1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PHITransAddr class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/PHITransAddr.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Dominators.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/raw_ostream.h" 22 using namespace llvm; 23 24 static bool CanPHITrans(Instruction *Inst) { 25 if (isa<PHINode>(Inst) || 26 isa<GetElementPtrInst>(Inst)) 27 return true; 28 29 if (isa<CastInst>(Inst) && 30 isSafeToSpeculativelyExecute(Inst)) 31 return true; 32 33 if (Inst->getOpcode() == Instruction::Add && 34 isa<ConstantInt>(Inst->getOperand(1))) 35 return true; 36 37 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer; 38 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst)) 39 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); 40 return false; 41 } 42 43 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 44 LLVM_DUMP_METHOD void PHITransAddr::dump() const { 45 if (!Addr) { 46 dbgs() << "PHITransAddr: null\n"; 47 return; 48 } 49 dbgs() << "PHITransAddr: " << *Addr << "\n"; 50 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 51 dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n"; 52 } 53 #endif 54 55 56 static bool VerifySubExpr(Value *Expr, 57 SmallVectorImpl<Instruction*> &InstInputs) { 58 // If this is a non-instruction value, there is nothing to do. 59 Instruction *I = dyn_cast<Instruction>(Expr); 60 if (!I) return true; 61 62 // If it's an instruction, it is either in Tmp or its operands recursively 63 // are. 64 SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I); 65 if (Entry != InstInputs.end()) { 66 InstInputs.erase(Entry); 67 return true; 68 } 69 70 // If it isn't in the InstInputs list it is a subexpr incorporated into the 71 // address. Validate that it is phi translatable. 72 if (!CanPHITrans(I)) { 73 errs() << "Instruction in PHITransAddr is not phi-translatable:\n"; 74 errs() << *I << '\n'; 75 llvm_unreachable("Either something is missing from InstInputs or " 76 "CanPHITrans is wrong."); 77 } 78 79 // Validate the operands of the instruction. 80 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 81 if (!VerifySubExpr(I->getOperand(i), InstInputs)) 82 return false; 83 84 return true; 85 } 86 87 /// Verify - Check internal consistency of this data structure. If the 88 /// structure is valid, it returns true. If invalid, it prints errors and 89 /// returns false. 90 bool PHITransAddr::Verify() const { 91 if (!Addr) return true; 92 93 SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); 94 95 if (!VerifySubExpr(Addr, Tmp)) 96 return false; 97 98 if (!Tmp.empty()) { 99 errs() << "PHITransAddr contains extra instructions:\n"; 100 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 101 errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n"; 102 llvm_unreachable("This is unexpected."); 103 } 104 105 // a-ok. 106 return true; 107 } 108 109 110 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true 111 /// if we have some hope of doing it. This should be used as a filter to 112 /// avoid calling PHITranslateValue in hopeless situations. 113 bool PHITransAddr::IsPotentiallyPHITranslatable() const { 114 // If the input value is not an instruction, or if it is not defined in CurBB, 115 // then we don't need to phi translate it. 116 Instruction *Inst = dyn_cast<Instruction>(Addr); 117 return !Inst || CanPHITrans(Inst); 118 } 119 120 121 static void RemoveInstInputs(Value *V, 122 SmallVectorImpl<Instruction*> &InstInputs) { 123 Instruction *I = dyn_cast<Instruction>(V); 124 if (!I) return; 125 126 // If the instruction is in the InstInputs list, remove it. 127 SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I); 128 if (Entry != InstInputs.end()) { 129 InstInputs.erase(Entry); 130 return; 131 } 132 133 assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); 134 135 // Otherwise, it must have instruction inputs itself. Zap them recursively. 136 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 137 if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) 138 RemoveInstInputs(Op, InstInputs); 139 } 140 } 141 142 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB, 143 BasicBlock *PredBB, 144 const DominatorTree *DT) { 145 // If this is a non-instruction value, it can't require PHI translation. 146 Instruction *Inst = dyn_cast<Instruction>(V); 147 if (!Inst) return V; 148 149 // Determine whether 'Inst' is an input to our PHI translatable expression. 150 bool isInput = is_contained(InstInputs, Inst); 151 152 // Handle inputs instructions if needed. 153 if (isInput) { 154 if (Inst->getParent() != CurBB) { 155 // If it is an input defined in a different block, then it remains an 156 // input. 157 return Inst; 158 } 159 160 // If 'Inst' is defined in this block and is an input that needs to be phi 161 // translated, we need to incorporate the value into the expression or fail. 162 163 // In either case, the instruction itself isn't an input any longer. 