1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSAUpdater class. 10 // 11 //===----------------------------------------------------------------===// 12 #include "llvm/Analysis/MemorySSAUpdater.h" 13 #include "llvm/Analysis/LoopIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/IteratedDominanceFrontier.h" 18 #include "llvm/Analysis/MemorySSA.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/FormattedStream.h" 29 #include <algorithm> 30 31 #define DEBUG_TYPE "memoryssa" 32 using namespace llvm; 33 34 // This is the marker algorithm from "Simple and Efficient Construction of 35 // Static Single Assignment Form" 36 // The simple, non-marker algorithm places phi nodes at any join 37 // Here, we place markers, and only place phi nodes if they end up necessary. 38 // They are only necessary if they break a cycle (IE we recursively visit 39 // ourselves again), or we discover, while getting the value of the operands, 40 // that there are two or more definitions needing to be merged. 41 // This still will leave non-minimal form in the case of irreducible control 42 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 43 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( 44 BasicBlock *BB, 45 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 46 // First, do a cache lookup. Without this cache, certain CFG structures 47 // (like a series of if statements) take exponential time to visit. 48 auto Cached = CachedPreviousDef.find(BB); 49 if (Cached != CachedPreviousDef.end()) 50 return Cached->second; 51 52 // If this method is called from an unreachable block, return LoE. 53 if (!MSSA->DT->isReachableFromEntry(BB)) 54 return MSSA->getLiveOnEntryDef(); 55 56 if (BasicBlock *Pred = BB->getUniquePredecessor()) { 57 VisitedBlocks.insert(BB); 58 // Single predecessor case, just recurse, we can only have one definition. 59 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); 60 CachedPreviousDef.insert({BB, Result}); 61 return Result; 62 } 63 64 if (VisitedBlocks.count(BB)) { 65 // We hit our node again, meaning we had a cycle, we must insert a phi 66 // node to break it so we have an operand. The only case this will 67 // insert useless phis is if we have irreducible control flow. 68 MemoryAccess *Result = MSSA->createMemoryPhi(BB); 69 CachedPreviousDef.insert({BB, Result}); 70 return Result; 71 } 72 73 if (VisitedBlocks.insert(BB).second) { 74 // Mark us visited so we can detect a cycle 75 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; 76 77 // Recurse to get the values in our predecessors for placement of a 78 // potential phi node. This will insert phi nodes if we cycle in order to 79 // break the cycle and have an operand. 80 bool UniqueIncomingAccess = true; 81 MemoryAccess *SingleAccess = nullptr; 82 for (auto *Pred : predecessors(BB)) { 83 if (MSSA->DT->isReachableFromEntry(Pred)) { 84 auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef); 85 if (!SingleAccess) 86 SingleAccess = IncomingAccess; 87 else if (IncomingAccess != SingleAccess) 88 UniqueIncomingAccess = false; 89 PhiOps.push_back(IncomingAccess); 90 } else 91 PhiOps.push_back(MSSA->getLiveOnEntryDef()); 92 } 93 94 // Now try to simplify the ops to avoid placing a phi. 95 // This may return null if we never created a phi yet, that's okay 96 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 97 98 // See if we can avoid the phi by simplifying it. 99 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 100 // If we couldn't simplify, we may have to create a phi 101 if (Result == Phi && UniqueIncomingAccess && SingleAccess) { 102 // A concrete Phi only exists if we created an empty one to break a cycle. 103 if (Phi) { 104 assert(Phi->operands().empty() && "Expected empty Phi"); 105 Phi->replaceAllUsesWith(SingleAccess); 106 removeMemoryAccess(Phi); 107 } 108 Result = SingleAccess; 109 } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) { 110 if (!Phi) 111 Phi = MSSA->createMemoryPhi(BB); 112 113 // See if the existing phi operands match what we need. 114 // Unlike normal SSA, we only allow one phi node per block, so we can't just 115 // create a new one. 116 if (Phi->getNumOperands() != 0) { 117 // FIXME: Figure out whether this is dead code and if so remove it. 118 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 119 // These will have been filled in by the recursive read we did above. 120 llvm::copy(PhiOps, Phi->op_begin()); 121 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 122 } 123 } else { 124 unsigned i = 0; 125 for (auto *Pred : predecessors(BB)) 126 Phi->addIncoming(&*PhiOps[i++], Pred); 127 InsertedPHIs.push_back(Phi); 128 } 129 Result = Phi; 130 } 131 132 // Set ourselves up for the next variable by resetting visited state. 133 VisitedBlocks.erase(BB); 134 CachedPreviousDef.insert({BB, Result}); 135 return Result; 136 } 137 llvm_unreachable("Should have hit one of the three cases above"); 138 } 139 140 // This starts at the memory access, and goes backwards in the block to find the 141 // previous definition. If a definition is not found the block of the access, 142 // it continues globally, creating phi nodes to ensure we have a single 143 // definition. 144 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 145 if (auto *LocalResult = getPreviousDefInBlock(MA)) 146 return LocalResult; 147 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 148 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); 149 } 150 151 // This starts at the memory access, and goes backwards in the block to the find 152 // the previous definition. If the definition is not found in the block of the 153 // access, it returns nullptr. 154 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 155 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 156 157 // It's possible there are no defs, or we got handed the first def to start. 158 if (Defs) { 159 // If this is a def, we can just use the def iterators. 160 if (!isa<MemoryUse>(MA)) { 161 auto Iter = MA->getReverseDefsIterator(); 162 ++Iter; 163 if (Iter != Defs->rend()) 164 return &*Iter; 165 } else { 166 // Otherwise, have to walk the all access iterator. 167 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 168 for (auto &U : make_range(++MA->getReverseIterator(), End)) 169 if (!isa<MemoryUse>(U)) 170 return cast<MemoryAccess>(&U); 171 // Note that if MA comes before Defs->begin(), we won't hit a def. 172 return nullptr; 173 } 174 } 175 return nullptr; 176 } 177 178 // This starts at the end of block 179 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( 180 BasicBlock *BB, 181 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 182 auto *Defs = MSSA->getWritableBlockDefs(BB); 183 184 if (Defs) { 185 CachedPreviousDef.insert({BB, &*Defs->rbegin()}); 186 return &*Defs->rbegin(); 187 } 188 189 return getPreviousDefRecursive(BB, CachedPreviousDef); 190 } 191 // Recurse over a set of phi uses to eliminate the trivial ones 192 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 193 if (!Phi) 194 return nullptr; 195 TrackingVH<MemoryAccess> Res(Phi); 196 SmallVector<TrackingVH<Value>, 8> Uses; 197 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 198 for (auto &U : Uses) 199 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) 200 tryRemoveTrivialPhi(UsePhi); 201 return Res; 202 } 203 204 // Eliminate trivial phis 205 // Phis are trivial if they are defined either by themselves, or all the same 206 // argument. 