1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
27 #include <algorithm>
28 
29 #define DEBUG_TYPE "memoryssa"
30 using namespace llvm;
31 
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
42     BasicBlock *BB,
43     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
44   // First, do a cache lookup. Without this cache, certain CFG structures
45   // (like a series of if statements) take exponential time to visit.
46   auto Cached = CachedPreviousDef.find(BB);
47   if (Cached != CachedPreviousDef.end()) {
48     return Cached->second;
49   }
50 
51   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
52     // Single predecessor case, just recurse, we can only have one definition.
53     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
54     CachedPreviousDef.insert({BB, Result});
55     return Result;
56   }
57 
58   if (VisitedBlocks.count(BB)) {
59     // We hit our node again, meaning we had a cycle, we must insert a phi
60     // node to break it so we have an operand. The only case this will
61     // insert useless phis is if we have irreducible control flow.
62     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
63     CachedPreviousDef.insert({BB, Result});
64     return Result;
65   }
66 
67   if (VisitedBlocks.insert(BB).second) {
68     // Mark us visited so we can detect a cycle
69     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
70 
71     // Recurse to get the values in our predecessors for placement of a
72     // potential phi node. This will insert phi nodes if we cycle in order to
73     // break the cycle and have an operand.
74     for (auto *Pred : predecessors(BB))
75       if (MSSA->DT->isReachableFromEntry(Pred))
76         PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
77       else
78         PhiOps.push_back(MSSA->getLiveOnEntryDef());
79 
80     // Now try to simplify the ops to avoid placing a phi.
81     // This may return null if we never created a phi yet, that's okay
82     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
83 
84     // See if we can avoid the phi by simplifying it.
85     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
86     // If we couldn't simplify, we may have to create a phi
87     if (Result == Phi) {
88       if (!Phi)
89         Phi = MSSA->createMemoryPhi(BB);
90 
91       // See if the existing phi operands match what we need.
92       // Unlike normal SSA, we only allow one phi node per block, so we can't just
93       // create a new one.
94       if (Phi->getNumOperands() != 0) {
95         // FIXME: Figure out whether this is dead code and if so remove it.
96         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
97           // These will have been filled in by the recursive read we did above.
98           llvm::copy(PhiOps, Phi->op_begin());
99           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
100         }
101       } else {
102         unsigned i = 0;
103         for (auto *Pred : predecessors(BB))
104           Phi->addIncoming(&*PhiOps[i++], Pred);
105         InsertedPHIs.push_back(Phi);
106       }
107       Result = Phi;
108     }
109 
110     // Set ourselves up for the next variable by resetting visited state.
111     VisitedBlocks.erase(BB);
112     CachedPreviousDef.insert({BB, Result});
113     return Result;
114   }
115   llvm_unreachable("Should have hit one of the three cases above");
116 }
117 
118 // This starts at the memory access, and goes backwards in the block to find the
119 // previous definition. If a definition is not found the block of the access,
120 // it continues globally, creating phi nodes to ensure we have a single
121 // definition.
122 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
123   if (auto *LocalResult = getPreviousDefInBlock(MA))
124     return LocalResult;
125   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
126   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
127 }
128 
129 // This starts at the memory access, and goes backwards in the block to the find
130 // the previous definition. If the definition is not found in the block of the
131 // access, it returns nullptr.
132 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
133   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
134 
135   // It's possible there are no defs, or we got handed the first def to start.
136   if (Defs) {
137     // If this is a def, we can just use the def iterators.
138     if (!isa<MemoryUse>(MA)) {
139       auto Iter = MA->getReverseDefsIterator();
140       ++Iter;
141       if (Iter != Defs->rend())
142         return &*Iter;
143     } else {
144       // Otherwise, have to walk the all access iterator.
145       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
146       for (auto &U : make_range(++MA->getReverseIterator(), End))
147         if (!isa<MemoryUse>(U))
148           return cast<MemoryAccess>(&U);
149       // Note that if MA comes before Defs->begin(), we won't hit a def.
150       return nullptr;
151     }
152   }
153   return nullptr;
154 }
155 
156 // This starts at the end of block
157 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
158     BasicBlock *BB,
159     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
160   auto *Defs = MSSA->getWritableBlockDefs(BB);
161 
162   if (Defs) {
163     CachedPreviousDef.insert({BB, &*Defs->rbegin()});
164     return &*Defs->rbegin();
165   }
166 
167   return getPreviousDefRecursive(BB, CachedPreviousDef);
168 }
169 // Recurse over a set of phi uses to eliminate the trivial ones
170 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
171   if (!Phi)
172     return nullptr;
173   TrackingVH<MemoryAccess> Res(Phi);
174   SmallVector<TrackingVH<Value>, 8> Uses;
175   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
176   for (auto &U : Uses) {
177     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
178       auto OperRange = UsePhi->operands();
179       tryRemoveTrivialPhi(UsePhi, OperRange);
180     }
181   }
182   return Res;
183 }
184 
185 // Eliminate trivial phis
186 // Phis are trivial if they are defined either by themselves, or all the same
187 // argument.
188 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
189 // We recursively try to remove them.
190 template <class RangeType>
191 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
192                                                     RangeType &Operands) {
193   // Bail out on non-opt Phis.
