1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSAUpdater class. 10 // 11 //===----------------------------------------------------------------===// 12 #include "llvm/Analysis/MemorySSAUpdater.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/Analysis/IteratedDominanceFrontier.h" 17 #include "llvm/Analysis/LoopIterator.h" 18 #include "llvm/Analysis/MemorySSA.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/Support/Debug.h" 22 #include <algorithm> 23 24 #define DEBUG_TYPE "memoryssa" 25 using namespace llvm; 26 27 // This is the marker algorithm from "Simple and Efficient Construction of 28 // Static Single Assignment Form" 29 // The simple, non-marker algorithm places phi nodes at any join 30 // Here, we place markers, and only place phi nodes if they end up necessary. 31 // They are only necessary if they break a cycle (IE we recursively visit 32 // ourselves again), or we discover, while getting the value of the operands, 33 // that there are two or more definitions needing to be merged. 34 // This still will leave non-minimal form in the case of irreducible control 35 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 36 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( 37 BasicBlock *BB, 38 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 39 // First, do a cache lookup. Without this cache, certain CFG structures 40 // (like a series of if statements) take exponential time to visit. 41 auto Cached = CachedPreviousDef.find(BB); 42 if (Cached != CachedPreviousDef.end()) 43 return Cached->second; 44 45 // If this method is called from an unreachable block, return LoE. 46 if (!MSSA->DT->isReachableFromEntry(BB)) 47 return MSSA->getLiveOnEntryDef(); 48 49 if (BasicBlock *Pred = BB->getUniquePredecessor()) { 50 VisitedBlocks.insert(BB); 51 // Single predecessor case, just recurse, we can only have one definition. 52 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); 53 CachedPreviousDef.insert({BB, Result}); 54 return Result; 55 } 56 57 if (VisitedBlocks.count(BB)) { 58 // We hit our node again, meaning we had a cycle, we must insert a phi 59 // node to break it so we have an operand. The only case this will 60 // insert useless phis is if we have irreducible control flow. 61 MemoryAccess *Result = MSSA->createMemoryPhi(BB); 62 CachedPreviousDef.insert({BB, Result}); 63 return Result; 64 } 65 66 if (VisitedBlocks.insert(BB).second) { 67 // Mark us visited so we can detect a cycle 68 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; 69 70 // Recurse to get the values in our predecessors for placement of a 71 // potential phi node. This will insert phi nodes if we cycle in order to 72 // break the cycle and have an operand. 73 bool UniqueIncomingAccess = true; 74 MemoryAccess *SingleAccess = nullptr; 75 for (auto *Pred : predecessors(BB)) { 76 if (MSSA->DT->isReachableFromEntry(Pred)) { 77 auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef); 78 if (!SingleAccess) 79 SingleAccess = IncomingAccess; 80 else if (IncomingAccess != SingleAccess) 81 UniqueIncomingAccess = false; 82 PhiOps.push_back(IncomingAccess); 83 } else 84 PhiOps.push_back(MSSA->getLiveOnEntryDef()); 85 } 86 87 // Now try to simplify the ops to avoid placing a phi. 88 // This may return null if we never created a phi yet, that's okay 89 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 90 91 // See if we can avoid the phi by simplifying it. 92 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 93 // If we couldn't simplify, we may have to create a phi 94 if (Result == Phi && UniqueIncomingAccess && SingleAccess) { 95 // A concrete Phi only exists if we created an empty one to break a cycle. 96 if (Phi) { 97 assert(Phi->operands().empty() && "Expected empty Phi"); 98 Phi->replaceAllUsesWith(SingleAccess); 99 removeMemoryAccess(Phi); 100 } 101 Result = SingleAccess; 102 } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) { 103 if (!Phi) 104 Phi = MSSA->createMemoryPhi(BB); 105 106 // See if the existing phi operands match what we need. 107 // Unlike normal SSA, we only allow one phi node per block, so we can't just 108 // create a new one. 109 if (Phi->getNumOperands() != 0) { 110 // FIXME: Figure out whether this is dead code and if so remove it. 111 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 112 // These will have been filled in by the recursive read we did above. 113 llvm::copy(PhiOps, Phi->op_begin()); 114 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 115 } 116 } else { 117 unsigned i = 0; 118 for (auto *Pred : predecessors(BB)) 119 Phi->addIncoming(&*PhiOps[i++], Pred); 120 InsertedPHIs.push_back(Phi); 121 } 122 Result = Phi; 123 } 124 125 // Set ourselves up for the next variable by resetting visited state. 126 VisitedBlocks.erase(BB); 127 CachedPreviousDef.insert({BB, Result}); 128 return Result; 129 } 130 llvm_unreachable("Should have hit one of the three cases above"); 131 } 132 133 // This starts at the memory access, and goes backwards in the block to find the 134 // previous definition. If a definition is not found the block of the access, 135 // it continues globally, creating phi nodes to ensure we have a single 136 // definition. 137 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 138 if (auto *LocalResult = getPreviousDefInBlock(MA)) 139 return LocalResult; 140 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 141 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); 142 } 143 144 // This starts at the memory access, and goes backwards in the block to the find 145 // the previous definition. If the definition is not found in the block of the 146 // access, it returns nullptr. 147 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 148 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 149 150 // It's possible there are no defs, or we got handed the first def to start. 151 if (Defs) { 152 // If this is a def, we can just use the def iterators. 153 if (!isa<MemoryUse>(MA)) { 154 auto Iter = MA->getReverseDefsIterator(); 155 ++Iter; 156 if (Iter != Defs->rend()) 157 return &*Iter; 158 } else { 159 // Otherwise, have to walk the all access iterator. 160 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 161 for (auto &U : make_range(++MA->getReverseIterator(), End)) 162 if (!isa<MemoryUse>(U)) 163 return cast<MemoryAccess>(&U); 164 // Note that if MA comes before Defs->begin(), we won't hit a def. 165 return nullptr; 166 } 167 } 168 return nullptr; 169 } 170 171 // This starts at the end of block 172 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( 173 BasicBlock *BB, 174 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 175 auto *Defs = MSSA->getWritableBlockDefs(BB); 176 177 if (Defs) { 178 CachedPreviousDef.insert({BB, &*Defs->rbegin()}); 179 return &*Defs->rbegin(); 180 } 181 182 return getPreviousDefRecursive(BB, CachedPreviousDef); 183 } 184 // Recurse over a set of phi uses to eliminate the trivial ones 185 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 186 if (!Phi) 187 return nullptr; 188 TrackingVH<MemoryAccess> Res(Phi); 189 SmallVector<TrackingVH<Value>, 8> Uses; 190 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 191 for (auto &U : Uses) 192 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) 193 tryRemoveTrivialPhi(UsePhi); 194 return Res; 195 } 196 197 // Eliminate trivial phis 198 // Phis are trivial if they are defined either by themselves, or all the same 199 // argument. 