1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSAUpdater class. 10 // 11 //===----------------------------------------------------------------===// 12 #include "llvm/Analysis/MemorySSAUpdater.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/Analysis/IteratedDominanceFrontier.h" 17 #include "llvm/Analysis/MemorySSA.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/GlobalVariable.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include <algorithm> 28 29 #define DEBUG_TYPE "memoryssa" 30 using namespace llvm; 31 32 // This is the marker algorithm from "Simple and Efficient Construction of 33 // Static Single Assignment Form" 34 // The simple, non-marker algorithm places phi nodes at any join 35 // Here, we place markers, and only place phi nodes if they end up necessary. 36 // They are only necessary if they break a cycle (IE we recursively visit 37 // ourselves again), or we discover, while getting the value of the operands, 38 // that there are two or more definitions needing to be merged. 39 // This still will leave non-minimal form in the case of irreducible control 40 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( 42 BasicBlock *BB, 43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 44 // First, do a cache lookup. Without this cache, certain CFG structures 45 // (like a series of if statements) take exponential time to visit. 46 auto Cached = CachedPreviousDef.find(BB); 47 if (Cached != CachedPreviousDef.end()) { 48 return Cached->second; 49 } 50 51 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 52 // Single predecessor case, just recurse, we can only have one definition. 53 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); 54 CachedPreviousDef.insert({BB, Result}); 55 return Result; 56 } 57 58 if (VisitedBlocks.count(BB)) { 59 // We hit our node again, meaning we had a cycle, we must insert a phi 60 // node to break it so we have an operand. The only case this will 61 // insert useless phis is if we have irreducible control flow. 62 MemoryAccess *Result = MSSA->createMemoryPhi(BB); 63 CachedPreviousDef.insert({BB, Result}); 64 return Result; 65 } 66 67 if (VisitedBlocks.insert(BB).second) { 68 // Mark us visited so we can detect a cycle 69 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; 70 71 // Recurse to get the values in our predecessors for placement of a 72 // potential phi node. This will insert phi nodes if we cycle in order to 73 // break the cycle and have an operand. 74 for (auto *Pred : predecessors(BB)) 75 if (MSSA->DT->isReachableFromEntry(Pred)) 76 PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef)); 77 else 78 PhiOps.push_back(MSSA->getLiveOnEntryDef()); 79 80 // Now try to simplify the ops to avoid placing a phi. 81 // This may return null if we never created a phi yet, that's okay 82 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 83 84 // See if we can avoid the phi by simplifying it. 85 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 86 // If we couldn't simplify, we may have to create a phi 87 if (Result == Phi) { 88 if (!Phi) 89 Phi = MSSA->createMemoryPhi(BB); 90 91 // See if the existing phi operands match what we need. 92 // Unlike normal SSA, we only allow one phi node per block, so we can't just 93 // create a new one. 94 if (Phi->getNumOperands() != 0) { 95 // FIXME: Figure out whether this is dead code and if so remove it. 96 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 97 // These will have been filled in by the recursive read we did above. 98 llvm::copy(PhiOps, Phi->op_begin()); 99 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 100 } 101 } else { 102 unsigned i = 0; 103 for (auto *Pred : predecessors(BB)) 104 Phi->addIncoming(&*PhiOps[i++], Pred); 105 InsertedPHIs.push_back(Phi); 106 } 107 Result = Phi; 108 } 109 110 // Set ourselves up for the next variable by resetting visited state. 111 VisitedBlocks.erase(BB); 112 CachedPreviousDef.insert({BB, Result}); 113 return Result; 114 } 115 llvm_unreachable("Should have hit one of the three cases above"); 116 } 117 118 // This starts at the memory access, and goes backwards in the block to find the 119 // previous definition. If a definition is not found the block of the access, 120 // it continues globally, creating phi nodes to ensure we have a single 121 // definition. 122 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 123 if (auto *LocalResult = getPreviousDefInBlock(MA)) 124 return LocalResult; 125 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 126 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); 127 } 128 129 // This starts at the memory access, and goes backwards in the block to the find 130 // the previous definition. If the definition is not found in the block of the 131 // access, it returns nullptr. 132 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 133 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 134 135 // It's possible there are no defs, or we got handed the first def to start. 136 if (Defs) { 137 // If this is a def, we can just use the def iterators. 138 if (!isa<MemoryUse>(MA)) { 139 auto Iter = MA->getReverseDefsIterator(); 140 ++Iter; 141 if (Iter != Defs->rend()) 142 return &*Iter; 143 } else { 144 // Otherwise, have to walk the all access iterator. 145 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 146 for (auto &U : make_range(++MA->getReverseIterator(), End)) 147 if (!isa<MemoryUse>(U)) 148 return cast<MemoryAccess>(&U); 149 // Note that if MA comes before Defs->begin(), we won't hit a def. 150 return nullptr; 151 } 152 } 153 return nullptr; 154 } 155 156 // This starts at the end of block 157 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( 158 BasicBlock *BB, 159 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 160 auto *Defs = MSSA->getWritableBlockDefs(BB); 161 162 if (Defs) { 163 CachedPreviousDef.insert({BB, &*Defs->rbegin()}); 164 return &*Defs->rbegin(); 165 } 166 167 return getPreviousDefRecursive(BB, CachedPreviousDef); 168 } 169 // Recurse over a set of phi uses to eliminate the trivial ones 170 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 171 if (!Phi) 172 return nullptr; 173 TrackingVH<MemoryAccess> Res(Phi); 174 SmallVector<TrackingVH<Value>, 8> Uses; 175 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 176 for (auto &U : Uses) 177 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) 178 tryRemoveTrivialPhi(UsePhi); 179 return Res; 180 } 181 182 // Eliminate trivial phis 183 // Phis are trivial if they are defined either by themselves, or all the same 184 // argument. 