1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/Analysis/LoopIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/IteratedDominanceFrontier.h"
18 #include "llvm/Analysis/MemorySSA.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/FormattedStream.h"
29 #include <algorithm>
30 
31 #define DEBUG_TYPE "memoryssa"
32 using namespace llvm;
33 
34 // This is the marker algorithm from "Simple and Efficient Construction of
35 // Static Single Assignment Form"
36 // The simple, non-marker algorithm places phi nodes at any join
37 // Here, we place markers, and only place phi nodes if they end up necessary.
38 // They are only necessary if they break a cycle (IE we recursively visit
39 // ourselves again), or we discover, while getting the value of the operands,
40 // that there are two or more definitions needing to be merged.
41 // This still will leave non-minimal form in the case of irreducible control
42 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
43 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
44     BasicBlock *BB,
45     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
46   // First, do a cache lookup. Without this cache, certain CFG structures
47   // (like a series of if statements) take exponential time to visit.
48   auto Cached = CachedPreviousDef.find(BB);
49   if (Cached != CachedPreviousDef.end())
50     return Cached->second;
51 
52   // If this method is called from an unreachable block, return LoE.
53   if (!MSSA->DT->isReachableFromEntry(BB))
54     return MSSA->getLiveOnEntryDef();
55 
56   if (BasicBlock *Pred = BB->getUniquePredecessor()) {
57     VisitedBlocks.insert(BB);
58     // Single predecessor case, just recurse, we can only have one definition.
59     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
60     CachedPreviousDef.insert({BB, Result});
61     return Result;
62   }
63 
64   if (VisitedBlocks.count(BB)) {
65     // We hit our node again, meaning we had a cycle, we must insert a phi
66     // node to break it so we have an operand. The only case this will
67     // insert useless phis is if we have irreducible control flow.
68     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
69     CachedPreviousDef.insert({BB, Result});
70     return Result;
71   }
72 
73   if (VisitedBlocks.insert(BB).second) {
74     // Mark us visited so we can detect a cycle
75     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
76 
77     // Recurse to get the values in our predecessors for placement of a
78     // potential phi node. This will insert phi nodes if we cycle in order to
79     // break the cycle and have an operand.
80     bool UniqueIncomingAccess = true;
81     MemoryAccess *SingleAccess = nullptr;
82     for (auto *Pred : predecessors(BB)) {
83       if (MSSA->DT->isReachableFromEntry(Pred)) {
84         auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
85         if (!SingleAccess)
86           SingleAccess = IncomingAccess;
87         else if (IncomingAccess != SingleAccess)
88           UniqueIncomingAccess = false;
89         PhiOps.push_back(IncomingAccess);
90       } else
91         PhiOps.push_back(MSSA->getLiveOnEntryDef());
92     }
93 
94     // Now try to simplify the ops to avoid placing a phi.
95     // This may return null if we never created a phi yet, that's okay
96     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
97 
98     // See if we can avoid the phi by simplifying it.
99     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
100     // If we couldn't simplify, we may have to create a phi
101     if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
102       // A concrete Phi only exists if we created an empty one to break a cycle.
103       if (Phi) {
104         assert(Phi->operands().empty() && "Expected empty Phi");
105         Phi->replaceAllUsesWith(SingleAccess);
106         removeMemoryAccess(Phi);
107       }
108       Result = SingleAccess;
109     } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
110       if (!Phi)
111         Phi = MSSA->createMemoryPhi(BB);
112 
113       // See if the existing phi operands match what we need.
114       // Unlike normal SSA, we only allow one phi node per block, so we can't just
115       // create a new one.
116       if (Phi->getNumOperands() != 0) {
117         // FIXME: Figure out whether this is dead code and if so remove it.
118         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
119           // These will have been filled in by the recursive read we did above.
120           llvm::copy(PhiOps, Phi->op_begin());
121           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
122         }
123       } else {
124         unsigned i = 0;
125         for (auto *Pred : predecessors(BB))
126           Phi->addIncoming(&*PhiOps[i++], Pred);
127         InsertedPHIs.push_back(Phi);
128       }
129       Result = Phi;
130     }
131 
132     // Set ourselves up for the next variable by resetting visited state.
133     VisitedBlocks.erase(BB);
134     CachedPreviousDef.insert({BB, Result});
135     return Result;
136   }
137   llvm_unreachable("Should have hit one of the three cases above");
138 }
139 
140 // This starts at the memory access, and goes backwards in the block to find the
141 // previous definition. If a definition is not found the block of the access,
142 // it continues globally, creating phi nodes to ensure we have a single
143 // definition.
144 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
145   if (auto *LocalResult = getPreviousDefInBlock(MA))
146     return LocalResult;
147   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
148   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
149 }
150 
151 // This starts at the memory access, and goes backwards in the block to the find
152 // the previous definition. If the definition is not found in the block of the
153 // access, it returns nullptr.
154 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
155   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
156 
157   // It's possible there are no defs, or we got handed the first def to start.
158   if (Defs) {
159     // If this is a def, we can just use the def iterators.
160     if (!isa<MemoryUse>(MA)) {
161       auto Iter = MA->getReverseDefsIterator();
162       ++Iter;
163       if (Iter != Defs->rend())
164         return &*Iter;
165     } else {
166       // Otherwise, have to walk the all access iterator.
167       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
168       for (auto &U : make_range(++MA->getReverseIterator(), End))
169         if (!isa<MemoryUse>(U))
170           return cast<MemoryAccess>(&U);
171       // Note that if MA comes before Defs->begin(), we won't hit a def.
172       return nullptr;
173     }
174   }
175   return nullptr;
176 }
177 
178 // This starts at the end of block
179 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
180     BasicBlock *BB,
181     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
182   auto *Defs = MSSA->getWritableBlockDefs(BB);
183 
184   if (Defs) {
185     CachedPreviousDef.insert({BB, &*Defs->rbegin()});
186     return &*Defs->rbegin();
187   }
188 
189   return getPreviousDefRecursive(BB, CachedPreviousDef);
190 }
191 // Recurse over a set of phi uses to eliminate the trivial ones
192 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
193   if (!Phi)
194     return nullptr;
195   TrackingVH<MemoryAccess> Res(Phi);
196   SmallVector<TrackingVH<Value>, 8> Uses;
197   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
198   for (auto &U : Uses)
199     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
200       tryRemoveTrivialPhi(UsePhi);
201   return Res;
202 }
203 
204 // Eliminate trivial phis
205 // Phis are trivial if they are defined either by themselves, or all the same
206 // argument.
