1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSAUpdater class. 10 // 11 //===----------------------------------------------------------------===// 12 #include "llvm/Analysis/MemorySSAUpdater.h" 13 #include "llvm/Analysis/LoopIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/IteratedDominanceFrontier.h" 18 #include "llvm/Analysis/MemorySSA.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/FormattedStream.h" 29 #include <algorithm> 30 31 #define DEBUG_TYPE "memoryssa" 32 using namespace llvm; 33 34 // This is the marker algorithm from "Simple and Efficient Construction of 35 // Static Single Assignment Form" 36 // The simple, non-marker algorithm places phi nodes at any join 37 // Here, we place markers, and only place phi nodes if they end up necessary. 38 // They are only necessary if they break a cycle (IE we recursively visit 39 // ourselves again), or we discover, while getting the value of the operands, 40 // that there are two or more definitions needing to be merged. 41 // This still will leave non-minimal form in the case of irreducible control 42 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 43 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( 44 BasicBlock *BB, 45 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 46 // First, do a cache lookup. Without this cache, certain CFG structures 47 // (like a series of if statements) take exponential time to visit. 48 auto Cached = CachedPreviousDef.find(BB); 49 if (Cached != CachedPreviousDef.end()) 50 return Cached->second; 51 52 // If this method is called from an unreachable block, return LoE. 53 if (!MSSA->DT->isReachableFromEntry(BB)) 54 return MSSA->getLiveOnEntryDef(); 55 56 if (BasicBlock *Pred = BB->getUniquePredecessor()) { 57 VisitedBlocks.insert(BB); 58 // Single predecessor case, just recurse, we can only have one definition. 59 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); 60 CachedPreviousDef.insert({BB, Result}); 61 return Result; 62 } 63 64 if (VisitedBlocks.count(BB)) { 65 // We hit our node again, meaning we had a cycle, we must insert a phi 66 // node to break it so we have an operand. The only case this will 67 // insert useless phis is if we have irreducible control flow. 68 MemoryAccess *Result = MSSA->createMemoryPhi(BB); 69 CachedPreviousDef.insert({BB, Result}); 70 return Result; 71 } 72 73 if (VisitedBlocks.insert(BB).second) { 74 // Mark us visited so we can detect a cycle 75 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; 76 77 // Recurse to get the values in our predecessors for placement of a 78 // potential phi node. This will insert phi nodes if we cycle in order to 79 // break the cycle and have an operand. 80 bool UniqueIncomingAccess = true; 81 MemoryAccess *SingleAccess = nullptr; 82 for (auto *Pred : predecessors(BB)) { 83 if (MSSA->DT->isReachableFromEntry(Pred)) { 84 auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef); 85 if (!SingleAccess) 86 SingleAccess = IncomingAccess; 87 else if (IncomingAccess != SingleAccess) 88 UniqueIncomingAccess = false; 89 PhiOps.push_back(IncomingAccess); 90 } else 91 PhiOps.push_back(MSSA->getLiveOnEntryDef()); 92 } 93 94 // Now try to simplify the ops to avoid placing a phi. 95 // This may return null if we never created a phi yet, that's okay 96 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 97 98 // See if we can avoid the phi by simplifying it. 99 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 100 // If we couldn't simplify, we may have to create a phi 101 if (Result == Phi && UniqueIncomingAccess && SingleAccess) { 102 // A concrete Phi only exists if we created an empty one to break a cycle. 103 if (Phi) { 104 assert(Phi->operands().empty() && "Expected empty Phi"); 105 Phi->replaceAllUsesWith(SingleAccess); 106 removeMemoryAccess(Phi); 107 } 108 Result = SingleAccess; 109 } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) { 110 if (!Phi) 111 Phi = MSSA->createMemoryPhi(BB); 112 113 // See if the existing phi operands match what we need. 114 // Unlike normal SSA, we only allow one phi node per block, so we can't just 115 // create a new one. 116 if (Phi->getNumOperands() != 0) { 117 // FIXME: Figure out whether this is dead code and if so remove it. 118 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 119 // These will have been filled in by the recursive read we did above. 120 llvm::copy(PhiOps, Phi->op_begin()); 121 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 122 } 123 } else { 124 unsigned i = 0; 125 for (auto *Pred : predecessors(BB)) 126 Phi->addIncoming(&*PhiOps[i++], Pred); 127 InsertedPHIs.push_back(Phi); 128 } 129 Result = Phi; 130 } 131 132 // Set ourselves up for the next variable by resetting visited state. 133 VisitedBlocks.erase(BB); 134 CachedPreviousDef.insert({BB, Result}); 135 return Result; 136 } 137 llvm_unreachable("Should have hit one of the three cases above"); 138 } 139 140 // This starts at the memory access, and goes backwards in the block to find the 141 // previous definition. If a definition is not found the block of the access, 142 // it continues globally, creating phi nodes to ensure we have a single 143 // definition. 144 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 145 if (auto *LocalResult = getPreviousDefInBlock(MA)) 146 return LocalResult; 147 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 148 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); 149 } 150 151 // This starts at the memory access, and goes backwards in the block to the find 152 // the previous definition. If the definition is not found in the block of the 153 // access, it returns nullptr. 154 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 155 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 156 157 // It's possible there are no defs, or we got handed the first def to start. 158 if (Defs) { 159 // If this is a def, we can just use the def iterators. 160 if (!isa<MemoryUse>(MA)) { 161 auto Iter = MA->getReverseDefsIterator(); 162 ++Iter; 163 if (Iter != Defs->rend()) 164 return &*Iter; 165 } else { 166 // Otherwise, have to walk the all access iterator. 167 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 168 for (auto &U : make_range(++MA->getReverseIterator(), End)) 169 if (!isa<MemoryUse>(U)) 170 return cast<MemoryAccess>(&U); 171 // Note that if MA comes before Defs->begin(), we won't hit a def. 172 return nullptr; 173 } 174 } 175 return nullptr; 176 } 177 178 // This starts at the end of block 179 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( 180 BasicBlock *BB, 181 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 182 auto *Defs = MSSA->getWritableBlockDefs(BB); 183 184 if (Defs) { 185 CachedPreviousDef.insert({BB, &*Defs->rbegin()}); 186 return &*Defs->rbegin(); 187 } 188 189 return getPreviousDefRecursive(BB, CachedPreviousDef); 190 } 191 // Recurse over a set of phi uses to eliminate the trivial ones 192 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 193 if (!Phi) 194 return nullptr; 195 TrackingVH<MemoryAccess> Res(Phi); 196 SmallVector<TrackingVH<Value>, 8> Uses; 197 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 198 for (auto &U : Uses) 199 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) 200 tryRemoveTrivialPhi(UsePhi); 201 return Res; 202 } 203 204 // Eliminate trivial phis 205 // Phis are trivial if they are defined either by themselves, or all the same 206 // argument. 