtScopes.end()) { 13366 for (const auto &Pair : ScopeIt->second) 13367 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13368 erase_value(ValuesAtScopesUsers[Pair.second], 13369 std::make_pair(Pair.first, S)); 13370 ValuesAtScopes.erase(ScopeIt); 13371 } 13372 13373 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13374 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13375 for (const auto &Pair : ScopeUserIt->second) 13376 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13377 ValuesAtScopesUsers.erase(ScopeUserIt); 13378 } 13379 13380 auto BEUsersIt = BECountUsers.find(S); 13381 if (BEUsersIt != BECountUsers.end()) { 13382 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13383 auto Copy = BEUsersIt->second; 13384 for (const auto &Pair : Copy) 13385 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13386 BECountUsers.erase(BEUsersIt); 13387 } 13388 } 13389 13390 void 13391 ScalarEvolution::getUsedLoops(const SCEV *S, 13392 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13393 struct FindUsedLoops { 13394 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13395 : LoopsUsed(LoopsUsed) {} 13396 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13397 bool follow(const SCEV *S) { 13398 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13399 LoopsUsed.insert(AR->getLoop()); 13400 return true; 13401 } 13402 13403 bool isDone() const { return false; } 13404 }; 13405 13406 FindUsedLoops F(LoopsUsed); 13407 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13408 } 13409 13410 void ScalarEvolution::getReachableBlocks( 13411 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { 13412 SmallVector<BasicBlock *> Worklist; 13413 Worklist.push_back(&F.getEntryBlock()); 13414 while (!Worklist.empty()) { 13415 BasicBlock *BB = Worklist.pop_back_val(); 13416 if (!Reachable.insert(BB).second) 13417 continue; 13418 13419 Value *Cond; 13420 BasicBlock *TrueBB, *FalseBB; 13421 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), 13422 m_BasicBlock(FalseBB)))) { 13423 if (auto *C = dyn_cast<ConstantInt>(Cond)) { 13424 Worklist.push_back(C->isOne() ? TrueBB : FalseBB); 13425 continue; 13426 } 13427 13428 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13429 const SCEV *L = getSCEV(Cmp->getOperand(0)); 13430 const SCEV *R = getSCEV(Cmp->getOperand(1)); 13431 if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) { 13432 Worklist.push_back(TrueBB); 13433 continue; 13434 } 13435 if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L, 13436 R)) { 13437 Worklist.push_back(FalseBB); 13438 continue; 13439 } 13440 } 13441 } 13442 13443 append_range(Worklist, successors(BB)); 13444 } 13445 } 13446 13447 void ScalarEvolution::verify() const { 13448 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13449 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13450 13451 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13452 13453 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13454 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13455 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13456 13457 const SCEV *visitConstant(const SCEVConstant *Constant) { 13458 return SE.getConstant(Constant->getAPInt()); 13459 } 13460 13461 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13462 return SE.getUnknown(Expr->getValue()); 13463 } 13464 13465 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13466 return SE.getCouldNotCompute(); 13467 } 13468 }; 13469 13470 SCEVMapper SCM(SE2); 13471 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 13472 SE2.getReachableBlocks(ReachableBlocks, F); 13473 13474 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { 13475 if (containsUndefs(Old) || containsUndefs(New)) { 13476 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13477 // not propagate undef aggressively). This means we can (and do) fail 13478 // verification in cases where a transform makes a value go from "undef" 13479 // to "undef+1" (say). The transform is fine, since in both cases the 13480 // result is "undef", but SCEV thinks the value increased by 1. 13481 return nullptr; 13482 } 13483 13484 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13485 const SCEV *Delta = SE2.getMinusSCEV(Old, New); 13486 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) 13487 return nullptr; 13488 13489 return Delta; 13490 }; 13491 13492 while (!LoopStack.empty()) { 13493 auto *L = LoopStack.pop_back_val(); 13494 llvm::append_range(LoopStack, *L); 13495 13496 // Only verify BECounts in reachable loops. For an unreachable loop, 13497 // any BECount is legal. 13498 if (!ReachableBlocks.contains(L->getHeader())) 13499 continue; 13500 13501 // Only verify cached BECounts. Computing new BECounts may change the 13502 // results of subsequent SCEV uses. 13503 auto It = BackedgeTakenCounts.find(L); 13504 if (It == BackedgeTakenCounts.end()) 13505 continue; 13506 13507 auto *CurBECount = 13508 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); 13509 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13510 13511 if (CurBECount == SE2.getCouldNotCompute() || 13512 NewBECount == SE2.getCouldNotCompute()) { 13513 // NB! This situation is legal, but is very suspicious -- whatever pass 13514 // change the loop to make a trip count go from could not compute to 13515 // computable or vice-versa *should have* invalidated SCEV. However, we 13516 // choose not to assert here (for now) since we don't want false 13517 // positives. 