207 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
208 // We recursively try to remove them.
209 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
210   assert(Phi && "Can only remove concrete Phi.");
211   auto OperRange = Phi->operands();
212   return tryRemoveTrivialPhi(Phi, OperRange);
213 }
214 template <class RangeType>
215 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
216                                                     RangeType &Operands) {
217   // Bail out on non-opt Phis.
218   if (NonOptPhis.count(Phi))
219     return Phi;
220 
221   // Detect equal or self arguments
222   MemoryAccess *Same = nullptr;
223   for (auto &Op : Operands) {
224     // If the same or self, good so far
225     if (Op == Phi || Op == Same)
226       continue;
227     // not the same, return the phi since it's not eliminatable by us
228     if (Same)
229       return Phi;
230     Same = cast<MemoryAccess>(&*Op);
231   }
232   // Never found a non-self reference, the phi is undef
233   if (Same == nullptr)
234     return MSSA->getLiveOnEntryDef();
235   if (Phi) {
236     Phi->replaceAllUsesWith(Same);
237     removeMemoryAccess(Phi);
238   }
239 
240   // We should only end up recursing in case we replaced something, in which
241   // case, we may have made other Phis trivial.
242   return recursePhi(Same);
243 }
244 
245 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
246   InsertedPHIs.clear();
247   MU->setDefiningAccess(getPreviousDef(MU));
248 
249   // In cases without unreachable blocks, because uses do not create new
250   // may-defs, there are only two cases:
251   // 1. There was a def already below us, and therefore, we should not have
252   // created a phi node because it was already needed for the def.
253   //
254   // 2. There is no def below us, and therefore, there is no extra renaming work
255   // to do.
256 
257   // In cases with unreachable blocks, where the unnecessary Phis were
258   // optimized out, adding the Use may re-insert those Phis. Hence, when
259   // inserting Uses outside of the MSSA creation process, and new Phis were
260   // added, rename all uses if we are asked.
261 
262   if (!RenameUses && !InsertedPHIs.empty()) {
263     auto *Defs = MSSA->getBlockDefs(MU->getBlock());
264     (void)Defs;
265     assert((!Defs || (++Defs->begin() == Defs->end())) &&
266            "Block may have only a Phi or no defs");
267   }
268 
269   if (RenameUses && InsertedPHIs.size()) {
270     SmallPtrSet<BasicBlock *, 16> Visited;
271     BasicBlock *StartBlock = MU->getBlock();
272 
273     if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
274       MemoryAccess *FirstDef = &*Defs->begin();
275       // Convert to incoming value if it's a memorydef. A phi *is* already an
276       // incoming value.
277       if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
278         FirstDef = MD->getDefiningAccess();
279 
280       MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
281     }
282     // We just inserted a phi into this block, so the incoming value will
283     // become the phi anyway, so it does not matter what we pass.
284     for (auto &MP : InsertedPHIs)
285       if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
286         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
287   }
288 }
289 
290 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
291 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
292                                       MemoryAccess *NewDef) {
293   // Replace any operand with us an incoming block with the new defining
294   // access.
295   int i = MP->getBasicBlockIndex(BB);
296   assert(i != -1 && "Should have found the basic block in the phi");
297   // We can't just compare i against getNumOperands since one is signed and the
298   // other not. So use it to index into the block iterator.
299   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
300        ++BBIter) {
301     if (*BBIter != BB)
302       break;
303     MP->setIncomingValue(i, NewDef);
304     ++i;
305   }
306 }
307 
308 // A brief description of the algorithm:
309 // First, we compute what should define the new def, using the SSA
310 // construction algorithm.
311 // Then, we update the defs below us (and any new phi nodes) in the graph to
312 // point to the correct new defs, to ensure we only have one variable, and no
313 // disconnected stores.
314 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
315   InsertedPHIs.clear();
316 
317   // See if we had a local def, and if not, go hunting.
318   MemoryAccess *DefBefore = getPreviousDef(MD);
319   bool DefBeforeSameBlock = false;
320   if (DefBefore->getBlock() == MD->getBlock() &&
321       !(isa<MemoryPhi>(DefBefore) &&
322         llvm::is_contained(InsertedPHIs, DefBefore)))
323     DefBeforeSameBlock = true;
324 
325   // There is a def before us, which means we can replace any store/phi uses
326   // of that thing with us, since we are in the way of whatever was there
327   // before.
328   // We now define that def's memorydefs and memoryphis
329   if (DefBeforeSameBlock) {
330     DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
331       // Leave the MemoryUses alone.
332       // Also make sure we skip ourselves to avoid self references.
333       User *Usr = U.getUser();
334       return !isa<MemoryUse>(Usr) && Usr != MD;
335       // Defs are automatically unoptimized when the user is set to MD below,
336       // because the isOptimized() call will fail to find the same ID.
337     });
338   }
339 
340   // and that def is now our defining access.
341   MD->setDefiningAccess(DefBefore);
342 
343   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
344 
345   SmallSet<WeakVH, 8> ExistingPhis;
346 
347   // Remember the index where we may insert new phis.
348   unsigned NewPhiIndex = InsertedPHIs.size();
349   if (!DefBeforeSameBlock) {
350     // If there was a local def before us, we must have the same effect it
351     // did. Because every may-def is the same, any phis/etc we would create, it
352     // would also have created.  If there was no local def before us, we
353     // performed a global update, and have to search all successors and make
354     // sure we update the first def in each of them (following all paths until
355     // we hit the first def along each path). This may also insert phi nodes.
356     // TODO: There are other cases we can skip this work, such as when we have a
357     // single successor, and only used a straight line of single pred blocks
358     // backwards to find the def.  To make that work, we'd have to track whether
359     // getDefRecursive only ever used the single predecessor case.  These types
360     // of paths also only exist in between CFG simplifications.
361 
362     // If this is the first def in the block and this insert is in an arbitrary
363     // place, compute IDF and place phis.
364     SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
365 
366     // If this is the last Def in the block, also compute IDF based on MD, since
367     // this may a new Def added, and we may need additional Phis.