207 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 208 // We recursively try to remove them. 209 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) { 210 assert(Phi && "Can only remove concrete Phi."); 211 auto OperRange = Phi->operands(); 212 return tryRemoveTrivialPhi(Phi, OperRange); 213 } 214 template <class RangeType> 215 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 216 RangeType &Operands) { 217 // Bail out on non-opt Phis. 218 if (NonOptPhis.count(Phi)) 219 return Phi; 220 221 // Detect equal or self arguments 222 MemoryAccess *Same = nullptr; 223 for (auto &Op : Operands) { 224 // If the same or self, good so far 225 if (Op == Phi || Op == Same) 226 continue; 227 // not the same, return the phi since it's not eliminatable by us 228 if (Same) 229 return Phi; 230 Same = cast<MemoryAccess>(&*Op); 231 } 232 // Never found a non-self reference, the phi is undef 233 if (Same == nullptr) 234 return MSSA->getLiveOnEntryDef(); 235 if (Phi) { 236 Phi->replaceAllUsesWith(Same); 237 removeMemoryAccess(Phi); 238 } 239 240 // We should only end up recursing in case we replaced something, in which 241 // case, we may have made other Phis trivial. 242 return recursePhi(Same); 243 } 244 245 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) { 246 InsertedPHIs.clear(); 247 MU->setDefiningAccess(getPreviousDef(MU)); 248 249 // In cases without unreachable blocks, because uses do not create new 250 // may-defs, there are only two cases: 251 // 1. There was a def already below us, and therefore, we should not have 252 // created a phi node because it was already needed for the def. 253 // 254 // 2. There is no def below us, and therefore, there is no extra renaming work 255 // to do. 256 257 // In cases with unreachable blocks, where the unnecessary Phis were 258 // optimized out, adding the Use may re-insert those Phis. Hence, when 259 // inserting Uses outside of the MSSA creation process, and new Phis were 260 // added, rename all uses if we are asked. 261 262 if (!RenameUses && !InsertedPHIs.empty()) { 263 auto *Defs = MSSA->getBlockDefs(MU->getBlock()); 264 (void)Defs; 265 assert((!Defs || (++Defs->begin() == Defs->end())) && 266 "Block may have only a Phi or no defs"); 267 } 268 269 if (RenameUses && InsertedPHIs.size()) { 270 SmallPtrSet<BasicBlock *, 16> Visited; 271 BasicBlock *StartBlock = MU->getBlock(); 272 273 if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) { 274 MemoryAccess *FirstDef = &*Defs->begin(); 275 // Convert to incoming value if it's a memorydef. A phi *is* already an 276 // incoming value. 277 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 278 FirstDef = MD->getDefiningAccess(); 279 280 MSSA->renamePass(MU->getBlock(), FirstDef, Visited); 281 } 282 // We just inserted a phi into this block, so the incoming value will 283 // become the phi anyway, so it does not matter what we pass. 284 for (auto &MP : InsertedPHIs) 285 if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP)) 286 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 287 } 288 } 289 290 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 291 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 292 MemoryAccess *NewDef) { 293 // Replace any operand with us an incoming block with the new defining 294 // access. 295 int i = MP->getBasicBlockIndex(BB); 296 assert(i != -1 && "Should have found the basic block in the phi"); 297 // We can't just compare i against getNumOperands since one is signed and the 298 // other not. So use it to index into the block iterator. 299 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); 300 ++BBIter) { 301 if (*BBIter != BB) 302 break; 303 MP->setIncomingValue(i, NewDef); 304 ++i; 305 } 306 } 307 308 // A brief description of the algorithm: 309 // First, we compute what should define the new def, using the SSA 310 // construction algorithm. 311 // Then, we update the defs below us (and any new phi nodes) in the graph to 312 // point to the correct new defs, to ensure we only have one variable, and no 313 // disconnected stores. 314 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 315 InsertedPHIs.clear(); 316 317 // See if we had a local def, and if not, go hunting. 318 MemoryAccess *DefBefore = getPreviousDef(MD); 319 bool DefBeforeSameBlock = false; 320 if (DefBefore->getBlock() == MD->getBlock() && 321 !(isa<MemoryPhi>(DefBefore) && 322 std::find(InsertedPHIs.begin(), InsertedPHIs.end(), DefBefore) != 323 InsertedPHIs.end())) 324 DefBeforeSameBlock = true; 325 326 // There is a def before us, which means we can replace any store/phi uses 327 // of that thing with us, since we are in the way of whatever was there 328 // before. 329 // We now define that def's memorydefs and memoryphis 330 if (DefBeforeSameBlock) { 331 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) { 332 // Leave the MemoryUses alone. 333 // Also make sure we skip ourselves to avoid self references. 334 User *Usr = U.getUser(); 335 return !isa<MemoryUse>(Usr) && Usr != MD; 336 // Defs are automatically unoptimized when the user is set to MD below, 337 // because the isOptimized() call will fail to find the same ID. 338 }); 339 } 340 341 // and that def is now our defining access. 342 MD->setDefiningAccess(DefBefore); 343 344 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); 345 346 // Remember the index where we may insert new phis. 347 unsigned NewPhiIndex = InsertedPHIs.size(); 348 if (!DefBeforeSameBlock) { 349 // If there was a local def before us, we must have the same effect it 350 // did. Because every may-def is the same, any phis/etc we would create, it 351 // would also have created. If there was no local def before us, we 352 // performed a global update, and have to search all successors and make 353 // sure we update the first def in each of them (following all paths until 354 // we hit the first def along each path). This may also insert phi nodes. 355 // TODO: There are other cases we can skip this work, such as when we have a 356 // single successor, and only used a straight line of single pred blocks 357 // backwards to find the def. To make that work, we'd have to track whether 358 // getDefRecursive only ever used the single predecessor case. These types 359 // of paths also only exist in between CFG simplifications. 