194   if (NonOptPhis.count(Phi))
195     return Phi;
196 
197   // Detect equal or self arguments
198   MemoryAccess *Same = nullptr;
199   for (auto &Op : Operands) {
200     // If the same or self, good so far
201     if (Op == Phi || Op == Same)
202       continue;
203     // not the same, return the phi since it's not eliminatable by us
204     if (Same)
205       return Phi;
206     Same = cast<MemoryAccess>(&*Op);
207   }
208   // Never found a non-self reference, the phi is undef
209   if (Same == nullptr)
210     return MSSA->getLiveOnEntryDef();
211   if (Phi) {
212     Phi->replaceAllUsesWith(Same);
213     removeMemoryAccess(Phi);
214   }
215 
216   // We should only end up recursing in case we replaced something, in which
217   // case, we may have made other Phis trivial.
218   return recursePhi(Same);
219 }
220 
221 void MemorySSAUpdater::insertUse(MemoryUse *MU) {
222   InsertedPHIs.clear();
223   MU->setDefiningAccess(getPreviousDef(MU));
224   // Unlike for defs, there is no extra work to do.  Because uses do not create
225   // new may-defs, there are only two cases:
226   //
227   // 1. There was a def already below us, and therefore, we should not have
228   // created a phi node because it was already needed for the def.
229   //
230   // 2. There is no def below us, and therefore, there is no extra renaming work
231   // to do.
232 }
233 
234 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
235 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
236                                       MemoryAccess *NewDef) {
237   // Replace any operand with us an incoming block with the new defining
238   // access.
239   int i = MP->getBasicBlockIndex(BB);
240   assert(i != -1 && "Should have found the basic block in the phi");
241   // We can't just compare i against getNumOperands since one is signed and the
242   // other not. So use it to index into the block iterator.
243   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
244        ++BBIter) {
245     if (*BBIter != BB)
246       break;
247     MP->setIncomingValue(i, NewDef);
248     ++i;
249   }
250 }
251 
252 // A brief description of the algorithm:
253 // First, we compute what should define the new def, using the SSA
254 // construction algorithm.
255 // Then, we update the defs below us (and any new phi nodes) in the graph to
256 // point to the correct new defs, to ensure we only have one variable, and no
257 // disconnected stores.
258 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
259   InsertedPHIs.clear();
260 
261   // See if we had a local def, and if not, go hunting.
262   MemoryAccess *DefBefore = getPreviousDef(MD);
263   bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
264 
265   // There is a def before us, which means we can replace any store/phi uses
266   // of that thing with us, since we are in the way of whatever was there
267   // before.
268   // We now define that def's memorydefs and memoryphis
269   if (DefBeforeSameBlock) {
270     for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
271          UI != UE;) {
272       Use &U = *UI++;
273       // Leave the MemoryUses alone.
274       // Also make sure we skip ourselves to avoid self references.
275       if (isa<MemoryUse>(U.getUser()) || U.getUser() == MD)
276         continue;
277       // Defs are automatically unoptimized when the user is set to MD below,
278       // because the isOptimized() call will fail to find the same ID.
279       U.set(MD);
280     }
281   }
282 
283   // and that def is now our defining access.
284   MD->setDefiningAccess(DefBefore);
285 
286   // Remember the index where we may insert new phis below.
287   unsigned NewPhiIndex = InsertedPHIs.size();
288 
289   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
290   if (!DefBeforeSameBlock) {
291     // If there was a local def before us, we must have the same effect it
292     // did. Because every may-def is the same, any phis/etc we would create, it
293     // would also have created.  If there was no local def before us, we
294     // performed a global update, and have to search all successors and make
295     // sure we update the first def in each of them (following all paths until
296     // we hit the first def along each path). This may also insert phi nodes.
297     // TODO: There are other cases we can skip this work, such as when we have a
298     // single successor, and only used a straight line of single pred blocks
299     // backwards to find the def.  To make that work, we'd have to track whether
300     // getDefRecursive only ever used the single predecessor case.  These types
301     // of paths also only exist in between CFG simplifications.
302 
303     // If this is the first def in the block and this insert is in an arbitrary
304     // place, compute IDF and place phis.
305     auto Iter = MD->getDefsIterator();
306     ++Iter;
307     auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
308     if (Iter == IterEnd) {
309       ForwardIDFCalculator IDFs(*MSSA->DT);
310       SmallVector<BasicBlock *, 32> IDFBlocks;
311       SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
312       DefiningBlocks.insert(MD->getBlock());
313       IDFs.setDefiningBlocks(DefiningBlocks);
314       IDFs.calculate(IDFBlocks);
315       SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
316       for (auto *BBIDF : IDFBlocks)
317         if (!MSSA->getMemoryAccess(BBIDF)) {
318           auto *MPhi = MSSA->createMemoryPhi(BBIDF);
319           NewInsertedPHIs.push_back(MPhi);
320           // Add the phis created into the IDF blocks to NonOptPhis, so they are
321           // not optimized out as trivial by the call to getPreviousDefFromEnd
322           // below. Once they are complete, all these Phis are added to the
323           // FixupList, and removed from NonOptPhis inside fixupDefs().
324           NonOptPhis.insert(MPhi);
325         }
326 
327       for (auto &MPhi : NewInsertedPHIs) {
328         auto *BBIDF = MPhi->getBlock();
329         for (auto *Pred : predecessors(BBIDF)) {
330           DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
331           MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef),
332                             Pred);
333         }
334       }
335 
336       // Re-take the index where we're adding the new phis, because the above
337       // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
338       NewPhiIndex = InsertedPHIs.size();
339       for (auto &MPhi : NewInsertedPHIs) {
340         InsertedPHIs.push_back(&*MPhi);
341         FixupList.push_back(&*MPhi);
342       }
343     }
344 
345     FixupList.push_back(MD);
346   }
347 
348   // Remember the index where we stopped inserting new phis above, since the
349   // fixupDefs call in the loop below may insert more, that are already minimal.
