1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSAUpdater class. 10 // 11 //===----------------------------------------------------------------===// 12 #include "llvm/Analysis/MemorySSAUpdater.h" 13 #include "llvm/Analysis/LoopIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/IteratedDominanceFrontier.h" 18 #include "llvm/Analysis/MemorySSA.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/FormattedStream.h" 29 #include <algorithm> 30 31 #define DEBUG_TYPE "memoryssa" 32 using namespace llvm; 33 34 // This is the marker algorithm from "Simple and Efficient Construction of 35 // Static Single Assignment Form" 36 // The simple, non-marker algorithm places phi nodes at any join 37 // Here, we place markers, and only place phi nodes if they end up necessary. 38 // They are only necessary if they break a cycle (IE we recursively visit 39 // ourselves again), or we discover, while getting the value of the operands, 40 // that there are two or more definitions needing to be merged. 41 // This still will leave non-minimal form in the case of irreducible control 42 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 43 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( 44 BasicBlock *BB, 45 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 46 // First, do a cache lookup. Without this cache, certain CFG structures 47 // (like a series of if statements) take exponential time to visit. 48 auto Cached = CachedPreviousDef.find(BB); 49 if (Cached != CachedPreviousDef.end()) 50 return Cached->second; 51 52 // If this method is called from an unreachable block, return LoE. 53 if (!MSSA->DT->isReachableFromEntry(BB)) 54 return MSSA->getLiveOnEntryDef(); 55 56 if (BasicBlock *Pred = BB->getUniquePredecessor()) { 57 VisitedBlocks.insert(BB); 58 // Single predecessor case, just recurse, we can only have one definition. 59 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); 60 CachedPreviousDef.insert({BB, Result}); 61 return Result; 62 } 63 64 if (VisitedBlocks.count(BB)) { 65 // We hit our node again, meaning we had a cycle, we must insert a phi 66 // node to break it so we have an operand. The only case this will 67 // insert useless phis is if we have irreducible control flow. 68 MemoryAccess *Result = MSSA->createMemoryPhi(BB); 69 CachedPreviousDef.insert({BB, Result}); 70 return Result; 71 } 72 73 if (VisitedBlocks.insert(BB).second) { 74 // Mark us visited so we can detect a cycle 75 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; 76 77 // Recurse to get the values in our predecessors for placement of a 78 // potential phi node. This will insert phi nodes if we cycle in order to 79 // break the cycle and have an operand. 80 bool UniqueIncomingAccess = true; 81 MemoryAccess *SingleAccess = nullptr; 82 for (auto *Pred : predecessors(BB)) { 83 if (MSSA->DT->isReachableFromEntry(Pred)) { 84 auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef); 85 if (!SingleAccess) 86 SingleAccess = IncomingAccess; 87 else if (IncomingAccess != SingleAccess) 88 UniqueIncomingAccess = false; 89 PhiOps.push_back(IncomingAccess); 90 } else 91 PhiOps.push_back(MSSA->getLiveOnEntryDef()); 92 } 93 94 // Now try to simplify the ops to avoid placing a phi. 95 // This may return null if we never created a phi yet, that's okay 96 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 97 98 // See if we can avoid the phi by simplifying it. 99 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 100 // If we couldn't simplify, we may have to create a phi 101 if (Result == Phi && UniqueIncomingAccess && SingleAccess) { 102 // A concrete Phi only exists if we created an empty one to break a cycle. 103 if (Phi) { 104 assert(Phi->operands().empty() && "Expected empty Phi"); 105 Phi->replaceAllUsesWith(SingleAccess); 106 removeMemoryAccess(Phi); 107 } 108 Result = SingleAccess; 109 } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) { 110 if (!Phi) 111 Phi = MSSA->createMemoryPhi(BB); 112 113 // See if the existing phi operands match what we need. 114 // Unlike normal SSA, we only allow one phi node per block, so we can't just 115 // create a new one. 116 if (Phi->getNumOperands() != 0) { 117 // FIXME: Figure out whether this is dead code and if so remove it. 118 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 119 // These will have been filled in by the recursive read we did above. 120 llvm::copy(PhiOps, Phi->op_begin()); 121 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 122 } 123 } else { 124 unsigned i = 0; 125 for (auto *Pred : predecessors(BB)) 126 Phi->addIncoming(&*PhiOps[i++], Pred); 127 InsertedPHIs.push_back(Phi); 128 } 129 Result = Phi; 130 } 131 132 // Set ourselves up for the next variable by resetting visited state. 133 VisitedBlocks.erase(BB); 134 CachedPreviousDef.insert({BB, Result}); 135 return Result; 136 } 137 llvm_unreachable("Should have hit one of the three cases above"); 138 } 139 140 // This starts at the memory access, and goes backwards in the block to find the 141 // previous definition. If a definition is not found the block of the access, 142 // it continues globally, creating phi nodes to ensure we have a single 143 // definition. 144 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 145 if (auto *LocalResult = getPreviousDefInBlock(MA)) 146 return LocalResult; 147 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 148 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); 149 } 150 151 // This starts at the memory access, and goes backwards in the block to the find 152 // the previous definition. If the definition is not found in the block of the 153 // access, it returns nullptr. 154 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 155 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 156 157 // It's possible there are no defs, or we got handed the first def to start. 158 if (Defs) { 159 // If this is a def, we can just use the def iterators. 160 if (!isa<MemoryUse>(MA)) { 161 auto Iter = MA->getReverseDefsIterator(); 162 ++Iter; 163 if (Iter != Defs->rend()) 164 return &*Iter; 165 } else { 166 // Otherwise, have to walk the all access iterator. 167 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 168 for (auto &U : make_range(++MA->getReverseIterator(), End)) 169 if (!isa<MemoryUse>(U)) 170 return cast<MemoryAccess>(&U); 171 // Note that if MA comes before Defs->begin(), we won't hit a def. 172 return nullptr; 173 } 174 } 175 return nullptr; 176 } 177 178 // This starts at the end of block 179 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( 180 BasicBlock *BB, 181 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 182 auto *Defs = MSSA->getWritableBlockDefs(BB); 183 184 if (Defs) { 185 CachedPreviousDef.insert({BB, &*Defs->rbegin()}); 186 return &*Defs->rbegin(); 187 } 188 189 return getPreviousDefRecursive(BB, CachedPreviousDef); 190 } 191 // Recurse over a set of phi uses to eliminate the trivial ones 192 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 193 if (!Phi) 194 return nullptr; 195 TrackingVH<MemoryAccess> Res(Phi); 196 SmallVector<TrackingVH<Value>, 8> Uses; 197 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 198 for (auto &U : Uses) 199 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) 200 tryRemoveTrivialPhi(UsePhi); 201 return Res; 202 } 203 204 // Eliminate trivial phis 205 // Phis are trivial if they are defined either by themselves, or all the same 206 // argument. 