207 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 208 // We recursively try to remove them. 209 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) { 210 assert(Phi && "Can only remove concrete Phi."); 211 auto OperRange = Phi->operands(); 212 return tryRemoveTrivialPhi(Phi, OperRange); 213 } 214 template <class RangeType> 215 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 216 RangeType &Operands) { 217 // Bail out on non-opt Phis. 218 if (NonOptPhis.count(Phi)) 219 return Phi; 220 221 // Detect equal or self arguments 222 MemoryAccess *Same = nullptr; 223 for (auto &Op : Operands) { 224 // If the same or self, good so far 225 if (Op == Phi || Op == Same) 226 continue; 227 // not the same, return the phi since it's not eliminatable by us 228 if (Same) 229 return Phi; 230 Same = cast<MemoryAccess>(&*Op); 231 } 232 // Never found a non-self reference, the phi is undef 233 if (Same == nullptr) 234 return MSSA->getLiveOnEntryDef(); 235 if (Phi) { 236 Phi->replaceAllUsesWith(Same); 237 removeMemoryAccess(Phi); 238 } 239 240 // We should only end up recursing in case we replaced something, in which 241 // case, we may have made other Phis trivial. 242 return recursePhi(Same); 243 } 244 245 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) { 246 InsertedPHIs.clear(); 247 MU->setDefiningAccess(getPreviousDef(MU)); 248 249 // In cases without unreachable blocks, because uses do not create new 250 // may-defs, there are only two cases: 251 // 1. There was a def already below us, and therefore, we should not have 252 // created a phi node because it was already needed for the def. 253 // 254 // 2. There is no def below us, and therefore, there is no extra renaming work 255 // to do. 256 257 // In cases with unreachable blocks, where the unnecessary Phis were 258 // optimized out, adding the Use may re-insert those Phis. Hence, when 259 // inserting Uses outside of the MSSA creation process, and new Phis were 260 // added, rename all uses if we are asked. 261 262 if (!RenameUses && !InsertedPHIs.empty()) { 263 auto *Defs = MSSA->getBlockDefs(MU->getBlock()); 264 (void)Defs; 265 assert((!Defs || (++Defs->begin() == Defs->end())) && 266 "Block may have only a Phi or no defs"); 267 } 268 269 if (RenameUses && InsertedPHIs.size()) { 270 SmallPtrSet<BasicBlock *, 16> Visited; 271 BasicBlock *StartBlock = MU->getBlock(); 272 273 if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) { 274 MemoryAccess *FirstDef = &*Defs->begin(); 275 // Convert to incoming value if it's a memorydef. A phi *is* already an 276 // incoming value. 277 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 278 FirstDef = MD->getDefiningAccess(); 279 280 MSSA->renamePass(MU->getBlock(), FirstDef, Visited); 281 } 282 // We just inserted a phi into this block, so the incoming value will 283 // become the phi anyway, so it does not matter what we pass. 284 for (auto &MP : InsertedPHIs) 285 if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP)) 286 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 287 } 288 } 289 290 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 291 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 292 MemoryAccess *NewDef) { 293 // Replace any operand with us an incoming block with the new defining 294 // access. 295 int i = MP->getBasicBlockIndex(BB); 296 assert(i != -1 && "Should have found the basic block in the phi"); 297 // We can't just compare i against getNumOperands since one is signed and the 298 // other not. So use it to index into the block iterator. 299 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); 300 ++BBIter) { 301 if (*BBIter != BB) 302 break; 303 MP->setIncomingValue(i, NewDef); 304 ++i; 305 } 306 } 307 308 // A brief description of the algorithm: 309 // First, we compute what should define the new def, using the SSA 310 // construction algorithm. 311 // Then, we update the defs below us (and any new phi nodes) in the graph to 312 // point to the correct new defs, to ensure we only have one variable, and no 313 // disconnected stores. 314 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 315 InsertedPHIs.clear(); 316 317 // See if we had a local def, and if not, go hunting. 318 MemoryAccess *DefBefore = getPreviousDef(MD); 319 bool DefBeforeSameBlock = false; 320 if (DefBefore->getBlock() == MD->getBlock() && 321 !(isa<MemoryPhi>(DefBefore) && 322 llvm::is_contained(InsertedPHIs, DefBefore))) 323 DefBeforeSameBlock = true; 324 325 // There is a def before us, which means we can replace any store/phi uses 326 // of that thing with us, since we are in the way of whatever was there 327 // before. 328 // We now define that def's memorydefs and memoryphis 329 if (DefBeforeSameBlock) { 330 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) { 331 // Leave the MemoryUses alone. 332 // Also make sure we skip ourselves to avoid self references. 333 User *Usr = U.getUser(); 334 return !isa<MemoryUse>(Usr) && Usr != MD; 335 // Defs are automatically unoptimized when the user is set to MD below, 336 // because the isOptimized() call will fail to find the same ID. 337 }); 338 } 339 340 // and that def is now our defining access. 341 MD->setDefiningAccess(DefBefore); 342 343 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); 344 345 // Remember the index where we may insert new phis. 346 unsigned NewPhiIndex = InsertedPHIs.size(); 347 if (!DefBeforeSameBlock) { 348 // If there was a local def before us, we must have the same effect it 349 // did. Because every may-def is the same, any phis/etc we would create, it 350 // would also have created. If there was no local def before us, we 351 // performed a global update, and have to search all successors and make 352 // sure we update the first def in each of them (following all paths until 353 // we hit the first def along each path). This may also insert phi nodes. 354 // TODO: There are other cases we can skip this work, such as when we have a 355 // single successor, and only used a straight line of single pred blocks 356 // backwards to find the def. To make that work, we'd have to track whether 357 // getDefRecursive only ever used the single predecessor case. These types 358 // of paths also only exist in between CFG simplifications. 