1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSAUpdater class. 10 // 11 //===----------------------------------------------------------------===// 12 #include "llvm/Analysis/MemorySSAUpdater.h" 13 #include "llvm/Analysis/LoopIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/IteratedDominanceFrontier.h" 18 #include "llvm/Analysis/MemorySSA.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/FormattedStream.h" 29 #include <algorithm> 30 31 #define DEBUG_TYPE "memoryssa" 32 using namespace llvm; 33 34 // This is the marker algorithm from "Simple and Efficient Construction of 35 // Static Single Assignment Form" 36 // The simple, non-marker algorithm places phi nodes at any join 37 // Here, we place markers, and only place phi nodes if they end up necessary. 38 // They are only necessary if they break a cycle (IE we recursively visit 39 // ourselves again), or we discover, while getting the value of the operands, 40 // that there are two or more definitions needing to be merged. 41 // This still will leave non-minimal form in the case of irreducible control 42 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 43 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( 44 BasicBlock *BB, 45 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 46 // First, do a cache lookup. Without this cache, certain CFG structures 47 // (like a series of if statements) take exponential time to visit. 48 auto Cached = CachedPreviousDef.find(BB); 49 if (Cached != CachedPreviousDef.end()) 50 return Cached->second; 51 52 // If this method is called from an unreachable block, return LoE. 53 if (!MSSA->DT->isReachableFromEntry(BB)) 54 return MSSA->getLiveOnEntryDef(); 55 56 if (BasicBlock *Pred = BB->getUniquePredecessor()) { 57 VisitedBlocks.insert(BB); 58 // Single predecessor case, just recurse, we can only have one definition. 59 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); 60 CachedPreviousDef.insert({BB, Result}); 61 return Result; 62 } 63 64 if (VisitedBlocks.count(BB)) { 65 // We hit our node again, meaning we had a cycle, we must insert a phi 66 // node to break it so we have an operand. The only case this will 67 // insert useless phis is if we have irreducible control flow. 68 MemoryAccess *Result = MSSA->createMemoryPhi(BB); 69 CachedPreviousDef.insert({BB, Result}); 70 return Result; 71 } 72 73 if (VisitedBlocks.insert(BB).second) { 74 // Mark us visited so we can detect a cycle 75 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; 76 77 // Recurse to get the values in our predecessors for placement of a 78 // potential phi node. This will insert phi nodes if we cycle in order to 79 // break the cycle and have an operand. 80 bool UniqueIncomingAccess = true; 81 MemoryAccess *SingleAccess = nullptr; 82 for (auto *Pred : predecessors(BB)) { 83 if (MSSA->DT->isReachableFromEntry(Pred)) { 84 auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef); 85 if (!SingleAccess) 86 SingleAccess = IncomingAccess; 87 else if (IncomingAccess != SingleAccess) 88 UniqueIncomingAccess = false; 89 PhiOps.push_back(IncomingAccess); 90 } else 91 PhiOps.push_back(MSSA->getLiveOnEntryDef()); 92 } 93 94 // Now try to simplify the ops to avoid placing a phi. 95 // This may return null if we never created a phi yet, that's okay 96 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 97 98 // See if we can avoid the phi by simplifying it. 99 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 100 // If we couldn't simplify, we may have to create a phi 101 if (Result == Phi && UniqueIncomingAccess && SingleAccess) { 102 // A concrete Phi only exists if we created an empty one to break a cycle. 103 if (Phi) { 104 assert(Phi->operands().empty() && "Expected empty Phi"); 105 Phi->replaceAllUsesWith(SingleAccess); 106 removeMemoryAccess(Phi); 107 } 108 Result = SingleAccess; 109 } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) { 110 if (!Phi) 111 Phi = MSSA->createMemoryPhi(BB); 112 113 // See if the existing phi operands match what we need. 114 // Unlike normal SSA, we only allow one phi node per block, so we can't just 115 // create a new one. 116 if (Phi->getNumOperands() != 0) { 117 // FIXME: Figure out whether this is dead code and if so remove it. 118 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 119 // These will have been filled in by the recursive read we did above. 120 llvm::copy(PhiOps, Phi->op_begin()); 121 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 122 } 123 } else { 124 unsigned i = 0; 125 for (auto *Pred : predecessors(BB)) 126 Phi->addIncoming(&*PhiOps[i++], Pred); 127 InsertedPHIs.push_back(Phi); 128 } 129 Result = Phi; 130 } 131 132 // Set ourselves up for the next variable by resetting visited state. 133 VisitedBlocks.erase(BB); 134 CachedPreviousDef.insert({BB, Result}); 135 return Result; 136 } 137 llvm_unreachable("Should have hit one of the three cases above"); 138 } 139 140 // This starts at the memory access, and goes backwards in the block to find the 141 // previous definition. If a definition is not found the block of the access, 142 // it continues globally, creating phi nodes to ensure we have a single 143 // definition. 144 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 145 if (auto *LocalResult = getPreviousDefInBlock(MA)) 146 return LocalResult; 147 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 148 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); 149 } 150 151 // This starts at the memory access, and goes backwards in the block to the find 152 // the previous definition. If the definition is not found in the block of the 153 // access, it returns nullptr. 154 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 155 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 156 157 // It's possible there are no defs, or we got handed the first def to start. 158 if (Defs) { 159 // If this is a def, we can just use the def iterators. 160 if (!isa<MemoryUse>(MA)) { 161 auto Iter = MA->getReverseDefsIterator(); 162 ++Iter; 163 if (Iter != Defs->rend()) 164 return &*Iter; 165 } else { 166 // Otherwise, have to walk the all access iterator. 167 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 168 for (auto &U : make_range(++MA->getReverseIterator(), End)) 169 if (!isa<MemoryUse>(U)) 170 return cast<MemoryAccess>(&U); 171 // Note that if MA comes before Defs->begin(), we won't hit a def. 172 return nullptr; 173 } 174 } 175 return nullptr; 176 } 177 178 // This starts at the end of block 179 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( 180 BasicBlock *BB, 181 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 182 auto *Defs = MSSA->getWritableBlockDefs(BB); 183 184 if (Defs) { 185 CachedPreviousDef.insert({BB, &*Defs->rbegin()}); 186 return &*Defs->rbegin(); 187 } 188 189 return getPreviousDefRecursive(BB, CachedPreviousDef); 190 } 191 // Recurse over a set of phi uses to eliminate the trivial ones 192 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 193 if (!Phi) 194 return nullptr; 195 TrackingVH<MemoryAccess> Res(Phi); 196 SmallVector<TrackingVH<Value>, 8> Uses; 197 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 198 for (auto &U : Uses) 199 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) 200 tryRemoveTrivialPhi(UsePhi); 201 return Res; 202 } 203 204 // Eliminate trivial phis 205 // Phis are trivial if they are defined either by themselves, or all the same 206 // argument. 