360 361 // If this is the first def in the block and this insert is in an arbitrary 362 // place, compute IDF and place phis. 363 SmallPtrSet<BasicBlock *, 2> DefiningBlocks; 364 365 // If this is the last Def in the block, also compute IDF based on MD, since 366 // this may a new Def added, and we may need additional Phis. 367 auto Iter = MD->getDefsIterator(); 368 ++Iter; 369 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end(); 370 if (Iter == IterEnd) 371 DefiningBlocks.insert(MD->getBlock()); 372 373 for (const auto &VH : InsertedPHIs) 374 if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH)) 375 DefiningBlocks.insert(RealPHI->getBlock()); 376 ForwardIDFCalculator IDFs(*MSSA->DT); 377 SmallVector<BasicBlock *, 32> IDFBlocks; 378 IDFs.setDefiningBlocks(DefiningBlocks); 379 IDFs.calculate(IDFBlocks); 380 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs; 381 for (auto *BBIDF : IDFBlocks) { 382 auto *MPhi = MSSA->getMemoryAccess(BBIDF); 383 if (!MPhi) { 384 MPhi = MSSA->createMemoryPhi(BBIDF); 385 NewInsertedPHIs.push_back(MPhi); 386 } 387 // Add the phis created into the IDF blocks to NonOptPhis, so they are not 388 // optimized out as trivial by the call to getPreviousDefFromEnd below. 389 // Once they are complete, all these Phis are added to the FixupList, and 390 // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may 391 // need fixing as well, and potentially be trivial before this insertion, 392 // hence add all IDF Phis. See PR43044. 393 NonOptPhis.insert(MPhi); 394 } 395 for (auto &MPhi : NewInsertedPHIs) { 396 auto *BBIDF = MPhi->getBlock(); 397 for (auto *Pred : predecessors(BBIDF)) { 398 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 399 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred); 400 } 401 } 402 403 // Re-take the index where we're adding the new phis, because the above call 404 // to getPreviousDefFromEnd, may have inserted into InsertedPHIs. 405 NewPhiIndex = InsertedPHIs.size(); 406 for (auto &MPhi : NewInsertedPHIs) { 407 InsertedPHIs.push_back(&*MPhi); 408 FixupList.push_back(&*MPhi); 409 } 410 411 FixupList.push_back(MD); 412 } 413 414 // Remember the index where we stopped inserting new phis above, since the 415 // fixupDefs call in the loop below may insert more, that are already minimal. 416 unsigned NewPhiIndexEnd = InsertedPHIs.size(); 417 418 while (!FixupList.empty()) { 419 unsigned StartingPHISize = InsertedPHIs.size(); 420 fixupDefs(FixupList); 421 FixupList.clear(); 422 // Put any new phis on the fixup list, and process them 423 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); 424 } 425 426 // Optimize potentially non-minimal phis added in this method. 427 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex; 428 if (NewPhiSize) 429 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize)); 430 431 // Now that all fixups are done, rename all uses if we are asked. 432 if (RenameUses) { 433 SmallPtrSet<BasicBlock *, 16> Visited; 434 BasicBlock *StartBlock = MD->getBlock(); 435 // We are guaranteed there is a def in the block, because we just got it 436 // handed to us in this function. 437 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 438 // Convert to incoming value if it's a memorydef. A phi *is* already an 439 // incoming value. 440 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 441 FirstDef = MD->getDefiningAccess(); 442 443 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 444 // We just inserted a phi into this block, so the incoming value will become 445 // the phi anyway, so it does not matter what we pass. 446 for (auto &MP : InsertedPHIs) { 447 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 448 if (Phi) 449 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 450 } 451 } 452 } 453 454 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { 455 SmallPtrSet<const BasicBlock *, 8> Seen; 456 SmallVector<const BasicBlock *, 16> Worklist; 457 for (auto &Var : Vars) { 458 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); 459 if (!NewDef) 460 continue; 461 // First, see if there is a local def after the operand. 462 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 463 auto DefIter = NewDef->getDefsIterator(); 464 465 // The temporary Phi is being fixed, unmark it for not to optimize. 466 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) 467 NonOptPhis.erase(Phi); 468 469 // If there is a local def after us, we only have to rename that. 470 if (++DefIter != Defs->end()) { 471 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 472 continue; 473 } 474 475 // Otherwise, we need to search down through the CFG. 476 // For each of our successors, handle it directly if their is a phi, or 477 // place on the fixup worklist. 478 for (const auto *S : successors(NewDef->getBlock())) { 479 if (auto *MP = MSSA->getMemoryAccess(S)) 480 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 481 else 482 Worklist.push_back(S); 483 } 484 485 while (!Worklist.empty()) { 486 const BasicBlock *FixupBlock = Worklist.back(); 487 Worklist.pop_back(); 488 489 // Get the first def in the block that isn't a phi node. 490 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 491 auto *FirstDef = &*Defs->begin(); 492 // The loop above and below should have taken care of phi nodes 493 assert(!isa<MemoryPhi>(FirstDef) && 494 "Should have already handled phi nodes!"); 495 // We are now this def's defining access, make sure we actually dominate 496 // it 497 assert(MSSA->dominates(NewDef, FirstDef) && 498 "Should have dominated the new access"); 499 500 // This may insert new phi nodes, because we are not guaranteed the 501 // block we are processing has a single pred, and depending where the 502 // store was inserted, it may require phi nodes below it. 503 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 504 return; 505 } 506 // We didn't find a def, so we must continue. 507 for (const auto *S : successors(FixupBlock)) { 508 // If there is a phi node, handle it. 509 // Otherwise, put the block on the worklist 510 if (auto *MP = MSSA->getMemoryAccess(S)) 511 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 512 else { 513 // If we cycle, we should have ended up at a phi node that we already 514 // processed. FIXME: Double check this 515 if (!Seen.insert(S).second) 516 continue; 517 Worklist.push_back(S); 518 } 519 } 520 } 521 } 522 } 523 524 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { 525 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 526 MPhi->unorderedDeleteIncomingBlock(From); 527 tryRemoveTrivialPhi(MPhi); 528 } 529 } 530 531 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From, 532 const BasicBlock *To) { 533 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 534 bool Found = false; 535 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { 536 if (From != B) 537 return false; 538 if (Found) 539 return true; 540 Found = true; 541 return false; 542 }); 543 tryRemoveTrivialPhi(MPhi); 544 } 545 } 546 547 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA, 548 const ValueToValueMapTy &VMap, 549 PhiToDefMap &MPhiMap, 550 bool CloneWasSimplified, 551 MemorySSA *MSSA) { 552 MemoryAccess *InsnDefining = MA; 553 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) { 554 if (!MSSA->isLiveOnEntryDef(DefMUD)) { 555 Instruction *DefMUDI = DefMUD->getMemoryInst(); 556 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); 557 if (Instruction *NewDefMUDI = 558 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) { 559 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); 560 if (!CloneWasSimplified) 561 assert(InsnDefining && "Defining instruction cannot be nullptr."); 562 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) { 563 // The clone was simplified, it's no longer a MemoryDef, look up. 564 auto DefIt = DefMUD->getDefsIterator(); 565 // Since simplified clones only occur in single block cloning, a 566 // previous definition must exist, otherwise NewDefMUDI would not 567 // have been found in VMap. 568 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() && 569 "Previous def must exist"); 570 InsnDefining = getNewDefiningAccessForClone( 571 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA); 572 } 573 } 574 } 575 } else { 576 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining); 577 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) 578 InsnDefining = NewDefPhi; 579 } 580 assert(InsnDefining && "Defining instruction cannot be nullptr."); 581 return InsnDefining; 582 } 583 584 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, 585 const ValueToValueMapTy &VMap, 586 PhiToDefMap &MPhiMap, 587 bool CloneWasSimplified) { 588 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 589 if (!Acc) 590 return; 591 for (const MemoryAccess &MA : *Acc) { 592 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) { 593 Instruction *Insn = MUD->getMemoryInst(); 594 // Entry does not exist if the clone of the block did not clone all 595 // instructions. This occurs in LoopRotate when cloning instructions 596 // from the old header to the old preheader. The cloned instruction may 597 // also be a simplified Value, not an Instruction (see LoopRotate). 598 // Also in LoopRotate, even when it's an instruction, due to it being 599 // simplified, it may be a Use rather than a Def, so we cannot use MUD as 600 // template. Calls coming from updateForClonedBlockIntoPred, ensure this. 601 if (Instruction *NewInsn = 602 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) { 603 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( 604 NewInsn, 605 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap, 606 MPhiMap, CloneWasSimplified, MSSA), 607 /*Template=*/CloneWasSimplified ? nullptr : MUD, 608 /*CreationMustSucceed=*/CloneWasSimplified ? false : true); 609 if (NewUseOrDef) 610 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); 611 } 612 } 613 } 614 } 615 616 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock( 617 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) { 618 auto *MPhi = MSSA->getMemoryAccess(Header); 619 if (!MPhi) 620 return; 621 622 // Create phi node in the backedge block and populate it with the same 623 // incoming values as MPhi. Skip incoming values coming from Preheader. 624 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock); 625 bool HasUniqueIncomingValue = true; 626 MemoryAccess *UniqueValue = nullptr; 627 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) { 628 BasicBlock *IBB = MPhi->getIncomingBlock(I); 629 MemoryAccess *IV = MPhi->getIncomingValue(I); 630 if (IBB != Preheader) { 631 NewMPhi->addIncoming(IV, IBB); 632 if (HasUniqueIncomingValue) { 633 if (!UniqueValue) 634 UniqueValue = IV; 635 else if (UniqueValue != IV) 636 HasUniqueIncomingValue = false; 637 } 638 } 639 } 640 641 // Update incoming edges into MPhi. Remove all but the incoming edge from 642 // Preheader. Add an edge from NewMPhi 643 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader); 644 MPhi->setIncomingValue(0, AccFromPreheader); 645 MPhi->setIncomingBlock(0, Preheader); 646 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I) 647 MPhi->unorderedDeleteIncoming(I); 648 MPhi->addIncoming(NewMPhi, BEBlock); 649 650 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be 651 // replaced with the unique value. 652 tryRemoveTrivialPhi(NewMPhi); 653 } 654 655 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, 656 ArrayRef<BasicBlock *> ExitBlocks, 657 const ValueToValueMapTy &VMap, 658 bool IgnoreIncomingWithNoClones) { 659 PhiToDefMap MPhiMap; 660 661 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { 662 assert(Phi && NewPhi && "Invalid Phi nodes."); 663 BasicBlock *NewPhiBB = NewPhi->getBlock(); 664 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB), 665 pred_end(NewPhiBB)); 666 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { 667 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); 668 BasicBlock *IncBB = Phi->getIncomingBlock(It); 669 670 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB))) 671 IncBB = NewIncBB; 672 else if (IgnoreIncomingWithNoClones) 673 continue; 674 675 // Now we have IncBB, and will need to add incoming from it to NewPhi. 676 677 // If IncBB is not a predecessor of NewPhiBB, then do not add it. 678 // NewPhiBB was cloned without that edge. 679 if (!NewPhiBBPreds.count(IncBB)) 680 continue; 681 682 // Determine incoming value and add it as incoming from IncBB. 683 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) { 684 if (!MSSA->isLiveOnEntryDef(IncMUD)) { 685 Instruction *IncI = IncMUD->getMemoryInst(); 686 assert(IncI && "Found MemoryUseOrDef with no Instruction."); 687 if (Instruction *NewIncI = 688 cast_or_null<Instruction>(VMap.lookup(IncI))) { 689 IncMUD = MSSA->getMemoryAccess(NewIncI); 690 assert(IncMUD && 691 "MemoryUseOrDef cannot be null, all preds processed."); 692 } 693 } 694 NewPhi->addIncoming(IncMUD, IncBB); 695 } else { 696 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess); 697 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) 698 NewPhi->addIncoming(NewDefPhi, IncBB); 699 else 700 NewPhi->addIncoming(IncPhi, IncBB); 701 } 702 } 703 }; 704 705 auto ProcessBlock = [&](BasicBlock *BB) { 706 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB)); 707 if (!NewBlock) 708 return; 709 710 assert(!MSSA->getWritableBlockAccesses(NewBlock) && 711 "Cloned block should have no accesses"); 712 713 // Add MemoryPhi. 714 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { 715 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); 716 MPhiMap[MPhi] = NewPhi; 717 } 718 // Update Uses and Defs. 719 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); 720 }; 721 722 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 723 ProcessBlock(BB); 724 725 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 726 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 727 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) 728 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi)); 729 } 730 731 void MemorySSAUpdater::updateForClonedBlockIntoPred( 732 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { 733 // All defs/phis from outside BB that are used in BB, are valid uses in P1. 