359 360 // If this is the first def in the block and this insert is in an arbitrary 361 // place, compute IDF and place phis. 362 SmallPtrSet<BasicBlock *, 2> DefiningBlocks; 363 364 // If this is the last Def in the block, also compute IDF based on MD, since 365 // this may a new Def added, and we may need additional Phis. 366 auto Iter = MD->getDefsIterator(); 367 ++Iter; 368 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end(); 369 if (Iter == IterEnd) 370 DefiningBlocks.insert(MD->getBlock()); 371 372 for (const auto &VH : InsertedPHIs) 373 if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH)) 374 DefiningBlocks.insert(RealPHI->getBlock()); 375 ForwardIDFCalculator IDFs(*MSSA->DT); 376 SmallVector<BasicBlock *, 32> IDFBlocks; 377 IDFs.setDefiningBlocks(DefiningBlocks); 378 IDFs.calculate(IDFBlocks); 379 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs; 380 for (auto *BBIDF : IDFBlocks) { 381 auto *MPhi = MSSA->getMemoryAccess(BBIDF); 382 if (!MPhi) { 383 MPhi = MSSA->createMemoryPhi(BBIDF); 384 NewInsertedPHIs.push_back(MPhi); 385 } 386 // Add the phis created into the IDF blocks to NonOptPhis, so they are not 387 // optimized out as trivial by the call to getPreviousDefFromEnd below. 388 // Once they are complete, all these Phis are added to the FixupList, and 389 // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may 390 // need fixing as well, and potentially be trivial before this insertion, 391 // hence add all IDF Phis. See PR43044. 392 NonOptPhis.insert(MPhi); 393 } 394 for (auto &MPhi : NewInsertedPHIs) { 395 auto *BBIDF = MPhi->getBlock(); 396 for (auto *Pred : predecessors(BBIDF)) { 397 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 398 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred); 399 } 400 } 401 402 // Re-take the index where we're adding the new phis, because the above call 403 // to getPreviousDefFromEnd, may have inserted into InsertedPHIs. 404 NewPhiIndex = InsertedPHIs.size(); 405 for (auto &MPhi : NewInsertedPHIs) { 406 InsertedPHIs.push_back(&*MPhi); 407 FixupList.push_back(&*MPhi); 408 } 409 410 FixupList.push_back(MD); 411 } 412 413 // Remember the index where we stopped inserting new phis above, since the 414 // fixupDefs call in the loop below may insert more, that are already minimal. 415 unsigned NewPhiIndexEnd = InsertedPHIs.size(); 416 417 while (!FixupList.empty()) { 418 unsigned StartingPHISize = InsertedPHIs.size(); 419 fixupDefs(FixupList); 420 FixupList.clear(); 421 // Put any new phis on the fixup list, and process them 422 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); 423 } 424 425 // Optimize potentially non-minimal phis added in this method. 426 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex; 427 if (NewPhiSize) 428 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize)); 429 430 // Now that all fixups are done, rename all uses if we are asked. 431 if (RenameUses) { 432 SmallPtrSet<BasicBlock *, 16> Visited; 433 BasicBlock *StartBlock = MD->getBlock(); 434 // We are guaranteed there is a def in the block, because we just got it 435 // handed to us in this function. 436 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 437 // Convert to incoming value if it's a memorydef. A phi *is* already an 438 // incoming value. 439 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 440 FirstDef = MD->getDefiningAccess(); 441 442 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 443 // We just inserted a phi into this block, so the incoming value will become 444 // the phi anyway, so it does not matter what we pass. 445 for (auto &MP : InsertedPHIs) { 446 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 447 if (Phi) 448 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 449 } 450 } 451 } 452 453 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { 454 SmallPtrSet<const BasicBlock *, 8> Seen; 455 SmallVector<const BasicBlock *, 16> Worklist; 456 for (auto &Var : Vars) { 457 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); 458 if (!NewDef) 459 continue; 460 // First, see if there is a local def after the operand. 461 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 462 auto DefIter = NewDef->getDefsIterator(); 463 464 // The temporary Phi is being fixed, unmark it for not to optimize. 465 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) 466 NonOptPhis.erase(Phi); 467 468 // If there is a local def after us, we only have to rename that. 469 if (++DefIter != Defs->end()) { 470 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 471 continue; 472 } 473 474 // Otherwise, we need to search down through the CFG. 475 // For each of our successors, handle it directly if their is a phi, or 476 // place on the fixup worklist. 477 for (const auto *S : successors(NewDef->getBlock())) { 478 if (auto *MP = MSSA->getMemoryAccess(S)) 479 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 480 else 481 Worklist.push_back(S); 482 } 483 484 while (!Worklist.empty()) { 485 const BasicBlock *FixupBlock = Worklist.back(); 486 Worklist.pop_back(); 487 488 // Get the first def in the block that isn't a phi node. 489 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 490 auto *FirstDef = &*Defs->begin(); 491 // The loop above and below should have taken care of phi nodes 492 assert(!isa<MemoryPhi>(FirstDef) && 493 "Should have already handled phi nodes!"); 494 // We are now this def's defining access, make sure we actually dominate 495 // it 496 assert(MSSA->dominates(NewDef, FirstDef) && 497 "Should have dominated the new access"); 498 499 // This may insert new phi nodes, because we are not guaranteed the 500 // block we are processing has a single pred, and depending where the 501 // store was inserted, it may require phi nodes below it. 502 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 503 return; 504 } 505 // We didn't find a def, so we must continue. 506 for (const auto *S : successors(FixupBlock)) { 507 // If there is a phi node, handle it. 508 // Otherwise, put the block on the worklist 509 if (auto *MP = MSSA->getMemoryAccess(S)) 510 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 511 else { 512 // If we cycle, we should have ended up at a phi node that we already 513 // processed. FIXME: Double check this 514 if (!Seen.insert(S).second) 515 continue; 516 Worklist.push_back(S); 517 } 518 } 519 } 520 } 521 } 522 523 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { 524 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 525 MPhi->unorderedDeleteIncomingBlock(From); 526 tryRemoveTrivialPhi(MPhi); 527 } 528 } 529 530 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From, 531 const BasicBlock *To) { 532 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 533 bool Found = false; 534 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { 535 if (From != B) 536 return false; 537 if (Found) 538 return true; 539 Found = true; 540 return false; 541 }); 542 tryRemoveTrivialPhi(MPhi); 543 } 544 } 545 546 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA, 547 const ValueToValueMapTy &VMap, 548 PhiToDefMap &MPhiMap, 549 bool CloneWasSimplified, 550 MemorySSA *MSSA) { 551 MemoryAccess *InsnDefining = MA; 552 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) { 553 if (!MSSA->isLiveOnEntryDef(DefMUD)) { 