207 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 208 // We recursively try to remove them. 209 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) { 210 assert(Phi && "Can only remove concrete Phi."); 211 auto OperRange = Phi->operands(); 212 return tryRemoveTrivialPhi(Phi, OperRange); 213 } 214 template <class RangeType> 215 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 216 RangeType &Operands) { 217 // Bail out on non-opt Phis. 218 if (NonOptPhis.count(Phi)) 219 return Phi; 220 221 // Detect equal or self arguments 222 MemoryAccess *Same = nullptr; 223 for (auto &Op : Operands) { 224 // If the same or self, good so far 225 if (Op == Phi || Op == Same) 226 continue; 227 // not the same, return the phi since it's not eliminatable by us 228 if (Same) 229 return Phi; 230 Same = cast<MemoryAccess>(&*Op); 231 } 232 // Never found a non-self reference, the phi is undef 233 if (Same == nullptr) 234 return MSSA->getLiveOnEntryDef(); 235 if (Phi) { 236 Phi->replaceAllUsesWith(Same); 237 removeMemoryAccess(Phi); 238 } 239 240 // We should only end up recursing in case we replaced something, in which 241 // case, we may have made other Phis trivial. 242 return recursePhi(Same); 243 } 244 245 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) { 246 InsertedPHIs.clear(); 247 MU->setDefiningAccess(getPreviousDef(MU)); 248 249 // In cases without unreachable blocks, because uses do not create new 250 // may-defs, there are only two cases: 251 // 1. There was a def already below us, and therefore, we should not have 252 // created a phi node because it was already needed for the def. 253 // 254 // 2. There is no def below us, and therefore, there is no extra renaming work 255 // to do. 256 257 // In cases with unreachable blocks, where the unnecessary Phis were 258 // optimized out, adding the Use may re-insert those Phis. Hence, when 259 // inserting Uses outside of the MSSA creation process, and new Phis were 260 // added, rename all uses if we are asked. 261 262 if (!RenameUses && !InsertedPHIs.empty()) { 263 auto *Defs = MSSA->getBlockDefs(MU->getBlock()); 264 (void)Defs; 265 assert((!Defs || (++Defs->begin() == Defs->end())) && 266 "Block may have only a Phi or no defs"); 267 } 268 269 if (RenameUses && InsertedPHIs.size()) { 270 SmallPtrSet<BasicBlock *, 16> Visited; 271 BasicBlock *StartBlock = MU->getBlock(); 272 273 if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) { 274 MemoryAccess *FirstDef = &*Defs->begin(); 275 // Convert to incoming value if it's a memorydef. A phi *is* already an 276 // incoming value. 277 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 278 FirstDef = MD->getDefiningAccess(); 279 280 MSSA->renamePass(MU->getBlock(), FirstDef, Visited); 281 } 282 // We just inserted a phi into this block, so the incoming value will 283 // become the phi anyway, so it does not matter what we pass. 284 for (auto &MP : InsertedPHIs) 285 if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP)) 286 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 287 } 288 } 289 290 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 291 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 292 MemoryAccess *NewDef) { 293 // Replace any operand with us an incoming block with the new defining 294 // access. 295 int i = MP->getBasicBlockIndex(BB); 296 assert(i != -1 && "Should have found the basic block in the phi"); 297 // We can't just compare i against getNumOperands since one is signed and the 298 // other not. So use it to index into the block iterator. 299 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); 300 ++BBIter) { 301 if (*BBIter != BB) 302 break; 303 MP->setIncomingValue(i, NewDef); 304 ++i; 305 } 306 } 307 308 // A brief description of the algorithm: 309 // First, we compute what should define the new def, using the SSA 310 // construction algorithm. 311 // Then, we update the defs below us (and any new phi nodes) in the graph to 312 // point to the correct new defs, to ensure we only have one variable, and no 313 // disconnected stores. 314 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 315 InsertedPHIs.clear(); 316 317 // See if we had a local def, and if not, go hunting. 318 MemoryAccess *DefBefore = getPreviousDef(MD); 319 bool DefBeforeSameBlock = false; 320 if (DefBefore->getBlock() == MD->getBlock() && 321 !(isa<MemoryPhi>(DefBefore) && 322 llvm::is_contained(InsertedPHIs, DefBefore))) 323 DefBeforeSameBlock = true; 324 325 // There is a def before us, which means we can replace any store/phi uses 326 // of that thing with us, since we are in the way of whatever was there 327 // before. 328 // We now define that def's memorydefs and memoryphis 329 if (DefBeforeSameBlock) { 330 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) { 331 // Leave the MemoryUses alone. 332 // Also make sure we skip ourselves to avoid self references. 333 User *Usr = U.getUser(); 334 return !isa<MemoryUse>(Usr) && Usr != MD; 335 // Defs are automatically unoptimized when the user is set to MD below, 336 // because the isOptimized() call will fail to find the same ID. 337 }); 338 } 339 340 // and that def is now our defining access. 341 MD->setDefiningAccess(DefBefore); 342 343 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); 344 345 SmallSet<WeakVH, 8> ExistingPhis; 346 347 // Remember the index where we may insert new phis. 348 unsigned NewPhiIndex = InsertedPHIs.size(); 349 if (!DefBeforeSameBlock) { 350 // If there was a local def before us, we must have the same effect it 351 // did. Because every may-def is the same, any phis/etc we would create, it 352 // would also have created. If there was no local def before us, we 353 // performed a global update, and have to search all successors and make 354 // sure we update the first def in each of them (following all paths until 355 // we hit the first def along each path). This may also insert phi nodes. 356 // TODO: There are other cases we can skip this work, such as when we have a 357 // single successor, and only used a straight line of single pred blocks 358 // backwards to find the def. To make that work, we'd have to track whether 359 // getDefRecursive only ever used the single predecessor case. These types 360 // of paths also only exist in between CFG simplifications. 