1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------===//
9 //
10 // This file implements the MemorySSAUpdater class.
11 //
12 //===----------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSAUpdater.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/MemorySSA.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/GlobalVariable.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Metadata.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/FormattedStream.h"
26 #include <algorithm>
27 
28 #define DEBUG_TYPE "memoryssa"
29 using namespace llvm;
30 
31 // This is the marker algorithm from "Simple and Efficient Construction of
32 // Static Single Assignment Form"
33 // The simple, non-marker algorithm places phi nodes at any join
34 // Here, we place markers, and only place phi nodes if they end up necessary.
35 // They are only necessary if they break a cycle (IE we recursively visit
36 // ourselves again), or we discover, while getting the value of the operands,
37 // that there are two or more definitions needing to be merged.
38 // This still will leave non-minimal form in the case of irreducible control
39 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
40 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
41     BasicBlock *BB,
42     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
43   // First, do a cache lookup. Without this cache, certain CFG structures
44   // (like a series of if statements) take exponential time to visit.
45   auto Cached = CachedPreviousDef.find(BB);
46   if (Cached != CachedPreviousDef.end()) {
47     return Cached->second;
48   } else if (BasicBlock *Pred = BB->getSinglePredecessor()) {
49     // Single predecessor case, just recurse, we can only have one definition.
50     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
51     CachedPreviousDef.insert({BB, Result});
52     return Result;
53   } else if (VisitedBlocks.count(BB)) {
54     // We hit our node again, meaning we had a cycle, we must insert a phi
55     // node to break it so we have an operand. The only case this will
56     // insert useless phis is if we have irreducible control flow.
57     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
58     CachedPreviousDef.insert({BB, Result});
59     return Result;
60   } else if (VisitedBlocks.insert(BB).second) {
61     // Mark us visited so we can detect a cycle
62     SmallVector<MemoryAccess *, 8> PhiOps;
63 
64     // Recurse to get the values in our predecessors for placement of a
65     // potential phi node. This will insert phi nodes if we cycle in order to
66     // break the cycle and have an operand.
67     for (auto *Pred : predecessors(BB))
68       PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
69 
70     // Now try to simplify the ops to avoid placing a phi.
71     // This may return null if we never created a phi yet, that's okay
72     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
73     bool PHIExistsButNeedsUpdate = false;
74     // See if the existing phi operands match what we need.
75     // Unlike normal SSA, we only allow one phi node per block, so we can't just
76     // create a new one.
77     if (Phi && Phi->getNumOperands() != 0)
78       if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
79         PHIExistsButNeedsUpdate = true;
80       }
81 
82     // See if we can avoid the phi by simplifying it.
83     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
84     // If we couldn't simplify, we may have to create a phi
85     if (Result == Phi) {
86       if (!Phi)
87         Phi = MSSA->createMemoryPhi(BB);
88 
89       // These will have been filled in by the recursive read we did above.
90       if (PHIExistsButNeedsUpdate) {
91         std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
92         std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
93       } else {
94         unsigned i = 0;
95         for (auto *Pred : predecessors(BB))
96           Phi->addIncoming(PhiOps[i++], Pred);
97         InsertedPHIs.push_back(Phi);
98       }
99       Result = Phi;
100     }
101 
102     // Set ourselves up for the next variable by resetting visited state.
103     VisitedBlocks.erase(BB);
104     CachedPreviousDef.insert({BB, Result});
105     return Result;
106   }
107   llvm_unreachable("Should have hit one of the three cases above");
108 }
109 
110 // This starts at the memory access, and goes backwards in the block to find the
111 // previous definition. If a definition is not found the block of the access,
112 // it continues globally, creating phi nodes to ensure we have a single
113 // definition.
114 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
115   if (auto *LocalResult = getPreviousDefInBlock(MA))
116     return LocalResult;
117   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
118   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
119 }
120 
121 // This starts at the memory access, and goes backwards in the block to the find
122 // the previous definition. If the definition is not found in the block of the
123 // access, it returns nullptr.
124 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
125   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
126 
127   // It's possible there are no defs, or we got handed the first def to start.
128   if (Defs) {
129     // If this is a def, we can just use the def iterators.
130     if (!isa<MemoryUse>(MA)) {
131       auto Iter = MA->getReverseDefsIterator();
132       ++Iter;
133       if (Iter != Defs->rend())
134         return &*Iter;
135     } else {
136       // Otherwise, have to walk the all access iterator.