13518 continue; 13519 } 13520 13521 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13522 SE.getTypeSizeInBits(NewBECount->getType())) 13523 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13524 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13525 SE.getTypeSizeInBits(NewBECount->getType())) 13526 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13527 13528 const SCEV *Delta = GetDelta(CurBECount, NewBECount); 13529 if (Delta && !Delta->isZero()) { 13530 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13531 dbgs() << "Old: " << *CurBECount << "\n"; 13532 dbgs() << "New: " << *NewBECount << "\n"; 13533 dbgs() << "Delta: " << *Delta << "\n"; 13534 std::abort(); 13535 } 13536 } 13537 13538 // Collect all valid loops currently in LoopInfo. 13539 SmallPtrSet<Loop *, 32> ValidLoops; 13540 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13541 while (!Worklist.empty()) { 13542 Loop *L = Worklist.pop_back_val(); 13543 if (ValidLoops.insert(L).second) 13544 Worklist.append(L->begin(), L->end()); 13545 } 13546 for (auto &KV : ValueExprMap) { 13547 #ifndef NDEBUG 13548 // Check for SCEV expressions referencing invalid/deleted loops. 13549 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13550 assert(ValidLoops.contains(AR->getLoop()) && 13551 "AddRec references invalid loop"); 13552 } 13553 #endif 13554 13555 // Check that the value is also part of the reverse map. 13556 auto It = ExprValueMap.find(KV.second); 13557 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 13558 dbgs() << "Value " << *KV.first 13559 << " is in ValueExprMap but not in ExprValueMap\n"; 13560 std::abort(); 13561 } 13562 13563 if (auto *I = dyn_cast<Instruction>(&*KV.first)) { 13564 if (!ReachableBlocks.contains(I->getParent())) 13565 continue; 13566 const SCEV *OldSCEV = SCM.visit(KV.second); 13567 const SCEV *NewSCEV = SE2.getSCEV(I); 13568 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); 13569 if (Delta && !Delta->isZero()) { 13570 dbgs() << "SCEV for value " << *I << " changed!\n" 13571 << "Old: " << *OldSCEV << "\n" 13572 << "New: " << *NewSCEV << "\n" 13573 << "Delta: " << *Delta << "\n"; 13574 std::abort(); 13575 } 13576 } 13577 } 13578 13579 for (const auto &KV : ExprValueMap) { 13580 for (Value *V : KV.second) { 13581 auto It = ValueExprMap.find_as(V); 13582 if (It == ValueExprMap.end()) { 13583 dbgs() << "Value " << *V 13584 << " is in ExprValueMap but not in ValueExprMap\n"; 13585 std::abort(); 13586 } 13587 if (It->second != KV.first) { 13588 dbgs() << "Value " << *V << " mapped to " << *It->second 13589 << " rather than " << *KV.first << "\n"; 13590 std::abort(); 13591 } 13592 } 13593 } 13594 13595 // Verify integrity of SCEV users. 13596 for (const auto &S : UniqueSCEVs) { 13597 SmallVector<const SCEV *, 4> Ops; 13598 collectUniqueOps(&S, Ops); 13599 for (const auto *Op : Ops) { 13600 // We do not store dependencies of constants. 13601 if (isa<SCEVConstant>(Op)) 13602 continue; 13603 auto It = SCEVUsers.find(Op); 13604 if (It != SCEVUsers.end() && It->second.count(&S)) 13605 continue; 13606 dbgs() << "Use of operand " << *Op << " by user " << S 13607 << " is not being tracked!\n"; 13608 std::abort(); 13609 } 13610 } 13611 13612 // Verify integrity of ValuesAtScopes users. 13613 for (const auto &ValueAndVec : ValuesAtScopes) { 13614 const SCEV *Value = ValueAndVec.first; 13615 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13616 const Loop *L = LoopAndValueAtScope.first; 13617 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13618 if (!isa<SCEVConstant>(ValueAtScope)) { 13619 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13620 if (It != ValuesAtScopesUsers.end() && 13621 is_contained(It->second, std::make_pair(L, Value))) 13622 continue; 13623 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13624 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13625 std::abort(); 13626 } 13627 } 13628 } 13629 13630 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13631 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13632 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13633 const Loop *L = LoopAndValue.first; 13634 const SCEV *Value = LoopAndValue.second; 13635 assert(!isa<SCEVConstant>(Value)); 13636 auto It = ValuesAtScopes.find(Value); 13637 if (It != ValuesAtScopes.end() && 13638 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13639 continue; 13640 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13641 << *ValueAtScope << " missing in ValuesAtScopes\n"; 13642 std::abort(); 13643 } 13644 } 13645 13646 // Verify integrity of BECountUsers. 13647 auto VerifyBECountUsers = [&](bool Predicated) { 13648 auto &BECounts = 13649 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13650 for (const auto &LoopAndBEInfo : BECounts) { 13651 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13652 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13653 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13654 if (UserIt != BECountUsers.end() && 13655 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13656 continue; 13657 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13658 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13659 std::abort(); 13660 } 13661 } 13662 } 13663 }; 13664 VerifyBECountUsers(/* Predicated */ false); 13665 VerifyBECountUsers(/* Predicated */ true); 13666 } 13667 13668 bool ScalarEvolution::invalidate( 13669 Function &F, const PreservedAnalyses &PA, 13670 FunctionAnalysisManager::Invalidator &Inv) { 13671 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13672 // of its dependencies is invalidated. 