1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/ScopeExit.h" 65 #include "llvm/ADT/Sequence.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/ConstantFolding.h" 70 #include "llvm/Analysis/InstructionSimplify.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 73 #include "llvm/Analysis/TargetLibraryInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/GlobalAlias.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/InstIterator.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Metadata.h" 87 #include "llvm/IR/Operator.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/ErrorHandling.h" 92 #include "llvm/Support/MathExtras.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Support/SaveAndRestore.h" 95 #include <algorithm> 96 using namespace llvm; 97 98 #define DEBUG_TYPE "scalar-evolution" 99 100 STATISTIC(NumArrayLenItCounts, 101 "Number of trip counts computed with array length"); 102 STATISTIC(NumTripCountsComputed, 103 "Number of loops with predictable loop counts"); 104 STATISTIC(NumTripCountsNotComputed, 105 "Number of loops without predictable loop counts"); 106 STATISTIC(NumBruteForceTripCountsComputed, 107 "Number of loops with trip counts computed by force"); 108 109 static cl::opt<unsigned> 110 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 111 cl::desc("Maximum number of iterations SCEV will " 112 "symbolically execute a constant " 113 "derived loop"), 114 cl::init(100)); 115 116 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 117 static cl::opt<bool> 118 VerifySCEV("verify-scev", 119 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 120 static cl::opt<bool> 121 VerifySCEVMap("verify-scev-maps", 122 cl::desc("Verify no dangling value in ScalarEvolution's " 123 "ExprValueMap (slow)")); 124 125 static cl::opt<unsigned> MulOpsInlineThreshold( 126 "scev-mulops-inline-threshold", cl::Hidden, 127 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 128 cl::init(1000)); 129 130 static cl::opt<unsigned> AddOpsInlineThreshold( 131 "scev-addops-inline-threshold", cl::Hidden, 132 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 133 cl::init(500)); 134 135 static cl::opt<unsigned> MaxSCEVCompareDepth( 136 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 137 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 138 cl::init(32)); 139 140 static cl::opt<unsigned> MaxValueCompareDepth( 141 "scalar-evolution-max-value-compare-depth", cl::Hidden, 142 cl::desc("Maximum depth of recursive value complexity comparisons"), 143 cl::init(2)); 144 145 static cl::opt<unsigned> 146 MaxAddExprDepth("scalar-evolution-max-addexpr-depth", cl::Hidden, 147 cl::desc("Maximum depth of recursive AddExpr"), 148 cl::init(32)); 149 150 static cl::opt<unsigned> MaxConstantEvolvingDepth( 151 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 152 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 153 154 //===----------------------------------------------------------------------===// 155 // SCEV class definitions 156 //===----------------------------------------------------------------------===// 157 158 //===----------------------------------------------------------------------===// 159 // Implementation of the SCEV class. 160 // 161 162 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 163 LLVM_DUMP_METHOD void SCEV::dump() const { 164 print(dbgs()); 165 dbgs() << '\n'; 166 } 167 #endif 168 169 void SCEV::print(raw_ostream &OS) const { 170 switch (static_cast<SCEVTypes>(getSCEVType())) { 171 case scConstant: 172 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 173 return; 174 case scTruncate: { 175 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 176 const SCEV *Op = Trunc->getOperand(); 177 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 178 << *Trunc->getType() << ")"; 179 return; 180 } 181 case scZeroExtend: { 182 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 183 const SCEV *Op = ZExt->getOperand(); 184 OS << "(zext " << *Op->getType() << " " << *Op << " to " 185 << *ZExt->getType() << ")"; 186 return; 187 } 188 case scSignExtend: { 189 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 190 const SCEV *Op = SExt->getOperand(); 191 OS << "(sext " << *Op->getType() << " " << *Op << " to " 192 << *SExt->getType() << ")"; 193 return; 194 } 195 case scAddRecExpr: { 196 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 197 OS << "{" << *AR->getOperand(0); 198 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 199 OS << ",+," << *AR->getOperand(i); 200 OS << "}<"; 201 if (AR->hasNoUnsignedWrap()) 202 OS << "nuw><"; 203 if (AR->hasNoSignedWrap()) 204 OS << "nsw><"; 205 if (AR->hasNoSelfWrap() && 206 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 207 OS << "nw><"; 208 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 209 OS << ">"; 210 return; 211 } 212 case scAddExpr: 213 case scMulExpr: 214 case scUMaxExpr: 215 case scSMaxExpr: { 216 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 217 const char *OpStr = nullptr; 218 switch (NAry->getSCEVType()) { 219 case scAddExpr: OpStr = " + "; break; 220 case scMulExpr: OpStr = " * "; break; 221 case scUMaxExpr: OpStr = " umax "; break; 222 case scSMaxExpr: OpStr = " smax "; break; 223 } 224 OS << "("; 225 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 226 I != E; ++I) { 227 OS << **I; 228 if (std::next(I) != E) 229 OS << OpStr; 230 } 231 OS << ")"; 232 switch (NAry->getSCEVType()) { 233 case scAddExpr: 234 case scMulExpr: 235 if (NAry->hasNoUnsignedWrap()) 236 OS << "<nuw>"; 237 if (NAry->hasNoSignedWrap()) 238 OS << "<nsw>"; 239 } 240 return; 241 } 242 case scUDivExpr: { 243 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 244 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 245 return; 246 } 247 case scUnknown: { 248 const SCEVUnknown *U = cast<SCEVUnknown>(this); 249 Type *AllocTy; 250 if (U->isSizeOf(AllocTy)) { 251 OS << "sizeof(" << *AllocTy << ")"; 252 return; 253 } 254 if (U->isAlignOf(AllocTy)) { 255 OS << "alignof(" << *AllocTy << ")"; 256 return; 257 } 258 259 Type *CTy; 260 Constant *FieldNo; 261 if (U->isOffsetOf(CTy, FieldNo)) { 262 OS << "offsetof(" << *CTy << ", "; 263 FieldNo->printAsOperand(OS, false); 264 OS << ")"; 265 return; 266 } 267 268 // Otherwise just print it normally. 269 U->getValue()->printAsOperand(OS, false); 270 return; 271 } 272 case scCouldNotCompute: 273 OS << "***COULDNOTCOMPUTE***"; 274 return; 275 } 276 llvm_unreachable("Unknown SCEV kind!"); 277 } 278 279 Type *SCEV::getType() const { 280 switch (static_cast<SCEVTypes>(getSCEVType())) { 281 case scConstant: 282 return cast<SCEVConstant>(this)->getType(); 283 case scTruncate: 284 case scZeroExtend: 285 case scSignExtend: 286 return cast<SCEVCastExpr>(this)->getType(); 287 case scAddRecExpr: 288 case scMulExpr: 289 case scUMaxExpr: 290 case scSMaxExpr: 291 return cast<SCEVNAryExpr>(this)->getType(); 292 case scAddExpr: 293 return cast<SCEVAddExpr>(this)->getType(); 294 case scUDivExpr: 295 return cast<SCEVUDivExpr>(this)->getType(); 296 case scUnknown: 297 return cast<SCEVUnknown>(this)->getType(); 298 case scCouldNotCompute: 299 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 300 } 301 llvm_unreachable("Unknown SCEV kind!"); 302 } 303 304 bool SCEV::isZero() const { 305 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 306 return SC->getValue()->isZero(); 307 return false; 308 } 309 310 bool SCEV::isOne() const { 311 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 312 return SC->getValue()->isOne(); 313 return false; 314 } 315 316 bool SCEV::isAllOnesValue() const { 317 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 318 return SC->getValue()->isAllOnesValue(); 319 return false; 320 } 321 322 bool SCEV::isNonConstantNegative() const { 323 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 324 if (!Mul) return false; 325 326 // If there is a constant factor, it will be first. 327 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 328 if (!SC) return false; 329 330 // Return true if the value is negative, this matches things like (-42 * V). 331 return SC->getAPInt().isNegative(); 332 } 333 334 SCEVCouldNotCompute::SCEVCouldNotCompute() : 335 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 336 337 bool SCEVCouldNotCompute::classof(const SCEV *S) { 338 return S->getSCEVType() == scCouldNotCompute; 339 } 340 341 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 342 FoldingSetNodeID ID; 343 ID.AddInteger(scConstant); 344 ID.AddPointer(V); 345 void *IP = nullptr; 346 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 347 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 348 UniqueSCEVs.InsertNode(S, IP); 349 return S; 350 } 351 352 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 353 return getConstant(ConstantInt::get(getContext(), Val)); 354 } 355 356 const SCEV * 357 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 358 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 359 return getConstant(ConstantInt::get(ITy, V, isSigned)); 360 } 361 362 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 363 unsigned SCEVTy, const SCEV *op, Type *ty) 364 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 365 366 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 367 const SCEV *op, Type *ty) 368 : SCEVCastExpr(ID, scTruncate, op, ty) { 369 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 370 (Ty->isIntegerTy() || Ty->isPointerTy()) && 371 "Cannot truncate non-integer value!"); 372 } 373 374 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 375 const SCEV *op, Type *ty) 376 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 377 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 378 (Ty->isIntegerTy() || Ty->isPointerTy()) && 379 "Cannot zero extend non-integer value!"); 380 } 381 382 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 383 const SCEV *op, Type *ty) 384 : SCEVCastExpr(ID, scSignExtend, op, ty) { 385 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 386 (Ty->isIntegerTy() || Ty->isPointerTy()) && 387 "Cannot sign extend non-integer value!"); 388 } 389 390 void SCEVUnknown::deleted() { 391 // Clear this SCEVUnknown from various maps. 392 SE->forgetMemoizedResults(this); 393 394 // Remove this SCEVUnknown from the uniquing map. 395 SE->UniqueSCEVs.RemoveNode(this); 396 397 // Release the value. 398 setValPtr(nullptr); 399 } 400 401 void SCEVUnknown::allUsesReplacedWith(Value *New) { 402 // Clear this SCEVUnknown from various maps. 403 SE->forgetMemoizedResults(this); 404 405 // Remove this SCEVUnknown from the uniquing map. 406 SE->UniqueSCEVs.RemoveNode(this); 407 408 // Update this SCEVUnknown to point to the new value. This is needed 409 // because there may still be outstanding SCEVs which still point to 410 // this SCEVUnknown. 411 setValPtr(New); 412 } 413 414 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 415 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 416 if (VCE->getOpcode() == Instruction::PtrToInt) 417 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 418 if (CE->getOpcode() == Instruction::GetElementPtr && 419 CE->getOperand(0)->isNullValue() && 420 CE->getNumOperands() == 2) 421 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 422 if (CI->isOne()) { 423 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 424 ->getElementType(); 425 return true; 426 } 427 428 return false; 429 } 430 431 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 433 if (VCE->getOpcode() == Instruction::PtrToInt) 434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 435 if (CE->getOpcode() == Instruction::GetElementPtr && 436 CE->getOperand(0)->isNullValue()) { 437 Type *Ty = 438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 439 if (StructType *STy = dyn_cast<StructType>(Ty)) 440 if (!STy->isPacked() && 441 CE->getNumOperands() == 3 && 442 CE->getOperand(1)->isNullValue()) { 443 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 444 if (CI->isOne() && 445 STy->getNumElements() == 2 && 446 STy->getElementType(0)->isIntegerTy(1)) { 447 AllocTy = STy->getElementType(1); 448 return true; 449 } 450 } 451 } 452 453 return false; 454 } 455 456 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 457 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 458 if (VCE->getOpcode() == Instruction::PtrToInt) 459 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 460 if (CE->getOpcode() == Instruction::GetElementPtr && 461 CE->getNumOperands() == 3 && 462 CE->getOperand(0)->isNullValue() && 463 CE->getOperand(1)->isNullValue()) { 464 Type *Ty = 465 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 466 // Ignore vector types here so that ScalarEvolutionExpander doesn't 467 // emit getelementptrs that index into vectors. 468 if (Ty->isStructTy() || Ty->isArrayTy()) { 469 CTy = Ty; 470 FieldNo = CE->getOperand(2); 471 return true; 472 } 473 } 474 475 return false; 476 } 477 478 //===----------------------------------------------------------------------===// 479 // SCEV Utilities 480 //===----------------------------------------------------------------------===// 481 482 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 483 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 484 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 485 /// have been previously deemed to be "equally complex" by this routine. It is 486 /// intended to avoid exponential time complexity in cases like: 487 /// 488 /// %a = f(%x, %y) 489 /// %b = f(%a, %a) 490 /// %c = f(%b, %b) 491 /// 492 /// %d = f(%x, %y) 493 /// %e = f(%d, %d) 494 /// %f = f(%e, %e) 495 /// 496 /// CompareValueComplexity(%f, %c) 497 /// 498 /// Since we do not continue running this routine on expression trees once we 499 /// have seen unequal values, there is no need to track them in the cache. 500 static int 501 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache, 502 const LoopInfo *const LI, Value *LV, Value *RV, 503 unsigned Depth) { 504 if (Depth > MaxValueCompareDepth || EqCache.count({LV, RV})) 505 return 0; 506 507 // Order pointer values after integer values. This helps SCEVExpander form 508 // GEPs. 509 bool LIsPointer = LV->getType()->isPointerTy(), 510 RIsPointer = RV->getType()->isPointerTy(); 511 if (LIsPointer != RIsPointer) 512 return (int)LIsPointer - (int)RIsPointer; 513 514 // Compare getValueID values. 515 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 516 if (LID != RID) 517 return (int)LID - (int)RID; 518 519 // Sort arguments by their position. 520 if (const auto *LA = dyn_cast<Argument>(LV)) { 521 const auto *RA = cast<Argument>(RV); 522 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 523 return (int)LArgNo - (int)RArgNo; 524 } 525 526 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 527 const auto *RGV = cast<GlobalValue>(RV); 528 529 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 530 auto LT = GV->getLinkage(); 531 return !(GlobalValue::isPrivateLinkage(LT) || 532 GlobalValue::isInternalLinkage(LT)); 533 }; 534 535 // Use the names to distinguish the two values, but only if the 536 // names are semantically important. 537 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 538 return LGV->getName().compare(RGV->getName()); 539 } 540 541 // For instructions, compare their loop depth, and their operand count. This 542 // is pretty loose. 543 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 544 const auto *RInst = cast<Instruction>(RV); 545 546 // Compare loop depths. 547 const BasicBlock *LParent = LInst->getParent(), 548 *RParent = RInst->getParent(); 549 if (LParent != RParent) { 550 unsigned LDepth = LI->getLoopDepth(LParent), 551 RDepth = LI->getLoopDepth(RParent); 552 if (LDepth != RDepth) 553 return (int)LDepth - (int)RDepth; 554 } 555 556 // Compare the number of operands. 557 unsigned LNumOps = LInst->getNumOperands(), 558 RNumOps = RInst->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 for (unsigned Idx : seq(0u, LNumOps)) { 563 int Result = 564 CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx), 565 RInst->getOperand(Idx), Depth + 1); 566 if (Result != 0) 567 return Result; 568 } 569 } 570 571 EqCache.insert({LV, RV}); 572 return 0; 573 } 574 575 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 576 // than RHS, respectively. A three-way result allows recursive comparisons to be 577 // more efficient. 578 static int CompareSCEVComplexity( 579 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV, 580 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 581 unsigned Depth = 0) { 582 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 583 if (LHS == RHS) 584 return 0; 585 586 // Primarily, sort the SCEVs by their getSCEVType(). 587 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 588 if (LType != RType) 589 return (int)LType - (int)RType; 590 591 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.count({LHS, RHS})) 592 return 0; 593 // Aside from the getSCEVType() ordering, the particular ordering 594 // isn't very important except that it's beneficial to be consistent, 595 // so that (a + b) and (b + a) don't end up as different expressions. 596 switch (static_cast<SCEVTypes>(LType)) { 597 case scUnknown: { 598 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 599 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 600 601 SmallSet<std::pair<Value *, Value *>, 8> EqCache; 602 int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(), 603 Depth + 1); 604 if (X == 0) 605 EqCacheSCEV.insert({LHS, RHS}); 606 return X; 607 } 608 609 case scConstant: { 610 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 611 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 612 613 // Compare constant values. 614 const APInt &LA = LC->getAPInt(); 615 const APInt &RA = RC->getAPInt(); 616 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 617 if (LBitWidth != RBitWidth) 618 return (int)LBitWidth - (int)RBitWidth; 619 return LA.ult(RA) ? -1 : 1; 620 } 621 622 case scAddRecExpr: { 623 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 624 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 625 626 // Compare addrec loop depths. 627 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 628 if (LLoop != RLoop) { 629 unsigned LDepth = LLoop->getLoopDepth(), RDepth = RLoop->getLoopDepth(); 630 if (LDepth != RDepth) 631 return (int)LDepth - (int)RDepth; 632 } 633 634 // Addrec complexity grows with operand count. 635 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 636 if (LNumOps != RNumOps) 637 return (int)LNumOps - (int)RNumOps; 638 639 // Lexicographically compare. 640 for (unsigned i = 0; i != LNumOps; ++i) { 641 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i), 642 RA->getOperand(i), Depth + 1); 643 if (X != 0) 644 return X; 645 } 646 EqCacheSCEV.insert({LHS, RHS}); 647 return 0; 648 } 649 650 case scAddExpr: 651 case scMulExpr: 652 case scSMaxExpr: 653 case scUMaxExpr: { 654 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 655 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 656 657 // Lexicographically compare n-ary expressions. 658 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 659 if (LNumOps != RNumOps) 660 return (int)LNumOps - (int)RNumOps; 661 662 for (unsigned i = 0; i != LNumOps; ++i) { 663 if (i >= RNumOps) 664 return 1; 665 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i), 666 RC->getOperand(i), Depth + 1); 667 if (X != 0) 668 return X; 669 } 670 EqCacheSCEV.insert({LHS, RHS}); 671 return 0; 672 } 673 674 case scUDivExpr: { 675 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 676 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 677 678 // Lexicographically compare udiv expressions. 679 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(), 680 Depth + 1); 681 if (X != 0) 682 return X; 683 X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(), 684 Depth + 1); 685 if (X == 0) 686 EqCacheSCEV.insert({LHS, RHS}); 687 return X; 688 } 689 690 case scTruncate: 691 case scZeroExtend: 692 case scSignExtend: { 693 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 694 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 695 696 // Compare cast expressions by operand. 697 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(), 698 RC->getOperand(), Depth + 1); 699 if (X == 0) 700 EqCacheSCEV.insert({LHS, RHS}); 701 return X; 702 } 703 704 case scCouldNotCompute: 705 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 706 } 707 llvm_unreachable("Unknown SCEV kind!"); 708 } 709 710 /// Given a list of SCEV objects, order them by their complexity, and group 711 /// objects of the same complexity together by value. When this routine is 712 /// finished, we know that any duplicates in the vector are consecutive and that 713 /// complexity is monotonically increasing. 714 /// 715 /// Note that we go take special precautions to ensure that we get deterministic 716 /// results from this routine. In other words, we don't want the results of 717 /// this to depend on where the addresses of various SCEV objects happened to 718 /// land in memory. 719 /// 720 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 721 LoopInfo *LI) { 722 if (Ops.size() < 2) return; // Noop 723 724 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache; 725 if (Ops.size() == 2) { 726 // This is the common case, which also happens to be trivially simple. 727 // Special case it. 728 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 729 if (CompareSCEVComplexity(EqCache, LI, RHS, LHS) < 0) 730 std::swap(LHS, RHS); 731 return; 732 } 733 734 // Do the rough sort by complexity. 735 std::stable_sort(Ops.begin(), Ops.end(), 736 [&EqCache, LI](const SCEV *LHS, const SCEV *RHS) { 737 return CompareSCEVComplexity(EqCache, LI, LHS, RHS) < 0; 738 }); 739 740 // Now that we are sorted by complexity, group elements of the same 741 // complexity. Note that this is, at worst, N^2, but the vector is likely to 742 // be extremely short in practice. Note that we take this approach because we 743 // do not want to depend on the addresses of the objects we are grouping. 744 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 745 const SCEV *S = Ops[i]; 746 unsigned Complexity = S->getSCEVType(); 747 748 // If there are any objects of the same complexity and same value as this 749 // one, group them. 750 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 751 if (Ops[j] == S) { // Found a duplicate. 752 // Move it to immediately after i'th element. 753 std::swap(Ops[i+1], Ops[j]); 754 ++i; // no need to rescan it. 755 if (i == e-2) return; // Done! 756 } 757 } 758 } 759 } 760 761 // Returns the size of the SCEV S. 762 static inline int sizeOfSCEV(const SCEV *S) { 763 struct FindSCEVSize { 764 int Size; 765 FindSCEVSize() : Size(0) {} 766 767 bool follow(const SCEV *S) { 768 ++Size; 769 // Keep looking at all operands of S. 770 return true; 771 } 772 bool isDone() const { 773 return false; 774 } 775 }; 776 777 FindSCEVSize F; 778 SCEVTraversal<FindSCEVSize> ST(F); 779 ST.visitAll(S); 780 return F.Size; 781 } 782 783 namespace { 784 785 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 786 public: 787 // Computes the Quotient and Remainder of the division of Numerator by 788 // Denominator. 789 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 790 const SCEV *Denominator, const SCEV **Quotient, 791 const SCEV **Remainder) { 792 assert(Numerator && Denominator && "Uninitialized SCEV"); 793 794 SCEVDivision D(SE, Numerator, Denominator); 795 796 // Check for the trivial case here to avoid having to check for it in the 797 // rest of the code. 798 if (Numerator == Denominator) { 799 *Quotient = D.One; 800 *Remainder = D.Zero; 801 return; 802 } 803 804 if (Numerator->isZero()) { 805 *Quotient = D.Zero; 806 *Remainder = D.Zero; 807 return; 808 } 809 810 // A simple case when N/1. The quotient is N. 811 if (Denominator->isOne()) { 812 *Quotient = Numerator; 813 *Remainder = D.Zero; 814 return; 815 } 816 817 // Split the Denominator when it is a product. 818 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 819 const SCEV *Q, *R; 820 *Quotient = Numerator; 821 for (const SCEV *Op : T->operands()) { 822 divide(SE, *Quotient, Op, &Q, &R); 823 *Quotient = Q; 824 825 // Bail out when the Numerator is not divisible by one of the terms of 826 // the Denominator. 827 if (!R->isZero()) { 828 *Quotient = D.Zero; 829 *Remainder = Numerator; 830 return; 831 } 832 } 833 *Remainder = D.Zero; 834 return; 835 } 836 837 D.visit(Numerator); 838 *Quotient = D.Quotient; 839 *Remainder = D.Remainder; 840 } 841 842 // Except in the trivial case described above, we do not know how to divide 843 // Expr by Denominator for the following functions with empty implementation. 844 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 845 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 846 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 847 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 848 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 849 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 850 void visitUnknown(const SCEVUnknown *Numerator) {} 851 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 852 853 void visitConstant(const SCEVConstant *Numerator) { 854 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 855 APInt NumeratorVal = Numerator->getAPInt(); 856 APInt DenominatorVal = D->getAPInt(); 857 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 858 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 859 860 if (NumeratorBW > DenominatorBW) 861 DenominatorVal = DenominatorVal.sext(NumeratorBW); 862 else if (NumeratorBW < DenominatorBW) 863 NumeratorVal = NumeratorVal.sext(DenominatorBW); 864 865 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 866 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 867 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 868 Quotient = SE.getConstant(QuotientVal); 869 Remainder = SE.getConstant(RemainderVal); 870 return; 871 } 872 } 873 874 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 875 const SCEV *StartQ, *StartR, *StepQ, *StepR; 876 if (!Numerator->isAffine()) 877 return cannotDivide(Numerator); 878 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 879 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 880 // Bail out if the types do not match. 881 Type *Ty = Denominator->getType(); 882 if (Ty != StartQ->getType() || Ty != StartR->getType() || 883 Ty != StepQ->getType() || Ty != StepR->getType()) 884 return cannotDivide(Numerator); 885 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 886 Numerator->getNoWrapFlags()); 887 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 888 Numerator->getNoWrapFlags()); 889 } 890 891 void visitAddExpr(const SCEVAddExpr *Numerator) { 892 SmallVector<const SCEV *, 2> Qs, Rs; 893 Type *Ty = Denominator->getType(); 894 895 for (const SCEV *Op : Numerator->operands()) { 896 const SCEV *Q, *R; 897 divide(SE, Op, Denominator, &Q, &R); 898 899 // Bail out if types do not match. 900 if (Ty != Q->getType() || Ty != R->getType()) 901 return cannotDivide(Numerator); 902 903 Qs.push_back(Q); 904 Rs.push_back(R); 905 } 906 907 if (Qs.size() == 1) { 908 Quotient = Qs[0]; 909 Remainder = Rs[0]; 910 return; 911 } 912 913 Quotient = SE.getAddExpr(Qs); 914 Remainder = SE.getAddExpr(Rs); 915 } 916 917 void visitMulExpr(const SCEVMulExpr *Numerator) { 918 SmallVector<const SCEV *, 2> Qs; 919 Type *Ty = Denominator->getType(); 920 921 bool FoundDenominatorTerm = false; 922 for (const SCEV *Op : Numerator->operands()) { 923 // Bail out if types do not match. 924 if (Ty != Op->getType()) 925 return cannotDivide(Numerator); 926 927 if (FoundDenominatorTerm) { 928 Qs.push_back(Op); 929 continue; 930 } 931 932 // Check whether Denominator divides one of the product operands. 933 const SCEV *Q, *R; 934 divide(SE, Op, Denominator, &Q, &R); 935 if (!R->isZero()) { 936 Qs.push_back(Op); 937 continue; 938 } 939 940 // Bail out if types do not match. 941 if (Ty != Q->getType()) 942 return cannotDivide(Numerator); 943 944 FoundDenominatorTerm = true; 945 Qs.push_back(Q); 946 } 947 948 if (FoundDenominatorTerm) { 949 Remainder = Zero; 950 if (Qs.size() == 1) 951 Quotient = Qs[0]; 952 else 953 Quotient = SE.getMulExpr(Qs); 954 return; 955 } 956 957 if (!isa<SCEVUnknown>(Denominator)) 958 return cannotDivide(Numerator); 959 960 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 961 ValueToValueMap RewriteMap; 962 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 963 cast<SCEVConstant>(Zero)->getValue(); 964 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 965 966 if (Remainder->isZero()) { 967 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 968 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 969 cast<SCEVConstant>(One)->getValue(); 970 Quotient = 971 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 972 return; 973 } 974 975 // Quotient is (Numerator - Remainder) divided by Denominator. 976 const SCEV *Q, *R; 977 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 978 // This SCEV does not seem to simplify: fail the division here. 979 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 980 return cannotDivide(Numerator); 981 divide(SE, Diff, Denominator, &Q, &R); 982 if (R != Zero) 983 return cannotDivide(Numerator); 984 Quotient = Q; 985 } 986 987 private: 988 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 989 const SCEV *Denominator) 990 : SE(S), Denominator(Denominator) { 991 Zero = SE.getZero(Denominator->getType()); 992 One = SE.getOne(Denominator->getType()); 993 994 // We generally do not know how to divide Expr by Denominator. We 995 // initialize the division to a "cannot divide" state to simplify the rest 996 // of the code. 997 cannotDivide(Numerator); 998 } 999 1000 // Convenience function for giving up on the division. We set the quotient to 1001 // be equal to zero and the remainder to be equal to the numerator. 1002 void cannotDivide(const SCEV *Numerator) { 1003 Quotient = Zero; 1004 Remainder = Numerator; 1005 } 1006 1007 ScalarEvolution &SE; 1008 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1009 }; 1010 1011 } 1012 1013 //===----------------------------------------------------------------------===// 1014 // Simple SCEV method implementations 1015 //===----------------------------------------------------------------------===// 1016 1017 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1018 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1019 ScalarEvolution &SE, 1020 Type *ResultTy) { 1021 // Handle the simplest case efficiently. 1022 if (K == 1) 1023 return SE.getTruncateOrZeroExtend(It, ResultTy); 1024 1025 // We are using the following formula for BC(It, K): 1026 // 1027 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1028 // 1029 // Suppose, W is the bitwidth of the return value. We must be prepared for 1030 // overflow. Hence, we must assure that the result of our computation is 1031 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1032 // safe in modular arithmetic. 1033 // 1034 // However, this code doesn't use exactly that formula; the formula it uses 1035 // is something like the following, where T is the number of factors of 2 in 1036 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1037 // exponentiation: 1038 // 1039 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1040 // 1041 // This formula is trivially equivalent to the previous formula. However, 1042 // this formula can be implemented much more efficiently. The trick is that 1043 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1044 // arithmetic. To do exact division in modular arithmetic, all we have 1045 // to do is multiply by the inverse. Therefore, this step can be done at 1046 // width W. 1047 // 1048 // The next issue is how to safely do the division by 2^T. The way this 1049 // is done is by doing the multiplication step at a width of at least W + T 1050 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1051 // when we perform the division by 2^T (which is equivalent to a right shift 1052 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1053 // truncated out after the division by 2^T. 1054 // 1055 // In comparison to just directly using the first formula, this technique 1056 // is much more efficient; using the first formula requires W * K bits, 1057 // but this formula less than W + K bits. Also, the first formula requires 1058 // a division step, whereas this formula only requires multiplies and shifts. 1059 // 1060 // It doesn't matter whether the subtraction step is done in the calculation 1061 // width or the input iteration count's width; if the subtraction overflows, 1062 // the result must be zero anyway. We prefer here to do it in the width of 1063 // the induction variable because it helps a lot for certain cases; CodeGen 1064 // isn't smart enough to ignore the overflow, which leads to much less 1065 // efficient code if the width of the subtraction is wider than the native 1066 // register width. 1067 // 1068 // (It's possible to not widen at all by pulling out factors of 2 before 1069 // the multiplication; for example, K=2 can be calculated as 1070 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1071 // extra arithmetic, so it's not an obvious win, and it gets 1072 // much more complicated for K > 3.) 1073 1074 // Protection from insane SCEVs; this bound is conservative, 1075 // but it probably doesn't matter. 1076 if (K > 1000) 1077 return SE.getCouldNotCompute(); 1078 1079 unsigned W = SE.getTypeSizeInBits(ResultTy); 1080 1081 // Calculate K! / 2^T and T; we divide out the factors of two before 1082 // multiplying for calculating K! / 2^T to avoid overflow. 1083 // Other overflow doesn't matter because we only care about the bottom 1084 // W bits of the result. 1085 APInt OddFactorial(W, 1); 1086 unsigned T = 1; 1087 for (unsigned i = 3; i <= K; ++i) { 1088 APInt Mult(W, i); 1089 unsigned TwoFactors = Mult.countTrailingZeros(); 1090 T += TwoFactors; 1091 Mult = Mult.lshr(TwoFactors); 1092 OddFactorial *= Mult; 1093 } 1094 1095 // We need at least W + T bits for the multiplication step 1096 unsigned CalculationBits = W + T; 1097 1098 // Calculate 2^T, at width T+W. 1099 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1100 1101 // Calculate the multiplicative inverse of K! / 2^T; 1102 // this multiplication factor will perform the exact division by 1103 // K! / 2^T. 1104 APInt Mod = APInt::getSignedMinValue(W+1); 1105 APInt MultiplyFactor = OddFactorial.zext(W+1); 1106 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1107 MultiplyFactor = MultiplyFactor.trunc(W); 1108 1109 // Calculate the product, at width T+W 1110 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1111 CalculationBits); 1112 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1113 for (unsigned i = 1; i != K; ++i) { 1114 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1115 Dividend = SE.getMulExpr(Dividend, 1116 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1117 } 1118 1119 // Divide by 2^T 1120 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1121 1122 // Truncate the result, and divide by K! / 2^T. 1123 1124 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1125 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1126 } 1127 1128 /// Return the value of this chain of recurrences at the specified iteration 1129 /// number. We can evaluate this recurrence by multiplying each element in the 1130 /// chain by the binomial coefficient corresponding to it. In other words, we 1131 /// can evaluate {A,+,B,+,C,+,D} as: 1132 /// 1133 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1134 /// 1135 /// where BC(It, k) stands for binomial coefficient. 1136 /// 1137 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1138 ScalarEvolution &SE) const { 1139 const SCEV *Result = getStart(); 1140 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1141 // The computation is correct in the face of overflow provided that the 1142 // multiplication is performed _after_ the evaluation of the binomial 1143 // coefficient. 1144 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1145 if (isa<SCEVCouldNotCompute>(Coeff)) 1146 return Coeff; 1147 1148 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1149 } 1150 return Result; 1151 } 1152 1153 //===----------------------------------------------------------------------===// 1154 // SCEV Expression folder implementations 1155 //===----------------------------------------------------------------------===// 1156 1157 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1158 Type *Ty) { 1159 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1160 "This is not a truncating conversion!"); 1161 assert(isSCEVable(Ty) && 1162 "This is not a conversion to a SCEVable type!"); 1163 Ty = getEffectiveSCEVType(Ty); 1164 1165 FoldingSetNodeID ID; 1166 ID.AddInteger(scTruncate); 1167 ID.AddPointer(Op); 1168 ID.AddPointer(Ty); 1169 void *IP = nullptr; 1170 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1171 1172 // Fold if the operand is constant. 1173 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1174 return getConstant( 1175 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1176 1177 // trunc(trunc(x)) --> trunc(x) 1178 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1179 return getTruncateExpr(ST->getOperand(), Ty); 1180 1181 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1182 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1183 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1184 1185 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1186 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1187 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1188 1189 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1190 // eliminate all the truncates, or we replace other casts with truncates. 1191 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1192 SmallVector<const SCEV *, 4> Operands; 1193 bool hasTrunc = false; 1194 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1195 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1196 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1197 hasTrunc = isa<SCEVTruncateExpr>(S); 1198 Operands.push_back(S); 1199 } 1200 if (!hasTrunc) 1201 return getAddExpr(Operands); 1202 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1203 } 1204 1205 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1206 // eliminate all the truncates, or we replace other casts with truncates. 1207 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1208 SmallVector<const SCEV *, 4> Operands; 1209 bool hasTrunc = false; 1210 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1211 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1212 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1213 hasTrunc = isa<SCEVTruncateExpr>(S); 1214 Operands.push_back(S); 1215 } 1216 if (!hasTrunc) 1217 return getMulExpr(Operands); 1218 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1219 } 1220 1221 // If the input value is a chrec scev, truncate the chrec's operands. 1222 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1223 SmallVector<const SCEV *, 4> Operands; 1224 for (const SCEV *Op : AddRec->operands()) 1225 Operands.push_back(getTruncateExpr(Op, Ty)); 1226 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1227 } 1228 1229 // The cast wasn't folded; create an explicit cast node. We can reuse 1230 // the existing insert position since if we get here, we won't have 1231 // made any changes which would invalidate it. 1232 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1233 Op, Ty); 1234 UniqueSCEVs.InsertNode(S, IP); 1235 return S; 1236 } 1237 1238 // Get the limit of a recurrence such that incrementing by Step cannot cause 1239 // signed overflow as long as the value of the recurrence within the 1240 // loop does not exceed this limit before incrementing. 1241 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1242 ICmpInst::Predicate *Pred, 1243 ScalarEvolution *SE) { 1244 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1245 if (SE->isKnownPositive(Step)) { 1246 *Pred = ICmpInst::ICMP_SLT; 1247 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1248 SE->getSignedRange(Step).getSignedMax()); 1249 } 1250 if (SE->isKnownNegative(Step)) { 1251 *Pred = ICmpInst::ICMP_SGT; 1252 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1253 SE->getSignedRange(Step).getSignedMin()); 1254 } 1255 return nullptr; 1256 } 1257 1258 // Get the limit of a recurrence such that incrementing by Step cannot cause 1259 // unsigned overflow as long as the value of the recurrence within the loop does 1260 // not exceed this limit before incrementing. 1261 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1262 ICmpInst::Predicate *Pred, 1263 ScalarEvolution *SE) { 1264 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1265 *Pred = ICmpInst::ICMP_ULT; 1266 1267 return SE->getConstant(APInt::getMinValue(BitWidth) - 1268 SE->getUnsignedRange(Step).getUnsignedMax()); 1269 } 1270 1271 namespace { 1272 1273 struct ExtendOpTraitsBase { 1274 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1275 }; 1276 1277 // Used to make code generic over signed and unsigned overflow. 1278 template <typename ExtendOp> struct ExtendOpTraits { 1279 // Members present: 1280 // 1281 // static const SCEV::NoWrapFlags WrapType; 1282 // 1283 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1284 // 1285 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1286 // ICmpInst::Predicate *Pred, 1287 // ScalarEvolution *SE); 1288 }; 1289 1290 template <> 1291 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1292 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1293 1294 static const GetExtendExprTy GetExtendExpr; 1295 1296 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1297 ICmpInst::Predicate *Pred, 1298 ScalarEvolution *SE) { 1299 return getSignedOverflowLimitForStep(Step, Pred, SE); 1300 } 1301 }; 1302 1303 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1304 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1305 1306 template <> 1307 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1308 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1309 1310 static const GetExtendExprTy GetExtendExpr; 1311 1312 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1313 ICmpInst::Predicate *Pred, 1314 ScalarEvolution *SE) { 1315 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1316 } 1317 }; 1318 1319 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1320 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1321 } 1322 1323 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1324 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1325 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1326 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1327 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1328 // expression "Step + sext/zext(PreIncAR)" is congruent with 1329 // "sext/zext(PostIncAR)" 1330 template <typename ExtendOpTy> 1331 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1332 ScalarEvolution *SE) { 1333 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1334 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1335 1336 const Loop *L = AR->getLoop(); 1337 const SCEV *Start = AR->getStart(); 1338 const SCEV *Step = AR->getStepRecurrence(*SE); 1339 1340 // Check for a simple looking step prior to loop entry. 1341 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1342 if (!SA) 1343 return nullptr; 1344 1345 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1346 // subtraction is expensive. For this purpose, perform a quick and dirty 1347 // difference, by checking for Step in the operand list. 1348 SmallVector<const SCEV *, 4> DiffOps; 1349 for (const SCEV *Op : SA->operands()) 1350 if (Op != Step) 1351 DiffOps.push_back(Op); 1352 1353 if (DiffOps.size() == SA->getNumOperands()) 1354 return nullptr; 1355 1356 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1357 // `Step`: 1358 1359 // 1. NSW/NUW flags on the step increment. 1360 auto PreStartFlags = 1361 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1362 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1363 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1364 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1365 1366 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1367 // "S+X does not sign/unsign-overflow". 1368 // 1369 1370 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1371 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1372 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1373 return PreStart; 1374 1375 // 2. Direct overflow check on the step operation's expression. 1376 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1377 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1378 const SCEV *OperandExtendedStart = 1379 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1380 (SE->*GetExtendExpr)(Step, WideTy)); 1381 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1382 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1383 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1384 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1385 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1386 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1387 } 1388 return PreStart; 1389 } 1390 1391 // 3. Loop precondition. 1392 ICmpInst::Predicate Pred; 1393 const SCEV *OverflowLimit = 1394 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1395 1396 if (OverflowLimit && 1397 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1398 return PreStart; 1399 1400 return nullptr; 1401 } 1402 1403 // Get the normalized zero or sign extended expression for this AddRec's Start. 1404 template <typename ExtendOpTy> 1405 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1406 ScalarEvolution *SE) { 1407 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1408 1409 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1410 if (!PreStart) 1411 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1412 1413 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1414 (SE->*GetExtendExpr)(PreStart, Ty)); 1415 } 1416 1417 // Try to prove away overflow by looking at "nearby" add recurrences. A 1418 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1419 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1420 // 1421 // Formally: 1422 // 1423 // {S,+,X} == {S-T,+,X} + T 1424 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1425 // 1426 // If ({S-T,+,X} + T) does not overflow ... (1) 1427 // 1428 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1429 // 1430 // If {S-T,+,X} does not overflow ... (2) 1431 // 1432 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1433 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1434 // 1435 // If (S-T)+T does not overflow ... (3) 1436 // 1437 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1438 // == {Ext(S),+,Ext(X)} == LHS 1439 // 1440 // Thus, if (1), (2) and (3) are true for some T, then 1441 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1442 // 1443 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1444 // does not overflow" restricted to the 0th iteration. Therefore we only need 1445 // to check for (1) and (2). 1446 // 1447 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1448 // is `Delta` (defined below). 1449 // 1450 template <typename ExtendOpTy> 1451 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1452 const SCEV *Step, 1453 const Loop *L) { 1454 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1455 1456 // We restrict `Start` to a constant to prevent SCEV from spending too much 1457 // time here. It is correct (but more expensive) to continue with a 1458 // non-constant `Start` and do a general SCEV subtraction to compute 1459 // `PreStart` below. 