207 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 208 // We recursively try to remove them. 209 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) { 210 assert(Phi && "Can only remove concrete Phi."); 211 auto OperRange = Phi->operands(); 212 return tryRemoveTrivialPhi(Phi, OperRange); 213 } 214 template <class RangeType> 215 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 216 RangeType &Operands) { 217 // Bail out on non-opt Phis. 218 if (NonOptPhis.count(Phi)) 219 return Phi; 220 221 // Detect equal or self arguments 222 MemoryAccess *Same = nullptr; 223 for (auto &Op : Operands) { 224 // If the same or self, good so far 225 if (Op == Phi || Op == Same) 226 continue; 227 // not the same, return the phi since it's not eliminatable by us 228 if (Same) 229 return Phi; 230 Same = cast<MemoryAccess>(&*Op); 231 } 232 // Never found a non-self reference, the phi is undef 233 if (Same == nullptr) 234 return MSSA->getLiveOnEntryDef(); 235 if (Phi) { 236 Phi->replaceAllUsesWith(Same); 237 removeMemoryAccess(Phi); 238 } 239 240 // We should only end up recursing in case we replaced something, in which 241 // case, we may have made other Phis trivial. 242 return recursePhi(Same); 243 } 244 245 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) { 246 InsertedPHIs.clear(); 247 MU->setDefiningAccess(getPreviousDef(MU)); 248 249 // In cases without unreachable blocks, because uses do not create new 250 // may-defs, there are only two cases: 251 // 1. There was a def already below us, and therefore, we should not have 252 // created a phi node because it was already needed for the def. 253 // 254 // 2. There is no def below us, and therefore, there is no extra renaming work 255 // to do. 256 257 // In cases with unreachable blocks, where the unnecessary Phis were 258 // optimized out, adding the Use may re-insert those Phis. Hence, when 259 // inserting Uses outside of the MSSA creation process, and new Phis were 260 // added, rename all uses if we are asked. 261 262 if (!RenameUses && !InsertedPHIs.empty()) { 263 auto *Defs = MSSA->getBlockDefs(MU->getBlock()); 264 (void)Defs; 265 assert((!Defs || (++Defs->begin() == Defs->end())) && 266 "Block may have only a Phi or no defs"); 267 } 268 269 if (RenameUses && InsertedPHIs.size()) { 270 SmallPtrSet<BasicBlock *, 16> Visited; 271 BasicBlock *StartBlock = MU->getBlock(); 272 273 if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) { 274 MemoryAccess *FirstDef = &*Defs->begin(); 275 // Convert to incoming value if it's a memorydef. A phi *is* already an 276 // incoming value. 277 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 278 FirstDef = MD->getDefiningAccess(); 279 280 MSSA->renamePass(MU->getBlock(), FirstDef, Visited); 281 } 282 // We just inserted a phi into this block, so the incoming value will 283 // become the phi anyway, so it does not matter what we pass. 284 for (auto &MP : InsertedPHIs) 285 if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP)) 286 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 287 } 288 } 289 290 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 291 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 292 MemoryAccess *NewDef) { 293 // Replace any operand with us an incoming block with the new defining 294 // access. 295 int i = MP->getBasicBlockIndex(BB); 296 assert(i != -1 && "Should have found the basic block in the phi"); 297 // We can't just compare i against getNumOperands since one is signed and the 298 // other not. So use it to index into the block iterator. 299 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); 300 ++BBIter) { 301 if (*BBIter != BB) 302 break; 303 MP->setIncomingValue(i, NewDef); 304 ++i; 305 } 306 } 307 308 // A brief description of the algorithm: 309 // First, we compute what should define the new def, using the SSA 310 // construction algorithm. 311 // Then, we update the defs below us (and any new phi nodes) in the graph to 312 // point to the correct new defs, to ensure we only have one variable, and no 313 // disconnected stores. 314 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 315 InsertedPHIs.clear(); 316 317 // See if we had a local def, and if not, go hunting. 318 MemoryAccess *DefBefore = getPreviousDef(MD); 319 bool DefBeforeSameBlock = false; 320 if (DefBefore->getBlock() == MD->getBlock() && 321 !(isa<MemoryPhi>(DefBefore) && 322 llvm::is_contained(InsertedPHIs, DefBefore))) 323 DefBeforeSameBlock = true; 324 325 // There is a def before us, which means we can replace any store/phi uses 326 // of that thing with us, since we are in the way of whatever was there 327 // before. 328 // We now define that def's memorydefs and memoryphis 329 if (DefBeforeSameBlock) { 330 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) { 331 // Leave the MemoryUses alone. 332 // Also make sure we skip ourselves to avoid self references. 333 User *Usr = U.getUser(); 334 return !isa<MemoryUse>(Usr) && Usr != MD; 335 // Defs are automatically unoptimized when the user is set to MD below, 336 // because the isOptimized() call will fail to find the same ID. 337 }); 338 } 339 340 // and that def is now our defining access. 341 MD->setDefiningAccess(DefBefore); 342 343 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); 344 345 SmallSet<WeakVH, 8> ExistingPhis; 346 347 // Remember the index where we may insert new phis. 348 unsigned NewPhiIndex = InsertedPHIs.size(); 349 if (!DefBeforeSameBlock) { 350 // If there was a local def before us, we must have the same effect it 351 // did. Because every may-def is the same, any phis/etc we would create, it 352 // would also have created. If there was no local def before us, we 353 // performed a global update, and have to search all successors and make 354 // sure we update the first def in each of them (following all paths until 355 // we hit the first def along each path). This may also insert phi nodes. 356 // TODO: There are other cases we can skip this work, such as when we have a 357 // single successor, and only used a straight line of single pred blocks 358 // backwards to find the def. To make that work, we'd have to track whether 359 // getDefRecursive only ever used the single predecessor case. These types 360 // of paths also only exist in between CFG simplifications. 361 362 // If this is the first def in the block and this insert is in an arbitrary 363 // place, compute IDF and place phis. 364 SmallPtrSet<BasicBlock *, 2> DefiningBlocks; 365 366 // If this is the last Def in the block, we may need additional Phis. 367 // Compute IDF in all cases, as renaming needs to be done even when MD is 368 // not the last access, because it can introduce a new access past which a 369 // previous access was optimized; that access needs to be reoptimized. 