368     auto Iter = MD->getDefsIterator();
369     ++Iter;
370     auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
371     if (Iter == IterEnd)
372       DefiningBlocks.insert(MD->getBlock());
373 
374     for (const auto &VH : InsertedPHIs)
375       if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
376         DefiningBlocks.insert(RealPHI->getBlock());
377     ForwardIDFCalculator IDFs(*MSSA->DT);
378     SmallVector<BasicBlock *, 32> IDFBlocks;
379     IDFs.setDefiningBlocks(DefiningBlocks);
380     IDFs.calculate(IDFBlocks);
381     SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
382     for (auto *BBIDF : IDFBlocks) {
383       auto *MPhi = MSSA->getMemoryAccess(BBIDF);
384       if (!MPhi) {
385         MPhi = MSSA->createMemoryPhi(BBIDF);
386         NewInsertedPHIs.push_back(MPhi);
387       } else {
388         ExistingPhis.insert(MPhi);
389       }
390       // Add the phis created into the IDF blocks to NonOptPhis, so they are not
391       // optimized out as trivial by the call to getPreviousDefFromEnd below.
392       // Once they are complete, all these Phis are added to the FixupList, and
393       // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
394       // need fixing as well, and potentially be trivial before this insertion,
395       // hence add all IDF Phis. See PR43044.
396       NonOptPhis.insert(MPhi);
397     }
398     for (auto &MPhi : NewInsertedPHIs) {
399       auto *BBIDF = MPhi->getBlock();
400       for (auto *Pred : predecessors(BBIDF)) {
401         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
402         MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
403       }
404     }
405 
406     // Re-take the index where we're adding the new phis, because the above call
407     // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
408     NewPhiIndex = InsertedPHIs.size();
409     for (auto &MPhi : NewInsertedPHIs) {
410       InsertedPHIs.push_back(&*MPhi);
411       FixupList.push_back(&*MPhi);
412     }
413 
414     FixupList.push_back(MD);
415   }
416 
417   // Remember the index where we stopped inserting new phis above, since the
418   // fixupDefs call in the loop below may insert more, that are already minimal.
419   unsigned NewPhiIndexEnd = InsertedPHIs.size();
420 
421   while (!FixupList.empty()) {
422     unsigned StartingPHISize = InsertedPHIs.size();
423     fixupDefs(FixupList);
424     FixupList.clear();
425     // Put any new phis on the fixup list, and process them
426     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
427   }
428 
429   // Optimize potentially non-minimal phis added in this method.
430   unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
431   if (NewPhiSize)
432     tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
433 
434   // Now that all fixups are done, rename all uses if we are asked.
435   if (RenameUses) {
436     SmallPtrSet<BasicBlock *, 16> Visited;
437     BasicBlock *StartBlock = MD->getBlock();
438     // We are guaranteed there is a def in the block, because we just got it
439     // handed to us in this function.
440     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
441     // Convert to incoming value if it's a memorydef. A phi *is* already an
442     // incoming value.
443     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
444       FirstDef = MD->getDefiningAccess();
445 
446     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
447     // We just inserted a phi into this block, so the incoming value will become
448     // the phi anyway, so it does not matter what we pass.
449     for (auto &MP : InsertedPHIs) {
450       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
451       if (Phi)
452         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
453     }
454     // Existing Phi blocks may need renaming too, if an access was previously
455     // optimized and the inserted Defs "covers" the Optimized value.
456     for (auto &MP : ExistingPhis) {
457       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
458       if (Phi)
459         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
460     }
461   }
462 }
463 
464 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
465   SmallPtrSet<const BasicBlock *, 8> Seen;
466   SmallVector<const BasicBlock *, 16> Worklist;
467   for (auto &Var : Vars) {
468     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
469     if (!NewDef)
470       continue;
471     // First, see if there is a local def after the operand.
472     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
473     auto DefIter = NewDef->getDefsIterator();
474 
475     // The temporary Phi is being fixed, unmark it for not to optimize.
476     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
477       NonOptPhis.erase(Phi);
478 
479     // If there is a local def after us, we only have to rename that.
480     if (++DefIter != Defs->end()) {
481       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
482       continue;
483     }
484 
485     // Otherwise, we need to search down through the CFG.
486     // For each of our successors, handle it directly if their is a phi, or
487     // place on the fixup worklist.
488     for (const auto *S : successors(NewDef->getBlock())) {
489       if (auto *MP = MSSA->getMemoryAccess(S))
490         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
491       else
492         Worklist.push_back(S);
493     }
494 
495     while (!Worklist.empty()) {
496       const BasicBlock *FixupBlock = Worklist.back();
497       Worklist.pop_back();
498 
499       // Get the first def in the block that isn't a phi node.
500       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
501         auto *FirstDef = &*Defs->begin();
502         // The loop above and below should have taken care of phi nodes
503         assert(!isa<MemoryPhi>(FirstDef) &&
504                "Should have already handled phi nodes!");
505         // We are now this def's defining access, make sure we actually dominate
506         // it
507         assert(MSSA->dominates(NewDef, FirstDef) &&
508                "Should have dominated the new access");
509 
510         // This may insert new phi nodes, because we are not guaranteed the
511         // block we are processing has a single pred, and depending where the
512         // store was inserted, it may require phi nodes below it.
513         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
514         return;
515       }
516       // We didn't find a def, so we must continue.
517       for (const auto *S : successors(FixupBlock)) {
518         // If there is a phi node, handle it.
519         // Otherwise, put the block on the worklist
520         if (auto *MP = MSSA->getMemoryAccess(S))
521           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
522         else {
523           // If we cycle, we should have ended up at a phi node that we already
524           // processed.  FIXME: Double check this
525           if (!Seen.insert(S).second)
526             continue;
527           Worklist.push_back(S);
528         }
529       }
530     }
531   }
532 }
533 
534 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
535   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
536     MPhi->unorderedDeleteIncomingBlock(From);
537     tryRemoveTrivialPhi(MPhi);
538   }
539 }
540 
541 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
542                                                       const BasicBlock *To) {
543   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
544     bool Found = false;
545     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
546       if (From != B)
547         return false;
548       if (Found)
549         return true;
550       Found = true;
551       return false;
552     });
553     tryRemoveTrivialPhi(MPhi);
554   }
555 }
556 
557 /// If all arguments of a MemoryPHI are defined by the same incoming
558 /// argument, return that argument.
