1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Analysis/MustExecute.h"
11 #include "llvm/Analysis/InstructionSimplify.h"
12 #include "llvm/Analysis/LoopInfo.h"
13 #include "llvm/Analysis/Passes.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/IR/AssemblyAnnotationWriter.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/InstIterator.h"
18 #include "llvm/IR/LLVMContext.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/FormattedStream.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
24 
25 const DenseMap<BasicBlock *, ColorVector> &
26 LoopSafetyInfo::getBlockColors() const {
27   return BlockColors;
28 }
29 
30 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
31   ColorVector &ColorsForNewBlock = BlockColors[New];
32   ColorVector &ColorsForOldBlock = BlockColors[Old];
33   ColorsForNewBlock = ColorsForOldBlock;
34 }
35 
36 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
37   (void)BB;
38   return anyBlockMayThrow();
39 }
40 
41 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
42   return MayThrow;
43 }
44 
45 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
46   assert(CurLoop != nullptr && "CurLoop can't be null");
47   BasicBlock *Header = CurLoop->getHeader();
48   // Iterate over header and compute safety info.
49   HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
50   MayThrow = HeaderMayThrow;
51   // Iterate over loop instructions and compute safety info.
52   // Skip header as it has been computed and stored in HeaderMayThrow.
53   // The first block in loopinfo.Blocks is guaranteed to be the header.
54   assert(Header == *CurLoop->getBlocks().begin() &&
55          "First block must be header");
56   for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
57                             BBE = CurLoop->block_end();
58        (BB != BBE) && !MayThrow; ++BB)
59     MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
60 
61   computeBlockColors(CurLoop);
62 }
63 
64 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
65   return ICF.hasICF(BB);
66 }
67 
68 bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
69   return MayThrow;
70 }
71 
72 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
73   assert(CurLoop != nullptr && "CurLoop can't be null");
74   ICF.clear();
75   MayThrow = false;
76   // Figure out the fact that at least one block may throw.
77   for (auto &BB : CurLoop->blocks())
78     if (ICF.hasICF(&*BB)) {
79       MayThrow = true;
80       break;
81     }
82   computeBlockColors(CurLoop);
83 }
84 
85 void ICFLoopSafetyInfo::insertInstructionTo(const BasicBlock *BB) {
86   ICF.invalidateBlock(BB);
87 }
88 
89 void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
90   // TODO: So far we just conservatively drop cache, but maybe we can not do it
91   // when Inst is not an ICF instruction. Follow-up on that.
92   ICF.invalidateBlock(Inst->getParent());
93 }
94 
95 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
96   // Compute funclet colors if we might sink/hoist in a function with a funclet
97   // personality routine.
98   Function *Fn = CurLoop->getHeader()->getParent();
99   if (Fn->hasPersonalityFn())
100     if (Constant *PersonalityFn = Fn->getPersonalityFn())
101       if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
102         BlockColors = colorEHFunclets(*Fn);
103 }
104 
105 /// Return true if we can prove that the given ExitBlock is not reached on the
106 /// first iteration of the given loop.  That is, the backedge of the loop must
107 /// be executed before the ExitBlock is executed in any dynamic execution trace.
108 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
109                                            const DominatorTree *DT,
110                                            const Loop *CurLoop) {
111   auto *CondExitBlock = ExitBlock->getSinglePredecessor();
112   if (!CondExitBlock)
113     // expect unique exits
114     return false;
115   assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
116   auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
117   if (!BI || !BI->isConditional())
118     return false;
119   // If condition is constant and false leads to ExitBlock then we always
120   // execute the true branch.