361 362 // If this is the first def in the block and this insert is in an arbitrary 363 // place, compute IDF and place phis. 364 SmallPtrSet<BasicBlock *, 2> DefiningBlocks; 365 366 // If this is the last Def in the block, also compute IDF based on MD, since 367 // this may a new Def added, and we may need additional Phis. 368 auto Iter = MD->getDefsIterator(); 369 ++Iter; 370 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end(); 371 if (Iter == IterEnd) 372 DefiningBlocks.insert(MD->getBlock()); 373 374 for (const auto &VH : InsertedPHIs) 375 if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH)) 376 DefiningBlocks.insert(RealPHI->getBlock()); 377 ForwardIDFCalculator IDFs(*MSSA->DT); 378 SmallVector<BasicBlock *, 32> IDFBlocks; 379 IDFs.setDefiningBlocks(DefiningBlocks); 380 IDFs.calculate(IDFBlocks); 381 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs; 382 for (auto *BBIDF : IDFBlocks) { 383 auto *MPhi = MSSA->getMemoryAccess(BBIDF); 384 if (!MPhi) { 385 MPhi = MSSA->createMemoryPhi(BBIDF); 386 NewInsertedPHIs.push_back(MPhi); 387 } else { 388 ExistingPhis.insert(MPhi); 389 } 390 // Add the phis created into the IDF blocks to NonOptPhis, so they are not 391 // optimized out as trivial by the call to getPreviousDefFromEnd below. 392 // Once they are complete, all these Phis are added to the FixupList, and 393 // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may 394 // need fixing as well, and potentially be trivial before this insertion, 395 // hence add all IDF Phis. See PR43044. 396 NonOptPhis.insert(MPhi); 397 } 398 for (auto &MPhi : NewInsertedPHIs) { 399 auto *BBIDF = MPhi->getBlock(); 400 for (auto *Pred : predecessors(BBIDF)) { 401 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 402 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred); 403 } 404 } 405 406 // Re-take the index where we're adding the new phis, because the above call 407 // to getPreviousDefFromEnd, may have inserted into InsertedPHIs. 408 NewPhiIndex = InsertedPHIs.size(); 409 for (auto &MPhi : NewInsertedPHIs) { 410 InsertedPHIs.push_back(&*MPhi); 411 FixupList.push_back(&*MPhi); 412 } 413 414 FixupList.push_back(MD); 415 } 416 417 // Remember the index where we stopped inserting new phis above, since the 418 // fixupDefs call in the loop below may insert more, that are already minimal. 419 unsigned NewPhiIndexEnd = InsertedPHIs.size(); 420 421 while (!FixupList.empty()) { 422 unsigned StartingPHISize = InsertedPHIs.size(); 423 fixupDefs(FixupList); 424 FixupList.clear(); 425 // Put any new phis on the fixup list, and process them 426 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); 427 } 428 429 // Optimize potentially non-minimal phis added in this method. 430 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex; 431 if (NewPhiSize) 432 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize)); 433 434 // Now that all fixups are done, rename all uses if we are asked. 435 if (RenameUses) { 436 SmallPtrSet<BasicBlock *, 16> Visited; 437 BasicBlock *StartBlock = MD->getBlock(); 438 // We are guaranteed there is a def in the block, because we just got it 439 // handed to us in this function. 440 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 441 // Convert to incoming value if it's a memorydef. A phi *is* already an 442 // incoming value. 443 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 444 FirstDef = MD->getDefiningAccess(); 445 446 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 447 // We just inserted a phi into this block, so the incoming value will become 448 // the phi anyway, so it does not matter what we pass. 449 for (auto &MP : InsertedPHIs) { 450 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 451 if (Phi) 452 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 453 } 454 // Existing Phi blocks may need renaming too, if an access was previously 455 // optimized and the inserted Defs "covers" the Optimized value. 456 for (auto &MP : ExistingPhis) { 457 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 458 if (Phi) 459 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 460 } 461 } 462 } 463 464 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { 465 SmallPtrSet<const BasicBlock *, 8> Seen; 466 SmallVector<const BasicBlock *, 16> Worklist; 467 for (auto &Var : Vars) { 468 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); 469 if (!NewDef) 470 continue; 471 // First, see if there is a local def after the operand. 472 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 473 auto DefIter = NewDef->getDefsIterator(); 474 475 // The temporary Phi is being fixed, unmark it for not to optimize. 476 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) 477 NonOptPhis.erase(Phi); 478 479 // If there is a local def after us, we only have to rename that. 480 if (++DefIter != Defs->end()) { 481 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 482 continue; 483 } 484 485 // Otherwise, we need to search down through the CFG. 486 // For each of our successors, handle it directly if their is a phi, or 487 // place on the fixup worklist. 488 for (const auto *S : successors(NewDef->getBlock())) { 489 if (auto *MP = MSSA->getMemoryAccess(S)) 490 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 491 else 492 Worklist.push_back(S); 493 } 494 495 while (!Worklist.empty()) { 496 const BasicBlock *FixupBlock = Worklist.back(); 497 Worklist.pop_back(); 498 499 // Get the first def in the block that isn't a phi node. 500 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 501 auto *FirstDef = &*Defs->begin(); 502 // The loop above and below should have taken care of phi nodes 503 assert(!isa<MemoryPhi>(FirstDef) && 504 "Should have already handled phi nodes!"); 505 // We are now this def's defining access, make sure we actually dominate 506 // it 507 assert(MSSA->dominates(NewDef, FirstDef) && 508 "Should have dominated the new access"); 509 510 // This may insert new phi nodes, because we are not guaranteed the 511 // block we are processing has a single pred, and depending where the 512 // store was inserted, it may require phi nodes below it. 513 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 514 return; 515 } 516 // We didn't find a def, so we must continue. 517 for (const auto *S : successors(FixupBlock)) { 518 // If there is a phi node, handle it. 519 // Otherwise, put the block on the worklist 520 if (auto *MP = MSSA->getMemoryAccess(S)) 521 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 522 else { 523 // If we cycle, we should have ended up at a phi node that we already 524 // processed. FIXME: Double check this 525 if (!Seen.insert(S).second) 526 continue; 527 Worklist.push_back(S); 528 } 529 } 530 } 531 } 532 } 533 534 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { 535 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 536 MPhi->unorderedDeleteIncomingBlock(From); 537 tryRemoveTrivialPhi(MPhi); 538 } 539 } 540 541 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From, 542 const BasicBlock *To) { 543 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 544 bool Found = false; 545 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { 546 if (From != B) 547 return false; 548 if (Found) 549 return true; 550 Found = true; 551 return false; 552 }); 553 tryRemoveTrivialPhi(MPhi); 554 } 555 } 556 557 /// If all arguments of a MemoryPHI are defined by the same incoming 558 /// argument, return that argument. 