1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSAUpdater class. 10 // 11 //===----------------------------------------------------------------===// 12 #include "llvm/Analysis/MemorySSAUpdater.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/Analysis/IteratedDominanceFrontier.h" 17 #include "llvm/Analysis/MemorySSA.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/GlobalVariable.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include <algorithm> 28 29 #define DEBUG_TYPE "memoryssa" 30 using namespace llvm; 31 32 // This is the marker algorithm from "Simple and Efficient Construction of 33 // Static Single Assignment Form" 34 // The simple, non-marker algorithm places phi nodes at any join 35 // Here, we place markers, and only place phi nodes if they end up necessary. 36 // They are only necessary if they break a cycle (IE we recursively visit 37 // ourselves again), or we discover, while getting the value of the operands, 38 // that there are two or more definitions needing to be merged. 39 // This still will leave non-minimal form in the case of irreducible control 40 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( 42 BasicBlock *BB, 43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 44 // First, do a cache lookup. Without this cache, certain CFG structures 45 // (like a series of if statements) take exponential time to visit. 46 auto Cached = CachedPreviousDef.find(BB); 47 if (Cached != CachedPreviousDef.end()) { 48 return Cached->second; 49 } 50 51 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 52 // Single predecessor case, just recurse, we can only have one definition. 53 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); 54 CachedPreviousDef.insert({BB, Result}); 55 return Result; 56 } 57 58 if (VisitedBlocks.count(BB)) { 59 // We hit our node again, meaning we had a cycle, we must insert a phi 60 // node to break it so we have an operand. The only case this will 61 // insert useless phis is if we have irreducible control flow. 62 MemoryAccess *Result = MSSA->createMemoryPhi(BB); 63 CachedPreviousDef.insert({BB, Result}); 64 return Result; 65 } 66 67 if (VisitedBlocks.insert(BB).second) { 68 // Mark us visited so we can detect a cycle 69 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; 70 71 // Recurse to get the values in our predecessors for placement of a 72 // potential phi node. This will insert phi nodes if we cycle in order to 73 // break the cycle and have an operand. 74 for (auto *Pred : predecessors(BB)) 75 if (MSSA->DT->isReachableFromEntry(Pred)) 76 PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef)); 77 else 78 PhiOps.push_back(MSSA->getLiveOnEntryDef()); 79 80 // Now try to simplify the ops to avoid placing a phi. 81 // This may return null if we never created a phi yet, that's okay 82 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 83 84 // See if we can avoid the phi by simplifying it. 85 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 86 // If we couldn't simplify, we may have to create a phi 87 if (Result == Phi) { 88 if (!Phi) 89 Phi = MSSA->createMemoryPhi(BB); 90 91 // See if the existing phi operands match what we need. 92 // Unlike normal SSA, we only allow one phi node per block, so we can't just 93 // create a new one. 94 if (Phi->getNumOperands() != 0) { 95 // FIXME: Figure out whether this is dead code and if so remove it. 96 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 97 // These will have been filled in by the recursive read we did above. 98 llvm::copy(PhiOps, Phi->op_begin()); 99 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 100 } 101 } else { 102 unsigned i = 0; 103 for (auto *Pred : predecessors(BB)) 104 Phi->addIncoming(&*PhiOps[i++], Pred); 105 InsertedPHIs.push_back(Phi); 106 } 107 Result = Phi; 108 } 109 110 // Set ourselves up for the next variable by resetting visited state. 111 VisitedBlocks.erase(BB); 112 CachedPreviousDef.insert({BB, Result}); 113 return Result; 114 } 115 llvm_unreachable("Should have hit one of the three cases above"); 116 } 117 118 // This starts at the memory access, and goes backwards in the block to find the 119 // previous definition. If a definition is not found the block of the access, 120 // it continues globally, creating phi nodes to ensure we have a single 121 // definition. 122 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 123 if (auto *LocalResult = getPreviousDefInBlock(MA)) 124 return LocalResult; 125 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 126 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); 127 } 128 129 // This starts at the memory access, and goes backwards in the block to the find 130 // the previous definition. If the definition is not found in the block of the 131 // access, it returns nullptr. 132 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 133 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 134 135 // It's possible there are no defs, or we got handed the first def to start. 136 if (Defs) { 137 // If this is a def, we can just use the def iterators. 138 if (!isa<MemoryUse>(MA)) { 139 auto Iter = MA->getReverseDefsIterator(); 140 ++Iter; 141 if (Iter != Defs->rend()) 142 return &*Iter; 143 } else { 144 // Otherwise, have to walk the all access iterator. 145 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 146 for (auto &U : make_range(++MA->getReverseIterator(), End)) 147 if (!isa<MemoryUse>(U)) 148 return cast<MemoryAccess>(&U); 149 // Note that if MA comes before Defs->begin(), we won't hit a def. 150 return nullptr; 151 } 152 } 153 return nullptr; 154 } 155 156 // This starts at the end of block 157 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( 158 BasicBlock *BB, 159 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 160 auto *Defs = MSSA->getWritableBlockDefs(BB); 161 162 if (Defs) { 163 CachedPreviousDef.insert({BB, &*Defs->rbegin()}); 164 return &*Defs->rbegin(); 165 } 166 167 return getPreviousDefRecursive(BB, CachedPreviousDef); 168 } 169 // Recurse over a set of phi uses to eliminate the trivial ones 170 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 171 if (!Phi) 172 return nullptr; 173 TrackingVH<MemoryAccess> Res(Phi); 174 SmallVector<TrackingVH<Value>, 8> Uses; 175 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 176 for (auto &U : Uses) { 177 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { 178 auto OperRange = UsePhi->operands(); 179 tryRemoveTrivialPhi(UsePhi, OperRange); 180 } 181 } 182 return Res; 183 } 184 185 // Eliminate trivial phis 186 // Phis are trivial if they are defined either by themselves, or all the same 187 // argument. 