1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/Analysis/LoopIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/IteratedDominanceFrontier.h"
18 #include "llvm/Analysis/MemorySSA.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/FormattedStream.h"
29 #include <algorithm>
30 
31 #define DEBUG_TYPE "memoryssa"
32 using namespace llvm;
33 
34 // This is the marker algorithm from "Simple and Efficient Construction of
35 // Static Single Assignment Form"
36 // The simple, non-marker algorithm places phi nodes at any join
37 // Here, we place markers, and only place phi nodes if they end up necessary.
38 // They are only necessary if they break a cycle (IE we recursively visit
39 // ourselves again), or we discover, while getting the value of the operands,
40 // that there are two or more definitions needing to be merged.
41 // This still will leave non-minimal form in the case of irreducible control
42 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
43 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
44     BasicBlock *BB,
45     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
46   // First, do a cache lookup. Without this cache, certain CFG structures
47   // (like a series of if statements) take exponential time to visit.
48   auto Cached = CachedPreviousDef.find(BB);
49   if (Cached != CachedPreviousDef.end())
50     return Cached->second;
51 
52   // If this method is called from an unreachable block, return LoE.
53   if (!MSSA->DT->isReachableFromEntry(BB))
54     return MSSA->getLiveOnEntryDef();
55 
56   if (BasicBlock *Pred = BB->getUniquePredecessor()) {
57     VisitedBlocks.insert(BB);
58     // Single predecessor case, just recurse, we can only have one definition.
59     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
60     CachedPreviousDef.insert({BB, Result});
61     return Result;
62   }
63 
64   if (VisitedBlocks.count(BB)) {
65     // We hit our node again, meaning we had a cycle, we must insert a phi
66     // node to break it so we have an operand. The only case this will
67     // insert useless phis is if we have irreducible control flow.
68     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
69     CachedPreviousDef.insert({BB, Result});
70     return Result;
71   }
72 
73   if (VisitedBlocks.insert(BB).second) {
74     // Mark us visited so we can detect a cycle
75     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
76 
77     // Recurse to get the values in our predecessors for placement of a
78     // potential phi node. This will insert phi nodes if we cycle in order to
79     // break the cycle and have an operand.
80     bool UniqueIncomingAccess = true;
81     MemoryAccess *SingleAccess = nullptr;
82     for (auto *Pred : predecessors(BB)) {
83       if (MSSA->DT->isReachableFromEntry(Pred)) {
84         auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
85         if (!SingleAccess)
86           SingleAccess = IncomingAccess;
87         else if (IncomingAccess != SingleAccess)
88           UniqueIncomingAccess = false;
89         PhiOps.push_back(IncomingAccess);
90       } else
91         PhiOps.push_back(MSSA->getLiveOnEntryDef());
92     }
93 
94     // Now try to simplify the ops to avoid placing a phi.
95     // This may return null if we never created a phi yet, that's okay
96     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
97 
98     // See if we can avoid the phi by simplifying it.
99     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
100     // If we couldn't simplify, we may have to create a phi
101     if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
102       // A concrete Phi only exists if we created an empty one to break a cycle.
103       if (Phi) {
104         assert(Phi->operands().empty() && "Expected empty Phi");
105         Phi->replaceAllUsesWith(SingleAccess);
106         removeMemoryAccess(Phi);
107       }
108       Result = SingleAccess;
109     } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
110       if (!Phi)
111         Phi = MSSA->createMemoryPhi(BB);
112 
113       // See if the existing phi operands match what we need.
114       // Unlike normal SSA, we only allow one phi node per block, so we can't just
115       // create a new one.
116       if (Phi->getNumOperands() != 0) {
117         // FIXME: Figure out whether this is dead code and if so remove it.
118         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
119           // These will have been filled in by the recursive read we did above.
120           llvm::copy(PhiOps, Phi->op_begin());
121           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
122         }
123       } else {
124         unsigned i = 0;
125         for (auto *Pred : predecessors(BB))
126           Phi->addIncoming(&*PhiOps[i++], Pred);
127         InsertedPHIs.push_back(Phi);
128       }
129       Result = Phi;
130     }
131 
132     // Set ourselves up for the next variable by resetting visited state.
133     VisitedBlocks.erase(BB);
134     CachedPreviousDef.insert({BB, Result});
135     return Result;
136   }
137   llvm_unreachable("Should have hit one of the three cases above");
138 }
139 
140 // This starts at the memory access, and goes backwards in the block to find the
141 // previous definition. If a definition is not found the block of the access,
142 // it continues globally, creating phi nodes to ensure we have a single
143 // definition.
144 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
145   if (auto *LocalResult = getPreviousDefInBlock(MA))
146     return LocalResult;
147   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
148   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
149 }
150 
151 // This starts at the memory access, and goes backwards in the block to the find
152 // the previous definition. If the definition is not found in the block of the
153 // access, it returns nullptr.
154 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
155   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
156 
157   // It's possible there are no defs, or we got handed the first def to start.
158   if (Defs) {
159     // If this is a def, we can just use the def iterators.
160     if (!isa<MemoryUse>(MA)) {
161       auto Iter = MA->getReverseDefsIterator();
162       ++Iter;
163       if (Iter != Defs->rend())
164         return &*Iter;
165     } else {
166       // Otherwise, have to walk the all access iterator.
167       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
168       for (auto &U : make_range(++MA->getReverseIterator(), End))
169         if (!isa<MemoryUse>(U))
170           return cast<MemoryAccess>(&U);
171       // Note that if MA comes before Defs->begin(), we won't hit a def.
172       return nullptr;
173     }
174   }
175   return nullptr;
176 }
177 
178 // This starts at the end of block
179 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
180     BasicBlock *BB,
181     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
182   auto *Defs = MSSA->getWritableBlockDefs(BB);
183 
184   if (Defs) {
185     CachedPreviousDef.insert({BB, &*Defs->rbegin()});
186     return &*Defs->rbegin();
187   }
188 
189   return getPreviousDefRecursive(BB, CachedPreviousDef);
190 }
191 // Recurse over a set of phi uses to eliminate the trivial ones
192 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
193   if (!Phi)
194     return nullptr;
195   TrackingVH<MemoryAccess> Res(Phi);
196   SmallVector<TrackingVH<Value>, 8> Uses;
197   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
198   for (auto &U : Uses)
199     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
200       tryRemoveTrivialPhi(UsePhi);
201   return Res;
202 }
203 
204 // Eliminate trivial phis
205 // Phis are trivial if they are defined either by themselves, or all the same
206 // argument.