137       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
138       for (auto &U : make_range(++MA->getReverseIterator(), End))
139         if (!isa<MemoryUse>(U))
140           return cast<MemoryAccess>(&U);
141       // Note that if MA comes before Defs->begin(), we won't hit a def.
142       return nullptr;
143     }
144   }
145   return nullptr;
146 }
147 
148 // This starts at the end of block
149 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
150     BasicBlock *BB,
151     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
152   auto *Defs = MSSA->getWritableBlockDefs(BB);
153 
154   if (Defs)
155     return &*Defs->rbegin();
156 
157   return getPreviousDefRecursive(BB, CachedPreviousDef);
158 }
159 // Recurse over a set of phi uses to eliminate the trivial ones
160 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
161   if (!Phi)
162     return nullptr;
163   TrackingVH<MemoryAccess> Res(Phi);
164   SmallVector<TrackingVH<Value>, 8> Uses;
165   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
166   for (auto &U : Uses) {
167     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
168       auto OperRange = UsePhi->operands();
169       tryRemoveTrivialPhi(UsePhi, OperRange);
170     }
171   }
172   return Res;
173 }
174 
175 // Eliminate trivial phis
176 // Phis are trivial if they are defined either by themselves, or all the same
177 // argument.
178 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
179 // We recursively try to remove them.
180 template <class RangeType>
181 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
182                                                     RangeType &Operands) {
183   // Bail out on non-opt Phis.
184   if (NonOptPhis.count(Phi))
185     return Phi;
186 
187   // Detect equal or self arguments
188   MemoryAccess *Same = nullptr;
189   for (auto &Op : Operands) {
190     // If the same or self, good so far
191     if (Op == Phi || Op == Same)
192       continue;
193     // not the same, return the phi since it's not eliminatable by us
194     if (Same)
195       return Phi;
196     Same = cast<MemoryAccess>(Op);
197   }
198   // Never found a non-self reference, the phi is undef
199   if (Same == nullptr)
200     return MSSA->getLiveOnEntryDef();
201   if (Phi) {
202     Phi->replaceAllUsesWith(Same);
203     removeMemoryAccess(Phi);
204   }
205 
206   // We should only end up recursing in case we replaced something, in which
207   // case, we may have made other Phis trivial.
208   return recursePhi(Same);
209 }
210 
211 void MemorySSAUpdater::insertUse(MemoryUse *MU) {
212   InsertedPHIs.clear();
213   MU->setDefiningAccess(getPreviousDef(MU));
214   // Unlike for defs, there is no extra work to do.  Because uses do not create
215   // new may-defs, there are only two cases:
216   //
217   // 1. There was a def already below us, and therefore, we should not have
218   // created a phi node because it was already needed for the def.
219   //
220   // 2. There is no def below us, and therefore, there is no extra renaming work
221   // to do.
222 }
223 
224 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
225 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
226                                       MemoryAccess *NewDef) {
227   // Replace any operand with us an incoming block with the new defining
228   // access.
229   int i = MP->getBasicBlockIndex(BB);
230   assert(i != -1 && "Should have found the basic block in the phi");
231   // We can't just compare i against getNumOperands since one is signed and the
232   // other not. So use it to index into the block iterator.
233   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
234        ++BBIter) {
235     if (*BBIter != BB)
236       break;
237     MP->setIncomingValue(i, NewDef);
238     ++i;
239   }
240 }
241 
242 // A brief description of the algorithm:
243 // First, we compute what should define the new def, using the SSA
244 // construction algorithm.
245 // Then, we update the defs below us (and any new phi nodes) in the graph to
246 // point to the correct new defs, to ensure we only have one variable, and no
247 // disconnected stores.
248 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
249   InsertedPHIs.clear();
250 
251   // See if we had a local def, and if not, go hunting.
252   MemoryAccess *DefBefore = getPreviousDef(MD);
253   bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
254 
255   // There is a def before us, which means we can replace any store/phi uses
256   // of that thing with us, since we are in the way of whatever was there
257   // before.
258   // We now define that def's memorydefs and memoryphis
259   if (DefBeforeSameBlock) {
260     for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
261          UI != UE;) {
262       Use &U = *UI++;
263       // Leave the uses alone
264       if (isa<MemoryUse>(U.getUser()))
265         continue;
266       U.set(MD);
267     }
268   }
269 
270   // and that def is now our defining access.
