1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/Analysis/LoopIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/IteratedDominanceFrontier.h"
18 #include "llvm/Analysis/MemorySSA.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/FormattedStream.h"
29 #include <algorithm>
30 
31 #define DEBUG_TYPE "memoryssa"
32 using namespace llvm;
33 
34 // This is the marker algorithm from "Simple and Efficient Construction of
35 // Static Single Assignment Form"
36 // The simple, non-marker algorithm places phi nodes at any join
37 // Here, we place markers, and only place phi nodes if they end up necessary.
38 // They are only necessary if they break a cycle (IE we recursively visit
39 // ourselves again), or we discover, while getting the value of the operands,
40 // that there are two or more definitions needing to be merged.
41 // This still will leave non-minimal form in the case of irreducible control
42 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
43 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
44     BasicBlock *BB,
45     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
46   // First, do a cache lookup. Without this cache, certain CFG structures
47   // (like a series of if statements) take exponential time to visit.
48   auto Cached = CachedPreviousDef.find(BB);
49   if (Cached != CachedPreviousDef.end())
50     return Cached->second;
51 
52   // If this method is called from an unreachable block, return LoE.
53   if (!MSSA->DT->isReachableFromEntry(BB))
54     return MSSA->getLiveOnEntryDef();
55 
56   if (BasicBlock *Pred = BB->getUniquePredecessor()) {
57     VisitedBlocks.insert(BB);
58     // Single predecessor case, just recurse, we can only have one definition.
59     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
60     CachedPreviousDef.insert({BB, Result});
61     return Result;
62   }
63 
64   if (VisitedBlocks.count(BB)) {
65     // We hit our node again, meaning we had a cycle, we must insert a phi
66     // node to break it so we have an operand. The only case this will
67     // insert useless phis is if we have irreducible control flow.
68     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
69     CachedPreviousDef.insert({BB, Result});
70     return Result;
71   }
72 
73   if (VisitedBlocks.insert(BB).second) {
74     // Mark us visited so we can detect a cycle
75     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
76 
77     // Recurse to get the values in our predecessors for placement of a
78     // potential phi node. This will insert phi nodes if we cycle in order to
79     // break the cycle and have an operand.
80     bool UniqueIncomingAccess = true;
81     MemoryAccess *SingleAccess = nullptr;
82     for (auto *Pred : predecessors(BB)) {
83       if (MSSA->DT->isReachableFromEntry(Pred)) {
84         auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
85         if (!SingleAccess)
86           SingleAccess = IncomingAccess;
87         else if (IncomingAccess != SingleAccess)
88           UniqueIncomingAccess = false;
89         PhiOps.push_back(IncomingAccess);
90       } else
91         PhiOps.push_back(MSSA->getLiveOnEntryDef());
92     }
93 
94     // Now try to simplify the ops to avoid placing a phi.
95     // This may return null if we never created a phi yet, that's okay
96     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
97 
98     // See if we can avoid the phi by simplifying it.
99     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
100     // If we couldn't simplify, we may have to create a phi
101     if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
102       // A concrete Phi only exists if we created an empty one to break a cycle.
103       if (Phi) {
104         assert(Phi->operands().empty() && "Expected empty Phi");
105         Phi->replaceAllUsesWith(SingleAccess);
106         removeMemoryAccess(Phi);
107       }
108       Result = SingleAccess;
109     } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
110       if (!Phi)
111         Phi = MSSA->createMemoryPhi(BB);
112 
113       // See if the existing phi operands match what we need.
114       // Unlike normal SSA, we only allow one phi node per block, so we can't just
115       // create a new one.
116       if (Phi->getNumOperands() != 0) {
117         // FIXME: Figure out whether this is dead code and if so remove it.
118         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
119           // These will have been filled in by the recursive read we did above.
120           llvm::copy(PhiOps, Phi->op_begin());
121           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
122         }
123       } else {
124         unsigned i = 0;
125         for (auto *Pred : predecessors(BB))
126           Phi->addIncoming(&*PhiOps[i++], Pred);
127         InsertedPHIs.push_back(Phi);
128       }
129       Result = Phi;
130     }
131 
132     // Set ourselves up for the next variable by resetting visited state.
133     VisitedBlocks.erase(BB);
134     CachedPreviousDef.insert({BB, Result});
135     return Result;
136   }
137   llvm_unreachable("Should have hit one of the three cases above");
138 }
139 
140 // This starts at the memory access, and goes backwards in the block to find the
141 // previous definition. If a definition is not found the block of the access,
142 // it continues globally, creating phi nodes to ensure we have a single
143 // definition.
144 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
145   if (auto *LocalResult = getPreviousDefInBlock(MA))
146     return LocalResult;
147   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
148   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
149 }
150 
151 // This starts at the memory access, and goes backwards in the block to the find
152 // the previous definition. If the definition is not found in the block of the
153 // access, it returns nullptr.
154 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
155   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
156 
157   // It's possible there are no defs, or we got handed the first def to start.
158   if (Defs) {
159     // If this is a def, we can just use the def iterators.
160     if (!isa<MemoryUse>(MA)) {
161       auto Iter = MA->getReverseDefsIterator();
162       ++Iter;
163       if (Iter != Defs->rend())
164         return &*Iter;
165     } else {
166       // Otherwise, have to walk the all access iterator.
167       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
168       for (auto &U : make_range(++MA->getReverseIterator(), End))
169         if (!isa<MemoryUse>(U))
170           return cast<MemoryAccess>(&U);
171       // Note that if MA comes before Defs->begin(), we won't hit a def.
172       return nullptr;
173     }
174   }
175   return nullptr;
176 }
177 
178 // This starts at the end of block
179 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
180     BasicBlock *BB,
181     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
182   auto *Defs = MSSA->getWritableBlockDefs(BB);
183 
184   if (Defs) {
185     CachedPreviousDef.insert({BB, &*Defs->rbegin()});
186     return &*Defs->rbegin();
187   }
188 
189   return getPreviousDefRecursive(BB, CachedPreviousDef);
190 }
191 // Recurse over a set of phi uses to eliminate the trivial ones
192 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
193   if (!Phi)
194     return nullptr;
195   TrackingVH<MemoryAccess> Res(Phi);
196   SmallVector<TrackingVH<Value>, 8> Uses;
197   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
198   for (auto &U : Uses)
199     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
200       tryRemoveTrivialPhi(UsePhi);
201   return Res;
202 }
203 
204 // Eliminate trivial phis
205 // Phis are trivial if they are defined either by themselves, or all the same
206 // argument.