188 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 189 // We recursively try to remove them. 190 template <class RangeType> 191 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 192 RangeType &Operands) { 193 // Bail out on non-opt Phis. 194 if (NonOptPhis.count(Phi)) 195 return Phi; 196 197 // Detect equal or self arguments 198 MemoryAccess *Same = nullptr; 199 for (auto &Op : Operands) { 200 // If the same or self, good so far 201 if (Op == Phi || Op == Same) 202 continue; 203 // not the same, return the phi since it's not eliminatable by us 204 if (Same) 205 return Phi; 206 Same = cast<MemoryAccess>(&*Op); 207 } 208 // Never found a non-self reference, the phi is undef 209 if (Same == nullptr) 210 return MSSA->getLiveOnEntryDef(); 211 if (Phi) { 212 Phi->replaceAllUsesWith(Same); 213 removeMemoryAccess(Phi); 214 } 215 216 // We should only end up recursing in case we replaced something, in which 217 // case, we may have made other Phis trivial. 218 return recursePhi(Same); 219 } 220 221 void MemorySSAUpdater::insertUse(MemoryUse *MU) { 222 InsertedPHIs.clear(); 223 MU->setDefiningAccess(getPreviousDef(MU)); 224 // Unlike for defs, there is no extra work to do. Because uses do not create 225 // new may-defs, there are only two cases: 226 // 227 // 1. There was a def already below us, and therefore, we should not have 228 // created a phi node because it was already needed for the def. 229 // 230 // 2. There is no def below us, and therefore, there is no extra renaming work 231 // to do. 232 } 233 234 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 235 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 236 MemoryAccess *NewDef) { 237 // Replace any operand with us an incoming block with the new defining 238 // access. 239 int i = MP->getBasicBlockIndex(BB); 240 assert(i != -1 && "Should have found the basic block in the phi"); 241 // We can't just compare i against getNumOperands since one is signed and the 242 // other not. So use it to index into the block iterator. 243 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); 244 ++BBIter) { 245 if (*BBIter != BB) 246 break; 247 MP->setIncomingValue(i, NewDef); 248 ++i; 249 } 250 } 251 252 // A brief description of the algorithm: 253 // First, we compute what should define the new def, using the SSA 254 // construction algorithm. 255 // Then, we update the defs below us (and any new phi nodes) in the graph to 256 // point to the correct new defs, to ensure we only have one variable, and no 257 // disconnected stores. 258 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 259 InsertedPHIs.clear(); 260 261 // See if we had a local def, and if not, go hunting. 262 MemoryAccess *DefBefore = getPreviousDef(MD); 263 bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock(); 264 265 // There is a def before us, which means we can replace any store/phi uses 266 // of that thing with us, since we are in the way of whatever was there 267 // before. 268 // We now define that def's memorydefs and memoryphis 269 if (DefBeforeSameBlock) { 270 for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); 271 UI != UE;) { 272 Use &U = *UI++; 273 // Leave the MemoryUses alone. 274 // Also make sure we skip ourselves to avoid self references. 275 if (isa<MemoryUse>(U.getUser()) || U.getUser() == MD) 276 continue; 277 // Defs are automatically unoptimized when the user is set to MD below, 278 // because the isOptimized() call will fail to find the same ID. 279 U.set(MD); 280 } 281 } 282 283 // and that def is now our defining access. 284 MD->setDefiningAccess(DefBefore); 285 286 // Remember the index where we may insert new phis below. 287 unsigned NewPhiIndex = InsertedPHIs.size(); 288 289 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); 290 if (!DefBeforeSameBlock) { 291 // If there was a local def before us, we must have the same effect it 292 // did. Because every may-def is the same, any phis/etc we would create, it 293 // would also have created. If there was no local def before us, we 294 // performed a global update, and have to search all successors and make 295 // sure we update the first def in each of them (following all paths until 296 // we hit the first def along each path). This may also insert phi nodes. 297 // TODO: There are other cases we can skip this work, such as when we have a 298 // single successor, and only used a straight line of single pred blocks 299 // backwards to find the def. To make that work, we'd have to track whether 300 // getDefRecursive only ever used the single predecessor case. These types 301 // of paths also only exist in between CFG simplifications. 302 303 // If this is the first def in the block and this insert is in an arbitrary 304 // place, compute IDF and place phis. 305 auto Iter = MD->getDefsIterator(); 306 ++Iter; 307 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end(); 308 if (Iter == IterEnd) { 309 ForwardIDFCalculator IDFs(*MSSA->DT); 310 SmallVector<BasicBlock *, 32> IDFBlocks; 311 SmallPtrSet<BasicBlock *, 2> DefiningBlocks; 312 DefiningBlocks.insert(MD->getBlock()); 313 IDFs.setDefiningBlocks(DefiningBlocks); 314 IDFs.calculate(IDFBlocks); 315 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs; 316 for (auto *BBIDF : IDFBlocks) 317 if (!MSSA->getMemoryAccess(BBIDF)) { 318 auto *MPhi = MSSA->createMemoryPhi(BBIDF); 319 NewInsertedPHIs.push_back(MPhi); 320 // Add the phis created into the IDF blocks to NonOptPhis, so they are 321 // not optimized out as trivial by the call to getPreviousDefFromEnd 322 // below. Once they are complete, all these Phis are added to the 323 // FixupList, and removed from NonOptPhis inside fixupDefs(). 