207 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
208 // We recursively try to remove them.
209 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
210   assert(Phi && "Can only remove concrete Phi.");
211   auto OperRange = Phi->operands();
212   return tryRemoveTrivialPhi(Phi, OperRange);
213 }
214 template <class RangeType>
215 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
216                                                     RangeType &Operands) {
217   // Bail out on non-opt Phis.
218   if (NonOptPhis.count(Phi))
219     return Phi;
220 
221   // Detect equal or self arguments
222   MemoryAccess *Same = nullptr;
223   for (auto &Op : Operands) {
224     // If the same or self, good so far
225     if (Op == Phi || Op == Same)
226       continue;
227     // not the same, return the phi since it's not eliminatable by us
228     if (Same)
229       return Phi;
230     Same = cast<MemoryAccess>(&*Op);
231   }
232   // Never found a non-self reference, the phi is undef
233   if (Same == nullptr)
234     return MSSA->getLiveOnEntryDef();
235   if (Phi) {
236     Phi->replaceAllUsesWith(Same);
237     removeMemoryAccess(Phi);
238   }
239 
240   // We should only end up recursing in case we replaced something, in which
241   // case, we may have made other Phis trivial.
242   return recursePhi(Same);
243 }
244 
245 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
246   InsertedPHIs.clear();
247   MU->setDefiningAccess(getPreviousDef(MU));
248 
249   // In cases without unreachable blocks, because uses do not create new
250   // may-defs, there are only two cases:
251   // 1. There was a def already below us, and therefore, we should not have
252   // created a phi node because it was already needed for the def.
253   //
254   // 2. There is no def below us, and therefore, there is no extra renaming work
255   // to do.
256 
257   // In cases with unreachable blocks, where the unnecessary Phis were
258   // optimized out, adding the Use may re-insert those Phis. Hence, when
259   // inserting Uses outside of the MSSA creation process, and new Phis were
260   // added, rename all uses if we are asked.
261 
262   if (!RenameUses && !InsertedPHIs.empty()) {
263     auto *Defs = MSSA->getBlockDefs(MU->getBlock());
264     (void)Defs;
265     assert((!Defs || (++Defs->begin() == Defs->end())) &&
266            "Block may have only a Phi or no defs");
267   }
268 
269   if (RenameUses && InsertedPHIs.size()) {
270     SmallPtrSet<BasicBlock *, 16> Visited;
271     BasicBlock *StartBlock = MU->getBlock();
272 
273     if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
274       MemoryAccess *FirstDef = &*Defs->begin();
275       // Convert to incoming value if it's a memorydef. A phi *is* already an
276       // incoming value.
277       if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
278         FirstDef = MD->getDefiningAccess();
279 
280       MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
281     }
282     // We just inserted a phi into this block, so the incoming value will
283     // become the phi anyway, so it does not matter what we pass.
284     for (auto &MP : InsertedPHIs)
285       if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
286         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
287   }
288 }
289 
290 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
291 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
292                                       MemoryAccess *NewDef) {
293   // Replace any operand with us an incoming block with the new defining
294   // access.
295   int i = MP->getBasicBlockIndex(BB);
296   assert(i != -1 && "Should have found the basic block in the phi");
297   // We can't just compare i against getNumOperands since one is signed and the
298   // other not. So use it to index into the block iterator.
299   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
300        ++BBIter) {
301     if (*BBIter != BB)
302       break;
303     MP->setIncomingValue(i, NewDef);
304     ++i;
305   }
306 }
307 
308 // A brief description of the algorithm:
309 // First, we compute what should define the new def, using the SSA
310 // construction algorithm.
311 // Then, we update the defs below us (and any new phi nodes) in the graph to
312 // point to the correct new defs, to ensure we only have one variable, and no
313 // disconnected stores.
314 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
315   InsertedPHIs.clear();
316 
317   // See if we had a local def, and if not, go hunting.
318   MemoryAccess *DefBefore = getPreviousDef(MD);
319   bool DefBeforeSameBlock = false;
320   if (DefBefore->getBlock() == MD->getBlock() &&
321       !(isa<MemoryPhi>(DefBefore) &&
322         llvm::is_contained(InsertedPHIs, DefBefore)))
323     DefBeforeSameBlock = true;
324 
325   // There is a def before us, which means we can replace any store/phi uses
326   // of that thing with us, since we are in the way of whatever was there
327   // before.
328   // We now define that def's memorydefs and memoryphis
329   if (DefBeforeSameBlock) {
330     DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
331       // Leave the MemoryUses alone.
332       // Also make sure we skip ourselves to avoid self references.
333       User *Usr = U.getUser();
334       return !isa<MemoryUse>(Usr) && Usr != MD;
335       // Defs are automatically unoptimized when the user is set to MD below,
336       // because the isOptimized() call will fail to find the same ID.
337     });
338   }
339 
340   // and that def is now our defining access.
341   MD->setDefiningAccess(DefBefore);
342 
343   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
344 
345   // Remember the index where we may insert new phis.
346   unsigned NewPhiIndex = InsertedPHIs.size();
347   if (!DefBeforeSameBlock) {
348     // If there was a local def before us, we must have the same effect it
349     // did. Because every may-def is the same, any phis/etc we would create, it
350     // would also have created.  If there was no local def before us, we
351     // performed a global update, and have to search all successors and make
352     // sure we update the first def in each of them (following all paths until
353     // we hit the first def along each path). This may also insert phi nodes.
354     // TODO: There are other cases we can skip this work, such as when we have a
355     // single successor, and only used a straight line of single pred blocks
356     // backwards to find the def.  To make that work, we'd have to track whether
357     // getDefRecursive only ever used the single predecessor case.  These types
358     // of paths also only exist in between CFG simplifications.
359 
360     // If this is the first def in the block and this insert is in an arbitrary
361     // place, compute IDF and place phis.
362     SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
363 
364     // If this is the last Def in the block, also compute IDF based on MD, since
365     // this may a new Def added, and we may need additional Phis.