185 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 186 // We recursively try to remove them. 187 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) { 188 assert(Phi && "Can only remove concrete Phi."); 189 auto OperRange = Phi->operands(); 190 return tryRemoveTrivialPhi(Phi, OperRange); 191 } 192 template <class RangeType> 193 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 194 RangeType &Operands) { 195 // Bail out on non-opt Phis. 196 if (NonOptPhis.count(Phi)) 197 return Phi; 198 199 // Detect equal or self arguments 200 MemoryAccess *Same = nullptr; 201 for (auto &Op : Operands) { 202 // If the same or self, good so far 203 if (Op == Phi || Op == Same) 204 continue; 205 // not the same, return the phi since it's not eliminatable by us 206 if (Same) 207 return Phi; 208 Same = cast<MemoryAccess>(&*Op); 209 } 210 // Never found a non-self reference, the phi is undef 211 if (Same == nullptr) 212 return MSSA->getLiveOnEntryDef(); 213 if (Phi) { 214 Phi->replaceAllUsesWith(Same); 215 removeMemoryAccess(Phi); 216 } 217 218 // We should only end up recursing in case we replaced something, in which 219 // case, we may have made other Phis trivial. 220 return recursePhi(Same); 221 } 222 223 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) { 224 InsertedPHIs.clear(); 225 MU->setDefiningAccess(getPreviousDef(MU)); 226 // In cases without unreachable blocks, because uses do not create new 227 // may-defs, there are only two cases: 228 // 1. There was a def already below us, and therefore, we should not have 229 // created a phi node because it was already needed for the def. 230 // 231 // 2. There is no def below us, and therefore, there is no extra renaming work 232 // to do. 233 234 // In cases with unreachable blocks, where the unnecessary Phis were 235 // optimized out, adding the Use may re-insert those Phis. Hence, when 236 // inserting Uses outside of the MSSA creation process, and new Phis were 237 // added, rename all uses if we are asked. 238 239 if (!RenameUses && !InsertedPHIs.empty()) { 240 auto *Defs = MSSA->getBlockDefs(MU->getBlock()); 241 (void)Defs; 242 assert((!Defs || (++Defs->begin() == Defs->end())) && 243 "Block may have only a Phi or no defs"); 244 } 245 246 if (RenameUses && InsertedPHIs.size()) { 247 SmallPtrSet<BasicBlock *, 16> Visited; 248 BasicBlock *StartBlock = MU->getBlock(); 249 250 if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) { 251 MemoryAccess *FirstDef = &*Defs->begin(); 252 // Convert to incoming value if it's a memorydef. A phi *is* already an 253 // incoming value. 254 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 255 FirstDef = MD->getDefiningAccess(); 256 257 MSSA->renamePass(MU->getBlock(), FirstDef, Visited); 258 } 259 // We just inserted a phi into this block, so the incoming value will 260 // become the phi anyway, so it does not matter what we pass. 261 for (auto &MP : InsertedPHIs) 262 if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP)) 263 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 264 } 265 } 266 267 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 268 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 269 MemoryAccess *NewDef) { 270 // Replace any operand with us an incoming block with the new defining 271 // access. 272 int i = MP->getBasicBlockIndex(BB); 273 assert(i != -1 && "Should have found the basic block in the phi"); 274 // We can't just compare i against getNumOperands since one is signed and the 275 // other not. So use it to index into the block iterator. 276 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); 277 ++BBIter) { 278 if (*BBIter != BB) 279 break; 280 MP->setIncomingValue(i, NewDef); 281 ++i; 282 } 283 } 284 285 // A brief description of the algorithm: 286 // First, we compute what should define the new def, using the SSA 287 // construction algorithm. 288 // Then, we update the defs below us (and any new phi nodes) in the graph to 289 // point to the correct new defs, to ensure we only have one variable, and no 290 // disconnected stores. 291 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 292 InsertedPHIs.clear(); 293 294 // See if we had a local def, and if not, go hunting. 295 MemoryAccess *DefBefore = getPreviousDef(MD); 296 bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock(); 297 298 // There is a def before us, which means we can replace any store/phi uses 299 // of that thing with us, since we are in the way of whatever was there 300 // before. 301 // We now define that def's memorydefs and memoryphis 302 if (DefBeforeSameBlock) { 303 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) { 304 // Leave the MemoryUses alone. 305 // Also make sure we skip ourselves to avoid self references. 306 User *Usr = U.getUser(); 307 return !isa<MemoryUse>(Usr) && Usr != MD; 308 // Defs are automatically unoptimized when the user is set to MD below, 309 // because the isOptimized() call will fail to find the same ID. 310 }); 311 } 312 313 // and that def is now our defining access. 314 MD->setDefiningAccess(DefBefore); 315 316 // Remember the index where we may insert new phis below. 317 unsigned NewPhiIndex = InsertedPHIs.size(); 318 319 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); 320 if (!DefBeforeSameBlock) { 321 // If there was a local def before us, we must have the same effect it 322 // did. Because every may-def is the same, any phis/etc we would create, it 323 // would also have created. If there was no local def before us, we 324 // performed a global update, and have to search all successors and make 325 // sure we update the first def in each of them (following all paths until 326 // we hit the first def along each path). This may also insert phi nodes. 327 // TODO: There are other cases we can skip this work, such as when we have a 328 // single successor, and only used a straight line of single pred blocks 329 // backwards to find the def. To make that work, we'd have to track whether 330 // getDefRecursive only ever used the single predecessor case. These types 331 // of paths also only exist in between CFG simplifications. 332 333 // If this is the first def in the block and this insert is in an arbitrary 334 // place, compute IDF and place phis. 335 auto Iter = MD->getDefsIterator(); 336 ++Iter; 337 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end(); 338 if (Iter == IterEnd) { 339 ForwardIDFCalculator IDFs(*MSSA->DT); 340 SmallVector<BasicBlock *, 32> IDFBlocks; 341 SmallPtrSet<BasicBlock *, 2> DefiningBlocks; 342 for (const auto &VH : InsertedPHIs) 343 if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH)) 344 DefiningBlocks.insert(RealPHI->getBlock()); 345 DefiningBlocks.insert(MD->getBlock()); 346 IDFs.setDefiningBlocks(DefiningBlocks); 347 IDFs.calculate(IDFBlocks); 348 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs; 349 for (auto *BBIDF : IDFBlocks) { 350 auto *MPhi = MSSA->getMemoryAccess(BBIDF); 351 if (!MPhi) { 352 MPhi = MSSA->createMemoryPhi(BBIDF); 353 NewInsertedPHIs.push_back(MPhi); 354 } 355 // Add the phis created into the IDF blocks to NonOptPhis, so they are 356 // not optimized out as trivial by the call to getPreviousDefFromEnd 357 // below. Once they are complete, all these Phis are added to the 358 // FixupList, and removed from NonOptPhis inside fixupDefs(). 