13673 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13674 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13675 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13676 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13677 Inv.invalidate<LoopAnalysis>(F, PA); 13678 } 13679 13680 AnalysisKey ScalarEvolutionAnalysis::Key; 13681 13682 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13683 FunctionAnalysisManager &AM) { 13684 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13685 AM.getResult<AssumptionAnalysis>(F), 13686 AM.getResult<DominatorTreeAnalysis>(F), 13687 AM.getResult<LoopAnalysis>(F)); 13688 } 13689 13690 PreservedAnalyses 13691 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13692 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13693 return PreservedAnalyses::all(); 13694 } 13695 13696 PreservedAnalyses 13697 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13698 // For compatibility with opt's -analyze feature under legacy pass manager 13699 // which was not ported to NPM. This keeps tests using 13700 // update_analyze_test_checks.py working. 13701 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13702 << F.getName() << "':\n"; 13703 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13704 return PreservedAnalyses::all(); 13705 } 13706 13707 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13708 "Scalar Evolution Analysis", false, true) 13709 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13710 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13711 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13712 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13713 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13714 "Scalar Evolution Analysis", false, true) 13715 13716 char ScalarEvolutionWrapperPass::ID = 0; 13717 13718 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13719 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13720 } 13721 13722 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13723 SE.reset(new ScalarEvolution( 13724 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13725 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13726 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13727 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13728 return false; 13729 } 13730 13731 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13732 13733 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13734 SE->print(OS); 13735 } 13736 13737 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13738 if (!VerifySCEV) 13739 return; 13740 13741 SE->verify(); 13742 } 13743 13744 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13745 AU.setPreservesAll(); 13746 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13747 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13748 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13749 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13750 } 13751 13752 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13753 const SCEV *RHS) { 13754 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 13755 } 13756 13757 const SCEVPredicate * 13758 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 13759 const SCEV *LHS, const SCEV *RHS) { 13760 FoldingSetNodeID ID; 13761 assert(LHS->getType() == RHS->getType() && 13762 "Type mismatch between LHS and RHS"); 13763 // Unique this node based on the arguments 13764 ID.AddInteger(SCEVPredicate::P_Compare); 13765 ID.AddInteger(Pred); 13766 ID.AddPointer(LHS); 13767 ID.AddPointer(RHS); 13768 void *IP = nullptr; 13769 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13770 return S; 13771 SCEVComparePredicate *Eq = new (SCEVAllocator) 13772 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 13773 UniquePreds.InsertNode(Eq, IP); 13774 return Eq; 13775 } 13776 13777 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13778 const SCEVAddRecExpr *AR, 13779 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13780 FoldingSetNodeID ID; 13781 // Unique this node based on the arguments 13782 ID.AddInteger(SCEVPredicate::P_Wrap); 13783 ID.AddPointer(AR); 13784 ID.AddInteger(AddedFlags); 13785 void *IP = nullptr; 13786 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13787 return S; 13788 auto *OF = new (SCEVAllocator) 13789 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13790 UniquePreds.InsertNode(OF, IP); 13791 return OF; 13792 } 13793 13794 namespace { 13795 13796 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13797 public: 13798 13799 /// Rewrites \p S in the context of a loop L and the SCEV predication 13800 /// infrastructure. 13801 /// 13802 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13803 /// equivalences present in \p Pred. 13804 /// 13805 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13806 /// \p NewPreds such that the result will be an AddRecExpr. 