370 DefiningBlocks.insert(MD->getBlock()); 371 for (const auto &VH : InsertedPHIs) 372 if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH)) 373 DefiningBlocks.insert(RealPHI->getBlock()); 374 ForwardIDFCalculator IDFs(*MSSA->DT); 375 SmallVector<BasicBlock *, 32> IDFBlocks; 376 IDFs.setDefiningBlocks(DefiningBlocks); 377 IDFs.calculate(IDFBlocks); 378 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs; 379 for (auto *BBIDF : IDFBlocks) { 380 auto *MPhi = MSSA->getMemoryAccess(BBIDF); 381 if (!MPhi) { 382 MPhi = MSSA->createMemoryPhi(BBIDF); 383 NewInsertedPHIs.push_back(MPhi); 384 } else { 385 ExistingPhis.insert(MPhi); 386 } 387 // Add the phis created into the IDF blocks to NonOptPhis, so they are not 388 // optimized out as trivial by the call to getPreviousDefFromEnd below. 389 // Once they are complete, all these Phis are added to the FixupList, and 390 // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may 391 // need fixing as well, and potentially be trivial before this insertion, 392 // hence add all IDF Phis. See PR43044. 393 NonOptPhis.insert(MPhi); 394 } 395 for (auto &MPhi : NewInsertedPHIs) { 396 auto *BBIDF = MPhi->getBlock(); 397 for (auto *Pred : predecessors(BBIDF)) { 398 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 399 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred); 400 } 401 } 402 403 // Re-take the index where we're adding the new phis, because the above call 404 // to getPreviousDefFromEnd, may have inserted into InsertedPHIs. 405 NewPhiIndex = InsertedPHIs.size(); 406 for (auto &MPhi : NewInsertedPHIs) { 407 InsertedPHIs.push_back(&*MPhi); 408 FixupList.push_back(&*MPhi); 409 } 410 411 FixupList.push_back(MD); 412 } 413 414 // Remember the index where we stopped inserting new phis above, since the 415 // fixupDefs call in the loop below may insert more, that are already minimal. 416 unsigned NewPhiIndexEnd = InsertedPHIs.size(); 417 418 while (!FixupList.empty()) { 419 unsigned StartingPHISize = InsertedPHIs.size(); 420 fixupDefs(FixupList); 421 FixupList.clear(); 422 // Put any new phis on the fixup list, and process them 423 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); 424 } 425 426 // Optimize potentially non-minimal phis added in this method. 427 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex; 428 if (NewPhiSize) 429 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize)); 430 431 // Now that all fixups are done, rename all uses if we are asked. Skip 432 // renaming for defs in unreachable blocks. 433 BasicBlock *StartBlock = MD->getBlock(); 434 if (RenameUses && MSSA->getDomTree().getNode(StartBlock)) { 435 SmallPtrSet<BasicBlock *, 16> Visited; 436 // We are guaranteed there is a def in the block, because we just got it 437 // handed to us in this function. 438 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 439 // Convert to incoming value if it's a memorydef. A phi *is* already an 440 // incoming value. 441 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 442 FirstDef = MD->getDefiningAccess(); 443 444 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 445 // We just inserted a phi into this block, so the incoming value will become 446 // the phi anyway, so it does not matter what we pass. 447 for (auto &MP : InsertedPHIs) { 448 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 449 if (Phi) 450 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 451 } 452 // Existing Phi blocks may need renaming too, if an access was previously 453 // optimized and the inserted Defs "covers" the Optimized value. 454 for (auto &MP : ExistingPhis) { 455 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 456 if (Phi) 457 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 458 } 459 } 460 } 461 462 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { 463 SmallPtrSet<const BasicBlock *, 8> Seen; 464 SmallVector<const BasicBlock *, 16> Worklist; 465 for (auto &Var : Vars) { 466 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); 467 if (!NewDef) 468 continue; 469 // First, see if there is a local def after the operand. 470 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 471 auto DefIter = NewDef->getDefsIterator(); 472 473 // The temporary Phi is being fixed, unmark it for not to optimize. 474 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) 475 NonOptPhis.erase(Phi); 476 477 // If there is a local def after us, we only have to rename that. 478 if (++DefIter != Defs->end()) { 479 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 480 continue; 481 } 482 483 // Otherwise, we need to search down through the CFG. 484 // For each of our successors, handle it directly if their is a phi, or 485 // place on the fixup worklist. 486 for (const auto *S : successors(NewDef->getBlock())) { 487 if (auto *MP = MSSA->getMemoryAccess(S)) 488 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 489 else 490 Worklist.push_back(S); 491 } 492 493 while (!Worklist.empty()) { 494 const BasicBlock *FixupBlock = Worklist.back(); 495 Worklist.pop_back(); 496 497 // Get the first def in the block that isn't a phi node. 498 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 499 auto *FirstDef = &*Defs->begin(); 500 // The loop above and below should have taken care of phi nodes 501 assert(!isa<MemoryPhi>(FirstDef) && 502 "Should have already handled phi nodes!"); 503 // We are now this def's defining access, make sure we actually dominate 504 // it 505 assert(MSSA->dominates(NewDef, FirstDef) && 506 "Should have dominated the new access"); 507 508 // This may insert new phi nodes, because we are not guaranteed the 509 // block we are processing has a single pred, and depending where the 510 // store was inserted, it may require phi nodes below it. 511 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 512 return; 513 } 514 // We didn't find a def, so we must continue. 515 for (const auto *S : successors(FixupBlock)) { 516 // If there is a phi node, handle it. 517 // Otherwise, put the block on the worklist 518 if (auto *MP = MSSA->getMemoryAccess(S)) 519 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 520 else { 521 // If we cycle, we should have ended up at a phi node that we already 522 // processed. FIXME: Double check this 523 if (!Seen.insert(S).second) 524 continue; 525 Worklist.push_back(S); 526 } 527 } 528 } 529 } 530 } 531 532 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { 533 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 534 MPhi->unorderedDeleteIncomingBlock(From); 535 tryRemoveTrivialPhi(MPhi); 536 } 537 } 538 539 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From, 540 const BasicBlock *To) { 541 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 542 bool Found = false; 543 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { 544 if (From != B) 545 return false; 546 if (Found) 547 return true; 548 Found = true; 549 return false; 550 }); 551 tryRemoveTrivialPhi(MPhi); 552 } 553 } 554 555 /// If all arguments of a MemoryPHI are defined by the same incoming 556 /// argument, return that argument. 