200 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 201 // We recursively try to remove them. 202 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) { 203 assert(Phi && "Can only remove concrete Phi."); 204 auto OperRange = Phi->operands(); 205 return tryRemoveTrivialPhi(Phi, OperRange); 206 } 207 template <class RangeType> 208 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 209 RangeType &Operands) { 210 // Bail out on non-opt Phis. 211 if (NonOptPhis.count(Phi)) 212 return Phi; 213 214 // Detect equal or self arguments 215 MemoryAccess *Same = nullptr; 216 for (auto &Op : Operands) { 217 // If the same or self, good so far 218 if (Op == Phi || Op == Same) 219 continue; 220 // not the same, return the phi since it's not eliminatable by us 221 if (Same) 222 return Phi; 223 Same = cast<MemoryAccess>(&*Op); 224 } 225 // Never found a non-self reference, the phi is undef 226 if (Same == nullptr) 227 return MSSA->getLiveOnEntryDef(); 228 if (Phi) { 229 Phi->replaceAllUsesWith(Same); 230 removeMemoryAccess(Phi); 231 } 232 233 // We should only end up recursing in case we replaced something, in which 234 // case, we may have made other Phis trivial. 235 return recursePhi(Same); 236 } 237 238 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) { 239 VisitedBlocks.clear(); 240 InsertedPHIs.clear(); 241 MU->setDefiningAccess(getPreviousDef(MU)); 242 243 // In cases without unreachable blocks, because uses do not create new 244 // may-defs, there are only two cases: 245 // 1. There was a def already below us, and therefore, we should not have 246 // created a phi node because it was already needed for the def. 247 // 248 // 2. There is no def below us, and therefore, there is no extra renaming work 249 // to do. 250 251 // In cases with unreachable blocks, where the unnecessary Phis were 252 // optimized out, adding the Use may re-insert those Phis. Hence, when 253 // inserting Uses outside of the MSSA creation process, and new Phis were 254 // added, rename all uses if we are asked. 255 256 if (!RenameUses && !InsertedPHIs.empty()) { 257 auto *Defs = MSSA->getBlockDefs(MU->getBlock()); 258 (void)Defs; 259 assert((!Defs || (++Defs->begin() == Defs->end())) && 260 "Block may have only a Phi or no defs"); 261 } 262 263 if (RenameUses && InsertedPHIs.size()) { 264 SmallPtrSet<BasicBlock *, 16> Visited; 265 BasicBlock *StartBlock = MU->getBlock(); 266 267 if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) { 268 MemoryAccess *FirstDef = &*Defs->begin(); 269 // Convert to incoming value if it's a memorydef. A phi *is* already an 270 // incoming value. 271 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 272 FirstDef = MD->getDefiningAccess(); 273 274 MSSA->renamePass(MU->getBlock(), FirstDef, Visited); 275 } 276 // We just inserted a phi into this block, so the incoming value will 277 // become the phi anyway, so it does not matter what we pass. 278 for (auto &MP : InsertedPHIs) 279 if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP)) 280 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 281 } 282 } 283 284 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 285 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 286 MemoryAccess *NewDef) { 287 // Replace any operand with us an incoming block with the new defining 288 // access. 289 int i = MP->getBasicBlockIndex(BB); 290 assert(i != -1 && "Should have found the basic block in the phi"); 291 // We can't just compare i against getNumOperands since one is signed and the 292 // other not. So use it to index into the block iterator. 293 for (const BasicBlock *BlockBB : llvm::drop_begin(MP->blocks(), i)) { 294 if (BlockBB != BB) 295 break; 296 MP->setIncomingValue(i, NewDef); 297 ++i; 298 } 299 } 300 301 // A brief description of the algorithm: 302 // First, we compute what should define the new def, using the SSA 303 // construction algorithm. 304 // Then, we update the defs below us (and any new phi nodes) in the graph to 305 // point to the correct new defs, to ensure we only have one variable, and no 306 // disconnected stores. 307 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 308 VisitedBlocks.clear(); 309 InsertedPHIs.clear(); 310 311 // See if we had a local def, and if not, go hunting. 312 MemoryAccess *DefBefore = getPreviousDef(MD); 313 bool DefBeforeSameBlock = false; 314 if (DefBefore->getBlock() == MD->getBlock() && 315 !(isa<MemoryPhi>(DefBefore) && 316 llvm::is_contained(InsertedPHIs, DefBefore))) 317 DefBeforeSameBlock = true; 318 319 // There is a def before us, which means we can replace any store/phi uses 320 // of that thing with us, since we are in the way of whatever was there 321 // before. 322 // We now define that def's memorydefs and memoryphis 323 if (DefBeforeSameBlock) { 324 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) { 325 // Leave the MemoryUses alone. 326 // Also make sure we skip ourselves to avoid self references. 327 User *Usr = U.getUser(); 328 return !isa<MemoryUse>(Usr) && Usr != MD; 329 // Defs are automatically unoptimized when the user is set to MD below, 330 // because the isOptimized() call will fail to find the same ID. 331 }); 332 } 333 334 // and that def is now our defining access. 335 MD->setDefiningAccess(DefBefore); 336 337 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); 338 339 SmallSet<WeakVH, 8> ExistingPhis; 340 341 // Remember the index where we may insert new phis. 342 unsigned NewPhiIndex = InsertedPHIs.size(); 343 if (!DefBeforeSameBlock) { 344 // If there was a local def before us, we must have the same effect it 345 // did. Because every may-def is the same, any phis/etc we would create, it 346 // would also have created. If there was no local def before us, we 347 // performed a global update, and have to search all successors and make 348 // sure we update the first def in each of them (following all paths until 349 // we hit the first def along each path). This may also insert phi nodes. 350 // TODO: There are other cases we can skip this work, such as when we have a 351 // single successor, and only used a straight line of single pred blocks 352 // backwards to find the def. To make that work, we'd have to track whether 353 // getDefRecursive only ever used the single predecessor case. These types 354 // of paths also only exist in between CFG simplifications. 355 356 // If this is the first def in the block and this insert is in an arbitrary 357 // place, compute IDF and place phis. 358 SmallPtrSet<BasicBlock *, 2> DefiningBlocks; 359 360 // If this is the last Def in the block, we may need additional Phis. 361 // Compute IDF in all cases, as renaming needs to be done even when MD is 362 // not the last access, because it can introduce a new access past which a 363 // previous access was optimized; that access needs to be reoptimized. 