554 Instruction *DefMUDI = DefMUD->getMemoryInst(); 555 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); 556 if (Instruction *NewDefMUDI = 557 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) { 558 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); 559 if (!CloneWasSimplified) 560 assert(InsnDefining && "Defining instruction cannot be nullptr."); 561 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) { 562 // The clone was simplified, it's no longer a MemoryDef, look up. 563 auto DefIt = DefMUD->getDefsIterator(); 564 // Since simplified clones only occur in single block cloning, a 565 // previous definition must exist, otherwise NewDefMUDI would not 566 // have been found in VMap. 567 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() && 568 "Previous def must exist"); 569 InsnDefining = getNewDefiningAccessForClone( 570 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA); 571 } 572 } 573 } 574 } else { 575 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining); 576 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) 577 InsnDefining = NewDefPhi; 578 } 579 assert(InsnDefining && "Defining instruction cannot be nullptr."); 580 return InsnDefining; 581 } 582 583 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, 584 const ValueToValueMapTy &VMap, 585 PhiToDefMap &MPhiMap, 586 bool CloneWasSimplified) { 587 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 588 if (!Acc) 589 return; 590 for (const MemoryAccess &MA : *Acc) { 591 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) { 592 Instruction *Insn = MUD->getMemoryInst(); 593 // Entry does not exist if the clone of the block did not clone all 594 // instructions. This occurs in LoopRotate when cloning instructions 595 // from the old header to the old preheader. The cloned instruction may 596 // also be a simplified Value, not an Instruction (see LoopRotate). 597 // Also in LoopRotate, even when it's an instruction, due to it being 598 // simplified, it may be a Use rather than a Def, so we cannot use MUD as 599 // template. Calls coming from updateForClonedBlockIntoPred, ensure this. 600 if (Instruction *NewInsn = 601 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) { 602 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( 603 NewInsn, 604 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap, 605 MPhiMap, CloneWasSimplified, MSSA), 606 /*Template=*/CloneWasSimplified ? nullptr : MUD, 607 /*CreationMustSucceed=*/CloneWasSimplified ? false : true); 608 if (NewUseOrDef) 609 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); 610 } 611 } 612 } 613 } 614 615 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock( 616 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) { 617 auto *MPhi = MSSA->getMemoryAccess(Header); 618 if (!MPhi) 619 return; 620 621 // Create phi node in the backedge block and populate it with the same 622 // incoming values as MPhi. Skip incoming values coming from Preheader. 623 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock); 624 bool HasUniqueIncomingValue = true; 625 MemoryAccess *UniqueValue = nullptr; 626 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) { 627 BasicBlock *IBB = MPhi->getIncomingBlock(I); 628 MemoryAccess *IV = MPhi->getIncomingValue(I); 629 if (IBB != Preheader) { 630 NewMPhi->addIncoming(IV, IBB); 631 if (HasUniqueIncomingValue) { 632 if (!UniqueValue) 633 UniqueValue = IV; 634 else if (UniqueValue != IV) 635 HasUniqueIncomingValue = false; 636 } 637 } 638 } 639 640 // Update incoming edges into MPhi. Remove all but the incoming edge from 641 // Preheader. Add an edge from NewMPhi 642 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader); 643 MPhi->setIncomingValue(0, AccFromPreheader); 644 MPhi->setIncomingBlock(0, Preheader); 645 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I) 646 MPhi->unorderedDeleteIncoming(I); 647 MPhi->addIncoming(NewMPhi, BEBlock); 648 649 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be 650 // replaced with the unique value. 651 tryRemoveTrivialPhi(NewMPhi); 652 } 653 654 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, 655 ArrayRef<BasicBlock *> ExitBlocks, 656 const ValueToValueMapTy &VMap, 657 bool IgnoreIncomingWithNoClones) { 658 PhiToDefMap MPhiMap; 659 660 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { 661 assert(Phi && NewPhi && "Invalid Phi nodes."); 662 BasicBlock *NewPhiBB = NewPhi->getBlock(); 663 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB), 664 pred_end(NewPhiBB)); 665 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { 666 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); 667 BasicBlock *IncBB = Phi->getIncomingBlock(It); 668 669 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB))) 670 IncBB = NewIncBB; 671 else if (IgnoreIncomingWithNoClones) 672 continue; 673 674 // Now we have IncBB, and will need to add incoming from it to NewPhi. 675 676 // If IncBB is not a predecessor of NewPhiBB, then do not add it. 677 // NewPhiBB was cloned without that edge. 678 if (!NewPhiBBPreds.count(IncBB)) 679 continue; 680 681 // Determine incoming value and add it as incoming from IncBB. 682 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) { 683 if (!MSSA->isLiveOnEntryDef(IncMUD)) { 684 Instruction *IncI = IncMUD->getMemoryInst(); 685 assert(IncI && "Found MemoryUseOrDef with no Instruction."); 686 if (Instruction *NewIncI = 687 cast_or_null<Instruction>(VMap.lookup(IncI))) { 688 IncMUD = MSSA->getMemoryAccess(NewIncI); 689 assert(IncMUD && 690 "MemoryUseOrDef cannot be null, all preds processed."); 691 } 692 } 693 NewPhi->addIncoming(IncMUD, IncBB); 694 } else { 695 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess); 696 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) 697 NewPhi->addIncoming(NewDefPhi, IncBB); 698 else 699 NewPhi->addIncoming(IncPhi, IncBB); 700 } 701 } 702 }; 703 704 auto ProcessBlock = [&](BasicBlock *BB) { 705 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB)); 706 if (!NewBlock) 707 return; 708 709 assert(!MSSA->getWritableBlockAccesses(NewBlock) && 710 "Cloned block should have no accesses"); 711 712 // Add MemoryPhi. 713 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { 714 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); 715 MPhiMap[MPhi] = NewPhi; 716 } 717 // Update Uses and Defs. 718 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); 719 }; 720 721 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 722 ProcessBlock(BB); 723 724 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 725 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 726 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) 727 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi)); 728 } 729 730 void MemorySSAUpdater::updateForClonedBlockIntoPred( 731 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { 732 // All defs/phis from outside BB that are used in BB, are valid uses in P1. 733 // Since those defs/phis must have dominated BB, and also dominate P1. 