121   if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
122     return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
123   auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
124   if (!Cond)
125     return false;
126   // todo: this would be a lot more powerful if we used scev, but all the
127   // plumbing is currently missing to pass a pointer in from the pass
128   // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
129   auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
130   auto *RHS = Cond->getOperand(1);
131   if (!LHS || LHS->getParent() != CurLoop->getHeader())
132     return false;
133   auto DL = ExitBlock->getModule()->getDataLayout();
134   auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
135   auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
136                                           IVStart, RHS,
137                                           {DL, /*TLI*/ nullptr,
138                                               DT, /*AC*/ nullptr, BI});
139   auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
140   if (!SimpleCst)
141     return false;
142   if (ExitBlock == BI->getSuccessor(0))
143     return SimpleCst->isZeroValue();
144   assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
145   return SimpleCst->isAllOnesValue();
146 }
147 
148 /// Collect all blocks from \p CurLoop which lie on all possible paths from
149 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
150 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
151 static void collectTransitivePredecessors(
152     const Loop *CurLoop, const BasicBlock *BB,
153     SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
154   assert(Predecessors.empty() && "Garbage in predecessors set?");
155   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
156   if (BB == CurLoop->getHeader())
157     return;
158   SmallVector<const BasicBlock *, 4> WorkList;
159   for (auto *Pred : predecessors(BB)) {
160     Predecessors.insert(Pred);
161     WorkList.push_back(Pred);
162   }
163   while (!WorkList.empty()) {
164     auto *Pred = WorkList.pop_back_val();
165     assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
166     // We are not interested in backedges and we don't want to leave loop.
167     if (Pred == CurLoop->getHeader())
168       continue;
169     // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
170     // blocks of this inner loop, even those that are always executed AFTER the
171     // BB. It may make our analysis more conservative than it could be, see test
172     // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
173     // We can ignore backedge of all loops containing BB to get a sligtly more
174     // optimistic result.
175     for (auto *PredPred : predecessors(Pred))
176       if (Predecessors.insert(PredPred).second)
177         WorkList.push_back(PredPred);
178   }
179 }
180 
181 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
182                                              const BasicBlock *BB,
183                                              const DominatorTree *DT) const {
184   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
185 
186   // Fast path: header is always reached once the loop is entered.
187   if (BB == CurLoop->getHeader())
188     return true;
189 
190   // Collect all transitive predecessors of BB in the same loop. This set will
191   // be a subset of the blocks within the loop.
192   SmallPtrSet<const BasicBlock *, 4> Predecessors;
193   collectTransitivePredecessors(CurLoop, BB, Predecessors);
194 
195   // Make sure that all successors of all predecessors of BB are either:
196   // 1) BB,
197   // 2) Also predecessors of BB,
198   // 3) Exit blocks which are not taken on 1st iteration.
199   // Memoize blocks we've already checked.
200   SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
201   for (auto *Pred : Predecessors) {
202     // Predecessor block may throw, so it has a side exit.
203     if (blockMayThrow(Pred))
204       return false;
205     for (auto *Succ : successors(Pred))
206       if (CheckedSuccessors.insert(Succ).second &&
207           Succ != BB && !Predecessors.count(Succ))
208         // By discharging conditions that are not executed on the 1st iteration,
209         // we guarantee that *at least* on the first iteration all paths from
210         // header that *may* execute will lead us to the block of interest. So
211         // that if we had virtually peeled one iteration away, in this peeled
212         // iteration the set of predecessors would contain only paths from
213         // header to BB without any exiting edges that may execute.
214         //
215         // TODO: We only do it for exiting edges currently. We could use the
216         // same function to skip some of the edges within the loop if we know
217         // that they will not be taken on the 1st iteration.
218         //
219         // TODO: If we somehow know the number of iterations in loop, the same
220         // check may be done for any arbitrary N-th iteration as long as N is
221         // not greater than minimum number of iterations in this loop.
222         if (CurLoop->contains(Succ) ||
223             !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
224           return false;
225   }
226 
227   // All predecessors can only lead us to BB.
228   return true;
229 }
230 
231 /// Returns true if the instruction in a loop is guaranteed to execute at least
232 /// once.
233 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
234                                                  const DominatorTree *DT,
235                                                  const Loop *CurLoop) const {
236   // If the instruction is in the header block for the loop (which is very
237   // common), it is always guaranteed to dominate the exit blocks.  Since this
238   // is a common case, and can save some work, check it now.