557 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 558 MemoryAccess *MA = nullptr; 559 560 for (auto &Arg : MP->operands()) { 561 if (!MA) 562 MA = cast<MemoryAccess>(Arg); 563 else if (MA != Arg) 564 return nullptr; 565 } 566 return MA; 567 } 568 569 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA, 570 const ValueToValueMapTy &VMap, 571 PhiToDefMap &MPhiMap, 572 bool CloneWasSimplified, 573 MemorySSA *MSSA) { 574 MemoryAccess *InsnDefining = MA; 575 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) { 576 if (!MSSA->isLiveOnEntryDef(DefMUD)) { 577 Instruction *DefMUDI = DefMUD->getMemoryInst(); 578 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); 579 if (Instruction *NewDefMUDI = 580 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) { 581 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); 582 if (!CloneWasSimplified) 583 assert(InsnDefining && "Defining instruction cannot be nullptr."); 584 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) { 585 // The clone was simplified, it's no longer a MemoryDef, look up. 586 auto DefIt = DefMUD->getDefsIterator(); 587 // Since simplified clones only occur in single block cloning, a 588 // previous definition must exist, otherwise NewDefMUDI would not 589 // have been found in VMap. 590 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() && 591 "Previous def must exist"); 592 InsnDefining = getNewDefiningAccessForClone( 593 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA); 594 } 595 } 596 } 597 } else { 598 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining); 599 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) 600 InsnDefining = NewDefPhi; 601 } 602 assert(InsnDefining && "Defining instruction cannot be nullptr."); 603 return InsnDefining; 604 } 605 606 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, 607 const ValueToValueMapTy &VMap, 608 PhiToDefMap &MPhiMap, 609 bool CloneWasSimplified) { 610 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 611 if (!Acc) 612 return; 613 for (const MemoryAccess &MA : *Acc) { 614 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) { 615 Instruction *Insn = MUD->getMemoryInst(); 616 // Entry does not exist if the clone of the block did not clone all 617 // instructions. This occurs in LoopRotate when cloning instructions 618 // from the old header to the old preheader. The cloned instruction may 619 // also be a simplified Value, not an Instruction (see LoopRotate). 620 // Also in LoopRotate, even when it's an instruction, due to it being 621 // simplified, it may be a Use rather than a Def, so we cannot use MUD as 622 // template. Calls coming from updateForClonedBlockIntoPred, ensure this. 623 if (Instruction *NewInsn = 624 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) { 625 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( 626 NewInsn, 627 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap, 628 MPhiMap, CloneWasSimplified, MSSA), 629 /*Template=*/CloneWasSimplified ? nullptr : MUD, 630 /*CreationMustSucceed=*/CloneWasSimplified ? false : true); 631 if (NewUseOrDef) 632 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); 633 } 634 } 635 } 636 } 637 638 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock( 639 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) { 640 auto *MPhi = MSSA->getMemoryAccess(Header); 641 if (!MPhi) 642 return; 643 644 // Create phi node in the backedge block and populate it with the same 645 // incoming values as MPhi. Skip incoming values coming from Preheader. 646 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock); 647 bool HasUniqueIncomingValue = true; 648 MemoryAccess *UniqueValue = nullptr; 649 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) { 650 BasicBlock *IBB = MPhi->getIncomingBlock(I); 651 MemoryAccess *IV = MPhi->getIncomingValue(I); 652 if (IBB != Preheader) { 653 NewMPhi->addIncoming(IV, IBB); 654 if (HasUniqueIncomingValue) { 655 if (!UniqueValue) 656 UniqueValue = IV; 657 else if (UniqueValue != IV) 658 HasUniqueIncomingValue = false; 659 } 660 } 661 } 662 663 // Update incoming edges into MPhi. Remove all but the incoming edge from 664 // Preheader. Add an edge from NewMPhi 665 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader); 666 MPhi->setIncomingValue(0, AccFromPreheader); 667 MPhi->setIncomingBlock(0, Preheader); 668 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I) 669 MPhi->unorderedDeleteIncoming(I); 670 MPhi->addIncoming(NewMPhi, BEBlock); 671 672 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be 673 // replaced with the unique value. 674 tryRemoveTrivialPhi(NewMPhi); 675 } 676 677 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, 678 ArrayRef<BasicBlock *> ExitBlocks, 679 const ValueToValueMapTy &VMap, 680 bool IgnoreIncomingWithNoClones) { 681 PhiToDefMap MPhiMap; 682 683 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { 684 assert(Phi && NewPhi && "Invalid Phi nodes."); 685 BasicBlock *NewPhiBB = NewPhi->getBlock(); 686 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB), 687 pred_end(NewPhiBB)); 688 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { 689 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); 690 BasicBlock *IncBB = Phi->getIncomingBlock(It); 691 692 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB))) 693 IncBB = NewIncBB; 694 else if (IgnoreIncomingWithNoClones) 695 continue; 696 697 // Now we have IncBB, and will need to add incoming from it to NewPhi. 698 699 // If IncBB is not a predecessor of NewPhiBB, then do not add it. 700 // NewPhiBB was cloned without that edge. 701 if (!NewPhiBBPreds.count(IncBB)) 702 continue; 703 704 // Determine incoming value and add it as incoming from IncBB. 705 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) { 706 if (!MSSA->isLiveOnEntryDef(IncMUD)) { 707 Instruction *IncI = IncMUD->getMemoryInst(); 708 assert(IncI && "Found MemoryUseOrDef with no Instruction."); 709 if (Instruction *NewIncI = 710 cast_or_null<Instruction>(VMap.lookup(IncI))) { 711 IncMUD = MSSA->getMemoryAccess(NewIncI); 712 assert(IncMUD && 713 "MemoryUseOrDef cannot be null, all preds processed."); 714 } 715 } 716 NewPhi->addIncoming(IncMUD, IncBB); 717 } else { 718 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess); 719 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) 720 NewPhi->addIncoming(NewDefPhi, IncBB); 721 else 722 NewPhi->addIncoming(IncPhi, IncBB); 723 } 724 } 725 if (auto *SingleAccess = onlySingleValue(NewPhi)) { 726 MPhiMap[Phi] = SingleAccess; 727 removeMemoryAccess(NewPhi); 728 } 729 }; 730 731 auto ProcessBlock = [&](BasicBlock *BB) { 732 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB)); 733 if (!NewBlock) 734 return; 735 736 assert(!MSSA->getWritableBlockAccesses(NewBlock) && 737 "Cloned block should have no accesses"); 738 739 // Add MemoryPhi. 