207 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
208 // We recursively try to remove them.
209 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
210   assert(Phi && "Can only remove concrete Phi.");
211   auto OperRange = Phi->operands();
212   return tryRemoveTrivialPhi(Phi, OperRange);
213 }
214 template <class RangeType>
215 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
216                                                     RangeType &Operands) {
217   // Bail out on non-opt Phis.
218   if (NonOptPhis.count(Phi))
219     return Phi;
220 
221   // Detect equal or self arguments
222   MemoryAccess *Same = nullptr;
223   for (auto &Op : Operands) {
224     // If the same or self, good so far
225     if (Op == Phi || Op == Same)
226       continue;
227     // not the same, return the phi since it's not eliminatable by us
228     if (Same)
229       return Phi;
230     Same = cast<MemoryAccess>(&*Op);
231   }
232   // Never found a non-self reference, the phi is undef
233   if (Same == nullptr)
234     return MSSA->getLiveOnEntryDef();
235   if (Phi) {
236     Phi->replaceAllUsesWith(Same);
237     removeMemoryAccess(Phi);
238   }
239 
240   // We should only end up recursing in case we replaced something, in which
241   // case, we may have made other Phis trivial.
242   return recursePhi(Same);
243 }
244 
245 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
246   VisitedBlocks.clear();
247   InsertedPHIs.clear();
248   MU->setDefiningAccess(getPreviousDef(MU));
249 
250   // In cases without unreachable blocks, because uses do not create new
251   // may-defs, there are only two cases:
252   // 1. There was a def already below us, and therefore, we should not have
253   // created a phi node because it was already needed for the def.
254   //
255   // 2. There is no def below us, and therefore, there is no extra renaming work
256   // to do.
257 
258   // In cases with unreachable blocks, where the unnecessary Phis were
259   // optimized out, adding the Use may re-insert those Phis. Hence, when
260   // inserting Uses outside of the MSSA creation process, and new Phis were
261   // added, rename all uses if we are asked.
262 
263   if (!RenameUses && !InsertedPHIs.empty()) {
264     auto *Defs = MSSA->getBlockDefs(MU->getBlock());
265     (void)Defs;
266     assert((!Defs || (++Defs->begin() == Defs->end())) &&
267            "Block may have only a Phi or no defs");
268   }
269 
270   if (RenameUses && InsertedPHIs.size()) {
271     SmallPtrSet<BasicBlock *, 16> Visited;
272     BasicBlock *StartBlock = MU->getBlock();
273 
274     if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
275       MemoryAccess *FirstDef = &*Defs->begin();
276       // Convert to incoming value if it's a memorydef. A phi *is* already an
277       // incoming value.
278       if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
279         FirstDef = MD->getDefiningAccess();
280 
281       MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
282     }
283     // We just inserted a phi into this block, so the incoming value will
284     // become the phi anyway, so it does not matter what we pass.
285     for (auto &MP : InsertedPHIs)
286       if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
287         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
288   }
289 }
290 
291 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
292 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
293                                       MemoryAccess *NewDef) {
294   // Replace any operand with us an incoming block with the new defining
295   // access.
296   int i = MP->getBasicBlockIndex(BB);
297   assert(i != -1 && "Should have found the basic block in the phi");
298   // We can't just compare i against getNumOperands since one is signed and the
299   // other not. So use it to index into the block iterator.
300   for (const BasicBlock *BlockBB : llvm::drop_begin(MP->blocks(), i)) {
301     if (BlockBB != BB)
302       break;
303     MP->setIncomingValue(i, NewDef);
304     ++i;
305   }
306 }
307 
308 // A brief description of the algorithm:
309 // First, we compute what should define the new def, using the SSA
310 // construction algorithm.
311 // Then, we update the defs below us (and any new phi nodes) in the graph to
312 // point to the correct new defs, to ensure we only have one variable, and no
313 // disconnected stores.
314 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
315   VisitedBlocks.clear();
316   InsertedPHIs.clear();
317 
318   // See if we had a local def, and if not, go hunting.
319   MemoryAccess *DefBefore = getPreviousDef(MD);
320   bool DefBeforeSameBlock = false;
321   if (DefBefore->getBlock() == MD->getBlock() &&
322       !(isa<MemoryPhi>(DefBefore) &&
323         llvm::is_contained(InsertedPHIs, DefBefore)))
324     DefBeforeSameBlock = true;
325 
326   // There is a def before us, which means we can replace any store/phi uses
327   // of that thing with us, since we are in the way of whatever was there
328   // before.
329   // We now define that def's memorydefs and memoryphis
330   if (DefBeforeSameBlock) {
331     DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
332       // Leave the MemoryUses alone.
333       // Also make sure we skip ourselves to avoid self references.
334       User *Usr = U.getUser();
335       return !isa<MemoryUse>(Usr) && Usr != MD;
336       // Defs are automatically unoptimized when the user is set to MD below,
337       // because the isOptimized() call will fail to find the same ID.
338     });
339   }
340 
341   // and that def is now our defining access.
342   MD->setDefiningAccess(DefBefore);
343 
344   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
345 
346   SmallSet<WeakVH, 8> ExistingPhis;
347 
348   // Remember the index where we may insert new phis.
349   unsigned NewPhiIndex = InsertedPHIs.size();
350   if (!DefBeforeSameBlock) {
351     // If there was a local def before us, we must have the same effect it
352     // did. Because every may-def is the same, any phis/etc we would create, it
353     // would also have created.  If there was no local def before us, we
354     // performed a global update, and have to search all successors and make
355     // sure we update the first def in each of them (following all paths until
356     // we hit the first def along each path). This may also insert phi nodes.
357     // TODO: There are other cases we can skip this work, such as when we have a
358     // single successor, and only used a straight line of single pred blocks
359     // backwards to find the def.  To make that work, we'd have to track whether
360     // getDefRecursive only ever used the single predecessor case.  These types
361     // of paths also only exist in between CFG simplifications.
362 
363     // If this is the first def in the block and this insert is in an arbitrary
364     // place, compute IDF and place phis.
365     SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
366 
367     // If this is the last Def in the block, we may need additional Phis.