324 NonOptPhis.insert(MPhi); 325 } 326 327 for (auto &MPhi : NewInsertedPHIs) { 328 auto *BBIDF = MPhi->getBlock(); 329 for (auto *Pred : predecessors(BBIDF)) { 330 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 331 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), 332 Pred); 333 } 334 } 335 336 // Re-take the index where we're adding the new phis, because the above 337 // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs. 338 NewPhiIndex = InsertedPHIs.size(); 339 for (auto &MPhi : NewInsertedPHIs) { 340 InsertedPHIs.push_back(&*MPhi); 341 FixupList.push_back(&*MPhi); 342 } 343 } 344 345 FixupList.push_back(MD); 346 } 347 348 // Remember the index where we stopped inserting new phis above, since the 349 // fixupDefs call in the loop below may insert more, that are already minimal. 350 unsigned NewPhiIndexEnd = InsertedPHIs.size(); 351 352 while (!FixupList.empty()) { 353 unsigned StartingPHISize = InsertedPHIs.size(); 354 fixupDefs(FixupList); 355 FixupList.clear(); 356 // Put any new phis on the fixup list, and process them 357 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); 358 } 359 360 // Optimize potentially non-minimal phis added in this method. 361 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex; 362 if (NewPhiSize) 363 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize)); 364 365 // Now that all fixups are done, rename all uses if we are asked. 366 if (RenameUses) { 367 SmallPtrSet<BasicBlock *, 16> Visited; 368 BasicBlock *StartBlock = MD->getBlock(); 369 // We are guaranteed there is a def in the block, because we just got it 370 // handed to us in this function. 371 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 372 // Convert to incoming value if it's a memorydef. A phi *is* already an 373 // incoming value. 374 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 375 FirstDef = MD->getDefiningAccess(); 376 377 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 378 // We just inserted a phi into this block, so the incoming value will become 379 // the phi anyway, so it does not matter what we pass. 380 for (auto &MP : InsertedPHIs) { 381 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 382 if (Phi) 383 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 384 } 385 } 386 } 387 388 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { 389 SmallPtrSet<const BasicBlock *, 8> Seen; 390 SmallVector<const BasicBlock *, 16> Worklist; 391 for (auto &Var : Vars) { 392 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); 393 if (!NewDef) 394 continue; 395 // First, see if there is a local def after the operand. 396 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 397 auto DefIter = NewDef->getDefsIterator(); 398 399 // The temporary Phi is being fixed, unmark it for not to optimize. 400 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) 401 NonOptPhis.erase(Phi); 402 403 // If there is a local def after us, we only have to rename that. 404 if (++DefIter != Defs->end()) { 405 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 406 continue; 407 } 408 409 // Otherwise, we need to search down through the CFG. 410 // For each of our successors, handle it directly if their is a phi, or 411 // place on the fixup worklist. 412 for (const auto *S : successors(NewDef->getBlock())) { 413 if (auto *MP = MSSA->getMemoryAccess(S)) 414 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 415 else 416 Worklist.push_back(S); 417 } 418 419 while (!Worklist.empty()) { 420 const BasicBlock *FixupBlock = Worklist.back(); 421 Worklist.pop_back(); 422 423 // Get the first def in the block that isn't a phi node. 424 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 425 auto *FirstDef = &*Defs->begin(); 426 // The loop above and below should have taken care of phi nodes 427 assert(!isa<MemoryPhi>(FirstDef) && 428 "Should have already handled phi nodes!"); 429 // We are now this def's defining access, make sure we actually dominate 430 // it 431 assert(MSSA->dominates(NewDef, FirstDef) && 432 "Should have dominated the new access"); 433 434 // This may insert new phi nodes, because we are not guaranteed the 435 // block we are processing has a single pred, and depending where the 436 // store was inserted, it may require phi nodes below it. 437 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 438 return; 439 } 440 // We didn't find a def, so we must continue. 441 for (const auto *S : successors(FixupBlock)) { 442 // If there is a phi node, handle it. 443 // Otherwise, put the block on the worklist 444 if (auto *MP = MSSA->getMemoryAccess(S)) 445 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 446 else { 447 // If we cycle, we should have ended up at a phi node that we already 448 // processed. FIXME: Double check this 449 if (!Seen.insert(S).second) 450 continue; 451 Worklist.push_back(S); 452 } 453 } 454 } 455 } 456 } 457 458 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { 459 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 460 MPhi->unorderedDeleteIncomingBlock(From); 461 if (MPhi->getNumIncomingValues() == 1) 462 removeMemoryAccess(MPhi); 463 } 464 } 465 466 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From, 467 const BasicBlock *To) { 468 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 469 bool Found = false; 470 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { 471 if (From != B) 472 return false; 473 if (Found) 474 return true; 475 Found = true; 476 return false; 477 }); 478 if (MPhi->getNumIncomingValues() == 1) 479 removeMemoryAccess(MPhi); 480 } 481 } 482 483 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, 484 const ValueToValueMapTy &VMap, 485 PhiToDefMap &MPhiMap) { 486 auto GetNewDefiningAccess = [&](MemoryAccess *MA) -> MemoryAccess * { 487 MemoryAccess *InsnDefining = MA; 488 if (MemoryUseOrDef *DefMUD = dyn_cast<MemoryUseOrDef>(InsnDefining)) { 489 if (!MSSA->isLiveOnEntryDef(DefMUD)) { 490 Instruction *DefMUDI = DefMUD->getMemoryInst(); 491 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); 492 if (Instruction *NewDefMUDI = 493 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) 494 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); 495 } 496 } else { 497 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining); 498 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) 499 InsnDefining = NewDefPhi; 500 } 501 assert(InsnDefining && "Defining instruction cannot be nullptr."); 502 return InsnDefining; 503 }; 504 505 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 506 if (!Acc) 507 return; 508 for (const MemoryAccess &MA : *Acc) { 509 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) { 510 Instruction *Insn = MUD->getMemoryInst(); 511 // Entry does not exist if the clone of the block did not clone all 512 // instructions. This occurs in LoopRotate when cloning instructions 513 // from the old header to the old preheader. The cloned instruction may 514 // also be a simplified Value, not an Instruction (see LoopRotate). 