1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Analysis/MustExecute.h"
11 #include "llvm/Analysis/InstructionSimplify.h"
12 #include "llvm/Analysis/LoopInfo.h"
13 #include "llvm/Analysis/Passes.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/IR/AssemblyAnnotationWriter.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/InstIterator.h"
18 #include "llvm/IR/LLVMContext.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/FormattedStream.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
24 
25 const DenseMap<BasicBlock *, ColorVector> &
26 LoopSafetyInfo::getBlockColors() const {
27   return BlockColors;
28 }
29 
30 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
31   ColorVector &ColorsForNewBlock = BlockColors[New];
32   ColorVector &ColorsForOldBlock = BlockColors[Old];
33   ColorsForNewBlock = ColorsForOldBlock;
34 }
35 
36 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
37   (void)BB;
38   return anyBlockMayThrow();
39 }
40 
41 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
42   return MayThrow;
43 }
44 
45 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
46   assert(CurLoop != nullptr && "CurLoop can't be null");
47   BasicBlock *Header = CurLoop->getHeader();
48   // Iterate over header and compute safety info.
49   HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
50   MayThrow = HeaderMayThrow;
51   // Iterate over loop instructions and compute safety info.
52   // Skip header as it has been computed and stored in HeaderMayThrow.
53   // The first block in loopinfo.Blocks is guaranteed to be the header.
54   assert(Header == *CurLoop->getBlocks().begin() &&
55          "First block must be header");
56   for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
57                             BBE = CurLoop->block_end();
58        (BB != BBE) && !MayThrow; ++BB)
59     MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
60 
61   computeBlockColors(CurLoop);
62 }
63 
64 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
65   return ICF.hasICF(BB);
66 }
67 
68 bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
69   return MayThrow;
70 }
71 
72 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
73   assert(CurLoop != nullptr && "CurLoop can't be null");
74   ICF.clear();
75   MW.clear();
76   MayThrow = false;
77   // Figure out the fact that at least one block may throw.
78   for (auto &BB : CurLoop->blocks())
79     if (ICF.hasICF(&*BB)) {
80       MayThrow = true;
81       break;
82     }
83   computeBlockColors(CurLoop);
84 }
85 
86 void ICFLoopSafetyInfo::insertInstructionTo(const BasicBlock *BB) {
87   ICF.invalidateBlock(BB);
88   MW.invalidateBlock(BB);
89 }
90 
91 void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
92   // TODO: So far we just conservatively drop cache, but maybe we can not do it
93   // when Inst is not an ICF instruction. Follow-up on that.
94   ICF.invalidateBlock(Inst->getParent());
95   MW.invalidateBlock(Inst->getParent());
96 }
97 
98 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
99   // Compute funclet colors if we might sink/hoist in a function with a funclet
100   // personality routine.
101   Function *Fn = CurLoop->getHeader()->getParent();
102   if (Fn->hasPersonalityFn())
103     if (Constant *PersonalityFn = Fn->getPersonalityFn())
104       if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
105         BlockColors = colorEHFunclets(*Fn);
106 }
107 
108 /// Return true if we can prove that the given ExitBlock is not reached on the
109 /// first iteration of the given loop.  That is, the backedge of the loop must
110 /// be executed before the ExitBlock is executed in any dynamic execution trace.
111 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
112                                            const DominatorTree *DT,
113                                            const Loop *CurLoop) {
114   auto *CondExitBlock = ExitBlock->getSinglePredecessor();
115   if (!CondExitBlock)
116     // expect unique exits
117     return false;
118   assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
119   auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
120   if (!BI || !BI->isConditional())
121     return false;
122   // If condition is constant and false leads to ExitBlock then we always
123   // execute the true branch.