368     // Compute IDF in all cases, as renaming needs to be done even when MD is
369     // not the last access, because it can introduce a new access past which a
370     // previous access was optimized; that access needs to be reoptimized.
371     DefiningBlocks.insert(MD->getBlock());
372     for (const auto &VH : InsertedPHIs)
373       if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
374         DefiningBlocks.insert(RealPHI->getBlock());
375     ForwardIDFCalculator IDFs(*MSSA->DT);
376     SmallVector<BasicBlock *, 32> IDFBlocks;
377     IDFs.setDefiningBlocks(DefiningBlocks);
378     IDFs.calculate(IDFBlocks);
379     SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
380     for (auto *BBIDF : IDFBlocks) {
381       auto *MPhi = MSSA->getMemoryAccess(BBIDF);
382       if (!MPhi) {
383         MPhi = MSSA->createMemoryPhi(BBIDF);
384         NewInsertedPHIs.push_back(MPhi);
385       } else {
386         ExistingPhis.insert(MPhi);
387       }
388       // Add the phis created into the IDF blocks to NonOptPhis, so they are not
389       // optimized out as trivial by the call to getPreviousDefFromEnd below.
390       // Once they are complete, all these Phis are added to the FixupList, and
391       // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
392       // need fixing as well, and potentially be trivial before this insertion,
393       // hence add all IDF Phis. See PR43044.
394       NonOptPhis.insert(MPhi);
395     }
396     for (auto &MPhi : NewInsertedPHIs) {
397       auto *BBIDF = MPhi->getBlock();
398       for (auto *Pred : predecessors(BBIDF)) {
399         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
400         MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
401       }
402     }
403 
404     // Re-take the index where we're adding the new phis, because the above call
405     // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
406     NewPhiIndex = InsertedPHIs.size();
407     for (auto &MPhi : NewInsertedPHIs) {
408       InsertedPHIs.push_back(&*MPhi);
409       FixupList.push_back(&*MPhi);
410     }
411 
412     FixupList.push_back(MD);
413   }
414 
415   // Remember the index where we stopped inserting new phis above, since the
416   // fixupDefs call in the loop below may insert more, that are already minimal.
417   unsigned NewPhiIndexEnd = InsertedPHIs.size();
418 
419   while (!FixupList.empty()) {
420     unsigned StartingPHISize = InsertedPHIs.size();
421     fixupDefs(FixupList);
422     FixupList.clear();
423     // Put any new phis on the fixup list, and process them
424     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
425   }
426 
427   // Optimize potentially non-minimal phis added in this method.
428   unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
429   if (NewPhiSize)
430     tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
431 
432   // Now that all fixups are done, rename all uses if we are asked. Skip
433   // renaming for defs in unreachable blocks.
434   BasicBlock *StartBlock = MD->getBlock();
435   if (RenameUses && MSSA->getDomTree().getNode(StartBlock)) {
436     SmallPtrSet<BasicBlock *, 16> Visited;
437     // We are guaranteed there is a def in the block, because we just got it
438     // handed to us in this function.
439     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
440     // Convert to incoming value if it's a memorydef. A phi *is* already an
441     // incoming value.
442     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
443       FirstDef = MD->getDefiningAccess();
444 
445     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
446     // We just inserted a phi into this block, so the incoming value will become
447     // the phi anyway, so it does not matter what we pass.
448     for (auto &MP : InsertedPHIs) {
449       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
450       if (Phi)
451         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
452     }
453     // Existing Phi blocks may need renaming too, if an access was previously
454     // optimized and the inserted Defs "covers" the Optimized value.
455     for (auto &MP : ExistingPhis) {
456       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
457       if (Phi)
458         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
459     }
460   }
461 }
462 
463 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
464   SmallPtrSet<const BasicBlock *, 8> Seen;
465   SmallVector<const BasicBlock *, 16> Worklist;
466   for (auto &Var : Vars) {
467     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
468     if (!NewDef)
469       continue;
470     // First, see if there is a local def after the operand.
471     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
472     auto DefIter = NewDef->getDefsIterator();
473 
474     // The temporary Phi is being fixed, unmark it for not to optimize.
475     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
476       NonOptPhis.erase(Phi);
477 
478     // If there is a local def after us, we only have to rename that.
479     if (++DefIter != Defs->end()) {
480       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
481       continue;
482     }
483 
484     // Otherwise, we need to search down through the CFG.
485     // For each of our successors, handle it directly if their is a phi, or
486     // place on the fixup worklist.
487     for (const auto *S : successors(NewDef->getBlock())) {
488       if (auto *MP = MSSA->getMemoryAccess(S))
489         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
490       else
491         Worklist.push_back(S);
492     }
493 
494     while (!Worklist.empty()) {
495       const BasicBlock *FixupBlock = Worklist.pop_back_val();
496 
497       // Get the first def in the block that isn't a phi node.
498       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
499         auto *FirstDef = &*Defs->begin();
500         // The loop above and below should have taken care of phi nodes
501         assert(!isa<MemoryPhi>(FirstDef) &&
502                "Should have already handled phi nodes!");
503         // We are now this def's defining access, make sure we actually dominate
504         // it
505         assert(MSSA->dominates(NewDef, FirstDef) &&
506                "Should have dominated the new access");
507 
508         // This may insert new phi nodes, because we are not guaranteed the
509         // block we are processing has a single pred, and depending where the
510         // store was inserted, it may require phi nodes below it.
511         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
512         return;
513       }
514       // We didn't find a def, so we must continue.
515       for (const auto *S : successors(FixupBlock)) {
516         // If there is a phi node, handle it.
517         // Otherwise, put the block on the worklist
518         if (auto *MP = MSSA->getMemoryAccess(S))
519           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
520         else {
521           // If we cycle, we should have ended up at a phi node that we already
522           // processed.  FIXME: Double check this
523           if (!Seen.insert(S).second)
524             continue;
525           Worklist.push_back(S);
526         }
527       }
528     }
529   }
530 }
531 
532 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
533   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
534     MPhi->unorderedDeleteIncomingBlock(From);
535     tryRemoveTrivialPhi(MPhi);
536   }
537 }
538 
539 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
540                                                       const BasicBlock *To) {
541   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
542     bool Found = false;
543     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
544       if (From != B)
545         return false;
546       if (Found)
547         return true;
548       Found = true;
549       return false;
550     });
551     tryRemoveTrivialPhi(MPhi);
552   }
553 }
554 
555 /// If all arguments of a MemoryPHI are defined by the same incoming
556 /// argument, return that argument.
