1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass builds a ModuleSummaryIndex object for the module, to be written 10 // to bitcode or LLVM assembly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/Analysis/StackSafetyAnalysis.h" 29 #include "llvm/Analysis/TypeMetadataUtils.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/ModuleSummaryIndex.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Object/ModuleSymbolTable.h" 49 #include "llvm/Object/SymbolicFile.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdint> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "module-summary-analysis" 61 62 // Option to force edges cold which will block importing when the 63 // -import-cold-multiplier is set to 0. Useful for debugging. 64 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = 65 FunctionSummary::FSHT_None; 66 cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( 67 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), 68 cl::desc("Force all edges in the function summary to cold"), 69 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), 70 clEnumValN(FunctionSummary::FSHT_AllNonCritical, 71 "all-non-critical", "All non-critical edges."), 72 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); 73 74 cl::opt<std::string> ModuleSummaryDotFile( 75 "module-summary-dot-file", cl::init(""), cl::Hidden, 76 cl::value_desc("filename"), 77 cl::desc("File to emit dot graph of new summary into.")); 78 79 // Walk through the operands of a given User via worklist iteration and populate 80 // the set of GlobalValue references encountered. Invoked either on an 81 // Instruction or a GlobalVariable (which walks its initializer). 82 // Return true if any of the operands contains blockaddress. This is important 83 // to know when computing summary for global var, because if global variable 84 // references basic block address we can't import it separately from function 85 // containing that basic block. For simplicity we currently don't import such 86 // global vars at all. When importing function we aren't interested if any 87 // instruction in it takes an address of any basic block, because instruction 88 // can only take an address of basic block located in the same function. 89 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, 90 SetVector<ValueInfo> &RefEdges, 91 SmallPtrSet<const User *, 8> &Visited) { 92 bool HasBlockAddress = false; 93 SmallVector<const User *, 32> Worklist; 94 if (Visited.insert(CurUser).second) 95 Worklist.push_back(CurUser); 96 97 while (!Worklist.empty()) { 98 const User *U = Worklist.pop_back_val(); 99 const auto *CB = dyn_cast<CallBase>(U); 100 101 for (const auto &OI : U->operands()) { 102 const User *Operand = dyn_cast<User>(OI); 103 if (!Operand) 104 continue; 105 if (isa<BlockAddress>(Operand)) { 106 HasBlockAddress = true; 107 continue; 108 } 109 if (auto *GV = dyn_cast<GlobalValue>(Operand)) { 110 // We have a reference to a global value. This should be added to 111 // the reference set unless it is a callee. Callees are handled 112 // specially by WriteFunction and are added to a separate list. 113 if (!(CB && CB->isCallee(&OI))) 114 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 115 continue; 116 } 117 if (Visited.insert(Operand).second) 118 Worklist.push_back(Operand); 119 } 120 } 121 return HasBlockAddress; 122 } 123 124 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, 125 ProfileSummaryInfo *PSI) { 126 if (!PSI) 127 return CalleeInfo::HotnessType::Unknown; 128 if (PSI->isHotCount(ProfileCount)) 129 return CalleeInfo::HotnessType::Hot; 130 if (PSI->isColdCount(ProfileCount)) 131 return CalleeInfo::HotnessType::Cold; 132 return CalleeInfo::HotnessType::None; 133 } 134 135 static bool isNonRenamableLocal(const GlobalValue &GV) { 136 return GV.hasSection() && GV.hasLocalLinkage(); 137 } 138 139 /// Determine whether this call has all constant integer arguments (excluding 140 /// "this") and summarize it to VCalls or ConstVCalls as appropriate. 141 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, 142 SetVector<FunctionSummary::VFuncId> &VCalls, 143 SetVector<FunctionSummary::ConstVCall> &ConstVCalls) { 144 std::vector<uint64_t> Args; 145 // Start from the second argument to skip the "this" pointer. 