1460 // 1461 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1462 if (!StartC) 1463 return false; 1464 1465 APInt StartAI = StartC->getAPInt(); 1466 1467 for (unsigned Delta : {-2, -1, 1, 2}) { 1468 const SCEV *PreStart = getConstant(StartAI - Delta); 1469 1470 FoldingSetNodeID ID; 1471 ID.AddInteger(scAddRecExpr); 1472 ID.AddPointer(PreStart); 1473 ID.AddPointer(Step); 1474 ID.AddPointer(L); 1475 void *IP = nullptr; 1476 const auto *PreAR = 1477 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1478 1479 // Give up if we don't already have the add recurrence we need because 1480 // actually constructing an add recurrence is relatively expensive. 1481 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1482 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1483 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1484 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1485 DeltaS, &Pred, this); 1486 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1487 return true; 1488 } 1489 } 1490 1491 return false; 1492 } 1493 1494 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1495 Type *Ty) { 1496 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1497 "This is not an extending conversion!"); 1498 assert(isSCEVable(Ty) && 1499 "This is not a conversion to a SCEVable type!"); 1500 Ty = getEffectiveSCEVType(Ty); 1501 1502 // Fold if the operand is constant. 1503 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1504 return getConstant( 1505 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1506 1507 // zext(zext(x)) --> zext(x) 1508 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1509 return getZeroExtendExpr(SZ->getOperand(), Ty); 1510 1511 // Before doing any expensive analysis, check to see if we've already 1512 // computed a SCEV for this Op and Ty. 1513 FoldingSetNodeID ID; 1514 ID.AddInteger(scZeroExtend); 1515 ID.AddPointer(Op); 1516 ID.AddPointer(Ty); 1517 void *IP = nullptr; 1518 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1519 1520 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1521 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1522 // It's possible the bits taken off by the truncate were all zero bits. If 1523 // so, we should be able to simplify this further. 1524 const SCEV *X = ST->getOperand(); 1525 ConstantRange CR = getUnsignedRange(X); 1526 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1527 unsigned NewBits = getTypeSizeInBits(Ty); 1528 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1529 CR.zextOrTrunc(NewBits))) 1530 return getTruncateOrZeroExtend(X, Ty); 1531 } 1532 1533 // If the input value is a chrec scev, and we can prove that the value 1534 // did not overflow the old, smaller, value, we can zero extend all of the 1535 // operands (often constants). This allows analysis of something like 1536 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1537 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1538 if (AR->isAffine()) { 1539 const SCEV *Start = AR->getStart(); 1540 const SCEV *Step = AR->getStepRecurrence(*this); 1541 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1542 const Loop *L = AR->getLoop(); 1543 1544 if (!AR->hasNoUnsignedWrap()) { 1545 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1546 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1547 } 1548 1549 // If we have special knowledge that this addrec won't overflow, 1550 // we don't need to do any further analysis. 1551 if (AR->hasNoUnsignedWrap()) 1552 return getAddRecExpr( 1553 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1554 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1555 1556 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1557 // Note that this serves two purposes: It filters out loops that are 1558 // simply not analyzable, and it covers the case where this code is 1559 // being called from within backedge-taken count analysis, such that 1560 // attempting to ask for the backedge-taken count would likely result 1561 // in infinite recursion. In the later case, the analysis code will 1562 // cope with a conservative value, and it will take care to purge 1563 // that value once it has finished. 1564 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1565 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1566 // Manually compute the final value for AR, checking for 1567 // overflow. 1568 1569 // Check whether the backedge-taken count can be losslessly casted to 1570 // the addrec's type. The count is always unsigned. 1571 const SCEV *CastedMaxBECount = 1572 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1573 const SCEV *RecastedMaxBECount = 1574 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1575 if (MaxBECount == RecastedMaxBECount) { 1576 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1577 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1578 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1579 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1580 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1581 const SCEV *WideMaxBECount = 1582 getZeroExtendExpr(CastedMaxBECount, WideTy); 1583 const SCEV *OperandExtendedAdd = 1584 getAddExpr(WideStart, 1585 getMulExpr(WideMaxBECount, 1586 getZeroExtendExpr(Step, WideTy))); 1587 if (ZAdd == OperandExtendedAdd) { 1588 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1589 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1590 // Return the expression with the addrec on the outside. 1591 return getAddRecExpr( 1592 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1593 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1594 } 1595 // Similar to above, only this time treat the step value as signed. 1596 // This covers loops that count down. 1597 OperandExtendedAdd = 1598 getAddExpr(WideStart, 1599 getMulExpr(WideMaxBECount, 1600 getSignExtendExpr(Step, WideTy))); 1601 if (ZAdd == OperandExtendedAdd) { 1602 // Cache knowledge of AR NW, which is propagated to this AddRec. 1603 // Negative step causes unsigned wrap, but it still can't self-wrap. 1604 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1605 // Return the expression with the addrec on the outside. 1606 return getAddRecExpr( 1607 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1608 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1609 } 1610 } 1611 } 1612 1613 // Normally, in the cases we can prove no-overflow via a 1614 // backedge guarding condition, we can also compute a backedge 1615 // taken count for the loop. The exceptions are assumptions and 1616 // guards present in the loop -- SCEV is not great at exploiting 1617 // these to compute max backedge taken counts, but can still use 1618 // these to prove lack of overflow. Use this fact to avoid 1619 // doing extra work that may not pay off. 1620 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1621 !AC.assumptions().empty()) { 1622 // If the backedge is guarded by a comparison with the pre-inc 1623 // value the addrec is safe. Also, if the entry is guarded by 1624 // a comparison with the start value and the backedge is 1625 // guarded by a comparison with the post-inc value, the addrec 1626 // is safe. 1627 if (isKnownPositive(Step)) { 1628 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1629 getUnsignedRange(Step).getUnsignedMax()); 1630 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1631 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1632 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1633 AR->getPostIncExpr(*this), N))) { 1634 // Cache knowledge of AR NUW, which is propagated to this 1635 // AddRec. 1636 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1637 // Return the expression with the addrec on the outside. 1638 return getAddRecExpr( 1639 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1640 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1641 } 1642 } else if (isKnownNegative(Step)) { 1643 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1644 getSignedRange(Step).getSignedMin()); 1645 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1646 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1647 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1648 AR->getPostIncExpr(*this), N))) { 1649 // Cache knowledge of AR NW, which is propagated to this 1650 // AddRec. Negative step causes unsigned wrap, but it 1651 // still can't self-wrap. 1652 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1653 // Return the expression with the addrec on the outside. 1654 return getAddRecExpr( 1655 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1656 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1657 } 1658 } 1659 } 1660 1661 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1662 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1663 return getAddRecExpr( 1664 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1665 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1666 } 1667 } 1668 1669 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1670 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1671 if (SA->hasNoUnsignedWrap()) { 1672 // If the addition does not unsign overflow then we can, by definition, 1673 // commute the zero extension with the addition operation. 1674 SmallVector<const SCEV *, 4> Ops; 1675 for (const auto *Op : SA->operands()) 1676 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1677 return getAddExpr(Ops, SCEV::FlagNUW); 1678 } 1679 } 1680 1681 // The cast wasn't folded; create an explicit cast node. 1682 // Recompute the insert position, as it may have been invalidated. 1683 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1684 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1685 Op, Ty); 1686 UniqueSCEVs.InsertNode(S, IP); 1687 return S; 1688 } 1689 1690 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1691 Type *Ty) { 1692 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1693 "This is not an extending conversion!"); 1694 assert(isSCEVable(Ty) && 1695 "This is not a conversion to a SCEVable type!"); 1696 Ty = getEffectiveSCEVType(Ty); 1697 1698 // Fold if the operand is constant. 1699 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1700 return getConstant( 1701 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1702 1703 // sext(sext(x)) --> sext(x) 1704 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1705 return getSignExtendExpr(SS->getOperand(), Ty); 1706 1707 // sext(zext(x)) --> zext(x) 1708 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1709 return getZeroExtendExpr(SZ->getOperand(), Ty); 1710 1711 // Before doing any expensive analysis, check to see if we've already 1712 // computed a SCEV for this Op and Ty. 1713 FoldingSetNodeID ID; 1714 ID.AddInteger(scSignExtend); 1715 ID.AddPointer(Op); 1716 ID.AddPointer(Ty); 1717 void *IP = nullptr; 1718 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1719 1720 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1721 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1722 // It's possible the bits taken off by the truncate were all sign bits. If 1723 // so, we should be able to simplify this further. 1724 const SCEV *X = ST->getOperand(); 1725 ConstantRange CR = getSignedRange(X); 1726 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1727 unsigned NewBits = getTypeSizeInBits(Ty); 1728 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1729 CR.sextOrTrunc(NewBits))) 1730 return getTruncateOrSignExtend(X, Ty); 1731 } 1732 1733 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1734 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1735 if (SA->getNumOperands() == 2) { 1736 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1737 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1738 if (SMul && SC1) { 1739 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1740 const APInt &C1 = SC1->getAPInt(); 1741 const APInt &C2 = SC2->getAPInt(); 1742 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1743 C2.ugt(C1) && C2.isPowerOf2()) 1744 return getAddExpr(getSignExtendExpr(SC1, Ty), 1745 getSignExtendExpr(SMul, Ty)); 1746 } 1747 } 1748 } 1749 1750 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1751 if (SA->hasNoSignedWrap()) { 1752 // If the addition does not sign overflow then we can, by definition, 1753 // commute the sign extension with the addition operation. 1754 SmallVector<const SCEV *, 4> Ops; 1755 for (const auto *Op : SA->operands()) 1756 Ops.push_back(getSignExtendExpr(Op, Ty)); 1757 return getAddExpr(Ops, SCEV::FlagNSW); 1758 } 1759 } 1760 // If the input value is a chrec scev, and we can prove that the value 1761 // did not overflow the old, smaller, value, we can sign extend all of the 1762 // operands (often constants). This allows analysis of something like 1763 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1764 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1765 if (AR->isAffine()) { 1766 const SCEV *Start = AR->getStart(); 1767 const SCEV *Step = AR->getStepRecurrence(*this); 1768 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1769 const Loop *L = AR->getLoop(); 1770 1771 if (!AR->hasNoSignedWrap()) { 1772 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1773 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1774 } 1775 1776 // If we have special knowledge that this addrec won't overflow, 1777 // we don't need to do any further analysis. 1778 if (AR->hasNoSignedWrap()) 1779 return getAddRecExpr( 1780 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1781 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1782 1783 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1784 // Note that this serves two purposes: It filters out loops that are 1785 // simply not analyzable, and it covers the case where this code is 1786 // being called from within backedge-taken count analysis, such that 1787 // attempting to ask for the backedge-taken count would likely result 1788 // in infinite recursion. In the later case, the analysis code will 1789 // cope with a conservative value, and it will take care to purge 1790 // that value once it has finished. 1791 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1792 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1793 // Manually compute the final value for AR, checking for 1794 // overflow. 1795 1796 // Check whether the backedge-taken count can be losslessly casted to 1797 // the addrec's type. The count is always unsigned. 1798 const SCEV *CastedMaxBECount = 1799 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1800 const SCEV *RecastedMaxBECount = 1801 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1802 if (MaxBECount == RecastedMaxBECount) { 1803 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1804 // Check whether Start+Step*MaxBECount has no signed overflow. 1805 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1806 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1807 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1808 const SCEV *WideMaxBECount = 1809 getZeroExtendExpr(CastedMaxBECount, WideTy); 1810 const SCEV *OperandExtendedAdd = 1811 getAddExpr(WideStart, 1812 getMulExpr(WideMaxBECount, 1813 getSignExtendExpr(Step, WideTy))); 1814 if (SAdd == OperandExtendedAdd) { 1815 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1816 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1817 // Return the expression with the addrec on the outside. 1818 return getAddRecExpr( 1819 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1820 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1821 } 1822 // Similar to above, only this time treat the step value as unsigned. 1823 // This covers loops that count up with an unsigned step. 1824 OperandExtendedAdd = 1825 getAddExpr(WideStart, 1826 getMulExpr(WideMaxBECount, 1827 getZeroExtendExpr(Step, WideTy))); 1828 if (SAdd == OperandExtendedAdd) { 1829 // If AR wraps around then 1830 // 1831 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1832 // => SAdd != OperandExtendedAdd 1833 // 1834 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1835 // (SAdd == OperandExtendedAdd => AR is NW) 1836 1837 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1838 1839 // Return the expression with the addrec on the outside. 1840 return getAddRecExpr( 1841 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1842 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1843 } 1844 } 1845 } 1846 1847 // Normally, in the cases we can prove no-overflow via a 1848 // backedge guarding condition, we can also compute a backedge 1849 // taken count for the loop. The exceptions are assumptions and 1850 // guards present in the loop -- SCEV is not great at exploiting 1851 // these to compute max backedge taken counts, but can still use 1852 // these to prove lack of overflow. Use this fact to avoid 1853 // doing extra work that may not pay off. 1854 1855 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1856 !AC.assumptions().empty()) { 1857 // If the backedge is guarded by a comparison with the pre-inc 1858 // value the addrec is safe. Also, if the entry is guarded by 1859 // a comparison with the start value and the backedge is 1860 // guarded by a comparison with the post-inc value, the addrec 1861 // is safe. 1862 ICmpInst::Predicate Pred; 1863 const SCEV *OverflowLimit = 1864 getSignedOverflowLimitForStep(Step, &Pred, this); 1865 if (OverflowLimit && 1866 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1867 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1868 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1869 OverflowLimit)))) { 1870 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1871 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1872 return getAddRecExpr( 1873 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1874 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1875 } 1876 } 1877 1878 // If Start and Step are constants, check if we can apply this 1879 // transformation: 1880 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1881 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1882 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1883 if (SC1 && SC2) { 1884 const APInt &C1 = SC1->getAPInt(); 1885 const APInt &C2 = SC2->getAPInt(); 1886 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1887 C2.isPowerOf2()) { 1888 Start = getSignExtendExpr(Start, Ty); 1889 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1890 AR->getNoWrapFlags()); 1891 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1892 } 1893 } 1894 1895 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1896 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1897 return getAddRecExpr( 1898 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1899 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1900 } 1901 } 1902 1903 // If the input value is provably positive and we could not simplify 1904 // away the sext build a zext instead. 1905 if (isKnownNonNegative(Op)) 1906 return getZeroExtendExpr(Op, Ty); 1907 1908 // The cast wasn't folded; create an explicit cast node. 1909 // Recompute the insert position, as it may have been invalidated. 1910 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1911 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1912 Op, Ty); 1913 UniqueSCEVs.InsertNode(S, IP); 1914 return S; 1915 } 1916 1917 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1918 /// unspecified bits out to the given type. 1919 /// 1920 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1921 Type *Ty) { 1922 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1923 "This is not an extending conversion!"); 1924 assert(isSCEVable(Ty) && 1925 "This is not a conversion to a SCEVable type!"); 1926 Ty = getEffectiveSCEVType(Ty); 1927 1928 // Sign-extend negative constants. 1929 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1930 if (SC->getAPInt().isNegative()) 1931 return getSignExtendExpr(Op, Ty); 1932 1933 // Peel off a truncate cast. 1934 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1935 const SCEV *NewOp = T->getOperand(); 1936 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1937 return getAnyExtendExpr(NewOp, Ty); 1938 return getTruncateOrNoop(NewOp, Ty); 1939 } 1940 1941 // Next try a zext cast. If the cast is folded, use it. 1942 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1943 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1944 return ZExt; 1945 1946 // Next try a sext cast. If the cast is folded, use it. 1947 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1948 if (!isa<SCEVSignExtendExpr>(SExt)) 1949 return SExt; 1950 1951 // Force the cast to be folded into the operands of an addrec. 1952 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1953 SmallVector<const SCEV *, 4> Ops; 1954 for (const SCEV *Op : AR->operands()) 1955 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1956 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1957 } 1958 1959 // If the expression is obviously signed, use the sext cast value. 1960 if (isa<SCEVSMaxExpr>(Op)) 1961 return SExt; 1962 1963 // Absent any other information, use the zext cast value. 1964 return ZExt; 1965 } 1966 1967 /// Process the given Ops list, which is a list of operands to be added under 1968 /// the given scale, update the given map. This is a helper function for 1969 /// getAddRecExpr. As an example of what it does, given a sequence of operands 1970 /// that would form an add expression like this: 1971 /// 1972 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1973 /// 1974 /// where A and B are constants, update the map with these values: 1975 /// 1976 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1977 /// 1978 /// and add 13 + A*B*29 to AccumulatedConstant. 1979 /// This will allow getAddRecExpr to produce this: 1980 /// 1981 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1982 /// 1983 /// This form often exposes folding opportunities that are hidden in 1984 /// the original operand list. 1985 /// 1986 /// Return true iff it appears that any interesting folding opportunities 1987 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1988 /// the common case where no interesting opportunities are present, and 1989 /// is also used as a check to avoid infinite recursion. 1990 /// 1991 static bool 1992 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1993 SmallVectorImpl<const SCEV *> &NewOps, 1994 APInt &AccumulatedConstant, 1995 const SCEV *const *Ops, size_t NumOperands, 1996 const APInt &Scale, 1997 ScalarEvolution &SE) { 1998 bool Interesting = false; 1999 2000 // Iterate over the add operands. They are sorted, with constants first. 2001 unsigned i = 0; 2002 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2003 ++i; 2004 // Pull a buried constant out to the outside. 2005 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2006 Interesting = true; 2007 AccumulatedConstant += Scale * C->getAPInt(); 2008 } 2009 2010 // Next comes everything else. We're especially interested in multiplies 2011 // here, but they're in the middle, so just visit the rest with one loop. 2012 for (; i != NumOperands; ++i) { 2013 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2014 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2015 APInt NewScale = 2016 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2017 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2018 // A multiplication of a constant with another add; recurse. 2019 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2020 Interesting |= 2021 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2022 Add->op_begin(), Add->getNumOperands(), 2023 NewScale, SE); 2024 } else { 2025 // A multiplication of a constant with some other value. Update 2026 // the map. 2027 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2028 const SCEV *Key = SE.getMulExpr(MulOps); 2029 auto Pair = M.insert({Key, NewScale}); 2030 if (Pair.second) { 2031 NewOps.push_back(Pair.first->first); 2032 } else { 2033 Pair.first->second += NewScale; 2034 // The map already had an entry for this value, which may indicate 2035 // a folding opportunity. 2036 Interesting = true; 2037 } 2038 } 2039 } else { 2040 // An ordinary operand. Update the map. 2041 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2042 M.insert({Ops[i], Scale}); 2043 if (Pair.second) { 2044 NewOps.push_back(Pair.first->first); 2045 } else { 2046 Pair.first->second += Scale; 2047 // The map already had an entry for this value, which may indicate 2048 // a folding opportunity. 2049 Interesting = true; 2050 } 2051 } 2052 } 2053 2054 return Interesting; 2055 } 2056 2057 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2058 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2059 // can't-overflow flags for the operation if possible. 2060 static SCEV::NoWrapFlags 2061 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2062 const SmallVectorImpl<const SCEV *> &Ops, 2063 SCEV::NoWrapFlags Flags) { 2064 using namespace std::placeholders; 2065 typedef OverflowingBinaryOperator OBO; 2066 2067 bool CanAnalyze = 2068 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2069 (void)CanAnalyze; 2070 assert(CanAnalyze && "don't call from other places!"); 2071 2072 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2073 SCEV::NoWrapFlags SignOrUnsignWrap = 2074 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2075 2076 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2077 auto IsKnownNonNegative = [&](const SCEV *S) { 2078 return SE->isKnownNonNegative(S); 2079 }; 2080 2081 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2082 Flags = 2083 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2084 2085 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2086 2087 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 2088 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 2089 2090 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2091 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2092 2093 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2094 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2095 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2096 Instruction::Add, C, OBO::NoSignedWrap); 2097 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2098 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2099 } 2100 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2101 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2102 Instruction::Add, C, OBO::NoUnsignedWrap); 2103 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2104 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2105 } 2106 } 2107 2108 return Flags; 2109 } 2110 2111 /// Get a canonical add expression, or something simpler if possible. 2112 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2113 SCEV::NoWrapFlags Flags, 2114 unsigned Depth) { 2115 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2116 "only nuw or nsw allowed"); 2117 assert(!Ops.empty() && "Cannot get empty add!"); 2118 if (Ops.size() == 1) return Ops[0]; 2119 #ifndef NDEBUG 2120 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2121 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2122 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2123 "SCEVAddExpr operand types don't match!"); 2124 #endif 2125 2126 // Sort by complexity, this groups all similar expression types together. 2127 GroupByComplexity(Ops, &LI); 2128 2129 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2130 2131 // If there are any constants, fold them together. 2132 unsigned Idx = 0; 2133 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2134 ++Idx; 2135 assert(Idx < Ops.size()); 2136 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2137 // We found two constants, fold them together! 2138 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2139 if (Ops.size() == 2) return Ops[0]; 2140 Ops.erase(Ops.begin()+1); // Erase the folded element 2141 LHSC = cast<SCEVConstant>(Ops[0]); 2142 } 2143 2144 // If we are left with a constant zero being added, strip it off. 2145 if (LHSC->getValue()->isZero()) { 2146 Ops.erase(Ops.begin()); 2147 --Idx; 2148 } 2149 2150 if (Ops.size() == 1) return Ops[0]; 2151 } 2152 2153 // Limit recursion calls depth 2154 if (Depth > MaxAddExprDepth) 2155 return getOrCreateAddExpr(Ops, Flags); 2156 2157 // Okay, check to see if the same value occurs in the operand list more than 2158 // once. If so, merge them together into an multiply expression. Since we 2159 // sorted the list, these values are required to be adjacent. 2160 Type *Ty = Ops[0]->getType(); 2161 bool FoundMatch = false; 2162 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2163 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2164 // Scan ahead to count how many equal operands there are. 2165 unsigned Count = 2; 2166 while (i+Count != e && Ops[i+Count] == Ops[i]) 2167 ++Count; 2168 // Merge the values into a multiply. 2169 const SCEV *Scale = getConstant(Ty, Count); 2170 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2171 if (Ops.size() == Count) 2172 return Mul; 2173 Ops[i] = Mul; 2174 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2175 --i; e -= Count - 1; 2176 FoundMatch = true; 2177 } 2178 if (FoundMatch) 2179 return getAddExpr(Ops, Flags); 2180 2181 // Check for truncates. If all the operands are truncated from the same 2182 // type, see if factoring out the truncate would permit the result to be 2183 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2184 // if the contents of the resulting outer trunc fold to something simple. 2185 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2186 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2187 Type *DstType = Trunc->getType(); 2188 Type *SrcType = Trunc->getOperand()->getType(); 2189 SmallVector<const SCEV *, 8> LargeOps; 2190 bool Ok = true; 2191 // Check all the operands to see if they can be represented in the 2192 // source type of the truncate. 2193 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2194 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2195 if (T->getOperand()->getType() != SrcType) { 2196 Ok = false; 2197 break; 2198 } 2199 LargeOps.push_back(T->getOperand()); 2200 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2201 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2202 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2203 SmallVector<const SCEV *, 8> LargeMulOps; 2204 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2205 if (const SCEVTruncateExpr *T = 2206 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2207 if (T->getOperand()->getType() != SrcType) { 2208 Ok = false; 2209 break; 2210 } 2211 LargeMulOps.push_back(T->getOperand()); 2212 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2213 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2214 } else { 2215 Ok = false; 2216 break; 2217 } 2218 } 2219 if (Ok) 2220 LargeOps.push_back(getMulExpr(LargeMulOps)); 2221 } else { 2222 Ok = false; 2223 break; 2224 } 2225 } 2226 if (Ok) { 2227 // Evaluate the expression in the larger type. 2228 const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1); 2229 // If it folds to something simple, use it. Otherwise, don't. 2230 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2231 return getTruncateExpr(Fold, DstType); 2232 } 2233 } 2234 2235 // Skip past any other cast SCEVs. 2236 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2237 ++Idx; 2238 2239 // If there are add operands they would be next. 2240 if (Idx < Ops.size()) { 2241 bool DeletedAdd = false; 2242 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2243 if (Ops.size() > AddOpsInlineThreshold || 2244 Add->getNumOperands() > AddOpsInlineThreshold) 2245 break; 2246 // If we have an add, expand the add operands onto the end of the operands 2247 // list. 2248 Ops.erase(Ops.begin()+Idx); 2249 Ops.append(Add->op_begin(), Add->op_end()); 2250 DeletedAdd = true; 2251 } 2252 2253 // If we deleted at least one add, we added operands to the end of the list, 2254 // and they are not necessarily sorted. Recurse to resort and resimplify 2255 // any operands we just acquired. 2256 if (DeletedAdd) 2257 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2258 } 2259 2260 // Skip over the add expression until we get to a multiply. 2261 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2262 ++Idx; 2263 2264 // Check to see if there are any folding opportunities present with 2265 // operands multiplied by constant values. 2266 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2267 uint64_t BitWidth = getTypeSizeInBits(Ty); 2268 DenseMap<const SCEV *, APInt> M; 2269 SmallVector<const SCEV *, 8> NewOps; 2270 APInt AccumulatedConstant(BitWidth, 0); 2271 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2272 Ops.data(), Ops.size(), 2273 APInt(BitWidth, 1), *this)) { 2274 struct APIntCompare { 2275 bool operator()(const APInt &LHS, const APInt &RHS) const { 2276 return LHS.ult(RHS); 2277 } 2278 }; 2279 2280 // Some interesting folding opportunity is present, so its worthwhile to 2281 // re-generate the operands list. Group the operands by constant scale, 2282 // to avoid multiplying by the same constant scale multiple times. 2283 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2284 for (const SCEV *NewOp : NewOps) 2285 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2286 // Re-generate the operands list. 2287 Ops.clear(); 2288 if (AccumulatedConstant != 0) 2289 Ops.push_back(getConstant(AccumulatedConstant)); 2290 for (auto &MulOp : MulOpLists) 2291 if (MulOp.first != 0) 2292 Ops.push_back(getMulExpr( 2293 getConstant(MulOp.first), 2294 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1))); 2295 if (Ops.empty()) 2296 return getZero(Ty); 2297 if (Ops.size() == 1) 2298 return Ops[0]; 2299 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2300 } 2301 } 2302 2303 // If we are adding something to a multiply expression, make sure the 2304 // something is not already an operand of the multiply. If so, merge it into 2305 // the multiply. 2306 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2307 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2308 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2309 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2310 if (isa<SCEVConstant>(MulOpSCEV)) 2311 continue; 2312 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2313 if (MulOpSCEV == Ops[AddOp]) { 2314 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2315 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2316 if (Mul->getNumOperands() != 2) { 2317 // If the multiply has more than two operands, we must get the 2318 // Y*Z term. 2319 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2320 Mul->op_begin()+MulOp); 2321 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2322 InnerMul = getMulExpr(MulOps); 2323 } 2324 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2325 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2326 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2327 if (Ops.size() == 2) return OuterMul; 2328 if (AddOp < Idx) { 2329 Ops.erase(Ops.begin()+AddOp); 2330 Ops.erase(Ops.begin()+Idx-1); 2331 } else { 2332 Ops.erase(Ops.begin()+Idx); 2333 Ops.erase(Ops.begin()+AddOp-1); 2334 } 2335 Ops.push_back(OuterMul); 2336 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2337 } 2338 2339 // Check this multiply against other multiplies being added together. 2340 for (unsigned OtherMulIdx = Idx+1; 2341 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2342 ++OtherMulIdx) { 2343 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2344 // If MulOp occurs in OtherMul, we can fold the two multiplies 2345 // together. 2346 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2347 OMulOp != e; ++OMulOp) 2348 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2349 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2350 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2351 if (Mul->getNumOperands() != 2) { 2352 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2353 Mul->op_begin()+MulOp); 2354 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2355 InnerMul1 = getMulExpr(MulOps); 2356 } 2357 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2358 if (OtherMul->getNumOperands() != 2) { 2359 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2360 OtherMul->op_begin()+OMulOp); 2361 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2362 InnerMul2 = getMulExpr(MulOps); 2363 } 2364 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2365 const SCEV *InnerMulSum = 2366 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2367 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2368 if (Ops.size() == 2) return OuterMul; 2369 Ops.erase(Ops.begin()+Idx); 2370 Ops.erase(Ops.begin()+OtherMulIdx-1); 2371 Ops.push_back(OuterMul); 2372 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2373 } 2374 } 2375 } 2376 } 2377 2378 // If there are any add recurrences in the operands list, see if any other 2379 // added values are loop invariant. If so, we can fold them into the 2380 // recurrence. 2381 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2382 ++Idx; 2383 2384 // Scan over all recurrences, trying to fold loop invariants into them. 2385 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2386 // Scan all of the other operands to this add and add them to the vector if 2387 // they are loop invariant w.r.t. the recurrence. 2388 SmallVector<const SCEV *, 8> LIOps; 2389 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2390 const Loop *AddRecLoop = AddRec->getLoop(); 2391 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2392 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2393 LIOps.push_back(Ops[i]); 2394 Ops.erase(Ops.begin()+i); 2395 --i; --e; 2396 } 2397 2398 // If we found some loop invariants, fold them into the recurrence. 2399 if (!LIOps.empty()) { 2400 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2401 LIOps.push_back(AddRec->getStart()); 2402 2403 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2404 AddRec->op_end()); 2405 // This follows from the fact that the no-wrap flags on the outer add 2406 // expression are applicable on the 0th iteration, when the add recurrence 2407 // will be equal to its start value. 2408 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2409 2410 // Build the new addrec. Propagate the NUW and NSW flags if both the 2411 // outer add and the inner addrec are guaranteed to have no overflow. 2412 // Always propagate NW. 2413 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2414 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2415 2416 // If all of the other operands were loop invariant, we are done. 2417 if (Ops.size() == 1) return NewRec; 2418 2419 // Otherwise, add the folded AddRec by the non-invariant parts. 2420 for (unsigned i = 0;; ++i) 2421 if (Ops[i] == AddRec) { 2422 Ops[i] = NewRec; 2423 break; 2424 } 2425 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2426 } 2427 2428 // Okay, if there weren't any loop invariants to be folded, check to see if 2429 // there are multiple AddRec's with the same loop induction variable being 2430 // added together. If so, we can fold them. 2431 for (unsigned OtherIdx = Idx+1; 2432 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2433 ++OtherIdx) 2434 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2435 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2436 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2437 AddRec->op_end()); 2438 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2439 ++OtherIdx) 2440 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2441 if (OtherAddRec->getLoop() == AddRecLoop) { 2442 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2443 i != e; ++i) { 2444 if (i >= AddRecOps.size()) { 2445 AddRecOps.append(OtherAddRec->op_begin()+i, 2446 OtherAddRec->op_end()); 2447 break; 2448 } 2449 SmallVector<const SCEV *, 2> TwoOps = { 2450 AddRecOps[i], OtherAddRec->getOperand(i)}; 2451 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2452 } 2453 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2454 } 2455 // Step size has changed, so we cannot guarantee no self-wraparound. 2456 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2457 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2458 } 2459 2460 // Otherwise couldn't fold anything into this recurrence. Move onto the 2461 // next one. 2462 } 2463 2464 // Okay, it looks like we really DO need an add expr. Check to see if we 2465 // already have one, otherwise create a new one. 2466 return getOrCreateAddExpr(Ops, Flags); 2467 } 2468 2469 const SCEV * 2470 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2471 SCEV::NoWrapFlags Flags) { 2472 FoldingSetNodeID ID; 2473 ID.AddInteger(scAddExpr); 2474 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2475 ID.AddPointer(Ops[i]); 2476 void *IP = nullptr; 2477 SCEVAddExpr *S = 2478 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2479 if (!S) { 2480 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2481 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2482 S = new (SCEVAllocator) 2483 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2484 UniqueSCEVs.InsertNode(S, IP); 2485 } 2486 S->setNoWrapFlags(Flags); 2487 return S; 2488 } 2489 2490 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2491 uint64_t k = i*j; 2492 if (j > 1 && k / j != i) Overflow = true; 2493 return k; 2494 } 2495 2496 /// Compute the result of "n choose k", the binomial coefficient. If an 2497 /// intermediate computation overflows, Overflow will be set and the return will 2498 /// be garbage. Overflow is not cleared on absence of overflow. 2499 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2500 // We use the multiplicative formula: 2501 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2502 // At each iteration, we take the n-th term of the numeral and divide by the 2503 // (k-n)th term of the denominator. This division will always produce an 2504 // integral result, and helps reduce the chance of overflow in the 2505 // intermediate computations. However, we can still overflow even when the 2506 // final result would fit. 2507 2508 if (n == 0 || n == k) return 1; 2509 if (k > n) return 0; 2510 2511 if (k > n/2) 2512 k = n-k; 2513 2514 uint64_t r = 1; 2515 for (uint64_t i = 1; i <= k; ++i) { 2516 r = umul_ov(r, n-(i-1), Overflow); 2517 r /= i; 2518 } 2519 return r; 2520 } 2521 2522 /// Determine if any of the operands in this SCEV are a constant or if 2523 /// any of the add or multiply expressions in this SCEV contain a constant. 2524 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2525 SmallVector<const SCEV *, 4> Ops; 2526 Ops.push_back(StartExpr); 2527 while (!Ops.empty()) { 2528 const SCEV *CurrentExpr = Ops.pop_back_val(); 2529 if (isa<SCEVConstant>(*CurrentExpr)) 2530 return true; 2531 2532 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2533 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2534 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2535 } 2536 } 2537 return false; 2538 } 2539 2540 /// Get a canonical multiply expression, or something simpler if possible. 2541 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2542 SCEV::NoWrapFlags Flags) { 2543 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2544 "only nuw or nsw allowed"); 2545 assert(!Ops.empty() && "Cannot get empty mul!"); 2546 if (Ops.size() == 1) return Ops[0]; 2547 #ifndef NDEBUG 2548 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2549 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2550 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2551 "SCEVMulExpr operand types don't match!"); 2552 #endif 2553 2554 // Sort by complexity, this groups all similar expression types together. 2555 GroupByComplexity(Ops, &LI); 2556 2557 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2558 2559 // If there are any constants, fold them together. 2560 unsigned Idx = 0; 2561 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2562 2563 // C1*(C2+V) -> C1*C2 + C1*V 2564 if (Ops.size() == 2) 2565 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2566 // If any of Add's ops are Adds or Muls with a constant, 2567 // apply this transformation as well. 2568 if (Add->getNumOperands() == 2) 2569 if (containsConstantSomewhere(Add)) 2570 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2571 getMulExpr(LHSC, Add->getOperand(1))); 2572 2573 ++Idx; 2574 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2575 // We found two constants, fold them together! 2576 ConstantInt *Fold = 2577 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2578 Ops[0] = getConstant(Fold); 2579 Ops.erase(Ops.begin()+1); // Erase the folded element 2580 if (Ops.size() == 1) return Ops[0]; 2581 LHSC = cast<SCEVConstant>(Ops[0]); 2582 } 2583 2584 // If we are left with a constant one being multiplied, strip it off. 2585 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2586 Ops.erase(Ops.begin()); 2587 --Idx; 2588 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2589 // If we have a multiply of zero, it will always be zero. 2590 return Ops[0]; 2591 } else if (Ops[0]->isAllOnesValue()) { 2592 // If we have a mul by -1 of an add, try distributing the -1 among the 2593 // add operands. 2594 if (Ops.size() == 2) { 2595 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2596 SmallVector<const SCEV *, 4> NewOps; 2597 bool AnyFolded = false; 2598 for (const SCEV *AddOp : Add->operands()) { 2599 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2600 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2601 NewOps.push_back(Mul); 2602 } 2603 if (AnyFolded) 2604 return getAddExpr(NewOps); 2605 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2606 // Negation preserves a recurrence's no self-wrap property. 2607 SmallVector<const SCEV *, 4> Operands; 2608 for (const SCEV *AddRecOp : AddRec->operands()) 2609 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2610 2611 return getAddRecExpr(Operands, AddRec->getLoop(), 2612 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2613 } 2614 } 2615 } 2616 2617 if (Ops.size() == 1) 2618 return Ops[0]; 2619 } 2620 2621 // Skip over the add expression until we get to a multiply. 2622 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2623 ++Idx; 2624 2625 // If there are mul operands inline them all into this expression. 2626 if (Idx < Ops.size()) { 2627 bool DeletedMul = false; 2628 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2629 if (Ops.size() > MulOpsInlineThreshold) 2630 break; 2631 // If we have an mul, expand the mul operands onto the end of the operands 2632 // list. 2633 Ops.erase(Ops.begin()+Idx); 2634 Ops.append(Mul->op_begin(), Mul->op_end()); 2635 DeletedMul = true; 2636 } 2637 2638 // If we deleted at least one mul, we added operands to the end of the list, 2639 // and they are not necessarily sorted. Recurse to resort and resimplify 2640 // any operands we just acquired. 2641 if (DeletedMul) 2642 return getMulExpr(Ops); 2643 } 2644 2645 // If there are any add recurrences in the operands list, see if any other 2646 // added values are loop invariant. If so, we can fold them into the 2647 // recurrence. 2648 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2649 ++Idx; 2650 2651 // Scan over all recurrences, trying to fold loop invariants into them. 2652 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2653 // Scan all of the other operands to this mul and add them to the vector if 2654 // they are loop invariant w.r.t. the recurrence. 2655 SmallVector<const SCEV *, 8> LIOps; 2656 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2657 const Loop *AddRecLoop = AddRec->getLoop(); 2658 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2659 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2660 LIOps.push_back(Ops[i]); 2661 Ops.erase(Ops.begin()+i); 2662 --i; --e; 2663 } 2664 2665 // If we found some loop invariants, fold them into the recurrence. 