350   unsigned NewPhiIndexEnd = InsertedPHIs.size();
351 
352   while (!FixupList.empty()) {
353     unsigned StartingPHISize = InsertedPHIs.size();
354     fixupDefs(FixupList);
355     FixupList.clear();
356     // Put any new phis on the fixup list, and process them
357     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
358   }
359 
360   // Optimize potentially non-minimal phis added in this method.
361   unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
362   if (NewPhiSize)
363     tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
364 
365   // Now that all fixups are done, rename all uses if we are asked.
366   if (RenameUses) {
367     SmallPtrSet<BasicBlock *, 16> Visited;
368     BasicBlock *StartBlock = MD->getBlock();
369     // We are guaranteed there is a def in the block, because we just got it
370     // handed to us in this function.
371     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
372     // Convert to incoming value if it's a memorydef. A phi *is* already an
373     // incoming value.
374     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
375       FirstDef = MD->getDefiningAccess();
376 
377     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
378     // We just inserted a phi into this block, so the incoming value will become
379     // the phi anyway, so it does not matter what we pass.
380     for (auto &MP : InsertedPHIs) {
381       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
382       if (Phi)
383         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
384     }
385   }
386 }
387 
388 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
389   SmallPtrSet<const BasicBlock *, 8> Seen;
390   SmallVector<const BasicBlock *, 16> Worklist;
391   for (auto &Var : Vars) {
392     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
393     if (!NewDef)
394       continue;
395     // First, see if there is a local def after the operand.
396     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
397     auto DefIter = NewDef->getDefsIterator();
398 
399     // The temporary Phi is being fixed, unmark it for not to optimize.
400     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
401       NonOptPhis.erase(Phi);
402 
403     // If there is a local def after us, we only have to rename that.
404     if (++DefIter != Defs->end()) {
405       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
406       continue;
407     }
408 
409     // Otherwise, we need to search down through the CFG.
410     // For each of our successors, handle it directly if their is a phi, or
411     // place on the fixup worklist.
412     for (const auto *S : successors(NewDef->getBlock())) {
413       if (auto *MP = MSSA->getMemoryAccess(S))
414         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
415       else
416         Worklist.push_back(S);
417     }
418 
419     while (!Worklist.empty()) {
420       const BasicBlock *FixupBlock = Worklist.back();
421       Worklist.pop_back();
422 
423       // Get the first def in the block that isn't a phi node.
424       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
425         auto *FirstDef = &*Defs->begin();
426         // The loop above and below should have taken care of phi nodes
427         assert(!isa<MemoryPhi>(FirstDef) &&
428                "Should have already handled phi nodes!");
429         // We are now this def's defining access, make sure we actually dominate
430         // it
431         assert(MSSA->dominates(NewDef, FirstDef) &&
432                "Should have dominated the new access");
433 
434         // This may insert new phi nodes, because we are not guaranteed the
435         // block we are processing has a single pred, and depending where the
436         // store was inserted, it may require phi nodes below it.
437         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
438         return;
439       }
440       // We didn't find a def, so we must continue.
441       for (const auto *S : successors(FixupBlock)) {
442         // If there is a phi node, handle it.
443         // Otherwise, put the block on the worklist
444         if (auto *MP = MSSA->getMemoryAccess(S))
445           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
446         else {
447           // If we cycle, we should have ended up at a phi node that we already
448           // processed.  FIXME: Double check this
449           if (!Seen.insert(S).second)
450             continue;
451           Worklist.push_back(S);
452         }
453       }
454     }
455   }
456 }
457 
458 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
459   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
460     MPhi->unorderedDeleteIncomingBlock(From);
461     if (MPhi->getNumIncomingValues() == 1)
462       removeMemoryAccess(MPhi);
463   }
464 }
465 
466 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
467                                                       const BasicBlock *To) {
468   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
469     bool Found = false;
470     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
471       if (From != B)
472         return false;
473       if (Found)
474         return true;
475       Found = true;
476       return false;
477     });
478     if (MPhi->getNumIncomingValues() == 1)
479       removeMemoryAccess(MPhi);
480   }
481 }
482 
483 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
484                                         const ValueToValueMapTy &VMap,
485                                         PhiToDefMap &MPhiMap) {
486   auto GetNewDefiningAccess = [&](MemoryAccess *MA) -> MemoryAccess * {
487     MemoryAccess *InsnDefining = MA;
488     if (MemoryUseOrDef *DefMUD = dyn_cast<MemoryUseOrDef>(InsnDefining)) {
489       if (!MSSA->isLiveOnEntryDef(DefMUD)) {
490         Instruction *DefMUDI = DefMUD->getMemoryInst();
491         assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
492         if (Instruction *NewDefMUDI =
493                 cast_or_null<Instruction>(VMap.lookup(DefMUDI)))
494           InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
495       }
496     } else {
497       MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
498       if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
499         InsnDefining = NewDefPhi;
500     }
501     assert(InsnDefining && "Defining instruction cannot be nullptr.");
502     return InsnDefining;
503   };
504 
505   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
506   if (!Acc)
507     return;
508   for (const MemoryAccess &MA : *Acc) {
509     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
510       Instruction *Insn = MUD->getMemoryInst();
511       // Entry does not exist if the clone of the block did not clone all
512       // instructions. This occurs in LoopRotate when cloning instructions
513       // from the old header to the old preheader. The cloned instruction may
514       // also be a simplified Value, not an Instruction (see LoopRotate).