559 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 560 MemoryAccess *MA = nullptr; 561 562 for (auto &Arg : MP->operands()) { 563 if (!MA) 564 MA = cast<MemoryAccess>(Arg); 565 else if (MA != Arg) 566 return nullptr; 567 } 568 return MA; 569 } 570 571 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA, 572 const ValueToValueMapTy &VMap, 573 PhiToDefMap &MPhiMap, 574 bool CloneWasSimplified, 575 MemorySSA *MSSA) { 576 MemoryAccess *InsnDefining = MA; 577 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) { 578 if (!MSSA->isLiveOnEntryDef(DefMUD)) { 579 Instruction *DefMUDI = DefMUD->getMemoryInst(); 580 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); 581 if (Instruction *NewDefMUDI = 582 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) { 583 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); 584 if (!CloneWasSimplified) 585 assert(InsnDefining && "Defining instruction cannot be nullptr."); 586 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) { 587 // The clone was simplified, it's no longer a MemoryDef, look up. 588 auto DefIt = DefMUD->getDefsIterator(); 589 // Since simplified clones only occur in single block cloning, a 590 // previous definition must exist, otherwise NewDefMUDI would not 591 // have been found in VMap. 592 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() && 593 "Previous def must exist"); 594 InsnDefining = getNewDefiningAccessForClone( 595 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA); 596 } 597 } 598 } 599 } else { 600 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining); 601 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) 602 InsnDefining = NewDefPhi; 603 } 604 assert(InsnDefining && "Defining instruction cannot be nullptr."); 605 return InsnDefining; 606 } 607 608 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, 609 const ValueToValueMapTy &VMap, 610 PhiToDefMap &MPhiMap, 611 bool CloneWasSimplified) { 612 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 613 if (!Acc) 614 return; 615 for (const MemoryAccess &MA : *Acc) { 616 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) { 617 Instruction *Insn = MUD->getMemoryInst(); 618 // Entry does not exist if the clone of the block did not clone all 619 // instructions. This occurs in LoopRotate when cloning instructions 620 // from the old header to the old preheader. The cloned instruction may 621 // also be a simplified Value, not an Instruction (see LoopRotate). 622 // Also in LoopRotate, even when it's an instruction, due to it being 623 // simplified, it may be a Use rather than a Def, so we cannot use MUD as 624 // template. Calls coming from updateForClonedBlockIntoPred, ensure this. 625 if (Instruction *NewInsn = 626 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) { 627 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( 628 NewInsn, 629 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap, 630 MPhiMap, CloneWasSimplified, MSSA), 631 /*Template=*/CloneWasSimplified ? nullptr : MUD, 632 /*CreationMustSucceed=*/CloneWasSimplified ? false : true); 633 if (NewUseOrDef) 634 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); 635 } 636 } 637 } 638 } 639 640 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock( 641 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) { 642 auto *MPhi = MSSA->getMemoryAccess(Header); 643 if (!MPhi) 644 return; 645 646 // Create phi node in the backedge block and populate it with the same 647 // incoming values as MPhi. Skip incoming values coming from Preheader. 648 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock); 649 bool HasUniqueIncomingValue = true; 650 MemoryAccess *UniqueValue = nullptr; 651 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) { 652 BasicBlock *IBB = MPhi->getIncomingBlock(I); 653 MemoryAccess *IV = MPhi->getIncomingValue(I); 654 if (IBB != Preheader) { 655 NewMPhi->addIncoming(IV, IBB); 656 if (HasUniqueIncomingValue) { 657 if (!UniqueValue) 658 UniqueValue = IV; 659 else if (UniqueValue != IV) 660 HasUniqueIncomingValue = false; 661 } 662 } 663 } 664 665 // Update incoming edges into MPhi. Remove all but the incoming edge from 666 // Preheader. Add an edge from NewMPhi 667 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader); 668 MPhi->setIncomingValue(0, AccFromPreheader); 669 MPhi->setIncomingBlock(0, Preheader); 670 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I) 671 MPhi->unorderedDeleteIncoming(I); 672 MPhi->addIncoming(NewMPhi, BEBlock); 673 674 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be 675 // replaced with the unique value. 676 tryRemoveTrivialPhi(NewMPhi); 677 } 678 679 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, 680 ArrayRef<BasicBlock *> ExitBlocks, 681 const ValueToValueMapTy &VMap, 682 bool IgnoreIncomingWithNoClones) { 683 PhiToDefMap MPhiMap; 684 685 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { 686 assert(Phi && NewPhi && "Invalid Phi nodes."); 687 BasicBlock *NewPhiBB = NewPhi->getBlock(); 688 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB), 689 pred_end(NewPhiBB)); 690 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { 691 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); 692 BasicBlock *IncBB = Phi->getIncomingBlock(It); 693 694 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB))) 695 IncBB = NewIncBB; 696 else if (IgnoreIncomingWithNoClones) 697 continue; 698 699 // Now we have IncBB, and will need to add incoming from it to NewPhi. 700 701 // If IncBB is not a predecessor of NewPhiBB, then do not add it. 702 // NewPhiBB was cloned without that edge. 703 if (!NewPhiBBPreds.count(IncBB)) 704 continue; 705 706 // Determine incoming value and add it as incoming from IncBB. 707 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) { 708 if (!MSSA->isLiveOnEntryDef(IncMUD)) { 709 Instruction *IncI = IncMUD->getMemoryInst(); 710 assert(IncI && "Found MemoryUseOrDef with no Instruction."); 711 if (Instruction *NewIncI = 712 cast_or_null<Instruction>(VMap.lookup(IncI))) { 713 IncMUD = MSSA->getMemoryAccess(NewIncI); 714 assert(IncMUD && 715 "MemoryUseOrDef cannot be null, all preds processed."); 716 } 717 } 718 NewPhi->addIncoming(IncMUD, IncBB); 719 } else { 720 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess); 721 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) 722 NewPhi->addIncoming(NewDefPhi, IncBB); 723 else 724 NewPhi->addIncoming(IncPhi, IncBB); 725 } 726 } 727 if (auto *SingleAccess = onlySingleValue(NewPhi)) { 728 MPhiMap[Phi] = SingleAccess; 729 removeMemoryAccess(NewPhi); 730 } 731 }; 732 733 auto ProcessBlock = [&](BasicBlock *BB) { 734 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB)); 735 if (!NewBlock) 736 return; 737 738 assert(!MSSA->getWritableBlockAccesses(NewBlock) && 739 "Cloned block should have no accesses"); 740 741 // Add MemoryPhi. 742 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { 743 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); 744 MPhiMap[MPhi] = NewPhi; 745 } 746 // Update Uses and Defs. 747 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); 748 }; 749 750 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 751 ProcessBlock(BB); 752 753 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 754 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 755 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) 756 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi)); 757 } 758 759 void MemorySSAUpdater::updateForClonedBlockIntoPred( 760 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { 761 // All defs/phis from outside BB that are used in BB, are valid uses in P1. 