146 for (auto &Arg : drop_begin(Call.CB.args())) { 147 auto *CI = dyn_cast<ConstantInt>(Arg); 148 if (!CI || CI->getBitWidth() > 64) { 149 VCalls.insert({Guid, Call.Offset}); 150 return; 151 } 152 Args.push_back(CI->getZExtValue()); 153 } 154 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); 155 } 156 157 /// If this intrinsic call requires that we add information to the function 158 /// summary, do so via the non-constant reference arguments. 159 static void addIntrinsicToSummary( 160 const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests, 161 SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls, 162 SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls, 163 SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls, 164 SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls, 165 DominatorTree &DT) { 166 switch (CI->getCalledFunction()->getIntrinsicID()) { 167 case Intrinsic::type_test: { 168 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 169 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 170 if (!TypeId) 171 break; 172 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 173 174 // Produce a summary from type.test intrinsics. We only summarize type.test 175 // intrinsics that are used other than by an llvm.assume intrinsic. 176 // Intrinsics that are assumed are relevant only to the devirtualization 177 // pass, not the type test lowering pass. 178 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { 179 auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser()); 180 if (!AssumeCI) 181 return true; 182 Function *F = AssumeCI->getCalledFunction(); 183 return !F || F->getIntrinsicID() != Intrinsic::assume; 184 }); 185 if (HasNonAssumeUses) 186 TypeTests.insert(Guid); 187 188 SmallVector<DevirtCallSite, 4> DevirtCalls; 189 SmallVector<CallInst *, 4> Assumes; 190 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 191 for (auto &Call : DevirtCalls) 192 addVCallToSet(Call, Guid, TypeTestAssumeVCalls, 193 TypeTestAssumeConstVCalls); 194 195 break; 196 } 197 198 case Intrinsic::type_checked_load: { 199 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); 200 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 201 if (!TypeId) 202 break; 203 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 204 205 SmallVector<DevirtCallSite, 4> DevirtCalls; 206 SmallVector<Instruction *, 4> LoadedPtrs; 207 SmallVector<Instruction *, 4> Preds; 208 bool HasNonCallUses = false; 209 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 210 HasNonCallUses, CI, DT); 211 // Any non-call uses of the result of llvm.type.checked.load will 212 // prevent us from optimizing away the llvm.type.test. 213 if (HasNonCallUses) 214 TypeTests.insert(Guid); 215 for (auto &Call : DevirtCalls) 216 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, 217 TypeCheckedLoadConstVCalls); 218 219 break; 220 } 221 default: 222 break; 223 } 224 } 225 226 static bool isNonVolatileLoad(const Instruction *I) { 227 if (const auto *LI = dyn_cast<LoadInst>(I)) 228 return !LI->isVolatile(); 229 230 return false; 231 } 232 233 static bool isNonVolatileStore(const Instruction *I) { 234 if (const auto *SI = dyn_cast<StoreInst>(I)) 235 return !SI->isVolatile(); 236 237 return false; 238 } 239 240 static void computeFunctionSummary( 241 ModuleSummaryIndex &Index, const Module &M, const Function &F, 242 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, 243 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, 244 bool IsThinLTO, 245 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 246 // Summary not currently supported for anonymous functions, they should 247 // have been named. 248 assert(F.hasName()); 249 250 unsigned NumInsts = 0; 251 // Map from callee ValueId to profile count. Used to accumulate profile 252 // counts for all static calls to a given callee. 