359 // Existing Phis in IDF may need fixing as well, and potentially be 360 // trivial before this insertion, hence add all IDF Phis. See PR43044. 361 NonOptPhis.insert(MPhi); 362 } 363 364 for (auto &MPhi : NewInsertedPHIs) { 365 auto *BBIDF = MPhi->getBlock(); 366 for (auto *Pred : predecessors(BBIDF)) { 367 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 368 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), 369 Pred); 370 } 371 } 372 373 // Re-take the index where we're adding the new phis, because the above 374 // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs. 375 NewPhiIndex = InsertedPHIs.size(); 376 for (auto &MPhi : NewInsertedPHIs) { 377 InsertedPHIs.push_back(&*MPhi); 378 FixupList.push_back(&*MPhi); 379 } 380 } 381 382 FixupList.push_back(MD); 383 } 384 385 // Remember the index where we stopped inserting new phis above, since the 386 // fixupDefs call in the loop below may insert more, that are already minimal. 387 unsigned NewPhiIndexEnd = InsertedPHIs.size(); 388 389 while (!FixupList.empty()) { 390 unsigned StartingPHISize = InsertedPHIs.size(); 391 fixupDefs(FixupList); 392 FixupList.clear(); 393 // Put any new phis on the fixup list, and process them 394 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); 395 } 396 397 // Optimize potentially non-minimal phis added in this method. 398 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex; 399 if (NewPhiSize) 400 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize)); 401 402 // Now that all fixups are done, rename all uses if we are asked. 403 if (RenameUses) { 404 SmallPtrSet<BasicBlock *, 16> Visited; 405 BasicBlock *StartBlock = MD->getBlock(); 406 // We are guaranteed there is a def in the block, because we just got it 407 // handed to us in this function. 408 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 409 // Convert to incoming value if it's a memorydef. A phi *is* already an 410 // incoming value. 411 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 412 FirstDef = MD->getDefiningAccess(); 413 414 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 415 // We just inserted a phi into this block, so the incoming value will become 416 // the phi anyway, so it does not matter what we pass. 417 for (auto &MP : InsertedPHIs) { 418 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 419 if (Phi) 420 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 421 } 422 } 423 } 424 425 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { 426 SmallPtrSet<const BasicBlock *, 8> Seen; 427 SmallVector<const BasicBlock *, 16> Worklist; 428 for (auto &Var : Vars) { 429 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); 430 if (!NewDef) 431 continue; 432 // First, see if there is a local def after the operand. 433 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 434 auto DefIter = NewDef->getDefsIterator(); 435 436 // The temporary Phi is being fixed, unmark it for not to optimize. 437 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) 438 NonOptPhis.erase(Phi); 439 440 // If there is a local def after us, we only have to rename that. 441 if (++DefIter != Defs->end()) { 442 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 443 continue; 444 } 445 446 // Otherwise, we need to search down through the CFG. 447 // For each of our successors, handle it directly if their is a phi, or 448 // place on the fixup worklist. 449 for (const auto *S : successors(NewDef->getBlock())) { 450 if (auto *MP = MSSA->getMemoryAccess(S)) 451 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 452 else 453 Worklist.push_back(S); 454 } 455 456 while (!Worklist.empty()) { 457 const BasicBlock *FixupBlock = Worklist.back(); 458 Worklist.pop_back(); 459 460 // Get the first def in the block that isn't a phi node. 461 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 462 auto *FirstDef = &*Defs->begin(); 463 // The loop above and below should have taken care of phi nodes 464 assert(!isa<MemoryPhi>(FirstDef) && 465 "Should have already handled phi nodes!"); 466 // We are now this def's defining access, make sure we actually dominate 467 // it 468 assert(MSSA->dominates(NewDef, FirstDef) && 469 "Should have dominated the new access"); 470 471 // This may insert new phi nodes, because we are not guaranteed the 472 // block we are processing has a single pred, and depending where the 473 // store was inserted, it may require phi nodes below it. 474 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 475 return; 476 } 477 // We didn't find a def, so we must continue. 478 for (const auto *S : successors(FixupBlock)) { 479 // If there is a phi node, handle it. 480 // Otherwise, put the block on the worklist 481 if (auto *MP = MSSA->getMemoryAccess(S)) 482 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 483 else { 484 // If we cycle, we should have ended up at a phi node that we already 485 // processed. FIXME: Double check this 486 if (!Seen.insert(S).second) 487 continue; 488 Worklist.push_back(S); 489 } 490 } 491 } 492 } 493 } 494 495 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { 496 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 497 MPhi->unorderedDeleteIncomingBlock(From); 498 tryRemoveTrivialPhi(MPhi); 499 } 500 } 501 502 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From, 503 const BasicBlock *To) { 504 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 505 bool Found = false; 506 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { 507 if (From != B) 508 return false; 509 if (Found) 510 return true; 511 Found = true; 512 return false; 513 }); 514 tryRemoveTrivialPhi(MPhi); 515 } 516 } 517 518 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA, 519 const ValueToValueMapTy &VMap, 520 PhiToDefMap &MPhiMap, 521 bool CloneWasSimplified, 522 MemorySSA *MSSA) { 523 MemoryAccess *InsnDefining = MA; 524 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) { 525 if (!MSSA->isLiveOnEntryDef(DefMUD)) { 526 Instruction *DefMUDI = DefMUD->getMemoryInst(); 527 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); 528 if (Instruction *NewDefMUDI = 529 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) { 530 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); 531 if (!CloneWasSimplified) 532 assert(InsnDefining && "Defining instruction cannot be nullptr."); 533 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) { 