734 // Defs from BB being used in BB will be replaced with the cloned defs from 735 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the 736 // incoming def into the Phi from P1. 737 // Instructions cloned into the predecessor are in practice sometimes 738 // simplified, so disable the use of the template, and create an access from 739 // scratch. 740 PhiToDefMap MPhiMap; 741 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 742 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); 743 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true); 744 } 745 746 template <typename Iter> 747 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( 748 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, 749 DominatorTree &DT) { 750 SmallVector<CFGUpdate, 4> Updates; 751 // Update/insert phis in all successors of exit blocks. 752 for (auto *Exit : ExitBlocks) 753 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) 754 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) { 755 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 756 Updates.push_back({DT.Insert, NewExit, ExitSucc}); 757 } 758 applyInsertUpdates(Updates, DT); 759 } 760 761 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 762 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap, 763 DominatorTree &DT) { 764 const ValueToValueMapTy *const Arr[] = {&VMap}; 765 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), 766 std::end(Arr), DT); 767 } 768 769 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 770 ArrayRef<BasicBlock *> ExitBlocks, 771 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) { 772 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) { 773 return I.get(); 774 }; 775 using MappedIteratorType = 776 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *, 777 decltype(GetPtr)>; 778 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); 779 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); 780 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); 781 } 782 783 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates, 784 DominatorTree &DT) { 785 SmallVector<CFGUpdate, 4> DeleteUpdates; 786 SmallVector<CFGUpdate, 4> InsertUpdates; 787 for (auto &Update : Updates) { 788 if (Update.getKind() == DT.Insert) 789 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 790 else 791 DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()}); 792 } 793 794 if (!DeleteUpdates.empty()) { 795 // Update for inserted edges: use newDT and snapshot CFG as if deletes had 796 // not occurred. 797 // FIXME: This creates a new DT, so it's more expensive to do mix 798 // delete/inserts vs just inserts. We can do an incremental update on the DT 799 // to revert deletes, than re-delete the edges. Teaching DT to do this, is 800 // part of a pending cleanup. 801 DominatorTree NewDT(DT, DeleteUpdates); 802 GraphDiff<BasicBlock *> GD(DeleteUpdates, /*ReverseApplyUpdates=*/true); 803 applyInsertUpdates(InsertUpdates, NewDT, &GD); 804 } else { 805 GraphDiff<BasicBlock *> GD; 806 applyInsertUpdates(InsertUpdates, DT, &GD); 807 } 808 809 // Update for deleted edges 810 for (auto &Update : DeleteUpdates) 811 removeEdge(Update.getFrom(), Update.getTo()); 812 } 813 814 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 815 DominatorTree &DT) { 816 GraphDiff<BasicBlock *> GD; 817 applyInsertUpdates(Updates, DT, &GD); 818 } 819 820 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 821 DominatorTree &DT, 822 const GraphDiff<BasicBlock *> *GD) { 823 // Get recursive last Def, assuming well formed MSSA and updated DT. 824 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { 825 while (true) { 826 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); 827 // Return last Def or Phi in BB, if it exists. 828 if (Defs) 829 return &*(--Defs->end()); 830 831 // Check number of predecessors, we only care if there's more than one. 832 unsigned Count = 0; 833 BasicBlock *Pred = nullptr; 834 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) { 835 Pred = Pi; 836 Count++; 837 if (Count == 2) 838 break; 839 } 840 841 // If BB has multiple predecessors, get last definition from IDom. 842 if (Count != 1) { 843 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its 844 // DT is invalidated. Return LoE as its last def. This will be added to 845 // MemoryPhi node, and later deleted when the block is deleted. 846 if (!DT.getNode(BB)) 847 return MSSA->getLiveOnEntryDef(); 848 if (auto *IDom = DT.getNode(BB)->getIDom()) 849 if (IDom->getBlock() != BB) { 850 BB = IDom->getBlock(); 851 continue; 852 } 853 return MSSA->getLiveOnEntryDef(); 854 } else { 855 // Single predecessor, BB cannot be dead. GetLastDef of Pred. 856 assert(Count == 1 && Pred && "Single predecessor expected."); 857 // BB can be unreachable though, return LoE if that is the case. 858 if (!DT.getNode(BB)) 859 return MSSA->getLiveOnEntryDef(); 860 BB = Pred; 861 } 862 }; 863 llvm_unreachable("Unable to get last definition."); 864 }; 865 866 // Get nearest IDom given a set of blocks. 867 // TODO: this can be optimized by starting the search at the node with the 868 // lowest level (highest in the tree). 869 auto FindNearestCommonDominator = 870 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * { 871 BasicBlock *PrevIDom = *BBSet.begin(); 872 for (auto *BB : BBSet) 873 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); 874 return PrevIDom; 875 }; 876 877 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not 878 // include CurrIDom. 879 auto GetNoLongerDomBlocks = 880 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, 881 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) { 882 if (PrevIDom == CurrIDom) 883 return; 884 BlocksPrevDom.push_back(PrevIDom); 885 BasicBlock *NextIDom = PrevIDom; 886 while (BasicBlock *UpIDom = 887 DT.getNode(NextIDom)->getIDom()->getBlock()) { 888 if (UpIDom == CurrIDom) 889 break; 890 BlocksPrevDom.push_back(UpIDom); 891 NextIDom = UpIDom; 892 } 893 }; 894 895 // Map a BB to its predecessors: added + previously existing. To get a 896 // deterministic order, store predecessors as SetVectors. The order in each 897 // will be defined by the order in Updates (fixed) and the order given by 898 // children<> (also fixed). Since we further iterate over these ordered sets, 899 // we lose the information of multiple edges possibly existing between two 900 // blocks, so we'll keep and EdgeCount map for that. 901 // An alternate implementation could keep unordered set for the predecessors, 902 // traverse either Updates or children<> each time to get the deterministic 903 // order, and drop the usage of EdgeCount. This alternate approach would still 904 // require querying the maps for each predecessor, and children<> call has 905 // additional computation inside for creating the snapshot-graph predecessors. 906 // As such, we favor using a little additional storage and less compute time. 907 // This decision can be revisited if we find the alternative more favorable. 