559 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
560   MemoryAccess *MA = nullptr;
561 
562   for (auto &Arg : MP->operands()) {
563     if (!MA)
564       MA = cast<MemoryAccess>(Arg);
565     else if (MA != Arg)
566       return nullptr;
567   }
568   return MA;
569 }
570 
571 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
572                                                   const ValueToValueMapTy &VMap,
573                                                   PhiToDefMap &MPhiMap,
574                                                   bool CloneWasSimplified,
575                                                   MemorySSA *MSSA) {
576   MemoryAccess *InsnDefining = MA;
577   if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
578     if (!MSSA->isLiveOnEntryDef(DefMUD)) {
579       Instruction *DefMUDI = DefMUD->getMemoryInst();
580       assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
581       if (Instruction *NewDefMUDI =
582               cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
583         InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
584         if (!CloneWasSimplified)
585           assert(InsnDefining && "Defining instruction cannot be nullptr.");
586         else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
587           // The clone was simplified, it's no longer a MemoryDef, look up.
588           auto DefIt = DefMUD->getDefsIterator();
589           // Since simplified clones only occur in single block cloning, a
590           // previous definition must exist, otherwise NewDefMUDI would not
591           // have been found in VMap.
592           assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
593                  "Previous def must exist");
594           InsnDefining = getNewDefiningAccessForClone(
595               &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
596         }
597       }
598     }
599   } else {
600     MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
601     if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
602       InsnDefining = NewDefPhi;
603   }
604   assert(InsnDefining && "Defining instruction cannot be nullptr.");
605   return InsnDefining;
606 }
607 
608 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
609                                         const ValueToValueMapTy &VMap,
610                                         PhiToDefMap &MPhiMap,
611                                         bool CloneWasSimplified) {
612   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
613   if (!Acc)
614     return;
615   for (const MemoryAccess &MA : *Acc) {
616     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
617       Instruction *Insn = MUD->getMemoryInst();
618       // Entry does not exist if the clone of the block did not clone all
619       // instructions. This occurs in LoopRotate when cloning instructions
620       // from the old header to the old preheader. The cloned instruction may
621       // also be a simplified Value, not an Instruction (see LoopRotate).
622       // Also in LoopRotate, even when it's an instruction, due to it being
623       // simplified, it may be a Use rather than a Def, so we cannot use MUD as
624       // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
625       if (Instruction *NewInsn =
626               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
627         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
628             NewInsn,
629             getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
630                                          MPhiMap, CloneWasSimplified, MSSA),
631             /*Template=*/CloneWasSimplified ? nullptr : MUD,
632             /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
633         if (NewUseOrDef)
634           MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
635       }
636     }
637   }
638 }
639 
640 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
641     BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
642   auto *MPhi = MSSA->getMemoryAccess(Header);
643   if (!MPhi)
644     return;
645 
646   // Create phi node in the backedge block and populate it with the same
647   // incoming values as MPhi. Skip incoming values coming from Preheader.
648   auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
649   bool HasUniqueIncomingValue = true;
650   MemoryAccess *UniqueValue = nullptr;
651   for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
652     BasicBlock *IBB = MPhi->getIncomingBlock(I);
653     MemoryAccess *IV = MPhi->getIncomingValue(I);
654     if (IBB != Preheader) {
655       NewMPhi->addIncoming(IV, IBB);
656       if (HasUniqueIncomingValue) {
657         if (!UniqueValue)
658           UniqueValue = IV;
659         else if (UniqueValue != IV)
660           HasUniqueIncomingValue = false;
661       }
662     }
663   }
664 
665   // Update incoming edges into MPhi. Remove all but the incoming edge from
666   // Preheader. Add an edge from NewMPhi
667   auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
668   MPhi->setIncomingValue(0, AccFromPreheader);
669   MPhi->setIncomingBlock(0, Preheader);
670   for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
671     MPhi->unorderedDeleteIncoming(I);
672   MPhi->addIncoming(NewMPhi, BEBlock);
673 
674   // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
675   // replaced with the unique value.
676   tryRemoveTrivialPhi(NewMPhi);
677 }
678 
679 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
680                                            ArrayRef<BasicBlock *> ExitBlocks,
681                                            const ValueToValueMapTy &VMap,
682                                            bool IgnoreIncomingWithNoClones) {
683   PhiToDefMap MPhiMap;
684 
685   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
686     assert(Phi && NewPhi && "Invalid Phi nodes.");
687     BasicBlock *NewPhiBB = NewPhi->getBlock();
688     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
689                                                pred_end(NewPhiBB));
690     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
691       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
692       BasicBlock *IncBB = Phi->getIncomingBlock(It);
693 
694       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
695         IncBB = NewIncBB;
696       else if (IgnoreIncomingWithNoClones)
697         continue;
698 
699       // Now we have IncBB, and will need to add incoming from it to NewPhi.
700 
701       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
702       // NewPhiBB was cloned without that edge.
703       if (!NewPhiBBPreds.count(IncBB))
704         continue;
705 
706       // Determine incoming value and add it as incoming from IncBB.
707       if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
708         if (!MSSA->isLiveOnEntryDef(IncMUD)) {
709           Instruction *IncI = IncMUD->getMemoryInst();
710           assert(IncI && "Found MemoryUseOrDef with no Instruction.");
711           if (Instruction *NewIncI =
712                   cast_or_null<Instruction>(VMap.lookup(IncI))) {
713             IncMUD = MSSA->getMemoryAccess(NewIncI);
714             assert(IncMUD &&
715                    "MemoryUseOrDef cannot be null, all preds processed.");
716           }
717         }
718         NewPhi->addIncoming(IncMUD, IncBB);
719       } else {
720         MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
721         if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
722           NewPhi->addIncoming(NewDefPhi, IncBB);
723         else
724           NewPhi->addIncoming(IncPhi, IncBB);
725       }
726     }
727     if (auto *SingleAccess = onlySingleValue(NewPhi)) {
728       MPhiMap[Phi] = SingleAccess;
729       removeMemoryAccess(NewPhi);
730     }
731   };
732 
733   auto ProcessBlock = [&](BasicBlock *BB) {
734     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
735     if (!NewBlock)
736       return;
737 
738     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
739            "Cloned block should have no accesses");
740 
741     // Add MemoryPhi.
742     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
743       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
744       MPhiMap[MPhi] = NewPhi;
745     }
746     // Update Uses and Defs.