534 // The clone was simplified, it's no longer a MemoryDef, look up. 535 auto DefIt = DefMUD->getDefsIterator(); 536 // Since simplified clones only occur in single block cloning, a 537 // previous definition must exist, otherwise NewDefMUDI would not 538 // have been found in VMap. 539 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() && 540 "Previous def must exist"); 541 InsnDefining = getNewDefiningAccessForClone( 542 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA); 543 } 544 } 545 } 546 } else { 547 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining); 548 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) 549 InsnDefining = NewDefPhi; 550 } 551 assert(InsnDefining && "Defining instruction cannot be nullptr."); 552 return InsnDefining; 553 } 554 555 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, 556 const ValueToValueMapTy &VMap, 557 PhiToDefMap &MPhiMap, 558 bool CloneWasSimplified) { 559 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 560 if (!Acc) 561 return; 562 for (const MemoryAccess &MA : *Acc) { 563 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) { 564 Instruction *Insn = MUD->getMemoryInst(); 565 // Entry does not exist if the clone of the block did not clone all 566 // instructions. This occurs in LoopRotate when cloning instructions 567 // from the old header to the old preheader. The cloned instruction may 568 // also be a simplified Value, not an Instruction (see LoopRotate). 569 // Also in LoopRotate, even when it's an instruction, due to it being 570 // simplified, it may be a Use rather than a Def, so we cannot use MUD as 571 // template. Calls coming from updateForClonedBlockIntoPred, ensure this. 572 if (Instruction *NewInsn = 573 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) { 574 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( 575 NewInsn, 576 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap, 577 MPhiMap, CloneWasSimplified, MSSA), 578 /*Template=*/CloneWasSimplified ? nullptr : MUD, 579 /*CreationMustSucceed=*/CloneWasSimplified ? false : true); 580 if (NewUseOrDef) 581 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); 582 } 583 } 584 } 585 } 586 587 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock( 588 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) { 589 auto *MPhi = MSSA->getMemoryAccess(Header); 590 if (!MPhi) 591 return; 592 593 // Create phi node in the backedge block and populate it with the same 594 // incoming values as MPhi. Skip incoming values coming from Preheader. 595 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock); 596 bool HasUniqueIncomingValue = true; 597 MemoryAccess *UniqueValue = nullptr; 598 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) { 599 BasicBlock *IBB = MPhi->getIncomingBlock(I); 600 MemoryAccess *IV = MPhi->getIncomingValue(I); 601 if (IBB != Preheader) { 602 NewMPhi->addIncoming(IV, IBB); 603 if (HasUniqueIncomingValue) { 604 if (!UniqueValue) 605 UniqueValue = IV; 606 else if (UniqueValue != IV) 607 HasUniqueIncomingValue = false; 608 } 609 } 610 } 611 612 // Update incoming edges into MPhi. Remove all but the incoming edge from 613 // Preheader. Add an edge from NewMPhi 614 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader); 615 MPhi->setIncomingValue(0, AccFromPreheader); 616 MPhi->setIncomingBlock(0, Preheader); 617 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I) 618 MPhi->unorderedDeleteIncoming(I); 619 MPhi->addIncoming(NewMPhi, BEBlock); 620 621 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be 622 // replaced with the unique value. 623 tryRemoveTrivialPhi(MPhi); 624 } 625 626 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, 627 ArrayRef<BasicBlock *> ExitBlocks, 628 const ValueToValueMapTy &VMap, 629 bool IgnoreIncomingWithNoClones) { 630 PhiToDefMap MPhiMap; 631 632 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { 633 assert(Phi && NewPhi && "Invalid Phi nodes."); 634 BasicBlock *NewPhiBB = NewPhi->getBlock(); 635 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB), 636 pred_end(NewPhiBB)); 637 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { 638 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); 639 BasicBlock *IncBB = Phi->getIncomingBlock(It); 640 641 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB))) 642 IncBB = NewIncBB; 643 else if (IgnoreIncomingWithNoClones) 644 continue; 645 646 // Now we have IncBB, and will need to add incoming from it to NewPhi. 647 648 // If IncBB is not a predecessor of NewPhiBB, then do not add it. 649 // NewPhiBB was cloned without that edge. 650 if (!NewPhiBBPreds.count(IncBB)) 651 continue; 652 653 // Determine incoming value and add it as incoming from IncBB. 654 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) { 655 if (!MSSA->isLiveOnEntryDef(IncMUD)) { 656 Instruction *IncI = IncMUD->getMemoryInst(); 657 assert(IncI && "Found MemoryUseOrDef with no Instruction."); 658 if (Instruction *NewIncI = 659 cast_or_null<Instruction>(VMap.lookup(IncI))) { 660 IncMUD = MSSA->getMemoryAccess(NewIncI); 661 assert(IncMUD && 662 "MemoryUseOrDef cannot be null, all preds processed."); 663 } 664 } 665 NewPhi->addIncoming(IncMUD, IncBB); 666 } else { 667 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess); 668 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) 669 NewPhi->addIncoming(NewDefPhi, IncBB); 670 else 671 NewPhi->addIncoming(IncPhi, IncBB); 672 } 673 } 674 }; 675 676 auto ProcessBlock = [&](BasicBlock *BB) { 677 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB)); 678 if (!NewBlock) 679 return; 680 681 assert(!MSSA->getWritableBlockAccesses(NewBlock) && 682 "Cloned block should have no accesses"); 683 684 // Add MemoryPhi. 685 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { 686 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); 687 MPhiMap[MPhi] = NewPhi; 688 } 689 // Update Uses and Defs. 690 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); 691 }; 692 693 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 694 ProcessBlock(BB); 695 696 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 697 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 698 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) 699 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi)); 700 } 701 702 void MemorySSAUpdater::updateForClonedBlockIntoPred( 703 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { 704 // All defs/phis from outside BB that are used in BB, are valid uses in P1. 705 // Since those defs/phis must have dominated BB, and also dominate P1. 706 // Defs from BB being used in BB will be replaced with the cloned defs from 707 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the 708 // incoming def into the Phi from P1. 