515 if (Instruction *NewInsn = 516 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) { 517 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( 518 NewInsn, GetNewDefiningAccess(MUD->getDefiningAccess()), MUD); 519 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); 520 } 521 } 522 } 523 } 524 525 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock( 526 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) { 527 auto *MPhi = MSSA->getMemoryAccess(Header); 528 if (!MPhi) 529 return; 530 531 // Create phi node in the backedge block and populate it with the same 532 // incoming values as MPhi. Skip incoming values coming from Preheader. 533 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock); 534 bool HasUniqueIncomingValue = true; 535 MemoryAccess *UniqueValue = nullptr; 536 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) { 537 BasicBlock *IBB = MPhi->getIncomingBlock(I); 538 MemoryAccess *IV = MPhi->getIncomingValue(I); 539 if (IBB != Preheader) { 540 NewMPhi->addIncoming(IV, IBB); 541 if (HasUniqueIncomingValue) { 542 if (!UniqueValue) 543 UniqueValue = IV; 544 else if (UniqueValue != IV) 545 HasUniqueIncomingValue = false; 546 } 547 } 548 } 549 550 // Update incoming edges into MPhi. Remove all but the incoming edge from 551 // Preheader. Add an edge from NewMPhi 552 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader); 553 MPhi->setIncomingValue(0, AccFromPreheader); 554 MPhi->setIncomingBlock(0, Preheader); 555 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I) 556 MPhi->unorderedDeleteIncoming(I); 557 MPhi->addIncoming(NewMPhi, BEBlock); 558 559 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be 560 // replaced with the unique value. 561 if (HasUniqueIncomingValue) 562 removeMemoryAccess(NewMPhi); 563 } 564 565 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, 566 ArrayRef<BasicBlock *> ExitBlocks, 567 const ValueToValueMapTy &VMap, 568 bool IgnoreIncomingWithNoClones) { 569 PhiToDefMap MPhiMap; 570 571 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { 572 assert(Phi && NewPhi && "Invalid Phi nodes."); 573 BasicBlock *NewPhiBB = NewPhi->getBlock(); 574 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB), 575 pred_end(NewPhiBB)); 576 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { 577 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); 578 BasicBlock *IncBB = Phi->getIncomingBlock(It); 579 580 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB))) 581 IncBB = NewIncBB; 582 else if (IgnoreIncomingWithNoClones) 583 continue; 584 585 // Now we have IncBB, and will need to add incoming from it to NewPhi. 586 587 // If IncBB is not a predecessor of NewPhiBB, then do not add it. 588 // NewPhiBB was cloned without that edge. 589 if (!NewPhiBBPreds.count(IncBB)) 590 continue; 591 592 // Determine incoming value and add it as incoming from IncBB. 593 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) { 594 if (!MSSA->isLiveOnEntryDef(IncMUD)) { 595 Instruction *IncI = IncMUD->getMemoryInst(); 596 assert(IncI && "Found MemoryUseOrDef with no Instruction."); 597 if (Instruction *NewIncI = 598 cast_or_null<Instruction>(VMap.lookup(IncI))) { 599 IncMUD = MSSA->getMemoryAccess(NewIncI); 600 assert(IncMUD && 601 "MemoryUseOrDef cannot be null, all preds processed."); 602 } 603 } 604 NewPhi->addIncoming(IncMUD, IncBB); 605 } else { 606 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess); 607 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) 608 NewPhi->addIncoming(NewDefPhi, IncBB); 609 else 610 NewPhi->addIncoming(IncPhi, IncBB); 611 } 612 } 613 }; 614 615 auto ProcessBlock = [&](BasicBlock *BB) { 616 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB)); 617 if (!NewBlock) 618 return; 619 620 assert(!MSSA->getWritableBlockAccesses(NewBlock) && 621 "Cloned block should have no accesses"); 622 623 // Add MemoryPhi. 624 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { 625 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); 626 MPhiMap[MPhi] = NewPhi; 627 } 628 // Update Uses and Defs. 629 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); 630 }; 631 632 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 633 ProcessBlock(BB); 634 635 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 636 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 637 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) 638 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi)); 639 } 640 641 void MemorySSAUpdater::updateForClonedBlockIntoPred( 642 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { 643 // All defs/phis from outside BB that are used in BB, are valid uses in P1. 644 // Since those defs/phis must have dominated BB, and also dominate P1. 645 // Defs from BB being used in BB will be replaced with the cloned defs from 646 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the 647 // incoming def into the Phi from P1. 648 PhiToDefMap MPhiMap; 649 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 650 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); 651 cloneUsesAndDefs(BB, P1, VM, MPhiMap); 652 } 653 654 template <typename Iter> 655 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( 656 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, 657 DominatorTree &DT) { 658 SmallVector<CFGUpdate, 4> Updates; 659 // Update/insert phis in all successors of exit blocks. 