515       if (Instruction *NewInsn =
516               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
517         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
518             NewInsn, GetNewDefiningAccess(MUD->getDefiningAccess()), MUD);
519         MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
520       }
521     }
522   }
523 }
524 
525 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
526     BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
527   auto *MPhi = MSSA->getMemoryAccess(Header);
528   if (!MPhi)
529     return;
530 
531   // Create phi node in the backedge block and populate it with the same
532   // incoming values as MPhi. Skip incoming values coming from Preheader.
533   auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
534   bool HasUniqueIncomingValue = true;
535   MemoryAccess *UniqueValue = nullptr;
536   for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
537     BasicBlock *IBB = MPhi->getIncomingBlock(I);
538     MemoryAccess *IV = MPhi->getIncomingValue(I);
539     if (IBB != Preheader) {
540       NewMPhi->addIncoming(IV, IBB);
541       if (HasUniqueIncomingValue) {
542         if (!UniqueValue)
543           UniqueValue = IV;
544         else if (UniqueValue != IV)
545           HasUniqueIncomingValue = false;
546       }
547     }
548   }
549 
550   // Update incoming edges into MPhi. Remove all but the incoming edge from
551   // Preheader. Add an edge from NewMPhi
552   auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
553   MPhi->setIncomingValue(0, AccFromPreheader);
554   MPhi->setIncomingBlock(0, Preheader);
555   for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
556     MPhi->unorderedDeleteIncoming(I);
557   MPhi->addIncoming(NewMPhi, BEBlock);
558 
559   // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
560   // replaced with the unique value.
561   if (HasUniqueIncomingValue)
562     removeMemoryAccess(NewMPhi);
563 }
564 
565 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
566                                            ArrayRef<BasicBlock *> ExitBlocks,
567                                            const ValueToValueMapTy &VMap,
568                                            bool IgnoreIncomingWithNoClones) {
569   PhiToDefMap MPhiMap;
570 
571   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
572     assert(Phi && NewPhi && "Invalid Phi nodes.");
573     BasicBlock *NewPhiBB = NewPhi->getBlock();
574     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
575                                                pred_end(NewPhiBB));
576     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
577       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
578       BasicBlock *IncBB = Phi->getIncomingBlock(It);
579 
580       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
581         IncBB = NewIncBB;
582       else if (IgnoreIncomingWithNoClones)
583         continue;
584 
585       // Now we have IncBB, and will need to add incoming from it to NewPhi.
586 
587       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
588       // NewPhiBB was cloned without that edge.
589       if (!NewPhiBBPreds.count(IncBB))
590         continue;
591 
592       // Determine incoming value and add it as incoming from IncBB.
593       if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
594         if (!MSSA->isLiveOnEntryDef(IncMUD)) {
595           Instruction *IncI = IncMUD->getMemoryInst();
596           assert(IncI && "Found MemoryUseOrDef with no Instruction.");
597           if (Instruction *NewIncI =
598                   cast_or_null<Instruction>(VMap.lookup(IncI))) {
599             IncMUD = MSSA->getMemoryAccess(NewIncI);
600             assert(IncMUD &&
601                    "MemoryUseOrDef cannot be null, all preds processed.");
602           }
603         }
604         NewPhi->addIncoming(IncMUD, IncBB);
605       } else {
606         MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
607         if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
608           NewPhi->addIncoming(NewDefPhi, IncBB);
609         else
610           NewPhi->addIncoming(IncPhi, IncBB);
611       }
612     }
613   };
614 
615   auto ProcessBlock = [&](BasicBlock *BB) {
616     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
617     if (!NewBlock)
618       return;
619 
620     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
621            "Cloned block should have no accesses");
622 
623     // Add MemoryPhi.
624     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
625       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
626       MPhiMap[MPhi] = NewPhi;
627     }
628     // Update Uses and Defs.
629     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
630   };
631 
632   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
633     ProcessBlock(BB);
634 
635   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
636     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
637       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
638         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
639 }
640 
641 void MemorySSAUpdater::updateForClonedBlockIntoPred(
642     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
643   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
644   // Since those defs/phis must have dominated BB, and also dominate P1.
645   // Defs from BB being used in BB will be replaced with the cloned defs from
646   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
647   // incoming def into the Phi from P1.
648   PhiToDefMap MPhiMap;
649   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
650     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
651   cloneUsesAndDefs(BB, P1, VM, MPhiMap);
652 }
653 
654 template <typename Iter>
655 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
656     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
657     DominatorTree &DT) {
658   SmallVector<CFGUpdate, 4> Updates;
659   // Update/insert phis in all successors of exit blocks.
660   for (auto *Exit : ExitBlocks)
661     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
662       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
663         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
664         Updates.push_back({DT.Insert, NewExit, ExitSucc});
665       }
666   applyInsertUpdates(Updates, DT);
667 }
668 
669 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
670     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
671     DominatorTree &DT) {
672   const ValueToValueMapTy *const Arr[] = {&VMap};
673   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
674                                        std::end(Arr), DT);
675 }
676 
677 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
678     ArrayRef<BasicBlock *> ExitBlocks,
679     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
680   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
681     return I.get();
682   };
683   using MappedIteratorType =
684       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
685                       decltype(GetPtr)>;
686   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
687   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
688   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
689 }
690 
691 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
692                                     DominatorTree &DT) {
693   SmallVector<CFGUpdate, 4> RevDeleteUpdates;
694   SmallVector<CFGUpdate, 4> InsertUpdates;
695   for (auto &Update : Updates) {
696     if (Update.getKind() == DT.Insert)
697       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
698     else
699       RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
700   }
701 
702   if (!RevDeleteUpdates.empty()) {
703     // Update for inserted edges: use newDT and snapshot CFG as if deletes had
704     // not occurred.