253 MapVector<ValueInfo, CalleeInfo> CallGraphEdges; 254 SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges; 255 SetVector<GlobalValue::GUID> TypeTests; 256 SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls, 257 TypeCheckedLoadVCalls; 258 SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls, 259 TypeCheckedLoadConstVCalls; 260 ICallPromotionAnalysis ICallAnalysis; 261 SmallPtrSet<const User *, 8> Visited; 262 263 // Add personality function, prefix data and prologue data to function's ref 264 // list. 265 findRefEdges(Index, &F, RefEdges, Visited); 266 std::vector<const Instruction *> NonVolatileLoads; 267 std::vector<const Instruction *> NonVolatileStores; 268 269 bool HasInlineAsmMaybeReferencingInternal = false; 270 for (const BasicBlock &BB : F) 271 for (const Instruction &I : BB) { 272 if (isa<DbgInfoIntrinsic>(I)) 273 continue; 274 ++NumInsts; 275 // Regular LTO module doesn't participate in ThinLTO import, 276 // so no reference from it can be read/writeonly, since this 277 // would require importing variable as local copy 278 if (IsThinLTO) { 279 if (isNonVolatileLoad(&I)) { 280 // Postpone processing of non-volatile load instructions 281 // See comments below 282 Visited.insert(&I); 283 NonVolatileLoads.push_back(&I); 284 continue; 285 } else if (isNonVolatileStore(&I)) { 286 Visited.insert(&I); 287 NonVolatileStores.push_back(&I); 288 // All references from second operand of store (destination address) 289 // can be considered write-only if they're not referenced by any 290 // non-store instruction. References from first operand of store 291 // (stored value) can't be treated either as read- or as write-only 292 // so we add them to RefEdges as we do with all other instructions 293 // except non-volatile load. 294 Value *Stored = I.getOperand(0); 295 if (auto *GV = dyn_cast<GlobalValue>(Stored)) 296 // findRefEdges will try to examine GV operands, so instead 297 // of calling it we should add GV to RefEdges directly. 298 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 299 else if (auto *U = dyn_cast<User>(Stored)) 300 findRefEdges(Index, U, RefEdges, Visited); 301 continue; 302 } 303 } 304 findRefEdges(Index, &I, RefEdges, Visited); 305 const auto *CB = dyn_cast<CallBase>(&I); 306 if (!CB) 307 continue; 308 309 const auto *CI = dyn_cast<CallInst>(&I); 310 // Since we don't know exactly which local values are referenced in inline 311 // assembly, conservatively mark the function as possibly referencing 312 // a local value from inline assembly to ensure we don't export a 313 // reference (which would require renaming and promotion of the 314 // referenced value). 315 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) 316 HasInlineAsmMaybeReferencingInternal = true; 317 318 auto *CalledValue = CB->getCalledOperand(); 319 auto *CalledFunction = CB->getCalledFunction(); 320 if (CalledValue && !CalledFunction) { 321 CalledValue = CalledValue->stripPointerCasts(); 322 // Stripping pointer casts can reveal a called function. 323 CalledFunction = dyn_cast<Function>(CalledValue); 324 } 325 // Check if this is an alias to a function. If so, get the 326 // called aliasee for the checks below. 327 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 328 assert(!CalledFunction && "Expected null called function in callsite for alias"); 329 CalledFunction = dyn_cast<Function>(GA->getBaseObject()); 330 } 331 // Check if this is a direct call to a known function or a known 332 // intrinsic, or an indirect call with profile data. 333 if (CalledFunction) { 334 if (CI && CalledFunction->isIntrinsic()) { 335 addIntrinsicToSummary( 336 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, 337 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); 338 continue; 339 } 340 // We should have named any anonymous globals 341 assert(CalledFunction->hasName()); 342 auto ScaledCount = PSI->getProfileCount(*CB, BFI); 343 auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI) 344 : CalleeInfo::HotnessType::Unknown; 345 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) 346 Hotness = CalleeInfo::HotnessType::Cold; 347 348 // Use the original CalledValue, in case it was an alias. We want 349 // to record the call edge to the alias in that case. Eventually 350 // an alias summary will be created to associate the alias and 351 // aliasee. 352 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( 353 cast<GlobalValue>(CalledValue))]; 354 ValueInfo.updateHotness(Hotness); 355 // Add the relative block frequency to CalleeInfo if there is no profile 356 // information. 357 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { 358 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); 359 uint64_t EntryFreq = BFI->getEntryFreq(); 360 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); 361 } 362 } else { 363 // Skip inline assembly calls. 364 if (CI && CI->isInlineAsm()) 365 continue; 366 // Skip direct calls. 