13807 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13808 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13809 const SCEVPredicate *Pred) { 13810 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13811 return Rewriter.visit(S); 13812 } 13813 13814 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13815 if (Pred) { 13816 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 13817 for (auto *Pred : U->getPredicates()) 13818 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 13819 if (IPred->getLHS() == Expr && 13820 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13821 return IPred->getRHS(); 13822 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 13823 if (IPred->getLHS() == Expr && 13824 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13825 return IPred->getRHS(); 13826 } 13827 } 13828 return convertToAddRecWithPreds(Expr); 13829 } 13830 13831 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13832 const SCEV *Operand = visit(Expr->getOperand()); 13833 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13834 if (AR && AR->getLoop() == L && AR->isAffine()) { 13835 // This couldn't be folded because the operand didn't have the nuw 13836 // flag. Add the nusw flag as an assumption that we could make. 13837 const SCEV *Step = AR->getStepRecurrence(SE); 13838 Type *Ty = Expr->getType(); 13839 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13840 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13841 SE.getSignExtendExpr(Step, Ty), L, 13842 AR->getNoWrapFlags()); 13843 } 13844 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13845 } 13846 13847 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13848 const SCEV *Operand = visit(Expr->getOperand()); 13849 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13850 if (AR && AR->getLoop() == L && AR->isAffine()) { 13851 // This couldn't be folded because the operand didn't have the nsw 13852 // flag. Add the nssw flag as an assumption that we could make. 13853 const SCEV *Step = AR->getStepRecurrence(SE); 13854 Type *Ty = Expr->getType(); 13855 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13856 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13857 SE.getSignExtendExpr(Step, Ty), L, 13858 AR->getNoWrapFlags()); 13859 } 13860 return SE.getSignExtendExpr(Operand, Expr->getType()); 13861 } 13862 13863 private: 13864 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13865 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13866 const SCEVPredicate *Pred) 13867 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13868 13869 bool addOverflowAssumption(const SCEVPredicate *P) { 13870 if (!NewPreds) { 13871 // Check if we've already made this assumption. 13872 return Pred && Pred->implies(P); 13873 } 13874 NewPreds->insert(P); 13875 return true; 13876 } 13877 13878 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13879 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13880 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13881 return addOverflowAssumption(A); 13882 } 13883 13884 // If \p Expr represents a PHINode, we try to see if it can be represented 13885 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13886 // to add this predicate as a runtime overflow check, we return the AddRec. 13887 // If \p Expr does not meet these conditions (is not a PHI node, or we 13888 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13889 // return \p Expr. 13890 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13891 if (!isa<PHINode>(Expr->getValue())) 13892 return Expr; 13893 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13894 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13895 if (!PredicatedRewrite) 13896 return Expr; 13897 for (auto *P : PredicatedRewrite->second){ 13898 // Wrap predicates from outer loops are not supported. 13899 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13900 if (L != WP->getExpr()->getLoop()) 13901 return Expr; 13902 } 13903 if (!addOverflowAssumption(P)) 13904 return Expr; 13905 } 13906 return PredicatedRewrite->first; 13907 } 13908 13909 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13910 const SCEVPredicate *Pred; 13911 const Loop *L; 13912 }; 13913 13914 } // end anonymous namespace 13915 13916 const SCEV * 13917 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13918 const SCEVPredicate &Preds) { 13919 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13920 } 13921 13922 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13923 const SCEV *S, const Loop *L, 13924 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13925 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13926 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13927 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13928 13929 if (!AddRec) 13930 return nullptr; 13931 13932 // Since the transformation was successful, we can now transfer the SCEV 13933 // predicates. 