762 // Since those defs/phis must have dominated BB, and also dominate P1. 763 // Defs from BB being used in BB will be replaced with the cloned defs from 764 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the 765 // incoming def into the Phi from P1. 766 // Instructions cloned into the predecessor are in practice sometimes 767 // simplified, so disable the use of the template, and create an access from 768 // scratch. 769 PhiToDefMap MPhiMap; 770 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 771 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); 772 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true); 773 } 774 775 template <typename Iter> 776 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( 777 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, 778 DominatorTree &DT) { 779 SmallVector<CFGUpdate, 4> Updates; 780 // Update/insert phis in all successors of exit blocks. 781 for (auto *Exit : ExitBlocks) 782 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) 783 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) { 784 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 785 Updates.push_back({DT.Insert, NewExit, ExitSucc}); 786 } 787 applyInsertUpdates(Updates, DT); 788 } 789 790 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 791 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap, 792 DominatorTree &DT) { 793 const ValueToValueMapTy *const Arr[] = {&VMap}; 794 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), 795 std::end(Arr), DT); 796 } 797 798 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 799 ArrayRef<BasicBlock *> ExitBlocks, 800 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) { 801 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) { 802 return I.get(); 803 }; 804 using MappedIteratorType = 805 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *, 806 decltype(GetPtr)>; 807 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); 808 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); 809 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); 810 } 811 812 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates, 813 DominatorTree &DT) { 814 SmallVector<CFGUpdate, 4> DeleteUpdates; 815 SmallVector<CFGUpdate, 4> RevDeleteUpdates; 816 SmallVector<CFGUpdate, 4> InsertUpdates; 817 for (auto &Update : Updates) { 818 if (Update.getKind() == DT.Insert) 819 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 820 else { 821 DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()}); 822 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 823 } 824 } 825 826 if (!DeleteUpdates.empty()) { 827 SmallVector<CFGUpdate, 0> Empty; 828 // Deletes are reversed applied, because this CFGView is pretending the 829 // deletes did not happen yet, hence the edges still exist. 830 DT.applyUpdates(Empty, RevDeleteUpdates); 831 832 // Note: the MSSA update below doesn't distinguish between a GD with 833 // (RevDelete,false) and (Delete, true), but this matters for the DT 834 // updates above; for "children" purposes they are equivalent; but the 835 // updates themselves convey the desired update, used inside DT only. 836 GraphDiff<BasicBlock *> GD(RevDeleteUpdates); 837 applyInsertUpdates(InsertUpdates, DT, &GD); 838 // Update DT to redelete edges; this matches the real CFG so we can perform 839 // the standard update without a postview of the CFG. 840 DT.applyUpdates(DeleteUpdates); 841 } else { 842 GraphDiff<BasicBlock *> GD; 843 applyInsertUpdates(InsertUpdates, DT, &GD); 844 } 845 846 // Update for deleted edges 847 for (auto &Update : DeleteUpdates) 848 removeEdge(Update.getFrom(), Update.getTo()); 849 } 850 851 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 852 DominatorTree &DT) { 853 GraphDiff<BasicBlock *> GD; 854 applyInsertUpdates(Updates, DT, &GD); 855 } 856 857 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 858 DominatorTree &DT, 859 const GraphDiff<BasicBlock *> *GD) { 860 // Get recursive last Def, assuming well formed MSSA and updated DT. 861 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { 862 while (true) { 863 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); 864 // Return last Def or Phi in BB, if it exists. 865 if (Defs) 866 return &*(--Defs->end()); 867 868 // Check number of predecessors, we only care if there's more than one. 869 unsigned Count = 0; 870 BasicBlock *Pred = nullptr; 871 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) { 872 Pred = Pi; 873 Count++; 874 if (Count == 2) 875 break; 876 } 877 878 // If BB has multiple predecessors, get last definition from IDom. 879 if (Count != 1) { 880 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its 881 // DT is invalidated. Return LoE as its last def. This will be added to 882 // MemoryPhi node, and later deleted when the block is deleted. 883 if (!DT.getNode(BB)) 884 return MSSA->getLiveOnEntryDef(); 885 if (auto *IDom = DT.getNode(BB)->getIDom()) 886 if (IDom->getBlock() != BB) { 887 BB = IDom->getBlock(); 888 continue; 889 } 890 return MSSA->getLiveOnEntryDef(); 891 } else { 892 // Single predecessor, BB cannot be dead. GetLastDef of Pred. 893 assert(Count == 1 && Pred && "Single predecessor expected."); 894 // BB can be unreachable though, return LoE if that is the case. 895 if (!DT.getNode(BB)) 896 return MSSA->getLiveOnEntryDef(); 897 BB = Pred; 898 } 899 }; 900 llvm_unreachable("Unable to get last definition."); 901 }; 902 903 // Get nearest IDom given a set of blocks. 904 // TODO: this can be optimized by starting the search at the node with the 905 // lowest level (highest in the tree). 906 auto FindNearestCommonDominator = 907 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * { 908 BasicBlock *PrevIDom = *BBSet.begin(); 909 for (auto *BB : BBSet) 910 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); 911 return PrevIDom; 912 }; 913 914 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not 915 // include CurrIDom. 916 auto GetNoLongerDomBlocks = 917 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, 918 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) { 919 if (PrevIDom == CurrIDom) 920 return; 921 BlocksPrevDom.push_back(PrevIDom); 922 BasicBlock *NextIDom = PrevIDom; 923 while (BasicBlock *UpIDom = 924 DT.getNode(NextIDom)->getIDom()->getBlock()) { 925 if (UpIDom == CurrIDom) 926 break; 927 BlocksPrevDom.push_back(UpIDom); 928 NextIDom = UpIDom; 929 } 930 }; 931 932 // Map a BB to its predecessors: added + previously existing. To get a 933 // deterministic order, store predecessors as SetVectors. The order in each 934 // will be defined by the order in Updates (fixed) and the order given by 935 // children<> (also fixed). Since we further iterate over these ordered sets, 936 // we lose the information of multiple edges possibly existing between two 937 // blocks, so we'll keep and EdgeCount map for that. 938 // An alternate implementation could keep unordered set for the predecessors, 939 // traverse either Updates or children<> each time to get the deterministic 940 // order, and drop the usage of EdgeCount. This alternate approach would still 941 // require querying the maps for each predecessor, and children<> call has 942 // additional computation inside for creating the snapshot-graph predecessors. 