747     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
748   };
749 
750   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
751     ProcessBlock(BB);
752 
753   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
754     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
755       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
756         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
757 }
758 
759 void MemorySSAUpdater::updateForClonedBlockIntoPred(
760     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
761   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
762   // Since those defs/phis must have dominated BB, and also dominate P1.
763   // Defs from BB being used in BB will be replaced with the cloned defs from
764   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
765   // incoming def into the Phi from P1.
766   // Instructions cloned into the predecessor are in practice sometimes
767   // simplified, so disable the use of the template, and create an access from
768   // scratch.
769   PhiToDefMap MPhiMap;
770   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
771     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
772   cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
773 }
774 
775 template <typename Iter>
776 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
777     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
778     DominatorTree &DT) {
779   SmallVector<CFGUpdate, 4> Updates;
780   // Update/insert phis in all successors of exit blocks.
781   for (auto *Exit : ExitBlocks)
782     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
783       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
784         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
785         Updates.push_back({DT.Insert, NewExit, ExitSucc});
786       }
787   applyInsertUpdates(Updates, DT);
788 }
789 
790 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
791     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
792     DominatorTree &DT) {
793   const ValueToValueMapTy *const Arr[] = {&VMap};
794   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
795                                        std::end(Arr), DT);
796 }
797 
798 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
799     ArrayRef<BasicBlock *> ExitBlocks,
800     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
801   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
802     return I.get();
803   };
804   using MappedIteratorType =
805       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
806                       decltype(GetPtr)>;
807   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
808   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
809   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
810 }
811 
812 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
813                                     DominatorTree &DT) {
814   SmallVector<CFGUpdate, 4> DeleteUpdates;
815   SmallVector<CFGUpdate, 4> RevDeleteUpdates;
816   SmallVector<CFGUpdate, 4> InsertUpdates;
817   for (auto &Update : Updates) {
818     if (Update.getKind() == DT.Insert)
819       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
820     else {
821       DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()});
822       RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
823     }
824   }
825 
826   if (!DeleteUpdates.empty()) {
827     SmallVector<CFGUpdate, 0> Empty;
828     // Deletes are reversed applied, because this CFGView is pretending the
829     // deletes did not happen yet, hence the edges still exist.
830     DT.applyUpdates(Empty, RevDeleteUpdates);
831 
832     // Note: the MSSA update below doesn't distinguish between a GD with
833     // (RevDelete,false) and (Delete, true), but this matters for the DT
834     // updates above; for "children" purposes they are equivalent; but the
835     // updates themselves convey the desired update, used inside DT only.
836     GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
837     applyInsertUpdates(InsertUpdates, DT, &GD);
838     // Update DT to redelete edges; this matches the real CFG so we can perform
839     // the standard update without a postview of the CFG.
840     DT.applyUpdates(DeleteUpdates);
841   } else {
842     GraphDiff<BasicBlock *> GD;
843     applyInsertUpdates(InsertUpdates, DT, &GD);
844   }
845 
846   // Update for deleted edges
847   for (auto &Update : DeleteUpdates)
848     removeEdge(Update.getFrom(), Update.getTo());
849 }
850 
851 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
852                                           DominatorTree &DT) {
853   GraphDiff<BasicBlock *> GD;
854   applyInsertUpdates(Updates, DT, &GD);
855 }
856 
857 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
858                                           DominatorTree &DT,
859                                           const GraphDiff<BasicBlock *> *GD) {
860   // Get recursive last Def, assuming well formed MSSA and updated DT.
861   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
862     while (true) {
863       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
864       // Return last Def or Phi in BB, if it exists.
865       if (Defs)
866         return &*(--Defs->end());
867 
868       // Check number of predecessors, we only care if there's more than one.
869       unsigned Count = 0;
870       BasicBlock *Pred = nullptr;
871       for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
872         Pred = Pi;
873         Count++;
874         if (Count == 2)
875           break;
876       }
877 
878       // If BB has multiple predecessors, get last definition from IDom.
879       if (Count != 1) {
880         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
881         // DT is invalidated. Return LoE as its last def. This will be added to
882         // MemoryPhi node, and later deleted when the block is deleted.
883         if (!DT.getNode(BB))
884           return MSSA->getLiveOnEntryDef();
885         if (auto *IDom = DT.getNode(BB)->getIDom())
886           if (IDom->getBlock() != BB) {
887             BB = IDom->getBlock();
888             continue;
889           }
890         return MSSA->getLiveOnEntryDef();
891       } else {
892         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
893         assert(Count == 1 && Pred && "Single predecessor expected.");
894         // BB can be unreachable though, return LoE if that is the case.
895         if (!DT.getNode(BB))
896           return MSSA->getLiveOnEntryDef();
897         BB = Pred;
898       }
899     };
900     llvm_unreachable("Unable to get last definition.");
901   };
902 
903   // Get nearest IDom given a set of blocks.
904   // TODO: this can be optimized by starting the search at the node with the
905   // lowest level (highest in the tree).
906   auto FindNearestCommonDominator =
907       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
908     BasicBlock *PrevIDom = *BBSet.begin();
909     for (auto *BB : BBSet)
910       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
911     return PrevIDom;
912   };
913 
914   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
915   // include CurrIDom.
916   auto GetNoLongerDomBlocks =
917       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
918           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
919         if (PrevIDom == CurrIDom)
920           return;
921         BlocksPrevDom.push_back(PrevIDom);
922         BasicBlock *NextIDom = PrevIDom;
923         while (BasicBlock *UpIDom =
924                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
925           if (UpIDom == CurrIDom)
926             break;
927           BlocksPrevDom.push_back(UpIDom);
928           NextIDom = UpIDom;
929         }
930       };
931 
932   // Map a BB to its predecessors: added + previously existing. To get a
933   // deterministic order, store predecessors as SetVectors. The order in each
934   // will be defined by the order in Updates (fixed) and the order given by
935   // children<> (also fixed). Since we further iterate over these ordered sets,
936   // we lose the information of multiple edges possibly existing between two
937   // blocks, so we'll keep and EdgeCount map for that.
938   // An alternate implementation could keep unordered set for the predecessors,
939   // traverse either Updates or children<> each time to get  the deterministic
940   // order, and drop the usage of EdgeCount. This alternate approach would still
941   // require querying the maps for each predecessor, and children<> call has
942   // additional computation inside for creating the snapshot-graph predecessors.