2666 if (!LIOps.empty()) { 2667 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2668 SmallVector<const SCEV *, 4> NewOps; 2669 NewOps.reserve(AddRec->getNumOperands()); 2670 const SCEV *Scale = getMulExpr(LIOps); 2671 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2672 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2673 2674 // Build the new addrec. Propagate the NUW and NSW flags if both the 2675 // outer mul and the inner addrec are guaranteed to have no overflow. 2676 // 2677 // No self-wrap cannot be guaranteed after changing the step size, but 2678 // will be inferred if either NUW or NSW is true. 2679 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2680 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2681 2682 // If all of the other operands were loop invariant, we are done. 2683 if (Ops.size() == 1) return NewRec; 2684 2685 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2686 for (unsigned i = 0;; ++i) 2687 if (Ops[i] == AddRec) { 2688 Ops[i] = NewRec; 2689 break; 2690 } 2691 return getMulExpr(Ops); 2692 } 2693 2694 // Okay, if there weren't any loop invariants to be folded, check to see if 2695 // there are multiple AddRec's with the same loop induction variable being 2696 // multiplied together. If so, we can fold them. 2697 2698 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2699 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2700 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2701 // ]]],+,...up to x=2n}. 2702 // Note that the arguments to choose() are always integers with values 2703 // known at compile time, never SCEV objects. 2704 // 2705 // The implementation avoids pointless extra computations when the two 2706 // addrec's are of different length (mathematically, it's equivalent to 2707 // an infinite stream of zeros on the right). 2708 bool OpsModified = false; 2709 for (unsigned OtherIdx = Idx+1; 2710 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2711 ++OtherIdx) { 2712 const SCEVAddRecExpr *OtherAddRec = 2713 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2714 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2715 continue; 2716 2717 bool Overflow = false; 2718 Type *Ty = AddRec->getType(); 2719 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2720 SmallVector<const SCEV*, 7> AddRecOps; 2721 for (int x = 0, xe = AddRec->getNumOperands() + 2722 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2723 const SCEV *Term = getZero(Ty); 2724 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2725 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2726 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2727 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2728 z < ze && !Overflow; ++z) { 2729 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2730 uint64_t Coeff; 2731 if (LargerThan64Bits) 2732 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2733 else 2734 Coeff = Coeff1*Coeff2; 2735 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2736 const SCEV *Term1 = AddRec->getOperand(y-z); 2737 const SCEV *Term2 = OtherAddRec->getOperand(z); 2738 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2739 } 2740 } 2741 AddRecOps.push_back(Term); 2742 } 2743 if (!Overflow) { 2744 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2745 SCEV::FlagAnyWrap); 2746 if (Ops.size() == 2) return NewAddRec; 2747 Ops[Idx] = NewAddRec; 2748 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2749 OpsModified = true; 2750 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2751 if (!AddRec) 2752 break; 2753 } 2754 } 2755 if (OpsModified) 2756 return getMulExpr(Ops); 2757 2758 // Otherwise couldn't fold anything into this recurrence. Move onto the 2759 // next one. 2760 } 2761 2762 // Okay, it looks like we really DO need an mul expr. Check to see if we 2763 // already have one, otherwise create a new one. 2764 FoldingSetNodeID ID; 2765 ID.AddInteger(scMulExpr); 2766 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2767 ID.AddPointer(Ops[i]); 2768 void *IP = nullptr; 2769 SCEVMulExpr *S = 2770 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2771 if (!S) { 2772 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2773 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2774 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2775 O, Ops.size()); 2776 UniqueSCEVs.InsertNode(S, IP); 2777 } 2778 S->setNoWrapFlags(Flags); 2779 return S; 2780 } 2781 2782 /// Get a canonical unsigned division expression, or something simpler if 2783 /// possible. 2784 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2785 const SCEV *RHS) { 2786 assert(getEffectiveSCEVType(LHS->getType()) == 2787 getEffectiveSCEVType(RHS->getType()) && 2788 "SCEVUDivExpr operand types don't match!"); 2789 2790 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2791 if (RHSC->getValue()->equalsInt(1)) 2792 return LHS; // X udiv 1 --> x 2793 // If the denominator is zero, the result of the udiv is undefined. Don't 2794 // try to analyze it, because the resolution chosen here may differ from 2795 // the resolution chosen in other parts of the compiler. 2796 if (!RHSC->getValue()->isZero()) { 2797 // Determine if the division can be folded into the operands of 2798 // its operands. 2799 // TODO: Generalize this to non-constants by using known-bits information. 2800 Type *Ty = LHS->getType(); 2801 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2802 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2803 // For non-power-of-two values, effectively round the value up to the 2804 // nearest power of two. 2805 if (!RHSC->getAPInt().isPowerOf2()) 2806 ++MaxShiftAmt; 2807 IntegerType *ExtTy = 2808 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2809 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2810 if (const SCEVConstant *Step = 2811 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2812 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2813 const APInt &StepInt = Step->getAPInt(); 2814 const APInt &DivInt = RHSC->getAPInt(); 2815 if (!StepInt.urem(DivInt) && 2816 getZeroExtendExpr(AR, ExtTy) == 2817 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2818 getZeroExtendExpr(Step, ExtTy), 2819 AR->getLoop(), SCEV::FlagAnyWrap)) { 2820 SmallVector<const SCEV *, 4> Operands; 2821 for (const SCEV *Op : AR->operands()) 2822 Operands.push_back(getUDivExpr(Op, RHS)); 2823 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2824 } 2825 /// Get a canonical UDivExpr for a recurrence. 2826 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2827 // We can currently only fold X%N if X is constant. 2828 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2829 if (StartC && !DivInt.urem(StepInt) && 2830 getZeroExtendExpr(AR, ExtTy) == 2831 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2832 getZeroExtendExpr(Step, ExtTy), 2833 AR->getLoop(), SCEV::FlagAnyWrap)) { 2834 const APInt &StartInt = StartC->getAPInt(); 2835 const APInt &StartRem = StartInt.urem(StepInt); 2836 if (StartRem != 0) 2837 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2838 AR->getLoop(), SCEV::FlagNW); 2839 } 2840 } 2841 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2842 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2843 SmallVector<const SCEV *, 4> Operands; 2844 for (const SCEV *Op : M->operands()) 2845 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2846 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2847 // Find an operand that's safely divisible. 2848 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2849 const SCEV *Op = M->getOperand(i); 2850 const SCEV *Div = getUDivExpr(Op, RHSC); 2851 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2852 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2853 M->op_end()); 2854 Operands[i] = Div; 2855 return getMulExpr(Operands); 2856 } 2857 } 2858 } 2859 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2860 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2861 SmallVector<const SCEV *, 4> Operands; 2862 for (const SCEV *Op : A->operands()) 2863 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2864 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2865 Operands.clear(); 2866 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2867 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2868 if (isa<SCEVUDivExpr>(Op) || 2869 getMulExpr(Op, RHS) != A->getOperand(i)) 2870 break; 2871 Operands.push_back(Op); 2872 } 2873 if (Operands.size() == A->getNumOperands()) 2874 return getAddExpr(Operands); 2875 } 2876 } 2877 2878 // Fold if both operands are constant. 2879 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2880 Constant *LHSCV = LHSC->getValue(); 2881 Constant *RHSCV = RHSC->getValue(); 2882 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2883 RHSCV))); 2884 } 2885 } 2886 } 2887 2888 FoldingSetNodeID ID; 2889 ID.AddInteger(scUDivExpr); 2890 ID.AddPointer(LHS); 2891 ID.AddPointer(RHS); 2892 void *IP = nullptr; 2893 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2894 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2895 LHS, RHS); 2896 UniqueSCEVs.InsertNode(S, IP); 2897 return S; 2898 } 2899 2900 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2901 APInt A = C1->getAPInt().abs(); 2902 APInt B = C2->getAPInt().abs(); 2903 uint32_t ABW = A.getBitWidth(); 2904 uint32_t BBW = B.getBitWidth(); 2905 2906 if (ABW > BBW) 2907 B = B.zext(ABW); 2908 else if (ABW < BBW) 2909 A = A.zext(BBW); 2910 2911 return APIntOps::GreatestCommonDivisor(A, B); 2912 } 2913 2914 /// Get a canonical unsigned division expression, or something simpler if 2915 /// possible. There is no representation for an exact udiv in SCEV IR, but we 2916 /// can attempt to remove factors from the LHS and RHS. We can't do this when 2917 /// it's not exact because the udiv may be clearing bits. 2918 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2919 const SCEV *RHS) { 2920 // TODO: we could try to find factors in all sorts of things, but for now we 2921 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2922 // end of this file for inspiration. 2923 2924 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2925 if (!Mul || !Mul->hasNoUnsignedWrap()) 2926 return getUDivExpr(LHS, RHS); 2927 2928 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2929 // If the mulexpr multiplies by a constant, then that constant must be the 2930 // first element of the mulexpr. 2931 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2932 if (LHSCst == RHSCst) { 2933 SmallVector<const SCEV *, 2> Operands; 2934 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2935 return getMulExpr(Operands); 2936 } 2937 2938 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2939 // that there's a factor provided by one of the other terms. We need to 2940 // check. 2941 APInt Factor = gcd(LHSCst, RHSCst); 2942 if (!Factor.isIntN(1)) { 2943 LHSCst = 2944 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2945 RHSCst = 2946 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2947 SmallVector<const SCEV *, 2> Operands; 2948 Operands.push_back(LHSCst); 2949 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2950 LHS = getMulExpr(Operands); 2951 RHS = RHSCst; 2952 Mul = dyn_cast<SCEVMulExpr>(LHS); 2953 if (!Mul) 2954 return getUDivExactExpr(LHS, RHS); 2955 } 2956 } 2957 } 2958 2959 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2960 if (Mul->getOperand(i) == RHS) { 2961 SmallVector<const SCEV *, 2> Operands; 2962 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2963 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2964 return getMulExpr(Operands); 2965 } 2966 } 2967 2968 return getUDivExpr(LHS, RHS); 2969 } 2970 2971 /// Get an add recurrence expression for the specified loop. Simplify the 2972 /// expression as much as possible. 2973 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2974 const Loop *L, 2975 SCEV::NoWrapFlags Flags) { 2976 SmallVector<const SCEV *, 4> Operands; 2977 Operands.push_back(Start); 2978 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2979 if (StepChrec->getLoop() == L) { 2980 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2981 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2982 } 2983 2984 Operands.push_back(Step); 2985 return getAddRecExpr(Operands, L, Flags); 2986 } 2987 2988 /// Get an add recurrence expression for the specified loop. Simplify the 2989 /// expression as much as possible. 2990 const SCEV * 2991 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2992 const Loop *L, SCEV::NoWrapFlags Flags) { 2993 if (Operands.size() == 1) return Operands[0]; 2994 #ifndef NDEBUG 2995 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2996 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2997 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2998 "SCEVAddRecExpr operand types don't match!"); 2999 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3000 assert(isLoopInvariant(Operands[i], L) && 3001 "SCEVAddRecExpr operand is not loop-invariant!"); 3002 #endif 3003 3004 if (Operands.back()->isZero()) { 3005 Operands.pop_back(); 3006 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3007 } 3008 3009 // It's tempting to want to call getMaxBackedgeTakenCount count here and 3010 // use that information to infer NUW and NSW flags. However, computing a 3011 // BE count requires calling getAddRecExpr, so we may not yet have a 3012 // meaningful BE count at this point (and if we don't, we'd be stuck 3013 // with a SCEVCouldNotCompute as the cached BE count). 3014 3015 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3016 3017 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3018 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3019 const Loop *NestedLoop = NestedAR->getLoop(); 3020 if (L->contains(NestedLoop) 3021 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3022 : (!NestedLoop->contains(L) && 3023 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3024 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3025 NestedAR->op_end()); 3026 Operands[0] = NestedAR->getStart(); 3027 // AddRecs require their operands be loop-invariant with respect to their 3028 // loops. Don't perform this transformation if it would break this 3029 // requirement. 3030 bool AllInvariant = all_of( 3031 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3032 3033 if (AllInvariant) { 3034 // Create a recurrence for the outer loop with the same step size. 3035 // 3036 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3037 // inner recurrence has the same property. 3038 SCEV::NoWrapFlags OuterFlags = 3039 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3040 3041 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3042 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3043 return isLoopInvariant(Op, NestedLoop); 3044 }); 3045 3046 if (AllInvariant) { 3047 // Ok, both add recurrences are valid after the transformation. 3048 // 3049 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3050 // the outer recurrence has the same property. 3051 SCEV::NoWrapFlags InnerFlags = 3052 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3053 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3054 } 3055 } 3056 // Reset Operands to its original state. 3057 Operands[0] = NestedAR; 3058 } 3059 } 3060 3061 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3062 // already have one, otherwise create a new one. 3063 FoldingSetNodeID ID; 3064 ID.AddInteger(scAddRecExpr); 3065 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3066 ID.AddPointer(Operands[i]); 3067 ID.AddPointer(L); 3068 void *IP = nullptr; 3069 SCEVAddRecExpr *S = 3070 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3071 if (!S) { 3072 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 3073 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 3074 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 3075 O, Operands.size(), L); 3076 UniqueSCEVs.InsertNode(S, IP); 3077 } 3078 S->setNoWrapFlags(Flags); 3079 return S; 3080 } 3081 3082 const SCEV * 3083 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3084 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3085 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3086 // getSCEV(Base)->getType() has the same address space as Base->getType() 3087 // because SCEV::getType() preserves the address space. 3088 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3089 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3090 // instruction to its SCEV, because the Instruction may be guarded by control 3091 // flow and the no-overflow bits may not be valid for the expression in any 3092 // context. This can be fixed similarly to how these flags are handled for 3093 // adds. 3094 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3095 : SCEV::FlagAnyWrap; 3096 3097 const SCEV *TotalOffset = getZero(IntPtrTy); 3098 // The array size is unimportant. The first thing we do on CurTy is getting 3099 // its element type. 3100 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3101 for (const SCEV *IndexExpr : IndexExprs) { 3102 // Compute the (potentially symbolic) offset in bytes for this index. 3103 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3104 // For a struct, add the member offset. 3105 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3106 unsigned FieldNo = Index->getZExtValue(); 3107 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3108 3109 // Add the field offset to the running total offset. 3110 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3111 3112 // Update CurTy to the type of the field at Index. 3113 CurTy = STy->getTypeAtIndex(Index); 3114 } else { 3115 // Update CurTy to its element type. 3116 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3117 // For an array, add the element offset, explicitly scaled. 3118 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3119 // Getelementptr indices are signed. 3120 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3121 3122 // Multiply the index by the element size to compute the element offset. 3123 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3124 3125 // Add the element offset to the running total offset. 3126 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3127 } 3128 } 3129 3130 // Add the total offset from all the GEP indices to the base. 3131 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3132 } 3133 3134 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3135 const SCEV *RHS) { 3136 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3137 return getSMaxExpr(Ops); 3138 } 3139 3140 const SCEV * 3141 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3142 assert(!Ops.empty() && "Cannot get empty smax!"); 3143 if (Ops.size() == 1) return Ops[0]; 3144 #ifndef NDEBUG 3145 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3146 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3147 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3148 "SCEVSMaxExpr operand types don't match!"); 3149 #endif 3150 3151 // Sort by complexity, this groups all similar expression types together. 3152 GroupByComplexity(Ops, &LI); 3153 3154 // If there are any constants, fold them together. 3155 unsigned Idx = 0; 3156 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3157 ++Idx; 3158 assert(Idx < Ops.size()); 3159 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3160 // We found two constants, fold them together! 3161 ConstantInt *Fold = ConstantInt::get( 3162 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3163 Ops[0] = getConstant(Fold); 3164 Ops.erase(Ops.begin()+1); // Erase the folded element 3165 if (Ops.size() == 1) return Ops[0]; 3166 LHSC = cast<SCEVConstant>(Ops[0]); 3167 } 3168 3169 // If we are left with a constant minimum-int, strip it off. 3170 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3171 Ops.erase(Ops.begin()); 3172 --Idx; 3173 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3174 // If we have an smax with a constant maximum-int, it will always be 3175 // maximum-int. 3176 return Ops[0]; 3177 } 3178 3179 if (Ops.size() == 1) return Ops[0]; 3180 } 3181 3182 // Find the first SMax 3183 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3184 ++Idx; 3185 3186 // Check to see if one of the operands is an SMax. If so, expand its operands 3187 // onto our operand list, and recurse to simplify. 3188 if (Idx < Ops.size()) { 3189 bool DeletedSMax = false; 3190 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3191 Ops.erase(Ops.begin()+Idx); 3192 Ops.append(SMax->op_begin(), SMax->op_end()); 3193 DeletedSMax = true; 3194 } 3195 3196 if (DeletedSMax) 3197 return getSMaxExpr(Ops); 3198 } 3199 3200 // Okay, check to see if the same value occurs in the operand list twice. If 3201 // so, delete one. Since we sorted the list, these values are required to 3202 // be adjacent. 3203 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3204 // X smax Y smax Y --> X smax Y 3205 // X smax Y --> X, if X is always greater than Y 3206 if (Ops[i] == Ops[i+1] || 3207 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3208 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3209 --i; --e; 3210 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3211 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3212 --i; --e; 3213 } 3214 3215 if (Ops.size() == 1) return Ops[0]; 3216 3217 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3218 3219 // Okay, it looks like we really DO need an smax expr. Check to see if we 3220 // already have one, otherwise create a new one. 3221 FoldingSetNodeID ID; 3222 ID.AddInteger(scSMaxExpr); 3223 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3224 ID.AddPointer(Ops[i]); 3225 void *IP = nullptr; 3226 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3227 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3228 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3229 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3230 O, Ops.size()); 3231 UniqueSCEVs.InsertNode(S, IP); 3232 return S; 3233 } 3234 3235 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3236 const SCEV *RHS) { 3237 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3238 return getUMaxExpr(Ops); 3239 } 3240 3241 const SCEV * 3242 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3243 assert(!Ops.empty() && "Cannot get empty umax!"); 3244 if (Ops.size() == 1) return Ops[0]; 3245 #ifndef NDEBUG 3246 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3247 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3248 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3249 "SCEVUMaxExpr operand types don't match!"); 3250 #endif 3251 3252 // Sort by complexity, this groups all similar expression types together. 3253 GroupByComplexity(Ops, &LI); 3254 3255 // If there are any constants, fold them together. 3256 unsigned Idx = 0; 3257 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3258 ++Idx; 3259 assert(Idx < Ops.size()); 3260 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3261 // We found two constants, fold them together! 3262 ConstantInt *Fold = ConstantInt::get( 3263 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3264 Ops[0] = getConstant(Fold); 3265 Ops.erase(Ops.begin()+1); // Erase the folded element 3266 if (Ops.size() == 1) return Ops[0]; 3267 LHSC = cast<SCEVConstant>(Ops[0]); 3268 } 3269 3270 // If we are left with a constant minimum-int, strip it off. 3271 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3272 Ops.erase(Ops.begin()); 3273 --Idx; 3274 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3275 // If we have an umax with a constant maximum-int, it will always be 3276 // maximum-int. 3277 return Ops[0]; 3278 } 3279 3280 if (Ops.size() == 1) return Ops[0]; 3281 } 3282 3283 // Find the first UMax 3284 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3285 ++Idx; 3286 3287 // Check to see if one of the operands is a UMax. If so, expand its operands 3288 // onto our operand list, and recurse to simplify. 3289 if (Idx < Ops.size()) { 3290 bool DeletedUMax = false; 3291 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3292 Ops.erase(Ops.begin()+Idx); 3293 Ops.append(UMax->op_begin(), UMax->op_end()); 3294 DeletedUMax = true; 3295 } 3296 3297 if (DeletedUMax) 3298 return getUMaxExpr(Ops); 3299 } 3300 3301 // Okay, check to see if the same value occurs in the operand list twice. If 3302 // so, delete one. Since we sorted the list, these values are required to 3303 // be adjacent. 3304 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3305 // X umax Y umax Y --> X umax Y 3306 // X umax Y --> X, if X is always greater than Y 3307 if (Ops[i] == Ops[i+1] || 3308 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3309 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3310 --i; --e; 3311 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3312 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3313 --i; --e; 3314 } 3315 3316 if (Ops.size() == 1) return Ops[0]; 3317 3318 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3319 3320 // Okay, it looks like we really DO need a umax expr. Check to see if we 3321 // already have one, otherwise create a new one. 3322 FoldingSetNodeID ID; 3323 ID.AddInteger(scUMaxExpr); 3324 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3325 ID.AddPointer(Ops[i]); 3326 void *IP = nullptr; 3327 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3328 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3329 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3330 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3331 O, Ops.size()); 3332 UniqueSCEVs.InsertNode(S, IP); 3333 return S; 3334 } 3335 3336 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3337 const SCEV *RHS) { 3338 // ~smax(~x, ~y) == smin(x, y). 3339 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3340 } 3341 3342 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3343 const SCEV *RHS) { 3344 // ~umax(~x, ~y) == umin(x, y) 3345 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3346 } 3347 3348 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3349 // We can bypass creating a target-independent 3350 // constant expression and then folding it back into a ConstantInt. 3351 // This is just a compile-time optimization. 3352 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3353 } 3354 3355 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3356 StructType *STy, 3357 unsigned FieldNo) { 3358 // We can bypass creating a target-independent 3359 // constant expression and then folding it back into a ConstantInt. 3360 // This is just a compile-time optimization. 3361 return getConstant( 3362 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3363 } 3364 3365 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3366 // Don't attempt to do anything other than create a SCEVUnknown object 3367 // here. createSCEV only calls getUnknown after checking for all other 3368 // interesting possibilities, and any other code that calls getUnknown 3369 // is doing so in order to hide a value from SCEV canonicalization. 3370 3371 FoldingSetNodeID ID; 3372 ID.AddInteger(scUnknown); 3373 ID.AddPointer(V); 3374 void *IP = nullptr; 3375 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3376 assert(cast<SCEVUnknown>(S)->getValue() == V && 3377 "Stale SCEVUnknown in uniquing map!"); 3378 return S; 3379 } 3380 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3381 FirstUnknown); 3382 FirstUnknown = cast<SCEVUnknown>(S); 3383 UniqueSCEVs.InsertNode(S, IP); 3384 return S; 3385 } 3386 3387 //===----------------------------------------------------------------------===// 3388 // Basic SCEV Analysis and PHI Idiom Recognition Code 3389 // 3390 3391 /// Test if values of the given type are analyzable within the SCEV 3392 /// framework. This primarily includes integer types, and it can optionally 3393 /// include pointer types if the ScalarEvolution class has access to 3394 /// target-specific information. 3395 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3396 // Integers and pointers are always SCEVable. 3397 return Ty->isIntegerTy() || Ty->isPointerTy(); 3398 } 3399 3400 /// Return the size in bits of the specified type, for which isSCEVable must 3401 /// return true. 3402 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3403 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3404 return getDataLayout().getTypeSizeInBits(Ty); 3405 } 3406 3407 /// Return a type with the same bitwidth as the given type and which represents 3408 /// how SCEV will treat the given type, for which isSCEVable must return 3409 /// true. For pointer types, this is the pointer-sized integer type. 3410 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3411 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3412 3413 if (Ty->isIntegerTy()) 3414 return Ty; 3415 3416 // The only other support type is pointer. 3417 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3418 return getDataLayout().getIntPtrType(Ty); 3419 } 3420 3421 const SCEV *ScalarEvolution::getCouldNotCompute() { 3422 return CouldNotCompute.get(); 3423 } 3424 3425 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3426 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3427 auto *SU = dyn_cast<SCEVUnknown>(S); 3428 return SU && SU->getValue() == nullptr; 3429 }); 3430 3431 return !ContainsNulls; 3432 } 3433 3434 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3435 HasRecMapType::iterator I = HasRecMap.find(S); 3436 if (I != HasRecMap.end()) 3437 return I->second; 3438 3439 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3440 HasRecMap.insert({S, FoundAddRec}); 3441 return FoundAddRec; 3442 } 3443 3444 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3445 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3446 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3447 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3448 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3449 if (!Add) 3450 return {S, nullptr}; 3451 3452 if (Add->getNumOperands() != 2) 3453 return {S, nullptr}; 3454 3455 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3456 if (!ConstOp) 3457 return {S, nullptr}; 3458 3459 return {Add->getOperand(1), ConstOp->getValue()}; 3460 } 3461 3462 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3463 /// by the value and offset from any ValueOffsetPair in the set. 3464 SetVector<ScalarEvolution::ValueOffsetPair> * 3465 ScalarEvolution::getSCEVValues(const SCEV *S) { 3466 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3467 if (SI == ExprValueMap.end()) 3468 return nullptr; 3469 #ifndef NDEBUG 3470 if (VerifySCEVMap) { 3471 // Check there is no dangling Value in the set returned. 3472 for (const auto &VE : SI->second) 3473 assert(ValueExprMap.count(VE.first)); 3474 } 3475 #endif 3476 return &SI->second; 3477 } 3478 3479 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3480 /// cannot be used separately. eraseValueFromMap should be used to remove 3481 /// V from ValueExprMap and ExprValueMap at the same time. 3482 void ScalarEvolution::eraseValueFromMap(Value *V) { 3483 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3484 if (I != ValueExprMap.end()) { 3485 const SCEV *S = I->second; 3486 // Remove {V, 0} from the set of ExprValueMap[S] 3487 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3488 SV->remove({V, nullptr}); 3489 3490 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3491 const SCEV *Stripped; 3492 ConstantInt *Offset; 3493 std::tie(Stripped, Offset) = splitAddExpr(S); 3494 if (Offset != nullptr) { 3495 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3496 SV->remove({V, Offset}); 3497 } 3498 ValueExprMap.erase(V); 3499 } 3500 } 3501 3502 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3503 /// create a new one. 3504 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3505 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3506 3507 const SCEV *S = getExistingSCEV(V); 3508 if (S == nullptr) { 3509 S = createSCEV(V); 3510 // During PHI resolution, it is possible to create two SCEVs for the same 3511 // V, so it is needed to double check whether V->S is inserted into 3512 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3513 std::pair<ValueExprMapType::iterator, bool> Pair = 3514 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3515 if (Pair.second) { 3516 ExprValueMap[S].insert({V, nullptr}); 3517 3518 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3519 // ExprValueMap. 3520 const SCEV *Stripped = S; 3521 ConstantInt *Offset = nullptr; 3522 std::tie(Stripped, Offset) = splitAddExpr(S); 3523 // If stripped is SCEVUnknown, don't bother to save 3524 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3525 // increase the complexity of the expansion code. 3526 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3527 // because it may generate add/sub instead of GEP in SCEV expansion. 3528 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3529 !isa<GetElementPtrInst>(V)) 3530 ExprValueMap[Stripped].insert({V, Offset}); 3531 } 3532 } 3533 return S; 3534 } 3535 3536 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3537 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3538 3539 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3540 if (I != ValueExprMap.end()) { 3541 const SCEV *S = I->second; 3542 if (checkValidity(S)) 3543 return S; 3544 eraseValueFromMap(V); 3545 forgetMemoizedResults(S); 3546 } 3547 return nullptr; 3548 } 3549 3550 /// Return a SCEV corresponding to -V = -1*V 3551 /// 3552 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3553 SCEV::NoWrapFlags Flags) { 3554 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3555 return getConstant( 3556 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3557 3558 Type *Ty = V->getType(); 3559 Ty = getEffectiveSCEVType(Ty); 3560 return getMulExpr( 3561 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3562 } 3563 3564 /// Return a SCEV corresponding to ~V = -1-V 3565 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3566 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3567 return getConstant( 3568 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3569 3570 Type *Ty = V->getType(); 3571 Ty = getEffectiveSCEVType(Ty); 3572 const SCEV *AllOnes = 3573 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3574 return getMinusSCEV(AllOnes, V); 3575 } 3576 3577 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3578 SCEV::NoWrapFlags Flags) { 3579 // Fast path: X - X --> 0. 3580 if (LHS == RHS) 3581 return getZero(LHS->getType()); 3582 3583 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3584 // makes it so that we cannot make much use of NUW. 3585 auto AddFlags = SCEV::FlagAnyWrap; 3586 const bool RHSIsNotMinSigned = 3587 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3588 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3589 // Let M be the minimum representable signed value. Then (-1)*RHS 3590 // signed-wraps if and only if RHS is M. That can happen even for 3591 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3592 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3593 // (-1)*RHS, we need to prove that RHS != M. 3594 // 3595 // If LHS is non-negative and we know that LHS - RHS does not 3596 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3597 // either by proving that RHS > M or that LHS >= 0. 3598 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3599 AddFlags = SCEV::FlagNSW; 3600 } 3601 } 3602 3603 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3604 // RHS is NSW and LHS >= 0. 3605 // 3606 // The difficulty here is that the NSW flag may have been proven 3607 // relative to a loop that is to be found in a recurrence in LHS and 3608 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3609 // larger scope than intended. 3610 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3611 3612 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3613 } 3614 3615 const SCEV * 3616 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3617 Type *SrcTy = V->getType(); 3618 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3619 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3620 "Cannot truncate or zero extend with non-integer arguments!"); 3621 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3622 return V; // No conversion 3623 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3624 return getTruncateExpr(V, Ty); 3625 return getZeroExtendExpr(V, Ty); 3626 } 3627 3628 const SCEV * 3629 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3630 Type *Ty) { 3631 Type *SrcTy = V->getType(); 3632 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3633 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3634 "Cannot truncate or zero extend with non-integer arguments!"); 3635 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3636 return V; // No conversion 3637 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3638 return getTruncateExpr(V, Ty); 3639 return getSignExtendExpr(V, Ty); 3640 } 3641 3642 const SCEV * 3643 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3644 Type *SrcTy = V->getType(); 3645 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3646 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3647 "Cannot noop or zero extend with non-integer arguments!"); 3648 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3649 "getNoopOrZeroExtend cannot truncate!"); 3650 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3651 return V; // No conversion 3652 return getZeroExtendExpr(V, Ty); 3653 } 3654 3655 const SCEV * 3656 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3657 Type *SrcTy = V->getType(); 3658 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3659 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3660 "Cannot noop or sign extend with non-integer arguments!"); 3661 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3662 "getNoopOrSignExtend cannot truncate!"); 3663 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3664 return V; // No conversion 3665 return getSignExtendExpr(V, Ty); 3666 } 3667 3668 const SCEV * 3669 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3670 Type *SrcTy = V->getType(); 3671 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3672 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3673 "Cannot noop or any extend with non-integer arguments!"); 3674 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3675 "getNoopOrAnyExtend cannot truncate!"); 3676 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3677 return V; // No conversion 3678 return getAnyExtendExpr(V, Ty); 3679 } 3680 3681 const SCEV * 3682 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3683 Type *SrcTy = V->getType(); 3684 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3685 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3686 "Cannot truncate or noop with non-integer arguments!"); 3687 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3688 "getTruncateOrNoop cannot extend!"); 3689 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3690 return V; // No conversion 3691 return getTruncateExpr(V, Ty); 3692 } 3693 3694 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3695 const SCEV *RHS) { 3696 const SCEV *PromotedLHS = LHS; 3697 const SCEV *PromotedRHS = RHS; 3698 3699 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3700 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3701 else 3702 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3703 3704 return getUMaxExpr(PromotedLHS, PromotedRHS); 3705 } 3706 3707 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3708 const SCEV *RHS) { 3709 const SCEV *PromotedLHS = LHS; 3710 const SCEV *PromotedRHS = RHS; 3711 3712 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3713 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3714 else 3715 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3716 3717 return getUMinExpr(PromotedLHS, PromotedRHS); 3718 } 3719 3720 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3721 // A pointer operand may evaluate to a nonpointer expression, such as null. 3722 if (!V->getType()->isPointerTy()) 3723 return V; 3724 3725 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3726 return getPointerBase(Cast->getOperand()); 3727 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3728 const SCEV *PtrOp = nullptr; 3729 for (const SCEV *NAryOp : NAry->operands()) { 3730 if (NAryOp->getType()->isPointerTy()) { 3731 // Cannot find the base of an expression with multiple pointer operands. 3732 if (PtrOp) 3733 return V; 3734 PtrOp = NAryOp; 3735 } 3736 } 3737 if (!PtrOp) 3738 return V; 3739 return getPointerBase(PtrOp); 3740 } 3741 return V; 3742 } 3743 3744 /// Push users of the given Instruction onto the given Worklist. 3745 static void 3746 PushDefUseChildren(Instruction *I, 3747 SmallVectorImpl<Instruction *> &Worklist) { 3748 // Push the def-use children onto the Worklist stack. 3749 for (User *U : I->users()) 3750 Worklist.push_back(cast<Instruction>(U)); 3751 } 3752 3753 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3754 SmallVector<Instruction *, 16> Worklist; 3755 PushDefUseChildren(PN, Worklist); 3756 3757 SmallPtrSet<Instruction *, 8> Visited; 3758 Visited.insert(PN); 3759 while (!Worklist.empty()) { 3760 Instruction *I = Worklist.pop_back_val(); 3761 if (!Visited.insert(I).second) 3762 continue; 3763 3764 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3765 if (It != ValueExprMap.end()) { 3766 const SCEV *Old = It->second; 3767 3768 // Short-circuit the def-use traversal if the symbolic name 3769 // ceases to appear in expressions. 3770 if (Old != SymName && !hasOperand(Old, SymName)) 3771 continue; 3772 3773 // SCEVUnknown for a PHI either means that it has an unrecognized 3774 // structure, it's a PHI that's in the progress of being computed 3775 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3776 // additional loop trip count information isn't going to change anything. 3777 // In the second case, createNodeForPHI will perform the necessary 3778 // updates on its own when it gets to that point. In the third, we do 3779 // want to forget the SCEVUnknown. 3780 if (!isa<PHINode>(I) || 3781 !isa<SCEVUnknown>(Old) || 3782 (I != PN && Old == SymName)) { 3783 eraseValueFromMap(It->first); 3784 forgetMemoizedResults(Old); 3785 } 3786 } 3787 3788 PushDefUseChildren(I, Worklist); 3789 } 3790 } 3791 3792 namespace { 3793 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3794 public: 3795 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3796 ScalarEvolution &SE) { 3797 SCEVInitRewriter Rewriter(L, SE); 3798 const SCEV *Result = Rewriter.visit(S); 3799 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3800 } 3801 3802 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3803 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3804 3805 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3806 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3807 Valid = false; 3808 return Expr; 3809 } 3810 3811 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3812 // Only allow AddRecExprs for this loop. 3813 if (Expr->getLoop() == L) 3814 return Expr->getStart(); 3815 Valid = false; 3816 return Expr; 3817 } 3818 3819 bool isValid() { return Valid; } 3820 3821 private: 3822 const Loop *L; 3823 bool Valid; 3824 }; 3825 3826 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3827 public: 3828 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3829 ScalarEvolution &SE) { 3830 SCEVShiftRewriter Rewriter(L, SE); 3831 const SCEV *Result = Rewriter.visit(S); 3832 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3833 } 3834 3835 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3836 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3837 3838 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3839 // Only allow AddRecExprs for this loop. 3840 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3841 Valid = false; 3842 return Expr; 3843 } 3844 3845 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3846 if (Expr->getLoop() == L && Expr->isAffine()) 3847 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3848 Valid = false; 3849 return Expr; 3850 } 3851 bool isValid() { return Valid; } 3852 3853 private: 3854 const Loop *L; 3855 bool Valid; 3856 }; 3857 } // end anonymous namespace 3858 3859 SCEV::NoWrapFlags 3860 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 3861 if (!AR->isAffine()) 3862 return SCEV::FlagAnyWrap; 3863 3864 typedef OverflowingBinaryOperator OBO; 3865 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 3866 3867 if (!AR->hasNoSignedWrap()) { 3868 ConstantRange AddRecRange = getSignedRange(AR); 3869 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 3870 3871 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3872 Instruction::Add, IncRange, OBO::NoSignedWrap); 3873 if (NSWRegion.contains(AddRecRange)) 3874 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 3875 } 3876 3877 if (!AR->hasNoUnsignedWrap()) { 3878 ConstantRange AddRecRange = getUnsignedRange(AR); 3879 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 3880 3881 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3882 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 3883 if (NUWRegion.contains(AddRecRange)) 3884 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 3885 } 3886 3887 return Result; 3888 } 3889 3890 namespace { 3891 /// Represents an abstract binary operation. This may exist as a 3892 /// normal instruction or constant expression, or may have been 3893 /// derived from an expression tree. 3894 struct BinaryOp { 3895 unsigned Opcode; 3896 Value *LHS; 3897 Value *RHS; 3898 bool IsNSW; 3899 bool IsNUW; 3900 3901 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 3902 /// constant expression. 3903 Operator *Op; 3904 3905 explicit BinaryOp(Operator *Op) 3906 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 3907 IsNSW(false), IsNUW(false), Op(Op) { 3908 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 3909 IsNSW = OBO->hasNoSignedWrap(); 3910 IsNUW = OBO->hasNoUnsignedWrap(); 3911 } 3912 } 3913 3914 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 3915 bool IsNUW = false) 3916 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 3917 Op(nullptr) {} 3918 }; 3919 } 3920 3921 3922 /// Try to map \p V into a BinaryOp, and return \c None on failure. 3923 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 3924 auto *Op = dyn_cast<Operator>(V); 3925 if (!Op) 3926 return None; 3927 3928 // Implementation detail: all the cleverness here should happen without 3929 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 3930 // SCEV expressions when possible, and we should not break that. 3931 3932 switch (Op->getOpcode()) { 3933 case Instruction::Add: 3934 case Instruction::Sub: 3935 case Instruction::Mul: 3936 case Instruction::UDiv: 3937 case Instruction::And: 3938 case Instruction::Or: 3939 case Instruction::AShr: 3940 case Instruction::Shl: 3941 return BinaryOp(Op); 3942 3943 case Instruction::Xor: 3944 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 3945 // If the RHS of the xor is a signbit, then this is just an add. 3946 // Instcombine turns add of signbit into xor as a strength reduction step. 3947 if (RHSC->getValue().isSignBit()) 3948 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 3949 return BinaryOp(Op); 3950 3951 case Instruction::LShr: 3952 // Turn logical shift right of a constant into a unsigned divide. 