366     auto Iter = MD->getDefsIterator();
367     ++Iter;
368     auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
369     if (Iter == IterEnd)
370       DefiningBlocks.insert(MD->getBlock());
371 
372     for (const auto &VH : InsertedPHIs)
373       if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
374         DefiningBlocks.insert(RealPHI->getBlock());
375     ForwardIDFCalculator IDFs(*MSSA->DT);
376     SmallVector<BasicBlock *, 32> IDFBlocks;
377     IDFs.setDefiningBlocks(DefiningBlocks);
378     IDFs.calculate(IDFBlocks);
379     SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
380     for (auto *BBIDF : IDFBlocks) {
381       auto *MPhi = MSSA->getMemoryAccess(BBIDF);
382       if (!MPhi) {
383         MPhi = MSSA->createMemoryPhi(BBIDF);
384         NewInsertedPHIs.push_back(MPhi);
385       }
386       // Add the phis created into the IDF blocks to NonOptPhis, so they are not
387       // optimized out as trivial by the call to getPreviousDefFromEnd below.
388       // Once they are complete, all these Phis are added to the FixupList, and
389       // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
390       // need fixing as well, and potentially be trivial before this insertion,
391       // hence add all IDF Phis. See PR43044.
392       NonOptPhis.insert(MPhi);
393     }
394     for (auto &MPhi : NewInsertedPHIs) {
395       auto *BBIDF = MPhi->getBlock();
396       for (auto *Pred : predecessors(BBIDF)) {
397         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
398         MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
399       }
400     }
401 
402     // Re-take the index where we're adding the new phis, because the above call
403     // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
404     NewPhiIndex = InsertedPHIs.size();
405     for (auto &MPhi : NewInsertedPHIs) {
406       InsertedPHIs.push_back(&*MPhi);
407       FixupList.push_back(&*MPhi);
408     }
409 
410     FixupList.push_back(MD);
411   }
412 
413   // Remember the index where we stopped inserting new phis above, since the
414   // fixupDefs call in the loop below may insert more, that are already minimal.
415   unsigned NewPhiIndexEnd = InsertedPHIs.size();
416 
417   while (!FixupList.empty()) {
418     unsigned StartingPHISize = InsertedPHIs.size();
419     fixupDefs(FixupList);
420     FixupList.clear();
421     // Put any new phis on the fixup list, and process them
422     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
423   }
424 
425   // Optimize potentially non-minimal phis added in this method.
426   unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
427   if (NewPhiSize)
428     tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
429 
430   // Now that all fixups are done, rename all uses if we are asked.
431   if (RenameUses) {
432     SmallPtrSet<BasicBlock *, 16> Visited;
433     BasicBlock *StartBlock = MD->getBlock();
434     // We are guaranteed there is a def in the block, because we just got it
435     // handed to us in this function.
436     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
437     // Convert to incoming value if it's a memorydef. A phi *is* already an
438     // incoming value.
439     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
440       FirstDef = MD->getDefiningAccess();
441 
442     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
443     // We just inserted a phi into this block, so the incoming value will become
444     // the phi anyway, so it does not matter what we pass.
445     for (auto &MP : InsertedPHIs) {
446       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
447       if (Phi)
448         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
449     }
450   }
451 }
452 
453 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
454   SmallPtrSet<const BasicBlock *, 8> Seen;
455   SmallVector<const BasicBlock *, 16> Worklist;
456   for (auto &Var : Vars) {
457     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
458     if (!NewDef)
459       continue;
460     // First, see if there is a local def after the operand.
461     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
462     auto DefIter = NewDef->getDefsIterator();
463 
464     // The temporary Phi is being fixed, unmark it for not to optimize.
465     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
466       NonOptPhis.erase(Phi);
467 
468     // If there is a local def after us, we only have to rename that.
469     if (++DefIter != Defs->end()) {
470       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
471       continue;
472     }
473 
474     // Otherwise, we need to search down through the CFG.
475     // For each of our successors, handle it directly if their is a phi, or
476     // place on the fixup worklist.
477     for (const auto *S : successors(NewDef->getBlock())) {
478       if (auto *MP = MSSA->getMemoryAccess(S))
479         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
480       else
481         Worklist.push_back(S);
482     }
483 
484     while (!Worklist.empty()) {
485       const BasicBlock *FixupBlock = Worklist.back();
486       Worklist.pop_back();
487 
488       // Get the first def in the block that isn't a phi node.
489       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
490         auto *FirstDef = &*Defs->begin();
491         // The loop above and below should have taken care of phi nodes
492         assert(!isa<MemoryPhi>(FirstDef) &&
493                "Should have already handled phi nodes!");
494         // We are now this def's defining access, make sure we actually dominate
495         // it
496         assert(MSSA->dominates(NewDef, FirstDef) &&
497                "Should have dominated the new access");
498 
499         // This may insert new phi nodes, because we are not guaranteed the
500         // block we are processing has a single pred, and depending where the
501         // store was inserted, it may require phi nodes below it.
502         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
503         return;
504       }
505       // We didn't find a def, so we must continue.
506       for (const auto *S : successors(FixupBlock)) {
507         // If there is a phi node, handle it.
508         // Otherwise, put the block on the worklist
509         if (auto *MP = MSSA->getMemoryAccess(S))
510           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
511         else {
512           // If we cycle, we should have ended up at a phi node that we already
513           // processed.  FIXME: Double check this
514           if (!Seen.insert(S).second)
515             continue;
516           Worklist.push_back(S);
517         }
518       }
519     }
520   }
521 }
522 
523 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
524   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
525     MPhi->unorderedDeleteIncomingBlock(From);
526     tryRemoveTrivialPhi(MPhi);
527   }
528 }
529 
530 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
531                                                       const BasicBlock *To) {
532   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
533     bool Found = false;
534     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
535       if (From != B)
536         return false;
537       if (Found)
538         return true;
539       Found = true;
540       return false;
541     });
542     tryRemoveTrivialPhi(MPhi);
543   }
544 }
545 
546 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
547                                                   const ValueToValueMapTy &VMap,
548                                                   PhiToDefMap &MPhiMap,
549                                                   bool CloneWasSimplified,
550                                                   MemorySSA *MSSA) {
551   MemoryAccess *InsnDefining = MA;
552   if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
553     if (!MSSA->isLiveOnEntryDef(DefMUD)) {
554       Instruction *DefMUDI = DefMUD->getMemoryInst();
555       assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
556       if (Instruction *NewDefMUDI =
557               cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
558         InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
559         if (!CloneWasSimplified)
560           assert(InsnDefining && "Defining instruction cannot be nullptr.");
561         else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
562           // The clone was simplified, it's no longer a MemoryDef, look up.