364 DefiningBlocks.insert(MD->getBlock()); 365 for (const auto &VH : InsertedPHIs) 366 if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH)) 367 DefiningBlocks.insert(RealPHI->getBlock()); 368 ForwardIDFCalculator IDFs(*MSSA->DT); 369 SmallVector<BasicBlock *, 32> IDFBlocks; 370 IDFs.setDefiningBlocks(DefiningBlocks); 371 IDFs.calculate(IDFBlocks); 372 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs; 373 for (auto *BBIDF : IDFBlocks) { 374 auto *MPhi = MSSA->getMemoryAccess(BBIDF); 375 if (!MPhi) { 376 MPhi = MSSA->createMemoryPhi(BBIDF); 377 NewInsertedPHIs.push_back(MPhi); 378 } else { 379 ExistingPhis.insert(MPhi); 380 } 381 // Add the phis created into the IDF blocks to NonOptPhis, so they are not 382 // optimized out as trivial by the call to getPreviousDefFromEnd below. 383 // Once they are complete, all these Phis are added to the FixupList, and 384 // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may 385 // need fixing as well, and potentially be trivial before this insertion, 386 // hence add all IDF Phis. See PR43044. 387 NonOptPhis.insert(MPhi); 388 } 389 for (auto &MPhi : NewInsertedPHIs) { 390 auto *BBIDF = MPhi->getBlock(); 391 for (auto *Pred : predecessors(BBIDF)) { 392 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 393 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred); 394 } 395 } 396 397 // Re-take the index where we're adding the new phis, because the above call 398 // to getPreviousDefFromEnd, may have inserted into InsertedPHIs. 399 NewPhiIndex = InsertedPHIs.size(); 400 for (auto &MPhi : NewInsertedPHIs) { 401 InsertedPHIs.push_back(&*MPhi); 402 FixupList.push_back(&*MPhi); 403 } 404 405 FixupList.push_back(MD); 406 } 407 408 // Remember the index where we stopped inserting new phis above, since the 409 // fixupDefs call in the loop below may insert more, that are already minimal. 410 unsigned NewPhiIndexEnd = InsertedPHIs.size(); 411 412 while (!FixupList.empty()) { 413 unsigned StartingPHISize = InsertedPHIs.size(); 414 fixupDefs(FixupList); 415 FixupList.clear(); 416 // Put any new phis on the fixup list, and process them 417 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); 418 } 419 420 // Optimize potentially non-minimal phis added in this method. 421 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex; 422 if (NewPhiSize) 423 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize)); 424 425 // Now that all fixups are done, rename all uses if we are asked. Skip 426 // renaming for defs in unreachable blocks. 427 BasicBlock *StartBlock = MD->getBlock(); 428 if (RenameUses && MSSA->getDomTree().getNode(StartBlock)) { 429 SmallPtrSet<BasicBlock *, 16> Visited; 430 // We are guaranteed there is a def in the block, because we just got it 431 // handed to us in this function. 432 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 433 // Convert to incoming value if it's a memorydef. A phi *is* already an 434 // incoming value. 435 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 436 FirstDef = MD->getDefiningAccess(); 437 438 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 439 // We just inserted a phi into this block, so the incoming value will become 440 // the phi anyway, so it does not matter what we pass. 441 for (auto &MP : InsertedPHIs) { 442 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 443 if (Phi) 444 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 445 } 446 // Existing Phi blocks may need renaming too, if an access was previously 447 // optimized and the inserted Defs "covers" the Optimized value. 448 for (auto &MP : ExistingPhis) { 449 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 450 if (Phi) 451 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 452 } 453 } 454 } 455 456 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { 457 SmallPtrSet<const BasicBlock *, 8> Seen; 458 SmallVector<const BasicBlock *, 16> Worklist; 459 for (auto &Var : Vars) { 460 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); 461 if (!NewDef) 462 continue; 463 // First, see if there is a local def after the operand. 464 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 465 auto DefIter = NewDef->getDefsIterator(); 466 467 // The temporary Phi is being fixed, unmark it for not to optimize. 468 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) 469 NonOptPhis.erase(Phi); 470 471 // If there is a local def after us, we only have to rename that. 472 if (++DefIter != Defs->end()) { 473 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 474 continue; 475 } 476 477 // Otherwise, we need to search down through the CFG. 478 // For each of our successors, handle it directly if their is a phi, or 479 // place on the fixup worklist. 480 for (const auto *S : successors(NewDef->getBlock())) { 481 if (auto *MP = MSSA->getMemoryAccess(S)) 482 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 483 else 484 Worklist.push_back(S); 485 } 486 487 while (!Worklist.empty()) { 488 const BasicBlock *FixupBlock = Worklist.pop_back_val(); 489 490 // Get the first def in the block that isn't a phi node. 491 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 492 auto *FirstDef = &*Defs->begin(); 493 // The loop above and below should have taken care of phi nodes 494 assert(!isa<MemoryPhi>(FirstDef) && 495 "Should have already handled phi nodes!"); 496 // We are now this def's defining access, make sure we actually dominate 497 // it 498 assert(MSSA->dominates(NewDef, FirstDef) && 499 "Should have dominated the new access"); 500 501 // This may insert new phi nodes, because we are not guaranteed the 502 // block we are processing has a single pred, and depending where the 503 // store was inserted, it may require phi nodes below it. 504 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 505 return; 506 } 507 // We didn't find a def, so we must continue. 508 for (const auto *S : successors(FixupBlock)) { 509 // If there is a phi node, handle it. 510 // Otherwise, put the block on the worklist 511 if (auto *MP = MSSA->getMemoryAccess(S)) 512 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 513 else { 514 // If we cycle, we should have ended up at a phi node that we already 515 // processed. FIXME: Double check this 516 if (!Seen.insert(S).second) 517 continue; 518 Worklist.push_back(S); 519 } 520 } 521 } 522 } 523 } 524 525 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { 526 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 527 MPhi->unorderedDeleteIncomingBlock(From); 528 tryRemoveTrivialPhi(MPhi); 529 } 530 } 531 532 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From, 533 const BasicBlock *To) { 534 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 535 bool Found = false; 536 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { 537 if (From != B) 538 return false; 539 if (Found) 540 return true; 541 Found = true; 542 return false; 543 }); 544 tryRemoveTrivialPhi(MPhi); 545 } 546 } 547 548 /// If all arguments of a MemoryPHI are defined by the same incoming 549 /// argument, return that argument. 