13934 for (auto *P : TransformPreds) 13935 Preds.insert(P); 13936 13937 return AddRec; 13938 } 13939 13940 /// SCEV predicates 13941 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13942 SCEVPredicateKind Kind) 13943 : FastID(ID), Kind(Kind) {} 13944 13945 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 13946 const ICmpInst::Predicate Pred, 13947 const SCEV *LHS, const SCEV *RHS) 13948 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 13949 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13950 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13951 } 13952 13953 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 13954 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 13955 13956 if (!Op) 13957 return false; 13958 13959 if (Pred != ICmpInst::ICMP_EQ) 13960 return false; 13961 13962 return Op->LHS == LHS && Op->RHS == RHS; 13963 } 13964 13965 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 13966 13967 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 13968 if (Pred == ICmpInst::ICMP_EQ) 13969 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13970 else 13971 OS.indent(Depth) << "Compare predicate: " << *LHS 13972 << " " << CmpInst::getPredicateName(Pred) << ") " 13973 << *RHS << "\n"; 13974 13975 } 13976 13977 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13978 const SCEVAddRecExpr *AR, 13979 IncrementWrapFlags Flags) 13980 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13981 13982 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 13983 13984 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13985 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13986 13987 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13988 } 13989 13990 bool SCEVWrapPredicate::isAlwaysTrue() const { 13991 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13992 IncrementWrapFlags IFlags = Flags; 13993 13994 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13995 IFlags = clearFlags(IFlags, IncrementNSSW); 13996 13997 return IFlags == IncrementAnyWrap; 13998 } 13999 14000 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 14001 OS.indent(Depth) << *getExpr() << " Added Flags: "; 14002 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 14003 OS << "<nusw>"; 14004 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 14005 OS << "<nssw>"; 14006 OS << "\n"; 14007 } 14008 14009 SCEVWrapPredicate::IncrementWrapFlags 14010 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 14011 ScalarEvolution &SE) { 14012 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 14013 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 14014 14015 // We can safely transfer the NSW flag as NSSW. 14016 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 14017 ImpliedFlags = IncrementNSSW; 14018 14019 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 14020 // If the increment is positive, the SCEV NUW flag will also imply the 14021 // WrapPredicate NUSW flag. 14022 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 14023 if (Step->getValue()->getValue().isNonNegative()) 14024 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 14025 } 14026 14027 return ImpliedFlags; 14028 } 14029 14030 /// Union predicates don't get cached so create a dummy set ID for it. 14031 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 14032 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 14033 for (auto *P : Preds) 14034 add(P); 14035 } 14036 14037 bool SCEVUnionPredicate::isAlwaysTrue() const { 14038 return all_of(Preds, 14039 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 14040 } 14041 14042 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 14043 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 14044 return all_of(Set->Preds, 14045 [this](const SCEVPredicate *I) { return this->implies(I); }); 14046 14047 return any_of(Preds, 14048 [N](const SCEVPredicate *I) { return I->implies(N); }); 14049 } 14050 14051 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14052 for (auto Pred : Preds) 14053 Pred->print(OS, Depth); 14054 } 14055 14056 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14057 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14058 for (auto Pred : Set->Preds) 14059 add(Pred); 14060 return; 14061 } 14062 14063 Preds.push_back(N); 14064 } 14065 14066 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14067 Loop &L) 14068 : SE(SE), L(L) { 14069 SmallVector<const SCEVPredicate*, 4> Empty; 14070 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14071 } 14072 14073 void ScalarEvolution::registerUser(const SCEV *User, 14074 ArrayRef<const SCEV *> Ops) { 14075 for (auto *Op : Ops) 14076 // We do not expect that forgetting cached data for SCEVConstants will ever 14077 // open any prospects for sharpening or introduce any correctness issues, 14078 // so we don't bother storing their dependencies. 14079 if (!isa<SCEVConstant>(Op)) 14080 SCEVUsers[Op].insert(User); 14081 } 14082 14083 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14084 const SCEV *Expr = SE.getSCEV(V); 14085 RewriteEntry &Entry = RewriteMap[Expr]; 14086 14087 // If we already have an entry and the version matches, return it. 14088 if (Entry.second && Generation == Entry.first) 14089 return Entry.second; 14090 14091 // We found an entry but it's stale. Rewrite the stale entry 14092 // according to the current predicate. 