367 if (!CalledValue || isa<Constant>(CalledValue)) 368 continue; 369 370 // Check if the instruction has a callees metadata. If so, add callees 371 // to CallGraphEdges to reflect the references from the metadata, and 372 // to enable importing for subsequent indirect call promotion and 373 // inlining. 374 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { 375 for (auto &Op : MD->operands()) { 376 Function *Callee = mdconst::extract_or_null<Function>(Op); 377 if (Callee) 378 CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; 379 } 380 } 381 382 uint32_t NumVals, NumCandidates; 383 uint64_t TotalCount; 384 auto CandidateProfileData = 385 ICallAnalysis.getPromotionCandidatesForInstruction( 386 &I, NumVals, TotalCount, NumCandidates); 387 for (auto &Candidate : CandidateProfileData) 388 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] 389 .updateHotness(getHotness(Candidate.Count, PSI)); 390 } 391 } 392 Index.addBlockCount(F.size()); 393 394 std::vector<ValueInfo> Refs; 395 if (IsThinLTO) { 396 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, 397 SetVector<ValueInfo> &Edges, 398 SmallPtrSet<const User *, 8> &Cache) { 399 for (const auto *I : Instrs) { 400 Cache.erase(I); 401 findRefEdges(Index, I, Edges, Cache); 402 } 403 }; 404 405 // By now we processed all instructions in a function, except 406 // non-volatile loads and non-volatile value stores. Let's find 407 // ref edges for both of instruction sets 408 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); 409 // We can add some values to the Visited set when processing load 410 // instructions which are also used by stores in NonVolatileStores. 411 // For example this can happen if we have following code: 412 // 413 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) 414 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) 415 // 416 // After processing loads we'll add bitcast to the Visited set, and if 417 // we use the same set while processing stores, we'll never see store 418 // to @bar and @bar will be mistakenly treated as readonly. 419 SmallPtrSet<const llvm::User *, 8> StoreCache; 420 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); 421 422 // If both load and store instruction reference the same variable 423 // we won't be able to optimize it. Add all such reference edges 424 // to RefEdges set. 425 for (auto &VI : StoreRefEdges) 426 if (LoadRefEdges.remove(VI)) 427 RefEdges.insert(VI); 428 429 unsigned RefCnt = RefEdges.size(); 430 // All new reference edges inserted in two loops below are either 431 // read or write only. They will be grouped in the end of RefEdges 432 // vector, so we can use a single integer value to identify them. 433 for (auto &VI : LoadRefEdges) 434 RefEdges.insert(VI); 435 436 unsigned FirstWORef = RefEdges.size(); 437 for (auto &VI : StoreRefEdges) 438 RefEdges.insert(VI); 439 440 Refs = RefEdges.takeVector(); 441 for (; RefCnt < FirstWORef; ++RefCnt) 442 Refs[RefCnt].setReadOnly(); 443 444 for (; RefCnt < Refs.size(); ++RefCnt) 445 Refs[RefCnt].setWriteOnly(); 446 } else { 447 Refs = RefEdges.takeVector(); 448 } 449 // Explicit add hot edges to enforce importing for designated GUIDs for 450 // sample PGO, to enable the same inlines as the profiled optimized binary. 451 for (auto &I : F.getImportGUIDs()) 452 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( 453 ForceSummaryEdgesCold == FunctionSummary::FSHT_All 454 ? CalleeInfo::HotnessType::Cold 455 : CalleeInfo::HotnessType::Critical); 456 457 bool NonRenamableLocal = isNonRenamableLocal(F); 458 bool NotEligibleForImport = 459 NonRenamableLocal || HasInlineAsmMaybeReferencingInternal; 460 GlobalValueSummary::GVFlags Flags( 461 F.getLinkage(), F.getVisibility(), NotEligibleForImport, 462 /* Live = */ false, F.isDSOLocal(), 463 F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr()); 464 FunctionSummary::FFlags FunFlags{ 465 F.hasFnAttribute(Attribute::ReadNone), 466 F.hasFnAttribute(Attribute::ReadOnly), 467 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), 468 // FIXME: refactor this to use the same code that inliner is using. 469 // Don't try to import functions with noinline attribute. 