943 // As such, we favor using a little additional storage and less compute time. 944 // This decision can be revisited if we find the alternative more favorable. 945 946 struct PredInfo { 947 SmallSetVector<BasicBlock *, 2> Added; 948 SmallSetVector<BasicBlock *, 2> Prev; 949 }; 950 SmallDenseMap<BasicBlock *, PredInfo> PredMap; 951 952 for (auto &Edge : Updates) { 953 BasicBlock *BB = Edge.getTo(); 954 auto &AddedBlockSet = PredMap[BB].Added; 955 AddedBlockSet.insert(Edge.getFrom()); 956 } 957 958 // Store all existing predecessor for each BB, at least one must exist. 959 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap; 960 SmallPtrSet<BasicBlock *, 2> NewBlocks; 961 for (auto &BBPredPair : PredMap) { 962 auto *BB = BBPredPair.first; 963 const auto &AddedBlockSet = BBPredPair.second.Added; 964 auto &PrevBlockSet = BBPredPair.second.Prev; 965 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) { 966 if (!AddedBlockSet.count(Pi)) 967 PrevBlockSet.insert(Pi); 968 EdgeCountMap[{Pi, BB}]++; 969 } 970 971 if (PrevBlockSet.empty()) { 972 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); 973 LLVM_DEBUG( 974 dbgs() 975 << "Adding a predecessor to a block with no predecessors. " 976 "This must be an edge added to a new, likely cloned, block. " 977 "Its memory accesses must be already correct, assuming completed " 978 "via the updateExitBlocksForClonedLoop API. " 979 "Assert a single such edge is added so no phi addition or " 980 "additional processing is required.\n"); 981 assert(AddedBlockSet.size() == 1 && 982 "Can only handle adding one predecessor to a new block."); 983 // Need to remove new blocks from PredMap. Remove below to not invalidate 984 // iterator here. 985 NewBlocks.insert(BB); 986 } 987 } 988 // Nothing to process for new/cloned blocks. 989 for (auto *BB : NewBlocks) 990 PredMap.erase(BB); 991 992 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace; 993 SmallVector<WeakVH, 8> InsertedPhis; 994 995 // First create MemoryPhis in all blocks that don't have one. Create in the 996 // order found in Updates, not in PredMap, to get deterministic numbering. 997 for (auto &Edge : Updates) { 998 BasicBlock *BB = Edge.getTo(); 999 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) 1000 InsertedPhis.push_back(MSSA->createMemoryPhi(BB)); 1001 } 1002 1003 // Now we'll fill in the MemoryPhis with the right incoming values. 1004 for (auto &BBPredPair : PredMap) { 1005 auto *BB = BBPredPair.first; 1006 const auto &PrevBlockSet = BBPredPair.second.Prev; 1007 const auto &AddedBlockSet = BBPredPair.second.Added; 1008 assert(!PrevBlockSet.empty() && 1009 "At least one previous predecessor must exist."); 1010 1011 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by 1012 // keeping this map before the loop. We can reuse already populated entries 1013 // if an edge is added from the same predecessor to two different blocks, 1014 // and this does happen in rotate. Note that the map needs to be updated 1015 // when deleting non-necessary phis below, if the phi is in the map by 1016 // replacing the value with DefP1. 1017 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred; 1018 for (auto *AddedPred : AddedBlockSet) { 1019 auto *DefPn = GetLastDef(AddedPred); 1020 assert(DefPn != nullptr && "Unable to find last definition."); 1021 LastDefAddedPred[AddedPred] = DefPn; 1022 } 1023 1024 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); 1025 // If Phi is not empty, add an incoming edge from each added pred. Must 1026 // still compute blocks with defs to replace for this block below. 1027 if (NewPhi->getNumOperands()) { 1028 for (auto *Pred : AddedBlockSet) { 1029 auto *LastDefForPred = LastDefAddedPred[Pred]; 1030 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1031 NewPhi->addIncoming(LastDefForPred, Pred); 1032 } 1033 } else { 1034 // Pick any existing predecessor and get its definition. All other 1035 // existing predecessors should have the same one, since no phi existed. 1036 auto *P1 = *PrevBlockSet.begin(); 1037 MemoryAccess *DefP1 = GetLastDef(P1); 1038 1039 // Check DefP1 against all Defs in LastDefPredPair. If all the same, 1040 // nothing to add. 1041 bool InsertPhi = false; 1042 for (auto LastDefPredPair : LastDefAddedPred) 1043 if (DefP1 != LastDefPredPair.second) { 1044 InsertPhi = true; 1045 break; 1046 } 1047 if (!InsertPhi) { 1048 // Since NewPhi may be used in other newly added Phis, replace all uses 1049 // of NewPhi with the definition coming from all predecessors (DefP1), 1050 // before deleting it. 1051 NewPhi->replaceAllUsesWith(DefP1); 1052 removeMemoryAccess(NewPhi); 1053 continue; 1054 } 1055 1056 // Update Phi with new values for new predecessors and old value for all 1057 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered 1058 // sets, the order of entries in NewPhi is deterministic. 1059 for (auto *Pred : AddedBlockSet) { 1060 auto *LastDefForPred = LastDefAddedPred[Pred]; 1061 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1062 NewPhi->addIncoming(LastDefForPred, Pred); 1063 } 1064 for (auto *Pred : PrevBlockSet) 1065 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1066 NewPhi->addIncoming(DefP1, Pred); 1067 } 1068 1069 // Get all blocks that used to dominate BB and no longer do after adding 1070 // AddedBlockSet, where PrevBlockSet are the previously known predecessors. 1071 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); 1072 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); 1073 assert(PrevIDom && "Previous IDom should exists"); 1074 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); 1075 assert(NewIDom && "BB should have a new valid idom"); 1076 assert(DT.dominates(NewIDom, PrevIDom) && 1077 "New idom should dominate old idom"); 1078 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); 1079 } 1080 1081 tryRemoveTrivialPhis(InsertedPhis); 1082 // Create the set of blocks that now have a definition. We'll use this to 1083 // compute IDF and add Phis there next. 1084 SmallVector<BasicBlock *, 8> BlocksToProcess; 1085 for (auto &VH : InsertedPhis) 1086 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1087 BlocksToProcess.push_back(MPhi->getBlock()); 1088 1089 // Compute IDF and add Phis in all IDF blocks that do not have one. 1090 SmallVector<BasicBlock *, 32> IDFBlocks; 1091 if (!BlocksToProcess.empty()) { 1092 ForwardIDFCalculator IDFs(DT, GD); 1093 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(), 1094 BlocksToProcess.end()); 1095 IDFs.setDefiningBlocks(DefiningBlocks); 1096 IDFs.calculate(IDFBlocks); 1097 1098 SmallSetVector<MemoryPhi *, 4> PhisToFill; 1099 // First create all needed Phis. 1100 for (auto *BBIDF : IDFBlocks) 1101 if (!MSSA->getMemoryAccess(BBIDF)) { 1102 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF); 1103 InsertedPhis.push_back(IDFPhi); 1104 PhisToFill.insert(IDFPhi); 1105 } 1106 // Then update or insert their correct incoming values. 