563           auto DefIt = DefMUD->getDefsIterator();
564           // Since simplified clones only occur in single block cloning, a
565           // previous definition must exist, otherwise NewDefMUDI would not
566           // have been found in VMap.
567           assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
568                  "Previous def must exist");
569           InsnDefining = getNewDefiningAccessForClone(
570               &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
571         }
572       }
573     }
574   } else {
575     MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
576     if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
577       InsnDefining = NewDefPhi;
578   }
579   assert(InsnDefining && "Defining instruction cannot be nullptr.");
580   return InsnDefining;
581 }
582 
583 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
584                                         const ValueToValueMapTy &VMap,
585                                         PhiToDefMap &MPhiMap,
586                                         bool CloneWasSimplified) {
587   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
588   if (!Acc)
589     return;
590   for (const MemoryAccess &MA : *Acc) {
591     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
592       Instruction *Insn = MUD->getMemoryInst();
593       // Entry does not exist if the clone of the block did not clone all
594       // instructions. This occurs in LoopRotate when cloning instructions
595       // from the old header to the old preheader. The cloned instruction may
596       // also be a simplified Value, not an Instruction (see LoopRotate).
597       // Also in LoopRotate, even when it's an instruction, due to it being
598       // simplified, it may be a Use rather than a Def, so we cannot use MUD as
599       // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
600       if (Instruction *NewInsn =
601               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
602         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
603             NewInsn,
604             getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
605                                          MPhiMap, CloneWasSimplified, MSSA),
606             /*Template=*/CloneWasSimplified ? nullptr : MUD,
607             /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
608         if (NewUseOrDef)
609           MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
610       }
611     }
612   }
613 }
614 
615 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
616     BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
617   auto *MPhi = MSSA->getMemoryAccess(Header);
618   if (!MPhi)
619     return;
620 
621   // Create phi node in the backedge block and populate it with the same
622   // incoming values as MPhi. Skip incoming values coming from Preheader.
623   auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
624   bool HasUniqueIncomingValue = true;
625   MemoryAccess *UniqueValue = nullptr;
626   for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
627     BasicBlock *IBB = MPhi->getIncomingBlock(I);
628     MemoryAccess *IV = MPhi->getIncomingValue(I);
629     if (IBB != Preheader) {
630       NewMPhi->addIncoming(IV, IBB);
631       if (HasUniqueIncomingValue) {
632         if (!UniqueValue)
633           UniqueValue = IV;
634         else if (UniqueValue != IV)
635           HasUniqueIncomingValue = false;
636       }
637     }
638   }
639 
640   // Update incoming edges into MPhi. Remove all but the incoming edge from
641   // Preheader. Add an edge from NewMPhi
642   auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
643   MPhi->setIncomingValue(0, AccFromPreheader);
644   MPhi->setIncomingBlock(0, Preheader);
645   for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
646     MPhi->unorderedDeleteIncoming(I);
647   MPhi->addIncoming(NewMPhi, BEBlock);
648 
649   // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
650   // replaced with the unique value.
651   tryRemoveTrivialPhi(NewMPhi);
652 }
653 
654 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
655                                            ArrayRef<BasicBlock *> ExitBlocks,
656                                            const ValueToValueMapTy &VMap,
657                                            bool IgnoreIncomingWithNoClones) {
658   PhiToDefMap MPhiMap;
659 
660   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
661     assert(Phi && NewPhi && "Invalid Phi nodes.");
662     BasicBlock *NewPhiBB = NewPhi->getBlock();
663     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
664                                                pred_end(NewPhiBB));
665     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
666       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
667       BasicBlock *IncBB = Phi->getIncomingBlock(It);
668 
669       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
670         IncBB = NewIncBB;
671       else if (IgnoreIncomingWithNoClones)
672         continue;
673 
674       // Now we have IncBB, and will need to add incoming from it to NewPhi.
675 
676       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
677       // NewPhiBB was cloned without that edge.
678       if (!NewPhiBBPreds.count(IncBB))
679         continue;
680 
681       // Determine incoming value and add it as incoming from IncBB.
682       if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
683         if (!MSSA->isLiveOnEntryDef(IncMUD)) {
684           Instruction *IncI = IncMUD->getMemoryInst();
685           assert(IncI && "Found MemoryUseOrDef with no Instruction.");
686           if (Instruction *NewIncI =
687                   cast_or_null<Instruction>(VMap.lookup(IncI))) {
688             IncMUD = MSSA->getMemoryAccess(NewIncI);
689             assert(IncMUD &&
690                    "MemoryUseOrDef cannot be null, all preds processed.");
691           }
692         }
693         NewPhi->addIncoming(IncMUD, IncBB);
694       } else {
695         MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
696         if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
697           NewPhi->addIncoming(NewDefPhi, IncBB);
698         else
699           NewPhi->addIncoming(IncPhi, IncBB);
700       }
701     }
702   };
703 
704   auto ProcessBlock = [&](BasicBlock *BB) {
705     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
706     if (!NewBlock)
707       return;
708 
709     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
710            "Cloned block should have no accesses");
711 
712     // Add MemoryPhi.
713     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
714       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
715       MPhiMap[MPhi] = NewPhi;
716     }
717     // Update Uses and Defs.
718     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
719   };
720 
721   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
722     ProcessBlock(BB);
723 
724   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
725     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
726       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
727         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
728 }
729 
730 void MemorySSAUpdater::updateForClonedBlockIntoPred(
731     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
732   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
733   // Since those defs/phis must have dominated BB, and also dominate P1.
734   // Defs from BB being used in BB will be replaced with the cloned defs from
735   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
736   // incoming def into the Phi from P1.