470 F.getAttributes().hasFnAttribute(Attribute::NoInline), 471 F.hasFnAttribute(Attribute::AlwaysInline)}; 472 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 473 if (auto *SSI = GetSSICallback(F)) 474 ParamAccesses = SSI->getParamAccesses(Index); 475 auto FuncSummary = std::make_unique<FunctionSummary>( 476 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), 477 CallGraphEdges.takeVector(), TypeTests.takeVector(), 478 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), 479 TypeTestAssumeConstVCalls.takeVector(), 480 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses)); 481 if (NonRenamableLocal) 482 CantBePromoted.insert(F.getGUID()); 483 Index.addGlobalValueSummary(F, std::move(FuncSummary)); 484 } 485 486 /// Find function pointers referenced within the given vtable initializer 487 /// (or subset of an initializer) \p I. The starting offset of \p I within 488 /// the vtable initializer is \p StartingOffset. Any discovered function 489 /// pointers are added to \p VTableFuncs along with their cumulative offset 490 /// within the initializer. 491 static void findFuncPointers(const Constant *I, uint64_t StartingOffset, 492 const Module &M, ModuleSummaryIndex &Index, 493 VTableFuncList &VTableFuncs) { 494 // First check if this is a function pointer. 495 if (I->getType()->isPointerTy()) { 496 auto Fn = dyn_cast<Function>(I->stripPointerCasts()); 497 // We can disregard __cxa_pure_virtual as a possible call target, as 498 // calls to pure virtuals are UB. 499 if (Fn && Fn->getName() != "__cxa_pure_virtual") 500 VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset}); 501 return; 502 } 503 504 // Walk through the elements in the constant struct or array and recursively 505 // look for virtual function pointers. 506 const DataLayout &DL = M.getDataLayout(); 507 if (auto *C = dyn_cast<ConstantStruct>(I)) { 508 StructType *STy = dyn_cast<StructType>(C->getType()); 509 assert(STy); 510 const StructLayout *SL = DL.getStructLayout(C->getType()); 511 512 for (auto EI : llvm::enumerate(STy->elements())) { 513 auto Offset = SL->getElementOffset(EI.index()); 514 unsigned Op = SL->getElementContainingOffset(Offset); 515 findFuncPointers(cast<Constant>(I->getOperand(Op)), 516 StartingOffset + Offset, M, Index, VTableFuncs); 517 } 518 } else if (auto *C = dyn_cast<ConstantArray>(I)) { 519 ArrayType *ATy = C->getType(); 520 Type *EltTy = ATy->getElementType(); 521 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 522 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 523 findFuncPointers(cast<Constant>(I->getOperand(i)), 524 StartingOffset + i * EltSize, M, Index, VTableFuncs); 525 } 526 } 527 } 528 529 // Identify the function pointers referenced by vtable definition \p V. 530 static void computeVTableFuncs(ModuleSummaryIndex &Index, 531 const GlobalVariable &V, const Module &M, 532 VTableFuncList &VTableFuncs) { 533 if (!V.isConstant()) 534 return; 535 536 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, 537 VTableFuncs); 538 539 #ifndef NDEBUG 540 // Validate that the VTableFuncs list is ordered by offset. 541 uint64_t PrevOffset = 0; 542 for (auto &P : VTableFuncs) { 543 // The findVFuncPointers traversal should have encountered the 544 // functions in offset order. We need to use ">=" since PrevOffset 545 // starts at 0. 546 assert(P.VTableOffset >= PrevOffset); 547 PrevOffset = P.VTableOffset; 548 } 549 #endif 550 } 551 552 /// Record vtable definition \p V for each type metadata it references. 553 static void 554 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, 555 const GlobalVariable &V, 556 SmallVectorImpl<MDNode *> &Types) { 557 for (MDNode *Type : Types) { 558 auto TypeID = Type->getOperand(1).get(); 559 560 uint64_t Offset = 561 cast<ConstantInt>( 562 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 563 ->getZExtValue(); 564 565 if (auto *TypeId = dyn_cast<MDString>(TypeID)) 566 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) 567 .push_back({Offset, Index.getOrInsertValueInfo(&V)}); 568 } 569 } 570 571 static void computeVariableSummary(ModuleSummaryIndex &Index, 572 const GlobalVariable &V, 573 DenseSet<GlobalValue::GUID> &CantBePromoted, 574 const Module &M, 575 SmallVectorImpl<MDNode *> &Types) { 576 SetVector<ValueInfo> RefEdges; 577 SmallPtrSet<const User *, 8> Visited; 578 bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); 579 bool NonRenamableLocal = isNonRenamableLocal(V); 580 GlobalValueSummary::GVFlags Flags( 581 V.getLinkage(), V.getVisibility(), NonRenamableLocal, 582 /* Live = */ false, V.isDSOLocal(), 583 V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr()); 584 585 VTableFuncList VTableFuncs; 586 // If splitting is not enabled, then we compute the summary information 587 // necessary for index-based whole program devirtualization. 