1107 for (auto *BBIDF : IDFBlocks) { 1108 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF); 1109 assert(IDFPhi && "Phi must exist"); 1110 if (!PhisToFill.count(IDFPhi)) { 1111 // Update existing Phi. 1112 // FIXME: some updates may be redundant, try to optimize and skip some. 1113 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) 1114 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); 1115 } else { 1116 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF)) 1117 IDFPhi->addIncoming(GetLastDef(Pi), Pi); 1118 } 1119 } 1120 } 1121 1122 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no 1123 // longer dominate, replace those with the closest dominating def. 1124 // This will also update optimized accesses, as they're also uses. 1125 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { 1126 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { 1127 for (auto &DefToReplaceUses : *DefsList) { 1128 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); 1129 Value::use_iterator UI = DefToReplaceUses.use_begin(), 1130 E = DefToReplaceUses.use_end(); 1131 for (; UI != E;) { 1132 Use &U = *UI; 1133 ++UI; 1134 MemoryAccess *Usr = cast<MemoryAccess>(U.getUser()); 1135 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) { 1136 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); 1137 if (!DT.dominates(DominatingBlock, DominatedBlock)) 1138 U.set(GetLastDef(DominatedBlock)); 1139 } else { 1140 BasicBlock *DominatedBlock = Usr->getBlock(); 1141 if (!DT.dominates(DominatingBlock, DominatedBlock)) { 1142 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) 1143 U.set(DomBlPhi); 1144 else { 1145 auto *IDom = DT.getNode(DominatedBlock)->getIDom(); 1146 assert(IDom && "Block must have a valid IDom."); 1147 U.set(GetLastDef(IDom->getBlock())); 1148 } 1149 cast<MemoryUseOrDef>(Usr)->resetOptimized(); 1150 } 1151 } 1152 } 1153 } 1154 } 1155 } 1156 tryRemoveTrivialPhis(InsertedPhis); 1157 } 1158 1159 // Move What before Where in the MemorySSA IR. 1160 template <class WhereType> 1161 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1162 WhereType Where) { 1163 // Mark MemoryPhi users of What not to be optimized. 1164 for (auto *U : What->users()) 1165 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) 1166 NonOptPhis.insert(PhiUser); 1167 1168 // Replace all our users with our defining access. 1169 What->replaceAllUsesWith(What->getDefiningAccess()); 1170 1171 // Let MemorySSA take care of moving it around in the lists. 1172 MSSA->moveTo(What, BB, Where); 1173 1174 // Now reinsert it into the IR and do whatever fixups needed. 1175 if (auto *MD = dyn_cast<MemoryDef>(What)) 1176 insertDef(MD, /*RenameUses=*/true); 1177 else 1178 insertUse(cast<MemoryUse>(What), /*RenameUses=*/true); 1179 1180 // Clear dangling pointers. We added all MemoryPhi users, but not all 1181 // of them are removed by fixupDefs(). 1182 NonOptPhis.clear(); 1183 } 1184 1185 // Move What before Where in the MemorySSA IR. 1186 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1187 moveTo(What, Where->getBlock(), Where->getIterator()); 1188 } 1189 1190 // Move What after Where in the MemorySSA IR. 1191 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1192 moveTo(What, Where->getBlock(), ++Where->getIterator()); 1193 } 1194 1195 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 1196 MemorySSA::InsertionPlace Where) { 1197 if (Where != MemorySSA::InsertionPlace::BeforeTerminator) 1198 return moveTo(What, BB, Where); 1199 1200 if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator())) 1201 return moveBefore(What, Where); 1202 else 1203 return moveTo(What, BB, MemorySSA::InsertionPlace::End); 1204 } 1205 1206 // All accesses in To used to be in From. Move to end and update access lists. 1207 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, 1208 Instruction *Start) { 1209 1210 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); 1211 if (!Accs) 1212 return; 1213 1214 assert(Start->getParent() == To && "Incorrect Start instruction"); 1215 MemoryAccess *FirstInNew = nullptr; 1216 for (Instruction &I : make_range(Start->getIterator(), To->end())) 1217 if ((FirstInNew = MSSA->getMemoryAccess(&I))) 1218 break; 1219 if (FirstInNew) { 1220 auto *MUD = cast<MemoryUseOrDef>(FirstInNew); 1221 do { 1222 auto NextIt = ++MUD->getIterator(); 1223 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) 1224 ? nullptr 1225 : cast<MemoryUseOrDef>(&*NextIt); 1226 MSSA->moveTo(MUD, To, MemorySSA::End); 1227 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need 1228 // to retrieve it again. 1229 Accs = MSSA->getWritableBlockAccesses(From); 1230 MUD = NextMUD; 1231 } while (MUD); 1232 } 1233 1234 // If all accesses were moved and only a trivial Phi remains, we try to remove 1235 // that Phi. This is needed when From is going to be deleted. 1236 auto *Defs = MSSA->getWritableBlockDefs(From); 1237 if (Defs && !Defs->empty()) 1238 if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin())) 1239 tryRemoveTrivialPhi(Phi); 1240 } 1241 1242 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, 1243 BasicBlock *To, 1244 Instruction *Start) { 1245 assert(MSSA->getBlockAccesses(To) == nullptr && 1246 "To block is expected to be free of MemoryAccesses."); 1247 moveAllAccesses(From, To, Start); 1248 for (BasicBlock *Succ : successors(To)) 1249 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1250 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1251 } 1252 1253 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, 1254 Instruction *Start) { 1255 assert(From->getUniquePredecessor() == To && 1256 "From block is expected to have a single predecessor (To)."); 1257 moveAllAccesses(From, To, Start); 1258 for (BasicBlock *Succ : successors(From)) 1259 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1260 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1261 } 1262 1263 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( 1264 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds, 1265 bool IdenticalEdgesWereMerged) { 1266 assert(!MSSA->getWritableBlockAccesses(New) && 1267 "Access list should be null for a new block."); 1268 MemoryPhi *Phi = MSSA->getMemoryAccess(Old); 1269 if (!Phi) 1270 return; 1271 if (Old->hasNPredecessors(1)) { 1272 assert(pred_size(New) == Preds.size() && 1273 "Should have moved all predecessors."); 1274 MSSA->moveTo(Phi, New, MemorySSA::Beginning); 1275 } else { 1276 assert(!Preds.empty() && "Must be moving at least one predecessor to the " 1277 "new immediate predecessor."); 1278 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); 1279 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); 1280 // Currently only support the case of removing a single incoming edge when 1281 // identical edges were not merged. 