550 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 551 MemoryAccess *MA = nullptr; 552 553 for (auto &Arg : MP->operands()) { 554 if (!MA) 555 MA = cast<MemoryAccess>(Arg); 556 else if (MA != Arg) 557 return nullptr; 558 } 559 return MA; 560 } 561 562 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA, 563 const ValueToValueMapTy &VMap, 564 PhiToDefMap &MPhiMap, 565 bool CloneWasSimplified, 566 MemorySSA *MSSA) { 567 MemoryAccess *InsnDefining = MA; 568 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) { 569 if (!MSSA->isLiveOnEntryDef(DefMUD)) { 570 Instruction *DefMUDI = DefMUD->getMemoryInst(); 571 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); 572 if (Instruction *NewDefMUDI = 573 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) { 574 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); 575 if (!CloneWasSimplified) 576 assert(InsnDefining && "Defining instruction cannot be nullptr."); 577 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) { 578 // The clone was simplified, it's no longer a MemoryDef, look up. 579 auto DefIt = DefMUD->getDefsIterator(); 580 // Since simplified clones only occur in single block cloning, a 581 // previous definition must exist, otherwise NewDefMUDI would not 582 // have been found in VMap. 583 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() && 584 "Previous def must exist"); 585 InsnDefining = getNewDefiningAccessForClone( 586 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA); 587 } 588 } 589 } 590 } else { 591 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining); 592 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) 593 InsnDefining = NewDefPhi; 594 } 595 assert(InsnDefining && "Defining instruction cannot be nullptr."); 596 return InsnDefining; 597 } 598 599 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, 600 const ValueToValueMapTy &VMap, 601 PhiToDefMap &MPhiMap, 602 bool CloneWasSimplified) { 603 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 604 if (!Acc) 605 return; 606 for (const MemoryAccess &MA : *Acc) { 607 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) { 608 Instruction *Insn = MUD->getMemoryInst(); 609 // Entry does not exist if the clone of the block did not clone all 610 // instructions. This occurs in LoopRotate when cloning instructions 611 // from the old header to the old preheader. The cloned instruction may 612 // also be a simplified Value, not an Instruction (see LoopRotate). 613 // Also in LoopRotate, even when it's an instruction, due to it being 614 // simplified, it may be a Use rather than a Def, so we cannot use MUD as 615 // template. Calls coming from updateForClonedBlockIntoPred, ensure this. 616 if (Instruction *NewInsn = 617 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) { 618 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( 619 NewInsn, 620 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap, 621 MPhiMap, CloneWasSimplified, MSSA), 622 /*Template=*/CloneWasSimplified ? nullptr : MUD, 623 /*CreationMustSucceed=*/CloneWasSimplified ? false : true); 624 if (NewUseOrDef) 625 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); 626 } 627 } 628 } 629 } 630 631 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock( 632 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) { 633 auto *MPhi = MSSA->getMemoryAccess(Header); 634 if (!MPhi) 635 return; 636 637 // Create phi node in the backedge block and populate it with the same 638 // incoming values as MPhi. Skip incoming values coming from Preheader. 639 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock); 640 bool HasUniqueIncomingValue = true; 641 MemoryAccess *UniqueValue = nullptr; 642 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) { 643 BasicBlock *IBB = MPhi->getIncomingBlock(I); 644 MemoryAccess *IV = MPhi->getIncomingValue(I); 645 if (IBB != Preheader) { 646 NewMPhi->addIncoming(IV, IBB); 647 if (HasUniqueIncomingValue) { 648 if (!UniqueValue) 649 UniqueValue = IV; 650 else if (UniqueValue != IV) 651 HasUniqueIncomingValue = false; 652 } 653 } 654 } 655 656 // Update incoming edges into MPhi. Remove all but the incoming edge from 657 // Preheader. Add an edge from NewMPhi 658 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader); 659 MPhi->setIncomingValue(0, AccFromPreheader); 660 MPhi->setIncomingBlock(0, Preheader); 661 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I) 662 MPhi->unorderedDeleteIncoming(I); 663 MPhi->addIncoming(NewMPhi, BEBlock); 664 665 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be 666 // replaced with the unique value. 667 tryRemoveTrivialPhi(NewMPhi); 668 } 669 670 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, 671 ArrayRef<BasicBlock *> ExitBlocks, 672 const ValueToValueMapTy &VMap, 673 bool IgnoreIncomingWithNoClones) { 674 PhiToDefMap MPhiMap; 675 676 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { 677 assert(Phi && NewPhi && "Invalid Phi nodes."); 678 BasicBlock *NewPhiBB = NewPhi->getBlock(); 679 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB), 680 pred_end(NewPhiBB)); 681 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { 682 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); 683 BasicBlock *IncBB = Phi->getIncomingBlock(It); 684 685 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB))) 686 IncBB = NewIncBB; 687 else if (IgnoreIncomingWithNoClones) 688 continue; 689 690 // Now we have IncBB, and will need to add incoming from it to NewPhi. 691 692 // If IncBB is not a predecessor of NewPhiBB, then do not add it. 693 // NewPhiBB was cloned without that edge. 694 if (!NewPhiBBPreds.count(IncBB)) 695 continue; 696 697 // Determine incoming value and add it as incoming from IncBB. 698 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) { 699 if (!MSSA->isLiveOnEntryDef(IncMUD)) { 700 Instruction *IncI = IncMUD->getMemoryInst(); 701 assert(IncI && "Found MemoryUseOrDef with no Instruction."); 702 if (Instruction *NewIncI = 703 cast_or_null<Instruction>(VMap.lookup(IncI))) { 704 IncMUD = MSSA->getMemoryAccess(NewIncI); 705 assert(IncMUD && 706 "MemoryUseOrDef cannot be null, all preds processed."); 707 } 708 } 709 NewPhi->addIncoming(IncMUD, IncBB); 710 } else { 711 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess); 712 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) 713 NewPhi->addIncoming(NewDefPhi, IncBB); 714 else 715 NewPhi->addIncoming(IncPhi, IncBB); 716 } 717 } 718 if (auto *SingleAccess = onlySingleValue(NewPhi)) { 719 MPhiMap[Phi] = SingleAccess; 720 removeMemoryAccess(NewPhi); 721 } 722 }; 723 724 auto ProcessBlock = [&](BasicBlock *BB) { 725 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB)); 726 if (!NewBlock) 727 return; 728 729 assert(!MSSA->getWritableBlockAccesses(NewBlock) && 730 "Cloned block should have no accesses"); 731 732 // Add MemoryPhi. 