709 // Instructions cloned into the predecessor are in practice sometimes 710 // simplified, so disable the use of the template, and create an access from 711 // scratch. 712 PhiToDefMap MPhiMap; 713 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 714 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); 715 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true); 716 } 717 718 template <typename Iter> 719 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( 720 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, 721 DominatorTree &DT) { 722 SmallVector<CFGUpdate, 4> Updates; 723 // Update/insert phis in all successors of exit blocks. 724 for (auto *Exit : ExitBlocks) 725 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) 726 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) { 727 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 728 Updates.push_back({DT.Insert, NewExit, ExitSucc}); 729 } 730 applyInsertUpdates(Updates, DT); 731 } 732 733 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 734 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap, 735 DominatorTree &DT) { 736 const ValueToValueMapTy *const Arr[] = {&VMap}; 737 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), 738 std::end(Arr), DT); 739 } 740 741 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 742 ArrayRef<BasicBlock *> ExitBlocks, 743 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) { 744 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) { 745 return I.get(); 746 }; 747 using MappedIteratorType = 748 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *, 749 decltype(GetPtr)>; 750 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); 751 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); 752 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); 753 } 754 755 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates, 756 DominatorTree &DT) { 757 SmallVector<CFGUpdate, 4> RevDeleteUpdates; 758 SmallVector<CFGUpdate, 4> InsertUpdates; 759 for (auto &Update : Updates) { 760 if (Update.getKind() == DT.Insert) 761 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 762 else 763 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 764 } 765 766 if (!RevDeleteUpdates.empty()) { 767 // Update for inserted edges: use newDT and snapshot CFG as if deletes had 768 // not occurred. 769 // FIXME: This creates a new DT, so it's more expensive to do mix 770 // delete/inserts vs just inserts. We can do an incremental update on the DT 771 // to revert deletes, than re-delete the edges. Teaching DT to do this, is 772 // part of a pending cleanup. 773 DominatorTree NewDT(DT, RevDeleteUpdates); 774 GraphDiff<BasicBlock *> GD(RevDeleteUpdates); 775 applyInsertUpdates(InsertUpdates, NewDT, &GD); 776 } else { 777 GraphDiff<BasicBlock *> GD; 778 applyInsertUpdates(InsertUpdates, DT, &GD); 779 } 780 781 // Update for deleted edges 782 for (auto &Update : RevDeleteUpdates) 783 removeEdge(Update.getFrom(), Update.getTo()); 784 } 785 786 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 787 DominatorTree &DT) { 788 GraphDiff<BasicBlock *> GD; 789 applyInsertUpdates(Updates, DT, &GD); 790 } 791 792 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 793 DominatorTree &DT, 794 const GraphDiff<BasicBlock *> *GD) { 795 // Get recursive last Def, assuming well formed MSSA and updated DT. 796 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { 797 while (true) { 798 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); 799 // Return last Def or Phi in BB, if it exists. 800 if (Defs) 801 return &*(--Defs->end()); 802 803 // Check number of predecessors, we only care if there's more than one. 804 unsigned Count = 0; 805 BasicBlock *Pred = nullptr; 806 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 807 Pred = Pair.second; 808 Count++; 809 if (Count == 2) 810 break; 811 } 812 813 // If BB has multiple predecessors, get last definition from IDom. 814 if (Count != 1) { 815 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its 816 // DT is invalidated. Return LoE as its last def. This will be added to 817 // MemoryPhi node, and later deleted when the block is deleted. 818 if (!DT.getNode(BB)) 819 return MSSA->getLiveOnEntryDef(); 820 if (auto *IDom = DT.getNode(BB)->getIDom()) 821 if (IDom->getBlock() != BB) { 822 BB = IDom->getBlock(); 823 continue; 824 } 825 return MSSA->getLiveOnEntryDef(); 826 } else { 827 // Single predecessor, BB cannot be dead. GetLastDef of Pred. 828 assert(Count == 1 && Pred && "Single predecessor expected."); 829 BB = Pred; 830 } 831 }; 832 llvm_unreachable("Unable to get last definition."); 833 }; 834 835 // Get nearest IDom given a set of blocks. 836 // TODO: this can be optimized by starting the search at the node with the 837 // lowest level (highest in the tree). 838 auto FindNearestCommonDominator = 839 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * { 840 BasicBlock *PrevIDom = *BBSet.begin(); 841 for (auto *BB : BBSet) 842 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); 843 return PrevIDom; 844 }; 845 846 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not 847 // include CurrIDom. 848 auto GetNoLongerDomBlocks = 849 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, 850 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) { 851 if (PrevIDom == CurrIDom) 852 return; 853 BlocksPrevDom.push_back(PrevIDom); 854 BasicBlock *NextIDom = PrevIDom; 855 while (BasicBlock *UpIDom = 856 DT.getNode(NextIDom)->getIDom()->getBlock()) { 857 if (UpIDom == CurrIDom) 858 break; 859 BlocksPrevDom.push_back(UpIDom); 860 NextIDom = UpIDom; 861 } 862 }; 863 864 // Map a BB to its predecessors: added + previously existing. To get a 865 // deterministic order, store predecessors as SetVectors. The order in each 866 // will be defined by the order in Updates (fixed) and the order given by 867 // children<> (also fixed). Since we further iterate over these ordered sets, 868 // we lose the information of multiple edges possibly existing between two 869 // blocks, so we'll keep and EdgeCount map for that. 870 // An alternate implementation could keep unordered set for the predecessors, 871 // traverse either Updates or children<> each time to get the deterministic 872 // order, and drop the usage of EdgeCount. This alternate approach would still 873 // require querying the maps for each predecessor, and children<> call has 874 // additional computation inside for creating the snapshot-graph predecessors. 875 // As such, we favor using a little additional storage and less compute time. 876 // This decision can be revisited if we find the alternative more favorable. 