124   if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
125     return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
126   auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
127   if (!Cond)
128     return false;
129   // todo: this would be a lot more powerful if we used scev, but all the
130   // plumbing is currently missing to pass a pointer in from the pass
131   // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
132   auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
133   auto *RHS = Cond->getOperand(1);
134   if (!LHS || LHS->getParent() != CurLoop->getHeader())
135     return false;
136   auto DL = ExitBlock->getModule()->getDataLayout();
137   auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
138   auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
139                                           IVStart, RHS,
140                                           {DL, /*TLI*/ nullptr,
141                                               DT, /*AC*/ nullptr, BI});
142   auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
143   if (!SimpleCst)
144     return false;
145   if (ExitBlock == BI->getSuccessor(0))
146     return SimpleCst->isZeroValue();
147   assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
148   return SimpleCst->isAllOnesValue();
149 }
150 
151 /// Collect all blocks from \p CurLoop which lie on all possible paths from
152 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
153 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
154 static void collectTransitivePredecessors(
155     const Loop *CurLoop, const BasicBlock *BB,
156     SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
157   assert(Predecessors.empty() && "Garbage in predecessors set?");
158   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
159   if (BB == CurLoop->getHeader())
160     return;
161   SmallVector<const BasicBlock *, 4> WorkList;
162   for (auto *Pred : predecessors(BB)) {
163     Predecessors.insert(Pred);
164     WorkList.push_back(Pred);
165   }
166   while (!WorkList.empty()) {
167     auto *Pred = WorkList.pop_back_val();
168     assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
169     // We are not interested in backedges and we don't want to leave loop.
170     if (Pred == CurLoop->getHeader())
171       continue;
172     // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
173     // blocks of this inner loop, even those that are always executed AFTER the
174     // BB. It may make our analysis more conservative than it could be, see test
175     // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
176     // We can ignore backedge of all loops containing BB to get a sligtly more
177     // optimistic result.
178     for (auto *PredPred : predecessors(Pred))
179       if (Predecessors.insert(PredPred).second)
180         WorkList.push_back(PredPred);
181   }
182 }
183 
184 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
185                                              const BasicBlock *BB,
186                                              const DominatorTree *DT) const {
187   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
188 
189   // Fast path: header is always reached once the loop is entered.
190   if (BB == CurLoop->getHeader())
191     return true;
192 
193   // Collect all transitive predecessors of BB in the same loop. This set will
194   // be a subset of the blocks within the loop.
195   SmallPtrSet<const BasicBlock *, 4> Predecessors;
196   collectTransitivePredecessors(CurLoop, BB, Predecessors);
197 
198   // Make sure that all successors of all predecessors of BB are either:
199   // 1) BB,
200   // 2) Also predecessors of BB,
201   // 3) Exit blocks which are not taken on 1st iteration.
202   // Memoize blocks we've already checked.
203   SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
204   for (auto *Pred : Predecessors) {
205     // Predecessor block may throw, so it has a side exit.
206     if (blockMayThrow(Pred))
207       return false;
208     for (auto *Succ : successors(Pred))
209       if (CheckedSuccessors.insert(Succ).second &&
210           Succ != BB && !Predecessors.count(Succ))
211         // By discharging conditions that are not executed on the 1st iteration,
212         // we guarantee that *at least* on the first iteration all paths from
213         // header that *may* execute will lead us to the block of interest. So
214         // that if we had virtually peeled one iteration away, in this peeled
215         // iteration the set of predecessors would contain only paths from
216         // header to BB without any exiting edges that may execute.
217         //
218         // TODO: We only do it for exiting edges currently. We could use the
219         // same function to skip some of the edges within the loop if we know
220         // that they will not be taken on the 1st iteration.
221         //
222         // TODO: If we somehow know the number of iterations in loop, the same
223         // check may be done for any arbitrary N-th iteration as long as N is
224         // not greater than minimum number of iterations in this loop.
225         if (CurLoop->contains(Succ) ||
226             !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
227           return false;
228   }
229 
230   // All predecessors can only lead us to BB.
231   return true;
232 }
233 
234 /// Returns true if the instruction in a loop is guaranteed to execute at least
235 /// once.
236 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
237                                                  const DominatorTree *DT,
238                                                  const Loop *CurLoop) const {
239   // If the instruction is in the header block for the loop (which is very
240   // common), it is always guaranteed to dominate the exit blocks.  Since this
241   // is a common case, and can save some work, check it now.
242   if (Inst.getParent() == CurLoop->getHeader())
243     // If there's a throw in the header block, we can't guarantee we'll reach
244     // Inst unless we can prove that Inst comes before the potential implicit
245     // exit.  At the moment, we use a (cheap) hack for the common case where
246     // the instruction of interest is the first one in the block.
247     return !HeaderMayThrow ||
248            Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
249 
250   // If there is a path from header to exit or latch that doesn't lead to our
251   // instruction's block, return false.