588 if (!Index.enableSplitLTOUnit()) { 589 Types.clear(); 590 V.getMetadata(LLVMContext::MD_type, Types); 591 if (!Types.empty()) { 592 // Identify the function pointers referenced by this vtable definition. 593 computeVTableFuncs(Index, V, M, VTableFuncs); 594 595 // Record this vtable definition for each type metadata it references. 596 recordTypeIdCompatibleVtableReferences(Index, V, Types); 597 } 598 } 599 600 // Don't mark variables we won't be able to internalize as read/write-only. 601 bool CanBeInternalized = 602 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && 603 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); 604 bool Constant = V.isConstant(); 605 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, 606 Constant ? false : CanBeInternalized, 607 Constant, V.getVCallVisibility()); 608 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, 609 RefEdges.takeVector()); 610 if (NonRenamableLocal) 611 CantBePromoted.insert(V.getGUID()); 612 if (HasBlockAddress) 613 GVarSummary->setNotEligibleToImport(); 614 if (!VTableFuncs.empty()) 615 GVarSummary->setVTableFuncs(VTableFuncs); 616 Index.addGlobalValueSummary(V, std::move(GVarSummary)); 617 } 618 619 static void 620 computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, 621 DenseSet<GlobalValue::GUID> &CantBePromoted) { 622 bool NonRenamableLocal = isNonRenamableLocal(A); 623 GlobalValueSummary::GVFlags Flags( 624 A.getLinkage(), A.getVisibility(), NonRenamableLocal, 625 /* Live = */ false, A.isDSOLocal(), 626 A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr()); 627 auto AS = std::make_unique<AliasSummary>(Flags); 628 auto *Aliasee = A.getBaseObject(); 629 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); 630 assert(AliaseeVI && "Alias expects aliasee summary to be available"); 631 assert(AliaseeVI.getSummaryList().size() == 1 && 632 "Expected a single entry per aliasee in per-module index"); 633 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); 634 if (NonRenamableLocal) 635 CantBePromoted.insert(A.getGUID()); 636 Index.addGlobalValueSummary(A, std::move(AS)); 637 } 638 639 // Set LiveRoot flag on entries matching the given value name. 640 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { 641 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) 642 for (auto &Summary : VI.getSummaryList()) 643 Summary->setLive(true); 644 } 645 646 ModuleSummaryIndex llvm::buildModuleSummaryIndex( 647 const Module &M, 648 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, 649 ProfileSummaryInfo *PSI, 650 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 651 assert(PSI); 652 bool EnableSplitLTOUnit = false; 653 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 654 M.getModuleFlag("EnableSplitLTOUnit"))) 655 EnableSplitLTOUnit = MD->getZExtValue(); 656 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit); 657 658 // Identify the local values in the llvm.used and llvm.compiler.used sets, 659 // which should not be exported as they would then require renaming and 660 // promotion, but we may have opaque uses e.g. in inline asm. We collect them 661 // here because we use this information to mark functions containing inline 662 // assembly calls as not importable. 663 SmallPtrSet<GlobalValue *, 4> LocalsUsed; 664 SmallVector<GlobalValue *, 4> Used; 665 // First collect those in the llvm.used set. 666 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false); 667 // Next collect those in the llvm.compiler.used set. 668 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true); 669 DenseSet<GlobalValue::GUID> CantBePromoted; 670 for (auto *V : Used) { 671 if (V->hasLocalLinkage()) { 672 LocalsUsed.insert(V); 673 CantBePromoted.insert(V->getGUID()); 674 } 675 } 676 677 bool HasLocalInlineAsmSymbol = false; 678 if (!M.getModuleInlineAsm().empty()) { 679 // Collect the local values defined by module level asm, and set up 680 // summaries for these symbols so that they can be marked as NoRename, 681 // to prevent export of any use of them in regular IR that would require 682 // renaming within the module level asm. Note we don't need to create a 683 // summary for weak or global defs, as they don't need to be flagged as 684 // NoRename, and defs in module level asm can't be imported anyway. 