705     // FIXME: This creates a new DT, so it's more expensive to do mix
706     // delete/inserts vs just inserts. We can do an incremental update on the DT
707     // to revert deletes, than re-delete the edges. Teaching DT to do this, is
708     // part of a pending cleanup.
709     DominatorTree NewDT(DT, RevDeleteUpdates);
710     GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
711     applyInsertUpdates(InsertUpdates, NewDT, &GD);
712   } else {
713     GraphDiff<BasicBlock *> GD;
714     applyInsertUpdates(InsertUpdates, DT, &GD);
715   }
716 
717   // Update for deleted edges
718   for (auto &Update : RevDeleteUpdates)
719     removeEdge(Update.getFrom(), Update.getTo());
720 }
721 
722 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
723                                           DominatorTree &DT) {
724   GraphDiff<BasicBlock *> GD;
725   applyInsertUpdates(Updates, DT, &GD);
726 }
727 
728 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
729                                           DominatorTree &DT,
730                                           const GraphDiff<BasicBlock *> *GD) {
731   // Get recursive last Def, assuming well formed MSSA and updated DT.
732   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
733     while (true) {
734       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
735       // Return last Def or Phi in BB, if it exists.
736       if (Defs)
737         return &*(--Defs->end());
738 
739       // Check number of predecessors, we only care if there's more than one.
740       unsigned Count = 0;
741       BasicBlock *Pred = nullptr;
742       for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
743         Pred = Pair.second;
744         Count++;
745         if (Count == 2)
746           break;
747       }
748 
749       // If BB has multiple predecessors, get last definition from IDom.
750       if (Count != 1) {
751         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
752         // DT is invalidated. Return LoE as its last def. This will be added to
753         // MemoryPhi node, and later deleted when the block is deleted.
754         if (!DT.getNode(BB))
755           return MSSA->getLiveOnEntryDef();
756         if (auto *IDom = DT.getNode(BB)->getIDom())
757           if (IDom->getBlock() != BB) {
758             BB = IDom->getBlock();
759             continue;
760           }
761         return MSSA->getLiveOnEntryDef();
762       } else {
763         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
764         assert(Count == 1 && Pred && "Single predecessor expected.");
765         BB = Pred;
766       }
767     };
768     llvm_unreachable("Unable to get last definition.");
769   };
770 
771   // Get nearest IDom given a set of blocks.
772   // TODO: this can be optimized by starting the search at the node with the
773   // lowest level (highest in the tree).
774   auto FindNearestCommonDominator =
775       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
776     BasicBlock *PrevIDom = *BBSet.begin();
777     for (auto *BB : BBSet)
778       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
779     return PrevIDom;
780   };
781 
782   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
783   // include CurrIDom.
784   auto GetNoLongerDomBlocks =
785       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
786           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
787         if (PrevIDom == CurrIDom)
788           return;
789         BlocksPrevDom.push_back(PrevIDom);
790         BasicBlock *NextIDom = PrevIDom;
791         while (BasicBlock *UpIDom =
792                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
793           if (UpIDom == CurrIDom)
794             break;
795           BlocksPrevDom.push_back(UpIDom);
796           NextIDom = UpIDom;
797         }
798       };
799 
800   // Map a BB to its predecessors: added + previously existing. To get a
801   // deterministic order, store predecessors as SetVectors. The order in each
802   // will be defined by the order in Updates (fixed) and the order given by
803   // children<> (also fixed). Since we further iterate over these ordered sets,
804   // we lose the information of multiple edges possibly existing between two
805   // blocks, so we'll keep and EdgeCount map for that.
806   // An alternate implementation could keep unordered set for the predecessors,
807   // traverse either Updates or children<> each time to get  the deterministic
808   // order, and drop the usage of EdgeCount. This alternate approach would still
809   // require querying the maps for each predecessor, and children<> call has
810   // additional computation inside for creating the snapshot-graph predecessors.
811   // As such, we favor using a little additional storage and less compute time.
812   // This decision can be revisited if we find the alternative more favorable.
813 
814   struct PredInfo {
815     SmallSetVector<BasicBlock *, 2> Added;
816     SmallSetVector<BasicBlock *, 2> Prev;
817   };
818   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
819 
820   for (auto &Edge : Updates) {
821     BasicBlock *BB = Edge.getTo();
822     auto &AddedBlockSet = PredMap[BB].Added;
823     AddedBlockSet.insert(Edge.getFrom());
824   }
825 
826   // Store all existing predecessor for each BB, at least one must exist.
827   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
828   SmallPtrSet<BasicBlock *, 2> NewBlocks;
829   for (auto &BBPredPair : PredMap) {
830     auto *BB = BBPredPair.first;
831     const auto &AddedBlockSet = BBPredPair.second.Added;
832     auto &PrevBlockSet = BBPredPair.second.Prev;
833     for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
834       BasicBlock *Pi = Pair.second;
835       if (!AddedBlockSet.count(Pi))
836         PrevBlockSet.insert(Pi);
837       EdgeCountMap[{Pi, BB}]++;
838     }
839 
840     if (PrevBlockSet.empty()) {
841       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
842       LLVM_DEBUG(
843           dbgs()
844           << "Adding a predecessor to a block with no predecessors. "
845              "This must be an edge added to a new, likely cloned, block. "
846              "Its memory accesses must be already correct, assuming completed "
847              "via the updateExitBlocksForClonedLoop API. "
848              "Assert a single such edge is added so no phi addition or "
849              "additional processing is required.\n");
850       assert(AddedBlockSet.size() == 1 &&
851              "Can only handle adding one predecessor to a new block.");
852       // Need to remove new blocks from PredMap. Remove below to not invalidate
853       // iterator here.