660 for (auto *Exit : ExitBlocks) 661 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) 662 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) { 663 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 664 Updates.push_back({DT.Insert, NewExit, ExitSucc}); 665 } 666 applyInsertUpdates(Updates, DT); 667 } 668 669 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 670 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap, 671 DominatorTree &DT) { 672 const ValueToValueMapTy *const Arr[] = {&VMap}; 673 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), 674 std::end(Arr), DT); 675 } 676 677 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 678 ArrayRef<BasicBlock *> ExitBlocks, 679 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) { 680 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) { 681 return I.get(); 682 }; 683 using MappedIteratorType = 684 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *, 685 decltype(GetPtr)>; 686 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); 687 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); 688 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); 689 } 690 691 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates, 692 DominatorTree &DT) { 693 SmallVector<CFGUpdate, 4> RevDeleteUpdates; 694 SmallVector<CFGUpdate, 4> InsertUpdates; 695 for (auto &Update : Updates) { 696 if (Update.getKind() == DT.Insert) 697 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 698 else 699 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 700 } 701 702 if (!RevDeleteUpdates.empty()) { 703 // Update for inserted edges: use newDT and snapshot CFG as if deletes had 704 // not occurred. 705 // FIXME: This creates a new DT, so it's more expensive to do mix 706 // delete/inserts vs just inserts. We can do an incremental update on the DT 707 // to revert deletes, than re-delete the edges. Teaching DT to do this, is 708 // part of a pending cleanup. 709 DominatorTree NewDT(DT, RevDeleteUpdates); 710 GraphDiff<BasicBlock *> GD(RevDeleteUpdates); 711 applyInsertUpdates(InsertUpdates, NewDT, &GD); 712 } else { 713 GraphDiff<BasicBlock *> GD; 714 applyInsertUpdates(InsertUpdates, DT, &GD); 715 } 716 717 // Update for deleted edges 718 for (auto &Update : RevDeleteUpdates) 719 removeEdge(Update.getFrom(), Update.getTo()); 720 } 721 722 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 723 DominatorTree &DT) { 724 GraphDiff<BasicBlock *> GD; 725 applyInsertUpdates(Updates, DT, &GD); 726 } 727 728 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 729 DominatorTree &DT, 730 const GraphDiff<BasicBlock *> *GD) { 731 // Get recursive last Def, assuming well formed MSSA and updated DT. 732 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { 733 while (true) { 734 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); 735 // Return last Def or Phi in BB, if it exists. 736 if (Defs) 737 return &*(--Defs->end()); 738 739 // Check number of predecessors, we only care if there's more than one. 740 unsigned Count = 0; 741 BasicBlock *Pred = nullptr; 742 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 743 Pred = Pair.second; 744 Count++; 745 if (Count == 2) 746 break; 747 } 748 749 // If BB has multiple predecessors, get last definition from IDom. 750 if (Count != 1) { 751 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its 752 // DT is invalidated. Return LoE as its last def. This will be added to 753 // MemoryPhi node, and later deleted when the block is deleted. 754 if (!DT.getNode(BB)) 755 return MSSA->getLiveOnEntryDef(); 756 if (auto *IDom = DT.getNode(BB)->getIDom()) 757 if (IDom->getBlock() != BB) { 758 BB = IDom->getBlock(); 759 continue; 760 } 761 return MSSA->getLiveOnEntryDef(); 762 } else { 763 // Single predecessor, BB cannot be dead. GetLastDef of Pred. 764 assert(Count == 1 && Pred && "Single predecessor expected."); 765 BB = Pred; 766 } 767 }; 768 llvm_unreachable("Unable to get last definition."); 769 }; 770 771 // Get nearest IDom given a set of blocks. 772 // TODO: this can be optimized by starting the search at the node with the 773 // lowest level (highest in the tree). 774 auto FindNearestCommonDominator = 775 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * { 776 BasicBlock *PrevIDom = *BBSet.begin(); 777 for (auto *BB : BBSet) 778 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); 779 return PrevIDom; 780 }; 781 782 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not 783 // include CurrIDom. 784 auto GetNoLongerDomBlocks = 785 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, 786 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) { 787 if (PrevIDom == CurrIDom) 788 return; 789 BlocksPrevDom.push_back(PrevIDom); 790 BasicBlock *NextIDom = PrevIDom; 791 while (BasicBlock *UpIDom = 792 DT.getNode(NextIDom)->getIDom()->getBlock()) { 793 if (UpIDom == CurrIDom) 794 break; 795 BlocksPrevDom.push_back(UpIDom); 796 NextIDom = UpIDom; 797 } 798 }; 799 800 // Map a BB to its predecessors: added + previously existing. To get a 801 // deterministic order, store predecessors as SetVectors. The order in each 802 // will be defined by the order in Updates (fixed) and the order given by 803 // children<> (also fixed). Since we further iterate over these ordered sets, 804 // we lose the information of multiple edges possibly existing between two 805 // blocks, so we'll keep and EdgeCount map for that. 806 // An alternate implementation could keep unordered set for the predecessors, 807 // traverse either Updates or children<> each time to get the deterministic 808 // order, and drop the usage of EdgeCount. This alternate approach would still 809 // require querying the maps for each predecessor, and children<> call has 810 // additional computation inside for creating the snapshot-graph predecessors. 811 // As such, we favor using a little additional storage and less compute time. 812 // This decision can be revisited if we find the alternative more favorable. 813 814 struct PredInfo { 815 SmallSetVector<BasicBlock *, 2> Added; 816 SmallSetVector<BasicBlock *, 2> Prev; 817 }; 818 SmallDenseMap<BasicBlock *, PredInfo> PredMap; 819 820 for (auto &Edge : Updates) { 821 BasicBlock *BB = Edge.getTo(); 822 auto &AddedBlockSet = PredMap[BB].Added; 823 AddedBlockSet.insert(Edge.getFrom()); 824 } 825 826 // Store all existing predecessor for each BB, at least one must exist. 