908 909 struct PredInfo { 910 SmallSetVector<BasicBlock *, 2> Added; 911 SmallSetVector<BasicBlock *, 2> Prev; 912 }; 913 SmallDenseMap<BasicBlock *, PredInfo> PredMap; 914 915 for (auto &Edge : Updates) { 916 BasicBlock *BB = Edge.getTo(); 917 auto &AddedBlockSet = PredMap[BB].Added; 918 AddedBlockSet.insert(Edge.getFrom()); 919 } 920 921 // Store all existing predecessor for each BB, at least one must exist. 922 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap; 923 SmallPtrSet<BasicBlock *, 2> NewBlocks; 924 for (auto &BBPredPair : PredMap) { 925 auto *BB = BBPredPair.first; 926 const auto &AddedBlockSet = BBPredPair.second.Added; 927 auto &PrevBlockSet = BBPredPair.second.Prev; 928 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) { 929 if (!AddedBlockSet.count(Pi)) 930 PrevBlockSet.insert(Pi); 931 EdgeCountMap[{Pi, BB}]++; 932 } 933 934 if (PrevBlockSet.empty()) { 935 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); 936 LLVM_DEBUG( 937 dbgs() 938 << "Adding a predecessor to a block with no predecessors. " 939 "This must be an edge added to a new, likely cloned, block. " 940 "Its memory accesses must be already correct, assuming completed " 941 "via the updateExitBlocksForClonedLoop API. " 942 "Assert a single such edge is added so no phi addition or " 943 "additional processing is required.\n"); 944 assert(AddedBlockSet.size() == 1 && 945 "Can only handle adding one predecessor to a new block."); 946 // Need to remove new blocks from PredMap. Remove below to not invalidate 947 // iterator here. 948 NewBlocks.insert(BB); 949 } 950 } 951 // Nothing to process for new/cloned blocks. 952 for (auto *BB : NewBlocks) 953 PredMap.erase(BB); 954 955 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace; 956 SmallVector<WeakVH, 8> InsertedPhis; 957 958 // First create MemoryPhis in all blocks that don't have one. Create in the 959 // order found in Updates, not in PredMap, to get deterministic numbering. 960 for (auto &Edge : Updates) { 961 BasicBlock *BB = Edge.getTo(); 962 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) 963 InsertedPhis.push_back(MSSA->createMemoryPhi(BB)); 964 } 965 966 // Now we'll fill in the MemoryPhis with the right incoming values. 967 for (auto &BBPredPair : PredMap) { 968 auto *BB = BBPredPair.first; 969 const auto &PrevBlockSet = BBPredPair.second.Prev; 970 const auto &AddedBlockSet = BBPredPair.second.Added; 971 assert(!PrevBlockSet.empty() && 972 "At least one previous predecessor must exist."); 973 974 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by 975 // keeping this map before the loop. We can reuse already populated entries 976 // if an edge is added from the same predecessor to two different blocks, 977 // and this does happen in rotate. Note that the map needs to be updated 978 // when deleting non-necessary phis below, if the phi is in the map by 979 // replacing the value with DefP1. 980 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred; 981 for (auto *AddedPred : AddedBlockSet) { 982 auto *DefPn = GetLastDef(AddedPred); 983 assert(DefPn != nullptr && "Unable to find last definition."); 984 LastDefAddedPred[AddedPred] = DefPn; 985 } 986 987 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); 988 // If Phi is not empty, add an incoming edge from each added pred. Must 989 // still compute blocks with defs to replace for this block below. 990 if (NewPhi->getNumOperands()) { 991 for (auto *Pred : AddedBlockSet) { 992 auto *LastDefForPred = LastDefAddedPred[Pred]; 993 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 994 NewPhi->addIncoming(LastDefForPred, Pred); 995 } 996 } else { 997 // Pick any existing predecessor and get its definition. All other 998 // existing predecessors should have the same one, since no phi existed. 999 auto *P1 = *PrevBlockSet.begin(); 1000 MemoryAccess *DefP1 = GetLastDef(P1); 1001 1002 // Check DefP1 against all Defs in LastDefPredPair. If all the same, 1003 // nothing to add. 1004 bool InsertPhi = false; 1005 for (auto LastDefPredPair : LastDefAddedPred) 1006 if (DefP1 != LastDefPredPair.second) { 1007 InsertPhi = true; 1008 break; 1009 } 1010 if (!InsertPhi) { 1011 // Since NewPhi may be used in other newly added Phis, replace all uses 1012 // of NewPhi with the definition coming from all predecessors (DefP1), 1013 // before deleting it. 1014 NewPhi->replaceAllUsesWith(DefP1); 1015 removeMemoryAccess(NewPhi); 1016 continue; 1017 } 1018 1019 // Update Phi with new values for new predecessors and old value for all 1020 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered 1021 // sets, the order of entries in NewPhi is deterministic. 1022 for (auto *Pred : AddedBlockSet) { 1023 auto *LastDefForPred = LastDefAddedPred[Pred]; 1024 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1025 NewPhi->addIncoming(LastDefForPred, Pred); 1026 } 1027 for (auto *Pred : PrevBlockSet) 1028 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1029 NewPhi->addIncoming(DefP1, Pred); 1030 } 1031 1032 // Get all blocks that used to dominate BB and no longer do after adding 1033 // AddedBlockSet, where PrevBlockSet are the previously known predecessors. 1034 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); 1035 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); 1036 assert(PrevIDom && "Previous IDom should exists"); 1037 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); 1038 assert(NewIDom && "BB should have a new valid idom"); 1039 assert(DT.dominates(NewIDom, PrevIDom) && 1040 "New idom should dominate old idom"); 1041 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); 1042 } 1043 1044 tryRemoveTrivialPhis(InsertedPhis); 1045 // Create the set of blocks that now have a definition. We'll use this to 1046 // compute IDF and add Phis there next. 1047 SmallVector<BasicBlock *, 8> BlocksToProcess; 1048 for (auto &VH : InsertedPhis) 1049 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1050 BlocksToProcess.push_back(MPhi->getBlock()); 1051 1052 // Compute IDF and add Phis in all IDF blocks that do not have one. 1053 SmallVector<BasicBlock *, 32> IDFBlocks; 1054 if (!BlocksToProcess.empty()) { 1055 ForwardIDFCalculator IDFs(DT, GD); 1056 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(), 1057 BlocksToProcess.end()); 1058 IDFs.setDefiningBlocks(DefiningBlocks); 1059 IDFs.calculate(IDFBlocks); 1060 1061 SmallSetVector<MemoryPhi *, 4> PhisToFill; 1062 // First create all needed Phis. 1063 for (auto *BBIDF : IDFBlocks) 1064 if (!MSSA->getMemoryAccess(BBIDF)) { 1065 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF); 1066 InsertedPhis.push_back(IDFPhi); 1067 PhisToFill.insert(IDFPhi); 1068 } 1069 // Then update or insert their correct incoming values. 