557 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
558   MemoryAccess *MA = nullptr;
559 
560   for (auto &Arg : MP->operands()) {
561     if (!MA)
562       MA = cast<MemoryAccess>(Arg);
563     else if (MA != Arg)
564       return nullptr;
565   }
566   return MA;
567 }
568 
569 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
570                                                   const ValueToValueMapTy &VMap,
571                                                   PhiToDefMap &MPhiMap,
572                                                   bool CloneWasSimplified,
573                                                   MemorySSA *MSSA) {
574   MemoryAccess *InsnDefining = MA;
575   if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
576     if (!MSSA->isLiveOnEntryDef(DefMUD)) {
577       Instruction *DefMUDI = DefMUD->getMemoryInst();
578       assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
579       if (Instruction *NewDefMUDI =
580               cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
581         InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
582         if (!CloneWasSimplified)
583           assert(InsnDefining && "Defining instruction cannot be nullptr.");
584         else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
585           // The clone was simplified, it's no longer a MemoryDef, look up.
586           auto DefIt = DefMUD->getDefsIterator();
587           // Since simplified clones only occur in single block cloning, a
588           // previous definition must exist, otherwise NewDefMUDI would not
589           // have been found in VMap.
590           assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
591                  "Previous def must exist");
592           InsnDefining = getNewDefiningAccessForClone(
593               &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
594         }
595       }
596     }
597   } else {
598     MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
599     if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
600       InsnDefining = NewDefPhi;
601   }
602   assert(InsnDefining && "Defining instruction cannot be nullptr.");
603   return InsnDefining;
604 }
605 
606 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
607                                         const ValueToValueMapTy &VMap,
608                                         PhiToDefMap &MPhiMap,
609                                         bool CloneWasSimplified) {
610   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
611   if (!Acc)
612     return;
613   for (const MemoryAccess &MA : *Acc) {
614     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
615       Instruction *Insn = MUD->getMemoryInst();
616       // Entry does not exist if the clone of the block did not clone all
617       // instructions. This occurs in LoopRotate when cloning instructions
618       // from the old header to the old preheader. The cloned instruction may
619       // also be a simplified Value, not an Instruction (see LoopRotate).
620       // Also in LoopRotate, even when it's an instruction, due to it being
621       // simplified, it may be a Use rather than a Def, so we cannot use MUD as
622       // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
623       if (Instruction *NewInsn =
624               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
625         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
626             NewInsn,
627             getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
628                                          MPhiMap, CloneWasSimplified, MSSA),
629             /*Template=*/CloneWasSimplified ? nullptr : MUD,
630             /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
631         if (NewUseOrDef)
632           MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
633       }
634     }
635   }
636 }
637 
638 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
639     BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
640   auto *MPhi = MSSA->getMemoryAccess(Header);
641   if (!MPhi)
642     return;
643 
644   // Create phi node in the backedge block and populate it with the same
645   // incoming values as MPhi. Skip incoming values coming from Preheader.
646   auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
647   bool HasUniqueIncomingValue = true;
648   MemoryAccess *UniqueValue = nullptr;
649   for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
650     BasicBlock *IBB = MPhi->getIncomingBlock(I);
651     MemoryAccess *IV = MPhi->getIncomingValue(I);
652     if (IBB != Preheader) {
653       NewMPhi->addIncoming(IV, IBB);
654       if (HasUniqueIncomingValue) {
655         if (!UniqueValue)
656           UniqueValue = IV;
657         else if (UniqueValue != IV)
658           HasUniqueIncomingValue = false;
659       }
660     }
661   }
662 
663   // Update incoming edges into MPhi. Remove all but the incoming edge from
664   // Preheader. Add an edge from NewMPhi
665   auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
666   MPhi->setIncomingValue(0, AccFromPreheader);
667   MPhi->setIncomingBlock(0, Preheader);
668   for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
669     MPhi->unorderedDeleteIncoming(I);
670   MPhi->addIncoming(NewMPhi, BEBlock);
671 
672   // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
673   // replaced with the unique value.
674   tryRemoveTrivialPhi(NewMPhi);
675 }
676 
677 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
678                                            ArrayRef<BasicBlock *> ExitBlocks,
679                                            const ValueToValueMapTy &VMap,
680                                            bool IgnoreIncomingWithNoClones) {
681   PhiToDefMap MPhiMap;
682 
683   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
684     assert(Phi && NewPhi && "Invalid Phi nodes.");
685     BasicBlock *NewPhiBB = NewPhi->getBlock();
686     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
687                                                pred_end(NewPhiBB));
688     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
689       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
690       BasicBlock *IncBB = Phi->getIncomingBlock(It);
691 
692       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
693         IncBB = NewIncBB;
694       else if (IgnoreIncomingWithNoClones)
695         continue;
696 
697       // Now we have IncBB, and will need to add incoming from it to NewPhi.
698 
699       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
700       // NewPhiBB was cloned without that edge.
701       if (!NewPhiBBPreds.count(IncBB))
702         continue;
703 
704       // Determine incoming value and add it as incoming from IncBB.
705       if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
706         if (!MSSA->isLiveOnEntryDef(IncMUD)) {
707           Instruction *IncI = IncMUD->getMemoryInst();
708           assert(IncI && "Found MemoryUseOrDef with no Instruction.");
709           if (Instruction *NewIncI =
710                   cast_or_null<Instruction>(VMap.lookup(IncI))) {
711             IncMUD = MSSA->getMemoryAccess(NewIncI);
712             assert(IncMUD &&
713                    "MemoryUseOrDef cannot be null, all preds processed.");
714           }
715         }
716         NewPhi->addIncoming(IncMUD, IncBB);
717       } else {
718         MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
719         if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
720           NewPhi->addIncoming(NewDefPhi, IncBB);
721         else
722           NewPhi->addIncoming(IncPhi, IncBB);
723       }
724     }
725     if (auto *SingleAccess = onlySingleValue(NewPhi)) {
726       MPhiMap[Phi] = SingleAccess;
727       removeMemoryAccess(NewPhi);
728     }
729   };
730 
731   auto ProcessBlock = [&](BasicBlock *BB) {
732     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
733     if (!NewBlock)
734       return;
735 
736     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
737            "Cloned block should have no accesses");
738 
739     // Add MemoryPhi.