733 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { 734 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); 735 MPhiMap[MPhi] = NewPhi; 736 } 737 // Update Uses and Defs. 738 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); 739 }; 740 741 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 742 ProcessBlock(BB); 743 744 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 745 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 746 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) 747 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi)); 748 } 749 750 void MemorySSAUpdater::updateForClonedBlockIntoPred( 751 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { 752 // All defs/phis from outside BB that are used in BB, are valid uses in P1. 753 // Since those defs/phis must have dominated BB, and also dominate P1. 754 // Defs from BB being used in BB will be replaced with the cloned defs from 755 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the 756 // incoming def into the Phi from P1. 757 // Instructions cloned into the predecessor are in practice sometimes 758 // simplified, so disable the use of the template, and create an access from 759 // scratch. 760 PhiToDefMap MPhiMap; 761 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 762 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); 763 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true); 764 } 765 766 template <typename Iter> 767 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( 768 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, 769 DominatorTree &DT) { 770 SmallVector<CFGUpdate, 4> Updates; 771 // Update/insert phis in all successors of exit blocks. 772 for (auto *Exit : ExitBlocks) 773 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) 774 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) { 775 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 776 Updates.push_back({DT.Insert, NewExit, ExitSucc}); 777 } 778 applyInsertUpdates(Updates, DT); 779 } 780 781 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 782 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap, 783 DominatorTree &DT) { 784 const ValueToValueMapTy *const Arr[] = {&VMap}; 785 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), 786 std::end(Arr), DT); 787 } 788 789 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 790 ArrayRef<BasicBlock *> ExitBlocks, 791 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) { 792 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) { 793 return I.get(); 794 }; 795 using MappedIteratorType = 796 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *, 797 decltype(GetPtr)>; 798 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); 799 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); 800 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); 801 } 802 803 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates, 804 DominatorTree &DT, bool UpdateDT) { 805 SmallVector<CFGUpdate, 4> DeleteUpdates; 806 SmallVector<CFGUpdate, 4> RevDeleteUpdates; 807 SmallVector<CFGUpdate, 4> InsertUpdates; 808 for (auto &Update : Updates) { 809 if (Update.getKind() == DT.Insert) 810 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 811 else { 812 DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()}); 813 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 814 } 815 } 816 817 if (!DeleteUpdates.empty()) { 818 if (!InsertUpdates.empty()) { 819 if (!UpdateDT) { 820 SmallVector<CFGUpdate, 0> Empty; 821 // Deletes are reversed applied, because this CFGView is pretending the 822 // deletes did not happen yet, hence the edges still exist. 823 DT.applyUpdates(Empty, RevDeleteUpdates); 824 } else { 825 // Apply all updates, with the RevDeleteUpdates as PostCFGView. 826 DT.applyUpdates(Updates, RevDeleteUpdates); 827 } 828 829 // Note: the MSSA update below doesn't distinguish between a GD with 830 // (RevDelete,false) and (Delete, true), but this matters for the DT 831 // updates above; for "children" purposes they are equivalent; but the 832 // updates themselves convey the desired update, used inside DT only. 833 GraphDiff<BasicBlock *> GD(RevDeleteUpdates); 834 applyInsertUpdates(InsertUpdates, DT, &GD); 835 // Update DT to redelete edges; this matches the real CFG so we can 836 // perform the standard update without a postview of the CFG. 837 DT.applyUpdates(DeleteUpdates); 838 } else { 839 if (UpdateDT) 840 DT.applyUpdates(DeleteUpdates); 841 } 842 } else { 843 if (UpdateDT) 844 DT.applyUpdates(Updates); 845 GraphDiff<BasicBlock *> GD; 846 applyInsertUpdates(InsertUpdates, DT, &GD); 847 } 848 849 // Update for deleted edges 850 for (auto &Update : DeleteUpdates) 851 removeEdge(Update.getFrom(), Update.getTo()); 852 } 853 854 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 855 DominatorTree &DT) { 856 GraphDiff<BasicBlock *> GD; 857 applyInsertUpdates(Updates, DT, &GD); 858 } 859 860 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 861 DominatorTree &DT, 862 const GraphDiff<BasicBlock *> *GD) { 863 // Get recursive last Def, assuming well formed MSSA and updated DT. 864 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { 865 while (true) { 866 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); 867 // Return last Def or Phi in BB, if it exists. 868 if (Defs) 869 return &*(--Defs->end()); 870 871 // Check number of predecessors, we only care if there's more than one. 872 unsigned Count = 0; 873 BasicBlock *Pred = nullptr; 874 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) { 875 Pred = Pi; 876 Count++; 877 if (Count == 2) 878 break; 879 } 880 881 // If BB has multiple predecessors, get last definition from IDom. 882 if (Count != 1) { 883 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its 884 // DT is invalidated. Return LoE as its last def. This will be added to 885 // MemoryPhi node, and later deleted when the block is deleted. 886 if (!DT.getNode(BB)) 887 return MSSA->getLiveOnEntryDef(); 888 if (auto *IDom = DT.getNode(BB)->getIDom()) 889 if (IDom->getBlock() != BB) { 890 BB = IDom->getBlock(); 891 continue; 892 } 893 return MSSA->getLiveOnEntryDef(); 894 } else { 895 // Single predecessor, BB cannot be dead. GetLastDef of Pred. 896 assert(Count == 1 && Pred && "Single predecessor expected."); 897 // BB can be unreachable though, return LoE if that is the case. 898 if (!DT.getNode(BB)) 899 return MSSA->getLiveOnEntryDef(); 900 BB = Pred; 901 } 902 }; 903 llvm_unreachable("Unable to get last definition."); 904 }; 905 906 // Get nearest IDom given a set of blocks. 907 // TODO: this can be optimized by starting the search at the node with the 908 // lowest level (highest in the tree). 909 auto FindNearestCommonDominator = 910 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * { 911 BasicBlock *PrevIDom = *BBSet.begin(); 912 for (auto *BB : BBSet) 913 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); 914 return PrevIDom; 915 }; 916 917 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not 918 // include CurrIDom. 