737   // Instructions cloned into the predecessor are in practice sometimes
738   // simplified, so disable the use of the template, and create an access from
739   // scratch.
740   PhiToDefMap MPhiMap;
741   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
742     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
743   cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
744 }
745 
746 template <typename Iter>
747 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
748     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
749     DominatorTree &DT) {
750   SmallVector<CFGUpdate, 4> Updates;
751   // Update/insert phis in all successors of exit blocks.
752   for (auto *Exit : ExitBlocks)
753     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
754       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
755         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
756         Updates.push_back({DT.Insert, NewExit, ExitSucc});
757       }
758   applyInsertUpdates(Updates, DT);
759 }
760 
761 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
762     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
763     DominatorTree &DT) {
764   const ValueToValueMapTy *const Arr[] = {&VMap};
765   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
766                                        std::end(Arr), DT);
767 }
768 
769 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
770     ArrayRef<BasicBlock *> ExitBlocks,
771     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
772   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
773     return I.get();
774   };
775   using MappedIteratorType =
776       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
777                       decltype(GetPtr)>;
778   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
779   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
780   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
781 }
782 
783 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
784                                     DominatorTree &DT) {
785   SmallVector<CFGUpdate, 4> DeleteUpdates;
786   SmallVector<CFGUpdate, 4> InsertUpdates;
787   for (auto &Update : Updates) {
788     if (Update.getKind() == DT.Insert)
789       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
790     else
791       DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()});
792   }
793 
794   if (!DeleteUpdates.empty()) {
795     // Update for inserted edges: use newDT and snapshot CFG as if deletes had
796     // not occurred.
797     // FIXME: This creates a new DT, so it's more expensive to do mix
798     // delete/inserts vs just inserts. We can do an incremental update on the DT
799     // to revert deletes, than re-delete the edges. Teaching DT to do this, is
800     // part of a pending cleanup.
801     DominatorTree NewDT(DT, DeleteUpdates);
802     GraphDiff<BasicBlock *> GD(DeleteUpdates, /*ReverseApplyUpdates=*/true);
803     applyInsertUpdates(InsertUpdates, NewDT, &GD);
804   } else {
805     GraphDiff<BasicBlock *> GD;
806     applyInsertUpdates(InsertUpdates, DT, &GD);
807   }
808 
809   // Update for deleted edges
810   for (auto &Update : DeleteUpdates)
811     removeEdge(Update.getFrom(), Update.getTo());
812 }
813 
814 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
815                                           DominatorTree &DT) {
816   GraphDiff<BasicBlock *> GD;
817   applyInsertUpdates(Updates, DT, &GD);
818 }
819 
820 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
821                                           DominatorTree &DT,
822                                           const GraphDiff<BasicBlock *> *GD) {
823   // Get recursive last Def, assuming well formed MSSA and updated DT.
824   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
825     while (true) {
826       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
827       // Return last Def or Phi in BB, if it exists.
828       if (Defs)
829         return &*(--Defs->end());
830 
831       // Check number of predecessors, we only care if there's more than one.
832       unsigned Count = 0;
833       BasicBlock *Pred = nullptr;
834       for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
835         Pred = Pi;
836         Count++;
837         if (Count == 2)
838           break;
839       }
840 
841       // If BB has multiple predecessors, get last definition from IDom.
842       if (Count != 1) {
843         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
844         // DT is invalidated. Return LoE as its last def. This will be added to
845         // MemoryPhi node, and later deleted when the block is deleted.
846         if (!DT.getNode(BB))
847           return MSSA->getLiveOnEntryDef();
848         if (auto *IDom = DT.getNode(BB)->getIDom())
849           if (IDom->getBlock() != BB) {
850             BB = IDom->getBlock();
851             continue;
852           }
853         return MSSA->getLiveOnEntryDef();
854       } else {
855         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
856         assert(Count == 1 && Pred && "Single predecessor expected.");
857         // BB can be unreachable though, return LoE if that is the case.
858         if (!DT.getNode(BB))
859           return MSSA->getLiveOnEntryDef();
860         BB = Pred;
861       }
862     };
863     llvm_unreachable("Unable to get last definition.");
864   };
865 
866   // Get nearest IDom given a set of blocks.
867   // TODO: this can be optimized by starting the search at the node with the
868   // lowest level (highest in the tree).
869   auto FindNearestCommonDominator =
870       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
871     BasicBlock *PrevIDom = *BBSet.begin();
872     for (auto *BB : BBSet)
873       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
874     return PrevIDom;
875   };
876 
877   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
878   // include CurrIDom.
879   auto GetNoLongerDomBlocks =
880       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
881           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
882         if (PrevIDom == CurrIDom)
883           return;
884         BlocksPrevDom.push_back(PrevIDom);
885         BasicBlock *NextIDom = PrevIDom;
886         while (BasicBlock *UpIDom =
887                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
888           if (UpIDom == CurrIDom)
889             break;
890           BlocksPrevDom.push_back(UpIDom);
891           NextIDom = UpIDom;
892         }
893       };
894 
895   // Map a BB to its predecessors: added + previously existing. To get a
896   // deterministic order, store predecessors as SetVectors. The order in each
897   // will be defined by the order in Updates (fixed) and the order given by
898   // children<> (also fixed). Since we further iterate over these ordered sets,
899   // we lose the information of multiple edges possibly existing between two
900   // blocks, so we'll keep and EdgeCount map for that.
901   // An alternate implementation could keep unordered set for the predecessors,
902   // traverse either Updates or children<> each time to get  the deterministic
903   // order, and drop the usage of EdgeCount. This alternate approach would still
904   // require querying the maps for each predecessor, and children<> call has
905   // additional computation inside for creating the snapshot-graph predecessors.
906   // As such, we favor using a little additional storage and less compute time.
907   // This decision can be revisited if we find the alternative more favorable.
908 
909   struct PredInfo {
910     SmallSetVector<BasicBlock *, 2> Added;
911     SmallSetVector<BasicBlock *, 2> Prev;
912   };
913   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
914 
915   for (auto &Edge : Updates) {
916     BasicBlock *BB = Edge.getTo();
917     auto &AddedBlockSet = PredMap[BB].Added;
918     AddedBlockSet.insert(Edge.getFrom());
919   }
920 
921   // Store all existing predecessor for each BB, at least one must exist.