827 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap; 828 SmallPtrSet<BasicBlock *, 2> NewBlocks; 829 for (auto &BBPredPair : PredMap) { 830 auto *BB = BBPredPair.first; 831 const auto &AddedBlockSet = BBPredPair.second.Added; 832 auto &PrevBlockSet = BBPredPair.second.Prev; 833 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 834 BasicBlock *Pi = Pair.second; 835 if (!AddedBlockSet.count(Pi)) 836 PrevBlockSet.insert(Pi); 837 EdgeCountMap[{Pi, BB}]++; 838 } 839 840 if (PrevBlockSet.empty()) { 841 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); 842 LLVM_DEBUG( 843 dbgs() 844 << "Adding a predecessor to a block with no predecessors. " 845 "This must be an edge added to a new, likely cloned, block. " 846 "Its memory accesses must be already correct, assuming completed " 847 "via the updateExitBlocksForClonedLoop API. " 848 "Assert a single such edge is added so no phi addition or " 849 "additional processing is required.\n"); 850 assert(AddedBlockSet.size() == 1 && 851 "Can only handle adding one predecessor to a new block."); 852 // Need to remove new blocks from PredMap. Remove below to not invalidate 853 // iterator here. 854 NewBlocks.insert(BB); 855 } 856 } 857 // Nothing to process for new/cloned blocks. 858 for (auto *BB : NewBlocks) 859 PredMap.erase(BB); 860 861 SmallVector<BasicBlock *, 8> BlocksToProcess; 862 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace; 863 864 // First create MemoryPhis in all blocks that don't have one. Create in the 865 // order found in Updates, not in PredMap, to get deterministic numbering. 866 for (auto &Edge : Updates) { 867 BasicBlock *BB = Edge.getTo(); 868 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) 869 MSSA->createMemoryPhi(BB); 870 } 871 872 // Now we'll fill in the MemoryPhis with the right incoming values. 873 for (auto &BBPredPair : PredMap) { 874 auto *BB = BBPredPair.first; 875 const auto &PrevBlockSet = BBPredPair.second.Prev; 876 const auto &AddedBlockSet = BBPredPair.second.Added; 877 assert(!PrevBlockSet.empty() && 878 "At least one previous predecessor must exist."); 879 880 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by 881 // keeping this map before the loop. We can reuse already populated entries 882 // if an edge is added from the same predecessor to two different blocks, 883 // and this does happen in rotate. Note that the map needs to be updated 884 // when deleting non-necessary phis below, if the phi is in the map by 885 // replacing the value with DefP1. 886 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred; 887 for (auto *AddedPred : AddedBlockSet) { 888 auto *DefPn = GetLastDef(AddedPred); 889 assert(DefPn != nullptr && "Unable to find last definition."); 890 LastDefAddedPred[AddedPred] = DefPn; 891 } 892 893 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); 894 // If Phi is not empty, add an incoming edge from each added pred. Must 895 // still compute blocks with defs to replace for this block below. 896 if (NewPhi->getNumOperands()) { 897 for (auto *Pred : AddedBlockSet) { 898 auto *LastDefForPred = LastDefAddedPred[Pred]; 899 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 900 NewPhi->addIncoming(LastDefForPred, Pred); 901 } 902 } else { 903 // Pick any existing predecessor and get its definition. All other 904 // existing predecessors should have the same one, since no phi existed. 905 auto *P1 = *PrevBlockSet.begin(); 906 MemoryAccess *DefP1 = GetLastDef(P1); 907 908 // Check DefP1 against all Defs in LastDefPredPair. If all the same, 909 // nothing to add. 910 bool InsertPhi = false; 911 for (auto LastDefPredPair : LastDefAddedPred) 912 if (DefP1 != LastDefPredPair.second) { 913 InsertPhi = true; 914 break; 915 } 916 if (!InsertPhi) { 917 // Since NewPhi may be used in other newly added Phis, replace all uses 918 // of NewPhi with the definition coming from all predecessors (DefP1), 919 // before deleting it. 920 NewPhi->replaceAllUsesWith(DefP1); 921 removeMemoryAccess(NewPhi); 922 continue; 923 } 924 925 // Update Phi with new values for new predecessors and old value for all 926 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered 927 // sets, the order of entries in NewPhi is deterministic. 928 for (auto *Pred : AddedBlockSet) { 929 auto *LastDefForPred = LastDefAddedPred[Pred]; 930 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 931 NewPhi->addIncoming(LastDefForPred, Pred); 932 } 933 for (auto *Pred : PrevBlockSet) 934 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 935 NewPhi->addIncoming(DefP1, Pred); 936 937 // Insert BB in the set of blocks that now have definition. We'll use this 938 // to compute IDF and add Phis there next. 939 BlocksToProcess.push_back(BB); 940 } 941 942 // Get all blocks that used to dominate BB and no longer do after adding 943 // AddedBlockSet, where PrevBlockSet are the previously known predecessors. 944 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); 945 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); 946 assert(PrevIDom && "Previous IDom should exists"); 947 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); 948 assert(NewIDom && "BB should have a new valid idom"); 949 assert(DT.dominates(NewIDom, PrevIDom) && 950 "New idom should dominate old idom"); 951 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); 952 } 953 954 // Compute IDF and add Phis in all IDF blocks that do not have one. 955 SmallVector<BasicBlock *, 32> IDFBlocks; 956 if (!BlocksToProcess.empty()) { 957 ForwardIDFCalculator IDFs(DT); 958 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(), 959 BlocksToProcess.end()); 960 IDFs.setDefiningBlocks(DefiningBlocks); 961 IDFs.calculate(IDFBlocks); 962 for (auto *BBIDF : IDFBlocks) { 963 if (auto *IDFPhi = MSSA->getMemoryAccess(BBIDF)) { 964 // Update existing Phi. 965 // FIXME: some updates may be redundant, try to optimize and skip some. 966 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) 967 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); 968 } else { 969 IDFPhi = MSSA->createMemoryPhi(BBIDF); 970 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) { 971 BasicBlock *Pi = Pair.second; 972 IDFPhi->addIncoming(GetLastDef(Pi), Pi); 973 } 974 } 975 } 976 } 977 978 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no 979 // longer dominate, replace those with the closest dominating def. 980 // This will also update optimized accesses, as they're also uses. 981 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { 982 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { 983 for (auto &DefToReplaceUses : *DefsList) { 984 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); 985 Value::use_iterator UI = DefToReplaceUses.use_begin(), 986 E = DefToReplaceUses.use_end(); 