919 auto GetNoLongerDomBlocks = 920 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, 921 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) { 922 if (PrevIDom == CurrIDom) 923 return; 924 BlocksPrevDom.push_back(PrevIDom); 925 BasicBlock *NextIDom = PrevIDom; 926 while (BasicBlock *UpIDom = 927 DT.getNode(NextIDom)->getIDom()->getBlock()) { 928 if (UpIDom == CurrIDom) 929 break; 930 BlocksPrevDom.push_back(UpIDom); 931 NextIDom = UpIDom; 932 } 933 }; 934 935 // Map a BB to its predecessors: added + previously existing. To get a 936 // deterministic order, store predecessors as SetVectors. The order in each 937 // will be defined by the order in Updates (fixed) and the order given by 938 // children<> (also fixed). Since we further iterate over these ordered sets, 939 // we lose the information of multiple edges possibly existing between two 940 // blocks, so we'll keep and EdgeCount map for that. 941 // An alternate implementation could keep unordered set for the predecessors, 942 // traverse either Updates or children<> each time to get the deterministic 943 // order, and drop the usage of EdgeCount. This alternate approach would still 944 // require querying the maps for each predecessor, and children<> call has 945 // additional computation inside for creating the snapshot-graph predecessors. 946 // As such, we favor using a little additional storage and less compute time. 947 // This decision can be revisited if we find the alternative more favorable. 948 949 struct PredInfo { 950 SmallSetVector<BasicBlock *, 2> Added; 951 SmallSetVector<BasicBlock *, 2> Prev; 952 }; 953 SmallDenseMap<BasicBlock *, PredInfo> PredMap; 954 955 for (auto &Edge : Updates) { 956 BasicBlock *BB = Edge.getTo(); 957 auto &AddedBlockSet = PredMap[BB].Added; 958 AddedBlockSet.insert(Edge.getFrom()); 959 } 960 961 // Store all existing predecessor for each BB, at least one must exist. 962 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap; 963 SmallPtrSet<BasicBlock *, 2> NewBlocks; 964 for (auto &BBPredPair : PredMap) { 965 auto *BB = BBPredPair.first; 966 const auto &AddedBlockSet = BBPredPair.second.Added; 967 auto &PrevBlockSet = BBPredPair.second.Prev; 968 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) { 969 if (!AddedBlockSet.count(Pi)) 970 PrevBlockSet.insert(Pi); 971 EdgeCountMap[{Pi, BB}]++; 972 } 973 974 if (PrevBlockSet.empty()) { 975 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); 976 LLVM_DEBUG( 977 dbgs() 978 << "Adding a predecessor to a block with no predecessors. " 979 "This must be an edge added to a new, likely cloned, block. " 980 "Its memory accesses must be already correct, assuming completed " 981 "via the updateExitBlocksForClonedLoop API. " 982 "Assert a single such edge is added so no phi addition or " 983 "additional processing is required.\n"); 984 assert(AddedBlockSet.size() == 1 && 985 "Can only handle adding one predecessor to a new block."); 986 // Need to remove new blocks from PredMap. Remove below to not invalidate 987 // iterator here. 988 NewBlocks.insert(BB); 989 } 990 } 991 // Nothing to process for new/cloned blocks. 992 for (auto *BB : NewBlocks) 993 PredMap.erase(BB); 994 995 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace; 996 SmallVector<WeakVH, 8> InsertedPhis; 997 998 // First create MemoryPhis in all blocks that don't have one. Create in the 999 // order found in Updates, not in PredMap, to get deterministic numbering. 1000 for (auto &Edge : Updates) { 1001 BasicBlock *BB = Edge.getTo(); 1002 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) 1003 InsertedPhis.push_back(MSSA->createMemoryPhi(BB)); 1004 } 1005 1006 // Now we'll fill in the MemoryPhis with the right incoming values. 1007 for (auto &BBPredPair : PredMap) { 1008 auto *BB = BBPredPair.first; 1009 const auto &PrevBlockSet = BBPredPair.second.Prev; 1010 const auto &AddedBlockSet = BBPredPair.second.Added; 1011 assert(!PrevBlockSet.empty() && 1012 "At least one previous predecessor must exist."); 1013 1014 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by 1015 // keeping this map before the loop. We can reuse already populated entries 1016 // if an edge is added from the same predecessor to two different blocks, 1017 // and this does happen in rotate. Note that the map needs to be updated 1018 // when deleting non-necessary phis below, if the phi is in the map by 1019 // replacing the value with DefP1. 1020 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred; 1021 for (auto *AddedPred : AddedBlockSet) { 1022 auto *DefPn = GetLastDef(AddedPred); 1023 assert(DefPn != nullptr && "Unable to find last definition."); 1024 LastDefAddedPred[AddedPred] = DefPn; 1025 } 1026 1027 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); 1028 // If Phi is not empty, add an incoming edge from each added pred. Must 1029 // still compute blocks with defs to replace for this block below. 1030 if (NewPhi->getNumOperands()) { 1031 for (auto *Pred : AddedBlockSet) { 1032 auto *LastDefForPred = LastDefAddedPred[Pred]; 1033 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1034 NewPhi->addIncoming(LastDefForPred, Pred); 1035 } 1036 } else { 1037 // Pick any existing predecessor and get its definition. All other 1038 // existing predecessors should have the same one, since no phi existed. 1039 auto *P1 = *PrevBlockSet.begin(); 1040 MemoryAccess *DefP1 = GetLastDef(P1); 1041 1042 // Check DefP1 against all Defs in LastDefPredPair. If all the same, 1043 // nothing to add. 1044 bool InsertPhi = false; 1045 for (auto LastDefPredPair : LastDefAddedPred) 1046 if (DefP1 != LastDefPredPair.second) { 1047 InsertPhi = true; 1048 break; 1049 } 1050 if (!InsertPhi) { 1051 // Since NewPhi may be used in other newly added Phis, replace all uses 1052 // of NewPhi with the definition coming from all predecessors (DefP1), 1053 // before deleting it. 1054 NewPhi->replaceAllUsesWith(DefP1); 1055 removeMemoryAccess(NewPhi); 1056 continue; 1057 } 1058 1059 // Update Phi with new values for new predecessors and old value for all 1060 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered 1061 // sets, the order of entries in NewPhi is deterministic. 1062 for (auto *Pred : AddedBlockSet) { 1063 auto *LastDefForPred = LastDefAddedPred[Pred]; 1064 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1065 NewPhi->addIncoming(LastDefForPred, Pred); 1066 } 1067 for (auto *Pred : PrevBlockSet) 1068 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1069 NewPhi->addIncoming(DefP1, Pred); 1070 } 1071 1072 // Get all blocks that used to dominate BB and no longer do after adding 1073 // AddedBlockSet, where PrevBlockSet are the previously known predecessors. 