922   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
923   SmallPtrSet<BasicBlock *, 2> NewBlocks;
924   for (auto &BBPredPair : PredMap) {
925     auto *BB = BBPredPair.first;
926     const auto &AddedBlockSet = BBPredPair.second.Added;
927     auto &PrevBlockSet = BBPredPair.second.Prev;
928     for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
929       if (!AddedBlockSet.count(Pi))
930         PrevBlockSet.insert(Pi);
931       EdgeCountMap[{Pi, BB}]++;
932     }
933 
934     if (PrevBlockSet.empty()) {
935       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
936       LLVM_DEBUG(
937           dbgs()
938           << "Adding a predecessor to a block with no predecessors. "
939              "This must be an edge added to a new, likely cloned, block. "
940              "Its memory accesses must be already correct, assuming completed "
941              "via the updateExitBlocksForClonedLoop API. "
942              "Assert a single such edge is added so no phi addition or "
943              "additional processing is required.\n");
944       assert(AddedBlockSet.size() == 1 &&
945              "Can only handle adding one predecessor to a new block.");
946       // Need to remove new blocks from PredMap. Remove below to not invalidate
947       // iterator here.
948       NewBlocks.insert(BB);
949     }
950   }
951   // Nothing to process for new/cloned blocks.
952   for (auto *BB : NewBlocks)
953     PredMap.erase(BB);
954 
955   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
956   SmallVector<WeakVH, 8> InsertedPhis;
957 
958   // First create MemoryPhis in all blocks that don't have one. Create in the
959   // order found in Updates, not in PredMap, to get deterministic numbering.
960   for (auto &Edge : Updates) {
961     BasicBlock *BB = Edge.getTo();
962     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
963       InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
964   }
965 
966   // Now we'll fill in the MemoryPhis with the right incoming values.
967   for (auto &BBPredPair : PredMap) {
968     auto *BB = BBPredPair.first;
969     const auto &PrevBlockSet = BBPredPair.second.Prev;
970     const auto &AddedBlockSet = BBPredPair.second.Added;
971     assert(!PrevBlockSet.empty() &&
972            "At least one previous predecessor must exist.");
973 
974     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
975     // keeping this map before the loop. We can reuse already populated entries
976     // if an edge is added from the same predecessor to two different blocks,
977     // and this does happen in rotate. Note that the map needs to be updated
978     // when deleting non-necessary phis below, if the phi is in the map by
979     // replacing the value with DefP1.
980     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
981     for (auto *AddedPred : AddedBlockSet) {
982       auto *DefPn = GetLastDef(AddedPred);
983       assert(DefPn != nullptr && "Unable to find last definition.");
984       LastDefAddedPred[AddedPred] = DefPn;
985     }
986 
987     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
988     // If Phi is not empty, add an incoming edge from each added pred. Must
989     // still compute blocks with defs to replace for this block below.
990     if (NewPhi->getNumOperands()) {
991       for (auto *Pred : AddedBlockSet) {
992         auto *LastDefForPred = LastDefAddedPred[Pred];
993         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
994           NewPhi->addIncoming(LastDefForPred, Pred);
995       }
996     } else {
997       // Pick any existing predecessor and get its definition. All other
998       // existing predecessors should have the same one, since no phi existed.
999       auto *P1 = *PrevBlockSet.begin();
1000       MemoryAccess *DefP1 = GetLastDef(P1);
1001 
1002       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
1003       // nothing to add.
1004       bool InsertPhi = false;
1005       for (auto LastDefPredPair : LastDefAddedPred)
1006         if (DefP1 != LastDefPredPair.second) {
1007           InsertPhi = true;
1008           break;
1009         }
1010       if (!InsertPhi) {
1011         // Since NewPhi may be used in other newly added Phis, replace all uses
1012         // of NewPhi with the definition coming from all predecessors (DefP1),
1013         // before deleting it.
1014         NewPhi->replaceAllUsesWith(DefP1);
1015         removeMemoryAccess(NewPhi);
1016         continue;
1017       }
1018 
1019       // Update Phi with new values for new predecessors and old value for all
1020       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
1021       // sets, the order of entries in NewPhi is deterministic.
1022       for (auto *Pred : AddedBlockSet) {
1023         auto *LastDefForPred = LastDefAddedPred[Pred];
1024         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1025           NewPhi->addIncoming(LastDefForPred, Pred);
1026       }
1027       for (auto *Pred : PrevBlockSet)
1028         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1029           NewPhi->addIncoming(DefP1, Pred);
1030     }
1031 
1032     // Get all blocks that used to dominate BB and no longer do after adding
1033     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1034     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1035     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1036     assert(PrevIDom && "Previous IDom should exists");
1037     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1038     assert(NewIDom && "BB should have a new valid idom");
1039     assert(DT.dominates(NewIDom, PrevIDom) &&
1040            "New idom should dominate old idom");
1041     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1042   }
1043 
1044   tryRemoveTrivialPhis(InsertedPhis);
1045   // Create the set of blocks that now have a definition. We'll use this to
1046   // compute IDF and add Phis there next.
1047   SmallVector<BasicBlock *, 8> BlocksToProcess;
1048   for (auto &VH : InsertedPhis)
1049     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1050       BlocksToProcess.push_back(MPhi->getBlock());
1051 
1052   // Compute IDF and add Phis in all IDF blocks that do not have one.
1053   SmallVector<BasicBlock *, 32> IDFBlocks;
1054   if (!BlocksToProcess.empty()) {
1055     ForwardIDFCalculator IDFs(DT, GD);
1056     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1057                                                  BlocksToProcess.end());
1058     IDFs.setDefiningBlocks(DefiningBlocks);
1059     IDFs.calculate(IDFBlocks);
1060 
1061     SmallSetVector<MemoryPhi *, 4> PhisToFill;
1062     // First create all needed Phis.
1063     for (auto *BBIDF : IDFBlocks)
1064       if (!MSSA->getMemoryAccess(BBIDF)) {
1065         auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1066         InsertedPhis.push_back(IDFPhi);
1067         PhisToFill.insert(IDFPhi);
1068       }
1069     // Then update or insert their correct incoming values.