740 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { 741 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); 742 MPhiMap[MPhi] = NewPhi; 743 } 744 // Update Uses and Defs. 745 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); 746 }; 747 748 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 749 ProcessBlock(BB); 750 751 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 752 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 753 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) 754 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi)); 755 } 756 757 void MemorySSAUpdater::updateForClonedBlockIntoPred( 758 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { 759 // All defs/phis from outside BB that are used in BB, are valid uses in P1. 760 // Since those defs/phis must have dominated BB, and also dominate P1. 761 // Defs from BB being used in BB will be replaced with the cloned defs from 762 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the 763 // incoming def into the Phi from P1. 764 // Instructions cloned into the predecessor are in practice sometimes 765 // simplified, so disable the use of the template, and create an access from 766 // scratch. 767 PhiToDefMap MPhiMap; 768 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 769 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); 770 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true); 771 } 772 773 template <typename Iter> 774 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( 775 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, 776 DominatorTree &DT) { 777 SmallVector<CFGUpdate, 4> Updates; 778 // Update/insert phis in all successors of exit blocks. 779 for (auto *Exit : ExitBlocks) 780 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) 781 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) { 782 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 783 Updates.push_back({DT.Insert, NewExit, ExitSucc}); 784 } 785 applyInsertUpdates(Updates, DT); 786 } 787 788 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 789 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap, 790 DominatorTree &DT) { 791 const ValueToValueMapTy *const Arr[] = {&VMap}; 792 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), 793 std::end(Arr), DT); 794 } 795 796 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 797 ArrayRef<BasicBlock *> ExitBlocks, 798 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) { 799 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) { 800 return I.get(); 801 }; 802 using MappedIteratorType = 803 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *, 804 decltype(GetPtr)>; 805 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); 806 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); 807 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); 808 } 809 810 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates, 811 DominatorTree &DT, bool UpdateDT) { 812 SmallVector<CFGUpdate, 4> DeleteUpdates; 813 SmallVector<CFGUpdate, 4> RevDeleteUpdates; 814 SmallVector<CFGUpdate, 4> InsertUpdates; 815 for (auto &Update : Updates) { 816 if (Update.getKind() == DT.Insert) 817 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 818 else { 819 DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()}); 820 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 821 } 822 } 823 824 if (!DeleteUpdates.empty()) { 825 if (!InsertUpdates.empty()) { 826 if (!UpdateDT) { 827 SmallVector<CFGUpdate, 0> Empty; 828 // Deletes are reversed applied, because this CFGView is pretending the 829 // deletes did not happen yet, hence the edges still exist. 830 DT.applyUpdates(Empty, RevDeleteUpdates); 831 } else { 832 // Apply all updates, with the RevDeleteUpdates as PostCFGView. 833 DT.applyUpdates(Updates, RevDeleteUpdates); 834 } 835 836 // Note: the MSSA update below doesn't distinguish between a GD with 837 // (RevDelete,false) and (Delete, true), but this matters for the DT 838 // updates above; for "children" purposes they are equivalent; but the 839 // updates themselves convey the desired update, used inside DT only. 840 GraphDiff<BasicBlock *> GD(RevDeleteUpdates); 841 applyInsertUpdates(InsertUpdates, DT, &GD); 842 // Update DT to redelete edges; this matches the real CFG so we can 843 // perform the standard update without a postview of the CFG. 844 DT.applyUpdates(DeleteUpdates); 845 } else { 846 if (UpdateDT) 847 DT.applyUpdates(DeleteUpdates); 848 } 849 } else { 850 if (UpdateDT) 851 DT.applyUpdates(Updates); 852 GraphDiff<BasicBlock *> GD; 853 applyInsertUpdates(InsertUpdates, DT, &GD); 854 } 855 856 // Update for deleted edges 857 for (auto &Update : DeleteUpdates) 858 removeEdge(Update.getFrom(), Update.getTo()); 859 } 860 861 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 862 DominatorTree &DT) { 863 GraphDiff<BasicBlock *> GD; 864 applyInsertUpdates(Updates, DT, &GD); 865 } 866 867 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 868 DominatorTree &DT, 869 const GraphDiff<BasicBlock *> *GD) { 870 // Get recursive last Def, assuming well formed MSSA and updated DT. 871 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { 872 while (true) { 873 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); 874 // Return last Def or Phi in BB, if it exists. 875 if (Defs) 876 return &*(--Defs->end()); 877 878 // Check number of predecessors, we only care if there's more than one. 879 unsigned Count = 0; 880 BasicBlock *Pred = nullptr; 881 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) { 882 Pred = Pi; 883 Count++; 884 if (Count == 2) 885 break; 886 } 887 888 // If BB has multiple predecessors, get last definition from IDom. 889 if (Count != 1) { 890 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its 891 // DT is invalidated. Return LoE as its last def. This will be added to 892 // MemoryPhi node, and later deleted when the block is deleted. 893 if (!DT.getNode(BB)) 894 return MSSA->getLiveOnEntryDef(); 895 if (auto *IDom = DT.getNode(BB)->getIDom()) 896 if (IDom->getBlock() != BB) { 897 BB = IDom->getBlock(); 898 continue; 899 } 900 return MSSA->getLiveOnEntryDef(); 901 } else { 902 // Single predecessor, BB cannot be dead. GetLastDef of Pred. 903 assert(Count == 1 && Pred && "Single predecessor expected."); 904 // BB can be unreachable though, return LoE if that is the case. 905 if (!DT.getNode(BB)) 906 return MSSA->getLiveOnEntryDef(); 907 BB = Pred; 908 } 909 }; 910 llvm_unreachable("Unable to get last definition."); 911 }; 912 913 // Get nearest IDom given a set of blocks. 914 // TODO: this can be optimized by starting the search at the node with the 915 // lowest level (highest in the tree). 916 auto FindNearestCommonDominator = 917 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * { 918 BasicBlock *PrevIDom = *BBSet.begin(); 919 for (auto *BB : BBSet) 920 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); 921 return PrevIDom; 922 }; 923 924 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not 925 // include CurrIDom. 