734 // Since those defs/phis must have dominated BB, and also dominate P1. 735 // Defs from BB being used in BB will be replaced with the cloned defs from 736 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the 737 // incoming def into the Phi from P1. 738 // Instructions cloned into the predecessor are in practice sometimes 739 // simplified, so disable the use of the template, and create an access from 740 // scratch. 741 PhiToDefMap MPhiMap; 742 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 743 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); 744 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true); 745 } 746 747 template <typename Iter> 748 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( 749 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, 750 DominatorTree &DT) { 751 SmallVector<CFGUpdate, 4> Updates; 752 // Update/insert phis in all successors of exit blocks. 753 for (auto *Exit : ExitBlocks) 754 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) 755 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) { 756 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 757 Updates.push_back({DT.Insert, NewExit, ExitSucc}); 758 } 759 applyInsertUpdates(Updates, DT); 760 } 761 762 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 763 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap, 764 DominatorTree &DT) { 765 const ValueToValueMapTy *const Arr[] = {&VMap}; 766 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), 767 std::end(Arr), DT); 768 } 769 770 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 771 ArrayRef<BasicBlock *> ExitBlocks, 772 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) { 773 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) { 774 return I.get(); 775 }; 776 using MappedIteratorType = 777 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *, 778 decltype(GetPtr)>; 779 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); 780 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); 781 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); 782 } 783 784 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates, 785 DominatorTree &DT) { 786 SmallVector<CFGUpdate, 4> DeleteUpdates; 787 SmallVector<CFGUpdate, 4> InsertUpdates; 788 for (auto &Update : Updates) { 789 if (Update.getKind() == DT.Insert) 790 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 791 else 792 DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()}); 793 } 794 795 if (!DeleteUpdates.empty()) { 796 // Update for inserted edges: use newDT and snapshot CFG as if deletes had 797 // not occurred. 798 // FIXME: This creates a new DT, so it's more expensive to do mix 799 // delete/inserts vs just inserts. We can do an incremental update on the DT 800 // to revert deletes, than re-delete the edges. Teaching DT to do this, is 801 // part of a pending cleanup. 802 DominatorTree NewDT(DT, DeleteUpdates); 803 GraphDiff<BasicBlock *> GD(DeleteUpdates, /*ReverseApplyUpdates=*/true); 804 applyInsertUpdates(InsertUpdates, NewDT, &GD); 805 } else { 806 GraphDiff<BasicBlock *> GD; 807 applyInsertUpdates(InsertUpdates, DT, &GD); 808 } 809 810 // Update for deleted edges 811 for (auto &Update : DeleteUpdates) 812 removeEdge(Update.getFrom(), Update.getTo()); 813 } 814 815 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 816 DominatorTree &DT) { 817 GraphDiff<BasicBlock *> GD; 818 applyInsertUpdates(Updates, DT, &GD); 819 } 820 821 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 822 DominatorTree &DT, 823 const GraphDiff<BasicBlock *> *GD) { 824 // Get recursive last Def, assuming well formed MSSA and updated DT. 825 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { 826 while (true) { 827 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); 828 // Return last Def or Phi in BB, if it exists. 829 if (Defs) 830 return &*(--Defs->end()); 831 832 // Check number of predecessors, we only care if there's more than one. 833 unsigned Count = 0; 834 BasicBlock *Pred = nullptr; 835 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) { 836 Pred = Pi; 837 Count++; 838 if (Count == 2) 839 break; 840 } 841 842 // If BB has multiple predecessors, get last definition from IDom. 843 if (Count != 1) { 844 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its 845 // DT is invalidated. Return LoE as its last def. This will be added to 846 // MemoryPhi node, and later deleted when the block is deleted. 847 if (!DT.getNode(BB)) 848 return MSSA->getLiveOnEntryDef(); 849 if (auto *IDom = DT.getNode(BB)->getIDom()) 850 if (IDom->getBlock() != BB) { 851 BB = IDom->getBlock(); 852 continue; 853 } 854 return MSSA->getLiveOnEntryDef(); 855 } else { 856 // Single predecessor, BB cannot be dead. GetLastDef of Pred. 857 assert(Count == 1 && Pred && "Single predecessor expected."); 858 // BB can be unreachable though, return LoE if that is the case. 859 if (!DT.getNode(BB)) 860 return MSSA->getLiveOnEntryDef(); 861 BB = Pred; 862 } 863 }; 864 llvm_unreachable("Unable to get last definition."); 865 }; 866 867 // Get nearest IDom given a set of blocks. 868 // TODO: this can be optimized by starting the search at the node with the 869 // lowest level (highest in the tree). 870 auto FindNearestCommonDominator = 871 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * { 872 BasicBlock *PrevIDom = *BBSet.begin(); 873 for (auto *BB : BBSet) 874 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); 875 return PrevIDom; 876 }; 877 878 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not 879 // include CurrIDom. 880 auto GetNoLongerDomBlocks = 881 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, 882 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) { 883 if (PrevIDom == CurrIDom) 884 return; 885 BlocksPrevDom.push_back(PrevIDom); 886 BasicBlock *NextIDom = PrevIDom; 887 while (BasicBlock *UpIDom = 888 DT.getNode(NextIDom)->getIDom()->getBlock()) { 889 if (UpIDom == CurrIDom) 890 break; 891 BlocksPrevDom.push_back(UpIDom); 892 NextIDom = UpIDom; 893 } 894 }; 895 896 // Map a BB to its predecessors: added + previously existing. To get a 897 // deterministic order, store predecessors as SetVectors. The order in each 898 // will be defined by the order in Updates (fixed) and the order given by 899 // children<> (also fixed). Since we further iterate over these ordered sets, 900 // we lose the information of multiple edges possibly existing between two 901 // blocks, so we'll keep and EdgeCount map for that. 902 // An alternate implementation could keep unordered set for the predecessors, 903 // traverse either Updates or children<> each time to get the deterministic 904 // order, and drop the usage of EdgeCount. This alternate approach would still 905 // require querying the maps for each predecessor, and children<> call has 906 // additional computation inside for creating the snapshot-graph predecessors. 907 // As such, we favor using a little additional storage and less compute time. 908 // This decision can be revisited if we find the alternative more favorable. 