3953 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 3954 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 3955 3956 // If the shift count is not less than the bitwidth, the result of 3957 // the shift is undefined. Don't try to analyze it, because the 3958 // resolution chosen here may differ from the resolution chosen in 3959 // other parts of the compiler. 3960 if (SA->getValue().ult(BitWidth)) { 3961 Constant *X = 3962 ConstantInt::get(SA->getContext(), 3963 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3964 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 3965 } 3966 } 3967 return BinaryOp(Op); 3968 3969 case Instruction::ExtractValue: { 3970 auto *EVI = cast<ExtractValueInst>(Op); 3971 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 3972 break; 3973 3974 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 3975 if (!CI) 3976 break; 3977 3978 if (auto *F = CI->getCalledFunction()) 3979 switch (F->getIntrinsicID()) { 3980 case Intrinsic::sadd_with_overflow: 3981 case Intrinsic::uadd_with_overflow: { 3982 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 3983 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3984 CI->getArgOperand(1)); 3985 3986 // Now that we know that all uses of the arithmetic-result component of 3987 // CI are guarded by the overflow check, we can go ahead and pretend 3988 // that the arithmetic is non-overflowing. 3989 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 3990 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3991 CI->getArgOperand(1), /* IsNSW = */ true, 3992 /* IsNUW = */ false); 3993 else 3994 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3995 CI->getArgOperand(1), /* IsNSW = */ false, 3996 /* IsNUW*/ true); 3997 } 3998 3999 case Intrinsic::ssub_with_overflow: 4000 case Intrinsic::usub_with_overflow: 4001 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4002 CI->getArgOperand(1)); 4003 4004 case Intrinsic::smul_with_overflow: 4005 case Intrinsic::umul_with_overflow: 4006 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 4007 CI->getArgOperand(1)); 4008 default: 4009 break; 4010 } 4011 } 4012 4013 default: 4014 break; 4015 } 4016 4017 return None; 4018 } 4019 4020 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4021 const Loop *L = LI.getLoopFor(PN->getParent()); 4022 if (!L || L->getHeader() != PN->getParent()) 4023 return nullptr; 4024 4025 // The loop may have multiple entrances or multiple exits; we can analyze 4026 // this phi as an addrec if it has a unique entry value and a unique 4027 // backedge value. 4028 Value *BEValueV = nullptr, *StartValueV = nullptr; 4029 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4030 Value *V = PN->getIncomingValue(i); 4031 if (L->contains(PN->getIncomingBlock(i))) { 4032 if (!BEValueV) { 4033 BEValueV = V; 4034 } else if (BEValueV != V) { 4035 BEValueV = nullptr; 4036 break; 4037 } 4038 } else if (!StartValueV) { 4039 StartValueV = V; 4040 } else if (StartValueV != V) { 4041 StartValueV = nullptr; 4042 break; 4043 } 4044 } 4045 if (BEValueV && StartValueV) { 4046 // While we are analyzing this PHI node, handle its value symbolically. 4047 const SCEV *SymbolicName = getUnknown(PN); 4048 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4049 "PHI node already processed?"); 4050 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4051 4052 // Using this symbolic name for the PHI, analyze the value coming around 4053 // the back-edge. 4054 const SCEV *BEValue = getSCEV(BEValueV); 4055 4056 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4057 // has a special value for the first iteration of the loop. 4058 4059 // If the value coming around the backedge is an add with the symbolic 4060 // value we just inserted, then we found a simple induction variable! 4061 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4062 // If there is a single occurrence of the symbolic value, replace it 4063 // with a recurrence. 4064 unsigned FoundIndex = Add->getNumOperands(); 4065 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4066 if (Add->getOperand(i) == SymbolicName) 4067 if (FoundIndex == e) { 4068 FoundIndex = i; 4069 break; 4070 } 4071 4072 if (FoundIndex != Add->getNumOperands()) { 4073 // Create an add with everything but the specified operand. 4074 SmallVector<const SCEV *, 8> Ops; 4075 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4076 if (i != FoundIndex) 4077 Ops.push_back(Add->getOperand(i)); 4078 const SCEV *Accum = getAddExpr(Ops); 4079 4080 // This is not a valid addrec if the step amount is varying each 4081 // loop iteration, but is not itself an addrec in this loop. 4082 if (isLoopInvariant(Accum, L) || 4083 (isa<SCEVAddRecExpr>(Accum) && 4084 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4085 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4086 4087 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4088 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4089 if (BO->IsNUW) 4090 Flags = setFlags(Flags, SCEV::FlagNUW); 4091 if (BO->IsNSW) 4092 Flags = setFlags(Flags, SCEV::FlagNSW); 4093 } 4094 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4095 // If the increment is an inbounds GEP, then we know the address 4096 // space cannot be wrapped around. We cannot make any guarantee 4097 // about signed or unsigned overflow because pointers are 4098 // unsigned but we may have a negative index from the base 4099 // pointer. We can guarantee that no unsigned wrap occurs if the 4100 // indices form a positive value. 4101 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4102 Flags = setFlags(Flags, SCEV::FlagNW); 4103 4104 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4105 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4106 Flags = setFlags(Flags, SCEV::FlagNUW); 4107 } 4108 4109 // We cannot transfer nuw and nsw flags from subtraction 4110 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4111 // for instance. 4112 } 4113 4114 const SCEV *StartVal = getSCEV(StartValueV); 4115 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4116 4117 // Okay, for the entire analysis of this edge we assumed the PHI 4118 // to be symbolic. We now need to go back and purge all of the 4119 // entries for the scalars that use the symbolic expression. 4120 forgetSymbolicName(PN, SymbolicName); 4121 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4122 4123 // We can add Flags to the post-inc expression only if we 4124 // know that it us *undefined behavior* for BEValueV to 4125 // overflow. 4126 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4127 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4128 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4129 4130 return PHISCEV; 4131 } 4132 } 4133 } else { 4134 // Otherwise, this could be a loop like this: 4135 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4136 // In this case, j = {1,+,1} and BEValue is j. 4137 // Because the other in-value of i (0) fits the evolution of BEValue 4138 // i really is an addrec evolution. 4139 // 4140 // We can generalize this saying that i is the shifted value of BEValue 4141 // by one iteration: 4142 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4143 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4144 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 4145 if (Shifted != getCouldNotCompute() && 4146 Start != getCouldNotCompute()) { 4147 const SCEV *StartVal = getSCEV(StartValueV); 4148 if (Start == StartVal) { 4149 // Okay, for the entire analysis of this edge we assumed the PHI 4150 // to be symbolic. We now need to go back and purge all of the 4151 // entries for the scalars that use the symbolic expression. 4152 forgetSymbolicName(PN, SymbolicName); 4153 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4154 return Shifted; 4155 } 4156 } 4157 } 4158 4159 // Remove the temporary PHI node SCEV that has been inserted while intending 4160 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4161 // as it will prevent later (possibly simpler) SCEV expressions to be added 4162 // to the ValueExprMap. 4163 eraseValueFromMap(PN); 4164 } 4165 4166 return nullptr; 4167 } 4168 4169 // Checks if the SCEV S is available at BB. S is considered available at BB 4170 // if S can be materialized at BB without introducing a fault. 4171 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4172 BasicBlock *BB) { 4173 struct CheckAvailable { 4174 bool TraversalDone = false; 4175 bool Available = true; 4176 4177 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4178 BasicBlock *BB = nullptr; 4179 DominatorTree &DT; 4180 4181 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4182 : L(L), BB(BB), DT(DT) {} 4183 4184 bool setUnavailable() { 4185 TraversalDone = true; 4186 Available = false; 4187 return false; 4188 } 4189 4190 bool follow(const SCEV *S) { 4191 switch (S->getSCEVType()) { 4192 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4193 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4194 // These expressions are available if their operand(s) is/are. 4195 return true; 4196 4197 case scAddRecExpr: { 4198 // We allow add recurrences that are on the loop BB is in, or some 4199 // outer loop. This guarantees availability because the value of the 4200 // add recurrence at BB is simply the "current" value of the induction 4201 // variable. We can relax this in the future; for instance an add 4202 // recurrence on a sibling dominating loop is also available at BB. 4203 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4204 if (L && (ARLoop == L || ARLoop->contains(L))) 4205 return true; 4206 4207 return setUnavailable(); 4208 } 4209 4210 case scUnknown: { 4211 // For SCEVUnknown, we check for simple dominance. 4212 const auto *SU = cast<SCEVUnknown>(S); 4213 Value *V = SU->getValue(); 4214 4215 if (isa<Argument>(V)) 4216 return false; 4217 4218 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 4219 return false; 4220 4221 return setUnavailable(); 4222 } 4223 4224 case scUDivExpr: 4225 case scCouldNotCompute: 4226 // We do not try to smart about these at all. 4227 return setUnavailable(); 4228 } 4229 llvm_unreachable("switch should be fully covered!"); 4230 } 4231 4232 bool isDone() { return TraversalDone; } 4233 }; 4234 4235 CheckAvailable CA(L, BB, DT); 4236 SCEVTraversal<CheckAvailable> ST(CA); 4237 4238 ST.visitAll(S); 4239 return CA.Available; 4240 } 4241 4242 // Try to match a control flow sequence that branches out at BI and merges back 4243 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 4244 // match. 4245 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 4246 Value *&C, Value *&LHS, Value *&RHS) { 4247 C = BI->getCondition(); 4248 4249 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 4250 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 4251 4252 if (!LeftEdge.isSingleEdge()) 4253 return false; 4254 4255 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 4256 4257 Use &LeftUse = Merge->getOperandUse(0); 4258 Use &RightUse = Merge->getOperandUse(1); 4259 4260 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4261 LHS = LeftUse; 4262 RHS = RightUse; 4263 return true; 4264 } 4265 4266 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4267 LHS = RightUse; 4268 RHS = LeftUse; 4269 return true; 4270 } 4271 4272 return false; 4273 } 4274 4275 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4276 auto IsReachable = 4277 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 4278 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 4279 const Loop *L = LI.getLoopFor(PN->getParent()); 4280 4281 // We don't want to break LCSSA, even in a SCEV expression tree. 4282 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4283 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4284 return nullptr; 4285 4286 // Try to match 4287 // 4288 // br %cond, label %left, label %right 4289 // left: 4290 // br label %merge 4291 // right: 4292 // br label %merge 4293 // merge: 4294 // V = phi [ %x, %left ], [ %y, %right ] 4295 // 4296 // as "select %cond, %x, %y" 4297 4298 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4299 assert(IDom && "At least the entry block should dominate PN"); 4300 4301 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4302 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4303 4304 if (BI && BI->isConditional() && 4305 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4306 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4307 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4308 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4309 } 4310 4311 return nullptr; 4312 } 4313 4314 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4315 if (const SCEV *S = createAddRecFromPHI(PN)) 4316 return S; 4317 4318 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4319 return S; 4320 4321 // If the PHI has a single incoming value, follow that value, unless the 4322 // PHI's incoming blocks are in a different loop, in which case doing so 4323 // risks breaking LCSSA form. Instcombine would normally zap these, but 4324 // it doesn't have DominatorTree information, so it may miss cases. 4325 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 4326 if (LI.replacementPreservesLCSSAForm(PN, V)) 4327 return getSCEV(V); 4328 4329 // If it's not a loop phi, we can't handle it yet. 4330 return getUnknown(PN); 4331 } 4332 4333 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4334 Value *Cond, 4335 Value *TrueVal, 4336 Value *FalseVal) { 4337 // Handle "constant" branch or select. This can occur for instance when a 4338 // loop pass transforms an inner loop and moves on to process the outer loop. 4339 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4340 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4341 4342 // Try to match some simple smax or umax patterns. 4343 auto *ICI = dyn_cast<ICmpInst>(Cond); 4344 if (!ICI) 4345 return getUnknown(I); 4346 4347 Value *LHS = ICI->getOperand(0); 4348 Value *RHS = ICI->getOperand(1); 4349 4350 switch (ICI->getPredicate()) { 4351 case ICmpInst::ICMP_SLT: 4352 case ICmpInst::ICMP_SLE: 4353 std::swap(LHS, RHS); 4354 LLVM_FALLTHROUGH; 4355 case ICmpInst::ICMP_SGT: 4356 case ICmpInst::ICMP_SGE: 4357 // a >s b ? a+x : b+x -> smax(a, b)+x 4358 // a >s b ? b+x : a+x -> smin(a, b)+x 4359 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4360 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4361 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4362 const SCEV *LA = getSCEV(TrueVal); 4363 const SCEV *RA = getSCEV(FalseVal); 4364 const SCEV *LDiff = getMinusSCEV(LA, LS); 4365 const SCEV *RDiff = getMinusSCEV(RA, RS); 4366 if (LDiff == RDiff) 4367 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4368 LDiff = getMinusSCEV(LA, RS); 4369 RDiff = getMinusSCEV(RA, LS); 4370 if (LDiff == RDiff) 4371 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4372 } 4373 break; 4374 case ICmpInst::ICMP_ULT: 4375 case ICmpInst::ICMP_ULE: 4376 std::swap(LHS, RHS); 4377 LLVM_FALLTHROUGH; 4378 case ICmpInst::ICMP_UGT: 4379 case ICmpInst::ICMP_UGE: 4380 // a >u b ? a+x : b+x -> umax(a, b)+x 4381 // a >u b ? b+x : a+x -> umin(a, b)+x 4382 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4383 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4384 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4385 const SCEV *LA = getSCEV(TrueVal); 4386 const SCEV *RA = getSCEV(FalseVal); 4387 const SCEV *LDiff = getMinusSCEV(LA, LS); 4388 const SCEV *RDiff = getMinusSCEV(RA, RS); 4389 if (LDiff == RDiff) 4390 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4391 LDiff = getMinusSCEV(LA, RS); 4392 RDiff = getMinusSCEV(RA, LS); 4393 if (LDiff == RDiff) 4394 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4395 } 4396 break; 4397 case ICmpInst::ICMP_NE: 4398 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4399 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4400 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4401 const SCEV *One = getOne(I->getType()); 4402 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4403 const SCEV *LA = getSCEV(TrueVal); 4404 const SCEV *RA = getSCEV(FalseVal); 4405 const SCEV *LDiff = getMinusSCEV(LA, LS); 4406 const SCEV *RDiff = getMinusSCEV(RA, One); 4407 if (LDiff == RDiff) 4408 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4409 } 4410 break; 4411 case ICmpInst::ICMP_EQ: 4412 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4413 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4414 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4415 const SCEV *One = getOne(I->getType()); 4416 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4417 const SCEV *LA = getSCEV(TrueVal); 4418 const SCEV *RA = getSCEV(FalseVal); 4419 const SCEV *LDiff = getMinusSCEV(LA, One); 4420 const SCEV *RDiff = getMinusSCEV(RA, LS); 4421 if (LDiff == RDiff) 4422 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4423 } 4424 break; 4425 default: 4426 break; 4427 } 4428 4429 return getUnknown(I); 4430 } 4431 4432 /// Expand GEP instructions into add and multiply operations. This allows them 4433 /// to be analyzed by regular SCEV code. 4434 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4435 // Don't attempt to analyze GEPs over unsized objects. 4436 if (!GEP->getSourceElementType()->isSized()) 4437 return getUnknown(GEP); 4438 4439 SmallVector<const SCEV *, 4> IndexExprs; 4440 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4441 IndexExprs.push_back(getSCEV(*Index)); 4442 return getGEPExpr(GEP, IndexExprs); 4443 } 4444 4445 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 4446 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4447 return C->getAPInt().countTrailingZeros(); 4448 4449 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4450 return std::min(GetMinTrailingZeros(T->getOperand()), 4451 (uint32_t)getTypeSizeInBits(T->getType())); 4452 4453 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4454 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4455 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 4456 ? getTypeSizeInBits(E->getType()) 4457 : OpRes; 4458 } 4459 4460 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4461 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4462 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 4463 ? getTypeSizeInBits(E->getType()) 4464 : OpRes; 4465 } 4466 4467 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4468 // The result is the min of all operands results. 4469 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4470 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4471 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4472 return MinOpRes; 4473 } 4474 4475 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4476 // The result is the sum of all operands results. 4477 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4478 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4479 for (unsigned i = 1, e = M->getNumOperands(); 4480 SumOpRes != BitWidth && i != e; ++i) 4481 SumOpRes = 4482 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 4483 return SumOpRes; 4484 } 4485 4486 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4487 // The result is the min of all operands results. 4488 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4489 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4490 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4491 return MinOpRes; 4492 } 4493 4494 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4495 // The result is the min of all operands results. 4496 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4497 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4498 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4499 return MinOpRes; 4500 } 4501 4502 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4503 // The result is the min of all operands results. 4504 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4505 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4506 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4507 return MinOpRes; 4508 } 4509 4510 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4511 // For a SCEVUnknown, ask ValueTracking. 4512 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4513 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4514 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4515 nullptr, &DT); 4516 return Zeros.countTrailingOnes(); 4517 } 4518 4519 // SCEVUDivExpr 4520 return 0; 4521 } 4522 4523 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4524 auto I = MinTrailingZerosCache.find(S); 4525 if (I != MinTrailingZerosCache.end()) 4526 return I->second; 4527 4528 uint32_t Result = GetMinTrailingZerosImpl(S); 4529 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 4530 assert(InsertPair.second && "Should insert a new key"); 4531 return InsertPair.first->second; 4532 } 4533 4534 /// Helper method to assign a range to V from metadata present in the IR. 4535 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4536 if (Instruction *I = dyn_cast<Instruction>(V)) 4537 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4538 return getConstantRangeFromMetadata(*MD); 4539 4540 return None; 4541 } 4542 4543 /// Determine the range for a particular SCEV. If SignHint is 4544 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4545 /// with a "cleaner" unsigned (resp. signed) representation. 4546 ConstantRange 4547 ScalarEvolution::getRange(const SCEV *S, 4548 ScalarEvolution::RangeSignHint SignHint) { 4549 DenseMap<const SCEV *, ConstantRange> &Cache = 4550 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4551 : SignedRanges; 4552 4553 // See if we've computed this range already. 4554 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4555 if (I != Cache.end()) 4556 return I->second; 4557 4558 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4559 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4560 4561 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4562 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4563 4564 // If the value has known zeros, the maximum value will have those known zeros 4565 // as well. 4566 uint32_t TZ = GetMinTrailingZeros(S); 4567 if (TZ != 0) { 4568 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4569 ConservativeResult = 4570 ConstantRange(APInt::getMinValue(BitWidth), 4571 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4572 else 4573 ConservativeResult = ConstantRange( 4574 APInt::getSignedMinValue(BitWidth), 4575 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4576 } 4577 4578 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4579 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4580 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4581 X = X.add(getRange(Add->getOperand(i), SignHint)); 4582 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4583 } 4584 4585 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4586 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4587 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4588 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4589 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4590 } 4591 4592 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4593 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4594 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4595 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4596 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4597 } 4598 4599 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4600 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4601 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4602 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4603 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4604 } 4605 4606 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4607 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4608 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4609 return setRange(UDiv, SignHint, 4610 ConservativeResult.intersectWith(X.udiv(Y))); 4611 } 4612 4613 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4614 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4615 return setRange(ZExt, SignHint, 4616 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4617 } 4618 4619 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4620 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4621 return setRange(SExt, SignHint, 4622 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4623 } 4624 4625 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4626 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4627 return setRange(Trunc, SignHint, 4628 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4629 } 4630 4631 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4632 // If there's no unsigned wrap, the value will never be less than its 4633 // initial value. 4634 if (AddRec->hasNoUnsignedWrap()) 4635 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4636 if (!C->getValue()->isZero()) 4637 ConservativeResult = ConservativeResult.intersectWith( 4638 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4639 4640 // If there's no signed wrap, and all the operands have the same sign or 4641 // zero, the value won't ever change sign. 4642 if (AddRec->hasNoSignedWrap()) { 4643 bool AllNonNeg = true; 4644 bool AllNonPos = true; 4645 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4646 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4647 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4648 } 4649 if (AllNonNeg) 4650 ConservativeResult = ConservativeResult.intersectWith( 4651 ConstantRange(APInt(BitWidth, 0), 4652 APInt::getSignedMinValue(BitWidth))); 4653 else if (AllNonPos) 4654 ConservativeResult = ConservativeResult.intersectWith( 4655 ConstantRange(APInt::getSignedMinValue(BitWidth), 4656 APInt(BitWidth, 1))); 4657 } 4658 4659 // TODO: non-affine addrec 4660 if (AddRec->isAffine()) { 4661 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4662 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4663 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4664 auto RangeFromAffine = getRangeForAffineAR( 4665 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4666 BitWidth); 4667 if (!RangeFromAffine.isFullSet()) 4668 ConservativeResult = 4669 ConservativeResult.intersectWith(RangeFromAffine); 4670 4671 auto RangeFromFactoring = getRangeViaFactoring( 4672 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4673 BitWidth); 4674 if (!RangeFromFactoring.isFullSet()) 4675 ConservativeResult = 4676 ConservativeResult.intersectWith(RangeFromFactoring); 4677 } 4678 } 4679 4680 return setRange(AddRec, SignHint, ConservativeResult); 4681 } 4682 4683 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4684 // Check if the IR explicitly contains !range metadata. 4685 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4686 if (MDRange.hasValue()) 4687 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4688 4689 // Split here to avoid paying the compile-time cost of calling both 4690 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4691 // if needed. 4692 const DataLayout &DL = getDataLayout(); 4693 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4694 // For a SCEVUnknown, ask ValueTracking. 4695 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4696 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4697 if (Ones != ~Zeros + 1) 4698 ConservativeResult = 4699 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4700 } else { 4701 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4702 "generalize as needed!"); 4703 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4704 if (NS > 1) 4705 ConservativeResult = ConservativeResult.intersectWith( 4706 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4707 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4708 } 4709 4710 return setRange(U, SignHint, ConservativeResult); 4711 } 4712 4713 return setRange(S, SignHint, ConservativeResult); 4714 } 4715 4716 // Given a StartRange, Step and MaxBECount for an expression compute a range of 4717 // values that the expression can take. Initially, the expression has a value 4718 // from StartRange and then is changed by Step up to MaxBECount times. Signed 4719 // argument defines if we treat Step as signed or unsigned. 4720 static ConstantRange getRangeForAffineARHelper(APInt Step, 4721 ConstantRange StartRange, 4722 APInt MaxBECount, 4723 unsigned BitWidth, bool Signed) { 4724 // If either Step or MaxBECount is 0, then the expression won't change, and we 4725 // just need to return the initial range. 4726 if (Step == 0 || MaxBECount == 0) 4727 return StartRange; 4728 4729 // If we don't know anything about the inital value (i.e. StartRange is 4730 // FullRange), then we don't know anything about the final range either. 4731 // Return FullRange. 4732 if (StartRange.isFullSet()) 4733 return ConstantRange(BitWidth, /* isFullSet = */ true); 4734 4735 // If Step is signed and negative, then we use its absolute value, but we also 4736 // note that we're moving in the opposite direction. 4737 bool Descending = Signed && Step.isNegative(); 4738 4739 if (Signed) 4740 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 4741 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 4742 // This equations hold true due to the well-defined wrap-around behavior of 4743 // APInt. 4744 Step = Step.abs(); 4745 4746 // Check if Offset is more than full span of BitWidth. If it is, the 4747 // expression is guaranteed to overflow. 4748 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 4749 return ConstantRange(BitWidth, /* isFullSet = */ true); 4750 4751 // Offset is by how much the expression can change. Checks above guarantee no 4752 // overflow here. 4753 APInt Offset = Step * MaxBECount; 4754 4755 // Minimum value of the final range will match the minimal value of StartRange 4756 // if the expression is increasing and will be decreased by Offset otherwise. 4757 // Maximum value of the final range will match the maximal value of StartRange 4758 // if the expression is decreasing and will be increased by Offset otherwise. 4759 APInt StartLower = StartRange.getLower(); 4760 APInt StartUpper = StartRange.getUpper() - 1; 4761 APInt MovedBoundary = 4762 Descending ? (StartLower - Offset) : (StartUpper + Offset); 4763 4764 // It's possible that the new minimum/maximum value will fall into the initial 4765 // range (due to wrap around). This means that the expression can take any 4766 // value in this bitwidth, and we have to return full range. 4767 if (StartRange.contains(MovedBoundary)) 4768 return ConstantRange(BitWidth, /* isFullSet = */ true); 4769 4770 APInt NewLower, NewUpper; 4771 if (Descending) { 4772 NewLower = MovedBoundary; 4773 NewUpper = StartUpper; 4774 } else { 4775 NewLower = StartLower; 4776 NewUpper = MovedBoundary; 4777 } 4778 4779 // If we end up with full range, return a proper full range. 4780 if (NewLower == NewUpper + 1) 4781 return ConstantRange(BitWidth, /* isFullSet = */ true); 4782 4783 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 4784 return ConstantRange(NewLower, NewUpper + 1); 4785 } 4786 4787 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 4788 const SCEV *Step, 4789 const SCEV *MaxBECount, 4790 unsigned BitWidth) { 4791 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 4792 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 4793 "Precondition!"); 4794 4795 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 4796 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4797 APInt MaxBECountValue = MaxBECountRange.getUnsignedMax(); 4798 4799 // First, consider step signed. 4800 ConstantRange StartSRange = getSignedRange(Start); 4801 ConstantRange StepSRange = getSignedRange(Step); 4802 4803 // If Step can be both positive and negative, we need to find ranges for the 4804 // maximum absolute step values in both directions and union them. 4805 ConstantRange SR = 4806 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 4807 MaxBECountValue, BitWidth, /* Signed = */ true); 4808 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 4809 StartSRange, MaxBECountValue, 4810 BitWidth, /* Signed = */ true)); 4811 4812 // Next, consider step unsigned. 4813 ConstantRange UR = getRangeForAffineARHelper( 4814 getUnsignedRange(Step).getUnsignedMax(), getUnsignedRange(Start), 4815 MaxBECountValue, BitWidth, /* Signed = */ false); 4816 4817 // Finally, intersect signed and unsigned ranges. 4818 return SR.intersectWith(UR); 4819 } 4820 4821 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 4822 const SCEV *Step, 4823 const SCEV *MaxBECount, 4824 unsigned BitWidth) { 4825 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 4826 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 4827 4828 struct SelectPattern { 4829 Value *Condition = nullptr; 4830 APInt TrueValue; 4831 APInt FalseValue; 4832 4833 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 4834 const SCEV *S) { 4835 Optional<unsigned> CastOp; 4836 APInt Offset(BitWidth, 0); 4837 4838 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 4839 "Should be!"); 4840 4841 // Peel off a constant offset: 4842 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 4843 // In the future we could consider being smarter here and handle 4844 // {Start+Step,+,Step} too. 4845 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 4846 return; 4847 4848 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 4849 S = SA->getOperand(1); 4850 } 4851 4852 // Peel off a cast operation 4853 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 4854 CastOp = SCast->getSCEVType(); 4855 S = SCast->getOperand(); 4856 } 4857 4858 using namespace llvm::PatternMatch; 4859 4860 auto *SU = dyn_cast<SCEVUnknown>(S); 4861 const APInt *TrueVal, *FalseVal; 4862 if (!SU || 4863 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 4864 m_APInt(FalseVal)))) { 4865 Condition = nullptr; 4866 return; 4867 } 4868 4869 TrueValue = *TrueVal; 4870 FalseValue = *FalseVal; 4871 4872 // Re-apply the cast we peeled off earlier 4873 if (CastOp.hasValue()) 4874 switch (*CastOp) { 4875 default: 4876 llvm_unreachable("Unknown SCEV cast type!"); 4877 4878 case scTruncate: 4879 TrueValue = TrueValue.trunc(BitWidth); 4880 FalseValue = FalseValue.trunc(BitWidth); 4881 break; 4882 case scZeroExtend: 4883 TrueValue = TrueValue.zext(BitWidth); 4884 FalseValue = FalseValue.zext(BitWidth); 4885 break; 4886 case scSignExtend: 4887 TrueValue = TrueValue.sext(BitWidth); 4888 FalseValue = FalseValue.sext(BitWidth); 4889 break; 4890 } 4891 4892 // Re-apply the constant offset we peeled off earlier 4893 TrueValue += Offset; 4894 FalseValue += Offset; 4895 } 4896 4897 bool isRecognized() { return Condition != nullptr; } 4898 }; 4899 4900 SelectPattern StartPattern(*this, BitWidth, Start); 4901 if (!StartPattern.isRecognized()) 4902 return ConstantRange(BitWidth, /* isFullSet = */ true); 4903 4904 SelectPattern StepPattern(*this, BitWidth, Step); 4905 if (!StepPattern.isRecognized()) 4906 return ConstantRange(BitWidth, /* isFullSet = */ true); 4907 4908 if (StartPattern.Condition != StepPattern.Condition) { 4909 // We don't handle this case today; but we could, by considering four 4910 // possibilities below instead of two. I'm not sure if there are cases where 4911 // that will help over what getRange already does, though. 4912 return ConstantRange(BitWidth, /* isFullSet = */ true); 4913 } 4914 4915 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 4916 // construct arbitrary general SCEV expressions here. This function is called 4917 // from deep in the call stack, and calling getSCEV (on a sext instruction, 4918 // say) can end up caching a suboptimal value. 4919 4920 // FIXME: without the explicit `this` receiver below, MSVC errors out with 4921 // C2352 and C2512 (otherwise it isn't needed). 4922 4923 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 4924 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 4925 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 4926 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 4927 4928 ConstantRange TrueRange = 4929 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 4930 ConstantRange FalseRange = 4931 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 4932 4933 return TrueRange.unionWith(FalseRange); 4934 } 4935 4936 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4937 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4938 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4939 4940 // Return early if there are no flags to propagate to the SCEV. 4941 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4942 if (BinOp->hasNoUnsignedWrap()) 4943 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4944 if (BinOp->hasNoSignedWrap()) 4945 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4946 if (Flags == SCEV::FlagAnyWrap) 4947 return SCEV::FlagAnyWrap; 4948 4949 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 4950 } 4951 4952 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 4953 // Here we check that I is in the header of the innermost loop containing I, 4954 // since we only deal with instructions in the loop header. The actual loop we 4955 // need to check later will come from an add recurrence, but getting that 4956 // requires computing the SCEV of the operands, which can be expensive. This 4957 // check we can do cheaply to rule out some cases early. 4958 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 4959 if (InnermostContainingLoop == nullptr || 4960 InnermostContainingLoop->getHeader() != I->getParent()) 4961 return false; 4962 4963 // Only proceed if we can prove that I does not yield poison. 4964 if (!isKnownNotFullPoison(I)) return false; 4965 4966 // At this point we know that if I is executed, then it does not wrap 4967 // according to at least one of NSW or NUW. If I is not executed, then we do 4968 // not know if the calculation that I represents would wrap. Multiple 4969 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 4970 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4971 // derived from other instructions that map to the same SCEV. We cannot make 4972 // that guarantee for cases where I is not executed. So we need to find the 4973 // loop that I is considered in relation to and prove that I is executed for 4974 // every iteration of that loop. That implies that the value that I 4975 // calculates does not wrap anywhere in the loop, so then we can apply the 4976 // flags to the SCEV. 4977 // 4978 // We check isLoopInvariant to disambiguate in case we are adding recurrences 4979 // from different loops, so that we know which loop to prove that I is 4980 // executed in. 4981 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 4982 // I could be an extractvalue from a call to an overflow intrinsic. 4983 // TODO: We can do better here in some cases. 4984 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 4985 return false; 4986 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 4987 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4988 bool AllOtherOpsLoopInvariant = true; 4989 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 4990 ++OtherOpIndex) { 4991 if (OtherOpIndex != OpIndex) { 4992 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 4993 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 4994 AllOtherOpsLoopInvariant = false; 4995 break; 4996 } 4997 } 4998 } 4999 if (AllOtherOpsLoopInvariant && 5000 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5001 return true; 5002 } 5003 } 5004 return false; 5005 } 5006 5007 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5008 // If we know that \c I can never be poison period, then that's enough. 5009 if (isSCEVExprNeverPoison(I)) 5010 return true; 5011 5012 // For an add recurrence specifically, we assume that infinite loops without 5013 // side effects are undefined behavior, and then reason as follows: 5014 // 5015 // If the add recurrence is poison in any iteration, it is poison on all 5016 // future iterations (since incrementing poison yields poison). If the result 5017 // of the add recurrence is fed into the loop latch condition and the loop 5018 // does not contain any throws or exiting blocks other than the latch, we now 5019 // have the ability to "choose" whether the backedge is taken or not (by 5020 // choosing a sufficiently evil value for the poison feeding into the branch) 5021 // for every iteration including and after the one in which \p I first became 5022 // poison. There are two possibilities (let's call the iteration in which \p 5023 // I first became poison as K): 5024 // 5025 // 1. In the set of iterations including and after K, the loop body executes 5026 // no side effects. In this case executing the backege an infinte number 5027 // of times will yield undefined behavior. 5028 // 5029 // 2. In the set of iterations including and after K, the loop body executes 5030 // at least one side effect. In this case, that specific instance of side 5031 // effect is control dependent on poison, which also yields undefined 5032 // behavior. 5033 5034 auto *ExitingBB = L->getExitingBlock(); 5035 auto *LatchBB = L->getLoopLatch(); 5036 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5037 return false; 5038 5039 SmallPtrSet<const Instruction *, 16> Pushed; 5040 SmallVector<const Instruction *, 8> PoisonStack; 5041 5042 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5043 // things that are known to be fully poison under that assumption go on the 5044 // PoisonStack. 5045 Pushed.insert(I); 5046 PoisonStack.push_back(I); 5047 5048 bool LatchControlDependentOnPoison = false; 5049 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5050 const Instruction *Poison = PoisonStack.pop_back_val(); 5051 5052 for (auto *PoisonUser : Poison->users()) { 5053 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 5054 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5055 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5056 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5057 assert(BI->isConditional() && "Only possibility!"); 5058 if (BI->getParent() == LatchBB) { 5059 LatchControlDependentOnPoison = true; 5060 break; 5061 } 5062 } 5063 } 5064 } 5065 5066 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5067 } 5068 5069 ScalarEvolution::LoopProperties 5070 ScalarEvolution::getLoopProperties(const Loop *L) { 5071 typedef ScalarEvolution::LoopProperties LoopProperties; 5072 5073 auto Itr = LoopPropertiesCache.find(L); 5074 if (Itr == LoopPropertiesCache.end()) { 5075 auto HasSideEffects = [](Instruction *I) { 5076 if (auto *SI = dyn_cast<StoreInst>(I)) 5077 return !SI->isSimple(); 5078 5079 return I->mayHaveSideEffects(); 5080 }; 5081 5082 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5083 /*HasNoSideEffects*/ true}; 5084 5085 for (auto *BB : L->getBlocks()) 5086 for (auto &I : *BB) { 5087 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5088 LP.HasNoAbnormalExits = false; 5089 if (HasSideEffects(&I)) 5090 LP.HasNoSideEffects = false; 5091 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5092 break; // We're already as pessimistic as we can get. 5093 } 5094 5095 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5096 assert(InsertPair.second && "We just checked!"); 5097 Itr = InsertPair.first; 5098 } 5099 5100 return Itr->second; 5101 } 5102 5103 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5104 if (!isSCEVable(V->getType())) 5105 return getUnknown(V); 5106 5107 if (Instruction *I = dyn_cast<Instruction>(V)) { 5108 // Don't attempt to analyze instructions in blocks that aren't 5109 // reachable. Such instructions don't matter, and they aren't required 5110 // to obey basic rules for definitions dominating uses which this 5111 // analysis depends on. 5112 if (!DT.isReachableFromEntry(I->getParent())) 5113 return getUnknown(V); 5114 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5115 return getConstant(CI); 5116 else if (isa<ConstantPointerNull>(V)) 5117 return getZero(V->getType()); 5118 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5119 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5120 else if (!isa<ConstantExpr>(V)) 5121 return getUnknown(V); 5122 5123 Operator *U = cast<Operator>(V); 5124 if (auto BO = MatchBinaryOp(U, DT)) { 5125 switch (BO->Opcode) { 5126 case Instruction::Add: { 5127 // The simple thing to do would be to just call getSCEV on both operands 5128 // and call getAddExpr with the result. However if we're looking at a 5129 // bunch of things all added together, this can be quite inefficient, 5130 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5131 // Instead, gather up all the operands and make a single getAddExpr call. 5132 // LLVM IR canonical form means we need only traverse the left operands. 5133 SmallVector<const SCEV *, 4> AddOps; 5134 do { 5135 if (BO->Op) { 5136 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5137 AddOps.push_back(OpSCEV); 5138 break; 5139 } 5140 5141 // If a NUW or NSW flag can be applied to the SCEV for this 5142 // addition, then compute the SCEV for this addition by itself 5143 // with a separate call to getAddExpr. We need to do that 5144 // instead of pushing the operands of the addition onto AddOps, 5145 // since the flags are only known to apply to this particular 5146 // addition - they may not apply to other additions that can be 5147 // formed with operands from AddOps. 5148 const SCEV *RHS = getSCEV(BO->RHS); 5149 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5150 if (Flags != SCEV::FlagAnyWrap) { 5151 const SCEV *LHS = getSCEV(BO->LHS); 5152 if (BO->Opcode == Instruction::Sub) 5153 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 5154 else 5155 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 5156 break; 5157 } 5158 } 5159 5160 if (BO->Opcode == Instruction::Sub) 5161 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 5162 else 5163 AddOps.push_back(getSCEV(BO->RHS)); 5164 5165 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5166 if (!NewBO || (NewBO->Opcode != Instruction::Add && 5167 NewBO->Opcode != Instruction::Sub)) { 5168 AddOps.push_back(getSCEV(BO->LHS)); 5169 break; 5170 } 5171 BO = NewBO; 5172 } while (true); 5173 5174 return getAddExpr(AddOps); 5175 } 5176 5177 case Instruction::Mul: { 5178 SmallVector<const SCEV *, 4> MulOps; 5179 do { 5180 if (BO->Op) { 5181 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5182 MulOps.push_back(OpSCEV); 5183 break; 5184 } 5185 5186 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5187 if (Flags != SCEV::FlagAnyWrap) { 5188 MulOps.push_back( 5189 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 5190 break; 5191 } 5192 } 5193 5194 MulOps.push_back(getSCEV(BO->RHS)); 5195 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5196 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 5197 MulOps.push_back(getSCEV(BO->LHS)); 5198 break; 5199 } 5200 BO = NewBO; 5201 } while (true); 5202 5203 return getMulExpr(MulOps); 5204 } 5205 case Instruction::UDiv: 5206 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5207 case Instruction::Sub: { 5208 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5209 if (BO->Op) 5210 Flags = getNoWrapFlagsFromUB(BO->Op); 5211 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 5212 } 5213 case Instruction::And: 5214 // For an expression like x&255 that merely masks off the high bits, 5215 // use zext(trunc(x)) as the SCEV expression. 5216 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5217 if (CI->isNullValue()) 5218 return getSCEV(BO->RHS); 5219 if (CI->isAllOnesValue()) 5220 return getSCEV(BO->LHS); 5221 const APInt &A = CI->getValue(); 5222 5223 // Instcombine's ShrinkDemandedConstant may strip bits out of 5224 // constants, obscuring what would otherwise be a low-bits mask. 5225 // Use computeKnownBits to compute what ShrinkDemandedConstant 5226 // knew about to reconstruct a low-bits mask value. 