926 auto GetNoLongerDomBlocks = 927 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, 928 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) { 929 if (PrevIDom == CurrIDom) 930 return; 931 BlocksPrevDom.push_back(PrevIDom); 932 BasicBlock *NextIDom = PrevIDom; 933 while (BasicBlock *UpIDom = 934 DT.getNode(NextIDom)->getIDom()->getBlock()) { 935 if (UpIDom == CurrIDom) 936 break; 937 BlocksPrevDom.push_back(UpIDom); 938 NextIDom = UpIDom; 939 } 940 }; 941 942 // Map a BB to its predecessors: added + previously existing. To get a 943 // deterministic order, store predecessors as SetVectors. The order in each 944 // will be defined by the order in Updates (fixed) and the order given by 945 // children<> (also fixed). Since we further iterate over these ordered sets, 946 // we lose the information of multiple edges possibly existing between two 947 // blocks, so we'll keep and EdgeCount map for that. 948 // An alternate implementation could keep unordered set for the predecessors, 949 // traverse either Updates or children<> each time to get the deterministic 950 // order, and drop the usage of EdgeCount. This alternate approach would still 951 // require querying the maps for each predecessor, and children<> call has 952 // additional computation inside for creating the snapshot-graph predecessors. 953 // As such, we favor using a little additional storage and less compute time. 954 // This decision can be revisited if we find the alternative more favorable. 955 956 struct PredInfo { 957 SmallSetVector<BasicBlock *, 2> Added; 958 SmallSetVector<BasicBlock *, 2> Prev; 959 }; 960 SmallDenseMap<BasicBlock *, PredInfo> PredMap; 961 962 for (auto &Edge : Updates) { 963 BasicBlock *BB = Edge.getTo(); 964 auto &AddedBlockSet = PredMap[BB].Added; 965 AddedBlockSet.insert(Edge.getFrom()); 966 } 967 968 // Store all existing predecessor for each BB, at least one must exist. 969 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap; 970 SmallPtrSet<BasicBlock *, 2> NewBlocks; 971 for (auto &BBPredPair : PredMap) { 972 auto *BB = BBPredPair.first; 973 const auto &AddedBlockSet = BBPredPair.second.Added; 974 auto &PrevBlockSet = BBPredPair.second.Prev; 975 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) { 976 if (!AddedBlockSet.count(Pi)) 977 PrevBlockSet.insert(Pi); 978 EdgeCountMap[{Pi, BB}]++; 979 } 980 981 if (PrevBlockSet.empty()) { 982 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); 983 LLVM_DEBUG( 984 dbgs() 985 << "Adding a predecessor to a block with no predecessors. " 986 "This must be an edge added to a new, likely cloned, block. " 987 "Its memory accesses must be already correct, assuming completed " 988 "via the updateExitBlocksForClonedLoop API. " 989 "Assert a single such edge is added so no phi addition or " 990 "additional processing is required.\n"); 991 assert(AddedBlockSet.size() == 1 && 992 "Can only handle adding one predecessor to a new block."); 993 // Need to remove new blocks from PredMap. Remove below to not invalidate 994 // iterator here. 995 NewBlocks.insert(BB); 996 } 997 } 998 // Nothing to process for new/cloned blocks. 999 for (auto *BB : NewBlocks) 1000 PredMap.erase(BB); 1001 1002 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace; 1003 SmallVector<WeakVH, 8> InsertedPhis; 1004 1005 // First create MemoryPhis in all blocks that don't have one. Create in the 1006 // order found in Updates, not in PredMap, to get deterministic numbering. 1007 for (auto &Edge : Updates) { 1008 BasicBlock *BB = Edge.getTo(); 1009 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) 1010 InsertedPhis.push_back(MSSA->createMemoryPhi(BB)); 1011 } 1012 1013 // Now we'll fill in the MemoryPhis with the right incoming values. 1014 for (auto &BBPredPair : PredMap) { 1015 auto *BB = BBPredPair.first; 1016 const auto &PrevBlockSet = BBPredPair.second.Prev; 1017 const auto &AddedBlockSet = BBPredPair.second.Added; 1018 assert(!PrevBlockSet.empty() && 1019 "At least one previous predecessor must exist."); 1020 1021 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by 1022 // keeping this map before the loop. We can reuse already populated entries 1023 // if an edge is added from the same predecessor to two different blocks, 1024 // and this does happen in rotate. Note that the map needs to be updated 1025 // when deleting non-necessary phis below, if the phi is in the map by 1026 // replacing the value with DefP1. 1027 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred; 1028 for (auto *AddedPred : AddedBlockSet) { 1029 auto *DefPn = GetLastDef(AddedPred); 1030 assert(DefPn != nullptr && "Unable to find last definition."); 1031 LastDefAddedPred[AddedPred] = DefPn; 1032 } 1033 1034 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); 1035 // If Phi is not empty, add an incoming edge from each added pred. Must 1036 // still compute blocks with defs to replace for this block below. 1037 if (NewPhi->getNumOperands()) { 1038 for (auto *Pred : AddedBlockSet) { 1039 auto *LastDefForPred = LastDefAddedPred[Pred]; 1040 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1041 NewPhi->addIncoming(LastDefForPred, Pred); 1042 } 1043 } else { 1044 // Pick any existing predecessor and get its definition. All other 1045 // existing predecessors should have the same one, since no phi existed. 1046 auto *P1 = *PrevBlockSet.begin(); 1047 MemoryAccess *DefP1 = GetLastDef(P1); 1048 1049 // Check DefP1 against all Defs in LastDefPredPair. If all the same, 1050 // nothing to add. 1051 bool InsertPhi = false; 1052 for (auto LastDefPredPair : LastDefAddedPred) 1053 if (DefP1 != LastDefPredPair.second) { 1054 InsertPhi = true; 1055 break; 1056 } 1057 if (!InsertPhi) { 1058 // Since NewPhi may be used in other newly added Phis, replace all uses 1059 // of NewPhi with the definition coming from all predecessors (DefP1), 1060 // before deleting it. 1061 NewPhi->replaceAllUsesWith(DefP1); 1062 removeMemoryAccess(NewPhi); 1063 continue; 1064 } 1065 1066 // Update Phi with new values for new predecessors and old value for all 1067 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered 1068 // sets, the order of entries in NewPhi is deterministic. 1069 for (auto *Pred : AddedBlockSet) { 1070 auto *LastDefForPred = LastDefAddedPred[Pred]; 1071 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1072 NewPhi->addIncoming(LastDefForPred, Pred); 1073 } 1074 for (auto *Pred : PrevBlockSet) 1075 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1076 NewPhi->addIncoming(DefP1, Pred); 1077 } 1078 1079 // Get all blocks that used to dominate BB and no longer do after adding 1080 // AddedBlockSet, where PrevBlockSet are the previously known predecessors. 