909 910 struct PredInfo { 911 SmallSetVector<BasicBlock *, 2> Added; 912 SmallSetVector<BasicBlock *, 2> Prev; 913 }; 914 SmallDenseMap<BasicBlock *, PredInfo> PredMap; 915 916 for (auto &Edge : Updates) { 917 BasicBlock *BB = Edge.getTo(); 918 auto &AddedBlockSet = PredMap[BB].Added; 919 AddedBlockSet.insert(Edge.getFrom()); 920 } 921 922 // Store all existing predecessor for each BB, at least one must exist. 923 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap; 924 SmallPtrSet<BasicBlock *, 2> NewBlocks; 925 for (auto &BBPredPair : PredMap) { 926 auto *BB = BBPredPair.first; 927 const auto &AddedBlockSet = BBPredPair.second.Added; 928 auto &PrevBlockSet = BBPredPair.second.Prev; 929 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) { 930 if (!AddedBlockSet.count(Pi)) 931 PrevBlockSet.insert(Pi); 932 EdgeCountMap[{Pi, BB}]++; 933 } 934 935 if (PrevBlockSet.empty()) { 936 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); 937 LLVM_DEBUG( 938 dbgs() 939 << "Adding a predecessor to a block with no predecessors. " 940 "This must be an edge added to a new, likely cloned, block. " 941 "Its memory accesses must be already correct, assuming completed " 942 "via the updateExitBlocksForClonedLoop API. " 943 "Assert a single such edge is added so no phi addition or " 944 "additional processing is required.\n"); 945 assert(AddedBlockSet.size() == 1 && 946 "Can only handle adding one predecessor to a new block."); 947 // Need to remove new blocks from PredMap. Remove below to not invalidate 948 // iterator here. 949 NewBlocks.insert(BB); 950 } 951 } 952 // Nothing to process for new/cloned blocks. 953 for (auto *BB : NewBlocks) 954 PredMap.erase(BB); 955 956 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace; 957 SmallVector<WeakVH, 8> InsertedPhis; 958 959 // First create MemoryPhis in all blocks that don't have one. Create in the 960 // order found in Updates, not in PredMap, to get deterministic numbering. 961 for (auto &Edge : Updates) { 962 BasicBlock *BB = Edge.getTo(); 963 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) 964 InsertedPhis.push_back(MSSA->createMemoryPhi(BB)); 965 } 966 967 // Now we'll fill in the MemoryPhis with the right incoming values. 968 for (auto &BBPredPair : PredMap) { 969 auto *BB = BBPredPair.first; 970 const auto &PrevBlockSet = BBPredPair.second.Prev; 971 const auto &AddedBlockSet = BBPredPair.second.Added; 972 assert(!PrevBlockSet.empty() && 973 "At least one previous predecessor must exist."); 974 975 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by 976 // keeping this map before the loop. We can reuse already populated entries 977 // if an edge is added from the same predecessor to two different blocks, 978 // and this does happen in rotate. Note that the map needs to be updated 979 // when deleting non-necessary phis below, if the phi is in the map by 980 // replacing the value with DefP1. 981 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred; 982 for (auto *AddedPred : AddedBlockSet) { 983 auto *DefPn = GetLastDef(AddedPred); 984 assert(DefPn != nullptr && "Unable to find last definition."); 985 LastDefAddedPred[AddedPred] = DefPn; 986 } 987 988 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); 989 // If Phi is not empty, add an incoming edge from each added pred. Must 990 // still compute blocks with defs to replace for this block below. 991 if (NewPhi->getNumOperands()) { 992 for (auto *Pred : AddedBlockSet) { 993 auto *LastDefForPred = LastDefAddedPred[Pred]; 994 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 995 NewPhi->addIncoming(LastDefForPred, Pred); 996 } 997 } else { 998 // Pick any existing predecessor and get its definition. All other 999 // existing predecessors should have the same one, since no phi existed. 1000 auto *P1 = *PrevBlockSet.begin(); 1001 MemoryAccess *DefP1 = GetLastDef(P1); 1002 1003 // Check DefP1 against all Defs in LastDefPredPair. If all the same, 1004 // nothing to add. 1005 bool InsertPhi = false; 1006 for (auto LastDefPredPair : LastDefAddedPred) 1007 if (DefP1 != LastDefPredPair.second) { 1008 InsertPhi = true; 1009 break; 1010 } 1011 if (!InsertPhi) { 1012 // Since NewPhi may be used in other newly added Phis, replace all uses 1013 // of NewPhi with the definition coming from all predecessors (DefP1), 1014 // before deleting it. 1015 NewPhi->replaceAllUsesWith(DefP1); 1016 removeMemoryAccess(NewPhi); 1017 continue; 1018 } 1019 1020 // Update Phi with new values for new predecessors and old value for all 1021 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered 1022 // sets, the order of entries in NewPhi is deterministic. 1023 for (auto *Pred : AddedBlockSet) { 1024 auto *LastDefForPred = LastDefAddedPred[Pred]; 1025 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1026 NewPhi->addIncoming(LastDefForPred, Pred); 1027 } 1028 for (auto *Pred : PrevBlockSet) 1029 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1030 NewPhi->addIncoming(DefP1, Pred); 1031 } 1032 1033 // Get all blocks that used to dominate BB and no longer do after adding 1034 // AddedBlockSet, where PrevBlockSet are the previously known predecessors. 1035 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); 1036 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); 1037 assert(PrevIDom && "Previous IDom should exists"); 1038 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); 1039 assert(NewIDom && "BB should have a new valid idom"); 1040 assert(DT.dominates(NewIDom, PrevIDom) && 1041 "New idom should dominate old idom"); 1042 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); 1043 } 1044 1045 tryRemoveTrivialPhis(InsertedPhis); 1046 // Create the set of blocks that now have a definition. We'll use this to 1047 // compute IDF and add Phis there next. 1048 SmallVector<BasicBlock *, 8> BlocksToProcess; 1049 for (auto &VH : InsertedPhis) 1050 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1051 BlocksToProcess.push_back(MPhi->getBlock()); 1052 1053 // Compute IDF and add Phis in all IDF blocks that do not have one. 1054 SmallVector<BasicBlock *, 32> IDFBlocks; 1055 if (!BlocksToProcess.empty()) { 1056 ForwardIDFCalculator IDFs(DT, GD); 1057 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(), 1058 BlocksToProcess.end()); 1059 IDFs.setDefiningBlocks(DefiningBlocks); 1060 IDFs.calculate(IDFBlocks); 1061 1062 SmallSetVector<MemoryPhi *, 4> PhisToFill; 1063 // First create all needed Phis. 1064 for (auto *BBIDF : IDFBlocks) 1065 if (!MSSA->getMemoryAccess(BBIDF)) { 1066 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF); 1067 InsertedPhis.push_back(IDFPhi); 1068 PhisToFill.insert(IDFPhi); 1069 } 1070 // Then update or insert their correct incoming values. 