239   if (Inst.getParent() == CurLoop->getHeader())
240     // If there's a throw in the header block, we can't guarantee we'll reach
241     // Inst unless we can prove that Inst comes before the potential implicit
242     // exit.  At the moment, we use a (cheap) hack for the common case where
243     // the instruction of interest is the first one in the block.
244     return !HeaderMayThrow ||
245            Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
246 
247   // If there is a path from header to exit or latch that doesn't lead to our
248   // instruction's block, return false.
249   return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
250 }
251 
252 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
253                                               const DominatorTree *DT,
254                                               const Loop *CurLoop) const {
255   return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
256          allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
257 }
258 
259 namespace {
260   struct MustExecutePrinter : public FunctionPass {
261 
262     static char ID; // Pass identification, replacement for typeid
263     MustExecutePrinter() : FunctionPass(ID) {
264       initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
265     }
266     void getAnalysisUsage(AnalysisUsage &AU) const override {
267       AU.setPreservesAll();
268       AU.addRequired<DominatorTreeWrapperPass>();
269       AU.addRequired<LoopInfoWrapperPass>();
270     }
271     bool runOnFunction(Function &F) override;
272   };
273 }
274 
275 char MustExecutePrinter::ID = 0;
276 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
277                       "Instructions which execute on loop entry", false, true)
278 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
279 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
280 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
281                     "Instructions which execute on loop entry", false, true)
282 
283 FunctionPass *llvm::createMustExecutePrinter() {
284   return new MustExecutePrinter();
285 }
286 
287 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
288   // TODO: merge these two routines.  For the moment, we display the best
289   // result obtained by *either* implementation.  This is a bit unfair since no
290   // caller actually gets the full power at the moment.
291   SimpleLoopSafetyInfo LSI;
292   LSI.computeLoopSafetyInfo(L);
293   return LSI.isGuaranteedToExecute(I, DT, L) ||
294     isGuaranteedToExecuteForEveryIteration(&I, L);
295 }
296 
297 namespace {
298 /// An assembly annotator class to print must execute information in
299 /// comments.
300 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
301   DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
302 
303 public:
304   MustExecuteAnnotatedWriter(const Function &F,
305                              DominatorTree &DT, LoopInfo &LI) {
306     for (auto &I: instructions(F)) {
307       Loop *L = LI.getLoopFor(I.getParent());
308       while (L) {
309         if (isMustExecuteIn(I, L, &DT)) {
310           MustExec[&I].push_back(L);
311         }
312         L = L->getParentLoop();
313       };
314     }
315   }
316   MustExecuteAnnotatedWriter(const Module &M,
317                              DominatorTree &DT, LoopInfo &LI) {
318     for (auto &F : M)
319     for (auto &I: instructions(F)) {
320       Loop *L = LI.getLoopFor(I.getParent());
321       while (L) {
322         if (isMustExecuteIn(I, L, &DT)) {
323           MustExec[&I].push_back(L);
324         }
325         L = L->getParentLoop();
326       };
327     }
328   }
329 
330 
331   void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
332     if (!MustExec.count(&V))
333       return;
334 
335     const auto &Loops = MustExec.lookup(&V);
336     const auto NumLoops = Loops.size();
337     if (NumLoops > 1)
338       OS << " ; (mustexec in " << NumLoops << " loops: ";
339     else
340       OS << " ; (mustexec in: ";
341 
342     bool first = true;
343     for (const Loop *L : Loops) {
344       if (!first)
345         OS << ", ";
346       first = false;
347       OS << L->getHeader()->getName();
348     }
349     OS << ")";
350   }
351 };
352 } // namespace
353 
354 bool MustExecutePrinter::runOnFunction(Function &F) {
355   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
356   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
357 
358   MustExecuteAnnotatedWriter Writer(F, DT, LI);
359   F.print(dbgs(), &Writer);
360 
361   return false;
362 }
363