1081 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); 1082 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); 1083 assert(PrevIDom && "Previous IDom should exists"); 1084 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); 1085 assert(NewIDom && "BB should have a new valid idom"); 1086 assert(DT.dominates(NewIDom, PrevIDom) && 1087 "New idom should dominate old idom"); 1088 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); 1089 } 1090 1091 tryRemoveTrivialPhis(InsertedPhis); 1092 // Create the set of blocks that now have a definition. We'll use this to 1093 // compute IDF and add Phis there next. 1094 SmallVector<BasicBlock *, 8> BlocksToProcess; 1095 for (auto &VH : InsertedPhis) 1096 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1097 BlocksToProcess.push_back(MPhi->getBlock()); 1098 1099 // Compute IDF and add Phis in all IDF blocks that do not have one. 1100 SmallVector<BasicBlock *, 32> IDFBlocks; 1101 if (!BlocksToProcess.empty()) { 1102 ForwardIDFCalculator IDFs(DT, GD); 1103 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(), 1104 BlocksToProcess.end()); 1105 IDFs.setDefiningBlocks(DefiningBlocks); 1106 IDFs.calculate(IDFBlocks); 1107 1108 SmallSetVector<MemoryPhi *, 4> PhisToFill; 1109 // First create all needed Phis. 1110 for (auto *BBIDF : IDFBlocks) 1111 if (!MSSA->getMemoryAccess(BBIDF)) { 1112 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF); 1113 InsertedPhis.push_back(IDFPhi); 1114 PhisToFill.insert(IDFPhi); 1115 } 1116 // Then update or insert their correct incoming values. 1117 for (auto *BBIDF : IDFBlocks) { 1118 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF); 1119 assert(IDFPhi && "Phi must exist"); 1120 if (!PhisToFill.count(IDFPhi)) { 1121 // Update existing Phi. 1122 // FIXME: some updates may be redundant, try to optimize and skip some. 1123 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) 1124 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); 1125 } else { 1126 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF)) 1127 IDFPhi->addIncoming(GetLastDef(Pi), Pi); 1128 } 1129 } 1130 } 1131 1132 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no 1133 // longer dominate, replace those with the closest dominating def. 1134 // This will also update optimized accesses, as they're also uses. 1135 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { 1136 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { 1137 for (auto &DefToReplaceUses : *DefsList) { 1138 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); 1139 Value::use_iterator UI = DefToReplaceUses.use_begin(), 1140 E = DefToReplaceUses.use_end(); 1141 for (; UI != E;) { 1142 Use &U = *UI; 1143 ++UI; 1144 MemoryAccess *Usr = cast<MemoryAccess>(U.getUser()); 1145 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) { 1146 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); 1147 if (!DT.dominates(DominatingBlock, DominatedBlock)) 1148 U.set(GetLastDef(DominatedBlock)); 1149 } else { 1150 BasicBlock *DominatedBlock = Usr->getBlock(); 1151 if (!DT.dominates(DominatingBlock, DominatedBlock)) { 1152 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) 1153 U.set(DomBlPhi); 1154 else { 1155 auto *IDom = DT.getNode(DominatedBlock)->getIDom(); 1156 assert(IDom && "Block must have a valid IDom."); 1157 U.set(GetLastDef(IDom->getBlock())); 1158 } 1159 cast<MemoryUseOrDef>(Usr)->resetOptimized(); 1160 } 1161 } 1162 } 1163 } 1164 } 1165 } 1166 tryRemoveTrivialPhis(InsertedPhis); 1167 } 1168 1169 // Move What before Where in the MemorySSA IR. 1170 template <class WhereType> 1171 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1172 WhereType Where) { 1173 // Mark MemoryPhi users of What not to be optimized. 1174 for (auto *U : What->users()) 1175 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) 1176 NonOptPhis.insert(PhiUser); 1177 1178 // Replace all our users with our defining access. 1179 What->replaceAllUsesWith(What->getDefiningAccess()); 1180 1181 // Let MemorySSA take care of moving it around in the lists. 1182 MSSA->moveTo(What, BB, Where); 1183 1184 // Now reinsert it into the IR and do whatever fixups needed. 1185 if (auto *MD = dyn_cast<MemoryDef>(What)) 1186 insertDef(MD, /*RenameUses=*/true); 1187 else 1188 insertUse(cast<MemoryUse>(What), /*RenameUses=*/true); 1189 1190 // Clear dangling pointers. We added all MemoryPhi users, but not all 1191 // of them are removed by fixupDefs(). 1192 NonOptPhis.clear(); 1193 } 1194 1195 // Move What before Where in the MemorySSA IR. 1196 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1197 moveTo(What, Where->getBlock(), Where->getIterator()); 1198 } 1199 1200 // Move What after Where in the MemorySSA IR. 1201 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1202 moveTo(What, Where->getBlock(), ++Where->getIterator()); 1203 } 1204 1205 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 1206 MemorySSA::InsertionPlace Where) { 1207 if (Where != MemorySSA::InsertionPlace::BeforeTerminator) 1208 return moveTo(What, BB, Where); 1209 1210 if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator())) 1211 return moveBefore(What, Where); 1212 else 1213 return moveTo(What, BB, MemorySSA::InsertionPlace::End); 1214 } 1215 1216 // All accesses in To used to be in From. Move to end and update access lists. 1217 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, 1218 Instruction *Start) { 1219 1220 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); 1221 if (!Accs) 1222 return; 1223 1224 assert(Start->getParent() == To && "Incorrect Start instruction"); 1225 MemoryAccess *FirstInNew = nullptr; 1226 for (Instruction &I : make_range(Start->getIterator(), To->end())) 1227 if ((FirstInNew = MSSA->getMemoryAccess(&I))) 1228 break; 1229 if (FirstInNew) { 1230 auto *MUD = cast<MemoryUseOrDef>(FirstInNew); 1231 do { 1232 auto NextIt = ++MUD->getIterator(); 1233 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) 1234 ? nullptr 1235 : cast<MemoryUseOrDef>(&*NextIt); 1236 MSSA->moveTo(MUD, To, MemorySSA::End); 1237 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need 1238 // to retrieve it again. 1239 Accs = MSSA->getWritableBlockAccesses(From); 1240 MUD = NextMUD; 1241 } while (MUD); 1242 } 1243 1244 // If all accesses were moved and only a trivial Phi remains, we try to remove 1245 // that Phi. This is needed when From is going to be deleted. 1246 auto *Defs = MSSA->getWritableBlockDefs(From); 1247 if (Defs && !Defs->empty()) 1248 if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin())) 1249 tryRemoveTrivialPhi(Phi); 1250 } 1251 1252 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, 1253 BasicBlock *To, 1254 Instruction *Start) { 1255 assert(MSSA->getBlockAccesses(To) == nullptr && 1256 "To block is expected to be free of MemoryAccesses."); 1257 moveAllAccesses(From, To, Start); 1258 for (BasicBlock *Succ : successors(To)) 1259 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1260 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1261 } 1262 1263 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, 1264 Instruction *Start) { 1265 assert(From->getUniquePredecessor() == To && 1266 "From block is expected to have a single predecessor (To)."); 1267 moveAllAccesses(From, To, Start); 1268 for (BasicBlock *Succ : successors(From)) 1269 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1270 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1271 } 1272 1273 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( 1274 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds, 1275 bool IdenticalEdgesWereMerged) { 1276 assert(!MSSA->getWritableBlockAccesses(New) && 1277 "Access list should be null for a new block."); 1278 MemoryPhi *Phi = MSSA->getMemoryAccess(Old); 1279 if (!Phi) 1280 return; 1281 if (Old->hasNPredecessors(1)) { 1282 assert(pred_size(New) == Preds.size() && 1283 "Should have moved all predecessors."); 1284 MSSA->moveTo(Phi, New, MemorySSA::Beginning); 1285 } else { 1286 assert(!Preds.empty() && "Must be moving at least one predecessor to the " 1287 "new immediate predecessor."); 1288 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); 1289 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); 1290 // Currently only support the case of removing a single incoming edge when 1291 // identical edges were not merged. 