854       NewBlocks.insert(BB);
855     }
856   }
857   // Nothing to process for new/cloned blocks.
858   for (auto *BB : NewBlocks)
859     PredMap.erase(BB);
860 
861   SmallVector<BasicBlock *, 8> BlocksToProcess;
862   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
863 
864   // First create MemoryPhis in all blocks that don't have one. Create in the
865   // order found in Updates, not in PredMap, to get deterministic numbering.
866   for (auto &Edge : Updates) {
867     BasicBlock *BB = Edge.getTo();
868     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
869       MSSA->createMemoryPhi(BB);
870   }
871 
872   // Now we'll fill in the MemoryPhis with the right incoming values.
873   for (auto &BBPredPair : PredMap) {
874     auto *BB = BBPredPair.first;
875     const auto &PrevBlockSet = BBPredPair.second.Prev;
876     const auto &AddedBlockSet = BBPredPair.second.Added;
877     assert(!PrevBlockSet.empty() &&
878            "At least one previous predecessor must exist.");
879 
880     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
881     // keeping this map before the loop. We can reuse already populated entries
882     // if an edge is added from the same predecessor to two different blocks,
883     // and this does happen in rotate. Note that the map needs to be updated
884     // when deleting non-necessary phis below, if the phi is in the map by
885     // replacing the value with DefP1.
886     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
887     for (auto *AddedPred : AddedBlockSet) {
888       auto *DefPn = GetLastDef(AddedPred);
889       assert(DefPn != nullptr && "Unable to find last definition.");
890       LastDefAddedPred[AddedPred] = DefPn;
891     }
892 
893     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
894     // If Phi is not empty, add an incoming edge from each added pred. Must
895     // still compute blocks with defs to replace for this block below.
896     if (NewPhi->getNumOperands()) {
897       for (auto *Pred : AddedBlockSet) {
898         auto *LastDefForPred = LastDefAddedPred[Pred];
899         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
900           NewPhi->addIncoming(LastDefForPred, Pred);
901       }
902     } else {
903       // Pick any existing predecessor and get its definition. All other
904       // existing predecessors should have the same one, since no phi existed.
905       auto *P1 = *PrevBlockSet.begin();
906       MemoryAccess *DefP1 = GetLastDef(P1);
907 
908       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
909       // nothing to add.
910       bool InsertPhi = false;
911       for (auto LastDefPredPair : LastDefAddedPred)
912         if (DefP1 != LastDefPredPair.second) {
913           InsertPhi = true;
914           break;
915         }
916       if (!InsertPhi) {
917         // Since NewPhi may be used in other newly added Phis, replace all uses
918         // of NewPhi with the definition coming from all predecessors (DefP1),
919         // before deleting it.
920         NewPhi->replaceAllUsesWith(DefP1);
921         removeMemoryAccess(NewPhi);
922         continue;
923       }
924 
925       // Update Phi with new values for new predecessors and old value for all
926       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
927       // sets, the order of entries in NewPhi is deterministic.
928       for (auto *Pred : AddedBlockSet) {
929         auto *LastDefForPred = LastDefAddedPred[Pred];
930         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
931           NewPhi->addIncoming(LastDefForPred, Pred);
932       }
933       for (auto *Pred : PrevBlockSet)
934         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
935           NewPhi->addIncoming(DefP1, Pred);
936 
937       // Insert BB in the set of blocks that now have definition. We'll use this
938       // to compute IDF and add Phis there next.
939       BlocksToProcess.push_back(BB);
940     }
941 
942     // Get all blocks that used to dominate BB and no longer do after adding
943     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
944     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
945     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
946     assert(PrevIDom && "Previous IDom should exists");
947     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
948     assert(NewIDom && "BB should have a new valid idom");
949     assert(DT.dominates(NewIDom, PrevIDom) &&
950            "New idom should dominate old idom");
951     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
952   }
953 
954   // Compute IDF and add Phis in all IDF blocks that do not have one.
955   SmallVector<BasicBlock *, 32> IDFBlocks;
956   if (!BlocksToProcess.empty()) {
957     ForwardIDFCalculator IDFs(DT);
958     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
959                                                  BlocksToProcess.end());
960     IDFs.setDefiningBlocks(DefiningBlocks);
961     IDFs.calculate(IDFBlocks);
962     for (auto *BBIDF : IDFBlocks) {
963       if (auto *IDFPhi = MSSA->getMemoryAccess(BBIDF)) {
964         // Update existing Phi.
965         // FIXME: some updates may be redundant, try to optimize and skip some.
966         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
967           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
968       } else {
969         IDFPhi = MSSA->createMemoryPhi(BBIDF);
970         for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
971           BasicBlock *Pi = Pair.second;
972           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
973         }
974       }
975     }
976   }
977 
978   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
979   // longer dominate, replace those with the closest dominating def.
980   // This will also update optimized accesses, as they're also uses.
981   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
982     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
983       for (auto &DefToReplaceUses : *DefsList) {
984         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
985         Value::use_iterator UI = DefToReplaceUses.use_begin(),
986                             E = DefToReplaceUses.use_end();
987         for (; UI != E;) {
988           Use &U = *UI;
989           ++UI;
990           MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser());
991           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
992             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
993             if (!DT.dominates(DominatingBlock, DominatedBlock))
994               U.set(GetLastDef(DominatedBlock));
995           } else {
996             BasicBlock *DominatedBlock = Usr->getBlock();
997             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
998               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
999                 U.set(DomBlPhi);
1000               else {
1001                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1002                 assert(IDom && "Block must have a valid IDom.");
1003                 U.set(GetLastDef(IDom->getBlock()));
1004               }
1005               cast<MemoryUseOrDef>(Usr)->resetOptimized();
1006             }
1007           }
1008         }
1009       }
1010     }
1011   }
1012 }
1013 
1014 // Move What before Where in the MemorySSA IR.