14093 if (Entry.second) 14094 Expr = Entry.second; 14095 14096 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14097 Entry = {Generation, NewSCEV}; 14098 14099 return NewSCEV; 14100 } 14101 14102 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14103 if (!BackedgeCount) { 14104 SmallVector<const SCEVPredicate *, 4> Preds; 14105 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14106 for (auto *P : Preds) 14107 addPredicate(*P); 14108 } 14109 return BackedgeCount; 14110 } 14111 14112 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14113 if (Preds->implies(&Pred)) 14114 return; 14115 14116 auto &OldPreds = Preds->getPredicates(); 14117 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14118 NewPreds.push_back(&Pred); 14119 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14120 updateGeneration(); 14121 } 14122 14123 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14124 return *Preds; 14125 } 14126 14127 void PredicatedScalarEvolution::updateGeneration() { 14128 // If the generation number wrapped recompute everything. 14129 if (++Generation == 0) { 14130 for (auto &II : RewriteMap) { 14131 const SCEV *Rewritten = II.second.second; 14132 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14133 } 14134 } 14135 } 14136 14137 void PredicatedScalarEvolution::setNoOverflow( 14138 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14139 const SCEV *Expr = getSCEV(V); 14140 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14141 14142 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14143 14144 // Clear the statically implied flags. 14145 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14146 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14147 14148 auto II = FlagsMap.insert({V, Flags}); 14149 if (!II.second) 14150 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14151 } 14152 14153 bool PredicatedScalarEvolution::hasNoOverflow( 14154 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14155 const SCEV *Expr = getSCEV(V); 14156 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14157 14158 Flags = SCEVWrapPredicate::clearFlags( 14159 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14160 14161 auto II = FlagsMap.find(V); 14162 14163 if (II != FlagsMap.end()) 14164 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14165 14166 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14167 } 14168 14169 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14170 const SCEV *Expr = this->getSCEV(V); 14171 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14172 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14173 14174 if (!New) 14175 return nullptr; 14176 14177 for (auto *P : NewPreds) 14178 addPredicate(*P); 14179 14180 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14181 return New; 14182 } 14183 14184 PredicatedScalarEvolution::PredicatedScalarEvolution( 14185 const PredicatedScalarEvolution &Init) 14186 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14187 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14188 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14189 for (auto I : Init.FlagsMap) 14190 FlagsMap.insert(I); 14191 } 14192 14193 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14194 // For each block. 14195 for (auto *BB : L.getBlocks()) 14196 for (auto &I : *BB) { 14197 if (!SE.isSCEVable(I.getType())) 14198 continue; 14199 14200 auto *Expr = SE.getSCEV(&I); 14201 auto II = RewriteMap.find(Expr); 14202 14203 if (II == RewriteMap.end()) 14204 continue; 14205 14206 // Don't print things that are not interesting. 14207 if (II->second.second == Expr) 14208 continue; 14209 14210 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14211 OS.indent(Depth + 2) << *Expr << "\n"; 14212 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14213 } 14214 } 14215 14216 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14217 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14218 // for URem with constant power-of-2 second operands. 14219 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14220 // 4, A / B becomes X / 8). 14221 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14222 const SCEV *&RHS) { 14223 // Try to match 'zext (trunc A to iB) to iY', which is used 14224 // for URem with constant power-of-2 second operands. Make sure the size of 14225 // the operand A matches the size of the whole expressions. 14226 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14227 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14228 LHS = Trunc->getOperand(); 14229 // Bail out if the type of the LHS is larger than the type of the 14230 // expression for now. 14231 if (getTypeSizeInBits(LHS->getType()) > 14232 getTypeSizeInBits(Expr->getType())) 14233 return false; 14234 if (LHS->getType() != Expr->getType()) 14235 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14236 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14237 << getTypeSizeInBits(Trunc->getType())); 14238 return true; 14239 } 14240 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14241 if (Add == nullptr || Add->getNumOperands() != 2) 14242 return false; 14243 14244 const SCEV *A = Add->getOperand(1); 14245 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14246 14247 if (Mul == nullptr) 14248 return false; 14249 14250 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14251 // (SomeExpr + (-(SomeExpr / B) * B)). 