271   // We change them in this order otherwise we will appear in the use list
272   // above and reset ourselves.
273   MD->setDefiningAccess(DefBefore);
274 
275   SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(),
276                                            InsertedPHIs.end());
277   if (!DefBeforeSameBlock) {
278     // If there was a local def before us, we must have the same effect it
279     // did. Because every may-def is the same, any phis/etc we would create, it
280     // would also have created.  If there was no local def before us, we
281     // performed a global update, and have to search all successors and make
282     // sure we update the first def in each of them (following all paths until
283     // we hit the first def along each path). This may also insert phi nodes.
284     // TODO: There are other cases we can skip this work, such as when we have a
285     // single successor, and only used a straight line of single pred blocks
286     // backwards to find the def.  To make that work, we'd have to track whether
287     // getDefRecursive only ever used the single predecessor case.  These types
288     // of paths also only exist in between CFG simplifications.
289     FixupList.push_back(MD);
290   }
291 
292   while (!FixupList.empty()) {
293     unsigned StartingPHISize = InsertedPHIs.size();
294     fixupDefs(FixupList);
295     FixupList.clear();
296     // Put any new phis on the fixup list, and process them
297     FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end());
298   }
299   // Now that all fixups are done, rename all uses if we are asked.
300   if (RenameUses) {
301     SmallPtrSet<BasicBlock *, 16> Visited;
302     BasicBlock *StartBlock = MD->getBlock();
303     // We are guaranteed there is a def in the block, because we just got it
304     // handed to us in this function.
305     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
306     // Convert to incoming value if it's a memorydef. A phi *is* already an
307     // incoming value.
308     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
309       FirstDef = MD->getDefiningAccess();
310 
311     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
312     // We just inserted a phi into this block, so the incoming value will become
313     // the phi anyway, so it does not matter what we pass.
314     for (auto *MP : InsertedPHIs)
315       MSSA->renamePass(MP->getBlock(), nullptr, Visited);
316   }
317 }
318 
319 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) {
320   SmallPtrSet<const BasicBlock *, 8> Seen;
321   SmallVector<const BasicBlock *, 16> Worklist;
322   for (auto *NewDef : Vars) {
323     // First, see if there is a local def after the operand.
324     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
325     auto DefIter = NewDef->getDefsIterator();
326 
327     // The temporary Phi is being fixed, unmark it for not to optimize.
328     if (MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(NewDef))
329       NonOptPhis.erase(Phi);
330 
331     // If there is a local def after us, we only have to rename that.
332     if (++DefIter != Defs->end()) {
333       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
334       continue;
335     }
336 
337     // Otherwise, we need to search down through the CFG.
338     // For each of our successors, handle it directly if their is a phi, or
339     // place on the fixup worklist.
340     for (const auto *S : successors(NewDef->getBlock())) {
341       if (auto *MP = MSSA->getMemoryAccess(S))
342         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
343       else
344         Worklist.push_back(S);
345     }
346 
347     while (!Worklist.empty()) {
348       const BasicBlock *FixupBlock = Worklist.back();
349       Worklist.pop_back();
350 
351       // Get the first def in the block that isn't a phi node.
352       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
353         auto *FirstDef = &*Defs->begin();
354         // The loop above and below should have taken care of phi nodes
355         assert(!isa<MemoryPhi>(FirstDef) &&
356                "Should have already handled phi nodes!");
357         // We are now this def's defining access, make sure we actually dominate
358         // it
359         assert(MSSA->dominates(NewDef, FirstDef) &&
360                "Should have dominated the new access");
361 
362         // This may insert new phi nodes, because we are not guaranteed the
363         // block we are processing has a single pred, and depending where the
364         // store was inserted, it may require phi nodes below it.
365         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
366         return;
367       }
368       // We didn't find a def, so we must continue.
369       for (const auto *S : successors(FixupBlock)) {
370         // If there is a phi node, handle it.
371         // Otherwise, put the block on the worklist
372         if (auto *MP = MSSA->getMemoryAccess(S))
373           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
374         else {
375           // If we cycle, we should have ended up at a phi node that we already
376           // processed.  FIXME: Double check this
377           if (!Seen.insert(S).second)
378             continue;
379           Worklist.push_back(S);
380         }
381       }
382     }
383   }
384 }
385 
386 // Move What before Where in the MemorySSA IR.