685 // Also, any values used but not defined within module level asm should 686 // be listed on the llvm.used or llvm.compiler.used global and marked as 687 // referenced from there. 688 ModuleSymbolTable::CollectAsmSymbols( 689 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { 690 // Symbols not marked as Weak or Global are local definitions. 691 if (Flags & (object::BasicSymbolRef::SF_Weak | 692 object::BasicSymbolRef::SF_Global)) 693 return; 694 HasLocalInlineAsmSymbol = true; 695 GlobalValue *GV = M.getNamedValue(Name); 696 if (!GV) 697 return; 698 assert(GV->isDeclaration() && "Def in module asm already has definition"); 699 GlobalValueSummary::GVFlags GVFlags( 700 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, 701 /* NotEligibleToImport = */ true, 702 /* Live = */ true, 703 /* Local */ GV->isDSOLocal(), 704 GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr()); 705 CantBePromoted.insert(GV->getGUID()); 706 // Create the appropriate summary type. 707 if (Function *F = dyn_cast<Function>(GV)) { 708 std::unique_ptr<FunctionSummary> Summary = 709 std::make_unique<FunctionSummary>( 710 GVFlags, /*InstCount=*/0, 711 FunctionSummary::FFlags{ 712 F->hasFnAttribute(Attribute::ReadNone), 713 F->hasFnAttribute(Attribute::ReadOnly), 714 F->hasFnAttribute(Attribute::NoRecurse), 715 F->returnDoesNotAlias(), 716 /* NoInline = */ false, 717 F->hasFnAttribute(Attribute::AlwaysInline)}, 718 /*EntryCount=*/0, ArrayRef<ValueInfo>{}, 719 ArrayRef<FunctionSummary::EdgeTy>{}, 720 ArrayRef<GlobalValue::GUID>{}, 721 ArrayRef<FunctionSummary::VFuncId>{}, 722 ArrayRef<FunctionSummary::VFuncId>{}, 723 ArrayRef<FunctionSummary::ConstVCall>{}, 724 ArrayRef<FunctionSummary::ConstVCall>{}, 725 ArrayRef<FunctionSummary::ParamAccess>{}); 726 Index.addGlobalValueSummary(*GV, std::move(Summary)); 727 } else { 728 std::unique_ptr<GlobalVarSummary> Summary = 729 std::make_unique<GlobalVarSummary>( 730 GVFlags, 731 GlobalVarSummary::GVarFlags( 732 false, false, cast<GlobalVariable>(GV)->isConstant(), 733 GlobalObject::VCallVisibilityPublic), 734 ArrayRef<ValueInfo>{}); 735 Index.addGlobalValueSummary(*GV, std::move(Summary)); 736 } 737 }); 738 } 739 740 bool IsThinLTO = true; 741 if (auto *MD = 742 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 743 IsThinLTO = MD->getZExtValue(); 744 745 // Compute summaries for all functions defined in module, and save in the 746 // index. 747 for (auto &F : M) { 748 if (F.isDeclaration()) 749 continue; 750 751 DominatorTree DT(const_cast<Function &>(F)); 752 BlockFrequencyInfo *BFI = nullptr; 753 std::unique_ptr<BlockFrequencyInfo> BFIPtr; 754 if (GetBFICallback) 755 BFI = GetBFICallback(F); 756 else if (F.hasProfileData()) { 757 LoopInfo LI{DT}; 758 BranchProbabilityInfo BPI{F, LI}; 759 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); 760 BFI = BFIPtr.get(); 761 } 762 763 computeFunctionSummary(Index, M, F, BFI, PSI, DT, 764 !LocalsUsed.empty() || HasLocalInlineAsmSymbol, 765 CantBePromoted, IsThinLTO, GetSSICallback); 766 } 767 768 // Compute summaries for all variables defined in module, and save in the 769 // index. 770 SmallVector<MDNode *, 2> Types; 771 for (const GlobalVariable &G : M.globals()) { 772 if (G.isDeclaration()) 773 continue; 774 computeVariableSummary(Index, G, CantBePromoted, M, Types); 775 } 776 777 // Compute summaries for all aliases defined in module, and save in the 778 // index. 779 for (const GlobalAlias &A : M.aliases()) 780 computeAliasSummary(Index, A, CantBePromoted); 781 782 for (auto *V : LocalsUsed) { 783 auto *Summary = Index.getGlobalValueSummary(*V); 784 assert(Summary && "Missing summary for global value"); 785 Summary->setNotEligibleToImport(); 786 } 787 788 // The linker doesn't know about these LLVM produced values, so we need 789 // to flag them as live in the index to ensure index-based dead value 790 // analysis treats them as live roots of the analysis. 791 setLiveRoot(Index, "llvm.used"); 792 setLiveRoot(Index, "llvm.compiler.used"); 793 setLiveRoot(Index, "llvm.global_ctors"); 794 setLiveRoot(Index, "llvm.global_dtors"); 795 setLiveRoot(Index, "llvm.global.annotations"); 796 797 for (auto &GlobalList : Index) { 798 // Ignore entries for references that are undefined in the current module. 