5227 unsigned LZ = A.countLeadingZeros(); 5228 unsigned TZ = A.countTrailingZeros(); 5229 unsigned BitWidth = A.getBitWidth(); 5230 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 5231 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(), 5232 0, &AC, nullptr, &DT); 5233 5234 APInt EffectiveMask = 5235 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 5236 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 5237 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 5238 const SCEV *LHS = getSCEV(BO->LHS); 5239 const SCEV *ShiftedLHS = nullptr; 5240 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 5241 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 5242 // For an expression like (x * 8) & 8, simplify the multiply. 5243 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 5244 unsigned GCD = std::min(MulZeros, TZ); 5245 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 5246 SmallVector<const SCEV*, 4> MulOps; 5247 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 5248 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 5249 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 5250 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 5251 } 5252 } 5253 if (!ShiftedLHS) 5254 ShiftedLHS = getUDivExpr(LHS, MulCount); 5255 return getMulExpr( 5256 getZeroExtendExpr( 5257 getTruncateExpr(ShiftedLHS, 5258 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 5259 BO->LHS->getType()), 5260 MulCount); 5261 } 5262 } 5263 break; 5264 5265 case Instruction::Or: 5266 // If the RHS of the Or is a constant, we may have something like: 5267 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 5268 // optimizations will transparently handle this case. 5269 // 5270 // In order for this transformation to be safe, the LHS must be of the 5271 // form X*(2^n) and the Or constant must be less than 2^n. 5272 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5273 const SCEV *LHS = getSCEV(BO->LHS); 5274 const APInt &CIVal = CI->getValue(); 5275 if (GetMinTrailingZeros(LHS) >= 5276 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 5277 // Build a plain add SCEV. 5278 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 5279 // If the LHS of the add was an addrec and it has no-wrap flags, 5280 // transfer the no-wrap flags, since an or won't introduce a wrap. 5281 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 5282 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 5283 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 5284 OldAR->getNoWrapFlags()); 5285 } 5286 return S; 5287 } 5288 } 5289 break; 5290 5291 case Instruction::Xor: 5292 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5293 // If the RHS of xor is -1, then this is a not operation. 5294 if (CI->isAllOnesValue()) 5295 return getNotSCEV(getSCEV(BO->LHS)); 5296 5297 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 5298 // This is a variant of the check for xor with -1, and it handles 5299 // the case where instcombine has trimmed non-demanded bits out 5300 // of an xor with -1. 5301 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 5302 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 5303 if (LBO->getOpcode() == Instruction::And && 5304 LCI->getValue() == CI->getValue()) 5305 if (const SCEVZeroExtendExpr *Z = 5306 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 5307 Type *UTy = BO->LHS->getType(); 5308 const SCEV *Z0 = Z->getOperand(); 5309 Type *Z0Ty = Z0->getType(); 5310 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 5311 5312 // If C is a low-bits mask, the zero extend is serving to 5313 // mask off the high bits. Complement the operand and 5314 // re-apply the zext. 5315 if (APIntOps::isMask(Z0TySize, CI->getValue())) 5316 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 5317 5318 // If C is a single bit, it may be in the sign-bit position 5319 // before the zero-extend. In this case, represent the xor 5320 // using an add, which is equivalent, and re-apply the zext. 5321 APInt Trunc = CI->getValue().trunc(Z0TySize); 5322 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 5323 Trunc.isSignBit()) 5324 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 5325 UTy); 5326 } 5327 } 5328 break; 5329 5330 case Instruction::Shl: 5331 // Turn shift left of a constant amount into a multiply. 5332 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 5333 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 5334 5335 // If the shift count is not less than the bitwidth, the result of 5336 // the shift is undefined. Don't try to analyze it, because the 5337 // resolution chosen here may differ from the resolution chosen in 5338 // other parts of the compiler. 5339 if (SA->getValue().uge(BitWidth)) 5340 break; 5341 5342 // It is currently not resolved how to interpret NSW for left 5343 // shift by BitWidth - 1, so we avoid applying flags in that 5344 // case. Remove this check (or this comment) once the situation 5345 // is resolved. See 5346 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 5347 // and http://reviews.llvm.org/D8890 . 5348 auto Flags = SCEV::FlagAnyWrap; 5349 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 5350 Flags = getNoWrapFlagsFromUB(BO->Op); 5351 5352 Constant *X = ConstantInt::get(getContext(), 5353 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5354 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 5355 } 5356 break; 5357 5358 case Instruction::AShr: 5359 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 5360 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) 5361 if (Operator *L = dyn_cast<Operator>(BO->LHS)) 5362 if (L->getOpcode() == Instruction::Shl && 5363 L->getOperand(1) == BO->RHS) { 5364 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType()); 5365 5366 // If the shift count is not less than the bitwidth, the result of 5367 // the shift is undefined. Don't try to analyze it, because the 5368 // resolution chosen here may differ from the resolution chosen in 5369 // other parts of the compiler. 5370 if (CI->getValue().uge(BitWidth)) 5371 break; 5372 5373 uint64_t Amt = BitWidth - CI->getZExtValue(); 5374 if (Amt == BitWidth) 5375 return getSCEV(L->getOperand(0)); // shift by zero --> noop 5376 return getSignExtendExpr( 5377 getTruncateExpr(getSCEV(L->getOperand(0)), 5378 IntegerType::get(getContext(), Amt)), 5379 BO->LHS->getType()); 5380 } 5381 break; 5382 } 5383 } 5384 5385 switch (U->getOpcode()) { 5386 case Instruction::Trunc: 5387 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 5388 5389 case Instruction::ZExt: 5390 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5391 5392 case Instruction::SExt: 5393 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5394 5395 case Instruction::BitCast: 5396 // BitCasts are no-op casts so we just eliminate the cast. 5397 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 5398 return getSCEV(U->getOperand(0)); 5399 break; 5400 5401 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 5402 // lead to pointer expressions which cannot safely be expanded to GEPs, 5403 // because ScalarEvolution doesn't respect the GEP aliasing rules when 5404 // simplifying integer expressions. 5405 5406 case Instruction::GetElementPtr: 5407 return createNodeForGEP(cast<GEPOperator>(U)); 5408 5409 case Instruction::PHI: 5410 return createNodeForPHI(cast<PHINode>(U)); 5411 5412 case Instruction::Select: 5413 // U can also be a select constant expr, which let fall through. Since 5414 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 5415 // constant expressions cannot have instructions as operands, we'd have 5416 // returned getUnknown for a select constant expressions anyway. 5417 if (isa<Instruction>(U)) 5418 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 5419 U->getOperand(1), U->getOperand(2)); 5420 break; 5421 5422 case Instruction::Call: 5423 case Instruction::Invoke: 5424 if (Value *RV = CallSite(U).getReturnedArgOperand()) 5425 return getSCEV(RV); 5426 break; 5427 } 5428 5429 return getUnknown(V); 5430 } 5431 5432 5433 5434 //===----------------------------------------------------------------------===// 5435 // Iteration Count Computation Code 5436 // 5437 5438 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 5439 if (!ExitCount) 5440 return 0; 5441 5442 ConstantInt *ExitConst = ExitCount->getValue(); 5443 5444 // Guard against huge trip counts. 5445 if (ExitConst->getValue().getActiveBits() > 32) 5446 return 0; 5447 5448 // In case of integer overflow, this returns 0, which is correct. 5449 return ((unsigned)ExitConst->getZExtValue()) + 1; 5450 } 5451 5452 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 5453 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5454 return getSmallConstantTripCount(L, ExitingBB); 5455 5456 // No trip count information for multiple exits. 5457 return 0; 5458 } 5459 5460 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 5461 BasicBlock *ExitingBlock) { 5462 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5463 assert(L->isLoopExiting(ExitingBlock) && 5464 "Exiting block must actually branch out of the loop!"); 5465 const SCEVConstant *ExitCount = 5466 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 5467 return getConstantTripCount(ExitCount); 5468 } 5469 5470 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 5471 const auto *MaxExitCount = 5472 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 5473 return getConstantTripCount(MaxExitCount); 5474 } 5475 5476 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 5477 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5478 return getSmallConstantTripMultiple(L, ExitingBB); 5479 5480 // No trip multiple information for multiple exits. 5481 return 0; 5482 } 5483 5484 /// Returns the largest constant divisor of the trip count of this loop as a 5485 /// normal unsigned value, if possible. This means that the actual trip count is 5486 /// always a multiple of the returned value (don't forget the trip count could 5487 /// very well be zero as well!). 5488 /// 5489 /// Returns 1 if the trip count is unknown or not guaranteed to be the 5490 /// multiple of a constant (which is also the case if the trip count is simply 5491 /// constant, use getSmallConstantTripCount for that case), Will also return 1 5492 /// if the trip count is very large (>= 2^32). 5493 /// 5494 /// As explained in the comments for getSmallConstantTripCount, this assumes 5495 /// that control exits the loop via ExitingBlock. 5496 unsigned 5497 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 5498 BasicBlock *ExitingBlock) { 5499 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5500 assert(L->isLoopExiting(ExitingBlock) && 5501 "Exiting block must actually branch out of the loop!"); 5502 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 5503 if (ExitCount == getCouldNotCompute()) 5504 return 1; 5505 5506 // Get the trip count from the BE count by adding 1. 5507 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 5508 5509 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 5510 if (!TC) 5511 // Attempt to factor more general cases. Returns the greatest power of 5512 // two divisor. If overflow happens, the trip count expression is still 5513 // divisible by the greatest power of 2 divisor returned. 5514 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 5515 5516 ConstantInt *Result = TC->getValue(); 5517 5518 // Guard against huge trip counts (this requires checking 5519 // for zero to handle the case where the trip count == -1 and the 5520 // addition wraps). 5521 if (!Result || Result->getValue().getActiveBits() > 32 || 5522 Result->getValue().getActiveBits() == 0) 5523 return 1; 5524 5525 return (unsigned)Result->getZExtValue(); 5526 } 5527 5528 /// Get the expression for the number of loop iterations for which this loop is 5529 /// guaranteed not to exit via ExitingBlock. Otherwise return 5530 /// SCEVCouldNotCompute. 5531 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 5532 BasicBlock *ExitingBlock) { 5533 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 5534 } 5535 5536 const SCEV * 5537 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 5538 SCEVUnionPredicate &Preds) { 5539 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds); 5540 } 5541 5542 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 5543 return getBackedgeTakenInfo(L).getExact(this); 5544 } 5545 5546 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 5547 /// known never to be less than the actual backedge taken count. 5548 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5549 return getBackedgeTakenInfo(L).getMax(this); 5550 } 5551 5552 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 5553 return getBackedgeTakenInfo(L).isMaxOrZero(this); 5554 } 5555 5556 /// Push PHI nodes in the header of the given loop onto the given Worklist. 5557 static void 5558 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5559 BasicBlock *Header = L->getHeader(); 5560 5561 // Push all Loop-header PHIs onto the Worklist stack. 5562 for (BasicBlock::iterator I = Header->begin(); 5563 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5564 Worklist.push_back(PN); 5565 } 5566 5567 const ScalarEvolution::BackedgeTakenInfo & 5568 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 5569 auto &BTI = getBackedgeTakenInfo(L); 5570 if (BTI.hasFullInfo()) 5571 return BTI; 5572 5573 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5574 5575 if (!Pair.second) 5576 return Pair.first->second; 5577 5578 BackedgeTakenInfo Result = 5579 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 5580 5581 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 5582 } 5583 5584 const ScalarEvolution::BackedgeTakenInfo & 5585 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5586 // Initially insert an invalid entry for this loop. If the insertion 5587 // succeeds, proceed to actually compute a backedge-taken count and 5588 // update the value. The temporary CouldNotCompute value tells SCEV 5589 // code elsewhere that it shouldn't attempt to request a new 5590 // backedge-taken count, which could result in infinite recursion. 5591 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5592 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5593 if (!Pair.second) 5594 return Pair.first->second; 5595 5596 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5597 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5598 // must be cleared in this scope. 5599 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5600 5601 if (Result.getExact(this) != getCouldNotCompute()) { 5602 assert(isLoopInvariant(Result.getExact(this), L) && 5603 isLoopInvariant(Result.getMax(this), L) && 5604 "Computed backedge-taken count isn't loop invariant for loop!"); 5605 ++NumTripCountsComputed; 5606 } 5607 else if (Result.getMax(this) == getCouldNotCompute() && 5608 isa<PHINode>(L->getHeader()->begin())) { 5609 // Only count loops that have phi nodes as not being computable. 5610 ++NumTripCountsNotComputed; 5611 } 5612 5613 // Now that we know more about the trip count for this loop, forget any 5614 // existing SCEV values for PHI nodes in this loop since they are only 5615 // conservative estimates made without the benefit of trip count 5616 // information. This is similar to the code in forgetLoop, except that 5617 // it handles SCEVUnknown PHI nodes specially. 5618 if (Result.hasAnyInfo()) { 5619 SmallVector<Instruction *, 16> Worklist; 5620 PushLoopPHIs(L, Worklist); 5621 5622 SmallPtrSet<Instruction *, 8> Visited; 5623 while (!Worklist.empty()) { 5624 Instruction *I = Worklist.pop_back_val(); 5625 if (!Visited.insert(I).second) 5626 continue; 5627 5628 ValueExprMapType::iterator It = 5629 ValueExprMap.find_as(static_cast<Value *>(I)); 5630 if (It != ValueExprMap.end()) { 5631 const SCEV *Old = It->second; 5632 5633 // SCEVUnknown for a PHI either means that it has an unrecognized 5634 // structure, or it's a PHI that's in the progress of being computed 5635 // by createNodeForPHI. In the former case, additional loop trip 5636 // count information isn't going to change anything. In the later 5637 // case, createNodeForPHI will perform the necessary updates on its 5638 // own when it gets to that point. 5639 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5640 eraseValueFromMap(It->first); 5641 forgetMemoizedResults(Old); 5642 } 5643 if (PHINode *PN = dyn_cast<PHINode>(I)) 5644 ConstantEvolutionLoopExitValue.erase(PN); 5645 } 5646 5647 PushDefUseChildren(I, Worklist); 5648 } 5649 } 5650 5651 // Re-lookup the insert position, since the call to 5652 // computeBackedgeTakenCount above could result in a 5653 // recusive call to getBackedgeTakenInfo (on a different 5654 // loop), which would invalidate the iterator computed 5655 // earlier. 5656 return BackedgeTakenCounts.find(L)->second = std::move(Result); 5657 } 5658 5659 void ScalarEvolution::forgetLoop(const Loop *L) { 5660 // Drop any stored trip count value. 5661 auto RemoveLoopFromBackedgeMap = 5662 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 5663 auto BTCPos = Map.find(L); 5664 if (BTCPos != Map.end()) { 5665 BTCPos->second.clear(); 5666 Map.erase(BTCPos); 5667 } 5668 }; 5669 5670 RemoveLoopFromBackedgeMap(BackedgeTakenCounts); 5671 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts); 5672 5673 // Drop information about expressions based on loop-header PHIs. 5674 SmallVector<Instruction *, 16> Worklist; 5675 PushLoopPHIs(L, Worklist); 5676 5677 SmallPtrSet<Instruction *, 8> Visited; 5678 while (!Worklist.empty()) { 5679 Instruction *I = Worklist.pop_back_val(); 5680 if (!Visited.insert(I).second) 5681 continue; 5682 5683 ValueExprMapType::iterator It = 5684 ValueExprMap.find_as(static_cast<Value *>(I)); 5685 if (It != ValueExprMap.end()) { 5686 eraseValueFromMap(It->first); 5687 forgetMemoizedResults(It->second); 5688 if (PHINode *PN = dyn_cast<PHINode>(I)) 5689 ConstantEvolutionLoopExitValue.erase(PN); 5690 } 5691 5692 PushDefUseChildren(I, Worklist); 5693 } 5694 5695 // Forget all contained loops too, to avoid dangling entries in the 5696 // ValuesAtScopes map. 5697 for (Loop *I : *L) 5698 forgetLoop(I); 5699 5700 LoopPropertiesCache.erase(L); 5701 } 5702 5703 void ScalarEvolution::forgetValue(Value *V) { 5704 Instruction *I = dyn_cast<Instruction>(V); 5705 if (!I) return; 5706 5707 // Drop information about expressions based on loop-header PHIs. 5708 SmallVector<Instruction *, 16> Worklist; 5709 Worklist.push_back(I); 5710 5711 SmallPtrSet<Instruction *, 8> Visited; 5712 while (!Worklist.empty()) { 5713 I = Worklist.pop_back_val(); 5714 if (!Visited.insert(I).second) 5715 continue; 5716 5717 ValueExprMapType::iterator It = 5718 ValueExprMap.find_as(static_cast<Value *>(I)); 5719 if (It != ValueExprMap.end()) { 5720 eraseValueFromMap(It->first); 5721 forgetMemoizedResults(It->second); 5722 if (PHINode *PN = dyn_cast<PHINode>(I)) 5723 ConstantEvolutionLoopExitValue.erase(PN); 5724 } 5725 5726 PushDefUseChildren(I, Worklist); 5727 } 5728 } 5729 5730 /// Get the exact loop backedge taken count considering all loop exits. A 5731 /// computable result can only be returned for loops with a single exit. 5732 /// Returning the minimum taken count among all exits is incorrect because one 5733 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that 5734 /// the limit of each loop test is never skipped. This is a valid assumption as 5735 /// long as the loop exits via that test. For precise results, it is the 5736 /// caller's responsibility to specify the relevant loop exit using 5737 /// getExact(ExitingBlock, SE). 5738 const SCEV * 5739 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE, 5740 SCEVUnionPredicate *Preds) const { 5741 // If any exits were not computable, the loop is not computable. 5742 if (!isComplete() || ExitNotTaken.empty()) 5743 return SE->getCouldNotCompute(); 5744 5745 const SCEV *BECount = nullptr; 5746 for (auto &ENT : ExitNotTaken) { 5747 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5748 5749 if (!BECount) 5750 BECount = ENT.ExactNotTaken; 5751 else if (BECount != ENT.ExactNotTaken) 5752 return SE->getCouldNotCompute(); 5753 if (Preds && !ENT.hasAlwaysTruePredicate()) 5754 Preds->add(ENT.Predicate.get()); 5755 5756 assert((Preds || ENT.hasAlwaysTruePredicate()) && 5757 "Predicate should be always true!"); 5758 } 5759 5760 assert(BECount && "Invalid not taken count for loop exit"); 5761 return BECount; 5762 } 5763 5764 /// Get the exact not taken count for this loop exit. 5765 const SCEV * 5766 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5767 ScalarEvolution *SE) const { 5768 for (auto &ENT : ExitNotTaken) 5769 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 5770 return ENT.ExactNotTaken; 5771 5772 return SE->getCouldNotCompute(); 5773 } 5774 5775 /// getMax - Get the max backedge taken count for the loop. 5776 const SCEV * 5777 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5778 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5779 return !ENT.hasAlwaysTruePredicate(); 5780 }; 5781 5782 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 5783 return SE->getCouldNotCompute(); 5784 5785 return getMax(); 5786 } 5787 5788 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 5789 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5790 return !ENT.hasAlwaysTruePredicate(); 5791 }; 5792 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 5793 } 5794 5795 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5796 ScalarEvolution *SE) const { 5797 if (getMax() && getMax() != SE->getCouldNotCompute() && 5798 SE->hasOperand(getMax(), S)) 5799 return true; 5800 5801 for (auto &ENT : ExitNotTaken) 5802 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 5803 SE->hasOperand(ENT.ExactNotTaken, S)) 5804 return true; 5805 5806 return false; 5807 } 5808 5809 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5810 /// computable exit into a persistent ExitNotTakenInfo array. 5811 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5812 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 5813 &&ExitCounts, 5814 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 5815 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 5816 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5817 ExitNotTaken.reserve(ExitCounts.size()); 5818 std::transform( 5819 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 5820 [&](const EdgeExitInfo &EEI) { 5821 BasicBlock *ExitBB = EEI.first; 5822 const ExitLimit &EL = EEI.second; 5823 if (EL.Predicates.empty()) 5824 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 5825 5826 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 5827 for (auto *Pred : EL.Predicates) 5828 Predicate->add(Pred); 5829 5830 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 5831 }); 5832 } 5833 5834 /// Invalidate this result and free the ExitNotTakenInfo array. 5835 void ScalarEvolution::BackedgeTakenInfo::clear() { 5836 ExitNotTaken.clear(); 5837 } 5838 5839 /// Compute the number of times the backedge of the specified loop will execute. 5840 ScalarEvolution::BackedgeTakenInfo 5841 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 5842 bool AllowPredicates) { 5843 SmallVector<BasicBlock *, 8> ExitingBlocks; 5844 L->getExitingBlocks(ExitingBlocks); 5845 5846 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5847 5848 SmallVector<EdgeExitInfo, 4> ExitCounts; 5849 bool CouldComputeBECount = true; 5850 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5851 const SCEV *MustExitMaxBECount = nullptr; 5852 const SCEV *MayExitMaxBECount = nullptr; 5853 bool MustExitMaxOrZero = false; 5854 5855 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5856 // and compute maxBECount. 5857 // Do a union of all the predicates here. 5858 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5859 BasicBlock *ExitBB = ExitingBlocks[i]; 5860 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 5861 5862 assert((AllowPredicates || EL.Predicates.empty()) && 5863 "Predicated exit limit when predicates are not allowed!"); 5864 5865 // 1. For each exit that can be computed, add an entry to ExitCounts. 5866 // CouldComputeBECount is true only if all exits can be computed. 5867 if (EL.ExactNotTaken == getCouldNotCompute()) 5868 // We couldn't compute an exact value for this exit, so 5869 // we won't be able to compute an exact value for the loop. 5870 CouldComputeBECount = false; 5871 else 5872 ExitCounts.emplace_back(ExitBB, EL); 5873 5874 // 2. Derive the loop's MaxBECount from each exit's max number of 5875 // non-exiting iterations. Partition the loop exits into two kinds: 5876 // LoopMustExits and LoopMayExits. 5877 // 5878 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5879 // is a LoopMayExit. If any computable LoopMustExit is found, then 5880 // MaxBECount is the minimum EL.MaxNotTaken of computable 5881 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 5882 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 5883 // computable EL.MaxNotTaken. 5884 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 5885 DT.dominates(ExitBB, Latch)) { 5886 if (!MustExitMaxBECount) { 5887 MustExitMaxBECount = EL.MaxNotTaken; 5888 MustExitMaxOrZero = EL.MaxOrZero; 5889 } else { 5890 MustExitMaxBECount = 5891 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 5892 } 5893 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5894 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 5895 MayExitMaxBECount = EL.MaxNotTaken; 5896 else { 5897 MayExitMaxBECount = 5898 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 5899 } 5900 } 5901 } 5902 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5903 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5904 // The loop backedge will be taken the maximum or zero times if there's 5905 // a single exit that must be taken the maximum or zero times. 5906 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 5907 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 5908 MaxBECount, MaxOrZero); 5909 } 5910 5911 ScalarEvolution::ExitLimit 5912 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 5913 bool AllowPredicates) { 5914 5915 // Okay, we've chosen an exiting block. See what condition causes us to exit 5916 // at this block and remember the exit block and whether all other targets 5917 // lead to the loop header. 5918 bool MustExecuteLoopHeader = true; 5919 BasicBlock *Exit = nullptr; 5920 for (auto *SBB : successors(ExitingBlock)) 5921 if (!L->contains(SBB)) { 5922 if (Exit) // Multiple exit successors. 5923 return getCouldNotCompute(); 5924 Exit = SBB; 5925 } else if (SBB != L->getHeader()) { 5926 MustExecuteLoopHeader = false; 5927 } 5928 5929 // At this point, we know we have a conditional branch that determines whether 5930 // the loop is exited. However, we don't know if the branch is executed each 5931 // time through the loop. If not, then the execution count of the branch will 5932 // not be equal to the trip count of the loop. 5933 // 5934 // Currently we check for this by checking to see if the Exit branch goes to 5935 // the loop header. If so, we know it will always execute the same number of 5936 // times as the loop. We also handle the case where the exit block *is* the 5937 // loop header. This is common for un-rotated loops. 5938 // 5939 // If both of those tests fail, walk up the unique predecessor chain to the 5940 // header, stopping if there is an edge that doesn't exit the loop. If the 5941 // header is reached, the execution count of the branch will be equal to the 5942 // trip count of the loop. 5943 // 5944 // More extensive analysis could be done to handle more cases here. 5945 // 5946 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5947 // The simple checks failed, try climbing the unique predecessor chain 5948 // up to the header. 5949 bool Ok = false; 5950 for (BasicBlock *BB = ExitingBlock; BB; ) { 5951 BasicBlock *Pred = BB->getUniquePredecessor(); 5952 if (!Pred) 5953 return getCouldNotCompute(); 5954 TerminatorInst *PredTerm = Pred->getTerminator(); 5955 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5956 if (PredSucc == BB) 5957 continue; 5958 // If the predecessor has a successor that isn't BB and isn't 5959 // outside the loop, assume the worst. 5960 if (L->contains(PredSucc)) 5961 return getCouldNotCompute(); 5962 } 5963 if (Pred == L->getHeader()) { 5964 Ok = true; 5965 break; 5966 } 5967 BB = Pred; 5968 } 5969 if (!Ok) 5970 return getCouldNotCompute(); 5971 } 5972 5973 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5974 TerminatorInst *Term = ExitingBlock->getTerminator(); 5975 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5976 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5977 // Proceed to the next level to examine the exit condition expression. 5978 return computeExitLimitFromCond( 5979 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1), 5980 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 5981 } 5982 5983 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5984 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5985 /*ControlsExit=*/IsOnlyExit); 5986 5987 return getCouldNotCompute(); 5988 } 5989 5990 ScalarEvolution::ExitLimit 5991 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5992 Value *ExitCond, 5993 BasicBlock *TBB, 5994 BasicBlock *FBB, 5995 bool ControlsExit, 5996 bool AllowPredicates) { 5997 // Check if the controlling expression for this loop is an And or Or. 5998 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5999 if (BO->getOpcode() == Instruction::And) { 6000 // Recurse on the operands of the and. 6001 bool EitherMayExit = L->contains(TBB); 6002 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 6003 ControlsExit && !EitherMayExit, 6004 AllowPredicates); 6005 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 6006 ControlsExit && !EitherMayExit, 6007 AllowPredicates); 6008 const SCEV *BECount = getCouldNotCompute(); 6009 const SCEV *MaxBECount = getCouldNotCompute(); 6010 if (EitherMayExit) { 6011 // Both conditions must be true for the loop to continue executing. 6012 // Choose the less conservative count. 6013 if (EL0.ExactNotTaken == getCouldNotCompute() || 6014 EL1.ExactNotTaken == getCouldNotCompute()) 6015 BECount = getCouldNotCompute(); 6016 else 6017 BECount = 6018 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6019 if (EL0.MaxNotTaken == getCouldNotCompute()) 6020 MaxBECount = EL1.MaxNotTaken; 6021 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6022 MaxBECount = EL0.MaxNotTaken; 6023 else 6024 MaxBECount = 6025 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 6026 } else { 6027 // Both conditions must be true at the same time for the loop to exit. 6028 // For now, be conservative. 6029 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 6030 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6031 MaxBECount = EL0.MaxNotTaken; 6032 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6033 BECount = EL0.ExactNotTaken; 6034 } 6035 6036 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 6037 // to be more aggressive when computing BECount than when computing 6038 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 6039 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 6040 // to not. 6041 if (isa<SCEVCouldNotCompute>(MaxBECount) && 6042 !isa<SCEVCouldNotCompute>(BECount)) 6043 MaxBECount = BECount; 6044 6045 return ExitLimit(BECount, MaxBECount, false, 6046 {&EL0.Predicates, &EL1.Predicates}); 6047 } 6048 if (BO->getOpcode() == Instruction::Or) { 6049 // Recurse on the operands of the or. 6050 bool EitherMayExit = L->contains(FBB); 6051 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 6052 ControlsExit && !EitherMayExit, 6053 AllowPredicates); 6054 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 6055 ControlsExit && !EitherMayExit, 6056 AllowPredicates); 6057 const SCEV *BECount = getCouldNotCompute(); 6058 const SCEV *MaxBECount = getCouldNotCompute(); 6059 if (EitherMayExit) { 6060 // Both conditions must be false for the loop to continue executing. 6061 // Choose the less conservative count. 6062 if (EL0.ExactNotTaken == getCouldNotCompute() || 6063 EL1.ExactNotTaken == getCouldNotCompute()) 6064 BECount = getCouldNotCompute(); 6065 else 6066 BECount = 6067 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6068 if (EL0.MaxNotTaken == getCouldNotCompute()) 6069 MaxBECount = EL1.MaxNotTaken; 6070 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6071 MaxBECount = EL0.MaxNotTaken; 6072 else 6073 MaxBECount = 6074 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 6075 } else { 6076 // Both conditions must be false at the same time for the loop to exit. 6077 // For now, be conservative. 6078 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 6079 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6080 MaxBECount = EL0.MaxNotTaken; 6081 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6082 BECount = EL0.ExactNotTaken; 6083 } 6084 6085 return ExitLimit(BECount, MaxBECount, false, 6086 {&EL0.Predicates, &EL1.Predicates}); 6087 } 6088 } 6089 6090 // With an icmp, it may be feasible to compute an exact backedge-taken count. 6091 // Proceed to the next level to examine the icmp. 6092 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 6093 ExitLimit EL = 6094 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 6095 if (EL.hasFullInfo() || !AllowPredicates) 6096 return EL; 6097 6098 // Try again, but use SCEV predicates this time. 6099 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit, 6100 /*AllowPredicates=*/true); 6101 } 6102 6103 // Check for a constant condition. These are normally stripped out by 6104 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 6105 // preserve the CFG and is temporarily leaving constant conditions 6106 // in place. 6107 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 6108 if (L->contains(FBB) == !CI->getZExtValue()) 6109 // The backedge is always taken. 6110 return getCouldNotCompute(); 6111 else 6112 // The backedge is never taken. 6113 return getZero(CI->getType()); 6114 } 6115 6116 // If it's not an integer or pointer comparison then compute it the hard way. 6117 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6118 } 6119 6120 ScalarEvolution::ExitLimit 6121 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 6122 ICmpInst *ExitCond, 6123 BasicBlock *TBB, 6124 BasicBlock *FBB, 6125 bool ControlsExit, 6126 bool AllowPredicates) { 6127 6128 // If the condition was exit on true, convert the condition to exit on false 6129 ICmpInst::Predicate Cond; 6130 if (!L->contains(FBB)) 6131 Cond = ExitCond->getPredicate(); 6132 else 6133 Cond = ExitCond->getInversePredicate(); 6134 6135 // Handle common loops like: for (X = "string"; *X; ++X) 6136 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 6137 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 6138 ExitLimit ItCnt = 6139 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 6140 if (ItCnt.hasAnyInfo()) 6141 return ItCnt; 6142 } 6143 6144 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 6145 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 6146 6147 // Try to evaluate any dependencies out of the loop. 6148 LHS = getSCEVAtScope(LHS, L); 6149 RHS = getSCEVAtScope(RHS, L); 6150 6151 // At this point, we would like to compute how many iterations of the 6152 // loop the predicate will return true for these inputs. 6153 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 6154 // If there is a loop-invariant, force it into the RHS. 6155 std::swap(LHS, RHS); 6156 Cond = ICmpInst::getSwappedPredicate(Cond); 6157 } 6158 6159 // Simplify the operands before analyzing them. 6160 (void)SimplifyICmpOperands(Cond, LHS, RHS); 6161 6162 // If we have a comparison of a chrec against a constant, try to use value 6163 // ranges to answer this query. 6164 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 6165 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 6166 if (AddRec->getLoop() == L) { 6167 // Form the constant range. 6168 ConstantRange CompRange = 6169 ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt()); 6170 6171 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 6172 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 6173 } 6174 6175 switch (Cond) { 6176 case ICmpInst::ICMP_NE: { // while (X != Y) 6177 // Convert to: while (X-Y != 0) 6178 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 6179 AllowPredicates); 6180 if (EL.hasAnyInfo()) return EL; 6181 break; 6182 } 6183 case ICmpInst::ICMP_EQ: { // while (X == Y) 6184 // Convert to: while (X-Y == 0) 6185 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 6186 if (EL.hasAnyInfo()) return EL; 6187 break; 6188 } 6189 case ICmpInst::ICMP_SLT: 6190 case ICmpInst::ICMP_ULT: { // while (X < Y) 6191 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 6192 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 6193 AllowPredicates); 6194 if (EL.hasAnyInfo()) return EL; 6195 break; 6196 } 6197 case ICmpInst::ICMP_SGT: 6198 case ICmpInst::ICMP_UGT: { // while (X > Y) 6199 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 6200 ExitLimit EL = 6201 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 6202 AllowPredicates); 6203 if (EL.hasAnyInfo()) return EL; 6204 break; 6205 } 6206 default: 6207 break; 6208 } 6209 6210 auto *ExhaustiveCount = 6211 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6212 6213 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 6214 return ExhaustiveCount; 6215 6216 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 6217 ExitCond->getOperand(1), L, Cond); 6218 } 6219 6220 ScalarEvolution::ExitLimit 6221 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 6222 SwitchInst *Switch, 6223 BasicBlock *ExitingBlock, 6224 bool ControlsExit) { 6225 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 6226 6227 // Give up if the exit is the default dest of a switch. 6228 if (Switch->getDefaultDest() == ExitingBlock) 6229 return getCouldNotCompute(); 6230 6231 assert(L->contains(Switch->getDefaultDest()) && 6232 "Default case must not exit the loop!"); 6233 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 6234 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 6235 6236 // while (X != Y) --> while (X-Y != 0) 6237 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 6238 if (EL.hasAnyInfo()) 6239 return EL; 6240 6241 return getCouldNotCompute(); 6242 } 6243 6244 static ConstantInt * 6245 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 6246 ScalarEvolution &SE) { 6247 const SCEV *InVal = SE.getConstant(C); 6248 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 6249 assert(isa<SCEVConstant>(Val) && 6250 "Evaluation of SCEV at constant didn't fold correctly?"); 6251 return cast<SCEVConstant>(Val)->getValue(); 6252 } 6253 6254 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 6255 /// compute the backedge execution count. 6256 ScalarEvolution::ExitLimit 6257 ScalarEvolution::computeLoadConstantCompareExitLimit( 6258 LoadInst *LI, 6259 Constant *RHS, 6260 const Loop *L, 6261 ICmpInst::Predicate predicate) { 6262 6263 if (LI->isVolatile()) return getCouldNotCompute(); 6264 6265 // Check to see if the loaded pointer is a getelementptr of a global. 6266 // TODO: Use SCEV instead of manually grubbing with GEPs. 6267 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 6268 if (!GEP) return getCouldNotCompute(); 6269 6270 // Make sure that it is really a constant global we are gepping, with an 6271 // initializer, and make sure the first IDX is really 0. 6272 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 6273 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 6274 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 6275 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 6276 return getCouldNotCompute(); 6277 6278 // Okay, we allow one non-constant index into the GEP instruction. 6279 Value *VarIdx = nullptr; 6280 std::vector<Constant*> Indexes; 6281 unsigned VarIdxNum = 0; 6282 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 6283 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 6284 Indexes.push_back(CI); 6285 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 6286 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 6287 VarIdx = GEP->getOperand(i); 6288 VarIdxNum = i-2; 6289 Indexes.push_back(nullptr); 6290 } 6291 6292 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 6293 if (!VarIdx) 6294 return getCouldNotCompute(); 6295 6296 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 6297 // Check to see if X is a loop variant variable value now. 6298 const SCEV *Idx = getSCEV(VarIdx); 6299 Idx = getSCEVAtScope(Idx, L); 6300 6301 // We can only recognize very limited forms of loop index expressions, in 6302 // particular, only affine AddRec's like {C1,+,C2}. 6303 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 6304 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 6305 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 6306 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 6307 return getCouldNotCompute(); 6308 6309 unsigned MaxSteps = MaxBruteForceIterations; 6310 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 6311 ConstantInt *ItCst = ConstantInt::get( 6312 cast<IntegerType>(IdxExpr->getType()), IterationNum); 6313 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 6314 6315 // Form the GEP offset. 6316 Indexes[VarIdxNum] = Val; 6317 6318 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 6319 Indexes); 6320 if (!Result) break; // Cannot compute! 6321 6322 // Evaluate the condition for this iteration. 6323 Result = ConstantExpr::getICmp(predicate, Result, RHS); 6324 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 6325 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 6326 ++NumArrayLenItCounts; 6327 return getConstant(ItCst); // Found terminating iteration! 6328 } 6329 } 6330 return getCouldNotCompute(); 6331 } 6332 6333 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 6334 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 6335 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 6336 if (!RHS) 6337 return getCouldNotCompute(); 6338 6339 const BasicBlock *Latch = L->getLoopLatch(); 6340 if (!Latch) 6341 return getCouldNotCompute(); 6342 6343 const BasicBlock *Predecessor = L->getLoopPredecessor(); 6344 if (!Predecessor) 6345 return getCouldNotCompute(); 6346 6347 // Return true if V is of the form "LHS `shift_op` <positive constant>". 6348 // Return LHS in OutLHS and shift_opt in OutOpCode. 6349 auto MatchPositiveShift = 6350 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 6351 6352 using namespace PatternMatch; 6353 6354 ConstantInt *ShiftAmt; 6355 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6356 OutOpCode = Instruction::LShr; 6357 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6358 OutOpCode = Instruction::AShr; 6359 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6360 OutOpCode = Instruction::Shl; 6361 else 6362 return false; 6363 6364 return ShiftAmt->getValue().isStrictlyPositive(); 6365 }; 6366 6367 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 6368 // 6369 // loop: 6370 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 6371 // %iv.shifted = lshr i32 %iv, <positive constant> 6372 // 6373 // Return true on a successful match. Return the corresponding PHI node (%iv 6374 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 6375 auto MatchShiftRecurrence = 6376 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 6377 Optional<Instruction::BinaryOps> PostShiftOpCode; 6378 6379 { 6380 Instruction::BinaryOps OpC; 6381 Value *V; 6382 6383 // If we encounter a shift instruction, "peel off" the shift operation, 6384 // and remember that we did so. Later when we inspect %iv's backedge 6385 // value, we will make sure that the backedge value uses the same 6386 // operation. 6387 // 6388 // Note: the peeled shift operation does not have to be the same 6389 // instruction as the one feeding into the PHI's backedge value. We only 6390 // really care about it being the same *kind* of shift instruction -- 6391 // that's all that is required for our later inferences to hold. 6392 if (MatchPositiveShift(LHS, V, OpC)) { 6393 PostShiftOpCode = OpC; 6394 LHS = V; 6395 } 6396 } 6397 6398 PNOut = dyn_cast<PHINode>(LHS); 6399 if (!PNOut || PNOut->getParent() != L->getHeader()) 6400 return false; 6401 6402 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 6403 Value *OpLHS; 6404 6405 return 6406 // The backedge value for the PHI node must be a shift by a positive 6407 // amount 6408 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 6409 6410 // of the PHI node itself 6411 OpLHS == PNOut && 6412 6413 // and the kind of shift should be match the kind of shift we peeled 6414 // off, if any. 6415 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 6416 }; 6417 6418 PHINode *PN; 6419 Instruction::BinaryOps OpCode; 6420 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 6421 return getCouldNotCompute(); 6422 6423 const DataLayout &DL = getDataLayout(); 6424 6425 // The key rationale for this optimization is that for some kinds of shift 6426 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 6427 // within a finite number of iterations. If the condition guarding the 6428 // backedge (in the sense that the backedge is taken if the condition is true) 6429 // is false for the value the shift recurrence stabilizes to, then we know 6430 // that the backedge is taken only a finite number of times. 6431 6432 ConstantInt *StableValue = nullptr; 6433 switch (OpCode) { 6434 default: 6435 llvm_unreachable("Impossible case!"); 6436 6437 case Instruction::AShr: { 6438 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 6439 // bitwidth(K) iterations. 6440 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 6441 bool KnownZero, KnownOne; 6442 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 6443 Predecessor->getTerminator(), &DT); 6444 auto *Ty = cast<IntegerType>(RHS->getType()); 6445 if (KnownZero) 6446 StableValue = ConstantInt::get(Ty, 0); 6447 else if (KnownOne) 6448 StableValue = ConstantInt::get(Ty, -1, true); 6449 else 6450 return getCouldNotCompute(); 6451 6452 break; 6453 } 6454 case Instruction::LShr: 6455 case Instruction::Shl: 6456 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 6457 // stabilize to 0 in at most bitwidth(K) iterations. 6458 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 6459 break; 6460 } 6461 6462 auto *Result = 6463 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 6464 assert(Result->getType()->isIntegerTy(1) && 6465 "Otherwise cannot be an operand to a branch instruction"); 6466 6467 if (Result->isZeroValue()) { 6468 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6469 const SCEV *UpperBound = 6470 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 6471 return ExitLimit(getCouldNotCompute(), UpperBound, false); 6472 } 6473 6474 return getCouldNotCompute(); 6475 } 6476 6477 /// Return true if we can constant fold an instruction of the specified type, 6478 /// assuming that all operands were constants. 6479 static bool CanConstantFold(const Instruction *I) { 6480 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 6481 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6482 isa<LoadInst>(I)) 6483 return true; 6484 6485 if (const CallInst *CI = dyn_cast<CallInst>(I)) 6486 if (const Function *F = CI->getCalledFunction()) 6487 return canConstantFoldCallTo(F); 6488 return false; 6489 } 6490 6491 /// Determine whether this instruction can constant evolve within this loop 6492 /// assuming its operands can all constant evolve. 