14252 if (Expr == getURemExpr(A, B)) { 14253 LHS = A; 14254 RHS = B; 14255 return true; 14256 } 14257 return false; 14258 }; 14259 14260 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14261 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14262 return MatchURemWithDivisor(Mul->getOperand(1)) || 14263 MatchURemWithDivisor(Mul->getOperand(2)); 14264 14265 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14266 if (Mul->getNumOperands() == 2) 14267 return MatchURemWithDivisor(Mul->getOperand(1)) || 14268 MatchURemWithDivisor(Mul->getOperand(0)) || 14269 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14270 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14271 return false; 14272 } 14273 14274 const SCEV * 14275 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14276 SmallVector<BasicBlock*, 16> ExitingBlocks; 14277 L->getExitingBlocks(ExitingBlocks); 14278 14279 // Form an expression for the maximum exit count possible for this loop. We 14280 // merge the max and exact information to approximate a version of 14281 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14282 SmallVector<const SCEV*, 4> ExitCounts; 14283 for (BasicBlock *ExitingBB : ExitingBlocks) { 14284 const SCEV *ExitCount = getExitCount(L, ExitingBB); 14285 if (isa<SCEVCouldNotCompute>(ExitCount)) 14286 ExitCount = getExitCount(L, ExitingBB, 14287 ScalarEvolution::ConstantMaximum); 14288 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14289 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14290 "We should only have known counts for exiting blocks that " 14291 "dominate latch!"); 14292 ExitCounts.push_back(ExitCount); 14293 } 14294 } 14295 if (ExitCounts.empty()) 14296 return getCouldNotCompute(); 14297 return getUMinFromMismatchedTypes(ExitCounts); 14298 } 14299 14300 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14301 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14302 /// replacement is loop invariant in the loop of the AddRec. 14303 /// 14304 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 14305 /// supported. 14306 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14307 const DenseMap<const SCEV *, const SCEV *> ⤅ 14308 14309 public: 14310 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14311 DenseMap<const SCEV *, const SCEV *> &M) 14312 : SCEVRewriteVisitor(SE), Map(M) {} 14313 14314 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14315 14316 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14317 auto I = Map.find(Expr); 14318 if (I == Map.end()) 14319 return Expr; 14320 return I->second; 14321 } 14322 14323 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14324 auto I = Map.find(Expr); 14325 if (I == Map.end()) 14326 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14327 Expr); 14328 return I->second; 14329 } 14330 }; 14331 14332 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14333 SmallVector<const SCEV *> ExprsToRewrite; 14334 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14335 const SCEV *RHS, 14336 DenseMap<const SCEV *, const SCEV *> 14337 &RewriteMap) { 14338 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14339 // replacement SCEV which isn't directly implied by the structure of that 14340 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14341 // legal. See the scoping rules for flags in the header to understand why. 14342 14343 // If LHS is a constant, apply information to the other expression. 14344 if (isa<SCEVConstant>(LHS)) { 14345 std::swap(LHS, RHS); 14346 Predicate = CmpInst::getSwappedPredicate(Predicate); 14347 } 14348 14349 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14350 // create this form when combining two checks of the form (X u< C2 + C1) and 14351 // (X >=u C1). 14352 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14353 &ExprsToRewrite]() { 14354 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14355 if (!AddExpr || AddExpr->getNumOperands() != 2) 14356 return false; 14357 14358 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14359 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14360 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14361 if (!C1 || !C2 || !LHSUnknown) 14362 return false; 14363 14364 auto ExactRegion = 14365 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14366 .sub(C1->getAPInt()); 14367 14368 // Bail out, unless we have a non-wrapping, monotonic range. 14369 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14370 return false; 14371 auto I = RewriteMap.find(LHSUnknown); 14372 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14373 RewriteMap[LHSUnknown] = getUMaxExpr( 14374 getConstant(ExactRegion.getUnsignedMin()), 14375 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14376 ExprsToRewrite.push_back(LHSUnknown); 14377 return true; 14378 }; 14379 if (MatchRangeCheckIdiom()) 14380 return; 14381 14382 // If we have LHS == 0, check if LHS is computing a property of some unknown 14383 // SCEV %v which we can rewrite %v to express explicitly. 14384 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 14385 if (Predicate == CmpInst::ICMP_EQ && RHSC && 14386 RHSC->getValue()->isNullValue()) { 14387 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 14388 // explicitly express that. 14389 const SCEV *URemLHS = nullptr; 14390 const SCEV *URemRHS = nullptr; 14391 if (matchURem(LHS, URemLHS, URemRHS)) { 14392 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 14393 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 14394 RewriteMap[LHSUnknown] = Multiple; 14395 ExprsToRewrite.push_back(LHSUnknown); 14396 return; 14397 } 14398 } 14399 } 14400 14401 // Do not apply information for constants or if RHS contains an AddRec. 