1070     for (auto *BBIDF : IDFBlocks) {
1071       auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1072       assert(IDFPhi && "Phi must exist");
1073       if (!PhisToFill.count(IDFPhi)) {
1074         // Update existing Phi.
1075         // FIXME: some updates may be redundant, try to optimize and skip some.
1076         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1077           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1078       } else {
1079         for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF))
1080           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1081       }
1082     }
1083   }
1084 
1085   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1086   // longer dominate, replace those with the closest dominating def.
1087   // This will also update optimized accesses, as they're also uses.
1088   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1089     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1090       for (auto &DefToReplaceUses : *DefsList) {
1091         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1092         Value::use_iterator UI = DefToReplaceUses.use_begin(),
1093                             E = DefToReplaceUses.use_end();
1094         for (; UI != E;) {
1095           Use &U = *UI;
1096           ++UI;
1097           MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
1098           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1099             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1100             if (!DT.dominates(DominatingBlock, DominatedBlock))
1101               U.set(GetLastDef(DominatedBlock));
1102           } else {
1103             BasicBlock *DominatedBlock = Usr->getBlock();
1104             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1105               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1106                 U.set(DomBlPhi);
1107               else {
1108                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1109                 assert(IDom && "Block must have a valid IDom.");
1110                 U.set(GetLastDef(IDom->getBlock()));
1111               }
1112               cast<MemoryUseOrDef>(Usr)->resetOptimized();
1113             }
1114           }
1115         }
1116       }
1117     }
1118   }
1119   tryRemoveTrivialPhis(InsertedPhis);
1120 }
1121 
1122 // Move What before Where in the MemorySSA IR.
1123 template <class WhereType>
1124 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1125                               WhereType Where) {
1126   // Mark MemoryPhi users of What not to be optimized.
1127   for (auto *U : What->users())
1128     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1129       NonOptPhis.insert(PhiUser);
1130 
1131   // Replace all our users with our defining access.
1132   What->replaceAllUsesWith(What->getDefiningAccess());
1133 
1134   // Let MemorySSA take care of moving it around in the lists.
1135   MSSA->moveTo(What, BB, Where);
1136 
1137   // Now reinsert it into the IR and do whatever fixups needed.
1138   if (auto *MD = dyn_cast<MemoryDef>(What))
1139     insertDef(MD, /*RenameUses=*/true);
1140   else
1141     insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1142 
1143   // Clear dangling pointers. We added all MemoryPhi users, but not all
1144   // of them are removed by fixupDefs().
1145   NonOptPhis.clear();
1146 }
1147 
1148 // Move What before Where in the MemorySSA IR.
1149 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1150   moveTo(What, Where->getBlock(), Where->getIterator());
1151 }
1152 
1153 // Move What after Where in the MemorySSA IR.
1154 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1155   moveTo(What, Where->getBlock(), ++Where->getIterator());
1156 }
1157 
1158 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1159                                    MemorySSA::InsertionPlace Where) {
1160   if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
1161     return moveTo(What, BB, Where);
1162 
1163   if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
1164     return moveBefore(What, Where);
1165   else
1166     return moveTo(What, BB, MemorySSA::InsertionPlace::End);
1167 }
1168 
1169 // All accesses in To used to be in From. Move to end and update access lists.
1170 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1171                                        Instruction *Start) {
1172 
1173   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1174   if (!Accs)
1175     return;
1176 
1177   assert(Start->getParent() == To && "Incorrect Start instruction");
1178   MemoryAccess *FirstInNew = nullptr;
1179   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1180     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1181       break;
1182   if (FirstInNew) {
1183     auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1184     do {
1185       auto NextIt = ++MUD->getIterator();
1186       MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1187                                     ? nullptr
1188                                     : cast<MemoryUseOrDef>(&*NextIt);
1189       MSSA->moveTo(MUD, To, MemorySSA::End);
1190       // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
1191       // to retrieve it again.
1192       Accs = MSSA->getWritableBlockAccesses(From);
1193       MUD = NextMUD;
1194     } while (MUD);
1195   }
1196 
1197   // If all accesses were moved and only a trivial Phi remains, we try to remove
1198   // that Phi. This is needed when From is going to be deleted.
1199   auto *Defs = MSSA->getWritableBlockDefs(From);
1200   if (Defs && !Defs->empty())
1201     if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
1202       tryRemoveTrivialPhi(Phi);
1203 }
1204 
1205 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1206                                                 BasicBlock *To,
1207                                                 Instruction *Start) {
1208   assert(MSSA->getBlockAccesses(To) == nullptr &&
1209          "To block is expected to be free of MemoryAccesses.");
1210   moveAllAccesses(From, To, Start);
1211   for (BasicBlock *Succ : successors(To))
1212     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1213       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1214 }
1215 
1216 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1217                                                Instruction *Start) {
1218   assert(From->getUniquePredecessor() == To &&
1219          "From block is expected to have a single predecessor (To).");
1220   moveAllAccesses(From, To, Start);
1221   for (BasicBlock *Succ : successors(From))
1222     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1223       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1224 }
1225 
1226 /// If all arguments of a MemoryPHI are defined by the same incoming
1227 /// argument, return that argument.
1228 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1229   MemoryAccess *MA = nullptr;
1230 
1231   for (auto &Arg : MP->operands()) {
1232     if (!MA)
1233       MA = cast<MemoryAccess>(Arg);
1234     else if (MA != Arg)
1235       return nullptr;
1236   }
1237   return MA;
1238 }
1239 
1240 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1241     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1242     bool IdenticalEdgesWereMerged) {
1243   assert(!MSSA->getWritableBlockAccesses(New) &&
1244          "Access list should be null for a new block.");
1245   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1246   if (!Phi)
1247     return;
1248   if (Old->hasNPredecessors(1)) {
1249     assert(pred_size(New) == Preds.size() &&
1250            "Should have moved all predecessors.");
1251     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1252   } else {
1253     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1254                              "new immediate predecessor.");
1255     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1256     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1257     // Currently only support the case of removing a single incoming edge when
1258     // identical edges were not merged.