164 InstInputs.erase(find(InstInputs, Inst)); 165 166 // If this is a PHI, go ahead and translate it. 167 if (PHINode *PN = dyn_cast<PHINode>(Inst)) 168 return AddAsInput(PN->getIncomingValueForBlock(PredBB)); 169 170 // If this is a non-phi value, and it is analyzable, we can incorporate it 171 // into the expression by making all instruction operands be inputs. 172 if (!CanPHITrans(Inst)) 173 return nullptr; 174 175 // All instruction operands are now inputs (and of course, they may also be 176 // defined in this block, so they may need to be phi translated themselves. 177 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 178 if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i))) 179 InstInputs.push_back(Op); 180 } 181 182 // Ok, it must be an intermediate result (either because it started that way 183 // or because we just incorporated it into the expression). See if its 184 // operands need to be phi translated, and if so, reconstruct it. 185 186 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 187 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 188 Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT); 189 if (!PHIIn) return nullptr; 190 if (PHIIn == Cast->getOperand(0)) 191 return Cast; 192 193 // Find an available version of this cast. 194 195 // Constants are trivial to find. 196 if (Constant *C = dyn_cast<Constant>(PHIIn)) 197 return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(), 198 C, Cast->getType())); 199 200 // Otherwise we have to see if a casted version of the incoming pointer 201 // is available. If so, we can use it, otherwise we have to fail. 202 for (User *U : PHIIn->users()) { 203 if (CastInst *CastI = dyn_cast<CastInst>(U)) 204 if (CastI->getOpcode() == Cast->getOpcode() && 205 CastI->getType() == Cast->getType() && 206 (!DT || DT->dominates(CastI->getParent(), PredBB))) 207 return CastI; 208 } 209 return nullptr; 210 } 211 212 // Handle getelementptr with at least one PHI translatable operand. 213 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 214 SmallVector<Value*, 8> GEPOps; 215 bool AnyChanged = false; 216 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 217 Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT); 218 if (!GEPOp) return nullptr; 219 220 AnyChanged |= GEPOp != GEP->getOperand(i); 221 GEPOps.push_back(GEPOp); 222 } 223 224 if (!AnyChanged) 225 return GEP; 226 227 // Simplify the GEP to handle 'gep x, 0' -> x etc. 228 if (Value *V = SimplifyGEPInst(GEP->getSourceElementType(), GEPOps[0], 229 ArrayRef<Value *>(GEPOps).slice(1), 230 GEP->isInBounds(), {DL, TLI, DT, AC})) { 231 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) 232 RemoveInstInputs(GEPOps[i], InstInputs); 233 234 return AddAsInput(V); 235 } 236 237 // Scan to see if we have this GEP available. 238 Value *APHIOp = GEPOps[0]; 239 for (User *U : APHIOp->users()) { 240 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) 241 if (GEPI->getType() == GEP->getType() && 242 GEPI->getSourceElementType() == GEP->getSourceElementType() && 243 GEPI->getNumOperands() == GEPOps.size() && 244 GEPI->getParent()->getParent() == CurBB->getParent() && 245 (!DT || DT->dominates(GEPI->getParent(), PredBB))) { 246 if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin())) 247 return GEPI; 248 } 249 } 250 return nullptr; 251 } 252 253 // Handle add with a constant RHS. 254 if (Inst->getOpcode() == Instruction::Add && 255 isa<ConstantInt>(Inst->getOperand(1))) { 256 // PHI translate the LHS. 257 Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); 258 bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); 259 bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); 260 261 Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); 262 if (!LHS) return nullptr; 263 264 // If the PHI translated LHS is an add of a constant, fold the immediates. 265 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) 266 if (BOp->getOpcode() == Instruction::Add) 267 if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 268 LHS = BOp->getOperand(0); 269 RHS = ConstantExpr::getAdd(RHS, CI); 270 isNSW = isNUW = false; 271 272 // If the old 'LHS' was an input, add the new 'LHS' as an input. 273 if (is_contained(InstInputs, BOp)) { 274 RemoveInstInputs(BOp, InstInputs); 275 AddAsInput(LHS); 276 } 277 } 278 279 // See if the add simplifies away. 280 if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) { 281 // If we simplified the operands, the LHS is no longer an input, but Res 282 // is. 283 RemoveInstInputs(LHS, InstInputs); 284 return AddAsInput(Res); 285 } 286 287 // If we didn't modify the add, just return it. 288 if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) 289 return Inst; 290 291 // Otherwise, see if we have this add available somewhere. 292 for (User *U : LHS->users()) { 293 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) 294 if (BO->getOpcode() == Instruction::Add && 295 BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && 296 BO->getParent()->getParent() == CurBB->getParent() && 297 (!DT || DT->dominates(BO->getParent(), PredBB))) 298 return BO; 299 } 300 301 return nullptr; 302 } 303 304 // Otherwise, we failed. 