1071 for (auto *BBIDF : IDFBlocks) { 1072 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF); 1073 assert(IDFPhi && "Phi must exist"); 1074 if (!PhisToFill.count(IDFPhi)) { 1075 // Update existing Phi. 1076 // FIXME: some updates may be redundant, try to optimize and skip some. 1077 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) 1078 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); 1079 } else { 1080 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF)) 1081 IDFPhi->addIncoming(GetLastDef(Pi), Pi); 1082 } 1083 } 1084 } 1085 1086 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no 1087 // longer dominate, replace those with the closest dominating def. 1088 // This will also update optimized accesses, as they're also uses. 1089 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { 1090 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { 1091 for (auto &DefToReplaceUses : *DefsList) { 1092 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); 1093 Value::use_iterator UI = DefToReplaceUses.use_begin(), 1094 E = DefToReplaceUses.use_end(); 1095 for (; UI != E;) { 1096 Use &U = *UI; 1097 ++UI; 1098 MemoryAccess *Usr = cast<MemoryAccess>(U.getUser()); 1099 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) { 1100 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); 1101 if (!DT.dominates(DominatingBlock, DominatedBlock)) 1102 U.set(GetLastDef(DominatedBlock)); 1103 } else { 1104 BasicBlock *DominatedBlock = Usr->getBlock(); 1105 if (!DT.dominates(DominatingBlock, DominatedBlock)) { 1106 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) 1107 U.set(DomBlPhi); 1108 else { 1109 auto *IDom = DT.getNode(DominatedBlock)->getIDom(); 1110 assert(IDom && "Block must have a valid IDom."); 1111 U.set(GetLastDef(IDom->getBlock())); 1112 } 1113 cast<MemoryUseOrDef>(Usr)->resetOptimized(); 1114 } 1115 } 1116 } 1117 } 1118 } 1119 } 1120 tryRemoveTrivialPhis(InsertedPhis); 1121 } 1122 1123 // Move What before Where in the MemorySSA IR. 1124 template <class WhereType> 1125 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1126 WhereType Where) { 1127 // Mark MemoryPhi users of What not to be optimized. 1128 for (auto *U : What->users()) 1129 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) 1130 NonOptPhis.insert(PhiUser); 1131 1132 // Replace all our users with our defining access. 1133 What->replaceAllUsesWith(What->getDefiningAccess()); 1134 1135 // Let MemorySSA take care of moving it around in the lists. 1136 MSSA->moveTo(What, BB, Where); 1137 1138 // Now reinsert it into the IR and do whatever fixups needed. 1139 if (auto *MD = dyn_cast<MemoryDef>(What)) 1140 insertDef(MD, /*RenameUses=*/true); 1141 else 1142 insertUse(cast<MemoryUse>(What), /*RenameUses=*/true); 1143 1144 // Clear dangling pointers. We added all MemoryPhi users, but not all 1145 // of them are removed by fixupDefs(). 1146 NonOptPhis.clear(); 1147 } 1148 1149 // Move What before Where in the MemorySSA IR. 1150 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1151 moveTo(What, Where->getBlock(), Where->getIterator()); 1152 } 1153 1154 // Move What after Where in the MemorySSA IR. 1155 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1156 moveTo(What, Where->getBlock(), ++Where->getIterator()); 1157 } 1158 1159 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 1160 MemorySSA::InsertionPlace Where) { 1161 if (Where != MemorySSA::InsertionPlace::BeforeTerminator) 1162 return moveTo(What, BB, Where); 1163 1164 if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator())) 1165 return moveBefore(What, Where); 1166 else 1167 return moveTo(What, BB, MemorySSA::InsertionPlace::End); 1168 } 1169 1170 // All accesses in To used to be in From. Move to end and update access lists. 1171 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, 1172 Instruction *Start) { 1173 1174 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); 1175 if (!Accs) 1176 return; 1177 1178 assert(Start->getParent() == To && "Incorrect Start instruction"); 1179 MemoryAccess *FirstInNew = nullptr; 1180 for (Instruction &I : make_range(Start->getIterator(), To->end())) 1181 if ((FirstInNew = MSSA->getMemoryAccess(&I))) 1182 break; 1183 if (FirstInNew) { 1184 auto *MUD = cast<MemoryUseOrDef>(FirstInNew); 1185 do { 1186 auto NextIt = ++MUD->getIterator(); 1187 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) 1188 ? nullptr 1189 : cast<MemoryUseOrDef>(&*NextIt); 1190 MSSA->moveTo(MUD, To, MemorySSA::End); 1191 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need 1192 // to retrieve it again. 1193 Accs = MSSA->getWritableBlockAccesses(From); 1194 MUD = NextMUD; 1195 } while (MUD); 1196 } 1197 1198 // If all accesses were moved and only a trivial Phi remains, we try to remove 1199 // that Phi. This is needed when From is going to be deleted. 1200 auto *Defs = MSSA->getWritableBlockDefs(From); 1201 if (Defs && !Defs->empty()) 1202 if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin())) 1203 tryRemoveTrivialPhi(Phi); 1204 } 1205 1206 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, 1207 BasicBlock *To, 1208 Instruction *Start) { 1209 assert(MSSA->getBlockAccesses(To) == nullptr && 1210 "To block is expected to be free of MemoryAccesses."); 1211 moveAllAccesses(From, To, Start); 1212 for (BasicBlock *Succ : successors(To)) 1213 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1214 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1215 } 1216 1217 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, 1218 Instruction *Start) { 1219 assert(From->getUniquePredecessor() == To && 1220 "From block is expected to have a single predecessor (To)."); 1221 moveAllAccesses(From, To, Start); 1222 for (BasicBlock *Succ : successors(From)) 1223 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1224 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1225 } 1226 1227 /// If all arguments of a MemoryPHI are defined by the same incoming 1228 /// argument, return that argument. 1229 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 1230 MemoryAccess *MA = nullptr; 1231 1232 for (auto &Arg : MP->operands()) { 1233 if (!MA) 1234 MA = cast<MemoryAccess>(Arg); 1235 else if (MA != Arg) 1236 return nullptr; 1237 } 1238 return MA; 1239 } 1240 1241 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( 1242 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds, 1243 bool IdenticalEdgesWereMerged) { 1244 assert(!MSSA->getWritableBlockAccesses(New) && 1245 "Access list should be null for a new block."); 1246 MemoryPhi *Phi = MSSA->getMemoryAccess(Old); 1247 if (!Phi) 1248 return; 1249 if (Old->hasNPredecessors(1)) { 1250 assert(pred_size(New) == Preds.size() && 1251 "Should have moved all predecessors."); 1252 MSSA->moveTo(Phi, New, MemorySSA::Beginning); 1253 } else { 1254 assert(!Preds.empty() && "Must be moving at least one predecessor to the " 1255 "new immediate predecessor."); 1256 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); 1257 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); 1258 // Currently only support the case of removing a single incoming edge when 1259 // identical edges were not merged. 