877 878 struct PredInfo { 879 SmallSetVector<BasicBlock *, 2> Added; 880 SmallSetVector<BasicBlock *, 2> Prev; 881 }; 882 SmallDenseMap<BasicBlock *, PredInfo> PredMap; 883 884 for (auto &Edge : Updates) { 885 BasicBlock *BB = Edge.getTo(); 886 auto &AddedBlockSet = PredMap[BB].Added; 887 AddedBlockSet.insert(Edge.getFrom()); 888 } 889 890 // Store all existing predecessor for each BB, at least one must exist. 891 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap; 892 SmallPtrSet<BasicBlock *, 2> NewBlocks; 893 for (auto &BBPredPair : PredMap) { 894 auto *BB = BBPredPair.first; 895 const auto &AddedBlockSet = BBPredPair.second.Added; 896 auto &PrevBlockSet = BBPredPair.second.Prev; 897 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 898 BasicBlock *Pi = Pair.second; 899 if (!AddedBlockSet.count(Pi)) 900 PrevBlockSet.insert(Pi); 901 EdgeCountMap[{Pi, BB}]++; 902 } 903 904 if (PrevBlockSet.empty()) { 905 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); 906 LLVM_DEBUG( 907 dbgs() 908 << "Adding a predecessor to a block with no predecessors. " 909 "This must be an edge added to a new, likely cloned, block. " 910 "Its memory accesses must be already correct, assuming completed " 911 "via the updateExitBlocksForClonedLoop API. " 912 "Assert a single such edge is added so no phi addition or " 913 "additional processing is required.\n"); 914 assert(AddedBlockSet.size() == 1 && 915 "Can only handle adding one predecessor to a new block."); 916 // Need to remove new blocks from PredMap. Remove below to not invalidate 917 // iterator here. 918 NewBlocks.insert(BB); 919 } 920 } 921 // Nothing to process for new/cloned blocks. 922 for (auto *BB : NewBlocks) 923 PredMap.erase(BB); 924 925 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace; 926 SmallVector<WeakVH, 8> InsertedPhis; 927 928 // First create MemoryPhis in all blocks that don't have one. Create in the 929 // order found in Updates, not in PredMap, to get deterministic numbering. 930 for (auto &Edge : Updates) { 931 BasicBlock *BB = Edge.getTo(); 932 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) 933 InsertedPhis.push_back(MSSA->createMemoryPhi(BB)); 934 } 935 936 // Now we'll fill in the MemoryPhis with the right incoming values. 937 for (auto &BBPredPair : PredMap) { 938 auto *BB = BBPredPair.first; 939 const auto &PrevBlockSet = BBPredPair.second.Prev; 940 const auto &AddedBlockSet = BBPredPair.second.Added; 941 assert(!PrevBlockSet.empty() && 942 "At least one previous predecessor must exist."); 943 944 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by 945 // keeping this map before the loop. We can reuse already populated entries 946 // if an edge is added from the same predecessor to two different blocks, 947 // and this does happen in rotate. Note that the map needs to be updated 948 // when deleting non-necessary phis below, if the phi is in the map by 949 // replacing the value with DefP1. 950 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred; 951 for (auto *AddedPred : AddedBlockSet) { 952 auto *DefPn = GetLastDef(AddedPred); 953 assert(DefPn != nullptr && "Unable to find last definition."); 954 LastDefAddedPred[AddedPred] = DefPn; 955 } 956 957 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); 958 // If Phi is not empty, add an incoming edge from each added pred. Must 959 // still compute blocks with defs to replace for this block below. 960 if (NewPhi->getNumOperands()) { 961 for (auto *Pred : AddedBlockSet) { 962 auto *LastDefForPred = LastDefAddedPred[Pred]; 963 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 964 NewPhi->addIncoming(LastDefForPred, Pred); 965 } 966 } else { 967 // Pick any existing predecessor and get its definition. All other 968 // existing predecessors should have the same one, since no phi existed. 969 auto *P1 = *PrevBlockSet.begin(); 970 MemoryAccess *DefP1 = GetLastDef(P1); 971 972 // Check DefP1 against all Defs in LastDefPredPair. If all the same, 973 // nothing to add. 974 bool InsertPhi = false; 975 for (auto LastDefPredPair : LastDefAddedPred) 976 if (DefP1 != LastDefPredPair.second) { 977 InsertPhi = true; 978 break; 979 } 980 if (!InsertPhi) { 981 // Since NewPhi may be used in other newly added Phis, replace all uses 982 // of NewPhi with the definition coming from all predecessors (DefP1), 983 // before deleting it. 984 NewPhi->replaceAllUsesWith(DefP1); 985 removeMemoryAccess(NewPhi); 986 continue; 987 } 988 989 // Update Phi with new values for new predecessors and old value for all 990 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered 991 // sets, the order of entries in NewPhi is deterministic. 992 for (auto *Pred : AddedBlockSet) { 993 auto *LastDefForPred = LastDefAddedPred[Pred]; 994 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 995 NewPhi->addIncoming(LastDefForPred, Pred); 996 } 997 for (auto *Pred : PrevBlockSet) 998 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 999 NewPhi->addIncoming(DefP1, Pred); 1000 } 1001 1002 // Get all blocks that used to dominate BB and no longer do after adding 1003 // AddedBlockSet, where PrevBlockSet are the previously known predecessors. 1004 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); 1005 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); 1006 assert(PrevIDom && "Previous IDom should exists"); 1007 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); 1008 assert(NewIDom && "BB should have a new valid idom"); 1009 assert(DT.dominates(NewIDom, PrevIDom) && 1010 "New idom should dominate old idom"); 1011 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); 1012 } 1013 1014 tryRemoveTrivialPhis(InsertedPhis); 1015 // Create the set of blocks that now have a definition. We'll use this to 1016 // compute IDF and add Phis there next. 1017 SmallVector<BasicBlock *, 8> BlocksToProcess; 1018 for (auto &VH : InsertedPhis) 1019 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1020 BlocksToProcess.push_back(MPhi->getBlock()); 1021 1022 // Compute IDF and add Phis in all IDF blocks that do not have one. 1023 SmallVector<BasicBlock *, 32> IDFBlocks; 1024 if (!BlocksToProcess.empty()) { 1025 ForwardIDFCalculator IDFs(DT, GD); 1026 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(), 1027 BlocksToProcess.end()); 1028 IDFs.setDefiningBlocks(DefiningBlocks); 1029 IDFs.calculate(IDFBlocks); 1030 1031 SmallSetVector<MemoryPhi *, 4> PhisToFill; 1032 // First create all needed Phis. 1033 for (auto *BBIDF : IDFBlocks) 1034 if (!MSSA->getMemoryAccess(BBIDF)) { 1035 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF); 1036 InsertedPhis.push_back(IDFPhi); 1037 PhisToFill.insert(IDFPhi); 1038 } 1039 // Then update or insert their correct incoming values. 