740     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
741       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
742       MPhiMap[MPhi] = NewPhi;
743     }
744     // Update Uses and Defs.
745     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
746   };
747 
748   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
749     ProcessBlock(BB);
750 
751   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
752     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
753       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
754         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
755 }
756 
757 void MemorySSAUpdater::updateForClonedBlockIntoPred(
758     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
759   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
760   // Since those defs/phis must have dominated BB, and also dominate P1.
761   // Defs from BB being used in BB will be replaced with the cloned defs from
762   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
763   // incoming def into the Phi from P1.
764   // Instructions cloned into the predecessor are in practice sometimes
765   // simplified, so disable the use of the template, and create an access from
766   // scratch.
767   PhiToDefMap MPhiMap;
768   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
769     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
770   cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
771 }
772 
773 template <typename Iter>
774 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
775     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
776     DominatorTree &DT) {
777   SmallVector<CFGUpdate, 4> Updates;
778   // Update/insert phis in all successors of exit blocks.
779   for (auto *Exit : ExitBlocks)
780     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
781       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
782         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
783         Updates.push_back({DT.Insert, NewExit, ExitSucc});
784       }
785   applyInsertUpdates(Updates, DT);
786 }
787 
788 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
789     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
790     DominatorTree &DT) {
791   const ValueToValueMapTy *const Arr[] = {&VMap};
792   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
793                                        std::end(Arr), DT);
794 }
795 
796 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
797     ArrayRef<BasicBlock *> ExitBlocks,
798     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
799   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
800     return I.get();
801   };
802   using MappedIteratorType =
803       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
804                       decltype(GetPtr)>;
805   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
806   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
807   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
808 }
809 
810 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
811                                     DominatorTree &DT, bool UpdateDT) {
812   SmallVector<CFGUpdate, 4> DeleteUpdates;
813   SmallVector<CFGUpdate, 4> RevDeleteUpdates;
814   SmallVector<CFGUpdate, 4> InsertUpdates;
815   for (auto &Update : Updates) {
816     if (Update.getKind() == DT.Insert)
817       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
818     else {
819       DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()});
820       RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
821     }
822   }
823 
824   if (!DeleteUpdates.empty()) {
825     if (!InsertUpdates.empty()) {
826       if (!UpdateDT) {
827         SmallVector<CFGUpdate, 0> Empty;
828         // Deletes are reversed applied, because this CFGView is pretending the
829         // deletes did not happen yet, hence the edges still exist.
830         DT.applyUpdates(Empty, RevDeleteUpdates);
831       } else {
832         // Apply all updates, with the RevDeleteUpdates as PostCFGView.
833         DT.applyUpdates(Updates, RevDeleteUpdates);
834       }
835 
836       // Note: the MSSA update below doesn't distinguish between a GD with
837       // (RevDelete,false) and (Delete, true), but this matters for the DT
838       // updates above; for "children" purposes they are equivalent; but the
839       // updates themselves convey the desired update, used inside DT only.
840       GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
841       applyInsertUpdates(InsertUpdates, DT, &GD);
842       // Update DT to redelete edges; this matches the real CFG so we can
843       // perform the standard update without a postview of the CFG.
844       DT.applyUpdates(DeleteUpdates);
845     } else {
846       if (UpdateDT)
847         DT.applyUpdates(DeleteUpdates);
848     }
849   } else {
850     if (UpdateDT)
851       DT.applyUpdates(Updates);
852     GraphDiff<BasicBlock *> GD;
853     applyInsertUpdates(InsertUpdates, DT, &GD);
854   }
855 
856   // Update for deleted edges
857   for (auto &Update : DeleteUpdates)
858     removeEdge(Update.getFrom(), Update.getTo());
859 }
860 
861 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
862                                           DominatorTree &DT) {
863   GraphDiff<BasicBlock *> GD;
864   applyInsertUpdates(Updates, DT, &GD);
865 }
866 
867 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
868                                           DominatorTree &DT,
869                                           const GraphDiff<BasicBlock *> *GD) {
870   // Get recursive last Def, assuming well formed MSSA and updated DT.
871   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
872     while (true) {
873       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
874       // Return last Def or Phi in BB, if it exists.
875       if (Defs)
876         return &*(--Defs->end());
877 
878       // Check number of predecessors, we only care if there's more than one.
879       unsigned Count = 0;
880       BasicBlock *Pred = nullptr;
881       for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
882         Pred = Pi;
883         Count++;
884         if (Count == 2)
885           break;
886       }
887 
888       // If BB has multiple predecessors, get last definition from IDom.
889       if (Count != 1) {
890         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
891         // DT is invalidated. Return LoE as its last def. This will be added to
892         // MemoryPhi node, and later deleted when the block is deleted.
893         if (!DT.getNode(BB))
894           return MSSA->getLiveOnEntryDef();
895         if (auto *IDom = DT.getNode(BB)->getIDom())
896           if (IDom->getBlock() != BB) {
897             BB = IDom->getBlock();
898             continue;
899           }
900         return MSSA->getLiveOnEntryDef();
901       } else {
902         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
903         assert(Count == 1 && Pred && "Single predecessor expected.");
904         // BB can be unreachable though, return LoE if that is the case.
905         if (!DT.getNode(BB))
906           return MSSA->getLiveOnEntryDef();
907         BB = Pred;
908       }
909     };
910     llvm_unreachable("Unable to get last definition.");
911   };
912 
913   // Get nearest IDom given a set of blocks.
914   // TODO: this can be optimized by starting the search at the node with the
915   // lowest level (highest in the tree).
916   auto FindNearestCommonDominator =
917       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
918     BasicBlock *PrevIDom = *BBSet.begin();
919     for (auto *BB : BBSet)
920       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
921     return PrevIDom;
922   };
923 
924   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
925   // include CurrIDom.
926   auto GetNoLongerDomBlocks =
927       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
928           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
929         if (PrevIDom == CurrIDom)
930           return;
931         BlocksPrevDom.push_back(PrevIDom);
932         BasicBlock *NextIDom = PrevIDom;
933         while (BasicBlock *UpIDom =
934                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
935           if (UpIDom == CurrIDom)
936             break;
937           BlocksPrevDom.push_back(UpIDom);
938           NextIDom = UpIDom;
939         }
940       };
941 
942   // Map a BB to its predecessors: added + previously existing. To get a
943   // deterministic order, store predecessors as SetVectors. The order in each
944   // will be defined by the order in Updates (fixed) and the order given by
945   // children<> (also fixed). Since we further iterate over these ordered sets,
946   // we lose the information of multiple edges possibly existing between two
947   // blocks, so we'll keep and EdgeCount map for that.