943   // As such, we favor using a little additional storage and less compute time.
944   // This decision can be revisited if we find the alternative more favorable.
945 
946   struct PredInfo {
947     SmallSetVector<BasicBlock *, 2> Added;
948     SmallSetVector<BasicBlock *, 2> Prev;
949   };
950   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
951 
952   for (auto &Edge : Updates) {
953     BasicBlock *BB = Edge.getTo();
954     auto &AddedBlockSet = PredMap[BB].Added;
955     AddedBlockSet.insert(Edge.getFrom());
956   }
957 
958   // Store all existing predecessor for each BB, at least one must exist.
959   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
960   SmallPtrSet<BasicBlock *, 2> NewBlocks;
961   for (auto &BBPredPair : PredMap) {
962     auto *BB = BBPredPair.first;
963     const auto &AddedBlockSet = BBPredPair.second.Added;
964     auto &PrevBlockSet = BBPredPair.second.Prev;
965     for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
966       if (!AddedBlockSet.count(Pi))
967         PrevBlockSet.insert(Pi);
968       EdgeCountMap[{Pi, BB}]++;
969     }
970 
971     if (PrevBlockSet.empty()) {
972       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
973       LLVM_DEBUG(
974           dbgs()
975           << "Adding a predecessor to a block with no predecessors. "
976              "This must be an edge added to a new, likely cloned, block. "
977              "Its memory accesses must be already correct, assuming completed "
978              "via the updateExitBlocksForClonedLoop API. "
979              "Assert a single such edge is added so no phi addition or "
980              "additional processing is required.\n");
981       assert(AddedBlockSet.size() == 1 &&
982              "Can only handle adding one predecessor to a new block.");
983       // Need to remove new blocks from PredMap. Remove below to not invalidate
984       // iterator here.
985       NewBlocks.insert(BB);
986     }
987   }
988   // Nothing to process for new/cloned blocks.
989   for (auto *BB : NewBlocks)
990     PredMap.erase(BB);
991 
992   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
993   SmallVector<WeakVH, 8> InsertedPhis;
994 
995   // First create MemoryPhis in all blocks that don't have one. Create in the
996   // order found in Updates, not in PredMap, to get deterministic numbering.
997   for (auto &Edge : Updates) {
998     BasicBlock *BB = Edge.getTo();
999     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
1000       InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
1001   }
1002 
1003   // Now we'll fill in the MemoryPhis with the right incoming values.
1004   for (auto &BBPredPair : PredMap) {
1005     auto *BB = BBPredPair.first;
1006     const auto &PrevBlockSet = BBPredPair.second.Prev;
1007     const auto &AddedBlockSet = BBPredPair.second.Added;
1008     assert(!PrevBlockSet.empty() &&
1009            "At least one previous predecessor must exist.");
1010 
1011     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
1012     // keeping this map before the loop. We can reuse already populated entries
1013     // if an edge is added from the same predecessor to two different blocks,
1014     // and this does happen in rotate. Note that the map needs to be updated
1015     // when deleting non-necessary phis below, if the phi is in the map by
1016     // replacing the value with DefP1.
1017     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
1018     for (auto *AddedPred : AddedBlockSet) {
1019       auto *DefPn = GetLastDef(AddedPred);
1020       assert(DefPn != nullptr && "Unable to find last definition.");
1021       LastDefAddedPred[AddedPred] = DefPn;
1022     }
1023 
1024     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
1025     // If Phi is not empty, add an incoming edge from each added pred. Must
1026     // still compute blocks with defs to replace for this block below.
1027     if (NewPhi->getNumOperands()) {
1028       for (auto *Pred : AddedBlockSet) {
1029         auto *LastDefForPred = LastDefAddedPred[Pred];
1030         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1031           NewPhi->addIncoming(LastDefForPred, Pred);
1032       }
1033     } else {
1034       // Pick any existing predecessor and get its definition. All other
1035       // existing predecessors should have the same one, since no phi existed.
1036       auto *P1 = *PrevBlockSet.begin();
1037       MemoryAccess *DefP1 = GetLastDef(P1);
1038 
1039       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
1040       // nothing to add.
1041       bool InsertPhi = false;
1042       for (auto LastDefPredPair : LastDefAddedPred)
1043         if (DefP1 != LastDefPredPair.second) {
1044           InsertPhi = true;
1045           break;
1046         }
1047       if (!InsertPhi) {
1048         // Since NewPhi may be used in other newly added Phis, replace all uses
1049         // of NewPhi with the definition coming from all predecessors (DefP1),
1050         // before deleting it.
1051         NewPhi->replaceAllUsesWith(DefP1);
1052         removeMemoryAccess(NewPhi);
1053         continue;
1054       }
1055 
1056       // Update Phi with new values for new predecessors and old value for all
1057       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
1058       // sets, the order of entries in NewPhi is deterministic.
1059       for (auto *Pred : AddedBlockSet) {
1060         auto *LastDefForPred = LastDefAddedPred[Pred];
1061         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1062           NewPhi->addIncoming(LastDefForPred, Pred);
1063       }
1064       for (auto *Pred : PrevBlockSet)
1065         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1066           NewPhi->addIncoming(DefP1, Pred);
1067     }
1068 
1069     // Get all blocks that used to dominate BB and no longer do after adding
1070     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1071     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1072     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1073     assert(PrevIDom && "Previous IDom should exists");
1074     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1075     assert(NewIDom && "BB should have a new valid idom");
1076     assert(DT.dominates(NewIDom, PrevIDom) &&
1077            "New idom should dominate old idom");
1078     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1079   }
1080 
1081   tryRemoveTrivialPhis(InsertedPhis);
1082   // Create the set of blocks that now have a definition. We'll use this to
1083   // compute IDF and add Phis there next.
1084   SmallVector<BasicBlock *, 8> BlocksToProcess;
1085   for (auto &VH : InsertedPhis)
1086     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1087       BlocksToProcess.push_back(MPhi->getBlock());
1088 
1089   // Compute IDF and add Phis in all IDF blocks that do not have one.
1090   SmallVector<BasicBlock *, 32> IDFBlocks;
1091   if (!BlocksToProcess.empty()) {
1092     ForwardIDFCalculator IDFs(DT, GD);
1093     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1094                                                  BlocksToProcess.end());
1095     IDFs.setDefiningBlocks(DefiningBlocks);
1096     IDFs.calculate(IDFBlocks);
1097 
1098     SmallSetVector<MemoryPhi *, 4> PhisToFill;
1099     // First create all needed Phis.