6493 static bool canConstantEvolve(Instruction *I, const Loop *L) { 6494 // An instruction outside of the loop can't be derived from a loop PHI. 6495 if (!L->contains(I)) return false; 6496 6497 if (isa<PHINode>(I)) { 6498 // We don't currently keep track of the control flow needed to evaluate 6499 // PHIs, so we cannot handle PHIs inside of loops. 6500 return L->getHeader() == I->getParent(); 6501 } 6502 6503 // If we won't be able to constant fold this expression even if the operands 6504 // are constants, bail early. 6505 return CanConstantFold(I); 6506 } 6507 6508 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 6509 /// recursing through each instruction operand until reaching a loop header phi. 6510 static PHINode * 6511 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 6512 DenseMap<Instruction *, PHINode *> &PHIMap, 6513 unsigned Depth) { 6514 if (Depth > MaxConstantEvolvingDepth) 6515 return nullptr; 6516 6517 // Otherwise, we can evaluate this instruction if all of its operands are 6518 // constant or derived from a PHI node themselves. 6519 PHINode *PHI = nullptr; 6520 for (Value *Op : UseInst->operands()) { 6521 if (isa<Constant>(Op)) continue; 6522 6523 Instruction *OpInst = dyn_cast<Instruction>(Op); 6524 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 6525 6526 PHINode *P = dyn_cast<PHINode>(OpInst); 6527 if (!P) 6528 // If this operand is already visited, reuse the prior result. 6529 // We may have P != PHI if this is the deepest point at which the 6530 // inconsistent paths meet. 6531 P = PHIMap.lookup(OpInst); 6532 if (!P) { 6533 // Recurse and memoize the results, whether a phi is found or not. 6534 // This recursive call invalidates pointers into PHIMap. 6535 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 6536 PHIMap[OpInst] = P; 6537 } 6538 if (!P) 6539 return nullptr; // Not evolving from PHI 6540 if (PHI && PHI != P) 6541 return nullptr; // Evolving from multiple different PHIs. 6542 PHI = P; 6543 } 6544 // This is a expression evolving from a constant PHI! 6545 return PHI; 6546 } 6547 6548 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 6549 /// in the loop that V is derived from. We allow arbitrary operations along the 6550 /// way, but the operands of an operation must either be constants or a value 6551 /// derived from a constant PHI. If this expression does not fit with these 6552 /// constraints, return null. 6553 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 6554 Instruction *I = dyn_cast<Instruction>(V); 6555 if (!I || !canConstantEvolve(I, L)) return nullptr; 6556 6557 if (PHINode *PN = dyn_cast<PHINode>(I)) 6558 return PN; 6559 6560 // Record non-constant instructions contained by the loop. 6561 DenseMap<Instruction *, PHINode *> PHIMap; 6562 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 6563 } 6564 6565 /// EvaluateExpression - Given an expression that passes the 6566 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 6567 /// in the loop has the value PHIVal. If we can't fold this expression for some 6568 /// reason, return null. 6569 static Constant *EvaluateExpression(Value *V, const Loop *L, 6570 DenseMap<Instruction *, Constant *> &Vals, 6571 const DataLayout &DL, 6572 const TargetLibraryInfo *TLI) { 6573 // Convenient constant check, but redundant for recursive calls. 6574 if (Constant *C = dyn_cast<Constant>(V)) return C; 6575 Instruction *I = dyn_cast<Instruction>(V); 6576 if (!I) return nullptr; 6577 6578 if (Constant *C = Vals.lookup(I)) return C; 6579 6580 // An instruction inside the loop depends on a value outside the loop that we 6581 // weren't given a mapping for, or a value such as a call inside the loop. 6582 if (!canConstantEvolve(I, L)) return nullptr; 6583 6584 // An unmapped PHI can be due to a branch or another loop inside this loop, 6585 // or due to this not being the initial iteration through a loop where we 6586 // couldn't compute the evolution of this particular PHI last time. 6587 if (isa<PHINode>(I)) return nullptr; 6588 6589 std::vector<Constant*> Operands(I->getNumOperands()); 6590 6591 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 6592 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 6593 if (!Operand) { 6594 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 6595 if (!Operands[i]) return nullptr; 6596 continue; 6597 } 6598 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 6599 Vals[Operand] = C; 6600 if (!C) return nullptr; 6601 Operands[i] = C; 6602 } 6603 6604 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6605 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6606 Operands[1], DL, TLI); 6607 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6608 if (!LI->isVolatile()) 6609 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6610 } 6611 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6612 } 6613 6614 6615 // If every incoming value to PN except the one for BB is a specific Constant, 6616 // return that, else return nullptr. 6617 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6618 Constant *IncomingVal = nullptr; 6619 6620 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6621 if (PN->getIncomingBlock(i) == BB) 6622 continue; 6623 6624 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6625 if (!CurrentVal) 6626 return nullptr; 6627 6628 if (IncomingVal != CurrentVal) { 6629 if (IncomingVal) 6630 return nullptr; 6631 IncomingVal = CurrentVal; 6632 } 6633 } 6634 6635 return IncomingVal; 6636 } 6637 6638 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6639 /// in the header of its containing loop, we know the loop executes a 6640 /// constant number of times, and the PHI node is just a recurrence 6641 /// involving constants, fold it. 6642 Constant * 6643 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6644 const APInt &BEs, 6645 const Loop *L) { 6646 auto I = ConstantEvolutionLoopExitValue.find(PN); 6647 if (I != ConstantEvolutionLoopExitValue.end()) 6648 return I->second; 6649 6650 if (BEs.ugt(MaxBruteForceIterations)) 6651 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6652 6653 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6654 6655 DenseMap<Instruction *, Constant *> CurrentIterVals; 6656 BasicBlock *Header = L->getHeader(); 6657 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6658 6659 BasicBlock *Latch = L->getLoopLatch(); 6660 if (!Latch) 6661 return nullptr; 6662 6663 for (auto &I : *Header) { 6664 PHINode *PHI = dyn_cast<PHINode>(&I); 6665 if (!PHI) break; 6666 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6667 if (!StartCST) continue; 6668 CurrentIterVals[PHI] = StartCST; 6669 } 6670 if (!CurrentIterVals.count(PN)) 6671 return RetVal = nullptr; 6672 6673 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6674 6675 // Execute the loop symbolically to determine the exit value. 6676 if (BEs.getActiveBits() >= 32) 6677 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6678 6679 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6680 unsigned IterationNum = 0; 6681 const DataLayout &DL = getDataLayout(); 6682 for (; ; ++IterationNum) { 6683 if (IterationNum == NumIterations) 6684 return RetVal = CurrentIterVals[PN]; // Got exit value! 6685 6686 // Compute the value of the PHIs for the next iteration. 6687 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6688 DenseMap<Instruction *, Constant *> NextIterVals; 6689 Constant *NextPHI = 6690 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6691 if (!NextPHI) 6692 return nullptr; // Couldn't evaluate! 6693 NextIterVals[PN] = NextPHI; 6694 6695 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6696 6697 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6698 // cease to be able to evaluate one of them or if they stop evolving, 6699 // because that doesn't necessarily prevent us from computing PN. 6700 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6701 for (const auto &I : CurrentIterVals) { 6702 PHINode *PHI = dyn_cast<PHINode>(I.first); 6703 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6704 PHIsToCompute.emplace_back(PHI, I.second); 6705 } 6706 // We use two distinct loops because EvaluateExpression may invalidate any 6707 // iterators into CurrentIterVals. 6708 for (const auto &I : PHIsToCompute) { 6709 PHINode *PHI = I.first; 6710 Constant *&NextPHI = NextIterVals[PHI]; 6711 if (!NextPHI) { // Not already computed. 6712 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6713 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6714 } 6715 if (NextPHI != I.second) 6716 StoppedEvolving = false; 6717 } 6718 6719 // If all entries in CurrentIterVals == NextIterVals then we can stop 6720 // iterating, the loop can't continue to change. 6721 if (StoppedEvolving) 6722 return RetVal = CurrentIterVals[PN]; 6723 6724 CurrentIterVals.swap(NextIterVals); 6725 } 6726 } 6727 6728 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6729 Value *Cond, 6730 bool ExitWhen) { 6731 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6732 if (!PN) return getCouldNotCompute(); 6733 6734 // If the loop is canonicalized, the PHI will have exactly two entries. 6735 // That's the only form we support here. 6736 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6737 6738 DenseMap<Instruction *, Constant *> CurrentIterVals; 6739 BasicBlock *Header = L->getHeader(); 6740 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6741 6742 BasicBlock *Latch = L->getLoopLatch(); 6743 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6744 6745 for (auto &I : *Header) { 6746 PHINode *PHI = dyn_cast<PHINode>(&I); 6747 if (!PHI) 6748 break; 6749 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6750 if (!StartCST) continue; 6751 CurrentIterVals[PHI] = StartCST; 6752 } 6753 if (!CurrentIterVals.count(PN)) 6754 return getCouldNotCompute(); 6755 6756 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6757 // the loop symbolically to determine when the condition gets a value of 6758 // "ExitWhen". 6759 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6760 const DataLayout &DL = getDataLayout(); 6761 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6762 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6763 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6764 6765 // Couldn't symbolically evaluate. 6766 if (!CondVal) return getCouldNotCompute(); 6767 6768 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6769 ++NumBruteForceTripCountsComputed; 6770 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6771 } 6772 6773 // Update all the PHI nodes for the next iteration. 6774 DenseMap<Instruction *, Constant *> NextIterVals; 6775 6776 // Create a list of which PHIs we need to compute. We want to do this before 6777 // calling EvaluateExpression on them because that may invalidate iterators 6778 // into CurrentIterVals. 6779 SmallVector<PHINode *, 8> PHIsToCompute; 6780 for (const auto &I : CurrentIterVals) { 6781 PHINode *PHI = dyn_cast<PHINode>(I.first); 6782 if (!PHI || PHI->getParent() != Header) continue; 6783 PHIsToCompute.push_back(PHI); 6784 } 6785 for (PHINode *PHI : PHIsToCompute) { 6786 Constant *&NextPHI = NextIterVals[PHI]; 6787 if (NextPHI) continue; // Already computed! 6788 6789 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6790 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6791 } 6792 CurrentIterVals.swap(NextIterVals); 6793 } 6794 6795 // Too many iterations were needed to evaluate. 6796 return getCouldNotCompute(); 6797 } 6798 6799 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6800 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6801 ValuesAtScopes[V]; 6802 // Check to see if we've folded this expression at this loop before. 6803 for (auto &LS : Values) 6804 if (LS.first == L) 6805 return LS.second ? LS.second : V; 6806 6807 Values.emplace_back(L, nullptr); 6808 6809 // Otherwise compute it. 6810 const SCEV *C = computeSCEVAtScope(V, L); 6811 for (auto &LS : reverse(ValuesAtScopes[V])) 6812 if (LS.first == L) { 6813 LS.second = C; 6814 break; 6815 } 6816 return C; 6817 } 6818 6819 /// This builds up a Constant using the ConstantExpr interface. That way, we 6820 /// will return Constants for objects which aren't represented by a 6821 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6822 /// Returns NULL if the SCEV isn't representable as a Constant. 6823 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6824 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6825 case scCouldNotCompute: 6826 case scAddRecExpr: 6827 break; 6828 case scConstant: 6829 return cast<SCEVConstant>(V)->getValue(); 6830 case scUnknown: 6831 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6832 case scSignExtend: { 6833 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6834 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6835 return ConstantExpr::getSExt(CastOp, SS->getType()); 6836 break; 6837 } 6838 case scZeroExtend: { 6839 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6840 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6841 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6842 break; 6843 } 6844 case scTruncate: { 6845 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6846 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6847 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6848 break; 6849 } 6850 case scAddExpr: { 6851 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6852 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6853 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6854 unsigned AS = PTy->getAddressSpace(); 6855 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6856 C = ConstantExpr::getBitCast(C, DestPtrTy); 6857 } 6858 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6859 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6860 if (!C2) return nullptr; 6861 6862 // First pointer! 6863 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6864 unsigned AS = C2->getType()->getPointerAddressSpace(); 6865 std::swap(C, C2); 6866 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6867 // The offsets have been converted to bytes. We can add bytes to an 6868 // i8* by GEP with the byte count in the first index. 6869 C = ConstantExpr::getBitCast(C, DestPtrTy); 6870 } 6871 6872 // Don't bother trying to sum two pointers. We probably can't 6873 // statically compute a load that results from it anyway. 6874 if (C2->getType()->isPointerTy()) 6875 return nullptr; 6876 6877 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6878 if (PTy->getElementType()->isStructTy()) 6879 C2 = ConstantExpr::getIntegerCast( 6880 C2, Type::getInt32Ty(C->getContext()), true); 6881 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6882 } else 6883 C = ConstantExpr::getAdd(C, C2); 6884 } 6885 return C; 6886 } 6887 break; 6888 } 6889 case scMulExpr: { 6890 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6891 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6892 // Don't bother with pointers at all. 6893 if (C->getType()->isPointerTy()) return nullptr; 6894 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6895 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6896 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6897 C = ConstantExpr::getMul(C, C2); 6898 } 6899 return C; 6900 } 6901 break; 6902 } 6903 case scUDivExpr: { 6904 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6905 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6906 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6907 if (LHS->getType() == RHS->getType()) 6908 return ConstantExpr::getUDiv(LHS, RHS); 6909 break; 6910 } 6911 case scSMaxExpr: 6912 case scUMaxExpr: 6913 break; // TODO: smax, umax. 6914 } 6915 return nullptr; 6916 } 6917 6918 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6919 if (isa<SCEVConstant>(V)) return V; 6920 6921 // If this instruction is evolved from a constant-evolving PHI, compute the 6922 // exit value from the loop without using SCEVs. 6923 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6924 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6925 const Loop *LI = this->LI[I->getParent()]; 6926 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6927 if (PHINode *PN = dyn_cast<PHINode>(I)) 6928 if (PN->getParent() == LI->getHeader()) { 6929 // Okay, there is no closed form solution for the PHI node. Check 6930 // to see if the loop that contains it has a known backedge-taken 6931 // count. If so, we may be able to force computation of the exit 6932 // value. 6933 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6934 if (const SCEVConstant *BTCC = 6935 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6936 // Okay, we know how many times the containing loop executes. If 6937 // this is a constant evolving PHI node, get the final value at 6938 // the specified iteration number. 6939 Constant *RV = 6940 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6941 if (RV) return getSCEV(RV); 6942 } 6943 } 6944 6945 // Okay, this is an expression that we cannot symbolically evaluate 6946 // into a SCEV. Check to see if it's possible to symbolically evaluate 6947 // the arguments into constants, and if so, try to constant propagate the 6948 // result. This is particularly useful for computing loop exit values. 6949 if (CanConstantFold(I)) { 6950 SmallVector<Constant *, 4> Operands; 6951 bool MadeImprovement = false; 6952 for (Value *Op : I->operands()) { 6953 if (Constant *C = dyn_cast<Constant>(Op)) { 6954 Operands.push_back(C); 6955 continue; 6956 } 6957 6958 // If any of the operands is non-constant and if they are 6959 // non-integer and non-pointer, don't even try to analyze them 6960 // with scev techniques. 6961 if (!isSCEVable(Op->getType())) 6962 return V; 6963 6964 const SCEV *OrigV = getSCEV(Op); 6965 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6966 MadeImprovement |= OrigV != OpV; 6967 6968 Constant *C = BuildConstantFromSCEV(OpV); 6969 if (!C) return V; 6970 if (C->getType() != Op->getType()) 6971 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6972 Op->getType(), 6973 false), 6974 C, Op->getType()); 6975 Operands.push_back(C); 6976 } 6977 6978 // Check to see if getSCEVAtScope actually made an improvement. 6979 if (MadeImprovement) { 6980 Constant *C = nullptr; 6981 const DataLayout &DL = getDataLayout(); 6982 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6983 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6984 Operands[1], DL, &TLI); 6985 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6986 if (!LI->isVolatile()) 6987 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6988 } else 6989 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 6990 if (!C) return V; 6991 return getSCEV(C); 6992 } 6993 } 6994 } 6995 6996 // This is some other type of SCEVUnknown, just return it. 6997 return V; 6998 } 6999 7000 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 7001 // Avoid performing the look-up in the common case where the specified 7002 // expression has no loop-variant portions. 7003 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 7004 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7005 if (OpAtScope != Comm->getOperand(i)) { 7006 // Okay, at least one of these operands is loop variant but might be 7007 // foldable. Build a new instance of the folded commutative expression. 7008 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 7009 Comm->op_begin()+i); 7010 NewOps.push_back(OpAtScope); 7011 7012 for (++i; i != e; ++i) { 7013 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7014 NewOps.push_back(OpAtScope); 7015 } 7016 if (isa<SCEVAddExpr>(Comm)) 7017 return getAddExpr(NewOps); 7018 if (isa<SCEVMulExpr>(Comm)) 7019 return getMulExpr(NewOps); 7020 if (isa<SCEVSMaxExpr>(Comm)) 7021 return getSMaxExpr(NewOps); 7022 if (isa<SCEVUMaxExpr>(Comm)) 7023 return getUMaxExpr(NewOps); 7024 llvm_unreachable("Unknown commutative SCEV type!"); 7025 } 7026 } 7027 // If we got here, all operands are loop invariant. 7028 return Comm; 7029 } 7030 7031 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 7032 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 7033 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 7034 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 7035 return Div; // must be loop invariant 7036 return getUDivExpr(LHS, RHS); 7037 } 7038 7039 // If this is a loop recurrence for a loop that does not contain L, then we 7040 // are dealing with the final value computed by the loop. 7041 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 7042 // First, attempt to evaluate each operand. 7043 // Avoid performing the look-up in the common case where the specified 7044 // expression has no loop-variant portions. 7045 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 7046 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 7047 if (OpAtScope == AddRec->getOperand(i)) 7048 continue; 7049 7050 // Okay, at least one of these operands is loop variant but might be 7051 // foldable. Build a new instance of the folded commutative expression. 7052 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 7053 AddRec->op_begin()+i); 7054 NewOps.push_back(OpAtScope); 7055 for (++i; i != e; ++i) 7056 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 7057 7058 const SCEV *FoldedRec = 7059 getAddRecExpr(NewOps, AddRec->getLoop(), 7060 AddRec->getNoWrapFlags(SCEV::FlagNW)); 7061 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 7062 // The addrec may be folded to a nonrecurrence, for example, if the 7063 // induction variable is multiplied by zero after constant folding. Go 7064 // ahead and return the folded value. 7065 if (!AddRec) 7066 return FoldedRec; 7067 break; 7068 } 7069 7070 // If the scope is outside the addrec's loop, evaluate it by using the 7071 // loop exit value of the addrec. 7072 if (!AddRec->getLoop()->contains(L)) { 7073 // To evaluate this recurrence, we need to know how many times the AddRec 7074 // loop iterates. Compute this now. 7075 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 7076 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 7077 7078 // Then, evaluate the AddRec. 7079 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 7080 } 7081 7082 return AddRec; 7083 } 7084 7085 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 7086 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7087 if (Op == Cast->getOperand()) 7088 return Cast; // must be loop invariant 7089 return getZeroExtendExpr(Op, Cast->getType()); 7090 } 7091 7092 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 7093 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7094 if (Op == Cast->getOperand()) 7095 return Cast; // must be loop invariant 7096 return getSignExtendExpr(Op, Cast->getType()); 7097 } 7098 7099 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 7100 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7101 if (Op == Cast->getOperand()) 7102 return Cast; // must be loop invariant 7103 return getTruncateExpr(Op, Cast->getType()); 7104 } 7105 7106 llvm_unreachable("Unknown SCEV type!"); 7107 } 7108 7109 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 7110 return getSCEVAtScope(getSCEV(V), L); 7111 } 7112 7113 /// Finds the minimum unsigned root of the following equation: 7114 /// 7115 /// A * X = B (mod N) 7116 /// 7117 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 7118 /// A and B isn't important. 7119 /// 7120 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 7121 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 7122 ScalarEvolution &SE) { 7123 uint32_t BW = A.getBitWidth(); 7124 assert(BW == SE.getTypeSizeInBits(B->getType())); 7125 assert(A != 0 && "A must be non-zero."); 7126 7127 // 1. D = gcd(A, N) 7128 // 7129 // The gcd of A and N may have only one prime factor: 2. The number of 7130 // trailing zeros in A is its multiplicity 7131 uint32_t Mult2 = A.countTrailingZeros(); 7132 // D = 2^Mult2 7133 7134 // 2. Check if B is divisible by D. 7135 // 7136 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 7137 // is not less than multiplicity of this prime factor for D. 7138 if (SE.GetMinTrailingZeros(B) < Mult2) 7139 return SE.getCouldNotCompute(); 7140 7141 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 7142 // modulo (N / D). 7143 // 7144 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 7145 // (N / D) in general. The inverse itself always fits into BW bits, though, 7146 // so we immediately truncate it. 7147 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 7148 APInt Mod(BW + 1, 0); 7149 Mod.setBit(BW - Mult2); // Mod = N / D 7150 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 7151 7152 // 4. Compute the minimum unsigned root of the equation: 7153 // I * (B / D) mod (N / D) 7154 // To simplify the computation, we factor out the divide by D: 7155 // (I * B mod N) / D 7156 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 7157 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 7158 } 7159 7160 /// Find the roots of the quadratic equation for the given quadratic chrec 7161 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 7162 /// two SCEVCouldNotCompute objects. 7163 /// 7164 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 7165 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 7166 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 7167 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 7168 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 7169 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 7170 7171 // We currently can only solve this if the coefficients are constants. 7172 if (!LC || !MC || !NC) 7173 return None; 7174 7175 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 7176 const APInt &L = LC->getAPInt(); 7177 const APInt &M = MC->getAPInt(); 7178 const APInt &N = NC->getAPInt(); 7179 APInt Two(BitWidth, 2); 7180 APInt Four(BitWidth, 4); 7181 7182 { 7183 using namespace APIntOps; 7184 const APInt& C = L; 7185 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 7186 // The B coefficient is M-N/2 7187 APInt B(M); 7188 B -= sdiv(N,Two); 7189 7190 // The A coefficient is N/2 7191 APInt A(N.sdiv(Two)); 7192 7193 // Compute the B^2-4ac term. 7194 APInt SqrtTerm(B); 7195 SqrtTerm *= B; 7196 SqrtTerm -= Four * (A * C); 7197 7198 if (SqrtTerm.isNegative()) { 7199 // The loop is provably infinite. 7200 return None; 7201 } 7202 7203 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 7204 // integer value or else APInt::sqrt() will assert. 7205 APInt SqrtVal(SqrtTerm.sqrt()); 7206 7207 // Compute the two solutions for the quadratic formula. 7208 // The divisions must be performed as signed divisions. 7209 APInt NegB(-B); 7210 APInt TwoA(A << 1); 7211 if (TwoA.isMinValue()) 7212 return None; 7213 7214 LLVMContext &Context = SE.getContext(); 7215 7216 ConstantInt *Solution1 = 7217 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 7218 ConstantInt *Solution2 = 7219 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 7220 7221 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 7222 cast<SCEVConstant>(SE.getConstant(Solution2))); 7223 } // end APIntOps namespace 7224 } 7225 7226 ScalarEvolution::ExitLimit 7227 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 7228 bool AllowPredicates) { 7229 7230 // This is only used for loops with a "x != y" exit test. The exit condition 7231 // is now expressed as a single expression, V = x-y. So the exit test is 7232 // effectively V != 0. We know and take advantage of the fact that this 7233 // expression only being used in a comparison by zero context. 7234 7235 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 7236 // If the value is a constant 7237 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7238 // If the value is already zero, the branch will execute zero times. 7239 if (C->getValue()->isZero()) return C; 7240 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7241 } 7242 7243 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 7244 if (!AddRec && AllowPredicates) 7245 // Try to make this an AddRec using runtime tests, in the first X 7246 // iterations of this loop, where X is the SCEV expression found by the 7247 // algorithm below. 7248 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 7249 7250 if (!AddRec || AddRec->getLoop() != L) 7251 return getCouldNotCompute(); 7252 7253 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 7254 // the quadratic equation to solve it. 7255 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 7256 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 7257 const SCEVConstant *R1 = Roots->first; 7258 const SCEVConstant *R2 = Roots->second; 7259 // Pick the smallest positive root value. 7260 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 7261 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 7262 if (!CB->getZExtValue()) 7263 std::swap(R1, R2); // R1 is the minimum root now. 7264 7265 // We can only use this value if the chrec ends up with an exact zero 7266 // value at this index. When solving for "X*X != 5", for example, we 7267 // should not accept a root of 2. 7268 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 7269 if (Val->isZero()) 7270 // We found a quadratic root! 7271 return ExitLimit(R1, R1, false, Predicates); 7272 } 7273 } 7274 return getCouldNotCompute(); 7275 } 7276 7277 // Otherwise we can only handle this if it is affine. 7278 if (!AddRec->isAffine()) 7279 return getCouldNotCompute(); 7280 7281 // If this is an affine expression, the execution count of this branch is 7282 // the minimum unsigned root of the following equation: 7283 // 7284 // Start + Step*N = 0 (mod 2^BW) 7285 // 7286 // equivalent to: 7287 // 7288 // Step*N = -Start (mod 2^BW) 7289 // 7290 // where BW is the common bit width of Start and Step. 7291 7292 // Get the initial value for the loop. 7293 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 7294 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 7295 7296 // For now we handle only constant steps. 7297 // 7298 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 7299 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 7300 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 7301 // We have not yet seen any such cases. 7302 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 7303 if (!StepC || StepC->getValue()->equalsInt(0)) 7304 return getCouldNotCompute(); 7305 7306 // For positive steps (counting up until unsigned overflow): 7307 // N = -Start/Step (as unsigned) 7308 // For negative steps (counting down to zero): 7309 // N = Start/-Step 7310 // First compute the unsigned distance from zero in the direction of Step. 7311 bool CountDown = StepC->getAPInt().isNegative(); 7312 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 7313 7314 // Handle unitary steps, which cannot wraparound. 7315 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 7316 // N = Distance (as unsigned) 7317 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 7318 APInt MaxBECount = getUnsignedRange(Distance).getUnsignedMax(); 7319 7320 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 7321 // we end up with a loop whose backedge-taken count is n - 1. Detect this 7322 // case, and see if we can improve the bound. 7323 // 7324 // Explicitly handling this here is necessary because getUnsignedRange 7325 // isn't context-sensitive; it doesn't know that we only care about the 7326 // range inside the loop. 7327 const SCEV *Zero = getZero(Distance->getType()); 7328 const SCEV *One = getOne(Distance->getType()); 7329 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 7330 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 7331 // If Distance + 1 doesn't overflow, we can compute the maximum distance 7332 // as "unsigned_max(Distance + 1) - 1". 7333 ConstantRange CR = getUnsignedRange(DistancePlusOne); 7334 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 7335 } 7336 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 7337 } 7338 7339 // If the condition controls loop exit (the loop exits only if the expression 7340 // is true) and the addition is no-wrap we can use unsigned divide to 7341 // compute the backedge count. In this case, the step may not divide the 7342 // distance, but we don't care because if the condition is "missed" the loop 7343 // will have undefined behavior due to wrapping. 7344 if (ControlsExit && AddRec->hasNoSelfWrap() && 7345 loopHasNoAbnormalExits(AddRec->getLoop())) { 7346 const SCEV *Exact = 7347 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 7348 return ExitLimit(Exact, Exact, false, Predicates); 7349 } 7350 7351 // Solve the general equation. 7352 const SCEV *E = SolveLinEquationWithOverflow( 7353 StepC->getAPInt(), getNegativeSCEV(Start), *this); 7354 return ExitLimit(E, E, false, Predicates); 7355 } 7356 7357 ScalarEvolution::ExitLimit 7358 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 7359 // Loops that look like: while (X == 0) are very strange indeed. We don't 7360 // handle them yet except for the trivial case. This could be expanded in the 7361 // future as needed. 7362 7363 // If the value is a constant, check to see if it is known to be non-zero 7364 // already. If so, the backedge will execute zero times. 7365 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7366 if (!C->getValue()->isNullValue()) 7367 return getZero(C->getType()); 7368 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7369 } 7370 7371 // We could implement others, but I really doubt anyone writes loops like 7372 // this, and if they did, they would already be constant folded. 7373 return getCouldNotCompute(); 7374 } 7375 7376 std::pair<BasicBlock *, BasicBlock *> 7377 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 7378 // If the block has a unique predecessor, then there is no path from the 7379 // predecessor to the block that does not go through the direct edge 7380 // from the predecessor to the block. 7381 if (BasicBlock *Pred = BB->getSinglePredecessor()) 7382 return {Pred, BB}; 7383 7384 // A loop's header is defined to be a block that dominates the loop. 7385 // If the header has a unique predecessor outside the loop, it must be 7386 // a block that has exactly one successor that can reach the loop. 7387 if (Loop *L = LI.getLoopFor(BB)) 7388 return {L->getLoopPredecessor(), L->getHeader()}; 7389 7390 return {nullptr, nullptr}; 7391 } 7392 7393 /// SCEV structural equivalence is usually sufficient for testing whether two 7394 /// expressions are equal, however for the purposes of looking for a condition 7395 /// guarding a loop, it can be useful to be a little more general, since a 7396 /// front-end may have replicated the controlling expression. 7397 /// 7398 static bool HasSameValue(const SCEV *A, const SCEV *B) { 7399 // Quick check to see if they are the same SCEV. 7400 if (A == B) return true; 7401 7402 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 7403 // Not all instructions that are "identical" compute the same value. For 7404 // instance, two distinct alloca instructions allocating the same type are 7405 // identical and do not read memory; but compute distinct values. 7406 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 7407 }; 7408 7409 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 7410 // two different instructions with the same value. Check for this case. 7411 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 7412 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 7413 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 7414 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 7415 if (ComputesEqualValues(AI, BI)) 7416 return true; 7417 7418 // Otherwise assume they may have a different value. 7419 return false; 7420 } 7421 7422 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 7423 const SCEV *&LHS, const SCEV *&RHS, 7424 unsigned Depth) { 7425 bool Changed = false; 7426 7427 // If we hit the max recursion limit bail out. 7428 if (Depth >= 3) 7429 return false; 7430 7431 // Canonicalize a constant to the right side. 7432 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 7433 // Check for both operands constant. 7434 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 7435 if (ConstantExpr::getICmp(Pred, 7436 LHSC->getValue(), 7437 RHSC->getValue())->isNullValue()) 7438 goto trivially_false; 7439 else 7440 goto trivially_true; 7441 } 7442 // Otherwise swap the operands to put the constant on the right. 7443 std::swap(LHS, RHS); 7444 Pred = ICmpInst::getSwappedPredicate(Pred); 7445 Changed = true; 7446 } 7447 7448 // If we're comparing an addrec with a value which is loop-invariant in the 7449 // addrec's loop, put the addrec on the left. Also make a dominance check, 7450 // as both operands could be addrecs loop-invariant in each other's loop. 7451 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 7452 const Loop *L = AR->getLoop(); 7453 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 7454 std::swap(LHS, RHS); 7455 Pred = ICmpInst::getSwappedPredicate(Pred); 7456 Changed = true; 7457 } 7458 } 7459 7460 // If there's a constant operand, canonicalize comparisons with boundary 7461 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 7462 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 7463 const APInt &RA = RC->getAPInt(); 7464 7465 bool SimplifiedByConstantRange = false; 7466 7467 if (!ICmpInst::isEquality(Pred)) { 7468 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 7469 if (ExactCR.isFullSet()) 7470 goto trivially_true; 7471 else if (ExactCR.isEmptySet()) 7472 goto trivially_false; 7473 7474 APInt NewRHS; 7475 CmpInst::Predicate NewPred; 7476 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 7477 ICmpInst::isEquality(NewPred)) { 7478 // We were able to convert an inequality to an equality. 7479 Pred = NewPred; 7480 RHS = getConstant(NewRHS); 7481 Changed = SimplifiedByConstantRange = true; 7482 } 7483 } 7484 7485 if (!SimplifiedByConstantRange) { 7486 switch (Pred) { 7487 default: 7488 break; 7489 case ICmpInst::ICMP_EQ: 7490 case ICmpInst::ICMP_NE: 7491 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 7492 if (!RA) 7493 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 7494 if (const SCEVMulExpr *ME = 7495 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 7496 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 7497 ME->getOperand(0)->isAllOnesValue()) { 7498 RHS = AE->getOperand(1); 7499 LHS = ME->getOperand(1); 7500 Changed = true; 7501 } 7502 break; 7503 7504 7505 // The "Should have been caught earlier!" messages refer to the fact 7506 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 7507 // should have fired on the corresponding cases, and canonicalized the 7508 // check to trivially_true or trivially_false. 7509 7510 case ICmpInst::ICMP_UGE: 7511 assert(!RA.isMinValue() && "Should have been caught earlier!"); 7512 Pred = ICmpInst::ICMP_UGT; 7513 RHS = getConstant(RA - 1); 7514 Changed = true; 7515 break; 7516 case ICmpInst::ICMP_ULE: 7517 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 7518 Pred = ICmpInst::ICMP_ULT; 7519 RHS = getConstant(RA + 1); 7520 Changed = true; 7521 break; 7522 case ICmpInst::ICMP_SGE: 7523 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 7524 Pred = ICmpInst::ICMP_SGT; 7525 RHS = getConstant(RA - 1); 7526 Changed = true; 7527 break; 7528 case ICmpInst::ICMP_SLE: 7529 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 7530 Pred = ICmpInst::ICMP_SLT; 7531 RHS = getConstant(RA + 1); 7532 Changed = true; 7533 break; 7534 } 7535 } 7536 } 7537 7538 // Check for obvious equality. 7539 if (HasSameValue(LHS, RHS)) { 7540 if (ICmpInst::isTrueWhenEqual(Pred)) 7541 goto trivially_true; 7542 if (ICmpInst::isFalseWhenEqual(Pred)) 7543 goto trivially_false; 7544 } 7545 7546 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7547 // adding or subtracting 1 from one of the operands. 7548 switch (Pred) { 7549 case ICmpInst::ICMP_SLE: 7550 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7551 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7552 SCEV::FlagNSW); 7553 Pred = ICmpInst::ICMP_SLT; 7554 Changed = true; 7555 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7556 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7557 SCEV::FlagNSW); 7558 Pred = ICmpInst::ICMP_SLT; 7559 Changed = true; 7560 } 7561 break; 7562 case ICmpInst::ICMP_SGE: 7563 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7564 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7565 SCEV::FlagNSW); 7566 Pred = ICmpInst::ICMP_SGT; 7567 Changed = true; 7568 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7569 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7570 SCEV::FlagNSW); 7571 Pred = ICmpInst::ICMP_SGT; 7572 Changed = true; 7573 } 7574 break; 7575 case ICmpInst::ICMP_ULE: 7576 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7577 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7578 SCEV::FlagNUW); 7579 Pred = ICmpInst::ICMP_ULT; 7580 Changed = true; 7581 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7582 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7583 Pred = ICmpInst::ICMP_ULT; 7584 Changed = true; 7585 } 7586 break; 7587 case ICmpInst::ICMP_UGE: 7588 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7589 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7590 Pred = ICmpInst::ICMP_UGT; 7591 Changed = true; 7592 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7593 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7594 SCEV::FlagNUW); 7595 Pred = ICmpInst::ICMP_UGT; 7596 Changed = true; 7597 } 7598 break; 7599 default: 7600 break; 7601 } 7602 7603 // TODO: More simplifications are possible here. 7604 7605 // Recursively simplify until we either hit a recursion limit or nothing 7606 // changes. 7607 if (Changed) 7608 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7609 7610 return Changed; 7611 7612 trivially_true: 7613 // Return 0 == 0. 7614 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7615 Pred = ICmpInst::ICMP_EQ; 7616 return true; 7617 7618 trivially_false: 7619 // Return 0 != 0. 7620 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7621 Pred = ICmpInst::ICMP_NE; 7622 return true; 7623 } 7624 7625 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7626 return getSignedRange(S).getSignedMax().isNegative(); 7627 } 7628 7629 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7630 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7631 } 7632 7633 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7634 return !getSignedRange(S).getSignedMin().isNegative(); 7635 } 7636 7637 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7638 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7639 } 7640 7641 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7642 return isKnownNegative(S) || isKnownPositive(S); 7643 } 7644 7645 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7646 const SCEV *LHS, const SCEV *RHS) { 7647 // Canonicalize the inputs first. 7648 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7649 7650 // If LHS or RHS is an addrec, check to see if the condition is true in 7651 // every iteration of the loop. 7652 // If LHS and RHS are both addrec, both conditions must be true in 7653 // every iteration of the loop. 7654 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7655 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7656 bool LeftGuarded = false; 7657 bool RightGuarded = false; 7658 if (LAR) { 7659 const Loop *L = LAR->getLoop(); 7660 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7661 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7662 if (!RAR) return true; 7663 LeftGuarded = true; 7664 } 7665 } 7666 if (RAR) { 7667 const Loop *L = RAR->getLoop(); 7668 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7669 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7670 if (!LAR) return true; 7671 RightGuarded = true; 7672 } 7673 } 7674 if (LeftGuarded && RightGuarded) 7675 return true; 7676 7677 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7678 return true; 7679 7680 // Otherwise see what can be done with known constant ranges. 7681 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7682 } 7683 7684 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7685 ICmpInst::Predicate Pred, 7686 bool &Increasing) { 7687 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7688 7689 #ifndef NDEBUG 7690 // Verify an invariant: inverting the predicate should turn a monotonically 7691 // increasing change to a monotonically decreasing one, and vice versa. 7692 bool IncreasingSwapped; 7693 bool ResultSwapped = isMonotonicPredicateImpl( 7694 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7695 7696 assert(Result == ResultSwapped && "should be able to analyze both!"); 7697 if (ResultSwapped) 7698 assert(Increasing == !IncreasingSwapped && 7699 "monotonicity should flip as we flip the predicate"); 7700 #endif 7701 7702 return Result; 7703 } 7704 7705 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7706 ICmpInst::Predicate Pred, 7707 bool &Increasing) { 7708 7709 // A zero step value for LHS means the induction variable is essentially a 7710 // loop invariant value. We don't really depend on the predicate actually 7711 // flipping from false to true (for increasing predicates, and the other way 7712 // around for decreasing predicates), all we care about is that *if* the 7713 // predicate changes then it only changes from false to true. 7714 // 7715 // A zero step value in itself is not very useful, but there may be places 7716 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7717 // as general as possible. 7718 7719 switch (Pred) { 7720 default: 7721 return false; // Conservative answer 7722 7723 case ICmpInst::ICMP_UGT: 7724 case ICmpInst::ICMP_UGE: 7725 case ICmpInst::ICMP_ULT: 7726 case ICmpInst::ICMP_ULE: 7727 if (!LHS->hasNoUnsignedWrap()) 7728 return false; 7729 7730 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7731 return true; 7732 7733 case ICmpInst::ICMP_SGT: 7734 case ICmpInst::ICMP_SGE: 7735 case ICmpInst::ICMP_SLT: 7736 case ICmpInst::ICMP_SLE: { 7737 if (!LHS->hasNoSignedWrap()) 7738 return false; 7739 7740 const SCEV *Step = LHS->getStepRecurrence(*this); 7741 7742 if (isKnownNonNegative(Step)) { 7743 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7744 return true; 7745 } 7746 7747 if (isKnownNonPositive(Step)) { 7748 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7749 return true; 7750 } 7751 7752 return false; 7753 } 7754 7755 } 7756 7757 llvm_unreachable("switch has default clause!"); 7758 } 7759 7760 bool ScalarEvolution::isLoopInvariantPredicate( 7761 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7762 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7763 const SCEV *&InvariantRHS) { 7764 7765 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7766 if (!isLoopInvariant(RHS, L)) { 7767 if (!isLoopInvariant(LHS, L)) 7768 return false; 7769 7770 std::swap(LHS, RHS); 7771 Pred = ICmpInst::getSwappedPredicate(Pred); 7772 } 7773 7774 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7775 if (!ArLHS || ArLHS->getLoop() != L) 7776 return false; 7777 7778 bool Increasing; 7779 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7780 return false; 7781 7782 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7783 // true as the loop iterates, and the backedge is control dependent on 7784 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7785 // 7786 // * if the predicate was false in the first iteration then the predicate 7787 // is never evaluated again, since the loop exits without taking the 7788 // backedge. 7789 // * if the predicate was true in the first iteration then it will 7790 // continue to be true for all future iterations since it is 7791 // monotonically increasing. 7792 // 7793 // For both the above possibilities, we can replace the loop varying 7794 // predicate with its value on the first iteration of the loop (which is 7795 // loop invariant). 