948   // An alternate implementation could keep unordered set for the predecessors,
949   // traverse either Updates or children<> each time to get  the deterministic
950   // order, and drop the usage of EdgeCount. This alternate approach would still
951   // require querying the maps for each predecessor, and children<> call has
952   // additional computation inside for creating the snapshot-graph predecessors.
953   // As such, we favor using a little additional storage and less compute time.
954   // This decision can be revisited if we find the alternative more favorable.
955 
956   struct PredInfo {
957     SmallSetVector<BasicBlock *, 2> Added;
958     SmallSetVector<BasicBlock *, 2> Prev;
959   };
960   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
961 
962   for (auto &Edge : Updates) {
963     BasicBlock *BB = Edge.getTo();
964     auto &AddedBlockSet = PredMap[BB].Added;
965     AddedBlockSet.insert(Edge.getFrom());
966   }
967 
968   // Store all existing predecessor for each BB, at least one must exist.
969   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
970   SmallPtrSet<BasicBlock *, 2> NewBlocks;
971   for (auto &BBPredPair : PredMap) {
972     auto *BB = BBPredPair.first;
973     const auto &AddedBlockSet = BBPredPair.second.Added;
974     auto &PrevBlockSet = BBPredPair.second.Prev;
975     for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
976       if (!AddedBlockSet.count(Pi))
977         PrevBlockSet.insert(Pi);
978       EdgeCountMap[{Pi, BB}]++;
979     }
980 
981     if (PrevBlockSet.empty()) {
982       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
983       LLVM_DEBUG(
984           dbgs()
985           << "Adding a predecessor to a block with no predecessors. "
986              "This must be an edge added to a new, likely cloned, block. "
987              "Its memory accesses must be already correct, assuming completed "
988              "via the updateExitBlocksForClonedLoop API. "
989              "Assert a single such edge is added so no phi addition or "
990              "additional processing is required.\n");
991       assert(AddedBlockSet.size() == 1 &&
992              "Can only handle adding one predecessor to a new block.");
993       // Need to remove new blocks from PredMap. Remove below to not invalidate
994       // iterator here.
995       NewBlocks.insert(BB);
996     }
997   }
998   // Nothing to process for new/cloned blocks.
999   for (auto *BB : NewBlocks)
1000     PredMap.erase(BB);
1001 
1002   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
1003   SmallVector<WeakVH, 8> InsertedPhis;
1004 
1005   // First create MemoryPhis in all blocks that don't have one. Create in the
1006   // order found in Updates, not in PredMap, to get deterministic numbering.
1007   for (auto &Edge : Updates) {
1008     BasicBlock *BB = Edge.getTo();
1009     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
1010       InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
1011   }
1012 
1013   // Now we'll fill in the MemoryPhis with the right incoming values.
1014   for (auto &BBPredPair : PredMap) {
1015     auto *BB = BBPredPair.first;
1016     const auto &PrevBlockSet = BBPredPair.second.Prev;
1017     const auto &AddedBlockSet = BBPredPair.second.Added;
1018     assert(!PrevBlockSet.empty() &&
1019            "At least one previous predecessor must exist.");
1020 
1021     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
1022     // keeping this map before the loop. We can reuse already populated entries
1023     // if an edge is added from the same predecessor to two different blocks,
1024     // and this does happen in rotate. Note that the map needs to be updated
1025     // when deleting non-necessary phis below, if the phi is in the map by
1026     // replacing the value with DefP1.
1027     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
1028     for (auto *AddedPred : AddedBlockSet) {
1029       auto *DefPn = GetLastDef(AddedPred);
1030       assert(DefPn != nullptr && "Unable to find last definition.");
1031       LastDefAddedPred[AddedPred] = DefPn;
1032     }
1033 
1034     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
1035     // If Phi is not empty, add an incoming edge from each added pred. Must
1036     // still compute blocks with defs to replace for this block below.
1037     if (NewPhi->getNumOperands()) {
1038       for (auto *Pred : AddedBlockSet) {
1039         auto *LastDefForPred = LastDefAddedPred[Pred];
1040         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1041           NewPhi->addIncoming(LastDefForPred, Pred);
1042       }
1043     } else {
1044       // Pick any existing predecessor and get its definition. All other
1045       // existing predecessors should have the same one, since no phi existed.
1046       auto *P1 = *PrevBlockSet.begin();
1047       MemoryAccess *DefP1 = GetLastDef(P1);
1048 
1049       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
1050       // nothing to add.
1051       bool InsertPhi = false;
1052       for (auto LastDefPredPair : LastDefAddedPred)
1053         if (DefP1 != LastDefPredPair.second) {
1054           InsertPhi = true;
1055           break;
1056         }
1057       if (!InsertPhi) {
1058         // Since NewPhi may be used in other newly added Phis, replace all uses
1059         // of NewPhi with the definition coming from all predecessors (DefP1),
1060         // before deleting it.
1061         NewPhi->replaceAllUsesWith(DefP1);
1062         removeMemoryAccess(NewPhi);
1063         continue;
1064       }
1065 
1066       // Update Phi with new values for new predecessors and old value for all
1067       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
1068       // sets, the order of entries in NewPhi is deterministic.
1069       for (auto *Pred : AddedBlockSet) {
1070         auto *LastDefForPred = LastDefAddedPred[Pred];
1071         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1072           NewPhi->addIncoming(LastDefForPred, Pred);
1073       }
1074       for (auto *Pred : PrevBlockSet)
1075         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1076           NewPhi->addIncoming(DefP1, Pred);
1077     }
1078 
1079     // Get all blocks that used to dominate BB and no longer do after adding
1080     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1081     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1082     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1083     assert(PrevIDom && "Previous IDom should exists");
1084     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1085     assert(NewIDom && "BB should have a new valid idom");
1086     assert(DT.dominates(NewIDom, PrevIDom) &&
1087            "New idom should dominate old idom");
1088     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1089   }
1090 
1091   tryRemoveTrivialPhis(InsertedPhis);
1092   // Create the set of blocks that now have a definition. We'll use this to
1093   // compute IDF and add Phis there next.