1074 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); 1075 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); 1076 assert(PrevIDom && "Previous IDom should exists"); 1077 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); 1078 assert(NewIDom && "BB should have a new valid idom"); 1079 assert(DT.dominates(NewIDom, PrevIDom) && 1080 "New idom should dominate old idom"); 1081 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); 1082 } 1083 1084 tryRemoveTrivialPhis(InsertedPhis); 1085 // Create the set of blocks that now have a definition. We'll use this to 1086 // compute IDF and add Phis there next. 1087 SmallVector<BasicBlock *, 8> BlocksToProcess; 1088 for (auto &VH : InsertedPhis) 1089 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1090 BlocksToProcess.push_back(MPhi->getBlock()); 1091 1092 // Compute IDF and add Phis in all IDF blocks that do not have one. 1093 SmallVector<BasicBlock *, 32> IDFBlocks; 1094 if (!BlocksToProcess.empty()) { 1095 ForwardIDFCalculator IDFs(DT, GD); 1096 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(), 1097 BlocksToProcess.end()); 1098 IDFs.setDefiningBlocks(DefiningBlocks); 1099 IDFs.calculate(IDFBlocks); 1100 1101 SmallSetVector<MemoryPhi *, 4> PhisToFill; 1102 // First create all needed Phis. 1103 for (auto *BBIDF : IDFBlocks) 1104 if (!MSSA->getMemoryAccess(BBIDF)) { 1105 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF); 1106 InsertedPhis.push_back(IDFPhi); 1107 PhisToFill.insert(IDFPhi); 1108 } 1109 // Then update or insert their correct incoming values. 1110 for (auto *BBIDF : IDFBlocks) { 1111 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF); 1112 assert(IDFPhi && "Phi must exist"); 1113 if (!PhisToFill.count(IDFPhi)) { 1114 // Update existing Phi. 1115 // FIXME: some updates may be redundant, try to optimize and skip some. 1116 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) 1117 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); 1118 } else { 1119 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF)) 1120 IDFPhi->addIncoming(GetLastDef(Pi), Pi); 1121 } 1122 } 1123 } 1124 1125 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no 1126 // longer dominate, replace those with the closest dominating def. 1127 // This will also update optimized accesses, as they're also uses. 1128 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { 1129 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { 1130 for (auto &DefToReplaceUses : *DefsList) { 1131 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); 1132 for (Use &U : llvm::make_early_inc_range(DefToReplaceUses.uses())) { 1133 MemoryAccess *Usr = cast<MemoryAccess>(U.getUser()); 1134 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) { 1135 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); 1136 if (!DT.dominates(DominatingBlock, DominatedBlock)) 1137 U.set(GetLastDef(DominatedBlock)); 1138 } else { 1139 BasicBlock *DominatedBlock = Usr->getBlock(); 1140 if (!DT.dominates(DominatingBlock, DominatedBlock)) { 1141 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) 1142 U.set(DomBlPhi); 1143 else { 1144 auto *IDom = DT.getNode(DominatedBlock)->getIDom(); 1145 assert(IDom && "Block must have a valid IDom."); 1146 U.set(GetLastDef(IDom->getBlock())); 1147 } 1148 cast<MemoryUseOrDef>(Usr)->resetOptimized(); 1149 } 1150 } 1151 } 1152 } 1153 } 1154 } 1155 tryRemoveTrivialPhis(InsertedPhis); 1156 } 1157 1158 // Move What before Where in the MemorySSA IR. 1159 template <class WhereType> 1160 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1161 WhereType Where) { 1162 // Mark MemoryPhi users of What not to be optimized. 1163 for (auto *U : What->users()) 1164 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) 1165 NonOptPhis.insert(PhiUser); 1166 1167 // Replace all our users with our defining access. 1168 What->replaceAllUsesWith(What->getDefiningAccess()); 1169 1170 // Let MemorySSA take care of moving it around in the lists. 1171 MSSA->moveTo(What, BB, Where); 1172 1173 // Now reinsert it into the IR and do whatever fixups needed. 1174 if (auto *MD = dyn_cast<MemoryDef>(What)) 1175 insertDef(MD, /*RenameUses=*/true); 1176 else 1177 insertUse(cast<MemoryUse>(What), /*RenameUses=*/true); 1178 1179 // Clear dangling pointers. We added all MemoryPhi users, but not all 1180 // of them are removed by fixupDefs(). 1181 NonOptPhis.clear(); 1182 } 1183 1184 // Move What before Where in the MemorySSA IR. 1185 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1186 moveTo(What, Where->getBlock(), Where->getIterator()); 1187 } 1188 1189 // Move What after Where in the MemorySSA IR. 1190 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1191 moveTo(What, Where->getBlock(), ++Where->getIterator()); 1192 } 1193 1194 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 1195 MemorySSA::InsertionPlace Where) { 1196 if (Where != MemorySSA::InsertionPlace::BeforeTerminator) 1197 return moveTo(What, BB, Where); 1198 1199 if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator())) 1200 return moveBefore(What, Where); 1201 else 1202 return moveTo(What, BB, MemorySSA::InsertionPlace::End); 1203 } 1204 1205 // All accesses in To used to be in From. Move to end and update access lists. 1206 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, 1207 Instruction *Start) { 1208 1209 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); 1210 if (!Accs) 1211 return; 1212 1213 assert(Start->getParent() == To && "Incorrect Start instruction"); 1214 MemoryAccess *FirstInNew = nullptr; 1215 for (Instruction &I : make_range(Start->getIterator(), To->end())) 1216 if ((FirstInNew = MSSA->getMemoryAccess(&I))) 1217 break; 1218 if (FirstInNew) { 1219 auto *MUD = cast<MemoryUseOrDef>(FirstInNew); 1220 do { 1221 auto NextIt = ++MUD->getIterator(); 1222 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) 1223 ? nullptr 1224 : cast<MemoryUseOrDef>(&*NextIt); 1225 MSSA->moveTo(MUD, To, MemorySSA::End); 1226 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need 1227 // to retrieve it again. 1228 Accs = MSSA->getWritableBlockAccesses(From); 1229 MUD = NextMUD; 1230 } while (MUD); 1231 } 1232 1233 // If all accesses were moved and only a trivial Phi remains, we try to remove 1234 // that Phi. This is needed when From is going to be deleted. 1235 auto *Defs = MSSA->getWritableBlockDefs(From); 1236 if (Defs && !Defs->empty()) 1237 if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin())) 1238 tryRemoveTrivialPhi(Phi); 1239 } 1240 1241 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, 1242 BasicBlock *To, 1243 Instruction *Start) { 1244 assert(MSSA->getBlockAccesses(To) == nullptr && 1245 "To block is expected to be free of MemoryAccesses."); 1246 moveAllAccesses(From, To, Start); 1247 for (BasicBlock *Succ : successors(To)) 1248 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1249 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1250 } 1251 1252 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, 1253 Instruction *Start) { 1254 assert(From->getUniquePredecessor() == To && 1255 "From block is expected to have a single predecessor (To)."); 1256 moveAllAccesses(From, To, Start); 1257 for (BasicBlock *Succ : successors(From)) 1258 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1259 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1260 } 1261 1262 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( 1263 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds, 1264 bool IdenticalEdgesWereMerged) { 1265 assert(!MSSA->getWritableBlockAccesses(New) && 1266 "Access list should be null for a new block."); 1267 MemoryPhi *Phi = MSSA->getMemoryAccess(Old); 1268 if (!Phi) 1269 return; 1270 if (Old->hasNPredecessors(1)) { 1271 assert(pred_size(New) == Preds.size() && 1272 "Should have moved all predecessors."); 1273 MSSA->moveTo(Phi, New, MemorySSA::Beginning); 1274 } else { 1275 assert(!Preds.empty() && "Must be moving at least one predecessor to the " 1276 "new immediate predecessor."); 1277 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); 1278 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); 1279 // Currently only support the case of removing a single incoming edge when 1280 // identical edges were not merged. 