387 template <class WhereType>
388 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
389                               WhereType Where) {
390   // Mark MemoryPhi users of What not to be optimized.
391   for (auto *U : What->users())
392     if (MemoryPhi *PhiUser = dyn_cast_or_null<MemoryPhi>(U))
393       NonOptPhis.insert(PhiUser);
394 
395   // Replace all our users with our defining access.
396   What->replaceAllUsesWith(What->getDefiningAccess());
397 
398   // Let MemorySSA take care of moving it around in the lists.
399   MSSA->moveTo(What, BB, Where);
400 
401   // Now reinsert it into the IR and do whatever fixups needed.
402   if (auto *MD = dyn_cast<MemoryDef>(What))
403     insertDef(MD);
404   else
405     insertUse(cast<MemoryUse>(What));
406 
407   // Clear dangling pointers. We added all MemoryPhi users, but not all
408   // of them are removed by fixupDefs().
409   NonOptPhis.clear();
410 }
411 
412 // Move What before Where in the MemorySSA IR.
413 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
414   moveTo(What, Where->getBlock(), Where->getIterator());
415 }
416 
417 // Move What after Where in the MemorySSA IR.
418 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
419   moveTo(What, Where->getBlock(), ++Where->getIterator());
420 }
421 
422 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
423                                    MemorySSA::InsertionPlace Where) {
424   return moveTo(What, BB, Where);
425 }
426 
427 /// If all arguments of a MemoryPHI are defined by the same incoming
428 /// argument, return that argument.
429 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
430   MemoryAccess *MA = nullptr;
431 
432   for (auto &Arg : MP->operands()) {
433     if (!MA)
434       MA = cast<MemoryAccess>(Arg);
435     else if (MA != Arg)
436       return nullptr;
437   }
438   return MA;
439 }
440 
441 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) {
442   assert(!MSSA->isLiveOnEntryDef(MA) &&
443          "Trying to remove the live on entry def");
444   // We can only delete phi nodes if they have no uses, or we can replace all
445   // uses with a single definition.
446   MemoryAccess *NewDefTarget = nullptr;
447   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
448     // Note that it is sufficient to know that all edges of the phi node have
449     // the same argument.  If they do, by the definition of dominance frontiers
450     // (which we used to place this phi), that argument must dominate this phi,
451     // and thus, must dominate the phi's uses, and so we will not hit the assert
452     // below.
453     NewDefTarget = onlySingleValue(MP);
454     assert((NewDefTarget || MP->use_empty()) &&
455            "We can't delete this memory phi");
456   } else {
457     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
458   }
459 
460   // Re-point the uses at our defining access
461   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
462     // Reset optimized on users of this store, and reset the uses.
463     // A few notes:
464     // 1. This is a slightly modified version of RAUW to avoid walking the
465     // uses twice here.
466     // 2. If we wanted to be complete, we would have to reset the optimized
467     // flags on users of phi nodes if doing the below makes a phi node have all
468     // the same arguments. Instead, we prefer users to removeMemoryAccess those
469     // phi nodes, because doing it here would be N^3.
470     if (MA->hasValueHandle())
471       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
472     // Note: We assume MemorySSA is not used in metadata since it's not really
473     // part of the IR.
474 
475     while (!MA->use_empty()) {
476       Use &U = *MA->use_begin();
477       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
478         MUD->resetOptimized();
479       U.set(NewDefTarget);
480     }
481   }
482 
483   // The call below to erase will destroy MA, so we can't change the order we
484   // are doing things here
485   MSSA->removeFromLookups(MA);
486   MSSA->removeFromLists(MA);
487 }
488 
489 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
490     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
491     MemorySSA::InsertionPlace Point) {
492   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
493   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
494   return NewAccess;
495 }
496 
497 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
498     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
499   assert(I->getParent() == InsertPt->getBlock() &&
500          "New and old access must be in the same block");
501   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
502   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
503                               InsertPt->getIterator());
504   return NewAccess;
505 }
506 
507 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
508     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
509   assert(I->getParent() == InsertPt->getBlock() &&
510          "New and old access must be in the same block");
511   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
512   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
513                               ++InsertPt->getIterator());
514   return NewAccess;
515 }
516