987 for (; UI != E;) { 988 Use &U = *UI; 989 ++UI; 990 MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser()); 991 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) { 992 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); 993 if (!DT.dominates(DominatingBlock, DominatedBlock)) 994 U.set(GetLastDef(DominatedBlock)); 995 } else { 996 BasicBlock *DominatedBlock = Usr->getBlock(); 997 if (!DT.dominates(DominatingBlock, DominatedBlock)) { 998 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) 999 U.set(DomBlPhi); 1000 else { 1001 auto *IDom = DT.getNode(DominatedBlock)->getIDom(); 1002 assert(IDom && "Block must have a valid IDom."); 1003 U.set(GetLastDef(IDom->getBlock())); 1004 } 1005 cast<MemoryUseOrDef>(Usr)->resetOptimized(); 1006 } 1007 } 1008 } 1009 } 1010 } 1011 } 1012 } 1013 1014 // Move What before Where in the MemorySSA IR. 1015 template <class WhereType> 1016 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1017 WhereType Where) { 1018 // Mark MemoryPhi users of What not to be optimized. 1019 for (auto *U : What->users()) 1020 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) 1021 NonOptPhis.insert(PhiUser); 1022 1023 // Replace all our users with our defining access. 1024 What->replaceAllUsesWith(What->getDefiningAccess()); 1025 1026 // Let MemorySSA take care of moving it around in the lists. 1027 MSSA->moveTo(What, BB, Where); 1028 1029 // Now reinsert it into the IR and do whatever fixups needed. 1030 if (auto *MD = dyn_cast<MemoryDef>(What)) 1031 insertDef(MD); 1032 else 1033 insertUse(cast<MemoryUse>(What)); 1034 1035 // Clear dangling pointers. We added all MemoryPhi users, but not all 1036 // of them are removed by fixupDefs(). 1037 NonOptPhis.clear(); 1038 } 1039 1040 // Move What before Where in the MemorySSA IR. 1041 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1042 moveTo(What, Where->getBlock(), Where->getIterator()); 1043 } 1044 1045 // Move What after Where in the MemorySSA IR. 1046 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1047 moveTo(What, Where->getBlock(), ++Where->getIterator()); 1048 } 1049 1050 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 1051 MemorySSA::InsertionPlace Where) { 1052 return moveTo(What, BB, Where); 1053 } 1054 1055 // All accesses in To used to be in From. Move to end and update access lists. 1056 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, 1057 Instruction *Start) { 1058 1059 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); 1060 if (!Accs) 1061 return; 1062 1063 MemoryAccess *FirstInNew = nullptr; 1064 for (Instruction &I : make_range(Start->getIterator(), To->end())) 1065 if ((FirstInNew = MSSA->getMemoryAccess(&I))) 1066 break; 1067 if (!FirstInNew) 1068 return; 1069 1070 auto *MUD = cast<MemoryUseOrDef>(FirstInNew); 1071 do { 1072 auto NextIt = ++MUD->getIterator(); 1073 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) 1074 ? nullptr 1075 : cast<MemoryUseOrDef>(&*NextIt); 1076 MSSA->moveTo(MUD, To, MemorySSA::End); 1077 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to 1078 // retrieve it again. 1079 Accs = MSSA->getWritableBlockAccesses(From); 1080 MUD = NextMUD; 1081 } while (MUD); 1082 } 1083 1084 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, 1085 BasicBlock *To, 1086 Instruction *Start) { 1087 assert(MSSA->getBlockAccesses(To) == nullptr && 1088 "To block is expected to be free of MemoryAccesses."); 1089 moveAllAccesses(From, To, Start); 1090 for (BasicBlock *Succ : successors(To)) 1091 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1092 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1093 } 1094 1095 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, 1096 Instruction *Start) { 1097 assert(From->getSinglePredecessor() == To && 1098 "From block is expected to have a single predecessor (To)."); 1099 moveAllAccesses(From, To, Start); 1100 for (BasicBlock *Succ : successors(From)) 1101 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1102 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1103 } 1104 1105 /// If all arguments of a MemoryPHI are defined by the same incoming 1106 /// argument, return that argument. 1107 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 1108 MemoryAccess *MA = nullptr; 1109 1110 for (auto &Arg : MP->operands()) { 1111 if (!MA) 1112 MA = cast<MemoryAccess>(Arg); 1113 else if (MA != Arg) 1114 return nullptr; 1115 } 1116 return MA; 1117 } 1118 1119 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( 1120 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds, 1121 bool IdenticalEdgesWereMerged) { 1122 assert(!MSSA->getWritableBlockAccesses(New) && 1123 "Access list should be null for a new block."); 1124 MemoryPhi *Phi = MSSA->getMemoryAccess(Old); 1125 if (!Phi) 1126 return; 1127 if (Old->hasNPredecessors(1)) { 1128 assert(pred_size(New) == Preds.size() && 1129 "Should have moved all predecessors."); 1130 MSSA->moveTo(Phi, New, MemorySSA::Beginning); 1131 } else { 1132 assert(!Preds.empty() && "Must be moving at least one predecessor to the " 1133 "new immediate predecessor."); 1134 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); 1135 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); 1136 // Currently only support the case of removing a single incoming edge when 1137 // identical edges were not merged. 1138 if (!IdenticalEdgesWereMerged) 1139 assert(PredsSet.size() == Preds.size() && 1140 "If identical edges were not merged, we cannot have duplicate " 1141 "blocks in the predecessors"); 1142 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { 1143 if (PredsSet.count(B)) { 1144 NewPhi->addIncoming(MA, B); 1145 if (!IdenticalEdgesWereMerged) 1146 PredsSet.erase(B); 1147 return true; 1148 } 1149 return false; 1150 }); 1151 Phi->addIncoming(NewPhi, New); 1152 if (onlySingleValue(NewPhi)) 1153 removeMemoryAccess(NewPhi); 1154 } 1155 } 1156 1157 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { 1158 assert(!MSSA->isLiveOnEntryDef(MA) && 1159 "Trying to remove the live on entry def"); 1160 // We can only delete phi nodes if they have no uses, or we can replace all 1161 // uses with a single definition. 