305 return nullptr; 306 } 307 308 309 /// PHITranslateValue - PHI translate the current address up the CFG from 310 /// CurBB to Pred, updating our state to reflect any needed changes. If 311 /// 'MustDominate' is true, the translated value must dominate 312 /// PredBB. This returns true on failure and sets Addr to null. 313 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, 314 const DominatorTree *DT, 315 bool MustDominate) { 316 assert(DT || !MustDominate); 317 assert(Verify() && "Invalid PHITransAddr!"); 318 if (DT && DT->isReachableFromEntry(PredBB)) 319 Addr = 320 PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr); 321 else 322 Addr = nullptr; 323 assert(Verify() && "Invalid PHITransAddr!"); 324 325 if (MustDominate) 326 // Make sure the value is live in the predecessor. 327 if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) 328 if (!DT->dominates(Inst->getParent(), PredBB)) 329 Addr = nullptr; 330 331 return Addr == nullptr; 332 } 333 334 /// PHITranslateWithInsertion - PHI translate this value into the specified 335 /// predecessor block, inserting a computation of the value if it is 336 /// unavailable. 337 /// 338 /// All newly created instructions are added to the NewInsts list. This 339 /// returns null on failure. 340 /// 341 Value *PHITransAddr:: 342 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, 343 const DominatorTree &DT, 344 SmallVectorImpl<Instruction*> &NewInsts) { 345 unsigned NISize = NewInsts.size(); 346 347 // Attempt to PHI translate with insertion. 348 Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); 349 350 // If successful, return the new value. 351 if (Addr) return Addr; 352 353 // If not, destroy any intermediate instructions inserted. 354 while (NewInsts.size() != NISize) 355 NewInsts.pop_back_val()->eraseFromParent(); 356 return nullptr; 357 } 358 359 360 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated 361 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB 362 /// block. All newly created instructions are added to the NewInsts list. 363 /// This returns null on failure. 364 /// 365 Value *PHITransAddr:: 366 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB, 367 BasicBlock *PredBB, const DominatorTree &DT, 368 SmallVectorImpl<Instruction*> &NewInsts) { 369 // See if we have a version of this value already available and dominating 370 // PredBB. If so, there is no need to insert a new instance of it. 371 PHITransAddr Tmp(InVal, DL, AC); 372 if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true)) 373 return Tmp.getAddr(); 374 375 // We don't need to PHI translate values which aren't instructions. 376 auto *Inst = dyn_cast<Instruction>(InVal); 377 if (!Inst) 378 return nullptr; 379 380 // Handle cast of PHI translatable value. 381 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 382 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 383 Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0), 384 CurBB, PredBB, DT, NewInsts); 385 if (!OpVal) return nullptr; 386 387 // Otherwise insert a cast at the end of PredBB. 388 CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(), 389 InVal->getName() + ".phi.trans.insert", 390 PredBB->getTerminator()); 391 New->setDebugLoc(Inst->getDebugLoc()); 392 NewInsts.push_back(New); 393 return New; 394 } 395 396 // Handle getelementptr with at least one PHI operand. 397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 398 SmallVector<Value*, 8> GEPOps; 399 BasicBlock *CurBB = GEP->getParent(); 400 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 401 Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i), 402 CurBB, PredBB, DT, NewInsts); 403 if (!OpVal) return nullptr; 404 GEPOps.push_back(OpVal); 405 } 406 407 GetElementPtrInst *Result = GetElementPtrInst::Create( 408 GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1), 409 InVal->getName() + ".phi.trans.insert", PredBB->getTerminator()); 410 Result->setDebugLoc(Inst->getDebugLoc()); 411 Result->setIsInBounds(GEP->isInBounds()); 412 NewInsts.push_back(Result); 413 return Result; 414 } 415 416 #if 0 417 // FIXME: This code works, but it is unclear that we actually want to insert 418 // a big chain of computation in order to make a value available in a block. 419 // This needs to be evaluated carefully to consider its cost trade offs. 420 421 // Handle add with a constant RHS. 422 if (Inst->getOpcode() == Instruction::Add && 423 isa<ConstantInt>(Inst->getOperand(1))) { 424 // PHI translate the LHS. 425 Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0), 426 CurBB, PredBB, DT, NewInsts); 427 if (OpVal == 0) return 0; 428 429 BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), 430 InVal->getName()+".phi.trans.insert", 431 PredBB->getTerminator()); 432 Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); 433 Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); 434 NewInsts.push_back(Res); 435 return Res; 436 } 437 #endif 438 439 return nullptr; 440 } 441