1015 template <class WhereType>
1016 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1017                               WhereType Where) {
1018   // Mark MemoryPhi users of What not to be optimized.
1019   for (auto *U : What->users())
1020     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1021       NonOptPhis.insert(PhiUser);
1022 
1023   // Replace all our users with our defining access.
1024   What->replaceAllUsesWith(What->getDefiningAccess());
1025 
1026   // Let MemorySSA take care of moving it around in the lists.
1027   MSSA->moveTo(What, BB, Where);
1028 
1029   // Now reinsert it into the IR and do whatever fixups needed.
1030   if (auto *MD = dyn_cast<MemoryDef>(What))
1031     insertDef(MD);
1032   else
1033     insertUse(cast<MemoryUse>(What));
1034 
1035   // Clear dangling pointers. We added all MemoryPhi users, but not all
1036   // of them are removed by fixupDefs().
1037   NonOptPhis.clear();
1038 }
1039 
1040 // Move What before Where in the MemorySSA IR.
1041 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1042   moveTo(What, Where->getBlock(), Where->getIterator());
1043 }
1044 
1045 // Move What after Where in the MemorySSA IR.
1046 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1047   moveTo(What, Where->getBlock(), ++Where->getIterator());
1048 }
1049 
1050 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1051                                    MemorySSA::InsertionPlace Where) {
1052   return moveTo(What, BB, Where);
1053 }
1054 
1055 // All accesses in To used to be in From. Move to end and update access lists.
1056 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1057                                        Instruction *Start) {
1058 
1059   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1060   if (!Accs)
1061     return;
1062 
1063   MemoryAccess *FirstInNew = nullptr;
1064   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1065     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1066       break;
1067   if (!FirstInNew)
1068     return;
1069 
1070   auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1071   do {
1072     auto NextIt = ++MUD->getIterator();
1073     MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1074                                   ? nullptr
1075                                   : cast<MemoryUseOrDef>(&*NextIt);
1076     MSSA->moveTo(MUD, To, MemorySSA::End);
1077     // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
1078     // retrieve it again.
1079     Accs = MSSA->getWritableBlockAccesses(From);
1080     MUD = NextMUD;
1081   } while (MUD);
1082 }
1083 
1084 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1085                                                 BasicBlock *To,
1086                                                 Instruction *Start) {
1087   assert(MSSA->getBlockAccesses(To) == nullptr &&
1088          "To block is expected to be free of MemoryAccesses.");
1089   moveAllAccesses(From, To, Start);
1090   for (BasicBlock *Succ : successors(To))
1091     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1092       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1093 }
1094 
1095 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1096                                                Instruction *Start) {
1097   assert(From->getSinglePredecessor() == To &&
1098          "From block is expected to have a single predecessor (To).");
1099   moveAllAccesses(From, To, Start);
1100   for (BasicBlock *Succ : successors(From))
1101     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1102       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1103 }
1104 
1105 /// If all arguments of a MemoryPHI are defined by the same incoming
1106 /// argument, return that argument.
1107 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1108   MemoryAccess *MA = nullptr;
1109 
1110   for (auto &Arg : MP->operands()) {
1111     if (!MA)
1112       MA = cast<MemoryAccess>(Arg);
1113     else if (MA != Arg)
1114       return nullptr;
1115   }
1116   return MA;
1117 }
1118 
1119 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1120     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1121     bool IdenticalEdgesWereMerged) {
1122   assert(!MSSA->getWritableBlockAccesses(New) &&
1123          "Access list should be null for a new block.");
1124   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1125   if (!Phi)
1126     return;
1127   if (Old->hasNPredecessors(1)) {
1128     assert(pred_size(New) == Preds.size() &&
1129            "Should have moved all predecessors.");
1130     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1131   } else {
1132     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1133                              "new immediate predecessor.");
1134     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1135     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1136     // Currently only support the case of removing a single incoming edge when
1137     // identical edges were not merged.
1138     if (!IdenticalEdgesWereMerged)
1139       assert(PredsSet.size() == Preds.size() &&
1140              "If identical edges were not merged, we cannot have duplicate "
1141              "blocks in the predecessors");
1142     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1143       if (PredsSet.count(B)) {
1144         NewPhi->addIncoming(MA, B);
1145         if (!IdenticalEdgesWereMerged)
1146           PredsSet.erase(B);
1147         return true;
1148       }
1149       return false;
1150     });
1151     Phi->addIncoming(NewPhi, New);
1152     if (onlySingleValue(NewPhi))
1153       removeMemoryAccess(NewPhi);
1154   }
1155 }
1156 
1157 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1158   assert(!MSSA->isLiveOnEntryDef(MA) &&
1159          "Trying to remove the live on entry def");
1160   // We can only delete phi nodes if they have no uses, or we can replace all
1161   // uses with a single definition.
1162   MemoryAccess *NewDefTarget = nullptr;
1163   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1164     // Note that it is sufficient to know that all edges of the phi node have
1165     // the same argument.  If they do, by the definition of dominance frontiers
1166     // (which we used to place this phi), that argument must dominate this phi,
1167     // and thus, must dominate the phi's uses, and so we will not hit the assert
1168     // below.