1162 MemoryAccess *NewDefTarget = nullptr; 1163 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 1164 // Note that it is sufficient to know that all edges of the phi node have 1165 // the same argument. If they do, by the definition of dominance frontiers 1166 // (which we used to place this phi), that argument must dominate this phi, 1167 // and thus, must dominate the phi's uses, and so we will not hit the assert 1168 // below. 1169 NewDefTarget = onlySingleValue(MP); 1170 assert((NewDefTarget || MP->use_empty()) && 1171 "We can't delete this memory phi"); 1172 } else { 1173 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 1174 } 1175 1176 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 1177 1178 // Re-point the uses at our defining access 1179 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 1180 // Reset optimized on users of this store, and reset the uses. 1181 // A few notes: 1182 // 1. This is a slightly modified version of RAUW to avoid walking the 1183 // uses twice here. 1184 // 2. If we wanted to be complete, we would have to reset the optimized 1185 // flags on users of phi nodes if doing the below makes a phi node have all 1186 // the same arguments. Instead, we prefer users to removeMemoryAccess those 1187 // phi nodes, because doing it here would be N^3. 1188 if (MA->hasValueHandle()) 1189 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 1190 // Note: We assume MemorySSA is not used in metadata since it's not really 1191 // part of the IR. 1192 1193 while (!MA->use_empty()) { 1194 Use &U = *MA->use_begin(); 1195 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 1196 MUD->resetOptimized(); 1197 if (OptimizePhis) 1198 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser())) 1199 PhisToCheck.insert(MP); 1200 U.set(NewDefTarget); 1201 } 1202 } 1203 1204 // The call below to erase will destroy MA, so we can't change the order we 1205 // are doing things here 1206 MSSA->removeFromLookups(MA); 1207 MSSA->removeFromLists(MA); 1208 1209 // Optionally optimize Phi uses. This will recursively remove trivial phis. 1210 if (!PhisToCheck.empty()) { 1211 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(), 1212 PhisToCheck.end()}; 1213 PhisToCheck.clear(); 1214 1215 unsigned PhisSize = PhisToOptimize.size(); 1216 while (PhisSize-- > 0) 1217 if (MemoryPhi *MP = 1218 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) { 1219 auto OperRange = MP->operands(); 1220 tryRemoveTrivialPhi(MP, OperRange); 1221 } 1222 } 1223 } 1224 1225 void MemorySSAUpdater::removeBlocks( 1226 const SmallPtrSetImpl<BasicBlock *> &DeadBlocks) { 1227 // First delete all uses of BB in MemoryPhis. 1228 for (BasicBlock *BB : DeadBlocks) { 1229 Instruction *TI = BB->getTerminator(); 1230 assert(TI && "Basic block expected to have a terminator instruction"); 1231 for (BasicBlock *Succ : successors(TI)) 1232 if (!DeadBlocks.count(Succ)) 1233 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { 1234 MP->unorderedDeleteIncomingBlock(BB); 1235 if (MP->getNumIncomingValues() == 1) 1236 removeMemoryAccess(MP); 1237 } 1238 // Drop all references of all accesses in BB 1239 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) 1240 for (MemoryAccess &MA : *Acc) 1241 MA.dropAllReferences(); 1242 } 1243 1244 // Next, delete all memory accesses in each block 1245 for (BasicBlock *BB : DeadBlocks) { 1246 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); 1247 if (!Acc) 1248 continue; 1249 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { 1250 MemoryAccess *MA = &*AB; 1251 ++AB; 1252 MSSA->removeFromLookups(MA); 1253 MSSA->removeFromLists(MA); 1254 } 1255 } 1256 } 1257 1258 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) { 1259 for (auto &VH : UpdatedPHIs) 1260 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) { 1261 auto OperRange = MPhi->operands(); 1262 tryRemoveTrivialPhi(MPhi, OperRange); 1263 } 1264 } 1265 1266 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) { 1267 const BasicBlock *BB = I->getParent(); 1268 // Remove memory accesses in BB for I and all following instructions. 1269 auto BBI = I->getIterator(), BBE = BB->end(); 1270 // FIXME: If this becomes too expensive, iterate until the first instruction 1271 // with a memory access, then iterate over MemoryAccesses. 1272 while (BBI != BBE) 1273 removeMemoryAccess(&*(BBI++)); 1274 // Update phis in BB's successors to remove BB. 1275 SmallVector<WeakVH, 16> UpdatedPHIs; 1276 for (const BasicBlock *Successor : successors(BB)) { 1277 removeDuplicatePhiEdgesBetween(BB, Successor); 1278 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) { 1279 MPhi->unorderedDeleteIncomingBlock(BB); 1280 UpdatedPHIs.push_back(MPhi); 1281 } 1282 } 1283 // Optimize trivial phis. 1284 tryRemoveTrivialPhis(UpdatedPHIs); 1285 } 1286 1287 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI, 1288 const BasicBlock *To) { 1289 const BasicBlock *BB = BI->getParent(); 1290 SmallVector<WeakVH, 16> UpdatedPHIs; 1291 for (const BasicBlock *Succ : successors(BB)) { 1292 removeDuplicatePhiEdgesBetween(BB, Succ); 1293 if (Succ != To) 1294 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) { 1295 MPhi->unorderedDeleteIncomingBlock(BB); 1296 UpdatedPHIs.push_back(MPhi); 1297 } 1298 } 1299 // Optimize trivial phis. 1300 tryRemoveTrivialPhis(UpdatedPHIs); 1301 } 1302 1303 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 1304 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 1305 MemorySSA::InsertionPlace Point) { 1306 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1307 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 1308 return NewAccess; 1309 } 1310 1311 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 1312 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 1313 assert(I->getParent() == InsertPt->getBlock() && 1314 "New and old access must be in the same block"); 1315 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1316 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1317 InsertPt->getIterator()); 1318 return NewAccess; 1319 } 1320 1321 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 1322 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 1323 assert(I->getParent() == InsertPt->getBlock() && 1324 "New and old access must be in the same block"); 1325 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1326 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1327 ++InsertPt->getIterator()); 1328 return NewAccess; 1329 } 1330