1070 for (auto *BBIDF : IDFBlocks) { 1071 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF); 1072 assert(IDFPhi && "Phi must exist"); 1073 if (!PhisToFill.count(IDFPhi)) { 1074 // Update existing Phi. 1075 // FIXME: some updates may be redundant, try to optimize and skip some. 1076 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) 1077 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); 1078 } else { 1079 for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF)) 1080 IDFPhi->addIncoming(GetLastDef(Pi), Pi); 1081 } 1082 } 1083 } 1084 1085 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no 1086 // longer dominate, replace those with the closest dominating def. 1087 // This will also update optimized accesses, as they're also uses. 1088 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { 1089 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { 1090 for (auto &DefToReplaceUses : *DefsList) { 1091 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); 1092 Value::use_iterator UI = DefToReplaceUses.use_begin(), 1093 E = DefToReplaceUses.use_end(); 1094 for (; UI != E;) { 1095 Use &U = *UI; 1096 ++UI; 1097 MemoryAccess *Usr = cast<MemoryAccess>(U.getUser()); 1098 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) { 1099 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); 1100 if (!DT.dominates(DominatingBlock, DominatedBlock)) 1101 U.set(GetLastDef(DominatedBlock)); 1102 } else { 1103 BasicBlock *DominatedBlock = Usr->getBlock(); 1104 if (!DT.dominates(DominatingBlock, DominatedBlock)) { 1105 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) 1106 U.set(DomBlPhi); 1107 else { 1108 auto *IDom = DT.getNode(DominatedBlock)->getIDom(); 1109 assert(IDom && "Block must have a valid IDom."); 1110 U.set(GetLastDef(IDom->getBlock())); 1111 } 1112 cast<MemoryUseOrDef>(Usr)->resetOptimized(); 1113 } 1114 } 1115 } 1116 } 1117 } 1118 } 1119 tryRemoveTrivialPhis(InsertedPhis); 1120 } 1121 1122 // Move What before Where in the MemorySSA IR. 1123 template <class WhereType> 1124 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1125 WhereType Where) { 1126 // Mark MemoryPhi users of What not to be optimized. 1127 for (auto *U : What->users()) 1128 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) 1129 NonOptPhis.insert(PhiUser); 1130 1131 // Replace all our users with our defining access. 1132 What->replaceAllUsesWith(What->getDefiningAccess()); 1133 1134 // Let MemorySSA take care of moving it around in the lists. 1135 MSSA->moveTo(What, BB, Where); 1136 1137 // Now reinsert it into the IR and do whatever fixups needed. 1138 if (auto *MD = dyn_cast<MemoryDef>(What)) 1139 insertDef(MD, /*RenameUses=*/true); 1140 else 1141 insertUse(cast<MemoryUse>(What), /*RenameUses=*/true); 1142 1143 // Clear dangling pointers. We added all MemoryPhi users, but not all 1144 // of them are removed by fixupDefs(). 1145 NonOptPhis.clear(); 1146 } 1147 1148 // Move What before Where in the MemorySSA IR. 1149 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1150 moveTo(What, Where->getBlock(), Where->getIterator()); 1151 } 1152 1153 // Move What after Where in the MemorySSA IR. 1154 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1155 moveTo(What, Where->getBlock(), ++Where->getIterator()); 1156 } 1157 1158 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 1159 MemorySSA::InsertionPlace Where) { 1160 if (Where != MemorySSA::InsertionPlace::BeforeTerminator) 1161 return moveTo(What, BB, Where); 1162 1163 if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator())) 1164 return moveBefore(What, Where); 1165 else 1166 return moveTo(What, BB, MemorySSA::InsertionPlace::End); 1167 } 1168 1169 // All accesses in To used to be in From. Move to end and update access lists. 1170 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, 1171 Instruction *Start) { 1172 1173 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); 1174 if (!Accs) 1175 return; 1176 1177 assert(Start->getParent() == To && "Incorrect Start instruction"); 1178 MemoryAccess *FirstInNew = nullptr; 1179 for (Instruction &I : make_range(Start->getIterator(), To->end())) 1180 if ((FirstInNew = MSSA->getMemoryAccess(&I))) 1181 break; 1182 if (FirstInNew) { 1183 auto *MUD = cast<MemoryUseOrDef>(FirstInNew); 1184 do { 1185 auto NextIt = ++MUD->getIterator(); 1186 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) 1187 ? nullptr 1188 : cast<MemoryUseOrDef>(&*NextIt); 1189 MSSA->moveTo(MUD, To, MemorySSA::End); 1190 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need 1191 // to retrieve it again. 1192 Accs = MSSA->getWritableBlockAccesses(From); 1193 MUD = NextMUD; 1194 } while (MUD); 1195 } 1196 1197 // If all accesses were moved and only a trivial Phi remains, we try to remove 1198 // that Phi. This is needed when From is going to be deleted. 1199 auto *Defs = MSSA->getWritableBlockDefs(From); 1200 if (Defs && !Defs->empty()) 1201 if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin())) 1202 tryRemoveTrivialPhi(Phi); 1203 } 1204 1205 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, 1206 BasicBlock *To, 1207 Instruction *Start) { 1208 assert(MSSA->getBlockAccesses(To) == nullptr && 1209 "To block is expected to be free of MemoryAccesses."); 1210 moveAllAccesses(From, To, Start); 1211 for (BasicBlock *Succ : successors(To)) 1212 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1213 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1214 } 1215 1216 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, 1217 Instruction *Start) { 1218 assert(From->getUniquePredecessor() == To && 1219 "From block is expected to have a single predecessor (To)."); 1220 moveAllAccesses(From, To, Start); 1221 for (BasicBlock *Succ : successors(From)) 1222 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1223 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1224 } 1225 1226 /// If all arguments of a MemoryPHI are defined by the same incoming 1227 /// argument, return that argument. 1228 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 1229 MemoryAccess *MA = nullptr; 1230 1231 for (auto &Arg : MP->operands()) { 1232 if (!MA) 1233 MA = cast<MemoryAccess>(Arg); 1234 else if (MA != Arg) 1235 return nullptr; 1236 } 1237 return MA; 1238 } 1239 1240 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( 1241 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds, 1242 bool IdenticalEdgesWereMerged) { 1243 assert(!MSSA->getWritableBlockAccesses(New) && 1244 "Access list should be null for a new block."); 1245 MemoryPhi *Phi = MSSA->getMemoryAccess(Old); 1246 if (!Phi) 1247 return; 1248 if (Old->hasNPredecessors(1)) { 1249 assert(pred_size(New) == Preds.size() && 1250 "Should have moved all predecessors."); 1251 MSSA->moveTo(Phi, New, MemorySSA::Beginning); 1252 } else { 1253 assert(!Preds.empty() && "Must be moving at least one predecessor to the " 1254 "new immediate predecessor."); 1255 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); 1256 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); 1257 // Currently only support the case of removing a single incoming edge when 1258 // identical edges were not merged. 