1169     NewDefTarget = onlySingleValue(MP);
1170     assert((NewDefTarget || MP->use_empty()) &&
1171            "We can't delete this memory phi");
1172   } else {
1173     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1174   }
1175 
1176   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1177 
1178   // Re-point the uses at our defining access
1179   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1180     // Reset optimized on users of this store, and reset the uses.
1181     // A few notes:
1182     // 1. This is a slightly modified version of RAUW to avoid walking the
1183     // uses twice here.
1184     // 2. If we wanted to be complete, we would have to reset the optimized
1185     // flags on users of phi nodes if doing the below makes a phi node have all
1186     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1187     // phi nodes, because doing it here would be N^3.
1188     if (MA->hasValueHandle())
1189       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1190     // Note: We assume MemorySSA is not used in metadata since it's not really
1191     // part of the IR.
1192 
1193     while (!MA->use_empty()) {
1194       Use &U = *MA->use_begin();
1195       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1196         MUD->resetOptimized();
1197       if (OptimizePhis)
1198         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1199           PhisToCheck.insert(MP);
1200       U.set(NewDefTarget);
1201     }
1202   }
1203 
1204   // The call below to erase will destroy MA, so we can't change the order we
1205   // are doing things here
1206   MSSA->removeFromLookups(MA);
1207   MSSA->removeFromLists(MA);
1208 
1209   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1210   if (!PhisToCheck.empty()) {
1211     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1212                                            PhisToCheck.end()};
1213     PhisToCheck.clear();
1214 
1215     unsigned PhisSize = PhisToOptimize.size();
1216     while (PhisSize-- > 0)
1217       if (MemoryPhi *MP =
1218               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) {
1219         auto OperRange = MP->operands();
1220         tryRemoveTrivialPhi(MP, OperRange);
1221       }
1222   }
1223 }
1224 
1225 void MemorySSAUpdater::removeBlocks(
1226     const SmallPtrSetImpl<BasicBlock *> &DeadBlocks) {
1227   // First delete all uses of BB in MemoryPhis.
1228   for (BasicBlock *BB : DeadBlocks) {
1229     Instruction *TI = BB->getTerminator();
1230     assert(TI && "Basic block expected to have a terminator instruction");
1231     for (BasicBlock *Succ : successors(TI))
1232       if (!DeadBlocks.count(Succ))
1233         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1234           MP->unorderedDeleteIncomingBlock(BB);
1235           if (MP->getNumIncomingValues() == 1)
1236             removeMemoryAccess(MP);
1237         }
1238     // Drop all references of all accesses in BB
1239     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1240       for (MemoryAccess &MA : *Acc)
1241         MA.dropAllReferences();
1242   }
1243 
1244   // Next, delete all memory accesses in each block
1245   for (BasicBlock *BB : DeadBlocks) {
1246     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1247     if (!Acc)
1248       continue;
1249     for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1250       MemoryAccess *MA = &*AB;
1251       ++AB;
1252       MSSA->removeFromLookups(MA);
1253       MSSA->removeFromLists(MA);
1254     }
1255   }
1256 }
1257 
1258 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1259   for (auto &VH : UpdatedPHIs)
1260     if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) {
1261       auto OperRange = MPhi->operands();
1262       tryRemoveTrivialPhi(MPhi, OperRange);
1263     }
1264 }
1265 
1266 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1267   const BasicBlock *BB = I->getParent();
1268   // Remove memory accesses in BB for I and all following instructions.
1269   auto BBI = I->getIterator(), BBE = BB->end();
1270   // FIXME: If this becomes too expensive, iterate until the first instruction
1271   // with a memory access, then iterate over MemoryAccesses.
1272   while (BBI != BBE)
1273     removeMemoryAccess(&*(BBI++));
1274   // Update phis in BB's successors to remove BB.
1275   SmallVector<WeakVH, 16> UpdatedPHIs;
1276   for (const BasicBlock *Successor : successors(BB)) {
1277     removeDuplicatePhiEdgesBetween(BB, Successor);
1278     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1279       MPhi->unorderedDeleteIncomingBlock(BB);
1280       UpdatedPHIs.push_back(MPhi);
1281     }
1282   }
1283   // Optimize trivial phis.
1284   tryRemoveTrivialPhis(UpdatedPHIs);
1285 }
1286 
1287 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1288                                                          const BasicBlock *To) {
1289   const BasicBlock *BB = BI->getParent();
1290   SmallVector<WeakVH, 16> UpdatedPHIs;
1291   for (const BasicBlock *Succ : successors(BB)) {
1292     removeDuplicatePhiEdgesBetween(BB, Succ);
1293     if (Succ != To)
1294       if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1295         MPhi->unorderedDeleteIncomingBlock(BB);
1296         UpdatedPHIs.push_back(MPhi);
1297       }
1298   }
1299   // Optimize trivial phis.
1300   tryRemoveTrivialPhis(UpdatedPHIs);
1301 }
1302 
1303 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1304     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1305     MemorySSA::InsertionPlace Point) {
1306   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1307   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1308   return NewAccess;
1309 }
1310 
1311 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1312     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1313   assert(I->getParent() == InsertPt->getBlock() &&
1314          "New and old access must be in the same block");
1315   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1316   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1317                               InsertPt->getIterator());
1318   return NewAccess;
1319 }
1320 
1321 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1322     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1323   assert(I->getParent() == InsertPt->getBlock() &&
1324          "New and old access must be in the same block");
1325   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1326   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1327                               ++InsertPt->getIterator());
1328   return NewAccess;
1329 }
1330