1094   SmallVector<BasicBlock *, 8> BlocksToProcess;
1095   for (auto &VH : InsertedPhis)
1096     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1097       BlocksToProcess.push_back(MPhi->getBlock());
1098 
1099   // Compute IDF and add Phis in all IDF blocks that do not have one.
1100   SmallVector<BasicBlock *, 32> IDFBlocks;
1101   if (!BlocksToProcess.empty()) {
1102     ForwardIDFCalculator IDFs(DT, GD);
1103     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1104                                                  BlocksToProcess.end());
1105     IDFs.setDefiningBlocks(DefiningBlocks);
1106     IDFs.calculate(IDFBlocks);
1107 
1108     SmallSetVector<MemoryPhi *, 4> PhisToFill;
1109     // First create all needed Phis.
1110     for (auto *BBIDF : IDFBlocks)
1111       if (!MSSA->getMemoryAccess(BBIDF)) {
1112         auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1113         InsertedPhis.push_back(IDFPhi);
1114         PhisToFill.insert(IDFPhi);
1115       }
1116     // Then update or insert their correct incoming values.
1117     for (auto *BBIDF : IDFBlocks) {
1118       auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1119       assert(IDFPhi && "Phi must exist");
1120       if (!PhisToFill.count(IDFPhi)) {
1121         // Update existing Phi.
1122         // FIXME: some updates may be redundant, try to optimize and skip some.
1123         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1124           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1125       } else {
1126         for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF))
1127           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1128       }
1129     }
1130   }
1131 
1132   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1133   // longer dominate, replace those with the closest dominating def.
1134   // This will also update optimized accesses, as they're also uses.
1135   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1136     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1137       for (auto &DefToReplaceUses : *DefsList) {
1138         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1139         for (Use &U : llvm::make_early_inc_range(DefToReplaceUses.uses())) {
1140           MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
1141           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1142             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1143             if (!DT.dominates(DominatingBlock, DominatedBlock))
1144               U.set(GetLastDef(DominatedBlock));
1145           } else {
1146             BasicBlock *DominatedBlock = Usr->getBlock();
1147             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1148               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1149                 U.set(DomBlPhi);
1150               else {
1151                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1152                 assert(IDom && "Block must have a valid IDom.");
1153                 U.set(GetLastDef(IDom->getBlock()));
1154               }
1155               cast<MemoryUseOrDef>(Usr)->resetOptimized();
1156             }
1157           }
1158         }
1159       }
1160     }
1161   }
1162   tryRemoveTrivialPhis(InsertedPhis);
1163 }
1164 
1165 // Move What before Where in the MemorySSA IR.
1166 template <class WhereType>
1167 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1168                               WhereType Where) {
1169   // Mark MemoryPhi users of What not to be optimized.
1170   for (auto *U : What->users())
1171     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1172       NonOptPhis.insert(PhiUser);
1173 
1174   // Replace all our users with our defining access.
1175   What->replaceAllUsesWith(What->getDefiningAccess());
1176 
1177   // Let MemorySSA take care of moving it around in the lists.
1178   MSSA->moveTo(What, BB, Where);
1179 
1180   // Now reinsert it into the IR and do whatever fixups needed.
1181   if (auto *MD = dyn_cast<MemoryDef>(What))
1182     insertDef(MD, /*RenameUses=*/true);
1183   else
1184     insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1185 
1186   // Clear dangling pointers. We added all MemoryPhi users, but not all
1187   // of them are removed by fixupDefs().
1188   NonOptPhis.clear();
1189 }
1190 
1191 // Move What before Where in the MemorySSA IR.
1192 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1193   moveTo(What, Where->getBlock(), Where->getIterator());
1194 }
1195 
1196 // Move What after Where in the MemorySSA IR.
1197 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1198   moveTo(What, Where->getBlock(), ++Where->getIterator());
1199 }
1200 
1201 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1202                                    MemorySSA::InsertionPlace Where) {
1203   if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
1204     return moveTo(What, BB, Where);
1205 
1206   if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
1207     return moveBefore(What, Where);
1208   else
1209     return moveTo(What, BB, MemorySSA::InsertionPlace::End);
1210 }
1211 
1212 // All accesses in To used to be in From. Move to end and update access lists.
1213 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1214                                        Instruction *Start) {
1215 
1216   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1217   if (!Accs)
1218     return;
1219 
1220   assert(Start->getParent() == To && "Incorrect Start instruction");
1221   MemoryAccess *FirstInNew = nullptr;
1222   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1223     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1224       break;
1225   if (FirstInNew) {
1226     auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1227     do {
1228       auto NextIt = ++MUD->getIterator();
1229       MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1230                                     ? nullptr
1231                                     : cast<MemoryUseOrDef>(&*NextIt);
1232       MSSA->moveTo(MUD, To, MemorySSA::End);
1233       // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
1234       // to retrieve it again.
1235       Accs = MSSA->getWritableBlockAccesses(From);
1236       MUD = NextMUD;
1237     } while (MUD);
1238   }
1239 
1240   // If all accesses were moved and only a trivial Phi remains, we try to remove
1241   // that Phi. This is needed when From is going to be deleted.
1242   auto *Defs = MSSA->getWritableBlockDefs(From);
1243   if (Defs && !Defs->empty())
1244     if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
1245       tryRemoveTrivialPhi(Phi);
1246 }
1247 
1248 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1249                                                 BasicBlock *To,
1250                                                 Instruction *Start) {
1251   assert(MSSA->getBlockAccesses(To) == nullptr &&
1252          "To block is expected to be free of MemoryAccesses.");
1253   moveAllAccesses(From, To, Start);
1254   for (BasicBlock *Succ : successors(To))
1255     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1256       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1257 }
1258 
1259 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1260                                                Instruction *Start) {
1261   assert(From->getUniquePredecessor() == To &&
1262          "From block is expected to have a single predecessor (To).");
1263   moveAllAccesses(From, To, Start);
1264   for (BasicBlock *Succ : successors(From))
1265     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1266       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1267 }
1268 
1269 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1270     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1271     bool IdenticalEdgesWereMerged) {
1272   assert(!MSSA->getWritableBlockAccesses(New) &&
1273          "Access list should be null for a new block.");
1274   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1275   if (!Phi)
1276     return;
1277   if (Old->hasNPredecessors(1)) {
1278     assert(pred_size(New) == Preds.size() &&
1279            "Should have moved all predecessors.");
1280     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1281   } else {
1282     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1283                              "new immediate predecessor.");
1284     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1285     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1286     // Currently only support the case of removing a single incoming edge when
1287     // identical edges were not merged.