1282 if (!IdenticalEdgesWereMerged) 1283 assert(PredsSet.size() == Preds.size() && 1284 "If identical edges were not merged, we cannot have duplicate " 1285 "blocks in the predecessors"); 1286 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { 1287 if (PredsSet.count(B)) { 1288 NewPhi->addIncoming(MA, B); 1289 if (!IdenticalEdgesWereMerged) 1290 PredsSet.erase(B); 1291 return true; 1292 } 1293 return false; 1294 }); 1295 Phi->addIncoming(NewPhi, New); 1296 tryRemoveTrivialPhi(NewPhi); 1297 } 1298 } 1299 1300 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { 1301 assert(!MSSA->isLiveOnEntryDef(MA) && 1302 "Trying to remove the live on entry def"); 1303 // We can only delete phi nodes if they have no uses, or we can replace all 1304 // uses with a single definition. 1305 MemoryAccess *NewDefTarget = nullptr; 1306 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 1307 // Note that it is sufficient to know that all edges of the phi node have 1308 // the same argument. If they do, by the definition of dominance frontiers 1309 // (which we used to place this phi), that argument must dominate this phi, 1310 // and thus, must dominate the phi's uses, and so we will not hit the assert 1311 // below. 1312 NewDefTarget = onlySingleValue(MP); 1313 assert((NewDefTarget || MP->use_empty()) && 1314 "We can't delete this memory phi"); 1315 } else { 1316 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 1317 } 1318 1319 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 1320 1321 // Re-point the uses at our defining access 1322 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 1323 // Reset optimized on users of this store, and reset the uses. 1324 // A few notes: 1325 // 1. This is a slightly modified version of RAUW to avoid walking the 1326 // uses twice here. 1327 // 2. If we wanted to be complete, we would have to reset the optimized 1328 // flags on users of phi nodes if doing the below makes a phi node have all 1329 // the same arguments. Instead, we prefer users to removeMemoryAccess those 1330 // phi nodes, because doing it here would be N^3. 1331 if (MA->hasValueHandle()) 1332 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 1333 // Note: We assume MemorySSA is not used in metadata since it's not really 1334 // part of the IR. 1335 1336 assert(NewDefTarget != MA && "Going into an infinite loop"); 1337 while (!MA->use_empty()) { 1338 Use &U = *MA->use_begin(); 1339 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 1340 MUD->resetOptimized(); 1341 if (OptimizePhis) 1342 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser())) 1343 PhisToCheck.insert(MP); 1344 U.set(NewDefTarget); 1345 } 1346 } 1347 1348 // The call below to erase will destroy MA, so we can't change the order we 1349 // are doing things here 1350 MSSA->removeFromLookups(MA); 1351 MSSA->removeFromLists(MA); 1352 1353 // Optionally optimize Phi uses. This will recursively remove trivial phis. 1354 if (!PhisToCheck.empty()) { 1355 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(), 1356 PhisToCheck.end()}; 1357 PhisToCheck.clear(); 1358 1359 unsigned PhisSize = PhisToOptimize.size(); 1360 while (PhisSize-- > 0) 1361 if (MemoryPhi *MP = 1362 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) 1363 tryRemoveTrivialPhi(MP); 1364 } 1365 } 1366 1367 void MemorySSAUpdater::removeBlocks( 1368 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) { 1369 // First delete all uses of BB in MemoryPhis. 1370 for (BasicBlock *BB : DeadBlocks) { 1371 Instruction *TI = BB->getTerminator(); 1372 assert(TI && "Basic block expected to have a terminator instruction"); 1373 for (BasicBlock *Succ : successors(TI)) 1374 if (!DeadBlocks.count(Succ)) 1375 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { 1376 MP->unorderedDeleteIncomingBlock(BB); 1377 tryRemoveTrivialPhi(MP); 1378 } 1379 // Drop all references of all accesses in BB 1380 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) 1381 for (MemoryAccess &MA : *Acc) 1382 MA.dropAllReferences(); 1383 } 1384 1385 // Next, delete all memory accesses in each block 1386 for (BasicBlock *BB : DeadBlocks) { 1387 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); 1388 if (!Acc) 1389 continue; 1390 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { 1391 MemoryAccess *MA = &*AB; 1392 ++AB; 1393 MSSA->removeFromLookups(MA); 1394 MSSA->removeFromLists(MA); 1395 } 1396 } 1397 } 1398 1399 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) { 1400 for (auto &VH : UpdatedPHIs) 1401 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1402 tryRemoveTrivialPhi(MPhi); 1403 } 1404 1405 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) { 1406 const BasicBlock *BB = I->getParent(); 1407 // Remove memory accesses in BB for I and all following instructions. 1408 auto BBI = I->getIterator(), BBE = BB->end(); 1409 // FIXME: If this becomes too expensive, iterate until the first instruction 1410 // with a memory access, then iterate over MemoryAccesses. 1411 while (BBI != BBE) 1412 removeMemoryAccess(&*(BBI++)); 1413 // Update phis in BB's successors to remove BB. 1414 SmallVector<WeakVH, 16> UpdatedPHIs; 1415 for (const BasicBlock *Successor : successors(BB)) { 1416 removeDuplicatePhiEdgesBetween(BB, Successor); 1417 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) { 1418 MPhi->unorderedDeleteIncomingBlock(BB); 1419 UpdatedPHIs.push_back(MPhi); 1420 } 1421 } 1422 // Optimize trivial phis. 1423 tryRemoveTrivialPhis(UpdatedPHIs); 1424 } 1425 1426 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI, 1427 const BasicBlock *To) { 1428 const BasicBlock *BB = BI->getParent(); 1429 SmallVector<WeakVH, 16> UpdatedPHIs; 1430 for (const BasicBlock *Succ : successors(BB)) { 1431 removeDuplicatePhiEdgesBetween(BB, Succ); 1432 if (Succ != To) 1433 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) { 1434 MPhi->unorderedDeleteIncomingBlock(BB); 1435 UpdatedPHIs.push_back(MPhi); 1436 } 1437 } 1438 // Optimize trivial phis. 1439 tryRemoveTrivialPhis(UpdatedPHIs); 1440 } 1441 1442 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 1443 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 1444 MemorySSA::InsertionPlace Point) { 1445 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1446 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 1447 return NewAccess; 1448 } 1449 1450 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 1451 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 1452 assert(I->getParent() == InsertPt->getBlock() && 1453 "New and old access must be in the same block"); 1454 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1455 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1456 InsertPt->getIterator()); 1457 return NewAccess; 1458 } 1459 1460 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 1461 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 1462 assert(I->getParent() == InsertPt->getBlock() && 1463 "New and old access must be in the same block"); 1464 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1465 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1466 ++InsertPt->getIterator()); 1467 return NewAccess; 1468 } 1469