1040 for (auto *BBIDF : IDFBlocks) { 1041 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF); 1042 assert(IDFPhi && "Phi must exist"); 1043 if (!PhisToFill.count(IDFPhi)) { 1044 // Update existing Phi. 1045 // FIXME: some updates may be redundant, try to optimize and skip some. 1046 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) 1047 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); 1048 } else { 1049 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) { 1050 BasicBlock *Pi = Pair.second; 1051 IDFPhi->addIncoming(GetLastDef(Pi), Pi); 1052 } 1053 } 1054 } 1055 } 1056 1057 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no 1058 // longer dominate, replace those with the closest dominating def. 1059 // This will also update optimized accesses, as they're also uses. 1060 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { 1061 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { 1062 for (auto &DefToReplaceUses : *DefsList) { 1063 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); 1064 Value::use_iterator UI = DefToReplaceUses.use_begin(), 1065 E = DefToReplaceUses.use_end(); 1066 for (; UI != E;) { 1067 Use &U = *UI; 1068 ++UI; 1069 MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser()); 1070 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) { 1071 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); 1072 if (!DT.dominates(DominatingBlock, DominatedBlock)) 1073 U.set(GetLastDef(DominatedBlock)); 1074 } else { 1075 BasicBlock *DominatedBlock = Usr->getBlock(); 1076 if (!DT.dominates(DominatingBlock, DominatedBlock)) { 1077 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) 1078 U.set(DomBlPhi); 1079 else { 1080 auto *IDom = DT.getNode(DominatedBlock)->getIDom(); 1081 assert(IDom && "Block must have a valid IDom."); 1082 U.set(GetLastDef(IDom->getBlock())); 1083 } 1084 cast<MemoryUseOrDef>(Usr)->resetOptimized(); 1085 } 1086 } 1087 } 1088 } 1089 } 1090 } 1091 tryRemoveTrivialPhis(InsertedPhis); 1092 } 1093 1094 // Move What before Where in the MemorySSA IR. 1095 template <class WhereType> 1096 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1097 WhereType Where) { 1098 // Mark MemoryPhi users of What not to be optimized. 1099 for (auto *U : What->users()) 1100 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) 1101 NonOptPhis.insert(PhiUser); 1102 1103 // Replace all our users with our defining access. 1104 What->replaceAllUsesWith(What->getDefiningAccess()); 1105 1106 // Let MemorySSA take care of moving it around in the lists. 1107 MSSA->moveTo(What, BB, Where); 1108 1109 // Now reinsert it into the IR and do whatever fixups needed. 1110 if (auto *MD = dyn_cast<MemoryDef>(What)) 1111 insertDef(MD, /*RenameUses=*/true); 1112 else 1113 insertUse(cast<MemoryUse>(What), /*RenameUses=*/true); 1114 1115 // Clear dangling pointers. We added all MemoryPhi users, but not all 1116 // of them are removed by fixupDefs(). 1117 NonOptPhis.clear(); 1118 } 1119 1120 // Move What before Where in the MemorySSA IR. 1121 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1122 moveTo(What, Where->getBlock(), Where->getIterator()); 1123 } 1124 1125 // Move What after Where in the MemorySSA IR. 1126 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1127 moveTo(What, Where->getBlock(), ++Where->getIterator()); 1128 } 1129 1130 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 1131 MemorySSA::InsertionPlace Where) { 1132 return moveTo(What, BB, Where); 1133 } 1134 1135 // All accesses in To used to be in From. Move to end and update access lists. 1136 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, 1137 Instruction *Start) { 1138 1139 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); 1140 if (!Accs) 1141 return; 1142 1143 MemoryAccess *FirstInNew = nullptr; 1144 for (Instruction &I : make_range(Start->getIterator(), To->end())) 1145 if ((FirstInNew = MSSA->getMemoryAccess(&I))) 1146 break; 1147 if (!FirstInNew) 1148 return; 1149 1150 auto *MUD = cast<MemoryUseOrDef>(FirstInNew); 1151 do { 1152 auto NextIt = ++MUD->getIterator(); 1153 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) 1154 ? nullptr 1155 : cast<MemoryUseOrDef>(&*NextIt); 1156 MSSA->moveTo(MUD, To, MemorySSA::End); 1157 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to 1158 // retrieve it again. 1159 Accs = MSSA->getWritableBlockAccesses(From); 1160 MUD = NextMUD; 1161 } while (MUD); 1162 } 1163 1164 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, 1165 BasicBlock *To, 1166 Instruction *Start) { 1167 assert(MSSA->getBlockAccesses(To) == nullptr && 1168 "To block is expected to be free of MemoryAccesses."); 1169 moveAllAccesses(From, To, Start); 1170 for (BasicBlock *Succ : successors(To)) 1171 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1172 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1173 } 1174 1175 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, 1176 Instruction *Start) { 1177 assert(From->getSinglePredecessor() == To && 1178 "From block is expected to have a single predecessor (To)."); 1179 moveAllAccesses(From, To, Start); 1180 for (BasicBlock *Succ : successors(From)) 1181 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1182 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1183 } 1184 1185 /// If all arguments of a MemoryPHI are defined by the same incoming 1186 /// argument, return that argument. 1187 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 1188 MemoryAccess *MA = nullptr; 1189 1190 for (auto &Arg : MP->operands()) { 1191 if (!MA) 1192 MA = cast<MemoryAccess>(Arg); 1193 else if (MA != Arg) 1194 return nullptr; 1195 } 1196 return MA; 1197 } 1198 1199 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( 1200 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds, 1201 bool IdenticalEdgesWereMerged) { 1202 assert(!MSSA->getWritableBlockAccesses(New) && 1203 "Access list should be null for a new block."); 1204 MemoryPhi *Phi = MSSA->getMemoryAccess(Old); 1205 if (!Phi) 1206 return; 1207 if (Old->hasNPredecessors(1)) { 1208 assert(pred_size(New) == Preds.size() && 1209 "Should have moved all predecessors."); 1210 MSSA->moveTo(Phi, New, MemorySSA::Beginning); 1211 } else { 1212 assert(!Preds.empty() && "Must be moving at least one predecessor to the " 1213 "new immediate predecessor."); 1214 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); 1215 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); 1216 // Currently only support the case of removing a single incoming edge when 1217 // identical edges were not merged. 