1292 if (!IdenticalEdgesWereMerged) 1293 assert(PredsSet.size() == Preds.size() && 1294 "If identical edges were not merged, we cannot have duplicate " 1295 "blocks in the predecessors"); 1296 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { 1297 if (PredsSet.count(B)) { 1298 NewPhi->addIncoming(MA, B); 1299 if (!IdenticalEdgesWereMerged) 1300 PredsSet.erase(B); 1301 return true; 1302 } 1303 return false; 1304 }); 1305 Phi->addIncoming(NewPhi, New); 1306 tryRemoveTrivialPhi(NewPhi); 1307 } 1308 } 1309 1310 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { 1311 assert(!MSSA->isLiveOnEntryDef(MA) && 1312 "Trying to remove the live on entry def"); 1313 // We can only delete phi nodes if they have no uses, or we can replace all 1314 // uses with a single definition. 1315 MemoryAccess *NewDefTarget = nullptr; 1316 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 1317 // Note that it is sufficient to know that all edges of the phi node have 1318 // the same argument. If they do, by the definition of dominance frontiers 1319 // (which we used to place this phi), that argument must dominate this phi, 1320 // and thus, must dominate the phi's uses, and so we will not hit the assert 1321 // below. 1322 NewDefTarget = onlySingleValue(MP); 1323 assert((NewDefTarget || MP->use_empty()) && 1324 "We can't delete this memory phi"); 1325 } else { 1326 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 1327 } 1328 1329 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 1330 1331 // Re-point the uses at our defining access 1332 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 1333 // Reset optimized on users of this store, and reset the uses. 1334 // A few notes: 1335 // 1. This is a slightly modified version of RAUW to avoid walking the 1336 // uses twice here. 1337 // 2. If we wanted to be complete, we would have to reset the optimized 1338 // flags on users of phi nodes if doing the below makes a phi node have all 1339 // the same arguments. Instead, we prefer users to removeMemoryAccess those 1340 // phi nodes, because doing it here would be N^3. 1341 if (MA->hasValueHandle()) 1342 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 1343 // Note: We assume MemorySSA is not used in metadata since it's not really 1344 // part of the IR. 1345 1346 assert(NewDefTarget != MA && "Going into an infinite loop"); 1347 while (!MA->use_empty()) { 1348 Use &U = *MA->use_begin(); 1349 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 1350 MUD->resetOptimized(); 1351 if (OptimizePhis) 1352 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser())) 1353 PhisToCheck.insert(MP); 1354 U.set(NewDefTarget); 1355 } 1356 } 1357 1358 // The call below to erase will destroy MA, so we can't change the order we 1359 // are doing things here 1360 MSSA->removeFromLookups(MA); 1361 MSSA->removeFromLists(MA); 1362 1363 // Optionally optimize Phi uses. This will recursively remove trivial phis. 1364 if (!PhisToCheck.empty()) { 1365 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(), 1366 PhisToCheck.end()}; 1367 PhisToCheck.clear(); 1368 1369 unsigned PhisSize = PhisToOptimize.size(); 1370 while (PhisSize-- > 0) 1371 if (MemoryPhi *MP = 1372 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) 1373 tryRemoveTrivialPhi(MP); 1374 } 1375 } 1376 1377 void MemorySSAUpdater::removeBlocks( 1378 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) { 1379 // First delete all uses of BB in MemoryPhis. 1380 for (BasicBlock *BB : DeadBlocks) { 1381 Instruction *TI = BB->getTerminator(); 1382 assert(TI && "Basic block expected to have a terminator instruction"); 1383 for (BasicBlock *Succ : successors(TI)) 1384 if (!DeadBlocks.count(Succ)) 1385 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { 1386 MP->unorderedDeleteIncomingBlock(BB); 1387 tryRemoveTrivialPhi(MP); 1388 } 1389 // Drop all references of all accesses in BB 1390 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) 1391 for (MemoryAccess &MA : *Acc) 1392 MA.dropAllReferences(); 1393 } 1394 1395 // Next, delete all memory accesses in each block 1396 for (BasicBlock *BB : DeadBlocks) { 1397 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); 1398 if (!Acc) 1399 continue; 1400 for (MemoryAccess &MA : llvm::make_early_inc_range(*Acc)) { 1401 MSSA->removeFromLookups(&MA); 1402 MSSA->removeFromLists(&MA); 1403 } 1404 } 1405 } 1406 1407 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) { 1408 for (auto &VH : UpdatedPHIs) 1409 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1410 tryRemoveTrivialPhi(MPhi); 1411 } 1412 1413 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) { 1414 const BasicBlock *BB = I->getParent(); 1415 // Remove memory accesses in BB for I and all following instructions. 1416 auto BBI = I->getIterator(), BBE = BB->end(); 1417 // FIXME: If this becomes too expensive, iterate until the first instruction 1418 // with a memory access, then iterate over MemoryAccesses. 1419 while (BBI != BBE) 1420 removeMemoryAccess(&*(BBI++)); 1421 // Update phis in BB's successors to remove BB. 1422 SmallVector<WeakVH, 16> UpdatedPHIs; 1423 for (const BasicBlock *Successor : successors(BB)) { 1424 removeDuplicatePhiEdgesBetween(BB, Successor); 1425 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) { 1426 MPhi->unorderedDeleteIncomingBlock(BB); 1427 UpdatedPHIs.push_back(MPhi); 1428 } 1429 } 1430 // Optimize trivial phis. 1431 tryRemoveTrivialPhis(UpdatedPHIs); 1432 } 1433 1434 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 1435 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 1436 MemorySSA::InsertionPlace Point) { 1437 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1438 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 1439 return NewAccess; 1440 } 1441 1442 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 1443 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 1444 assert(I->getParent() == InsertPt->getBlock() && 1445 "New and old access must be in the same block"); 1446 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1447 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1448 InsertPt->getIterator()); 1449 return NewAccess; 1450 } 1451 1452 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 1453 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 1454 assert(I->getParent() == InsertPt->getBlock() && 1455 "New and old access must be in the same block"); 1456 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1457 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1458 ++InsertPt->getIterator()); 1459 return NewAccess; 1460 } 1461