252   return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
253 }
254 
255 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
256                                               const DominatorTree *DT,
257                                               const Loop *CurLoop) const {
258   return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
259          allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
260 }
261 
262 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
263                                                  const Loop *CurLoop) const {
264   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
265 
266   // Fast path: there are no instructions before header.
267   if (BB == CurLoop->getHeader())
268     return true;
269 
270   // Collect all transitive predecessors of BB in the same loop. This set will
271   // be a subset of the blocks within the loop.
272   SmallPtrSet<const BasicBlock *, 4> Predecessors;
273   collectTransitivePredecessors(CurLoop, BB, Predecessors);
274   // Find if there any instruction in either predecessor that could write
275   // to memory.
276   for (auto *Pred : Predecessors)
277     if (MW.mayWriteToMemory(Pred))
278       return false;
279   return true;
280 }
281 
282 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
283                                                  const Loop *CurLoop) const {
284   auto *BB = I.getParent();
285   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
286   return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
287          doesNotWriteMemoryBefore(BB, CurLoop);
288 }
289 
290 namespace {
291   struct MustExecutePrinter : public FunctionPass {
292 
293     static char ID; // Pass identification, replacement for typeid
294     MustExecutePrinter() : FunctionPass(ID) {
295       initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
296     }
297     void getAnalysisUsage(AnalysisUsage &AU) const override {
298       AU.setPreservesAll();
299       AU.addRequired<DominatorTreeWrapperPass>();
300       AU.addRequired<LoopInfoWrapperPass>();
301     }
302     bool runOnFunction(Function &F) override;
303   };
304 }
305 
306 char MustExecutePrinter::ID = 0;
307 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
308                       "Instructions which execute on loop entry", false, true)
309 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
310 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
311 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
312                     "Instructions which execute on loop entry", false, true)
313 
314 FunctionPass *llvm::createMustExecutePrinter() {
315   return new MustExecutePrinter();
316 }
317 
318 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
319   // TODO: merge these two routines.  For the moment, we display the best
320   // result obtained by *either* implementation.  This is a bit unfair since no
321   // caller actually gets the full power at the moment.
322   SimpleLoopSafetyInfo LSI;
323   LSI.computeLoopSafetyInfo(L);
324   return LSI.isGuaranteedToExecute(I, DT, L) ||
325     isGuaranteedToExecuteForEveryIteration(&I, L);
326 }
327 
328 namespace {
329 /// An assembly annotator class to print must execute information in
330 /// comments.
331 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
332   DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
333 
334 public:
335   MustExecuteAnnotatedWriter(const Function &F,
336                              DominatorTree &DT, LoopInfo &LI) {
337     for (auto &I: instructions(F)) {
338       Loop *L = LI.getLoopFor(I.getParent());
339       while (L) {
340         if (isMustExecuteIn(I, L, &DT)) {
341           MustExec[&I].push_back(L);
342         }
343         L = L->getParentLoop();
344       };
345     }
346   }
347   MustExecuteAnnotatedWriter(const Module &M,
348                              DominatorTree &DT, LoopInfo &LI) {
349     for (auto &F : M)
350     for (auto &I: instructions(F)) {
351       Loop *L = LI.getLoopFor(I.getParent());
352       while (L) {
353         if (isMustExecuteIn(I, L, &DT)) {
354           MustExec[&I].push_back(L);
355         }
356         L = L->getParentLoop();
357       };
358     }
359   }
360 
361 
362   void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
363     if (!MustExec.count(&V))
364       return;
365 
366     const auto &Loops = MustExec.lookup(&V);
367     const auto NumLoops = Loops.size();
368     if (NumLoops > 1)
369       OS << " ; (mustexec in " << NumLoops << " loops: ";
370     else
371       OS << " ; (mustexec in: ";
372 
373     bool first = true;
374     for (const Loop *L : Loops) {
375       if (!first)
376         OS << ", ";
377       first = false;
378       OS << L->getHeader()->getName();
379     }
380     OS << ")";
381   }
382 };
383 } // namespace
384 
385 bool MustExecutePrinter::runOnFunction(Function &F) {
386   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
387   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
388 
389   MustExecuteAnnotatedWriter Writer(F, DT, LI);
390   F.print(dbgs(), &Writer);
391 
392   return false;
393 }
394