1288     if (!IdenticalEdgesWereMerged)
1289       assert(PredsSet.size() == Preds.size() &&
1290              "If identical edges were not merged, we cannot have duplicate "
1291              "blocks in the predecessors");
1292     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1293       if (PredsSet.count(B)) {
1294         NewPhi->addIncoming(MA, B);
1295         if (!IdenticalEdgesWereMerged)
1296           PredsSet.erase(B);
1297         return true;
1298       }
1299       return false;
1300     });
1301     Phi->addIncoming(NewPhi, New);
1302     tryRemoveTrivialPhi(NewPhi);
1303   }
1304 }
1305 
1306 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1307   assert(!MSSA->isLiveOnEntryDef(MA) &&
1308          "Trying to remove the live on entry def");
1309   // We can only delete phi nodes if they have no uses, or we can replace all
1310   // uses with a single definition.
1311   MemoryAccess *NewDefTarget = nullptr;
1312   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1313     // Note that it is sufficient to know that all edges of the phi node have
1314     // the same argument.  If they do, by the definition of dominance frontiers
1315     // (which we used to place this phi), that argument must dominate this phi,
1316     // and thus, must dominate the phi's uses, and so we will not hit the assert
1317     // below.
1318     NewDefTarget = onlySingleValue(MP);
1319     assert((NewDefTarget || MP->use_empty()) &&
1320            "We can't delete this memory phi");
1321   } else {
1322     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1323   }
1324 
1325   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1326 
1327   // Re-point the uses at our defining access
1328   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1329     // Reset optimized on users of this store, and reset the uses.
1330     // A few notes:
1331     // 1. This is a slightly modified version of RAUW to avoid walking the
1332     // uses twice here.
1333     // 2. If we wanted to be complete, we would have to reset the optimized
1334     // flags on users of phi nodes if doing the below makes a phi node have all
1335     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1336     // phi nodes, because doing it here would be N^3.
1337     if (MA->hasValueHandle())
1338       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1339     // Note: We assume MemorySSA is not used in metadata since it's not really
1340     // part of the IR.
1341 
1342     assert(NewDefTarget != MA && "Going into an infinite loop");
1343     while (!MA->use_empty()) {
1344       Use &U = *MA->use_begin();
1345       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1346         MUD->resetOptimized();
1347       if (OptimizePhis)
1348         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1349           PhisToCheck.insert(MP);
1350       U.set(NewDefTarget);
1351     }
1352   }
1353 
1354   // The call below to erase will destroy MA, so we can't change the order we
1355   // are doing things here
1356   MSSA->removeFromLookups(MA);
1357   MSSA->removeFromLists(MA);
1358 
1359   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1360   if (!PhisToCheck.empty()) {
1361     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1362                                            PhisToCheck.end()};
1363     PhisToCheck.clear();
1364 
1365     unsigned PhisSize = PhisToOptimize.size();
1366     while (PhisSize-- > 0)
1367       if (MemoryPhi *MP =
1368               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1369         tryRemoveTrivialPhi(MP);
1370   }
1371 }
1372 
1373 void MemorySSAUpdater::removeBlocks(
1374     const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1375   // First delete all uses of BB in MemoryPhis.
1376   for (BasicBlock *BB : DeadBlocks) {
1377     Instruction *TI = BB->getTerminator();
1378     assert(TI && "Basic block expected to have a terminator instruction");
1379     for (BasicBlock *Succ : successors(TI))
1380       if (!DeadBlocks.count(Succ))
1381         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1382           MP->unorderedDeleteIncomingBlock(BB);
1383           tryRemoveTrivialPhi(MP);
1384         }
1385     // Drop all references of all accesses in BB
1386     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1387       for (MemoryAccess &MA : *Acc)
1388         MA.dropAllReferences();
1389   }
1390 
1391   // Next, delete all memory accesses in each block
1392   for (BasicBlock *BB : DeadBlocks) {
1393     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1394     if (!Acc)
1395       continue;
1396     for (MemoryAccess &MA : llvm::make_early_inc_range(*Acc)) {
1397       MSSA->removeFromLookups(&MA);
1398       MSSA->removeFromLists(&MA);
1399     }
1400   }
1401 }
1402 
1403 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1404   for (auto &VH : UpdatedPHIs)
1405     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1406       tryRemoveTrivialPhi(MPhi);
1407 }
1408 
1409 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1410   const BasicBlock *BB = I->getParent();
1411   // Remove memory accesses in BB for I and all following instructions.
1412   auto BBI = I->getIterator(), BBE = BB->end();
1413   // FIXME: If this becomes too expensive, iterate until the first instruction
1414   // with a memory access, then iterate over MemoryAccesses.
1415   while (BBI != BBE)
1416     removeMemoryAccess(&*(BBI++));
1417   // Update phis in BB's successors to remove BB.
1418   SmallVector<WeakVH, 16> UpdatedPHIs;
1419   for (const BasicBlock *Successor : successors(BB)) {
1420     removeDuplicatePhiEdgesBetween(BB, Successor);
1421     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1422       MPhi->unorderedDeleteIncomingBlock(BB);
1423       UpdatedPHIs.push_back(MPhi);
1424     }
1425   }
1426   // Optimize trivial phis.
1427   tryRemoveTrivialPhis(UpdatedPHIs);
1428 }
1429 
1430 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1431     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1432     MemorySSA::InsertionPlace Point) {
1433   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1434   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1435   return NewAccess;
1436 }
1437 
1438 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1439     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1440   assert(I->getParent() == InsertPt->getBlock() &&
1441          "New and old access must be in the same block");
1442   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1443   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1444                               InsertPt->getIterator());
1445   return NewAccess;
1446 }
1447 
1448 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1449     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1450   assert(I->getParent() == InsertPt->getBlock() &&
1451          "New and old access must be in the same block");
1452   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1453   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1454                               ++InsertPt->getIterator());
1455   return NewAccess;
1456 }
1457