799 if (GlobalList.second.SummaryList.empty()) 800 continue; 801 802 assert(GlobalList.second.SummaryList.size() == 1 && 803 "Expected module's index to have one summary per GUID"); 804 auto &Summary = GlobalList.second.SummaryList[0]; 805 if (!IsThinLTO) { 806 Summary->setNotEligibleToImport(); 807 continue; 808 } 809 810 bool AllRefsCanBeExternallyReferenced = 811 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { 812 return !CantBePromoted.count(VI.getGUID()); 813 }); 814 if (!AllRefsCanBeExternallyReferenced) { 815 Summary->setNotEligibleToImport(); 816 continue; 817 } 818 819 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { 820 bool AllCallsCanBeExternallyReferenced = llvm::all_of( 821 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { 822 return !CantBePromoted.count(Edge.first.getGUID()); 823 }); 824 if (!AllCallsCanBeExternallyReferenced) 825 Summary->setNotEligibleToImport(); 826 } 827 } 828 829 if (!ModuleSummaryDotFile.empty()) { 830 std::error_code EC; 831 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None); 832 if (EC) 833 report_fatal_error(Twine("Failed to open dot file ") + 834 ModuleSummaryDotFile + ": " + EC.message() + "\n"); 835 Index.exportToDot(OSDot, {}); 836 } 837 838 return Index; 839 } 840 841 AnalysisKey ModuleSummaryIndexAnalysis::Key; 842 843 ModuleSummaryIndex 844 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 845 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 846 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 847 bool NeedSSI = needsParamAccessSummary(M); 848 return buildModuleSummaryIndex( 849 M, 850 [&FAM](const Function &F) { 851 return &FAM.getResult<BlockFrequencyAnalysis>( 852 *const_cast<Function *>(&F)); 853 }, 854 &PSI, 855 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { 856 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( 857 const_cast<Function &>(F)) 858 : nullptr; 859 }); 860 } 861 862 char ModuleSummaryIndexWrapperPass::ID = 0; 863 864 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 865 "Module Summary Analysis", false, true) 866 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 867 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 868 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 869 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 870 "Module Summary Analysis", false, true) 871 872 ModulePass *llvm::createModuleSummaryIndexWrapperPass() { 873 return new ModuleSummaryIndexWrapperPass(); 874 } 875 876 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() 877 : ModulePass(ID) { 878 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); 879 } 880 881 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { 882 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 883 bool NeedSSI = needsParamAccessSummary(M); 884 Index.emplace(buildModuleSummaryIndex( 885 M, 886 [this](const Function &F) { 887 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( 888 *const_cast<Function *>(&F)) 889 .getBFI()); 890 }, 891 PSI, 892 [&](const Function &F) -> const StackSafetyInfo * { 893 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( 894 const_cast<Function &>(F)) 895 .getResult() 896 : nullptr; 897 })); 898 return false; 899 } 900 901 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { 902 Index.reset(); 903 return false; 904 } 905 906 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 907 AU.setPreservesAll(); 908 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 909 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 910 AU.addRequired<StackSafetyInfoWrapperPass>(); 911 } 912 913 char ImmutableModuleSummaryIndexWrapperPass::ID = 0; 914 915 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( 916 const ModuleSummaryIndex *Index) 917 : ImmutablePass(ID), Index(Index) { 918 initializeImmutableModuleSummaryIndexWrapperPassPass( 919 *PassRegistry::getPassRegistry()); 920 } 921 922 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( 923 AnalysisUsage &AU) const { 924 AU.setPreservesAll(); 925 } 926 927 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( 928 const ModuleSummaryIndex *Index) { 929 return new ImmutableModuleSummaryIndexWrapperPass(Index); 930 } 931 932 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info", 933 "Module summary info", false, true) 934