1218 if (!IdenticalEdgesWereMerged) 1219 assert(PredsSet.size() == Preds.size() && 1220 "If identical edges were not merged, we cannot have duplicate " 1221 "blocks in the predecessors"); 1222 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { 1223 if (PredsSet.count(B)) { 1224 NewPhi->addIncoming(MA, B); 1225 if (!IdenticalEdgesWereMerged) 1226 PredsSet.erase(B); 1227 return true; 1228 } 1229 return false; 1230 }); 1231 Phi->addIncoming(NewPhi, New); 1232 tryRemoveTrivialPhi(NewPhi); 1233 } 1234 } 1235 1236 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { 1237 assert(!MSSA->isLiveOnEntryDef(MA) && 1238 "Trying to remove the live on entry def"); 1239 // We can only delete phi nodes if they have no uses, or we can replace all 1240 // uses with a single definition. 1241 MemoryAccess *NewDefTarget = nullptr; 1242 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 1243 // Note that it is sufficient to know that all edges of the phi node have 1244 // the same argument. If they do, by the definition of dominance frontiers 1245 // (which we used to place this phi), that argument must dominate this phi, 1246 // and thus, must dominate the phi's uses, and so we will not hit the assert 1247 // below. 1248 NewDefTarget = onlySingleValue(MP); 1249 assert((NewDefTarget || MP->use_empty()) && 1250 "We can't delete this memory phi"); 1251 } else { 1252 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 1253 } 1254 1255 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 1256 1257 // Re-point the uses at our defining access 1258 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 1259 // Reset optimized on users of this store, and reset the uses. 1260 // A few notes: 1261 // 1. This is a slightly modified version of RAUW to avoid walking the 1262 // uses twice here. 1263 // 2. If we wanted to be complete, we would have to reset the optimized 1264 // flags on users of phi nodes if doing the below makes a phi node have all 1265 // the same arguments. Instead, we prefer users to removeMemoryAccess those 1266 // phi nodes, because doing it here would be N^3. 1267 if (MA->hasValueHandle()) 1268 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 1269 // Note: We assume MemorySSA is not used in metadata since it's not really 1270 // part of the IR. 1271 1272 while (!MA->use_empty()) { 1273 Use &U = *MA->use_begin(); 1274 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 1275 MUD->resetOptimized(); 1276 if (OptimizePhis) 1277 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser())) 1278 PhisToCheck.insert(MP); 1279 U.set(NewDefTarget); 1280 } 1281 } 1282 1283 // The call below to erase will destroy MA, so we can't change the order we 1284 // are doing things here 1285 MSSA->removeFromLookups(MA); 1286 MSSA->removeFromLists(MA); 1287 1288 // Optionally optimize Phi uses. This will recursively remove trivial phis. 1289 if (!PhisToCheck.empty()) { 1290 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(), 1291 PhisToCheck.end()}; 1292 PhisToCheck.clear(); 1293 1294 unsigned PhisSize = PhisToOptimize.size(); 1295 while (PhisSize-- > 0) 1296 if (MemoryPhi *MP = 1297 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) 1298 tryRemoveTrivialPhi(MP); 1299 } 1300 } 1301 1302 void MemorySSAUpdater::removeBlocks( 1303 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) { 1304 // First delete all uses of BB in MemoryPhis. 1305 for (BasicBlock *BB : DeadBlocks) { 1306 Instruction *TI = BB->getTerminator(); 1307 assert(TI && "Basic block expected to have a terminator instruction"); 1308 for (BasicBlock *Succ : successors(TI)) 1309 if (!DeadBlocks.count(Succ)) 1310 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { 1311 MP->unorderedDeleteIncomingBlock(BB); 1312 tryRemoveTrivialPhi(MP); 1313 } 1314 // Drop all references of all accesses in BB 1315 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) 1316 for (MemoryAccess &MA : *Acc) 1317 MA.dropAllReferences(); 1318 } 1319 1320 // Next, delete all memory accesses in each block 1321 for (BasicBlock *BB : DeadBlocks) { 1322 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); 1323 if (!Acc) 1324 continue; 1325 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { 1326 MemoryAccess *MA = &*AB; 1327 ++AB; 1328 MSSA->removeFromLookups(MA); 1329 MSSA->removeFromLists(MA); 1330 } 1331 } 1332 } 1333 1334 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) { 1335 for (auto &VH : UpdatedPHIs) 1336 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1337 tryRemoveTrivialPhi(MPhi); 1338 } 1339 1340 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) { 1341 const BasicBlock *BB = I->getParent(); 1342 // Remove memory accesses in BB for I and all following instructions. 1343 auto BBI = I->getIterator(), BBE = BB->end(); 1344 // FIXME: If this becomes too expensive, iterate until the first instruction 1345 // with a memory access, then iterate over MemoryAccesses. 1346 while (BBI != BBE) 1347 removeMemoryAccess(&*(BBI++)); 1348 // Update phis in BB's successors to remove BB. 1349 SmallVector<WeakVH, 16> UpdatedPHIs; 1350 for (const BasicBlock *Successor : successors(BB)) { 1351 removeDuplicatePhiEdgesBetween(BB, Successor); 1352 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) { 1353 MPhi->unorderedDeleteIncomingBlock(BB); 1354 UpdatedPHIs.push_back(MPhi); 1355 } 1356 } 1357 // Optimize trivial phis. 1358 tryRemoveTrivialPhis(UpdatedPHIs); 1359 } 1360 1361 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI, 1362 const BasicBlock *To) { 1363 const BasicBlock *BB = BI->getParent(); 1364 SmallVector<WeakVH, 16> UpdatedPHIs; 1365 for (const BasicBlock *Succ : successors(BB)) { 1366 removeDuplicatePhiEdgesBetween(BB, Succ); 1367 if (Succ != To) 1368 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) { 1369 MPhi->unorderedDeleteIncomingBlock(BB); 1370 UpdatedPHIs.push_back(MPhi); 1371 } 1372 } 1373 // Optimize trivial phis. 1374 tryRemoveTrivialPhis(UpdatedPHIs); 1375 } 1376 1377 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 1378 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 1379 MemorySSA::InsertionPlace Point) { 1380 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1381 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 1382 return NewAccess; 1383 } 1384 1385 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 1386 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 1387 assert(I->getParent() == InsertPt->getBlock() && 1388 "New and old access must be in the same block"); 1389 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1390 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1391 InsertPt->getIterator()); 1392 return NewAccess; 1393 } 1394 1395 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 1396 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 1397 assert(I->getParent() == InsertPt->getBlock() && 1398 "New and old access must be in the same block"); 1399 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1400 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1401 ++InsertPt->getIterator()); 1402 return NewAccess; 1403 } 1404