1100     for (auto *BBIDF : IDFBlocks)
1101       if (!MSSA->getMemoryAccess(BBIDF)) {
1102         auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1103         InsertedPhis.push_back(IDFPhi);
1104         PhisToFill.insert(IDFPhi);
1105       }
1106     // Then update or insert their correct incoming values.
1107     for (auto *BBIDF : IDFBlocks) {
1108       auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1109       assert(IDFPhi && "Phi must exist");
1110       if (!PhisToFill.count(IDFPhi)) {
1111         // Update existing Phi.
1112         // FIXME: some updates may be redundant, try to optimize and skip some.
1113         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1114           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1115       } else {
1116         for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF))
1117           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1118       }
1119     }
1120   }
1121 
1122   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1123   // longer dominate, replace those with the closest dominating def.
1124   // This will also update optimized accesses, as they're also uses.
1125   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1126     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1127       for (auto &DefToReplaceUses : *DefsList) {
1128         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1129         Value::use_iterator UI = DefToReplaceUses.use_begin(),
1130                             E = DefToReplaceUses.use_end();
1131         for (; UI != E;) {
1132           Use &U = *UI;
1133           ++UI;
1134           MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
1135           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1136             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1137             if (!DT.dominates(DominatingBlock, DominatedBlock))
1138               U.set(GetLastDef(DominatedBlock));
1139           } else {
1140             BasicBlock *DominatedBlock = Usr->getBlock();
1141             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1142               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1143                 U.set(DomBlPhi);
1144               else {
1145                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1146                 assert(IDom && "Block must have a valid IDom.");
1147                 U.set(GetLastDef(IDom->getBlock()));
1148               }
1149               cast<MemoryUseOrDef>(Usr)->resetOptimized();
1150             }
1151           }
1152         }
1153       }
1154     }
1155   }
1156   tryRemoveTrivialPhis(InsertedPhis);
1157 }
1158 
1159 // Move What before Where in the MemorySSA IR.
1160 template <class WhereType>
1161 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1162                               WhereType Where) {
1163   // Mark MemoryPhi users of What not to be optimized.
1164   for (auto *U : What->users())
1165     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1166       NonOptPhis.insert(PhiUser);
1167 
1168   // Replace all our users with our defining access.
1169   What->replaceAllUsesWith(What->getDefiningAccess());
1170 
1171   // Let MemorySSA take care of moving it around in the lists.
1172   MSSA->moveTo(What, BB, Where);
1173 
1174   // Now reinsert it into the IR and do whatever fixups needed.
1175   if (auto *MD = dyn_cast<MemoryDef>(What))
1176     insertDef(MD, /*RenameUses=*/true);
1177   else
1178     insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1179 
1180   // Clear dangling pointers. We added all MemoryPhi users, but not all
1181   // of them are removed by fixupDefs().
1182   NonOptPhis.clear();
1183 }
1184 
1185 // Move What before Where in the MemorySSA IR.
1186 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1187   moveTo(What, Where->getBlock(), Where->getIterator());
1188 }
1189 
1190 // Move What after Where in the MemorySSA IR.
1191 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1192   moveTo(What, Where->getBlock(), ++Where->getIterator());
1193 }
1194 
1195 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1196                                    MemorySSA::InsertionPlace Where) {
1197   if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
1198     return moveTo(What, BB, Where);
1199 
1200   if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
1201     return moveBefore(What, Where);
1202   else
1203     return moveTo(What, BB, MemorySSA::InsertionPlace::End);
1204 }
1205 
1206 // All accesses in To used to be in From. Move to end and update access lists.
1207 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1208                                        Instruction *Start) {
1209 
1210   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1211   if (!Accs)
1212     return;
1213 
1214   assert(Start->getParent() == To && "Incorrect Start instruction");
1215   MemoryAccess *FirstInNew = nullptr;
1216   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1217     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1218       break;
1219   if (FirstInNew) {
1220     auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1221     do {
1222       auto NextIt = ++MUD->getIterator();
1223       MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1224                                     ? nullptr
1225                                     : cast<MemoryUseOrDef>(&*NextIt);
1226       MSSA->moveTo(MUD, To, MemorySSA::End);
1227       // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
1228       // to retrieve it again.
1229       Accs = MSSA->getWritableBlockAccesses(From);
1230       MUD = NextMUD;
1231     } while (MUD);
1232   }
1233 
1234   // If all accesses were moved and only a trivial Phi remains, we try to remove
1235   // that Phi. This is needed when From is going to be deleted.
1236   auto *Defs = MSSA->getWritableBlockDefs(From);
1237   if (Defs && !Defs->empty())
1238     if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
1239       tryRemoveTrivialPhi(Phi);
1240 }
1241 
1242 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1243                                                 BasicBlock *To,
1244                                                 Instruction *Start) {
1245   assert(MSSA->getBlockAccesses(To) == nullptr &&
1246          "To block is expected to be free of MemoryAccesses.");
1247   moveAllAccesses(From, To, Start);
1248   for (BasicBlock *Succ : successors(To))
1249     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1250       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1251 }
1252 
1253 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1254                                                Instruction *Start) {
1255   assert(From->getUniquePredecessor() == To &&
1256          "From block is expected to have a single predecessor (To).");
1257   moveAllAccesses(From, To, Start);
1258   for (BasicBlock *Succ : successors(From))
1259     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1260       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1261 }
1262 
1263 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1264     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1265     bool IdenticalEdgesWereMerged) {
1266   assert(!MSSA->getWritableBlockAccesses(New) &&
1267          "Access list should be null for a new block.");
1268   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1269   if (!Phi)
1270     return;
1271   if (Old->hasNPredecessors(1)) {
1272     assert(pred_size(New) == Preds.size() &&
1273            "Should have moved all predecessors.");
1274     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1275   } else {
1276     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1277                              "new immediate predecessor.");
1278     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1279     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1280     // Currently only support the case of removing a single incoming edge when
1281     // identical edges were not merged.