1281 if (!IdenticalEdgesWereMerged) 1282 assert(PredsSet.size() == Preds.size() && 1283 "If identical edges were not merged, we cannot have duplicate " 1284 "blocks in the predecessors"); 1285 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { 1286 if (PredsSet.count(B)) { 1287 NewPhi->addIncoming(MA, B); 1288 if (!IdenticalEdgesWereMerged) 1289 PredsSet.erase(B); 1290 return true; 1291 } 1292 return false; 1293 }); 1294 Phi->addIncoming(NewPhi, New); 1295 tryRemoveTrivialPhi(NewPhi); 1296 } 1297 } 1298 1299 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { 1300 assert(!MSSA->isLiveOnEntryDef(MA) && 1301 "Trying to remove the live on entry def"); 1302 // We can only delete phi nodes if they have no uses, or we can replace all 1303 // uses with a single definition. 1304 MemoryAccess *NewDefTarget = nullptr; 1305 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 1306 // Note that it is sufficient to know that all edges of the phi node have 1307 // the same argument. If they do, by the definition of dominance frontiers 1308 // (which we used to place this phi), that argument must dominate this phi, 1309 // and thus, must dominate the phi's uses, and so we will not hit the assert 1310 // below. 1311 NewDefTarget = onlySingleValue(MP); 1312 assert((NewDefTarget || MP->use_empty()) && 1313 "We can't delete this memory phi"); 1314 } else { 1315 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 1316 } 1317 1318 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 1319 1320 // Re-point the uses at our defining access 1321 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 1322 // Reset optimized on users of this store, and reset the uses. 1323 // A few notes: 1324 // 1. This is a slightly modified version of RAUW to avoid walking the 1325 // uses twice here. 1326 // 2. If we wanted to be complete, we would have to reset the optimized 1327 // flags on users of phi nodes if doing the below makes a phi node have all 1328 // the same arguments. Instead, we prefer users to removeMemoryAccess those 1329 // phi nodes, because doing it here would be N^3. 1330 if (MA->hasValueHandle()) 1331 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 1332 // Note: We assume MemorySSA is not used in metadata since it's not really 1333 // part of the IR. 1334 1335 assert(NewDefTarget != MA && "Going into an infinite loop"); 1336 while (!MA->use_empty()) { 1337 Use &U = *MA->use_begin(); 1338 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 1339 MUD->resetOptimized(); 1340 if (OptimizePhis) 1341 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser())) 1342 PhisToCheck.insert(MP); 1343 U.set(NewDefTarget); 1344 } 1345 } 1346 1347 // The call below to erase will destroy MA, so we can't change the order we 1348 // are doing things here 1349 MSSA->removeFromLookups(MA); 1350 MSSA->removeFromLists(MA); 1351 1352 // Optionally optimize Phi uses. This will recursively remove trivial phis. 1353 if (!PhisToCheck.empty()) { 1354 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(), 1355 PhisToCheck.end()}; 1356 PhisToCheck.clear(); 1357 1358 unsigned PhisSize = PhisToOptimize.size(); 1359 while (PhisSize-- > 0) 1360 if (MemoryPhi *MP = 1361 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) 1362 tryRemoveTrivialPhi(MP); 1363 } 1364 } 1365 1366 void MemorySSAUpdater::removeBlocks( 1367 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) { 1368 // First delete all uses of BB in MemoryPhis. 1369 for (BasicBlock *BB : DeadBlocks) { 1370 Instruction *TI = BB->getTerminator(); 1371 assert(TI && "Basic block expected to have a terminator instruction"); 1372 for (BasicBlock *Succ : successors(TI)) 1373 if (!DeadBlocks.count(Succ)) 1374 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { 1375 MP->unorderedDeleteIncomingBlock(BB); 1376 tryRemoveTrivialPhi(MP); 1377 } 1378 // Drop all references of all accesses in BB 1379 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) 1380 for (MemoryAccess &MA : *Acc) 1381 MA.dropAllReferences(); 1382 } 1383 1384 // Next, delete all memory accesses in each block 1385 for (BasicBlock *BB : DeadBlocks) { 1386 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); 1387 if (!Acc) 1388 continue; 1389 for (MemoryAccess &MA : llvm::make_early_inc_range(*Acc)) { 1390 MSSA->removeFromLookups(&MA); 1391 MSSA->removeFromLists(&MA); 1392 } 1393 } 1394 } 1395 1396 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) { 1397 for (auto &VH : UpdatedPHIs) 1398 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1399 tryRemoveTrivialPhi(MPhi); 1400 } 1401 1402 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) { 1403 const BasicBlock *BB = I->getParent(); 1404 // Remove memory accesses in BB for I and all following instructions. 1405 auto BBI = I->getIterator(), BBE = BB->end(); 1406 // FIXME: If this becomes too expensive, iterate until the first instruction 1407 // with a memory access, then iterate over MemoryAccesses. 1408 while (BBI != BBE) 1409 removeMemoryAccess(&*(BBI++)); 1410 // Update phis in BB's successors to remove BB. 1411 SmallVector<WeakVH, 16> UpdatedPHIs; 1412 for (const BasicBlock *Successor : successors(BB)) { 1413 removeDuplicatePhiEdgesBetween(BB, Successor); 1414 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) { 1415 MPhi->unorderedDeleteIncomingBlock(BB); 1416 UpdatedPHIs.push_back(MPhi); 1417 } 1418 } 1419 // Optimize trivial phis. 1420 tryRemoveTrivialPhis(UpdatedPHIs); 1421 } 1422 1423 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 1424 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 1425 MemorySSA::InsertionPlace Point) { 1426 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1427 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 1428 return NewAccess; 1429 } 1430 1431 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 1432 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 1433 assert(I->getParent() == InsertPt->getBlock() && 1434 "New and old access must be in the same block"); 1435 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1436 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1437 InsertPt->getIterator()); 1438 return NewAccess; 1439 } 1440 1441 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 1442 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 1443 assert(I->getParent() == InsertPt->getBlock() && 1444 "New and old access must be in the same block"); 1445 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1446 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1447 ++InsertPt->getIterator()); 1448 return NewAccess; 1449 } 1450