1260 if (!IdenticalEdgesWereMerged) 1261 assert(PredsSet.size() == Preds.size() && 1262 "If identical edges were not merged, we cannot have duplicate " 1263 "blocks in the predecessors"); 1264 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { 1265 if (PredsSet.count(B)) { 1266 NewPhi->addIncoming(MA, B); 1267 if (!IdenticalEdgesWereMerged) 1268 PredsSet.erase(B); 1269 return true; 1270 } 1271 return false; 1272 }); 1273 Phi->addIncoming(NewPhi, New); 1274 tryRemoveTrivialPhi(NewPhi); 1275 } 1276 } 1277 1278 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { 1279 assert(!MSSA->isLiveOnEntryDef(MA) && 1280 "Trying to remove the live on entry def"); 1281 // We can only delete phi nodes if they have no uses, or we can replace all 1282 // uses with a single definition. 1283 MemoryAccess *NewDefTarget = nullptr; 1284 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 1285 // Note that it is sufficient to know that all edges of the phi node have 1286 // the same argument. If they do, by the definition of dominance frontiers 1287 // (which we used to place this phi), that argument must dominate this phi, 1288 // and thus, must dominate the phi's uses, and so we will not hit the assert 1289 // below. 1290 NewDefTarget = onlySingleValue(MP); 1291 assert((NewDefTarget || MP->use_empty()) && 1292 "We can't delete this memory phi"); 1293 } else { 1294 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 1295 } 1296 1297 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 1298 1299 // Re-point the uses at our defining access 1300 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 1301 // Reset optimized on users of this store, and reset the uses. 1302 // A few notes: 1303 // 1. This is a slightly modified version of RAUW to avoid walking the 1304 // uses twice here. 1305 // 2. If we wanted to be complete, we would have to reset the optimized 1306 // flags on users of phi nodes if doing the below makes a phi node have all 1307 // the same arguments. Instead, we prefer users to removeMemoryAccess those 1308 // phi nodes, because doing it here would be N^3. 1309 if (MA->hasValueHandle()) 1310 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 1311 // Note: We assume MemorySSA is not used in metadata since it's not really 1312 // part of the IR. 1313 1314 while (!MA->use_empty()) { 1315 Use &U = *MA->use_begin(); 1316 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 1317 MUD->resetOptimized(); 1318 if (OptimizePhis) 1319 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser())) 1320 PhisToCheck.insert(MP); 1321 U.set(NewDefTarget); 1322 } 1323 } 1324 1325 // The call below to erase will destroy MA, so we can't change the order we 1326 // are doing things here 1327 MSSA->removeFromLookups(MA); 1328 MSSA->removeFromLists(MA); 1329 1330 // Optionally optimize Phi uses. This will recursively remove trivial phis. 1331 if (!PhisToCheck.empty()) { 1332 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(), 1333 PhisToCheck.end()}; 1334 PhisToCheck.clear(); 1335 1336 unsigned PhisSize = PhisToOptimize.size(); 1337 while (PhisSize-- > 0) 1338 if (MemoryPhi *MP = 1339 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) 1340 tryRemoveTrivialPhi(MP); 1341 } 1342 } 1343 1344 void MemorySSAUpdater::removeBlocks( 1345 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) { 1346 // First delete all uses of BB in MemoryPhis. 1347 for (BasicBlock *BB : DeadBlocks) { 1348 Instruction *TI = BB->getTerminator(); 1349 assert(TI && "Basic block expected to have a terminator instruction"); 1350 for (BasicBlock *Succ : successors(TI)) 1351 if (!DeadBlocks.count(Succ)) 1352 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { 1353 MP->unorderedDeleteIncomingBlock(BB); 1354 tryRemoveTrivialPhi(MP); 1355 } 1356 // Drop all references of all accesses in BB 1357 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) 1358 for (MemoryAccess &MA : *Acc) 1359 MA.dropAllReferences(); 1360 } 1361 1362 // Next, delete all memory accesses in each block 1363 for (BasicBlock *BB : DeadBlocks) { 1364 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); 1365 if (!Acc) 1366 continue; 1367 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { 1368 MemoryAccess *MA = &*AB; 1369 ++AB; 1370 MSSA->removeFromLookups(MA); 1371 MSSA->removeFromLists(MA); 1372 } 1373 } 1374 } 1375 1376 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) { 1377 for (auto &VH : UpdatedPHIs) 1378 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1379 tryRemoveTrivialPhi(MPhi); 1380 } 1381 1382 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) { 1383 const BasicBlock *BB = I->getParent(); 1384 // Remove memory accesses in BB for I and all following instructions. 1385 auto BBI = I->getIterator(), BBE = BB->end(); 1386 // FIXME: If this becomes too expensive, iterate until the first instruction 1387 // with a memory access, then iterate over MemoryAccesses. 1388 while (BBI != BBE) 1389 removeMemoryAccess(&*(BBI++)); 1390 // Update phis in BB's successors to remove BB. 1391 SmallVector<WeakVH, 16> UpdatedPHIs; 1392 for (const BasicBlock *Successor : successors(BB)) { 1393 removeDuplicatePhiEdgesBetween(BB, Successor); 1394 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) { 1395 MPhi->unorderedDeleteIncomingBlock(BB); 1396 UpdatedPHIs.push_back(MPhi); 1397 } 1398 } 1399 // Optimize trivial phis. 1400 tryRemoveTrivialPhis(UpdatedPHIs); 1401 } 1402 1403 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI, 1404 const BasicBlock *To) { 1405 const BasicBlock *BB = BI->getParent(); 1406 SmallVector<WeakVH, 16> UpdatedPHIs; 1407 for (const BasicBlock *Succ : successors(BB)) { 1408 removeDuplicatePhiEdgesBetween(BB, Succ); 1409 if (Succ != To) 1410 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) { 1411 MPhi->unorderedDeleteIncomingBlock(BB); 1412 UpdatedPHIs.push_back(MPhi); 1413 } 1414 } 1415 // Optimize trivial phis. 1416 tryRemoveTrivialPhis(UpdatedPHIs); 1417 } 1418 1419 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 1420 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 1421 MemorySSA::InsertionPlace Point) { 1422 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1423 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 1424 return NewAccess; 1425 } 1426 1427 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 1428 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 1429 assert(I->getParent() == InsertPt->getBlock() && 1430 "New and old access must be in the same block"); 1431 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1432 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1433 InsertPt->getIterator()); 1434 return NewAccess; 1435 } 1436 1437 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 1438 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 1439 assert(I->getParent() == InsertPt->getBlock() && 1440 "New and old access must be in the same block"); 1441 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1442 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1443 ++InsertPt->getIterator()); 1444 return NewAccess; 1445 } 1446