7796 // 7797 // A similar reasoning applies for a monotonically decreasing predicate, by 7798 // replacing true with false and false with true in the above two bullets. 7799 7800 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7801 7802 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7803 return false; 7804 7805 InvariantPred = Pred; 7806 InvariantLHS = ArLHS->getStart(); 7807 InvariantRHS = RHS; 7808 return true; 7809 } 7810 7811 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7812 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7813 if (HasSameValue(LHS, RHS)) 7814 return ICmpInst::isTrueWhenEqual(Pred); 7815 7816 // This code is split out from isKnownPredicate because it is called from 7817 // within isLoopEntryGuardedByCond. 7818 7819 auto CheckRanges = 7820 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 7821 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 7822 .contains(RangeLHS); 7823 }; 7824 7825 // The check at the top of the function catches the case where the values are 7826 // known to be equal. 7827 if (Pred == CmpInst::ICMP_EQ) 7828 return false; 7829 7830 if (Pred == CmpInst::ICMP_NE) 7831 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 7832 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 7833 isKnownNonZero(getMinusSCEV(LHS, RHS)); 7834 7835 if (CmpInst::isSigned(Pred)) 7836 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 7837 7838 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 7839 } 7840 7841 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7842 const SCEV *LHS, 7843 const SCEV *RHS) { 7844 7845 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7846 // Return Y via OutY. 7847 auto MatchBinaryAddToConst = 7848 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7849 SCEV::NoWrapFlags ExpectedFlags) { 7850 const SCEV *NonConstOp, *ConstOp; 7851 SCEV::NoWrapFlags FlagsPresent; 7852 7853 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7854 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7855 return false; 7856 7857 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7858 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7859 }; 7860 7861 APInt C; 7862 7863 switch (Pred) { 7864 default: 7865 break; 7866 7867 case ICmpInst::ICMP_SGE: 7868 std::swap(LHS, RHS); 7869 case ICmpInst::ICMP_SLE: 7870 // X s<= (X + C)<nsw> if C >= 0 7871 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7872 return true; 7873 7874 // (X + C)<nsw> s<= X if C <= 0 7875 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7876 !C.isStrictlyPositive()) 7877 return true; 7878 break; 7879 7880 case ICmpInst::ICMP_SGT: 7881 std::swap(LHS, RHS); 7882 case ICmpInst::ICMP_SLT: 7883 // X s< (X + C)<nsw> if C > 0 7884 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7885 C.isStrictlyPositive()) 7886 return true; 7887 7888 // (X + C)<nsw> s< X if C < 0 7889 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7890 return true; 7891 break; 7892 } 7893 7894 return false; 7895 } 7896 7897 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7898 const SCEV *LHS, 7899 const SCEV *RHS) { 7900 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7901 return false; 7902 7903 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7904 // the stack can result in exponential time complexity. 7905 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7906 7907 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7908 // 7909 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7910 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7911 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7912 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7913 // use isKnownPredicate later if needed. 7914 return isKnownNonNegative(RHS) && 7915 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7916 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7917 } 7918 7919 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 7920 ICmpInst::Predicate Pred, 7921 const SCEV *LHS, const SCEV *RHS) { 7922 // No need to even try if we know the module has no guards. 7923 if (!HasGuards) 7924 return false; 7925 7926 return any_of(*BB, [&](Instruction &I) { 7927 using namespace llvm::PatternMatch; 7928 7929 Value *Condition; 7930 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 7931 m_Value(Condition))) && 7932 isImpliedCond(Pred, LHS, RHS, Condition, false); 7933 }); 7934 } 7935 7936 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7937 /// protected by a conditional between LHS and RHS. This is used to 7938 /// to eliminate casts. 7939 bool 7940 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7941 ICmpInst::Predicate Pred, 7942 const SCEV *LHS, const SCEV *RHS) { 7943 // Interpret a null as meaning no loop, where there is obviously no guard 7944 // (interprocedural conditions notwithstanding). 7945 if (!L) return true; 7946 7947 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7948 return true; 7949 7950 BasicBlock *Latch = L->getLoopLatch(); 7951 if (!Latch) 7952 return false; 7953 7954 BranchInst *LoopContinuePredicate = 7955 dyn_cast<BranchInst>(Latch->getTerminator()); 7956 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7957 isImpliedCond(Pred, LHS, RHS, 7958 LoopContinuePredicate->getCondition(), 7959 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7960 return true; 7961 7962 // We don't want more than one activation of the following loops on the stack 7963 // -- that can lead to O(n!) time complexity. 7964 if (WalkingBEDominatingConds) 7965 return false; 7966 7967 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7968 7969 // See if we can exploit a trip count to prove the predicate. 7970 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7971 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7972 if (LatchBECount != getCouldNotCompute()) { 7973 // We know that Latch branches back to the loop header exactly 7974 // LatchBECount times. This means the backdege condition at Latch is 7975 // equivalent to "{0,+,1} u< LatchBECount". 7976 Type *Ty = LatchBECount->getType(); 7977 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7978 const SCEV *LoopCounter = 7979 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7980 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7981 LatchBECount)) 7982 return true; 7983 } 7984 7985 // Check conditions due to any @llvm.assume intrinsics. 7986 for (auto &AssumeVH : AC.assumptions()) { 7987 if (!AssumeVH) 7988 continue; 7989 auto *CI = cast<CallInst>(AssumeVH); 7990 if (!DT.dominates(CI, Latch->getTerminator())) 7991 continue; 7992 7993 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7994 return true; 7995 } 7996 7997 // If the loop is not reachable from the entry block, we risk running into an 7998 // infinite loop as we walk up into the dom tree. These loops do not matter 7999 // anyway, so we just return a conservative answer when we see them. 8000 if (!DT.isReachableFromEntry(L->getHeader())) 8001 return false; 8002 8003 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 8004 return true; 8005 8006 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 8007 DTN != HeaderDTN; DTN = DTN->getIDom()) { 8008 8009 assert(DTN && "should reach the loop header before reaching the root!"); 8010 8011 BasicBlock *BB = DTN->getBlock(); 8012 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 8013 return true; 8014 8015 BasicBlock *PBB = BB->getSinglePredecessor(); 8016 if (!PBB) 8017 continue; 8018 8019 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 8020 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 8021 continue; 8022 8023 Value *Condition = ContinuePredicate->getCondition(); 8024 8025 // If we have an edge `E` within the loop body that dominates the only 8026 // latch, the condition guarding `E` also guards the backedge. This 8027 // reasoning works only for loops with a single latch. 8028 8029 BasicBlockEdge DominatingEdge(PBB, BB); 8030 if (DominatingEdge.isSingleEdge()) { 8031 // We're constructively (and conservatively) enumerating edges within the 8032 // loop body that dominate the latch. The dominator tree better agree 8033 // with us on this: 8034 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 8035 8036 if (isImpliedCond(Pred, LHS, RHS, Condition, 8037 BB != ContinuePredicate->getSuccessor(0))) 8038 return true; 8039 } 8040 } 8041 8042 return false; 8043 } 8044 8045 bool 8046 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 8047 ICmpInst::Predicate Pred, 8048 const SCEV *LHS, const SCEV *RHS) { 8049 // Interpret a null as meaning no loop, where there is obviously no guard 8050 // (interprocedural conditions notwithstanding). 8051 if (!L) return false; 8052 8053 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8054 return true; 8055 8056 // Starting at the loop predecessor, climb up the predecessor chain, as long 8057 // as there are predecessors that can be found that have unique successors 8058 // leading to the original header. 8059 for (std::pair<BasicBlock *, BasicBlock *> 8060 Pair(L->getLoopPredecessor(), L->getHeader()); 8061 Pair.first; 8062 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 8063 8064 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS)) 8065 return true; 8066 8067 BranchInst *LoopEntryPredicate = 8068 dyn_cast<BranchInst>(Pair.first->getTerminator()); 8069 if (!LoopEntryPredicate || 8070 LoopEntryPredicate->isUnconditional()) 8071 continue; 8072 8073 if (isImpliedCond(Pred, LHS, RHS, 8074 LoopEntryPredicate->getCondition(), 8075 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 8076 return true; 8077 } 8078 8079 // Check conditions due to any @llvm.assume intrinsics. 8080 for (auto &AssumeVH : AC.assumptions()) { 8081 if (!AssumeVH) 8082 continue; 8083 auto *CI = cast<CallInst>(AssumeVH); 8084 if (!DT.dominates(CI, L->getHeader())) 8085 continue; 8086 8087 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8088 return true; 8089 } 8090 8091 return false; 8092 } 8093 8094 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 8095 const SCEV *LHS, const SCEV *RHS, 8096 Value *FoundCondValue, 8097 bool Inverse) { 8098 if (!PendingLoopPredicates.insert(FoundCondValue).second) 8099 return false; 8100 8101 auto ClearOnExit = 8102 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 8103 8104 // Recursively handle And and Or conditions. 8105 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 8106 if (BO->getOpcode() == Instruction::And) { 8107 if (!Inverse) 8108 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8109 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8110 } else if (BO->getOpcode() == Instruction::Or) { 8111 if (Inverse) 8112 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8113 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8114 } 8115 } 8116 8117 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 8118 if (!ICI) return false; 8119 8120 // Now that we found a conditional branch that dominates the loop or controls 8121 // the loop latch. Check to see if it is the comparison we are looking for. 8122 ICmpInst::Predicate FoundPred; 8123 if (Inverse) 8124 FoundPred = ICI->getInversePredicate(); 8125 else 8126 FoundPred = ICI->getPredicate(); 8127 8128 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 8129 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 8130 8131 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 8132 } 8133 8134 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 8135 const SCEV *RHS, 8136 ICmpInst::Predicate FoundPred, 8137 const SCEV *FoundLHS, 8138 const SCEV *FoundRHS) { 8139 // Balance the types. 8140 if (getTypeSizeInBits(LHS->getType()) < 8141 getTypeSizeInBits(FoundLHS->getType())) { 8142 if (CmpInst::isSigned(Pred)) { 8143 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 8144 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 8145 } else { 8146 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 8147 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 8148 } 8149 } else if (getTypeSizeInBits(LHS->getType()) > 8150 getTypeSizeInBits(FoundLHS->getType())) { 8151 if (CmpInst::isSigned(FoundPred)) { 8152 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 8153 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 8154 } else { 8155 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 8156 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 8157 } 8158 } 8159 8160 // Canonicalize the query to match the way instcombine will have 8161 // canonicalized the comparison. 8162 if (SimplifyICmpOperands(Pred, LHS, RHS)) 8163 if (LHS == RHS) 8164 return CmpInst::isTrueWhenEqual(Pred); 8165 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 8166 if (FoundLHS == FoundRHS) 8167 return CmpInst::isFalseWhenEqual(FoundPred); 8168 8169 // Check to see if we can make the LHS or RHS match. 8170 if (LHS == FoundRHS || RHS == FoundLHS) { 8171 if (isa<SCEVConstant>(RHS)) { 8172 std::swap(FoundLHS, FoundRHS); 8173 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 8174 } else { 8175 std::swap(LHS, RHS); 8176 Pred = ICmpInst::getSwappedPredicate(Pred); 8177 } 8178 } 8179 8180 // Check whether the found predicate is the same as the desired predicate. 8181 if (FoundPred == Pred) 8182 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8183 8184 // Check whether swapping the found predicate makes it the same as the 8185 // desired predicate. 8186 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 8187 if (isa<SCEVConstant>(RHS)) 8188 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 8189 else 8190 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 8191 RHS, LHS, FoundLHS, FoundRHS); 8192 } 8193 8194 // Unsigned comparison is the same as signed comparison when both the operands 8195 // are non-negative. 8196 if (CmpInst::isUnsigned(FoundPred) && 8197 CmpInst::getSignedPredicate(FoundPred) == Pred && 8198 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 8199 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8200 8201 // Check if we can make progress by sharpening ranges. 8202 if (FoundPred == ICmpInst::ICMP_NE && 8203 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 8204 8205 const SCEVConstant *C = nullptr; 8206 const SCEV *V = nullptr; 8207 8208 if (isa<SCEVConstant>(FoundLHS)) { 8209 C = cast<SCEVConstant>(FoundLHS); 8210 V = FoundRHS; 8211 } else { 8212 C = cast<SCEVConstant>(FoundRHS); 8213 V = FoundLHS; 8214 } 8215 8216 // The guarding predicate tells us that C != V. If the known range 8217 // of V is [C, t), we can sharpen the range to [C + 1, t). The 8218 // range we consider has to correspond to same signedness as the 8219 // predicate we're interested in folding. 8220 8221 APInt Min = ICmpInst::isSigned(Pred) ? 8222 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 8223 8224 if (Min == C->getAPInt()) { 8225 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 8226 // This is true even if (Min + 1) wraps around -- in case of 8227 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 8228 8229 APInt SharperMin = Min + 1; 8230 8231 switch (Pred) { 8232 case ICmpInst::ICMP_SGE: 8233 case ICmpInst::ICMP_UGE: 8234 // We know V `Pred` SharperMin. If this implies LHS `Pred` 8235 // RHS, we're done. 8236 if (isImpliedCondOperands(Pred, LHS, RHS, V, 8237 getConstant(SharperMin))) 8238 return true; 8239 8240 case ICmpInst::ICMP_SGT: 8241 case ICmpInst::ICMP_UGT: 8242 // We know from the range information that (V `Pred` Min || 8243 // V == Min). We know from the guarding condition that !(V 8244 // == Min). This gives us 8245 // 8246 // V `Pred` Min || V == Min && !(V == Min) 8247 // => V `Pred` Min 8248 // 8249 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 8250 8251 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 8252 return true; 8253 8254 default: 8255 // No change 8256 break; 8257 } 8258 } 8259 } 8260 8261 // Check whether the actual condition is beyond sufficient. 8262 if (FoundPred == ICmpInst::ICMP_EQ) 8263 if (ICmpInst::isTrueWhenEqual(Pred)) 8264 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8265 return true; 8266 if (Pred == ICmpInst::ICMP_NE) 8267 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 8268 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 8269 return true; 8270 8271 // Otherwise assume the worst. 8272 return false; 8273 } 8274 8275 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 8276 const SCEV *&L, const SCEV *&R, 8277 SCEV::NoWrapFlags &Flags) { 8278 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 8279 if (!AE || AE->getNumOperands() != 2) 8280 return false; 8281 8282 L = AE->getOperand(0); 8283 R = AE->getOperand(1); 8284 Flags = AE->getNoWrapFlags(); 8285 return true; 8286 } 8287 8288 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 8289 const SCEV *Less) { 8290 // We avoid subtracting expressions here because this function is usually 8291 // fairly deep in the call stack (i.e. is called many times). 8292 8293 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 8294 const auto *LAR = cast<SCEVAddRecExpr>(Less); 8295 const auto *MAR = cast<SCEVAddRecExpr>(More); 8296 8297 if (LAR->getLoop() != MAR->getLoop()) 8298 return None; 8299 8300 // We look at affine expressions only; not for correctness but to keep 8301 // getStepRecurrence cheap. 8302 if (!LAR->isAffine() || !MAR->isAffine()) 8303 return None; 8304 8305 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 8306 return None; 8307 8308 Less = LAR->getStart(); 8309 More = MAR->getStart(); 8310 8311 // fall through 8312 } 8313 8314 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 8315 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 8316 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 8317 return M - L; 8318 } 8319 8320 const SCEV *L, *R; 8321 SCEV::NoWrapFlags Flags; 8322 if (splitBinaryAdd(Less, L, R, Flags)) 8323 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8324 if (R == More) 8325 return -(LC->getAPInt()); 8326 8327 if (splitBinaryAdd(More, L, R, Flags)) 8328 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8329 if (R == Less) 8330 return LC->getAPInt(); 8331 8332 return None; 8333 } 8334 8335 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 8336 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 8337 const SCEV *FoundLHS, const SCEV *FoundRHS) { 8338 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 8339 return false; 8340 8341 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8342 if (!AddRecLHS) 8343 return false; 8344 8345 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 8346 if (!AddRecFoundLHS) 8347 return false; 8348 8349 // We'd like to let SCEV reason about control dependencies, so we constrain 8350 // both the inequalities to be about add recurrences on the same loop. This 8351 // way we can use isLoopEntryGuardedByCond later. 8352 8353 const Loop *L = AddRecFoundLHS->getLoop(); 8354 if (L != AddRecLHS->getLoop()) 8355 return false; 8356 8357 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 8358 // 8359 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 8360 // ... (2) 8361 // 8362 // Informal proof for (2), assuming (1) [*]: 8363 // 8364 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 8365 // 8366 // Then 8367 // 8368 // FoundLHS s< FoundRHS s< INT_MIN - C 8369 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 8370 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 8371 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 8372 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 8373 // <=> FoundLHS + C s< FoundRHS + C 8374 // 8375 // [*]: (1) can be proved by ruling out overflow. 8376 // 8377 // [**]: This can be proved by analyzing all the four possibilities: 8378 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 8379 // (A s>= 0, B s>= 0). 8380 // 8381 // Note: 8382 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 8383 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 8384 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 8385 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 8386 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 8387 // C)". 8388 8389 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 8390 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 8391 if (!LDiff || !RDiff || *LDiff != *RDiff) 8392 return false; 8393 8394 if (LDiff->isMinValue()) 8395 return true; 8396 8397 APInt FoundRHSLimit; 8398 8399 if (Pred == CmpInst::ICMP_ULT) { 8400 FoundRHSLimit = -(*RDiff); 8401 } else { 8402 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 8403 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 8404 } 8405 8406 // Try to prove (1) or (2), as needed. 8407 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 8408 getConstant(FoundRHSLimit)); 8409 } 8410 8411 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 8412 const SCEV *LHS, const SCEV *RHS, 8413 const SCEV *FoundLHS, 8414 const SCEV *FoundRHS) { 8415 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8416 return true; 8417 8418 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8419 return true; 8420 8421 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 8422 FoundLHS, FoundRHS) || 8423 // ~x < ~y --> x > y 8424 isImpliedCondOperandsHelper(Pred, LHS, RHS, 8425 getNotSCEV(FoundRHS), 8426 getNotSCEV(FoundLHS)); 8427 } 8428 8429 8430 /// If Expr computes ~A, return A else return nullptr 8431 static const SCEV *MatchNotExpr(const SCEV *Expr) { 8432 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 8433 if (!Add || Add->getNumOperands() != 2 || 8434 !Add->getOperand(0)->isAllOnesValue()) 8435 return nullptr; 8436 8437 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 8438 if (!AddRHS || AddRHS->getNumOperands() != 2 || 8439 !AddRHS->getOperand(0)->isAllOnesValue()) 8440 return nullptr; 8441 8442 return AddRHS->getOperand(1); 8443 } 8444 8445 8446 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 8447 template<typename MaxExprType> 8448 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 8449 const SCEV *Candidate) { 8450 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 8451 if (!MaxExpr) return false; 8452 8453 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 8454 } 8455 8456 8457 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 8458 template<typename MaxExprType> 8459 static bool IsMinConsistingOf(ScalarEvolution &SE, 8460 const SCEV *MaybeMinExpr, 8461 const SCEV *Candidate) { 8462 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8463 if (!MaybeMaxExpr) 8464 return false; 8465 8466 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8467 } 8468 8469 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8470 ICmpInst::Predicate Pred, 8471 const SCEV *LHS, const SCEV *RHS) { 8472 8473 // If both sides are affine addrecs for the same loop, with equal 8474 // steps, and we know the recurrences don't wrap, then we only 8475 // need to check the predicate on the starting values. 8476 8477 if (!ICmpInst::isRelational(Pred)) 8478 return false; 8479 8480 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8481 if (!LAR) 8482 return false; 8483 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8484 if (!RAR) 8485 return false; 8486 if (LAR->getLoop() != RAR->getLoop()) 8487 return false; 8488 if (!LAR->isAffine() || !RAR->isAffine()) 8489 return false; 8490 8491 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8492 return false; 8493 8494 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8495 SCEV::FlagNSW : SCEV::FlagNUW; 8496 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8497 return false; 8498 8499 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8500 } 8501 8502 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8503 /// expression? 8504 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8505 ICmpInst::Predicate Pred, 8506 const SCEV *LHS, const SCEV *RHS) { 8507 switch (Pred) { 8508 default: 8509 return false; 8510 8511 case ICmpInst::ICMP_SGE: 8512 std::swap(LHS, RHS); 8513 LLVM_FALLTHROUGH; 8514 case ICmpInst::ICMP_SLE: 8515 return 8516 // min(A, ...) <= A 8517 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8518 // A <= max(A, ...) 8519 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8520 8521 case ICmpInst::ICMP_UGE: 8522 std::swap(LHS, RHS); 8523 LLVM_FALLTHROUGH; 8524 case ICmpInst::ICMP_ULE: 8525 return 8526 // min(A, ...) <= A 8527 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8528 // A <= max(A, ...) 8529 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8530 } 8531 8532 llvm_unreachable("covered switch fell through?!"); 8533 } 8534 8535 bool 8536 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8537 const SCEV *LHS, const SCEV *RHS, 8538 const SCEV *FoundLHS, 8539 const SCEV *FoundRHS) { 8540 auto IsKnownPredicateFull = 8541 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8542 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8543 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8544 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8545 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8546 }; 8547 8548 switch (Pred) { 8549 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8550 case ICmpInst::ICMP_EQ: 8551 case ICmpInst::ICMP_NE: 8552 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8553 return true; 8554 break; 8555 case ICmpInst::ICMP_SLT: 8556 case ICmpInst::ICMP_SLE: 8557 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8558 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8559 return true; 8560 break; 8561 case ICmpInst::ICMP_SGT: 8562 case ICmpInst::ICMP_SGE: 8563 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8564 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8565 return true; 8566 break; 8567 case ICmpInst::ICMP_ULT: 8568 case ICmpInst::ICMP_ULE: 8569 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8570 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8571 return true; 8572 break; 8573 case ICmpInst::ICMP_UGT: 8574 case ICmpInst::ICMP_UGE: 8575 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8576 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8577 return true; 8578 break; 8579 } 8580 8581 return false; 8582 } 8583 8584 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8585 const SCEV *LHS, 8586 const SCEV *RHS, 8587 const SCEV *FoundLHS, 8588 const SCEV *FoundRHS) { 8589 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8590 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8591 // reduce the compile time impact of this optimization. 8592 return false; 8593 8594 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 8595 if (!Addend) 8596 return false; 8597 8598 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8599 8600 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8601 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8602 ConstantRange FoundLHSRange = 8603 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8604 8605 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 8606 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 8607 8608 // We can also compute the range of values for `LHS` that satisfy the 8609 // consequent, "`LHS` `Pred` `RHS`": 8610 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8611 ConstantRange SatisfyingLHSRange = 8612 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8613 8614 // The antecedent implies the consequent if every value of `LHS` that 8615 // satisfies the antecedent also satisfies the consequent. 8616 return SatisfyingLHSRange.contains(LHSRange); 8617 } 8618 8619 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8620 bool IsSigned, bool NoWrap) { 8621 assert(isKnownPositive(Stride) && "Positive stride expected!"); 8622 8623 if (NoWrap) return false; 8624 8625 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8626 const SCEV *One = getOne(Stride->getType()); 8627 8628 if (IsSigned) { 8629 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8630 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8631 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8632 .getSignedMax(); 8633 8634 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8635 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8636 } 8637 8638 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8639 APInt MaxValue = APInt::getMaxValue(BitWidth); 8640 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8641 .getUnsignedMax(); 8642 8643 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8644 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8645 } 8646 8647 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8648 bool IsSigned, bool NoWrap) { 8649 if (NoWrap) return false; 8650 8651 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8652 const SCEV *One = getOne(Stride->getType()); 8653 8654 if (IsSigned) { 8655 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8656 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8657 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8658 .getSignedMax(); 8659 8660 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8661 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8662 } 8663 8664 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8665 APInt MinValue = APInt::getMinValue(BitWidth); 8666 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8667 .getUnsignedMax(); 8668 8669 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8670 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8671 } 8672 8673 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8674 bool Equality) { 8675 const SCEV *One = getOne(Step->getType()); 8676 Delta = Equality ? getAddExpr(Delta, Step) 8677 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8678 return getUDivExpr(Delta, Step); 8679 } 8680 8681 ScalarEvolution::ExitLimit 8682 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 8683 const Loop *L, bool IsSigned, 8684 bool ControlsExit, bool AllowPredicates) { 8685 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8686 // We handle only IV < Invariant 8687 if (!isLoopInvariant(RHS, L)) 8688 return getCouldNotCompute(); 8689 8690 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8691 bool PredicatedIV = false; 8692 8693 if (!IV && AllowPredicates) { 8694 // Try to make this an AddRec using runtime tests, in the first X 8695 // iterations of this loop, where X is the SCEV expression found by the 8696 // algorithm below. 8697 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 8698 PredicatedIV = true; 8699 } 8700 8701 // Avoid weird loops 8702 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8703 return getCouldNotCompute(); 8704 8705 bool NoWrap = ControlsExit && 8706 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8707 8708 const SCEV *Stride = IV->getStepRecurrence(*this); 8709 8710 bool PositiveStride = isKnownPositive(Stride); 8711 8712 // Avoid negative or zero stride values. 8713 if (!PositiveStride) { 8714 // We can compute the correct backedge taken count for loops with unknown 8715 // strides if we can prove that the loop is not an infinite loop with side 8716 // effects. Here's the loop structure we are trying to handle - 8717 // 8718 // i = start 8719 // do { 8720 // A[i] = i; 8721 // i += s; 8722 // } while (i < end); 8723 // 8724 // The backedge taken count for such loops is evaluated as - 8725 // (max(end, start + stride) - start - 1) /u stride 8726 // 8727 // The additional preconditions that we need to check to prove correctness 8728 // of the above formula is as follows - 8729 // 8730 // a) IV is either nuw or nsw depending upon signedness (indicated by the 8731 // NoWrap flag). 8732 // b) loop is single exit with no side effects. 8733 // 8734 // 8735 // Precondition a) implies that if the stride is negative, this is a single 8736 // trip loop. The backedge taken count formula reduces to zero in this case. 8737 // 8738 // Precondition b) implies that the unknown stride cannot be zero otherwise 8739 // we have UB. 8740 // 8741 // The positive stride case is the same as isKnownPositive(Stride) returning 8742 // true (original behavior of the function). 8743 // 8744 // We want to make sure that the stride is truly unknown as there are edge 8745 // cases where ScalarEvolution propagates no wrap flags to the 8746 // post-increment/decrement IV even though the increment/decrement operation 8747 // itself is wrapping. The computed backedge taken count may be wrong in 8748 // such cases. This is prevented by checking that the stride is not known to 8749 // be either positive or non-positive. For example, no wrap flags are 8750 // propagated to the post-increment IV of this loop with a trip count of 2 - 8751 // 8752 // unsigned char i; 8753 // for(i=127; i<128; i+=129) 8754 // A[i] = i; 8755 // 8756 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 8757 !loopHasNoSideEffects(L)) 8758 return getCouldNotCompute(); 8759 8760 } else if (!Stride->isOne() && 8761 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8762 // Avoid proven overflow cases: this will ensure that the backedge taken 8763 // count will not generate any unsigned overflow. Relaxed no-overflow 8764 // conditions exploit NoWrapFlags, allowing to optimize in presence of 8765 // undefined behaviors like the case of C language. 8766 return getCouldNotCompute(); 8767 8768 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8769 : ICmpInst::ICMP_ULT; 8770 const SCEV *Start = IV->getStart(); 8771 const SCEV *End = RHS; 8772 // If the backedge is taken at least once, then it will be taken 8773 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 8774 // is the LHS value of the less-than comparison the first time it is evaluated 8775 // and End is the RHS. 8776 const SCEV *BECountIfBackedgeTaken = 8777 computeBECount(getMinusSCEV(End, Start), Stride, false); 8778 // If the loop entry is guarded by the result of the backedge test of the 8779 // first loop iteration, then we know the backedge will be taken at least 8780 // once and so the backedge taken count is as above. If not then we use the 8781 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 8782 // as if the backedge is taken at least once max(End,Start) is End and so the 8783 // result is as above, and if not max(End,Start) is Start so we get a backedge 8784 // count of zero. 8785 const SCEV *BECount; 8786 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 8787 BECount = BECountIfBackedgeTaken; 8788 else { 8789 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 8790 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8791 } 8792 8793 const SCEV *MaxBECount; 8794 bool MaxOrZero = false; 8795 if (isa<SCEVConstant>(BECount)) 8796 MaxBECount = BECount; 8797 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 8798 // If we know exactly how many times the backedge will be taken if it's 8799 // taken at least once, then the backedge count will either be that or 8800 // zero. 8801 MaxBECount = BECountIfBackedgeTaken; 8802 MaxOrZero = true; 8803 } else { 8804 // Calculate the maximum backedge count based on the range of values 8805 // permitted by Start, End, and Stride. 8806 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8807 : getUnsignedRange(Start).getUnsignedMin(); 8808 8809 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8810 8811 APInt StrideForMaxBECount; 8812 8813 if (PositiveStride) 8814 StrideForMaxBECount = 8815 IsSigned ? getSignedRange(Stride).getSignedMin() 8816 : getUnsignedRange(Stride).getUnsignedMin(); 8817 else 8818 // Using a stride of 1 is safe when computing max backedge taken count for 8819 // a loop with unknown stride. 8820 StrideForMaxBECount = APInt(BitWidth, 1, IsSigned); 8821 8822 APInt Limit = 8823 IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1) 8824 : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1); 8825 8826 // Although End can be a MAX expression we estimate MaxEnd considering only 8827 // the case End = RHS. This is safe because in the other case (End - Start) 8828 // is zero, leading to a zero maximum backedge taken count. 8829 APInt MaxEnd = 8830 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8831 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8832 8833 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8834 getConstant(StrideForMaxBECount), false); 8835 } 8836 8837 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8838 MaxBECount = BECount; 8839 8840 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 8841 } 8842 8843 ScalarEvolution::ExitLimit 8844 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8845 const Loop *L, bool IsSigned, 8846 bool ControlsExit, bool AllowPredicates) { 8847 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8848 // We handle only IV > Invariant 8849 if (!isLoopInvariant(RHS, L)) 8850 return getCouldNotCompute(); 8851 8852 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8853 if (!IV && AllowPredicates) 8854 // Try to make this an AddRec using runtime tests, in the first X 8855 // iterations of this loop, where X is the SCEV expression found by the 8856 // algorithm below. 8857 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 8858 8859 // Avoid weird loops 8860 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8861 return getCouldNotCompute(); 8862 8863 bool NoWrap = ControlsExit && 8864 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8865 8866 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8867 8868 // Avoid negative or zero stride values 8869 if (!isKnownPositive(Stride)) 8870 return getCouldNotCompute(); 8871 8872 // Avoid proven overflow cases: this will ensure that the backedge taken count 8873 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8874 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8875 // behaviors like the case of C language. 8876 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8877 return getCouldNotCompute(); 8878 8879 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8880 : ICmpInst::ICMP_UGT; 8881 8882 const SCEV *Start = IV->getStart(); 8883 const SCEV *End = RHS; 8884 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 8885 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 8886 8887 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8888 8889 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8890 : getUnsignedRange(Start).getUnsignedMax(); 8891 8892 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8893 : getUnsignedRange(Stride).getUnsignedMin(); 8894 8895 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8896 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8897 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8898 8899 // Although End can be a MIN expression we estimate MinEnd considering only 8900 // the case End = RHS. This is safe because in the other case (Start - End) 8901 // is zero, leading to a zero maximum backedge taken count. 8902 APInt MinEnd = 8903 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8904 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8905 8906 8907 const SCEV *MaxBECount = getCouldNotCompute(); 8908 if (isa<SCEVConstant>(BECount)) 8909 MaxBECount = BECount; 8910 else 8911 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8912 getConstant(MinStride), false); 8913 8914 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8915 MaxBECount = BECount; 8916 8917 return ExitLimit(BECount, MaxBECount, false, Predicates); 8918 } 8919 8920 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 8921 ScalarEvolution &SE) const { 8922 if (Range.isFullSet()) // Infinite loop. 8923 return SE.getCouldNotCompute(); 8924 8925 // If the start is a non-zero constant, shift the range to simplify things. 8926 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8927 if (!SC->getValue()->isZero()) { 8928 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8929 Operands[0] = SE.getZero(SC->getType()); 8930 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8931 getNoWrapFlags(FlagNW)); 8932 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8933 return ShiftedAddRec->getNumIterationsInRange( 8934 Range.subtract(SC->getAPInt()), SE); 8935 // This is strange and shouldn't happen. 8936 return SE.getCouldNotCompute(); 8937 } 8938 8939 // The only time we can solve this is when we have all constant indices. 8940 // Otherwise, we cannot determine the overflow conditions. 8941 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8942 return SE.getCouldNotCompute(); 8943 8944 // Okay at this point we know that all elements of the chrec are constants and 8945 // that the start element is zero. 8946 8947 // First check to see if the range contains zero. If not, the first 8948 // iteration exits. 8949 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8950 if (!Range.contains(APInt(BitWidth, 0))) 8951 return SE.getZero(getType()); 8952 8953 if (isAffine()) { 8954 // If this is an affine expression then we have this situation: 8955 // Solve {0,+,A} in Range === Ax in Range 8956 8957 // We know that zero is in the range. If A is positive then we know that 8958 // the upper value of the range must be the first possible exit value. 8959 // If A is negative then the lower of the range is the last possible loop 8960 // value. Also note that we already checked for a full range. 8961 APInt One(BitWidth,1); 8962 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 8963 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8964 8965 // The exit value should be (End+A)/A. 8966 APInt ExitVal = (End + A).udiv(A); 8967 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8968 8969 // Evaluate at the exit value. If we really did fall out of the valid 8970 // range, then we computed our trip count, otherwise wrap around or other 8971 // things must have happened. 8972 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8973 if (Range.contains(Val->getValue())) 8974 return SE.getCouldNotCompute(); // Something strange happened 8975 8976 // Ensure that the previous value is in the range. This is a sanity check. 8977 assert(Range.contains( 8978 EvaluateConstantChrecAtConstant(this, 8979 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8980 "Linear scev computation is off in a bad way!"); 8981 return SE.getConstant(ExitValue); 8982 } else if (isQuadratic()) { 8983 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8984 // quadratic equation to solve it. To do this, we must frame our problem in 8985 // terms of figuring out when zero is crossed, instead of when 8986 // Range.getUpper() is crossed. 8987 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8988 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8989 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 8990 8991 // Next, solve the constructed addrec 8992 if (auto Roots = 8993 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 8994 const SCEVConstant *R1 = Roots->first; 8995 const SCEVConstant *R2 = Roots->second; 8996 // Pick the smallest positive root value. 8997 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8998 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8999 if (!CB->getZExtValue()) 9000 std::swap(R1, R2); // R1 is the minimum root now. 9001 9002 // Make sure the root is not off by one. The returned iteration should 9003 // not be in the range, but the previous one should be. When solving 9004 // for "X*X < 5", for example, we should not return a root of 2. 9005 ConstantInt *R1Val = 9006 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 9007 if (Range.contains(R1Val->getValue())) { 9008 // The next iteration must be out of the range... 9009 ConstantInt *NextVal = 9010 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 9011 9012 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9013 if (!Range.contains(R1Val->getValue())) 9014 return SE.getConstant(NextVal); 9015 return SE.getCouldNotCompute(); // Something strange happened 9016 } 9017 9018 // If R1 was not in the range, then it is a good return value. Make 9019 // sure that R1-1 WAS in the range though, just in case. 9020 ConstantInt *NextVal = 9021 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 9022 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9023 if (Range.contains(R1Val->getValue())) 9024 return R1; 9025 return SE.getCouldNotCompute(); // Something strange happened 9026 } 9027 } 9028 } 9029 9030 return SE.getCouldNotCompute(); 9031 } 9032 9033 // Return true when S contains at least an undef value. 9034 static inline bool containsUndefs(const SCEV *S) { 9035 return SCEVExprContains(S, [](const SCEV *S) { 9036 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 9037 return isa<UndefValue>(SU->getValue()); 9038 else if (const auto *SC = dyn_cast<SCEVConstant>(S)) 9039 return isa<UndefValue>(SC->getValue()); 9040 return false; 9041 }); 9042 } 9043 9044 namespace { 9045 // Collect all steps of SCEV expressions. 9046 struct SCEVCollectStrides { 9047 ScalarEvolution &SE; 9048 SmallVectorImpl<const SCEV *> &Strides; 9049 9050 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 9051 : SE(SE), Strides(S) {} 9052 9053 bool follow(const SCEV *S) { 9054 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 9055 Strides.push_back(AR->getStepRecurrence(SE)); 9056 return true; 9057 } 9058 bool isDone() const { return false; } 9059 }; 9060 9061 // Collect all SCEVUnknown and SCEVMulExpr expressions. 9062 struct SCEVCollectTerms { 9063 SmallVectorImpl<const SCEV *> &Terms; 9064 9065 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 9066 : Terms(T) {} 9067 9068 bool follow(const SCEV *S) { 9069 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 9070 isa<SCEVSignExtendExpr>(S)) { 9071 if (!containsUndefs(S)) 9072 Terms.push_back(S); 9073 9074 // Stop recursion: once we collected a term, do not walk its operands. 9075 return false; 9076 } 9077 9078 // Keep looking. 9079 return true; 9080 } 9081 bool isDone() const { return false; } 9082 }; 9083 9084 // Check if a SCEV contains an AddRecExpr. 9085 struct SCEVHasAddRec { 9086 bool &ContainsAddRec; 9087 9088 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 9089 ContainsAddRec = false; 9090 } 9091 9092 bool follow(const SCEV *S) { 9093 if (isa<SCEVAddRecExpr>(S)) { 9094 ContainsAddRec = true; 9095 9096 // Stop recursion: once we collected a term, do not walk its operands. 9097 return false; 9098 } 9099 9100 // Keep looking. 9101 return true; 9102 } 9103 bool isDone() const { return false; } 9104 }; 9105 9106 // Find factors that are multiplied with an expression that (possibly as a 9107 // subexpression) contains an AddRecExpr. In the expression: 9108 // 9109 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 9110 // 9111 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 9112 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 9113 // parameters as they form a product with an induction variable. 9114 // 9115 // This collector expects all array size parameters to be in the same MulExpr. 9116 // It might be necessary to later add support for collecting parameters that are 9117 // spread over different nested MulExpr. 9118 struct SCEVCollectAddRecMultiplies { 9119 SmallVectorImpl<const SCEV *> &Terms; 9120 ScalarEvolution &SE; 9121 9122 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 9123 : Terms(T), SE(SE) {} 9124 9125 bool follow(const SCEV *S) { 9126 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 9127 bool HasAddRec = false; 9128 SmallVector<const SCEV *, 0> Operands; 9129 for (auto Op : Mul->operands()) { 9130 if (isa<SCEVUnknown>(Op)) { 9131 Operands.push_back(Op); 9132 } else { 9133 bool ContainsAddRec; 9134 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 9135 visitAll(Op, ContiansAddRec); 9136 HasAddRec |= ContainsAddRec; 9137 } 9138 } 9139 if (Operands.size() == 0) 9140 return true; 9141 9142 if (!HasAddRec) 9143 return false; 9144 9145 Terms.push_back(SE.getMulExpr(Operands)); 9146 // Stop recursion: once we collected a term, do not walk its operands. 