14402 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 14403 return; 14404 14405 // If RHS is SCEVUnknown, make sure the information is applied to it. 14406 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 14407 std::swap(LHS, RHS); 14408 Predicate = CmpInst::getSwappedPredicate(Predicate); 14409 } 14410 14411 // Limit to expressions that can be rewritten. 14412 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 14413 return; 14414 14415 // Check whether LHS has already been rewritten. In that case we want to 14416 // chain further rewrites onto the already rewritten value. 14417 auto I = RewriteMap.find(LHS); 14418 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 14419 14420 const SCEV *RewrittenRHS = nullptr; 14421 switch (Predicate) { 14422 case CmpInst::ICMP_ULT: 14423 RewrittenRHS = 14424 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14425 break; 14426 case CmpInst::ICMP_SLT: 14427 RewrittenRHS = 14428 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14429 break; 14430 case CmpInst::ICMP_ULE: 14431 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14432 break; 14433 case CmpInst::ICMP_SLE: 14434 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14435 break; 14436 case CmpInst::ICMP_UGT: 14437 RewrittenRHS = 14438 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14439 break; 14440 case CmpInst::ICMP_SGT: 14441 RewrittenRHS = 14442 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14443 break; 14444 case CmpInst::ICMP_UGE: 14445 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14446 break; 14447 case CmpInst::ICMP_SGE: 14448 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14449 break; 14450 case CmpInst::ICMP_EQ: 14451 if (isa<SCEVConstant>(RHS)) 14452 RewrittenRHS = RHS; 14453 break; 14454 case CmpInst::ICMP_NE: 14455 if (isa<SCEVConstant>(RHS) && 14456 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14457 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14458 break; 14459 default: 14460 break; 14461 } 14462 14463 if (RewrittenRHS) { 14464 RewriteMap[LHS] = RewrittenRHS; 14465 if (LHS == RewrittenLHS) 14466 ExprsToRewrite.push_back(LHS); 14467 } 14468 }; 14469 // First, collect conditions from dominating branches. Starting at the loop 14470 // predecessor, climb up the predecessor chain, as long as there are 14471 // predecessors that can be found that have unique successors leading to the 14472 // original header. 14473 // TODO: share this logic with isLoopEntryGuardedByCond. 14474 SmallVector<std::pair<Value *, bool>> Terms; 14475 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14476 L->getLoopPredecessor(), L->getHeader()); 14477 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14478 14479 const BranchInst *LoopEntryPredicate = 14480 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14481 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14482 continue; 14483 14484 Terms.emplace_back(LoopEntryPredicate->getCondition(), 14485 LoopEntryPredicate->getSuccessor(0) == Pair.second); 14486 } 14487 14488 // Now apply the information from the collected conditions to RewriteMap. 14489 // Conditions are processed in reverse order, so the earliest conditions is 14490 // processed first. This ensures the SCEVs with the shortest dependency chains 14491 // are constructed first. 14492 DenseMap<const SCEV *, const SCEV *> RewriteMap; 14493 for (auto &E : reverse(Terms)) { 14494 bool EnterIfTrue = E.second; 14495 SmallVector<Value *, 8> Worklist; 14496 SmallPtrSet<Value *, 8> Visited; 14497 Worklist.push_back(E.first); 14498 while (!Worklist.empty()) { 14499 Value *Cond = Worklist.pop_back_val(); 14500 if (!Visited.insert(Cond).second) 14501 continue; 14502 14503 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14504 auto Predicate = 14505 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14506 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 14507 getSCEV(Cmp->getOperand(1)), RewriteMap); 14508 continue; 14509 } 14510 14511 Value *L, *R; 14512 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14513 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14514 Worklist.push_back(L); 14515 Worklist.push_back(R); 14516 } 14517 } 14518 } 14519 14520 // Also collect information from assumptions dominating the loop. 14521 for (auto &AssumeVH : AC.assumptions()) { 14522 if (!AssumeVH) 14523 continue; 14524 auto *AssumeI = cast<CallInst>(AssumeVH); 14525 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14526 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14527 continue; 14528 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14529 getSCEV(Cmp->getOperand(1)), RewriteMap); 14530 } 14531 14532 if (RewriteMap.empty()) 14533 return Expr; 14534 14535 // Now that all rewrite information is collect, rewrite the collected 14536 // expressions with the information in the map. This applies information to 14537 // sub-expressions. 14538 if (ExprsToRewrite.size() > 1) { 14539 for (const SCEV *Expr : ExprsToRewrite) { 14540 const SCEV *RewriteTo = RewriteMap[Expr]; 14541 RewriteMap.erase(Expr); 14542 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14543 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14544 } 14545 } 14546 14547 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14548 return Rewriter.visit(Expr); 14549 } 14550