1259     if (!IdenticalEdgesWereMerged)
1260       assert(PredsSet.size() == Preds.size() &&
1261              "If identical edges were not merged, we cannot have duplicate "
1262              "blocks in the predecessors");
1263     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1264       if (PredsSet.count(B)) {
1265         NewPhi->addIncoming(MA, B);
1266         if (!IdenticalEdgesWereMerged)
1267           PredsSet.erase(B);
1268         return true;
1269       }
1270       return false;
1271     });
1272     Phi->addIncoming(NewPhi, New);
1273     tryRemoveTrivialPhi(NewPhi);
1274   }
1275 }
1276 
1277 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1278   assert(!MSSA->isLiveOnEntryDef(MA) &&
1279          "Trying to remove the live on entry def");
1280   // We can only delete phi nodes if they have no uses, or we can replace all
1281   // uses with a single definition.
1282   MemoryAccess *NewDefTarget = nullptr;
1283   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1284     // Note that it is sufficient to know that all edges of the phi node have
1285     // the same argument.  If they do, by the definition of dominance frontiers
1286     // (which we used to place this phi), that argument must dominate this phi,
1287     // and thus, must dominate the phi's uses, and so we will not hit the assert
1288     // below.
1289     NewDefTarget = onlySingleValue(MP);
1290     assert((NewDefTarget || MP->use_empty()) &&
1291            "We can't delete this memory phi");
1292   } else {
1293     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1294   }
1295 
1296   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1297 
1298   // Re-point the uses at our defining access
1299   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1300     // Reset optimized on users of this store, and reset the uses.
1301     // A few notes:
1302     // 1. This is a slightly modified version of RAUW to avoid walking the
1303     // uses twice here.
1304     // 2. If we wanted to be complete, we would have to reset the optimized
1305     // flags on users of phi nodes if doing the below makes a phi node have all
1306     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1307     // phi nodes, because doing it here would be N^3.
1308     if (MA->hasValueHandle())
1309       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1310     // Note: We assume MemorySSA is not used in metadata since it's not really
1311     // part of the IR.
1312 
1313     while (!MA->use_empty()) {
1314       Use &U = *MA->use_begin();
1315       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1316         MUD->resetOptimized();
1317       if (OptimizePhis)
1318         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1319           PhisToCheck.insert(MP);
1320       U.set(NewDefTarget);
1321     }
1322   }
1323 
1324   // The call below to erase will destroy MA, so we can't change the order we
1325   // are doing things here
1326   MSSA->removeFromLookups(MA);
1327   MSSA->removeFromLists(MA);
1328 
1329   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1330   if (!PhisToCheck.empty()) {
1331     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1332                                            PhisToCheck.end()};
1333     PhisToCheck.clear();
1334 
1335     unsigned PhisSize = PhisToOptimize.size();
1336     while (PhisSize-- > 0)
1337       if (MemoryPhi *MP =
1338               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1339         tryRemoveTrivialPhi(MP);
1340   }
1341 }
1342 
1343 void MemorySSAUpdater::removeBlocks(
1344     const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1345   // First delete all uses of BB in MemoryPhis.
1346   for (BasicBlock *BB : DeadBlocks) {
1347     Instruction *TI = BB->getTerminator();
1348     assert(TI && "Basic block expected to have a terminator instruction");
1349     for (BasicBlock *Succ : successors(TI))
1350       if (!DeadBlocks.count(Succ))
1351         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1352           MP->unorderedDeleteIncomingBlock(BB);
1353           tryRemoveTrivialPhi(MP);
1354         }
1355     // Drop all references of all accesses in BB
1356     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1357       for (MemoryAccess &MA : *Acc)
1358         MA.dropAllReferences();
1359   }
1360 
1361   // Next, delete all memory accesses in each block
1362   for (BasicBlock *BB : DeadBlocks) {
1363     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1364     if (!Acc)
1365       continue;
1366     for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1367       MemoryAccess *MA = &*AB;
1368       ++AB;
1369       MSSA->removeFromLookups(MA);
1370       MSSA->removeFromLists(MA);
1371     }
1372   }
1373 }
1374 
1375 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1376   for (auto &VH : UpdatedPHIs)
1377     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1378       tryRemoveTrivialPhi(MPhi);
1379 }
1380 
1381 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1382   const BasicBlock *BB = I->getParent();
1383   // Remove memory accesses in BB for I and all following instructions.
1384   auto BBI = I->getIterator(), BBE = BB->end();
1385   // FIXME: If this becomes too expensive, iterate until the first instruction
1386   // with a memory access, then iterate over MemoryAccesses.
1387   while (BBI != BBE)
1388     removeMemoryAccess(&*(BBI++));
1389   // Update phis in BB's successors to remove BB.
1390   SmallVector<WeakVH, 16> UpdatedPHIs;
1391   for (const BasicBlock *Successor : successors(BB)) {
1392     removeDuplicatePhiEdgesBetween(BB, Successor);
1393     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1394       MPhi->unorderedDeleteIncomingBlock(BB);
1395       UpdatedPHIs.push_back(MPhi);
1396     }
1397   }
1398   // Optimize trivial phis.
1399   tryRemoveTrivialPhis(UpdatedPHIs);
1400 }
1401 
1402 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1403                                                          const BasicBlock *To) {
1404   const BasicBlock *BB = BI->getParent();
1405   SmallVector<WeakVH, 16> UpdatedPHIs;
1406   for (const BasicBlock *Succ : successors(BB)) {
1407     removeDuplicatePhiEdgesBetween(BB, Succ);
1408     if (Succ != To)
1409       if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1410         MPhi->unorderedDeleteIncomingBlock(BB);
1411         UpdatedPHIs.push_back(MPhi);
1412       }
1413   }
1414   // Optimize trivial phis.
1415   tryRemoveTrivialPhis(UpdatedPHIs);
1416 }
1417 
1418 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1419     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1420     MemorySSA::InsertionPlace Point) {
1421   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1422   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1423   return NewAccess;
1424 }
1425 
1426 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1427     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1428   assert(I->getParent() == InsertPt->getBlock() &&
1429          "New and old access must be in the same block");
1430   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1431   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1432                               InsertPt->getIterator());
1433   return NewAccess;
1434 }
1435 
1436 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1437     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1438   assert(I->getParent() == InsertPt->getBlock() &&
1439          "New and old access must be in the same block");
1440   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1441   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1442                               ++InsertPt->getIterator());
1443   return NewAccess;
1444 }
1445