9147 return false; 9148 } 9149 9150 // Keep looking. 9151 return true; 9152 } 9153 bool isDone() const { return false; } 9154 }; 9155 } 9156 9157 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 9158 /// two places: 9159 /// 1) The strides of AddRec expressions. 9160 /// 2) Unknowns that are multiplied with AddRec expressions. 9161 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 9162 SmallVectorImpl<const SCEV *> &Terms) { 9163 SmallVector<const SCEV *, 4> Strides; 9164 SCEVCollectStrides StrideCollector(*this, Strides); 9165 visitAll(Expr, StrideCollector); 9166 9167 DEBUG({ 9168 dbgs() << "Strides:\n"; 9169 for (const SCEV *S : Strides) 9170 dbgs() << *S << "\n"; 9171 }); 9172 9173 for (const SCEV *S : Strides) { 9174 SCEVCollectTerms TermCollector(Terms); 9175 visitAll(S, TermCollector); 9176 } 9177 9178 DEBUG({ 9179 dbgs() << "Terms:\n"; 9180 for (const SCEV *T : Terms) 9181 dbgs() << *T << "\n"; 9182 }); 9183 9184 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 9185 visitAll(Expr, MulCollector); 9186 } 9187 9188 static bool findArrayDimensionsRec(ScalarEvolution &SE, 9189 SmallVectorImpl<const SCEV *> &Terms, 9190 SmallVectorImpl<const SCEV *> &Sizes) { 9191 int Last = Terms.size() - 1; 9192 const SCEV *Step = Terms[Last]; 9193 9194 // End of recursion. 9195 if (Last == 0) { 9196 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 9197 SmallVector<const SCEV *, 2> Qs; 9198 for (const SCEV *Op : M->operands()) 9199 if (!isa<SCEVConstant>(Op)) 9200 Qs.push_back(Op); 9201 9202 Step = SE.getMulExpr(Qs); 9203 } 9204 9205 Sizes.push_back(Step); 9206 return true; 9207 } 9208 9209 for (const SCEV *&Term : Terms) { 9210 // Normalize the terms before the next call to findArrayDimensionsRec. 9211 const SCEV *Q, *R; 9212 SCEVDivision::divide(SE, Term, Step, &Q, &R); 9213 9214 // Bail out when GCD does not evenly divide one of the terms. 9215 if (!R->isZero()) 9216 return false; 9217 9218 Term = Q; 9219 } 9220 9221 // Remove all SCEVConstants. 9222 Terms.erase( 9223 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 9224 Terms.end()); 9225 9226 if (Terms.size() > 0) 9227 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 9228 return false; 9229 9230 Sizes.push_back(Step); 9231 return true; 9232 } 9233 9234 9235 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 9236 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 9237 for (const SCEV *T : Terms) 9238 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 9239 return true; 9240 return false; 9241 } 9242 9243 // Return the number of product terms in S. 9244 static inline int numberOfTerms(const SCEV *S) { 9245 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 9246 return Expr->getNumOperands(); 9247 return 1; 9248 } 9249 9250 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 9251 if (isa<SCEVConstant>(T)) 9252 return nullptr; 9253 9254 if (isa<SCEVUnknown>(T)) 9255 return T; 9256 9257 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 9258 SmallVector<const SCEV *, 2> Factors; 9259 for (const SCEV *Op : M->operands()) 9260 if (!isa<SCEVConstant>(Op)) 9261 Factors.push_back(Op); 9262 9263 return SE.getMulExpr(Factors); 9264 } 9265 9266 return T; 9267 } 9268 9269 /// Return the size of an element read or written by Inst. 9270 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 9271 Type *Ty; 9272 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 9273 Ty = Store->getValueOperand()->getType(); 9274 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 9275 Ty = Load->getType(); 9276 else 9277 return nullptr; 9278 9279 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 9280 return getSizeOfExpr(ETy, Ty); 9281 } 9282 9283 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 9284 SmallVectorImpl<const SCEV *> &Sizes, 9285 const SCEV *ElementSize) const { 9286 if (Terms.size() < 1 || !ElementSize) 9287 return; 9288 9289 // Early return when Terms do not contain parameters: we do not delinearize 9290 // non parametric SCEVs. 9291 if (!containsParameters(Terms)) 9292 return; 9293 9294 DEBUG({ 9295 dbgs() << "Terms:\n"; 9296 for (const SCEV *T : Terms) 9297 dbgs() << *T << "\n"; 9298 }); 9299 9300 // Remove duplicates. 9301 std::sort(Terms.begin(), Terms.end()); 9302 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 9303 9304 // Put larger terms first. 9305 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 9306 return numberOfTerms(LHS) > numberOfTerms(RHS); 9307 }); 9308 9309 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9310 9311 // Try to divide all terms by the element size. If term is not divisible by 9312 // element size, proceed with the original term. 9313 for (const SCEV *&Term : Terms) { 9314 const SCEV *Q, *R; 9315 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 9316 if (!Q->isZero()) 9317 Term = Q; 9318 } 9319 9320 SmallVector<const SCEV *, 4> NewTerms; 9321 9322 // Remove constant factors. 9323 for (const SCEV *T : Terms) 9324 if (const SCEV *NewT = removeConstantFactors(SE, T)) 9325 NewTerms.push_back(NewT); 9326 9327 DEBUG({ 9328 dbgs() << "Terms after sorting:\n"; 9329 for (const SCEV *T : NewTerms) 9330 dbgs() << *T << "\n"; 9331 }); 9332 9333 if (NewTerms.empty() || 9334 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 9335 Sizes.clear(); 9336 return; 9337 } 9338 9339 // The last element to be pushed into Sizes is the size of an element. 9340 Sizes.push_back(ElementSize); 9341 9342 DEBUG({ 9343 dbgs() << "Sizes:\n"; 9344 for (const SCEV *S : Sizes) 9345 dbgs() << *S << "\n"; 9346 }); 9347 } 9348 9349 void ScalarEvolution::computeAccessFunctions( 9350 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 9351 SmallVectorImpl<const SCEV *> &Sizes) { 9352 9353 // Early exit in case this SCEV is not an affine multivariate function. 9354 if (Sizes.empty()) 9355 return; 9356 9357 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 9358 if (!AR->isAffine()) 9359 return; 9360 9361 const SCEV *Res = Expr; 9362 int Last = Sizes.size() - 1; 9363 for (int i = Last; i >= 0; i--) { 9364 const SCEV *Q, *R; 9365 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 9366 9367 DEBUG({ 9368 dbgs() << "Res: " << *Res << "\n"; 9369 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 9370 dbgs() << "Res divided by Sizes[i]:\n"; 9371 dbgs() << "Quotient: " << *Q << "\n"; 9372 dbgs() << "Remainder: " << *R << "\n"; 9373 }); 9374 9375 Res = Q; 9376 9377 // Do not record the last subscript corresponding to the size of elements in 9378 // the array. 9379 if (i == Last) { 9380 9381 // Bail out if the remainder is too complex. 9382 if (isa<SCEVAddRecExpr>(R)) { 9383 Subscripts.clear(); 9384 Sizes.clear(); 9385 return; 9386 } 9387 9388 continue; 9389 } 9390 9391 // Record the access function for the current subscript. 9392 Subscripts.push_back(R); 9393 } 9394 9395 // Also push in last position the remainder of the last division: it will be 9396 // the access function of the innermost dimension. 9397 Subscripts.push_back(Res); 9398 9399 std::reverse(Subscripts.begin(), Subscripts.end()); 9400 9401 DEBUG({ 9402 dbgs() << "Subscripts:\n"; 9403 for (const SCEV *S : Subscripts) 9404 dbgs() << *S << "\n"; 9405 }); 9406 } 9407 9408 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 9409 /// sizes of an array access. Returns the remainder of the delinearization that 9410 /// is the offset start of the array. The SCEV->delinearize algorithm computes 9411 /// the multiples of SCEV coefficients: that is a pattern matching of sub 9412 /// expressions in the stride and base of a SCEV corresponding to the 9413 /// computation of a GCD (greatest common divisor) of base and stride. When 9414 /// SCEV->delinearize fails, it returns the SCEV unchanged. 9415 /// 9416 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 9417 /// 9418 /// void foo(long n, long m, long o, double A[n][m][o]) { 9419 /// 9420 /// for (long i = 0; i < n; i++) 9421 /// for (long j = 0; j < m; j++) 9422 /// for (long k = 0; k < o; k++) 9423 /// A[i][j][k] = 1.0; 9424 /// } 9425 /// 9426 /// the delinearization input is the following AddRec SCEV: 9427 /// 9428 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 9429 /// 9430 /// From this SCEV, we are able to say that the base offset of the access is %A 9431 /// because it appears as an offset that does not divide any of the strides in 9432 /// the loops: 9433 /// 9434 /// CHECK: Base offset: %A 9435 /// 9436 /// and then SCEV->delinearize determines the size of some of the dimensions of 9437 /// the array as these are the multiples by which the strides are happening: 9438 /// 9439 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 9440 /// 9441 /// Note that the outermost dimension remains of UnknownSize because there are 9442 /// no strides that would help identifying the size of the last dimension: when 9443 /// the array has been statically allocated, one could compute the size of that 9444 /// dimension by dividing the overall size of the array by the size of the known 9445 /// dimensions: %m * %o * 8. 9446 /// 9447 /// Finally delinearize provides the access functions for the array reference 9448 /// that does correspond to A[i][j][k] of the above C testcase: 9449 /// 9450 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9451 /// 9452 /// The testcases are checking the output of a function pass: 9453 /// DelinearizationPass that walks through all loads and stores of a function 9454 /// asking for the SCEV of the memory access with respect to all enclosing 9455 /// loops, calling SCEV->delinearize on that and printing the results. 9456 9457 void ScalarEvolution::delinearize(const SCEV *Expr, 9458 SmallVectorImpl<const SCEV *> &Subscripts, 9459 SmallVectorImpl<const SCEV *> &Sizes, 9460 const SCEV *ElementSize) { 9461 // First step: collect parametric terms. 9462 SmallVector<const SCEV *, 4> Terms; 9463 collectParametricTerms(Expr, Terms); 9464 9465 if (Terms.empty()) 9466 return; 9467 9468 // Second step: find subscript sizes. 9469 findArrayDimensions(Terms, Sizes, ElementSize); 9470 9471 if (Sizes.empty()) 9472 return; 9473 9474 // Third step: compute the access functions for each subscript. 9475 computeAccessFunctions(Expr, Subscripts, Sizes); 9476 9477 if (Subscripts.empty()) 9478 return; 9479 9480 DEBUG({ 9481 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9482 dbgs() << "ArrayDecl[UnknownSize]"; 9483 for (const SCEV *S : Sizes) 9484 dbgs() << "[" << *S << "]"; 9485 9486 dbgs() << "\nArrayRef"; 9487 for (const SCEV *S : Subscripts) 9488 dbgs() << "[" << *S << "]"; 9489 dbgs() << "\n"; 9490 }); 9491 } 9492 9493 //===----------------------------------------------------------------------===// 9494 // SCEVCallbackVH Class Implementation 9495 //===----------------------------------------------------------------------===// 9496 9497 void ScalarEvolution::SCEVCallbackVH::deleted() { 9498 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9499 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9500 SE->ConstantEvolutionLoopExitValue.erase(PN); 9501 SE->eraseValueFromMap(getValPtr()); 9502 // this now dangles! 9503 } 9504 9505 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9506 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9507 9508 // Forget all the expressions associated with users of the old value, 9509 // so that future queries will recompute the expressions using the new 9510 // value. 9511 Value *Old = getValPtr(); 9512 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9513 SmallPtrSet<User *, 8> Visited; 9514 while (!Worklist.empty()) { 9515 User *U = Worklist.pop_back_val(); 9516 // Deleting the Old value will cause this to dangle. Postpone 9517 // that until everything else is done. 9518 if (U == Old) 9519 continue; 9520 if (!Visited.insert(U).second) 9521 continue; 9522 if (PHINode *PN = dyn_cast<PHINode>(U)) 9523 SE->ConstantEvolutionLoopExitValue.erase(PN); 9524 SE->eraseValueFromMap(U); 9525 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9526 } 9527 // Delete the Old value. 9528 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9529 SE->ConstantEvolutionLoopExitValue.erase(PN); 9530 SE->eraseValueFromMap(Old); 9531 // this now dangles! 9532 } 9533 9534 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9535 : CallbackVH(V), SE(se) {} 9536 9537 //===----------------------------------------------------------------------===// 9538 // ScalarEvolution Class Implementation 9539 //===----------------------------------------------------------------------===// 9540 9541 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9542 AssumptionCache &AC, DominatorTree &DT, 9543 LoopInfo &LI) 9544 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9545 CouldNotCompute(new SCEVCouldNotCompute()), 9546 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9547 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9548 FirstUnknown(nullptr) { 9549 9550 // To use guards for proving predicates, we need to scan every instruction in 9551 // relevant basic blocks, and not just terminators. Doing this is a waste of 9552 // time if the IR does not actually contain any calls to 9553 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 9554 // 9555 // This pessimizes the case where a pass that preserves ScalarEvolution wants 9556 // to _add_ guards to the module when there weren't any before, and wants 9557 // ScalarEvolution to optimize based on those guards. For now we prefer to be 9558 // efficient in lieu of being smart in that rather obscure case. 9559 9560 auto *GuardDecl = F.getParent()->getFunction( 9561 Intrinsic::getName(Intrinsic::experimental_guard)); 9562 HasGuards = GuardDecl && !GuardDecl->use_empty(); 9563 } 9564 9565 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9566 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 9567 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 9568 ValueExprMap(std::move(Arg.ValueExprMap)), 9569 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 9570 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9571 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 9572 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9573 PredicatedBackedgeTakenCounts( 9574 std::move(Arg.PredicatedBackedgeTakenCounts)), 9575 ConstantEvolutionLoopExitValue( 9576 std::move(Arg.ConstantEvolutionLoopExitValue)), 9577 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9578 LoopDispositions(std::move(Arg.LoopDispositions)), 9579 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 9580 BlockDispositions(std::move(Arg.BlockDispositions)), 9581 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9582 SignedRanges(std::move(Arg.SignedRanges)), 9583 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9584 UniquePreds(std::move(Arg.UniquePreds)), 9585 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9586 FirstUnknown(Arg.FirstUnknown) { 9587 Arg.FirstUnknown = nullptr; 9588 } 9589 9590 ScalarEvolution::~ScalarEvolution() { 9591 // Iterate through all the SCEVUnknown instances and call their 9592 // destructors, so that they release their references to their values. 9593 for (SCEVUnknown *U = FirstUnknown; U;) { 9594 SCEVUnknown *Tmp = U; 9595 U = U->Next; 9596 Tmp->~SCEVUnknown(); 9597 } 9598 FirstUnknown = nullptr; 9599 9600 ExprValueMap.clear(); 9601 ValueExprMap.clear(); 9602 HasRecMap.clear(); 9603 9604 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9605 // that a loop had multiple computable exits. 9606 for (auto &BTCI : BackedgeTakenCounts) 9607 BTCI.second.clear(); 9608 for (auto &BTCI : PredicatedBackedgeTakenCounts) 9609 BTCI.second.clear(); 9610 9611 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9612 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9613 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9614 } 9615 9616 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9617 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9618 } 9619 9620 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9621 const Loop *L) { 9622 // Print all inner loops first 9623 for (Loop *I : *L) 9624 PrintLoopInfo(OS, SE, I); 9625 9626 OS << "Loop "; 9627 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9628 OS << ": "; 9629 9630 SmallVector<BasicBlock *, 8> ExitBlocks; 9631 L->getExitBlocks(ExitBlocks); 9632 if (ExitBlocks.size() != 1) 9633 OS << "<multiple exits> "; 9634 9635 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9636 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9637 } else { 9638 OS << "Unpredictable backedge-taken count. "; 9639 } 9640 9641 OS << "\n" 9642 "Loop "; 9643 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9644 OS << ": "; 9645 9646 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9647 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9648 if (SE->isBackedgeTakenCountMaxOrZero(L)) 9649 OS << ", actual taken count either this or zero."; 9650 } else { 9651 OS << "Unpredictable max backedge-taken count. "; 9652 } 9653 9654 OS << "\n" 9655 "Loop "; 9656 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9657 OS << ": "; 9658 9659 SCEVUnionPredicate Pred; 9660 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 9661 if (!isa<SCEVCouldNotCompute>(PBT)) { 9662 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 9663 OS << " Predicates:\n"; 9664 Pred.print(OS, 4); 9665 } else { 9666 OS << "Unpredictable predicated backedge-taken count. "; 9667 } 9668 OS << "\n"; 9669 9670 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9671 OS << "Loop "; 9672 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9673 OS << ": "; 9674 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 9675 } 9676 } 9677 9678 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 9679 switch (LD) { 9680 case ScalarEvolution::LoopVariant: 9681 return "Variant"; 9682 case ScalarEvolution::LoopInvariant: 9683 return "Invariant"; 9684 case ScalarEvolution::LoopComputable: 9685 return "Computable"; 9686 } 9687 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 9688 } 9689 9690 void ScalarEvolution::print(raw_ostream &OS) const { 9691 // ScalarEvolution's implementation of the print method is to print 9692 // out SCEV values of all instructions that are interesting. Doing 9693 // this potentially causes it to create new SCEV objects though, 9694 // which technically conflicts with the const qualifier. This isn't 9695 // observable from outside the class though, so casting away the 9696 // const isn't dangerous. 9697 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9698 9699 OS << "Classifying expressions for: "; 9700 F.printAsOperand(OS, /*PrintType=*/false); 9701 OS << "\n"; 9702 for (Instruction &I : instructions(F)) 9703 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9704 OS << I << '\n'; 9705 OS << " --> "; 9706 const SCEV *SV = SE.getSCEV(&I); 9707 SV->print(OS); 9708 if (!isa<SCEVCouldNotCompute>(SV)) { 9709 OS << " U: "; 9710 SE.getUnsignedRange(SV).print(OS); 9711 OS << " S: "; 9712 SE.getSignedRange(SV).print(OS); 9713 } 9714 9715 const Loop *L = LI.getLoopFor(I.getParent()); 9716 9717 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9718 if (AtUse != SV) { 9719 OS << " --> "; 9720 AtUse->print(OS); 9721 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9722 OS << " U: "; 9723 SE.getUnsignedRange(AtUse).print(OS); 9724 OS << " S: "; 9725 SE.getSignedRange(AtUse).print(OS); 9726 } 9727 } 9728 9729 if (L) { 9730 OS << "\t\t" "Exits: "; 9731 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9732 if (!SE.isLoopInvariant(ExitValue, L)) { 9733 OS << "<<Unknown>>"; 9734 } else { 9735 OS << *ExitValue; 9736 } 9737 9738 bool First = true; 9739 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 9740 if (First) { 9741 OS << "\t\t" "LoopDispositions: { "; 9742 First = false; 9743 } else { 9744 OS << ", "; 9745 } 9746 9747 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9748 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 9749 } 9750 9751 for (auto *InnerL : depth_first(L)) { 9752 if (InnerL == L) 9753 continue; 9754 if (First) { 9755 OS << "\t\t" "LoopDispositions: { "; 9756 First = false; 9757 } else { 9758 OS << ", "; 9759 } 9760 9761 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9762 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 9763 } 9764 9765 OS << " }"; 9766 } 9767 9768 OS << "\n"; 9769 } 9770 9771 OS << "Determining loop execution counts for: "; 9772 F.printAsOperand(OS, /*PrintType=*/false); 9773 OS << "\n"; 9774 for (Loop *I : LI) 9775 PrintLoopInfo(OS, &SE, I); 9776 } 9777 9778 ScalarEvolution::LoopDisposition 9779 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9780 auto &Values = LoopDispositions[S]; 9781 for (auto &V : Values) { 9782 if (V.getPointer() == L) 9783 return V.getInt(); 9784 } 9785 Values.emplace_back(L, LoopVariant); 9786 LoopDisposition D = computeLoopDisposition(S, L); 9787 auto &Values2 = LoopDispositions[S]; 9788 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9789 if (V.getPointer() == L) { 9790 V.setInt(D); 9791 break; 9792 } 9793 } 9794 return D; 9795 } 9796 9797 ScalarEvolution::LoopDisposition 9798 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9799 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9800 case scConstant: 9801 return LoopInvariant; 9802 case scTruncate: 9803 case scZeroExtend: 9804 case scSignExtend: 9805 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9806 case scAddRecExpr: { 9807 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9808 9809 // If L is the addrec's loop, it's computable. 9810 if (AR->getLoop() == L) 9811 return LoopComputable; 9812 9813 // Add recurrences are never invariant in the function-body (null loop). 9814 if (!L) 9815 return LoopVariant; 9816 9817 // This recurrence is variant w.r.t. L if L contains AR's loop. 9818 if (L->contains(AR->getLoop())) 9819 return LoopVariant; 9820 9821 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9822 if (AR->getLoop()->contains(L)) 9823 return LoopInvariant; 9824 9825 // This recurrence is variant w.r.t. L if any of its operands 9826 // are variant. 9827 for (auto *Op : AR->operands()) 9828 if (!isLoopInvariant(Op, L)) 9829 return LoopVariant; 9830 9831 // Otherwise it's loop-invariant. 9832 return LoopInvariant; 9833 } 9834 case scAddExpr: 9835 case scMulExpr: 9836 case scUMaxExpr: 9837 case scSMaxExpr: { 9838 bool HasVarying = false; 9839 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9840 LoopDisposition D = getLoopDisposition(Op, L); 9841 if (D == LoopVariant) 9842 return LoopVariant; 9843 if (D == LoopComputable) 9844 HasVarying = true; 9845 } 9846 return HasVarying ? LoopComputable : LoopInvariant; 9847 } 9848 case scUDivExpr: { 9849 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9850 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9851 if (LD == LoopVariant) 9852 return LoopVariant; 9853 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9854 if (RD == LoopVariant) 9855 return LoopVariant; 9856 return (LD == LoopInvariant && RD == LoopInvariant) ? 9857 LoopInvariant : LoopComputable; 9858 } 9859 case scUnknown: 9860 // All non-instruction values are loop invariant. All instructions are loop 9861 // invariant if they are not contained in the specified loop. 9862 // Instructions are never considered invariant in the function body 9863 // (null loop) because they are defined within the "loop". 9864 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9865 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9866 return LoopInvariant; 9867 case scCouldNotCompute: 9868 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9869 } 9870 llvm_unreachable("Unknown SCEV kind!"); 9871 } 9872 9873 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9874 return getLoopDisposition(S, L) == LoopInvariant; 9875 } 9876 9877 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9878 return getLoopDisposition(S, L) == LoopComputable; 9879 } 9880 9881 ScalarEvolution::BlockDisposition 9882 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9883 auto &Values = BlockDispositions[S]; 9884 for (auto &V : Values) { 9885 if (V.getPointer() == BB) 9886 return V.getInt(); 9887 } 9888 Values.emplace_back(BB, DoesNotDominateBlock); 9889 BlockDisposition D = computeBlockDisposition(S, BB); 9890 auto &Values2 = BlockDispositions[S]; 9891 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9892 if (V.getPointer() == BB) { 9893 V.setInt(D); 9894 break; 9895 } 9896 } 9897 return D; 9898 } 9899 9900 ScalarEvolution::BlockDisposition 9901 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9902 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9903 case scConstant: 9904 return ProperlyDominatesBlock; 9905 case scTruncate: 9906 case scZeroExtend: 9907 case scSignExtend: 9908 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9909 case scAddRecExpr: { 9910 // This uses a "dominates" query instead of "properly dominates" query 9911 // to test for proper dominance too, because the instruction which 9912 // produces the addrec's value is a PHI, and a PHI effectively properly 9913 // dominates its entire containing block. 9914 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9915 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9916 return DoesNotDominateBlock; 9917 9918 // Fall through into SCEVNAryExpr handling. 9919 LLVM_FALLTHROUGH; 9920 } 9921 case scAddExpr: 9922 case scMulExpr: 9923 case scUMaxExpr: 9924 case scSMaxExpr: { 9925 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9926 bool Proper = true; 9927 for (const SCEV *NAryOp : NAry->operands()) { 9928 BlockDisposition D = getBlockDisposition(NAryOp, BB); 9929 if (D == DoesNotDominateBlock) 9930 return DoesNotDominateBlock; 9931 if (D == DominatesBlock) 9932 Proper = false; 9933 } 9934 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9935 } 9936 case scUDivExpr: { 9937 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9938 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9939 BlockDisposition LD = getBlockDisposition(LHS, BB); 9940 if (LD == DoesNotDominateBlock) 9941 return DoesNotDominateBlock; 9942 BlockDisposition RD = getBlockDisposition(RHS, BB); 9943 if (RD == DoesNotDominateBlock) 9944 return DoesNotDominateBlock; 9945 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9946 ProperlyDominatesBlock : DominatesBlock; 9947 } 9948 case scUnknown: 9949 if (Instruction *I = 9950 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9951 if (I->getParent() == BB) 9952 return DominatesBlock; 9953 if (DT.properlyDominates(I->getParent(), BB)) 9954 return ProperlyDominatesBlock; 9955 return DoesNotDominateBlock; 9956 } 9957 return ProperlyDominatesBlock; 9958 case scCouldNotCompute: 9959 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9960 } 9961 llvm_unreachable("Unknown SCEV kind!"); 9962 } 9963 9964 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9965 return getBlockDisposition(S, BB) >= DominatesBlock; 9966 } 9967 9968 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9969 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9970 } 9971 9972 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9973 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 9974 } 9975 9976 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9977 ValuesAtScopes.erase(S); 9978 LoopDispositions.erase(S); 9979 BlockDispositions.erase(S); 9980 UnsignedRanges.erase(S); 9981 SignedRanges.erase(S); 9982 ExprValueMap.erase(S); 9983 HasRecMap.erase(S); 9984 MinTrailingZerosCache.erase(S); 9985 9986 auto RemoveSCEVFromBackedgeMap = 9987 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 9988 for (auto I = Map.begin(), E = Map.end(); I != E;) { 9989 BackedgeTakenInfo &BEInfo = I->second; 9990 if (BEInfo.hasOperand(S, this)) { 9991 BEInfo.clear(); 9992 Map.erase(I++); 9993 } else 9994 ++I; 9995 } 9996 }; 9997 9998 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 9999 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 10000 } 10001 10002 typedef DenseMap<const Loop *, std::string> VerifyMap; 10003 10004 /// replaceSubString - Replaces all occurrences of From in Str with To. 10005 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 10006 size_t Pos = 0; 10007 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 10008 Str.replace(Pos, From.size(), To.data(), To.size()); 10009 Pos += To.size(); 10010 } 10011 } 10012 10013 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 10014 static void 10015 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 10016 std::string &S = Map[L]; 10017 if (S.empty()) { 10018 raw_string_ostream OS(S); 10019 SE.getBackedgeTakenCount(L)->print(OS); 10020 10021 // false and 0 are semantically equivalent. This can happen in dead loops. 10022 replaceSubString(OS.str(), "false", "0"); 10023 // Remove wrap flags, their use in SCEV is highly fragile. 10024 // FIXME: Remove this when SCEV gets smarter about them. 10025 replaceSubString(OS.str(), "<nw>", ""); 10026 replaceSubString(OS.str(), "<nsw>", ""); 10027 replaceSubString(OS.str(), "<nuw>", ""); 10028 } 10029 10030 for (auto *R : reverse(*L)) 10031 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 10032 } 10033 10034 void ScalarEvolution::verify() const { 10035 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10036 10037 // Gather stringified backedge taken counts for all loops using SCEV's caches. 10038 // FIXME: It would be much better to store actual values instead of strings, 10039 // but SCEV pointers will change if we drop the caches. 10040 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 10041 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10042 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 10043 10044 // Gather stringified backedge taken counts for all loops using a fresh 10045 // ScalarEvolution object. 10046 ScalarEvolution SE2(F, TLI, AC, DT, LI); 10047 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10048 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 10049 10050 // Now compare whether they're the same with and without caches. This allows 10051 // verifying that no pass changed the cache. 10052 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 10053 "New loops suddenly appeared!"); 10054 10055 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 10056 OldE = BackedgeDumpsOld.end(), 10057 NewI = BackedgeDumpsNew.begin(); 10058 OldI != OldE; ++OldI, ++NewI) { 10059 assert(OldI->first == NewI->first && "Loop order changed!"); 10060 10061 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 10062 // changes. 10063 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 10064 // means that a pass is buggy or SCEV has to learn a new pattern but is 10065 // usually not harmful. 10066 if (OldI->second != NewI->second && 10067 OldI->second.find("undef") == std::string::npos && 10068 NewI->second.find("undef") == std::string::npos && 10069 OldI->second != "***COULDNOTCOMPUTE***" && 10070 NewI->second != "***COULDNOTCOMPUTE***") { 10071 dbgs() << "SCEVValidator: SCEV for loop '" 10072 << OldI->first->getHeader()->getName() 10073 << "' changed from '" << OldI->second 10074 << "' to '" << NewI->second << "'!\n"; 10075 std::abort(); 10076 } 10077 } 10078 10079 // TODO: Verify more things. 10080 } 10081 10082 bool ScalarEvolution::invalidate( 10083 Function &F, const PreservedAnalyses &PA, 10084 FunctionAnalysisManager::Invalidator &Inv) { 10085 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 10086 // of its dependencies is invalidated. 10087 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 10088 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 10089 Inv.invalidate<AssumptionAnalysis>(F, PA) || 10090 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 10091 Inv.invalidate<LoopAnalysis>(F, PA); 10092 } 10093 10094 AnalysisKey ScalarEvolutionAnalysis::Key; 10095 10096 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 10097 FunctionAnalysisManager &AM) { 10098 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 10099 AM.getResult<AssumptionAnalysis>(F), 10100 AM.getResult<DominatorTreeAnalysis>(F), 10101 AM.getResult<LoopAnalysis>(F)); 10102 } 10103 10104 PreservedAnalyses 10105 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 10106 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 10107 return PreservedAnalyses::all(); 10108 } 10109 10110 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 10111 "Scalar Evolution Analysis", false, true) 10112 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10113 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 10114 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 10115 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 10116 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 10117 "Scalar Evolution Analysis", false, true) 10118 char ScalarEvolutionWrapperPass::ID = 0; 10119 10120 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 10121 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 10122 } 10123 10124 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 10125 SE.reset(new ScalarEvolution( 10126 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 10127 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 10128 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 10129 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 10130 return false; 10131 } 10132 10133 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 10134 10135 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 10136 SE->print(OS); 10137 } 10138 10139 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 10140 if (!VerifySCEV) 10141 return; 10142 10143 SE->verify(); 10144 } 10145 10146 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 10147 AU.setPreservesAll(); 10148 AU.addRequiredTransitive<AssumptionCacheTracker>(); 10149 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 10150 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 10151 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 10152 } 10153 10154 const SCEVPredicate * 10155 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 10156 const SCEVConstant *RHS) { 10157 FoldingSetNodeID ID; 10158 // Unique this node based on the arguments 10159 ID.AddInteger(SCEVPredicate::P_Equal); 10160 ID.AddPointer(LHS); 10161 ID.AddPointer(RHS); 10162 void *IP = nullptr; 10163 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10164 return S; 10165 SCEVEqualPredicate *Eq = new (SCEVAllocator) 10166 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 10167 UniquePreds.InsertNode(Eq, IP); 10168 return Eq; 10169 } 10170 10171 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 10172 const SCEVAddRecExpr *AR, 10173 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10174 FoldingSetNodeID ID; 10175 // Unique this node based on the arguments 10176 ID.AddInteger(SCEVPredicate::P_Wrap); 10177 ID.AddPointer(AR); 10178 ID.AddInteger(AddedFlags); 10179 void *IP = nullptr; 10180 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10181 return S; 10182 auto *OF = new (SCEVAllocator) 10183 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 10184 UniquePreds.InsertNode(OF, IP); 10185 return OF; 10186 } 10187 10188 namespace { 10189 10190 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 10191 public: 10192 /// Rewrites \p S in the context of a loop L and the SCEV predication 10193 /// infrastructure. 10194 /// 10195 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 10196 /// equivalences present in \p Pred. 10197 /// 10198 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 10199 /// \p NewPreds such that the result will be an AddRecExpr. 10200 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 10201 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10202 SCEVUnionPredicate *Pred) { 10203 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 10204 return Rewriter.visit(S); 10205 } 10206 10207 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 10208 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10209 SCEVUnionPredicate *Pred) 10210 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 10211 10212 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10213 if (Pred) { 10214 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 10215 for (auto *Pred : ExprPreds) 10216 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 10217 if (IPred->getLHS() == Expr) 10218 return IPred->getRHS(); 10219 } 10220 10221 return Expr; 10222 } 10223 10224 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 10225 const SCEV *Operand = visit(Expr->getOperand()); 10226 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10227 if (AR && AR->getLoop() == L && AR->isAffine()) { 10228 // This couldn't be folded because the operand didn't have the nuw 10229 // flag. Add the nusw flag as an assumption that we could make. 10230 const SCEV *Step = AR->getStepRecurrence(SE); 10231 Type *Ty = Expr->getType(); 10232 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 10233 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 10234 SE.getSignExtendExpr(Step, Ty), L, 10235 AR->getNoWrapFlags()); 10236 } 10237 return SE.getZeroExtendExpr(Operand, Expr->getType()); 10238 } 10239 10240 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 10241 const SCEV *Operand = visit(Expr->getOperand()); 10242 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10243 if (AR && AR->getLoop() == L && AR->isAffine()) { 10244 // This couldn't be folded because the operand didn't have the nsw 10245 // flag. Add the nssw flag as an assumption that we could make. 10246 const SCEV *Step = AR->getStepRecurrence(SE); 10247 Type *Ty = Expr->getType(); 10248 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 10249 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 10250 SE.getSignExtendExpr(Step, Ty), L, 10251 AR->getNoWrapFlags()); 10252 } 10253 return SE.getSignExtendExpr(Operand, Expr->getType()); 10254 } 10255 10256 private: 10257 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 10258 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10259 auto *A = SE.getWrapPredicate(AR, AddedFlags); 10260 if (!NewPreds) { 10261 // Check if we've already made this assumption. 10262 return Pred && Pred->implies(A); 10263 } 10264 NewPreds->insert(A); 10265 return true; 10266 } 10267 10268 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 10269 SCEVUnionPredicate *Pred; 10270 const Loop *L; 10271 }; 10272 } // end anonymous namespace 10273 10274 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 10275 SCEVUnionPredicate &Preds) { 10276 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 10277 } 10278 10279 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 10280 const SCEV *S, const Loop *L, 10281 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 10282 10283 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 10284 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 10285 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 10286 10287 if (!AddRec) 10288 return nullptr; 10289 10290 // Since the transformation was successful, we can now transfer the SCEV 10291 // predicates. 10292 for (auto *P : TransformPreds) 10293 Preds.insert(P); 10294 10295 return AddRec; 10296 } 10297 10298 /// SCEV predicates 10299 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 10300 SCEVPredicateKind Kind) 10301 : FastID(ID), Kind(Kind) {} 10302 10303 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 10304 const SCEVUnknown *LHS, 10305 const SCEVConstant *RHS) 10306 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 10307 10308 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 10309 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 10310 10311 if (!Op) 10312 return false; 10313 10314 return Op->LHS == LHS && Op->RHS == RHS; 10315 } 10316 10317 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 10318 10319 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 10320 10321 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 10322 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 10323 } 10324 10325 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 10326 const SCEVAddRecExpr *AR, 10327 IncrementWrapFlags Flags) 10328 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 10329 10330 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 10331 10332 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 10333 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 10334 10335 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 10336 } 10337 10338 bool SCEVWrapPredicate::isAlwaysTrue() const { 10339 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 10340 IncrementWrapFlags IFlags = Flags; 10341 10342 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 10343 IFlags = clearFlags(IFlags, IncrementNSSW); 10344 10345 return IFlags == IncrementAnyWrap; 10346 } 10347 10348 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 10349 OS.indent(Depth) << *getExpr() << " Added Flags: "; 10350 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 10351 OS << "<nusw>"; 10352 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 10353 OS << "<nssw>"; 10354 OS << "\n"; 10355 } 10356 10357 SCEVWrapPredicate::IncrementWrapFlags 10358 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 10359 ScalarEvolution &SE) { 10360 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 10361 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 10362 10363 // We can safely transfer the NSW flag as NSSW. 10364 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 10365 ImpliedFlags = IncrementNSSW; 10366 10367 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 10368 // If the increment is positive, the SCEV NUW flag will also imply the 10369 // WrapPredicate NUSW flag. 10370 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 10371 if (Step->getValue()->getValue().isNonNegative()) 10372 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 10373 } 10374 10375 return ImpliedFlags; 10376 } 10377 10378 /// Union predicates don't get cached so create a dummy set ID for it. 10379 SCEVUnionPredicate::SCEVUnionPredicate() 10380 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 10381 10382 bool SCEVUnionPredicate::isAlwaysTrue() const { 10383 return all_of(Preds, 10384 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 10385 } 10386 10387 ArrayRef<const SCEVPredicate *> 10388 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 10389 auto I = SCEVToPreds.find(Expr); 10390 if (I == SCEVToPreds.end()) 10391 return ArrayRef<const SCEVPredicate *>(); 10392 return I->second; 10393 } 10394 10395 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 10396 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 10397 return all_of(Set->Preds, 10398 [this](const SCEVPredicate *I) { return this->implies(I); }); 10399 10400 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 10401 if (ScevPredsIt == SCEVToPreds.end()) 10402 return false; 10403 auto &SCEVPreds = ScevPredsIt->second; 10404 10405 return any_of(SCEVPreds, 10406 [N](const SCEVPredicate *I) { return I->implies(N); }); 10407 } 10408 10409 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 10410 10411 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 10412 for (auto Pred : Preds) 10413 Pred->print(OS, Depth); 10414 } 10415 10416 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 10417 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 10418 for (auto Pred : Set->Preds) 10419 add(Pred); 10420 return; 10421 } 10422 10423 if (implies(N)) 10424 return; 10425 10426 const SCEV *Key = N->getExpr(); 10427 assert(Key && "Only SCEVUnionPredicate doesn't have an " 10428 " associated expression!"); 10429 10430 SCEVToPreds[Key].push_back(N); 10431 Preds.push_back(N); 10432 } 10433 10434 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 10435 Loop &L) 10436 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {} 10437 10438 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 10439 const SCEV *Expr = SE.getSCEV(V); 10440 RewriteEntry &Entry = RewriteMap[Expr]; 10441 10442 // If we already have an entry and the version matches, return it. 10443 if (Entry.second && Generation == Entry.first) 10444 return Entry.second; 10445 10446 // We found an entry but it's stale. Rewrite the stale entry 10447 // according to the current predicate. 10448 if (Entry.second) 10449 Expr = Entry.second; 10450 10451 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 10452 Entry = {Generation, NewSCEV}; 10453 10454 return NewSCEV; 10455 } 10456 10457 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 10458 if (!BackedgeCount) { 10459 SCEVUnionPredicate BackedgePred; 10460 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 10461 addPredicate(BackedgePred); 10462 } 10463 return BackedgeCount; 10464 } 10465 10466 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 10467 if (Preds.implies(&Pred)) 10468 return; 10469 Preds.add(&Pred); 10470 updateGeneration(); 10471 } 10472 10473 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 10474 return Preds; 10475 } 10476 10477 void PredicatedScalarEvolution::updateGeneration() { 10478 // If the generation number wrapped recompute everything. 10479 if (++Generation == 0) { 10480 for (auto &II : RewriteMap) { 10481 const SCEV *Rewritten = II.second.second; 10482 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 10483 } 10484 } 10485 } 10486 10487 void PredicatedScalarEvolution::setNoOverflow( 10488 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10489 const SCEV *Expr = getSCEV(V); 10490 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10491 10492 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 10493 10494 // Clear the statically implied flags. 10495 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 10496 addPredicate(*SE.getWrapPredicate(AR, Flags)); 10497 10498 auto II = FlagsMap.insert({V, Flags}); 10499 if (!II.second) 10500 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 10501 } 10502 10503 bool PredicatedScalarEvolution::hasNoOverflow( 10504 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10505 const SCEV *Expr = getSCEV(V); 10506 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10507 10508 Flags = SCEVWrapPredicate::clearFlags( 10509 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 10510 10511 auto II = FlagsMap.find(V); 10512 10513 if (II != FlagsMap.end()) 10514 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 10515 10516 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 10517 } 10518 10519 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 10520 const SCEV *Expr = this->getSCEV(V); 10521 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 10522 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 10523 10524 if (!New) 10525 return nullptr; 10526 10527 for (auto *P : NewPreds) 10528 Preds.add(P); 10529 10530 updateGeneration(); 10531 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 10532 return New; 10533 } 10534 10535 PredicatedScalarEvolution::PredicatedScalarEvolution( 10536 const PredicatedScalarEvolution &Init) 10537 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 10538 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 10539 for (const auto &I : Init.FlagsMap) 10540 FlagsMap.insert(I); 10541 } 10542 10543 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 10544 // For each block. 10545 for (auto *BB : L.getBlocks()) 10546 for (auto &I : *BB) { 10547 if (!SE.isSCEVable(I.getType())) 10548 continue; 10549 10550 auto *Expr = SE.getSCEV(&I); 10551 auto II = RewriteMap.find(Expr); 10552 10553 if (II == RewriteMap.end()) 10554 continue; 10555 10556 // Don't print things that are not interesting. 10557 if (II->second.second == Expr) 10558 continue; 10559 10560 OS.indent(Depth) << "[PSE]" << I << ":\n"; 10561 OS.indent(Depth + 2) << *Expr << "\n"; 10562 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 10563 } 10564 } 10565