1259 if (!IdenticalEdgesWereMerged) 1260 assert(PredsSet.size() == Preds.size() && 1261 "If identical edges were not merged, we cannot have duplicate " 1262 "blocks in the predecessors"); 1263 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { 1264 if (PredsSet.count(B)) { 1265 NewPhi->addIncoming(MA, B); 1266 if (!IdenticalEdgesWereMerged) 1267 PredsSet.erase(B); 1268 return true; 1269 } 1270 return false; 1271 }); 1272 Phi->addIncoming(NewPhi, New); 1273 tryRemoveTrivialPhi(NewPhi); 1274 } 1275 } 1276 1277 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { 1278 assert(!MSSA->isLiveOnEntryDef(MA) && 1279 "Trying to remove the live on entry def"); 1280 // We can only delete phi nodes if they have no uses, or we can replace all 1281 // uses with a single definition. 1282 MemoryAccess *NewDefTarget = nullptr; 1283 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 1284 // Note that it is sufficient to know that all edges of the phi node have 1285 // the same argument. If they do, by the definition of dominance frontiers 1286 // (which we used to place this phi), that argument must dominate this phi, 1287 // and thus, must dominate the phi's uses, and so we will not hit the assert 1288 // below. 1289 NewDefTarget = onlySingleValue(MP); 1290 assert((NewDefTarget || MP->use_empty()) && 1291 "We can't delete this memory phi"); 1292 } else { 1293 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 1294 } 1295 1296 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 1297 1298 // Re-point the uses at our defining access 1299 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 1300 // Reset optimized on users of this store, and reset the uses. 1301 // A few notes: 1302 // 1. This is a slightly modified version of RAUW to avoid walking the 1303 // uses twice here. 1304 // 2. If we wanted to be complete, we would have to reset the optimized 1305 // flags on users of phi nodes if doing the below makes a phi node have all 1306 // the same arguments. Instead, we prefer users to removeMemoryAccess those 1307 // phi nodes, because doing it here would be N^3. 1308 if (MA->hasValueHandle()) 1309 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 1310 // Note: We assume MemorySSA is not used in metadata since it's not really 1311 // part of the IR. 1312 1313 while (!MA->use_empty()) { 1314 Use &U = *MA->use_begin(); 1315 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 1316 MUD->resetOptimized(); 1317 if (OptimizePhis) 1318 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser())) 1319 PhisToCheck.insert(MP); 1320 U.set(NewDefTarget); 1321 } 1322 } 1323 1324 // The call below to erase will destroy MA, so we can't change the order we 1325 // are doing things here 1326 MSSA->removeFromLookups(MA); 1327 MSSA->removeFromLists(MA); 1328 1329 // Optionally optimize Phi uses. This will recursively remove trivial phis. 1330 if (!PhisToCheck.empty()) { 1331 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(), 1332 PhisToCheck.end()}; 1333 PhisToCheck.clear(); 1334 1335 unsigned PhisSize = PhisToOptimize.size(); 1336 while (PhisSize-- > 0) 1337 if (MemoryPhi *MP = 1338 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) 1339 tryRemoveTrivialPhi(MP); 1340 } 1341 } 1342 1343 void MemorySSAUpdater::removeBlocks( 1344 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) { 1345 // First delete all uses of BB in MemoryPhis. 1346 for (BasicBlock *BB : DeadBlocks) { 1347 Instruction *TI = BB->getTerminator(); 1348 assert(TI && "Basic block expected to have a terminator instruction"); 1349 for (BasicBlock *Succ : successors(TI)) 1350 if (!DeadBlocks.count(Succ)) 1351 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { 1352 MP->unorderedDeleteIncomingBlock(BB); 1353 tryRemoveTrivialPhi(MP); 1354 } 1355 // Drop all references of all accesses in BB 1356 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) 1357 for (MemoryAccess &MA : *Acc) 1358 MA.dropAllReferences(); 1359 } 1360 1361 // Next, delete all memory accesses in each block 1362 for (BasicBlock *BB : DeadBlocks) { 1363 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); 1364 if (!Acc) 1365 continue; 1366 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { 1367 MemoryAccess *MA = &*AB; 1368 ++AB; 1369 MSSA->removeFromLookups(MA); 1370 MSSA->removeFromLists(MA); 1371 } 1372 } 1373 } 1374 1375 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) { 1376 for (auto &VH : UpdatedPHIs) 1377 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1378 tryRemoveTrivialPhi(MPhi); 1379 } 1380 1381 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) { 1382 const BasicBlock *BB = I->getParent(); 1383 // Remove memory accesses in BB for I and all following instructions. 1384 auto BBI = I->getIterator(), BBE = BB->end(); 1385 // FIXME: If this becomes too expensive, iterate until the first instruction 1386 // with a memory access, then iterate over MemoryAccesses. 1387 while (BBI != BBE) 1388 removeMemoryAccess(&*(BBI++)); 1389 // Update phis in BB's successors to remove BB. 1390 SmallVector<WeakVH, 16> UpdatedPHIs; 1391 for (const BasicBlock *Successor : successors(BB)) { 1392 removeDuplicatePhiEdgesBetween(BB, Successor); 1393 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) { 1394 MPhi->unorderedDeleteIncomingBlock(BB); 1395 UpdatedPHIs.push_back(MPhi); 1396 } 1397 } 1398 // Optimize trivial phis. 1399 tryRemoveTrivialPhis(UpdatedPHIs); 1400 } 1401 1402 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI, 1403 const BasicBlock *To) { 1404 const BasicBlock *BB = BI->getParent(); 1405 SmallVector<WeakVH, 16> UpdatedPHIs; 1406 for (const BasicBlock *Succ : successors(BB)) { 1407 removeDuplicatePhiEdgesBetween(BB, Succ); 1408 if (Succ != To) 1409 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) { 1410 MPhi->unorderedDeleteIncomingBlock(BB); 1411 UpdatedPHIs.push_back(MPhi); 1412 } 1413 } 1414 // Optimize trivial phis. 1415 tryRemoveTrivialPhis(UpdatedPHIs); 1416 } 1417 1418 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 1419 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 1420 MemorySSA::InsertionPlace Point) { 1421 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1422 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 1423 return NewAccess; 1424 } 1425 1426 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 1427 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 1428 assert(I->getParent() == InsertPt->getBlock() && 1429 "New and old access must be in the same block"); 1430 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1431 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1432 InsertPt->getIterator()); 1433 return NewAccess; 1434 } 1435 1436 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 1437 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 1438 assert(I->getParent() == InsertPt->getBlock() && 1439 "New and old access must be in the same block"); 1440 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1441 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1442 ++InsertPt->getIterator()); 1443 return NewAccess; 1444 } 1445