1282     if (!IdenticalEdgesWereMerged)
1283       assert(PredsSet.size() == Preds.size() &&
1284              "If identical edges were not merged, we cannot have duplicate "
1285              "blocks in the predecessors");
1286     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1287       if (PredsSet.count(B)) {
1288         NewPhi->addIncoming(MA, B);
1289         if (!IdenticalEdgesWereMerged)
1290           PredsSet.erase(B);
1291         return true;
1292       }
1293       return false;
1294     });
1295     Phi->addIncoming(NewPhi, New);
1296     tryRemoveTrivialPhi(NewPhi);
1297   }
1298 }
1299 
1300 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1301   assert(!MSSA->isLiveOnEntryDef(MA) &&
1302          "Trying to remove the live on entry def");
1303   // We can only delete phi nodes if they have no uses, or we can replace all
1304   // uses with a single definition.
1305   MemoryAccess *NewDefTarget = nullptr;
1306   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1307     // Note that it is sufficient to know that all edges of the phi node have
1308     // the same argument.  If they do, by the definition of dominance frontiers
1309     // (which we used to place this phi), that argument must dominate this phi,
1310     // and thus, must dominate the phi's uses, and so we will not hit the assert
1311     // below.
1312     NewDefTarget = onlySingleValue(MP);
1313     assert((NewDefTarget || MP->use_empty()) &&
1314            "We can't delete this memory phi");
1315   } else {
1316     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1317   }
1318 
1319   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1320 
1321   // Re-point the uses at our defining access
1322   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1323     // Reset optimized on users of this store, and reset the uses.
1324     // A few notes:
1325     // 1. This is a slightly modified version of RAUW to avoid walking the
1326     // uses twice here.
1327     // 2. If we wanted to be complete, we would have to reset the optimized
1328     // flags on users of phi nodes if doing the below makes a phi node have all
1329     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1330     // phi nodes, because doing it here would be N^3.
1331     if (MA->hasValueHandle())
1332       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1333     // Note: We assume MemorySSA is not used in metadata since it's not really
1334     // part of the IR.
1335 
1336     assert(NewDefTarget != MA && "Going into an infinite loop");
1337     while (!MA->use_empty()) {
1338       Use &U = *MA->use_begin();
1339       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1340         MUD->resetOptimized();
1341       if (OptimizePhis)
1342         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1343           PhisToCheck.insert(MP);
1344       U.set(NewDefTarget);
1345     }
1346   }
1347 
1348   // The call below to erase will destroy MA, so we can't change the order we
1349   // are doing things here
1350   MSSA->removeFromLookups(MA);
1351   MSSA->removeFromLists(MA);
1352 
1353   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1354   if (!PhisToCheck.empty()) {
1355     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1356                                            PhisToCheck.end()};
1357     PhisToCheck.clear();
1358 
1359     unsigned PhisSize = PhisToOptimize.size();
1360     while (PhisSize-- > 0)
1361       if (MemoryPhi *MP =
1362               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1363         tryRemoveTrivialPhi(MP);
1364   }
1365 }
1366 
1367 void MemorySSAUpdater::removeBlocks(
1368     const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1369   // First delete all uses of BB in MemoryPhis.
1370   for (BasicBlock *BB : DeadBlocks) {
1371     Instruction *TI = BB->getTerminator();
1372     assert(TI && "Basic block expected to have a terminator instruction");
1373     for (BasicBlock *Succ : successors(TI))
1374       if (!DeadBlocks.count(Succ))
1375         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1376           MP->unorderedDeleteIncomingBlock(BB);
1377           tryRemoveTrivialPhi(MP);
1378         }
1379     // Drop all references of all accesses in BB
1380     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1381       for (MemoryAccess &MA : *Acc)
1382         MA.dropAllReferences();
1383   }
1384 
1385   // Next, delete all memory accesses in each block
1386   for (BasicBlock *BB : DeadBlocks) {
1387     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1388     if (!Acc)
1389       continue;
1390     for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1391       MemoryAccess *MA = &*AB;
1392       ++AB;
1393       MSSA->removeFromLookups(MA);
1394       MSSA->removeFromLists(MA);
1395     }
1396   }
1397 }
1398 
1399 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1400   for (auto &VH : UpdatedPHIs)
1401     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1402       tryRemoveTrivialPhi(MPhi);
1403 }
1404 
1405 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1406   const BasicBlock *BB = I->getParent();
1407   // Remove memory accesses in BB for I and all following instructions.
1408   auto BBI = I->getIterator(), BBE = BB->end();
1409   // FIXME: If this becomes too expensive, iterate until the first instruction
1410   // with a memory access, then iterate over MemoryAccesses.
1411   while (BBI != BBE)
1412     removeMemoryAccess(&*(BBI++));
1413   // Update phis in BB's successors to remove BB.
1414   SmallVector<WeakVH, 16> UpdatedPHIs;
1415   for (const BasicBlock *Successor : successors(BB)) {
1416     removeDuplicatePhiEdgesBetween(BB, Successor);
1417     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1418       MPhi->unorderedDeleteIncomingBlock(BB);
1419       UpdatedPHIs.push_back(MPhi);
1420     }
1421   }
1422   // Optimize trivial phis.
1423   tryRemoveTrivialPhis(UpdatedPHIs);
1424 }
1425 
1426 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1427                                                          const BasicBlock *To) {
1428   const BasicBlock *BB = BI->getParent();
1429   SmallVector<WeakVH, 16> UpdatedPHIs;
1430   for (const BasicBlock *Succ : successors(BB)) {
1431     removeDuplicatePhiEdgesBetween(BB, Succ);
1432     if (Succ != To)
1433       if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1434         MPhi->unorderedDeleteIncomingBlock(BB);
1435         UpdatedPHIs.push_back(MPhi);
1436       }
1437   }
1438   // Optimize trivial phis.
1439   tryRemoveTrivialPhis(UpdatedPHIs);
1440 }
1441 
1442 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1443     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1444     MemorySSA::InsertionPlace Point) {
1445   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1446   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1447   return NewAccess;
1448 }
1449 
1450 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1451     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1452   assert(I->getParent() == InsertPt->getBlock() &&
1453          "New and old access must be in the same block");
1454   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1455   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1456                               InsertPt->getIterator());
1457   return NewAccess;
1458 }
1459 
1460 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1461     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1462   assert(I->getParent() == InsertPt->getBlock() &&
1463          "New and old access must be in the same block");
1464   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1465   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1466                               ++InsertPt->getIterator());
1467   return NewAccess;
1468 }
1469